
ARTIFICIAL NEURAL NETWORKS

FOR LEARNING INVERSE KINEMATICS OF

HUMANOID ROBOT ARMS

by
ATIF MAHBOOB

Thesis Supervisor:
Assoc. Prof. Dr. Kemalettin ERBATUR

Submitted to
Graduate School of Engineering and Natural Sciences

in Partial Fulfillment of the Requirements for the Degree of
Master of Science

in
Mechatronics Engineering

Sabanci University

Spring 2015

c© Atif Mahboob 2015
All Rights Reserved

Abstract

Keywords: Artificial Neural Networks, Bio-inspired Learning, Infants Devel-
opments, Inverse Kinematics, Humanoid Robots, URDF Model, Humanoid Robot’s
Arm Design, Multilayer Perceptron, Goal Babbling, Motor Babbling

Nowadays, many humanoid teen sized robot platforms have been developed by
different research groups. The idea is either to conduct research or to produce
a specific task fulfilling machine. This imposes many challenges on the design
of algorithms for different actions like walk or reaching some targets. There are
many sophisticated humanoid research platforms available, but one crucial aspect
to look is the developmental cost associated with the task. As the name describes,
the Humanoid robots are the ones that resemble humans in their design as well as
their way of performing the task.

In the development of humanoid robots, many design for the arm of a humanoid
robot has been studied. We have developed an arm with 5 degrees of freedom using
dynamixel servo motors. We used 3D plastic printing for manufacturing the part.
This arm with multiple degrees of freedom enables the robot to have free movement
around the body. Besides, we also designed a simulator model of a robot that works
with the advanced simulators available today.

A great number of approaches and algorithms have been implemented to solve
the problem of inverse kinematics. The research carried out in this thesis takes
the early learning in human infants as the basis. Human infants in their early
age of development move their arm to reach new goals that they have not seen
yet and with the help of the visual feedback they learn the limits and possibilities
of reaching targets. We have used this idea to develop a learning algorithm that
eventually enables the robot to reach goals in 3D space accurately.

This algorithm is advantageous in the sense that it is faster than the parent
approach of Rolf [2013] and no prior knowledge of the arm model is required to
learn the inverse solution for correct positioning. The algorithm starts with the
knowledge of only one goal in the 3D space, explores more goals in the 3D space
and the learning enables the algorithm to grasp the solution of inverse positioning
of the arm.

The results obtained are comparable to the results generated by Rolf [2013]
with the advantage that the learning is fast with our algorithm. In current research
in the field of cognitive and developmental robotics, one aim is to develop robots
based on biological beings (for example humans and animals) present on our planet.
Humanoid robots can be considered as an exemplary development in this sense.
Similarly, the researchers are trying to move the mathematically computational
solutions more towards bio-inspired computational solutions. Therefore, exploring
bio-inspired learning which was achieved by taking advantage of Artificial Neural
Networks (ANNs) is another advantage associated with this work.

III

Özet

Anahtar Kelimeler: Yapay Sinir Ağları, Bio-ilham Öğrenme, Bebek Gelişmeler,
Ters Kinematik, İnsansı Robotlar, URDF Modeli, İnsansı Robot, Kol Tasarımı,
Çok Katmanlı Algılayıcı, Hedef gevezelik, Motor Gevezelik.

Son günlerde, araştırma grupları tarafından birçok genç insan boyutlarında in-
sansı robot platformları tasarlanmıştır. Amaçları ise ya araştırma amaçlı ya da
belli bir işi yapabilen makineler yapmaktı. Bu da yürüme ya da belli bir hedefe-
ler ulaşma gibi farklı hareketlerin algoritmalarının tasarımlarında birçok zorluğa
sebep olmaktadır. Birçok sofistike insansı araştırma platformları olmakla birlikte,
gözden kaçırılmaması gereken önemli bir nokta da bunların geliştirme maliyetleri-
dir. İsimlerinden de anlaşılabileceği gibi, insansı robotlar tasarım ve performansları
bakımından insanlara benzerler.

İnsansı robotların tasarımlarında, birçok insansı robot kolu tasarımı incelenmiştir.
Biz, dynamixel servo motor kullanan, 5 serbestlik derecesine sahip bir insansı ro-
bot kolu geliştirdik. Parçaların üretiminde, 3B plastik baskı kullandık. Birden
çok serbestlik derecesine sahip olan bu kol, robotun vücudun etrafında serbestçe
hareket etmesine izin verir. Ayrıca, mevcut gelişmiş simülatörler kullanarak bir
robot simülatörü modeli tasarladık.

Ters kinematik sorununu çözmek için birçok yaklaşım ve algoritma uygulanmıştır.
Bu tezde yapılan araştırma bebeklerdeki erken öğrenimi temel alarak yapılmıştır.
Büyüme döneminin başındaki bebekler kollarını daha önce görmedikleri hedeflere
ulaşmak üzere hareket ettirirler ve görsel geri bildirimler sayesinde limitleri ve ola-
nakları ulaşırlar. Biz bu fikri kullanarak, sonunda robotun 3B ortamda tam olarak
hedeflerine ulaşmasını sağlayacak bir öğrenme algoritması geliştirdik.

Bu algoritma avantajı bir bakıma Rolfün [2013] ebeveyn yaklaşımından daha
hızlı olması ve doğru konumlandırma için kolun modelinin önceki bilgilerinin tersine
çözümle öğrenilmesini gerek kalmamasıdır. Algoritma 3B ortamda tek amaçla
başlar, 3B ortamda daha fazla amaç araştırmak ve öğrenme de algoritmanın kolun
tersine konumlandırması çözümünü bulmasının sağlamaktadır.

Elde edilen sonuçlar, yazdığımız algoritmanın daha hızlı öğrenmesi avantajıyla
birlikte, Rolf [2013]ün sonuçlarıyla karşılaştırılabilir. Kavramsal ve gelişimsel ro-
botik alanındaki güncel araştırmalarda amaçlardan biri de gezegende mevcut olan
(Örnek, insan ve hayvanlar için) biyolojik varlıkları temel alan robotlar geliştirmektir.
Bu bakımından insansı robotlar örnek bir gelişim olarak görülebilir. Benzer bir
şekilde, araştırmacılar matematiksel hesap sonuçlarını canlılardan ilham alınmış
hesap çözümlerine kaydırmaya çalışmaktadırlar. Bu yüzden yapay sinir ağları sa-
yesinde başarılan canlılardan ilham alınmış öğrenmenin araştırılması bu çalışmaya
bağlı başka bir avantajdır.

IV

Acknowledgement

The research in this thesis could not have been possible without the help,
support, guidance, faith and prayers of many individuals. I ”Atif Mahboob” the
author of the thesis topic ”Artificial Neural Network for Learning Inverse Kinemat-
ics of Humanoid Robot Arms” take this opportunity to extend my gratitude to my
supervisor Assoc. Prof. Dr. Kemalettin Erbatur at Sabanci University, Istanbul
for his continuous support and guidance. Without his support and guidance, I
couldn’t have been able to accomplish what I have done so far.

I would also like to extend my gratitude and thanks to my jury members Prof.
Dr. Mustafa Ünel, Assist. Prof. Dr. Meltem Elitaş, Prof. Dr. Erkay Savaş and
Assist. Prof. Dr. Murat Yeşiloğlu.

I also extend my gratitude to my supervisors Prof. Dr. Stefan Wermter and
Dr. Sven Magg at the Department of Informatics, University of Hamburg, for their
excellent guidance and support. The enthusiasm, encouragement and faith of my
supervisors enabled me to accomplish this thesis.

I would like to thank and dedicate my thesis to my mother Zarina Mukhtar,
my father Mukhtar Ahmad, my sisters Sajeela Mukhtar and Rimsha Shehzadi for
their unconditional love, support, prayers and trust in me. I would also like to
thank my brother Kamran Mahboob who has been always there as a mentor and
a great support for me.

I also thank Mr. Amir Abbas Davari, Mr. Mert Mehmat Gulhan and Mr.
Orhan Ayit for their sincere help during my work at Sabanci University. During
my stay at the Department of Informatics I had the opportunity to learn from
every single group member of the knowledge technology group (WTM) and excel
in a friendly working environment. I would especially like to thank Dr. Cornelius
Weber, Mr. Dennis Hamester, Mr. Nicolas Navarro & Mr. Johannes Twiefel for
being concerned and helping me in technical difficulties during my thesis.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Overview of Nimbro-OP . 2
1.3 Thesis Goal . 3
1.4 Foundations . 5

1.4.1 Arms . 5
1.4.2 Neural Networks . 6

2 Related Work 11
2.1 Robotic Arm . 11

2.1.1 Seven Degrees of Freedom Robot Manipulator 11
2.1.2 Coginitive service robots; Dynamaid and Cosero 12
2.1.3 Poppy, the open source,3D printed robot 13

2.2 Learning Inverse Kinematics of a Robotic Arm 14
2.2.1 Trivial Approaches . 14
2.2.2 Motor and Goal babbling 16
2.2.3 Online Goal Babbling with direction sampling 16

3 Robotic Arm Design 19
3.1 Introduction . 19
3.2 Initial Design Attempt . 20
3.3 New Design of the Arm . 20
3.4 Printing of the Arm parts . 25
3.5 Robot Model for the Simulator . 26

3.5.1 Robot Model from AutoDesk Inventor 26
3.5.2 Robot Model from Solid Works 27
3.5.3 Procedure for creating Robot definition File (URDF) 27
3.5.4 Robot Model (URDF) Package 30

3.6 Conclusion . 30
3.7 Future Work . 30

4 Neural Learner Design 32
4.1 Introduction . 32
4.2 Approach . 33
4.3 Experimental Setup . 35

VI

Contents

4.4 Results . 36
4.4.1 Hyperparameter Optimization 37
4.4.2 MLP With Best Results (LR0.717 & E0.233 &10 Hidden

Nodes) . 40
4.4.3 Single Layer Perceptron . 44
4.4.4 Comparison of MLP and SLP 45

4.5 Conclusion . 48

5 Implementation on SURALP 49
5.1 Introduction . 49
5.2 Simulator . 50
5.3 Experimental Setup . 51
5.4 Results . 52
5.5 Conclusion . 55

6 Conclusion 56
6.1 Contributions . 57
6.2 Future Works . 58

A Additional Information 59
A.1 The case of the planner arm . 59

A.1.1 Simulator and Experimental Setup 59
A.1.2 Results . 59
A.1.3 Workspace discovery . 62
A.1.4 Conclusion . 62

B Technical Details 65
B.1 NICU . 65
B.2 SURALP . 65
B.3 Learning Algorithm . 66

C Additional Data 67

Bibliography 80

VII

List of Figures

1.1 Humanoid Open Platform Nimbro-OP 3
1.2 Rotations in Human Body2 . 5
1.3 Model of a Biological Neuron . 6
1.4 Model of Single Layer Perceptron 7
1.5 Model of Multi Layer Perceptron 8
1.6 Sigmoid Activation Function . 9

2.1 A low cost Robot Manupulator with 7 DOF 11
2.2 Cosero on the Left and Dynmaid [Stückler and Behnke, 2011] on

the Right . 13
2.3 Poppy4, open source, 3D printed robot 14
2.4 An Arm with 3 Degrees of Freedom 15
2.5 Bootstrapping dynamics for 20 degrees of freedom arm 17
2.6 Deviation from the intended movements 18

3.1 Initial Design Attempt (Left Arm) 21
3.2 New Design of the arm (Left arm). The thin yellow lines show the

axis of rotations of their respective motor 22
3.3 Right Arm Yaw Joint . 23
3.4 Right Arm-Shoulder Pitch . 23
3.5 Right Upper Arm and Shoulder moutning with Torso 24
3.6 Right Lower arm . 25
3.7 Final Assembled NICU Robot . 27
3.8 Nicu Torso Assembly - Solid Works 28
3.9 NICU Torso Model in V-rep . 29

4.1 Artifical Neural Network Architecture for the learner 36
4.2 The plot shows the result of random parameter exploration. The

maximum mean error is about 0.3 meters. The heat values in the
map corresponds to the mean of average positioning error over the
testing cycles. The dark red part shows the region for which the
experiments were not performed . 37

VIII

List of Figures

4.3 The plot shows the result of parameter exploration for higher learn-
ing rate and higher perturbation values than 4.2. The heat values
in the map are the mean of average positioning error over testing
cycles. 39

4.4 Mean & Standard Deviation of average positioning error (over test-
ing cycles for best case of LR0.717 & E0.233). For optimal number
of nodes the best result (against 10 Hidden Nodes) obtained can
be viewed in red color. These experiments shows the exploration
results for 50,000 iteration each. 40

4.5 The plot shows the result of parameter exploration for parameters
close to the best case (LR0.717 & E0.233 & 10 Hidden Nodes). The
heat values in the map are the mean of positioning error over testing
cycles. 41

4.6 Average testing Error over Seen and Fixed Testing Sets 42
4.7 Area Explored by the MLP (LR0.717, E0.233 & 10 Hidden Nodes).

The robot origion is at (x,y,z = 0.56,0.35,0.31) 42
4.8 Error of each points in testing cycle for which average error over

fixed testing set is 0.024745 & for seen testing set is 0.017962 meters.
Absoulte error here is the positoning error of every single point in
the corrosponding testing set . 43

4.9 Average Testing Error over Seen and Fixed Testing sets For Single
Layer Perceptron . 44

4.10 Area Explored by the SLP (LR0.717, E0.233 & 0 Hidden Nodes).
The robot origion is at (x,y,z = 0.56,0.35,0.31) 45

4.11 Comparison of fixed testing points error of MLP & SLP. Positioning
error here is the average over the complete test set. 46

4.12 Reduction of error over iterations. Positioning error here is the
average over the complete testing set 46

5.1 SURALP, A human sized full body humanoid robot 49
5.2 SURALP’s Simulator Model . 50
5.3 Artificial Neural Network Architecture for SURALP 51
5.4 Reduction of average error over fixed testing set 53
5.5 Reduction of average fixed testing error over iterations 53
5.6 Reduction of average error over seen testing set 54
5.7 Reduction of average seen testing error over iterations 54
5.8 Area explored by the right arm of SURALP. Robot’s origin is at

(0,0,0) . 55

A.1 SURALP, A human sized full body humanoid robot 60
A.2 Artificial Neural Network Architecture 60
A.3 Reduction in average testing error 61
A.4 Reduction in average testing error over iterations 61
A.5 Workspace exploration till 103 samples. Red dot in the figure shows

the origin of the arm. 62

IX

List of Figures

A.6 Workspace exploration till 104 samples. Red dot in the figure shows
the origin of the arm. 63

A.7 Workspace exploration till 105 samples. Red dot in the figure shows
the origin of the arm. 63

A.8 Workspace exploration till 105.7784 samples. Red dot in the figure
shows the origin of the arm. 64

C.1 Fixed points testing points-red shows the points with absolute error
more than 4cm and green show less than 4cm. Blue cross show the
center of the robot model (LR0.717, E0.233 & 10 Hidden Nodes) . . 77

C.2 Seen points testing points-red shows the points with absolute error
more than 3cm and green show less than 3cm. Blue cross show the
center of the robot model (LR0.717, E0.233 & 10 Hidden Nodes) . . 78

C.3 Reduction of Error Over Time (LR0.717, E0.233 & 10 Hidden Nodes) 79

X

List of Tables

4.1 Table shows the best results (lowest average positioning error) for
experiments represented in figure 4.2. The values in the table are
the mean of average positioning error over the testing cycles. The
complete values of these experiments can be viewed in Appendix C
in table C.1 to C.8 . 38

4.2 Table shows the best results (with lowest positioning errors) for
experiments represented in figure 4.3. The values in the table are the
mean of average positioning error over testing cycles. The complete
values of these experiments can be viewed in Appendix C in table
C.9 to C.20 . 39

C.1 This table shows the node variation against Learning rate of 0.1 and
Perturbation of 0.1 . 67

C.2 Node variation for Learning rate of 0.05 and Perturbation of 0.1 . . 68
C.3 Node variation for Learning rate of 0.1 and Perturbation of 0.05 . . 68
C.4 Node variation for Learning rate of 0.05 and Perturbation of 0.05 . 68
C.5 Node variation for Learning rate of 0.1 and Perturbation of 0.02 . . 69
C.6 Node variation for Learning rate of 0.7 and Perturbation of 0.1 . . . 69
C.7 Node variation for Learning rate of 0.7 and Perturbation of 0.05 . . 69
C.8 Node variation for Learning rate of 0.7 and Perturbation of 0.02 . . 70
C.9 Node variation for Learning rate of 0.717 and Perturbation of 0.233 70
C.10 Node variation for Learning rate of 0.266 and Perturbation of 0.314 71
C.11 Node variation for Learning rate of 0.11 and Perturbation of 0.18 . 71
C.12 Node variation for Learning rate of 0.527 and Perturbation of 0.29 . 72
C.13 Node variation for Learning rate of 0.919 and Perturbation of 0.15 . 72
C.14 Node variation for Learning rate of 0.64 and Perturbation of 0.1 . . 73
C.15 Node variation for Learning rate of 0.08 and Perturbation of 0.18 . 73
C.16 Node variation for Learning rate of 0.02 and Perturbation of 0.314 . 74
C.17 Node variation for Learning rate of 0.0527 and Perturbation of 0.29 74
C.18 Node variation for Learning rate of 0.011 and Perturbation of 0.18 . 75
C.19 Node variation for Learning rate of 0.717 and Perturbation of 0.023 75
C.20 Node variation for Learning rate of 0.266 and Perturbation of 0.031 76
C.21 Exploration of paramters near the best case of LR0.717 & E0.233 . 76

XI

Chapter 1

Introduction

In this chapter, we will introduce the robot platforms used in this research, the
motivation and goal of this research. Later the brief introduction about human
arms and Artificial Neural Networks (ANNs) will be presented.

In order to create machines with human friendly appearance and task per-
formance, a considerable amount of research has been carried out on humanoid
robots. In the past research, humanoids were produced using different non-linear
control techniques and different kinds of actuators like pneumatic, hydraulic, ro-
tational, etc. The produced robots were able to deal with specific problems which
they were created for. The limitation was that once constructed, very little modi-
fication possibilities were possible.

Recent developments within the field of Artificial Intelligence have made the
robots less constrained for specific tasks. Artificial Neural Networks inspired by
the biological brain have introduced human brain imitated learning capabilities
for robots. Nowadays, robots can learn multiple different tasks e.g. identifying
objects, navigating in the environment, human interaction and many more.

The research on humanoids has the long term goal of achieving human friendly
interactive robots for safe domestic usage enabling them to do regular tasks in
domestic environments as well as interacting with kids and older people in the
care centers.

The main idea of this thesis is to develop the arms of the robot NICU and
implement a bio-inspired learner to learn the inverse kinematics associated with
the arms of a Humanoid Robot. NICU is a humanoid robot that has the walking
capabilities of humanoid open platform Nimbro-OP [Schwarz et al., 2012] and
interaction capabilities of i-Cub [Metta et al., 2008] head. After developing this
algorithm, we will focus on its generalization capabilities by applying it on Sabanci
University Robotics Research Laboratory Platform (SURALP - A full human body
sized Humanoid Robot, explained in chapter 5).

1

1.1. Motivation

1.1 Motivation

Humans are very sophisticated being present on this universe. Human body
contains hundreds of muscles that enable it to perform tasks for living with the
help of nervous system. They need a good coordination between their degrees of
freedoms and the environment in order to perform a successful action. However,
it has been studied in the research on human infants that they are born without
the possession of this coordination and they overcome this limitation by learning
it in the early age developments as described in Konczak et al. [1997]. They first
try to master reaching for a goal in space and this development further evolves in
learning of very complex tasks like walking with stability, balancing with holding
weights, running and many more. In modern robotics, this learning provides us
with a major goal of research in the field of cogitative and developmental robotics
for example Lungarella et al. [2003], Asada et al. [2009].

The main idea of this thesis is inspired from the work of Rolf [2013]. He takes
the early age developments in infants [Thelen et al., 1996] to learn the way to
reach a goal. Infants start with no previous knowledge about their arms and they
start the exploration of space and based on the experience they get by exploration
they start to learn. This learning evolves with time from random movements in
the space to more precise structured movements. We use the same idea for the
learning for the correct positioning of humanoid robots. The robot starts with no
prior knowledge about the arm and starts exploration of the space reachable by
the arm. A learner on the back of this exploration tries to learn the way in which
the data is explored and the points are reached in the space.

The idea of using the learning model of infants is to use it as a basic in the
initial development of humanoid robots. The way we are trying to learn the correct
positioning in the 3D space is purely bio-inspired (resembles the learning involved
in humans). This leads to an idea to use a learner that will also be Bio-inspired.
This was a great motivation to use Artificial Neural Networks (ANNs) as the
learner in our thesis. ANNs are the computational model of human brain and they
try to imitate the learning of human brain [Agatonovic-Kustrin and Beresford,
2000]. ANNs requires no previous knowledge of the model or the source of the
data. ANNs need a training data set for learning and they learn by updating the
weights of the network based on the learning rule. ANNs after learning the solution
provided with the help of the training data, try to generalize the solution of the
data point outside the training data. In our work the training data will be the
explored points in the space. We have used the idea of goal oriented exploration
proposed by Rolf [2013] and have developed it to an approach that will be fast as
well as capable of solving a positioning problem spread in 3D space.

1.2 Overview of Nimbro-OP

Nimbro-OP developed in Schwarz et al. [2012], is a ROS based open humanoid
platform made by University of Bonn. The prime purpose of construction of this

2

1.3. Thesis Goal

platform was a soccer demonstration.

Figure 1.1: Humanoid Open Platform Nimbro-OP

The Nimbro’s design is an open source platform and falls in RoboCup KidSize
and TeenSize leagues. University of Bonn developed a ROS-based software frame-
work as explained in Allgeuer et al. [2013]. This framework supports the robot by
providing functionality for hardware abstraction, visual perception, and behavior
generation. The robot can perform walk, ball detection, kick and recover from
the fall. It also has two gait stabilization and tilt estimation to detect a fall or
instability.

1.3 Thesis Goal

Nimbro can walk, play soccer, detect fall and recover from it. On one side
this is a very complex and sophisticated platform as far as its walk and soccer
performance are concerned. On the other side, it has a very simple design of arms.
According to the design of the arms, Nimbro can use its arms for recovering from
a fall on any side i.e. fall on face down, face up and side way falls. In the current
configuration of the arms, the inward movement of the arms is not possible due to
the extended chest. Due to this limitation, the arms cannot reach any point right

3

1.3. Thesis Goal

in front of the chest. Nimbro also does not possess a grip in the hand. Instead it
has round tip arms. So far, the robot is not capable of demonstrating any kind of
grasping or gripping.

Nimbro being constructed primarily for soccer demonstration contains only
three degrees of freedom in each arm. The goal of this thesis is therefore to equip
Nimbro-OP with arms that will allow it to reach multiple places in the space. The
task is further divided into following sub tasks.

1. To build and test multi DOF arms that are available as Open-Hardware for
3D Printing. The arms should also possess a gripping mechanism that can
allow the robot to perform grasping/gripping in the future.

2. Implement a learner for the chosen arms using a bio-inspired neural network
learning approach to achieve correct positioning in 3D space.

3. Implementation of the same learner on SURALP (A full human body sized
Humanoid Robot built by Sabanci University, Turkey). SURALP [Erbatur
et al., 2009] will be introduced and explained in chapter 5.

4

1.4. Foundations

1.4 Foundations

1.4.1 Arms

Humans are composed of a very sophisticated design comprised of arms, legs,
eyes, ears etc. This sophisticated and well capable design has helped us to survive
all the ages. Out of all these tools the arms are of paramount importance. Arms
allow us to physically interact with the environment. We can do physical work
like lifting things, grasping, typing etc. Other beings on the planet also have arms
but in a different structure. This is shown by the fact that many animals that use
their arms for walking cannot perform in the same way as we do.

Figure 1.2: Rotations in Human Body2

When it comes to research, human arm design is treated as the basic design to
derive further sophisticated robotic arms. The human arm has total 7 degrees of
freedom i.e. Shoulder pitch, arm yaw, shoulder roll, elbow pitch, wrist pitch, wrist
yaw and wrist roll.

In the arm, three of these degrees of freedom are in the shoulder, one is the
elbow and three are in the wrist. In practice, three degrees of freedom in the
shoulder together with one in the elbow allow humans to reach for a position
successfully. The three degrees of freedom at the wrist are used for orientations.

2http://www.openrobots.org/morse/doc/1.2/user/code/morse.sensors.html

5

1.4. Foundations

The hand in the human arm is equivalent to the gripper used in Robots. So the
first four degrees of freedom enable the arm to move the hand to a certain position
while the three degrees of freedom of the wrist are used to orient the hand in the
desired orientation. The axis of rotations in the human arm as well as the rest of
the body are shown in figure 1.2

In the early development of industrial robots, robotic arms were made consid-
ering the structure of a human arm due to its capabilities. This approach further
helped us to develop the complex robotic arms and manipulators that are in use
by different industries today.

1.4.2 Neural Networks

Artificial Neural Networks (ANNs) are inspired from neurons in the biological
brain. The brain learns simple as well as complex tasks with the help of neurons.
ANN uses the mathematical model of a brain neuron and is used for learning
complex functions, classification problems and many more.

Figure 1.3: Model of a Biological Neuron

Figure 1.3 shows the model of a biological neuron. The model explained by
Hebb [1949] and known as hebb’s synapses established the basis of neural network
algorithms. The work explains that numerous dendrites act as input channels
for the electrical signal to the neuron. At a particular contact point, the electrical
signal can be initiated from the synapses. The cell body of the neuron accumulates
the input signals. If a particular threshold is exceeded, the cell body of a neuron
generates a signal which is the output of the cell through the axon.

The model of a biological neuron in artificial intelligence is known as Perceptron
and was first proposed by Rosenblatt [1958]. This model was based on the earlier
model of neuron presented by McCulloch and Pitts [1943].

Each perceptron in an ANN has its own small sphere of knowledge with which
to deal with. Combination of series of such perceptrons that makes an ANN that
can learn ranging from simple linear to very complex functions.

6

1.4. Foundations

Single Layer Perceptrons

In order to understand the basic working principle of a perceptron we need to
have a closer look at Rosenblatt [1958]. The output of the neuron is the activation
of the weighted sum of all the inputs.

Figure 1.4: Model of Single Layer Perceptron

o = f(
N∑
i=1

Wixi) (1.1)

Where W i is the weight for the corresponding input and f is the activation
function over the weighted sum. The activation function in case of a simple thresh-
old function can be written as

f(n) =

{
−1 if n ≤ 0

1 if n > 0

The perceptron learns by adjusting the weights attached with each input. It
changes the weights after checking the amount of error generated by the current
weights in estimating the target t̂. α is the learning rate that is a measure of how
fast we want to learn the problem.

E = t̂− o (1.2)

W ′
i = Wi + αExi (1.3)

So far these are the cases that demonstrate when there are multiple inputs and
a single output. If there is more than one output then the equation will be as
follows

7

1.4. Foundations

oj = f(
N∑
i=1

Wijxi) (1.4)

A perceptron can learn any linearly separable function, for example AND or OR
function. However, it cannot approximate a linearly inseparable function like XOR.

Multi Layer Perceptrons(MLP)

Linearly inseparable functions cannot be approximated using Single Layer Per-
ceptron, so the idea of a Multi Layer Perceptron was proposed. Multi Layer Per-
ceptron in comparison to Single Layer perceptron has at least one hidden layer
between the output and the input layer (See Figure 1.5)

Figure 1.5: Model of Multi Layer Perceptron

The MLP network runs forward by considering the output of the nodes in the
previous layer as input for the current layer. As in the figure 1.5, the hidden layer
takes the output of the input layer as input and the output layer takes the output
of hidden layer as input and then computes the output. The activation function
here is applied on the computed values of each node.

In back propagation algorithm, the MLP learns by propagating the error back-
wards. That means, it moves from output towards input and updates the weights.
It incorporates the derivative of the activation function for propagating backwards.
So one constraint that we have is that we need to use an activation function that
can be differentiated.

One commonly used transfer is the sigmoid unit

sgm(x) =
1

1 + e−x
(1.5)

8

1.4. Foundations

This function can be easily differentiated, and the derivative is

dsgm(x)

dx
= sgm(x)(1− sgm(x)) (1.6)

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

x
2*x
x/2

Figure 1.6: Sigmoid Activation Function

Back Propagation/Gradient Decent Algorithm

ANNs have a large area of application and many algorithms have been devel-
oped. In this thesis we will focus on ”Back-propagation Algorithm” developed in
Rumelhart et al. [1986] also known as ”Gradient decent Algorithm” in ANNs.

Gradient decent algorithm can be used in batch learning mode or online learning
mode. Batch learning mode is referred as ”Batch Gradient Decent (BGD)” and
Online learning mode is referred to as ”Online Gradient Decent (OGD)”. The
understanding of the difference between these two algorithms is very important. A
correct understanding will allow making the correct choice of the algorithm for any
particular application. In both of these gradient decent algorithms, each algorithm
iteratively tries to minimize an error function and update the parameters. In BGD,
the algorithm runs over all the training samples to perform a single update of
parameters in a single iteration. On the other hand, OGD only uses the one current
training sample to perform the update of the parameters in a single iteration.

Batch gradient decent is a strong algorithm to approximate many of the real
world problems. However, its use becomes limited while dealing with huge amounts
of data sets. If the data set is huge and batch gradient is used, the learning is very
slow and computationally costly. The reason for this limitation is the fact that
the BGD tries to approximate the whole data set on every single iteration. On
the contrary, OGD only considers the current training example it is looking at
and then updates the parameter only according to one example. This makes OGD
more efficient for learning problems involving huge training data sets.

9

1.4. Foundations

Furthermore, very good comparison was made in Wilson and Martinez [2003]
to provide a better understanding of batch and online gradient decent. They state
that batch learning is a good approximation approach while dealing with small
data sets. It deals with a smaller learning rate and a higher learning rate can
make batch learning highly unstable. When it comes to large amounts of data
sets, batch learning is relatively slower and is not a very effective approach.

On the other hand on-line learning is advantageous because it is fast as com-
pared to batch learning and can deal with higher learning rates and huge data
sets. On-line learning also easily avoids the need of storing weight change like it
is needed in batch learning. When we compare on-line and batch gradient decent
for a very small learning rate, we observe almost equivalent results. The beauty of
on-line gradient decent is that it can safely use higher learning rate that makes it
faster than the batch gradient decent.

As discussed above, on-line learning is better in performance than batch gradi-
ent decent when dealing with huge training sets. Furthermore, it is faster because
it can work safely with higher learning rates.

This thesis goal is spread over 3D space and we may face a huge amount of
training data in the 3D space. So we will use in our approach online gradient
decent as explained in Bottou [1998].

10

Chapter 2

Related Work

2.1 Robotic Arm

The task of the arm design has some important considerations. We are looking
for an arm that can allow the robot to reach different points in 3D space. It should
be a low cost production and light weight arm, so that it will not put any stability
danger to the robot. Our robot runs on Dynamixel servo motors and we want a
design that will use the same actuators. We are developing the first prototype and
we want the arm to be printed by the 3D plastic printer.

2.1.1 Seven Degrees of Freedom Robot Manipulator

In the current research for making robots capable of grasping, many arms and
arm manipulators have been developed. One of them is made by Quigley et al.
[2011]. This is a low cost manipulator developed for Human-scale work space. The
arm has 7 degrees of freedom with a pay load of a minimum of 2 kg and repeat
ability of 3 mm, with a maximum speed of 1.0 m/s.

Figure 2.1: A low cost Robot Manupulator with 7 DOF

This arm uses stepper motors to drive the motion with speed reduction ac-
complished by timing belts and cable circuits. In particular the last three DOFs

11

2.1. Robotic Arm

are managed by Dynamixel robotics RX-64 servos. The arm can reach consider-
able space in the Cartesian plane. It can demonstrate the movements involved in
playing chess and making pancakes with accuracy.

Although this arm design is very useful, its biggest limitation is that it is an arm
manipulator and not a part of humanoid robot. Manipulators always have a fix
mounting ground that can support their structure and make their operations stable.
On the other hand, the arms made for humanoid robots need to be tested for their
stable operations. The reason is absence of a fix mounting support in humanoids,
instead we have a structure that is dynamic and can collapse by unstable arm
movement. Another consideration is the weight and size of this arm. One can
reason that the size can be reduced to fit the size of the robot, but even with this
idea the mounting of this arm is similar to the existing arms of Nimbro. This
mounting will not allow Nimbro to move the arms in front of the chest. Therefore,
this arm design cannot be used.

2.1.2 Coginitive service robots; Dynamaid and Cosero

Nimbro-OP is a platform developed by University of Bonn which uses Dy-
namixel Motors made by Robotis3 as actuators. Nimbro was actually designed for
soccer demonstration. Meanwhile there are some service robots also developed by
University of Bonn which are for grasping demonstration. ”Dynamaid and Cosero”
as stated in Schwarz et al. [2014] are two platforms designed for indoor navigation,
mobile manipulation and for human robot interaction. Cosero and Dynamaid are
equipped with omnidirectional wheels that provide flexible locomotion in even re-
stricted spaces. The arms have 7 DOF and are inspired from the human arms.
One difference in both robots is that Cosero is capable of lifting higher weights
with a single hand as compared to Dynamaid. Both robots have 1 DOF gripper
made by Festo FinGripper fingers.

These robots can perform simple household tasks using grasping as cited in
Stückler et al. [2011] and Grave et al. [2010], as well as moving things in the
kitchen and cleaning places inside the home. These robots were used by the team-
NimbRo@Home of Rheinische Friedrich-Wilhelms-Universitat Bonn, Germany at
the competition RoboCup@Home league that was held in Joao Pessoa, Brazil in
July 2014.

Both of these robots have sophisticated and well performing arms. The arms
are fixed on a platform with wheels which eliminate the risk of instability while
performing grasping as explained in the limitations of the arm in section 2.1.1.
Therefore, this design is not suitable for our application.

However, the idea of utilizing the Dynamixel servos to construct a complete 7
DOF arm can help us in our design.

3http://www.robotis.com/

12

2.1. Robotic Arm

Figure 2.2: Cosero on the Left and Dynmaid [Stückler and Behnke, 2011] on the
Right

2.1.3 Poppy, the open source,3D printed robot

Since the last few years the development in 3D printing technology has enabled
the developers to produce low cost parts that lead to low cost robots. A part
is designed using any of the mechanical design software and the designed part is
provided to the printer. The 3D printer creates the exact model using plastic,
metallic or polymer materials.

An excellent use of this 3D printer can be observed in Poppy as stated in
Lapeyre et al. [2014]. This robot uses 25 Dynamixel Robotis actuators and all
the rest of the parts are printed using plastic. As compared to the platforms of
its category, the robot is low cost. The platform is open source and designed for
research purposes. The robot legs can perform biped locomotion Lapeyre et al.
[2013]. The bio-inspired thigh shape makes this biped walk easier. The robot can
perform bio-inspired walk but so far it cannot demonstrate any kind of gripping
or grasping. The arms have four degrees of freedom with a fixed human looking
plastic printed hand (See figure 2.3).

Poppy is a very sophisticated and at the same time low cost robot. Its arms
allow its hand to maneuver better in space as compared to Nimbro-Op. However,
there is a very big limitation in the arms of this robot. It has a fixed plastic
printed human looking hand. This hand improves the human friendly look of
this robot and also makes its arm movements more demonstrative. As far as the
grasping/gripping is considered, this arm is not usable in our application.

13

2.2. Learning Inverse Kinematics of a Robotic Arm

Figure 2.3: Poppy4, open source, 3D printed robot

2.2 Learning Inverse Kinematics of a Robotic

Arm

In the development of the humanoid robots and the advance in artificial intel-
ligence has posed a new challenge on the robot developers to find out the efficient
way to explore the joint space of a robotic arm and learn the most efficient way to
reach different points in space. Many different algorithms and approaches made
in past enabled the robots to learn the inverse kinematics of the arms. A small
overview of these approaches will be discussed in this section.

2.2.1 Trivial Approaches

Since the start of robotic age, solving inverse kinematics is a problem of great
consideration. In the initial attempts to solve the problem, the approaches were
based on creating a mathematical model of the problem and solutions were com-
puted numerically. Mathematical modeling was usually performed to get a set of
equations that will fully describe the model of the arm mathematically. These

4https://www.poppy-project.org/

14

2.2. Learning Inverse Kinematics of a Robotic Arm

equations will link the joint space with the Cartesian space. Figure 2.4 shows an
arm with three degrees of freedom.

Figure 2.4: An Arm with 3 Degrees of Freedom

The equations for this arm will link the position of the end effector p(x,y)
and the angle that represents the orientation with rotation angles of the joints.
Correctly knowing all three angles of rotation and computing the equation will
lead to the end effector position and orientation. For example the equations below
represent the model of the arm in figure 2.4 and can be used to compute all three
unknown values of the end effector.

x = I1 cos θ1 + I2 cos(θ1 + θ2) + I3 cos(θ1 + θ2 + θ3) (2.1)

y = I1 sin θ1 + I2 sin(θ1 + θ2) + I3 sin(θ1 + θ2 + θ3) (2.2)

θ = θ1 + θ2 + θ3 (2.3)

This problem seems easy and straightforward. However, in case of three dimen-
sional position and orientation of an end effactor or the arms with redundancies,
the number of these modeling equations multiplies and it becomes computation-
ally very costly to compute the solution. These approaches have problems with
complex systems or computationally redundant systems. Secondly, if the model-
ing equations can be complex it can lead to the requirement of high computation
power that is simply not feasible. There can be additional factors of uncertainties
that the exact mathematical model cannot be constructed or the initial conditions
supposed for finding the solution are not good enough. Furthermore, a huge num-
ber of iterations are required for iterative approaches that make the approach less
favorable against the modern learning approaches for inverse kinematics. A work
by Berka, summarizes the traditional methods of solving inverse kinematics and
explains the advantages and disadvantages associated with them.

15

2.2. Learning Inverse Kinematics of a Robotic Arm

A comparison of using Neural Networks against the traditional approaches is
done by Hasan and Al-Assadi [2010]. This work discusses the closed form solution,
iterative approach, numerical approach and pseudo-inverse of Jacobian to solve the
inverse model. The work shows that using ANNs is better than these approaches.
Also the Neural Network approach is favorable for adapting the changes made to
system later after development.

2.2.2 Motor and Goal babbling

Motor babbling and goal babbling are two highly famous approaches to explore
and learn the space reachable by the robotic arm. In motor babbling the motors
are moved in the motor space in each iteration that causes the end effector to land
at a different place each time. A considerable number of these steps can enable a
robot to explore and learn the reachable space of a robotic arm. Goal babbling is a
technique that uses a similar principle as motor babbling. The difference is that in
goal babbling the goal (end effector) is moved in the space and the motor positions
are noted. However, in motor babbling, the motor positions are moved and the
final position of the end effector is noted. After a series of steps, the robotic arm
can explore and learn the reachable space.

The learning works by collecting pairs of motor positions and the position of
goal in space. When it comes to learning, motor babbling is not a very real-
istic approach due to high dimensionality present in the solution. Also due to
non-linearity and the presence of redundant solutions, the data is inadequate for
learning. In previous research by Rolf et al. [2010], it has been shown that goal
babbling is more efficient for learning the inverse model in redundant learning as
compared to motor babbling. They propose the idea of moving the goal in space
that enables the system to learn the inverse kinematics while exploring. In a work
by Moulin-Frier and Oudeyer [2013], four exploration strategies are discussed.

• Random Motor Babbling

• Random Goal Babbling

• Active Motor Exploration

• Active Goal Exploration

In this approach, active exploration incorporates a probabilistic model that
maximizes the interest value for the exploration to be made next. The results show
that goal exploration based learning performs better then motor exploration based
learning. This approach also suggests that active learning is better in performance
to random learning because it does more reduction in the error over space.

2.2.3 Online Goal Babbling with direction sampling

As discussed above the performance of goal babbling is better than motor
babbling. Further strengthening this approach, a new idea of using online learning

16

2.2. Learning Inverse Kinematics of a Robotic Arm

for solving inverse kinematics was proposed in Rolf et al. [2010]. This approach
uses the developmental idea in the early age of infants. The infants try to move the
arms and then visualize and evaluate the movement to learn the inverse kinematics
in the arms. The same way, another work of Rolf et al. [2011] uses online learning
for learning the inverse model of the system. A path generation mechanism is
used that directs the goal in a specific direction and learning is performed after
every single iteration step. This approach does not use any prior knowledge about
the system. Instead, the system starts the exploration and is forced to follow a
generated path along a line to explore and learn the space. This work uses online
goal babbling to learn the inverse estimate. This approach has been tested on a
5 DOF and 20 DOF system and figure 2.5 shows the results for 20 DOF system
exploration in two dimensional space.

Figure 2.5: Bootstrapping dynamics for 20 degrees of freedom arm

Rolf [2013] further extends the approach developed in Rolf et al. [2011]. This
approach uses the same principle of making the goal to follow a line, such that
after seeing one example a small perturbation term is added in the goal position
and the system is asked to reach this position. Since the system has not learned
the whole space yet, it will not reach the given goal and will land somewhere else.
Then the system will be trained on this example and the same process will go on
until the arm reaches its boundary limit. A home function is initiated that will
always return the home position for any position and configuration of the goal.
The goal position will always move in a straight line but the arm cannot exactly

17

2.2. Learning Inverse Kinematics of a Robotic Arm

follow this goal line, instead it will start to bend as shown in figure 2.6.

Figure 2.6: Deviation from the intended movements

Target goal vector is calculated by taking the difference of current and last goal
position and real position vector of arm is calculated by taking the difference of
the arm’s current and last position. When the angle between target goal vector
and real position vector is 90 degree (See figure 2.6) it means that the arm has
reached the end of its reachable space. At this point the system stops following the
line and comes back to its home position that is generated by the home function.
From the home position the system will start following another line in another
direction generated by the perturbation term. The result of this approach is that
after following a few lines the system learns the inverse model without the need
of having a predefined set of goal position or any kind of prior knowledge. In this
thesis, this algorithm will be further extended to learn the inverse kinematics of
an arm with the help Artificial Neural Network as Learner.

18

Chapter 3

Robotic Arm Design

3.1 Introduction

The main features of Nimbro-OP have already been explained in section 1.2.
This introduction will provide a further in depth knowledge about Nimbro-OP. As
far as the mechanical design of Nimbro-Op is concerned, 20 actuators for 20 degrees
of freedom are present in the robot. Each leg has six actuators and each arm has
three actuators. Furthermore, there are two actuators in the neck. All these
actuators are made by Robotis5 and are the Dynamixel motors. The actuators on
the legs are Dynamixel MX-106 and the actuators on the arm are Dynamixel MX-
64. The neck also uses Dynamixel MX-64 as the actuator. Nimbro-Op is assembled
using lightweight materials i.e. Carbon Composite, Aluminum and ABS+.

The robot has only three degrees of freedom per arm that are only used to
recover from the fall. The robot has no capability to move the arm right next to
its chest. The chest is extended and the current fixing of the arm does not allow it
to move inward. The shoulder joint only has two degrees of freedom i.e. Shoulder
Pitch and Shoulder Roll. One more degree of freedom is on the elbow of the robot
(see figure 1.1). At the end of the arm the robot does not have a gripper, instead
it has a round tip that makes it easy for the robot to recover from the fall because
the probability of the arm tip to stuck somewhere is minimal. Quite clearly, these
arms are not capable to perform any kind of grasping. So in the design of the arm
we have several major tasks to be done as mentioned below

1. To provide more than three degrees of freedom, to build an arm that will
allow more points in 3D space to be traced.

2. An arm design that should allow it to reach the points right next to the chest
of the robot and that can avoid the restriction on the inward movement due
to an extended chest of the robot.

3. A grip at the end of the arm that can allow the robot to grasp different
objects. This is very important for physical interaction of the arm with its
environment.

5http://www.robotis.com/xe/dynamixel en

19

3.2. Initial Design Attempt

4. The arm should be bio inspired which means it should give a human arm like
movements at performance.

5. The walk should be stable with the new arms. This can be done by keeping
the weight of the newly designed arm close to the old one. The position of
the center of mass of the robot will not be affect by introducing the arms.

6. The URDF model (explained in Section 3.5) should be created. This model
will help in experimental simulation for the new arm design.

3.2 Initial Design Attempt

The first design attempt was made considering the fact that the modification
should be as minimum as possible. The shoulder roll motor in the Nimbro is placed
inside the chest. The first idea was to put this motor out and add more motors in
the arms to have an initial design idea. So, the shoulder roll motor was mounted
outside the chest and then the upper arm containing shoulder pitch and elbow
motor was joined to this motor. The lower arm of the Nimbro with the round
tip was removed and instead of that a gripper was introduced that could orient
itself by the use of a wrist motor that was placed in between the elbow and the
gripper. The gripper used in the structure is the gripper designed by Robotis6 for
Darwin-Op robot. The first attempt of the design as explained in this section can
be viewed in the figure 3.1.

This design could avoid the problem of extended chest and also had a gripper
with four degrees of freedom i.e. shoulder pitch, shoulder roll, elbow and wrist.
However, it was not suitable for our application due to the following problems

• It could reach some points right next to the chest but these points were a
few in quantity and the arm still restricted considerably.

• Though the arm joints were inspired from the human arm, the structure did
not give a human friendly look.

• The arm was now mounted far from the chest that endangered the safe and
stable walk of the robot. Moreover, mounting of the arms was not strong
enough to provide the grasping torque.

3.3 New Design of the Arm

After considering the problems in the initial design attempt, it was clear that
the possibility of using the previous structure of the arm to develop the new one was
almost impossible. Therefore, as a result, a new design of the arm was needed. In
the new design we thought about different possibilities of having different number

6http://www.robotis.com/

20

3.3. New Design of the Arm

Weak Arm Mounting

Mounted Far From Chest

Figure 3.1: Initial Design Attempt (Left Arm)

of joints and different mounting possibilities. We decided to put 5 degrees of
freedom to the new arm. The main idea was to have 3 degrees of freedom at the
shoulder, exactly as the human arm has. How these joints would be placed on
the shoulder was still to be decided. The fourth degree of freedom was the elbow.
These four degrees of freedom were important for the movement of the arm in 3D
space. The idea was inspired by the human arm that also uses these four degrees
of freedom to reach different points in the space. The designed arm can be seen in
figure 3.2

In order to decide the design for the placement of first four DOF, different
parts were designed to check the arm structure. The main software used for the
part design and the assembly was AutoDesk Inventor (Education version). The
designed parts were assembled inside AutoDesk Inventor to check the final struc-
ture outcome. The design for the shoulder was very important as it would have
a direct effect on the stability and the strength of the arms. This is the reason
why decided to put one motor (one degree of freedom) of the shoulder inside the
chest. We had some mounting possibilities available at the shoulder of the existing
structure of the robot. Now, the next question was out of the 3 DOF of shoulder
which DOF of the shoulder would be placed inside the chest. It should provide the
strong mounting for the arm, be stable and provide unrestricted movement of the
arm around the chest. Therefore, we decided to place the Arm Yaw joint inside the
chest with the help of a part that would fit the motor with the existing structure
of the robot. This part assembled with the motor is shown in the figure 3.3

21

3.3. New Design of the Arm

Figure 3.2: New Design of the arm (Left arm). The thin yellow lines show the axis
of rotations of their respective motor

As it can be seen in the figure 3.3, a disc is placed right on the gear of the
motor. The disc was needed to provide a proper mounting for the next structure
that would not collide with the existing structure of the robot. This disc provides
a mounting to the next structure as well as a clearance for a free rotation around
the yaw joint by avoiding the collision with the mounting place.

The next motor to be mounted on was the shoulder pitch motor. This motor
was mounted with the help of standard fitting available from Robotis7. It can be
seen in figure 3.4

The next joint to be placed was the shoulder roll joint which was placed on the
upper arm structure. It was not possible to mount the arm directly on the shoulder
pitch motor. Again a standard fitting (FH-101(see figure 3.2)) from Robotis was
used. This structure and mounting completed three degrees of freedom of the
shoulder with the Torso of the robot and the upper arm of the robot. For the

7http://www.robotis.com/

22

3.3. New Design of the Arm

Figure 3.3: Right Arm Yaw Joint

Figure 3.4: Right Arm-Shoulder Pitch

upper arm, the old parts were not usable due to the bend just before the elbow
joint in the Nimbro. So the upper arm structure was also modified but the spacers
of the original Nimbro arm were used. The structure of the upper arm assembly
along with the elbow motor is shown in the figure 3.5

The next task was to create a design that would mount the elbow motor with
the upper arm and also support the lower arm. The lower arm in the end should
connect to the wrist motor. The first four motors (Arm Yaw, Shoulder Pitch,

23

3.3. New Design of the Arm

Figure 3.5: Right Upper Arm and Shoulder moutning with Torso

Shoulder roll and Elbow) are used to reach different positions with the help of the
lower arm structure. However, their help in orienting the hand is minimal. The
human arm has three joints at the wrist that help us to orient our hand. So we
needed a structure for the lower arm that would further mount the orientation
motors for the wrist, if any would be included in the structure at all. The lower
arm structure is shown in the figure 3.6.

The next step was the design for the wrist of the robot. It was not possible to
put three motors as present in the human arm for the orientation of the gripper
i.e. Wrist Roll, Wrist Pitch and Wrist Yaw. Only one motor (wrist roll) for the
orientation was added due to following considerations

• Mounting all three motors at the wrist was very difficult. Three motors at
the wrist increase the weight of the arm to the level that can make the robot
unstable for walk and for performing other tasks

• If we put three degrees of freedom at the wrist then we have a total of seven
degrees of freedom along with one additional of the grip. Eight motors control

24

3.4. Printing of the Arm parts

Figure 3.6: Right Lower arm

algorithm is more complex and difficult because it has more redundancies
than six motor controls.

One motor for orientation can adjust the final orientation of the gripper by
rolling the wrist. Finally the gripper was connected to the wrist Roll motor and
we had the complete arm design. The same steps were repeated for the left arm
and the same structure was obtained. The Autodest Inventor assembly for the left
arm can be viewed in the figure 3.2

3.4 Printing of the Arm parts

As explained in the previous section, the parts were designed using Autodesk
Inventor and the assemblies were also made using it. Once the arm design was
ready inside the Inventor and was approved, the next step was to produce the
solid parts and put them on the real robot. The conventional way of doing it is to
produce the metallic parts or create the parts using polymers with high strength.
This process can be expensive and can take a lot of machining. Latest advances
in the field of 3D printing is a great relief for creating cheap parts that are just a

25

3.5. Robot Model for the Simulator

little bit less accurate as the ones obtained after using the machining approaches.
Islam et al. [2013] investigate the dimensional accuracy of the parts created by a
3D printer. They conclude that 3D printing almost gives the same accuracy as
Wire-cut discharge machining (WEDM) but the accuracy is less then CNC end
milling process.

As we are in the stage of developing the first prototype of the robot, we did
not need high precision. Therefore, it was convenient to print the parts using the
3D plastic printer available at the Knowledge Technology Group (WTM). The 3D
plastic printer works on a gcode that is generated by the part designer using the
part mesh file (STL file). This code is actually a language of instruction to the
printer advising the shape, features and the information about printing layers. It
also contains the information regarding printing density, speed of printing etc. The
printer works using the plastic as input and uses high temperature nozzle to melt
the plastic and print the part layer by layer. The layer thickness can also be defined
in the gcode. The parameters density, speed and thickness are set according to the
requirements and the printed parts are accurate and immediately ready to use.

The head of robot Nimbro was replaced by an iCup shaped head which was also
produced using 3D printer. The iCup robot can be viewed in Metta et al. [2008].
Moreover, as one of the shoulder motor was right above the torso the length of
the neck was needed to be increased. This is why the robot’s neck was extended
to give the head more movement span. The printed parts were assembled on the
Nimbro. The final outcome after mechanical design of the arm and modification
of the head was named as robot NICU. NICU can be seen in figure 3.7.

3.5 Robot Model for the Simulator

URDF is the robot definition file used by different simulators like Vrep, Rviz
and Gazebo to create the exact model of the actual robot. The original model of
Nimbro-Op has a URDF model that runs on Rviz and provides the real time data
on the behavior of the robot that is expected after providing controller command.
In the development of a prototype it is important to have the simulator model also
ready as it can be very useful to conduct experiments that cannot be performed
on the real robot, for example, repetitive learning tasks or checking the stability
of the robot.

3.5.1 Robot Model from AutoDesk Inventor

Up to this point the designed model of the robot was assembled in Autodesk
Inventor. To create the robot simulation model from inventor, multiple attempts
were made. We found out that the only solution was to create the XML file from
Inventor. Afterwards it could be brought to the SimMechanis plugin of MATLAB
and from there it could be exported as URDF. Although many attempts were
made, the model could not be created. When we created the XML file for the
robot definition; it created every single part, screw or a nut as a separate STL file.

26

3.5. Robot Model for the Simulator

Figure 3.7: Final Assembled NICU Robot

The result was more than 200 STL files. When this XML file was imported inside
V-rep, it created the robot model but it was too heavy for the simulation and also
the axis of rotations of the joints were not clear to V-rep.

3.5.2 Robot Model from Solid Works

After doing further research for finding the solution to create the URDF model
of the robot, it was found out that an open source Solid-Works-to-URDF plugin
has been made by Stephen Brawner8 for ROS community. The plugin works with
Solid Works and exports a part or a solid works’ assembly into URDF directly. The
next challenge was to create the robot assembly inside Solid Works. It was tried
to directly import the AutoDesk Inventor assembly in Solid Works. During the
import we could only get parts and the assembly was broken due to the removal of
assembly constraints. So the new assembly was made inside Solid Works. Creating
the whole Solid Works assembly of NICU required a lot of time so only the torso
and the arm assembly along with the head was created as shown in figure 3.8

3.5.3 Procedure for creating Robot definition File (URDF)

Now from this assembly, the URDF definition file was created that would pro-
vide us with the exact model of the torso, new arms and the head inside V-rep

8http://wiki.ros.org/sw urdf exporter

27

3.5. Robot Model for the Simulator

Figure 3.8: Nicu Torso Assembly - Solid Works

Simulator. There are some difficulties in following this approach since all the con-
straints should be at the right place and all the joint axis of rotation should be free
to rotate. If these conditions are not achieved, the URDF export plugin crashes.
Also in order to export the URDF model the assembly should be created in a spe-
cial way. This means that the final assembly file will have the sub-assemblies that
should be assembled separately. Sub-assembly is referred to here as an assembly
file that will contain smaller sections of the complete arm. For example, the figures
3.3, 3.4, 3.5 & 3.6 are the sub-assemblies.

The plugin works by calculating the axis of rotation with respect to the origin
of the body defined inside the plugin. Once it calculates the axis of rotation, it
is extremely important that all the parts present in between two axis of rotation
should be assembled in one sub assembly. This is extremely important while
exporting the URDF. If two assemblies are selected as a link to an axis of rotation,

28

3.5. Robot Model for the Simulator

the plugin gets confused and crashes. This is why all the links in between two axis
of rotation should be assembled inside one sub assembly. A combination of these
sub-assemblies makes the final assembly file that will be used to export the URDF
model.

Figure 3.9: NICU Torso Model in V-rep

When we start exporting the URDF model, the plugin automatically picks all
the axis of rotation from solid works. It also picks if the link to the axis of rotation
is movable or fixed. All the names of the joints and the links associated with
these joints are declared while requesting an export from the plugin. These will
appear as the names in the robot definition file and will also be appearing inside
the simulator when this URDF will be imported.

If after completing these steps the assembly is as expected by the plugin, it
will produce the URDF package for the assembly or otherwise it will crash again.

29

3.6. Conclusion

In case of crash, fixing of the assembly is required and the same process will be
repeated again.

3.5.4 Robot Model (URDF) Package

The final package exported by the URDF model contains the sub-assemblies
that are links between the axis of rotations as mesh files (STL files). A URDF file
inside the robots folder, textures and a manifest file will be created. The manifest
file will enable this package to be useful inside ROS system. The URDF file that
contains the definition of the robot can be directly imported inside V-rep and the
V-rep scene obtained for NICU can be seen in figure 3.9.

3.6 Conclusion

This chapter discussed in depth the design of the arms of robot NICU. The
approaches used and the ideas considered have been explained. Now this design
will be discussed keeping in view the tasks set in section 3.1.

1. The new arm has five degrees of freedom that allow it to reach a large amount
of points in 3D space. The space covered by the new arm will be shown in
section 4.4.

2. The new design of the shoulder allows the arm to avoid the restriction from
the extended chest of the robot and allows it to reach the points in front of
the chest.

3. The gripper at the end of the arm will allow the robot to physically interact
with its environment. The wrist and the grip use Robotis Dynamixel MX-28
motors.

4. The arm design is bio-inspired but with the limitation that the arm has two
degrees of freedom less than the human arm.

5. To keep the robot stable, we put one motor inside the chest and one up on
the chest (see design in figure 3.3 & 3.4). These will least affect the center
of mass of robot as compared to the one with old arms. Also the plastic
printing of the parts allowed us to have light parts and keep the weight of
the new arm close to the old one.

3.7 Future Work

There are some ideas that can be considered for future improvements and are
mentioned below

30

3.7. Future Work

1. The wrist can be further extended to contain one or two more degrees of
freedom and the design can be analyzed for feasibility and its stability. This
extension will also provide more orientation possibilities for the gripper.

2. The most interesting idea can be to replace the gripper with a 3D printed
plastic hand developed by Joel Gibbard9. This hand is open source and the
parts are available for printing. The parts can be printed in smaller size to fit
NICU and the lower arm can be modified to accommodate small actuators
for the hand’s finger movements.

9http://www.openhandproject.org/

31

Chapter 4

Neural Learner Design

4.1 Introduction

After having mentioned briefly the work of Rolf [2013] in section 2.2.3, this
section will provide in depth details of this approach. Initially the space reachable
by the learning agent is unknown. The agent starts with a position xhome that is
the result of some action qhome. Until now the agent knows only the position xhome

which is the first explored goal x∗0. This position is used as the starting point and
the agent tries to move in a randomly selected direction ∆x. In the next time-step
t, the goals are chosen along a direction according to the following equations

x∗t = x∗t−1 +
εx

‖ ∆x ‖
∆x (4.1)

In the above equation εx is the distance between the current and the next
explored position. Consider a situation where the agent knows how to achieve the
goals in the space, it will choose correct actions for the corresponding position.
In this case the observed and the desired movement will be the same, unless the
desired goal is outside the reachable space of the agent. While the agent is trying
to follow a line, the trend will be smooth. As it reaches its limit a sudden variation
will occur that can be detected. This detection can lead to bringing the agent on
the previous position and starting to follow another direction. A series of these
lines will finally enable the agent to cover the whole space.

The important question here is how to detect this variation at the boundary of
reachable space. As the agent has not yet learned the whole space, it will not be
able to follow the line. Instead it will deviate from the line. This phenomenon can
be seen in figure 2.6. In order to stop following a line, the boundary limit needs
to be detected. As the agent is deviating from the desired position, a criterion on
the base of the angle can be defined. The angle between the vector of the desired
exploration step and the intended one will be monitored all the time. This can
provide us a clue about when the boundary limit has reached by giving more than
a 90◦ angle. This approach can be explained in terms of negative scalar product
as in the following equation.

32

4.2. Approach

(x∗t − x∗t−1)T .(xt − xt−1) < 0 (4.2)

As soon as this condition will be detected, the agent will come back to the previous
position and will start following another line. It can happen that the goal steps
can be small at the start which means that the line will have more goals along the
path. As the agent will learn, it will make the path through the entire space and
with a comparable goal step size as expected by the algorithm.

The goal babbling algorithm tries to learn the inverse estimate of a goal g(x∗)
of the forward function that is f. The model that is to be learned suggests an
action q̂ = g(x∗) for any goal that is presented. If the learning is successful then
it can be said that the model is the inverse function of f. Such that it can achieve
all possible outcomes

f(g(x∗)) = x∗ ∀ x∗ ∈ F (4.3)

The algorithm starts with the initial action qhome. The inverse estimate g has
parameter θ (motor or joint angle) to be adapted during learning. θ is initialized
such that the suggested action is always the home position (see equation 4.4)

g(x∗ , θ0) = qhome ∀ x∗ (4.4)

Starting from this point, goals are chosen with the help of direction sampling.
The algorithm tries to learn these goal. After every step of exploration a pertur-
bation term Et(x

∗
t) is added as stated in equation 4.5. This term acts as a noise

and helps to explore novel outcomes.

qt = g(x∗t , θt) + Et(x
∗
t) (4.5)

The learner for the agent can be any learner. Rolf [2013] uses Locally Lin-
ear Learner (LLM) and the parameters and meta-parameters of this experimental
setup are identical to Rolf et al. [2011]. The results show that the approach works
well enough for 5 DOF as well as 50 DOF setup for workspace discovery. Network
converges after seeing almost 1.000.000 examples of explorations.

4.2 Approach

The design approach of the neural learner for this thesis is based on the idea
presented in 4.1 with some modifications. In the work mentioned above only goal
babbling is used to explore the reachable space. We modified in to include motor
babbling also that will help to cover the space faster then only goal babbling. If the
system will cover the space faster it will also try to approximate the whole space
faster. The problem is spread in 3D Cartesian space S with no prior knowledge
about the arm of the robot. The position P in 3D space is a forward function
f of the motor sequence M and the motor sequence M is an inverse function I
of the goal Position P. The inverse estimate I has the motor sequence M to be

33

4.2. Approach

adapted during exploration. The initial motor sequence Mhome knows the outcome
position Phome and is used as the first goal in the exploration course (I (Phome) =
Mhome). The agent is trained on this first sample of (P,M). If Position P is always
a reachable position, equation 4.3 can be rewritten as

f(I(P)) = P ∀ P ∈ S (4.6)

A random variable is initialized that will generate a direction of exploration by
choosing a random perturbation term E. This term is a function of space variables
x,y,z and will be added in the position P to get a new P∗.

P∗ = P + E(x, y, z) (4.7)

The new position P∗ obtained after adding the perturbation term is unknown to
the inverse estimate I as it has not seen it up to this point. Now the agent is asked
to calculate the motor sequence M∗ against the new position P∗. As the inverse
estimate has not seen this example, it will provide a wrong estimate of the motor
sequence M∗. At this point we add the perturbation term in the motor values to
see another example

M** = M∗ + E(m1,m2,m3,m4) (4.8)

This sequence will lead the arm to a new position P** along the direction of
exploration. Addition of this term not only increases the exploration speed but
also make it easy to detect the boundary condition at the end of a line. Now the
learner will be trained on the new correctly known example as shown below

I(P**) = M** (4.9)

The perturbation term will remain the same until the exploration is following
a direction without hitting the boundary limit. Therefore, the boundary condition
will depend on the saturation of the motor values. Once we see the saturation of
all the motors in any direction (positive or negative), we will stop the line. The
process will repeat several times using the same perturbation term E unless it
hits the boundary of the reachable area. When this condition is reached, a new
random perturbation term E is generated and added in the last position of the
inverse estimate. This will allow the exploration to go to another direction within
the reachable space. The choice of the perturbation term is purely random and
can produce the same perturbation term as the previous one. In this case the
boundary condition will be reached again and a new perturbation term will be
chosen. In the experiments, Multilayer perceptron with online back propagation
algorithm will be used as the estimator for the inverse model.

One important question is how the performance of the inverse estimate will
be checked. For checking the performance of the inverse estimate, a test set with
fixed points will be used. The test set is created in such a way that it contains the
points inside the reachable space that are a minimum of 10 cm away from each
other. The test set contains a total of 110 points in the reachable space. The

34

4.3. Experimental Setup

inverse estimate is asked to explore through a certain number of lines and then
test on this test set. If the inverse model performs to certain accuracy then the
exploration will be stopped, otherwise it will be asked to explore 200 lines more.

4.3 Experimental Setup

The arm design of NICU has already been explained in section 3.3. The arm
has a total of five degrees of freedom including one for the orientation of the
gripper. In our experiments we have not included the orientation of the explored
goal. Therefore, in the learning of inverse estimate only four degrees of freedom
are used (Shoulder Pitch, Shoulder Roll, Arm Yaw and Elbow see figure 3.2).
These four degrees of freedom will mainly contribute to reach a certain goal in the
reachable space. In order to get a real time position of the goal reached by inverse
estimate, V-rep simulator is used. The robot model design for V-rep has already
been explained in section 3.5 and the final scene can be viewed in figure 3.8.

Python is used as the language of programming and remoteAPI function of
vrep is used to control the robot model from python console. RemoteAPI connects
the program with the simulator to translate the program commands into actions.
We have the goal coordinates in 3D space (x,y,z) as the input and four motor values
as the output of the learner. All the joints were used in a restricted space to avoid
the collisions with the robot body. The arm yaw motor (motor 1 in figure 3.2) had
60◦ , shoulder pitch(motor 2) 20◦, shoulder roll(motor 3) and elbow(motor 4) had
90◦ allowed rotations. The zero positions for the joints can be viewed in figures
3.7 and 3.8.

In the approach by Reinhart and Rolf [2013], a home function is initialized that
will always result in the home position posture. This means that after completing
a line, the system will always start from the home position. We modified this
approach in Artificial Neural Network such that the network was largely over
fitted on the home position. This over-fitting gives two advantages. First, we
no longer have to worry about the weight initialization for the network. It does
not matter what are the initial weights. The reason is that when the system
over-fits a single position, it always has the weights that exactly produce that
position. So this approach solved the problem of hyper parameter optimization
for network weights initialization. Secondly, we implemented an alternative to the
home function approach of the above author.

We are using multilayer perceptron (MLP) as a learner with the help of online
back-propagation. Our network has biases and does not have the momentum
term. The sigmoid activation function (also see figure 1.6) is used on the hidden
and output layer of the network for activation. The network architecture used for
the experiments can be seen in figure 4.1.

As we are dealing with online learning, it is possible that the system can forget
the goals that it has already learned. So we modified the testing of the performance
of the inverse estimate. One testing set we have as the fixed testing set spread over
the whole space, as explained in section 4.2. We created another test set that will

35

4.4. Results

Figure 4.1: Artifical Neural Network Architecture for the learner

have the same number of test points as in the fixed testing set i.e 110. However, this
set will be chosen randomly from the goal positions that are already seen. In every
testing cycle, the points for the seen test set will be chosen randomly. This means
that in every testing after exploration of 200 lines we will have different points for
testing in the seen test set. This set will keep a check on the system performance
regarding the already seen points and will indicate if in a new exploration, the
system forgets the old explored points.

4.4 Results

In this section, we will discuss the results we obtained from our experiments.
The accurate and effective use of Artificial Neural Network requires that the best
parameters should be chosen for the problem under consideration. These param-
eters can largely vary from problem to problem and also differ for different ap-
proaches. The hyper parameters in our consideration were the Learning Rate α,
Perturbation term E , Number of nodes in hidden layer and the initialization of
network weights. As explained in section 4.3, the initial weights for the experi-
ments were made almost the same by largely over-fitting the network on the home
position.

36

4.4. Results

4.4.1 Hyperparameter Optimization

These parameters are normally identified by conducting experiments with dif-
ferent parametric values under same experimental circumstances. The problem in
our approach is that the exploration is random and it can vary from one experi-
ment to the other. This actually means that our training set cannot be same for
all experiments. The iteration for following the lines can also vary in each case. If
we use 100,000 goal lines exploration, the experiment takes about 10-12 hours. In
the parameter exploration we have to test a lot of different parameters, so 10-12
hours time for one experiment is not a very realistic approach. We decided to fix
the number of iterations for each experiment to 50,000 and after every 2000 goals
(Iterations) the testing will be performed. As the goal exploration was totally ran-
dom, there was no accurate way to compare it for different experiments. In fact,we
also want to explore the phenomenon of how different networks will explore the
space in similar circumstances. Therefore, we only varied the three parameters α,
E and hidden nodes. The testings that occur after the exploration of 2,000 goals
were considered to observe the final results. Once the network was a bit settled,
the mean and the standard deviation were calculated for these tests. The heat-map
for these three parameters can be seen in figure 4.2.

2 3 4 5 6 7 8 9 10 15 17 20 25 30 35 40 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

15
0

16
0

Number of Nodes in Hidden Layer

LR 0.1 & E 0.1

LR 0.05 & E 0.1

LR 0.1 & E 0.05

LR 0.05 & E 0.05

LR 0.7 & E 0.1

LR 0.7 & E 0.05

LR 0.07 & E 0.02

LR 0.1 & E 0.02

C
on

bi
na

ti
on

 o
f

Le
ar

ni
ng

 R
at

e
&

 P
er

tu
rb

at
io

n
Te

rm

Parameter Optimization (50,000 Iterations/Experiment)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

M
ea

n
of

 T
es

ti
ng

 E
rr

or
 (

M
et

er
s)

Figure 4.2: The plot shows the result of random parameter exploration. The
maximum mean error is about 0.3 meters. The heat values in the map corresponds
to the mean of average positioning error over the testing cycles. The dark red part
shows the region for which the experiments were not performed

37

4.4. Results

Hidden Nodes LR0.1andE0.1 LR0.7andE0.1

75 0.075518 –

100 0.086544 –

160 0.074059 –

25 – 0.059752

50 – 0.065433

Table 4.1: Table shows the best results (lowest average positioning error) for ex-
periments represented in figure 4.2. The values in the table are the mean of average
positioning error over the testing cycles. The complete values of these experiments
can be viewed in Appendix C in table C.1 to C.8

Rolf [2013] suggest the Learning rate to be 0.1 with a perturbation of 2 %. We
used parameters similiar to the ones suggested in the mentioned paper. The results
we obtained show that reducing the Learning rate for the same Perturbation term
reduces the quality of results. Also reducing the perturbation term for the same
learning rate depicts the same outcome.

In our exploration we also tested the Learning rate α = 0.7. This gave sur-
prisingly good results in terms of reduction in error. In fact, these were the best
results obtained in these experiments. This opened another door to check high
learning rates and high values for the perturbation term. These results sparked
another thought of the idea of Wilson and Martinez [2003] explained in section
1.4.2 which states that online gradient decent algorithm can handle high learning
rates and perform well. The best results obtained from these initial experiments
can be seen in table 4.1.

Initial experiments were done using totally random parameters without any
uniform variation. The networks with 2 to 3 nodes were also trying to learn which
means that the function linking input with output can be very simple. Therefore, in
the next experiments a further detailed and systematic variation in the parameters
was done. It was also a matter of interest to check the results for linear perceptron
as it can indicate if underlying functions are linear. The results for this systematic
and detailed exploration can be viewed in the heat-map in figure 4.3

In these experiments the numbers of nodes were kept same for all combinations
of learning rate and perturbation. This allows us to observe the effect of variations
more precisely and easily. The best results for these experiments are mentioned in
below table 4.2 and mean & standard deviation plot for the best case can be seen
in figure 4.4.

38

4.4. Results

0 1 2 5 10 15 30 50 70 90 11
0

13
0

15
0

Number of Nodes in Hidden Layer

LR 0.717 & E 0.233

LR 0.266 & E 0.314

LR 0.11 & E 0.18

LR 0.527 & E 0.29

LR 0.919 & E 0.15

LR 0.64 & E 0.1

LR 0.08 & E 0.18

LR 0.02 & E 0.314

LR 0.0527 & E 0.29

LR 0.011 & E 0.18

LR 0.717 & E 0.023

LR 0.266 & E 0.031

C
on

bi
na

ti
on

 o
f

Le
ar

ni
ng

 R
at

e
&

 P
er

tu
rb

at
io

n
Te

rm

Paramter Optimization (50,000 Iterations/Experiment)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

M
ea

n
of

 T
es

ti
ng

 E
rr

or
 (

M
et

er
s)

Figure 4.3: The plot shows the result of parameter exploration for higher learning
rate and higher perturbation values than 4.2. The heat values in the map are the
mean of average positioning error over testing cycles.

Hidden Nodes LR0.717&E0.233 LR0.266&E0.314 LR0.527&E0.0.29 LR0.919&E0.15

10 0.046847 – 0.051050 –

15 – – – 0.053417

0 0.062618 0.059682 – –

Table 4.2: Table shows the best results (with lowest positioning errors) for exper-
iments represented in figure 4.3. The values in the table are the mean of average
positioning error over testing cycles. The complete values of these experiments can
be viewed in Appendix C in table C.9 to C.20

Furthermore, in order to further explore the range of best parameters we con-
ducted more experiments. In these experiments we used the parameters close to
the best case shown in Table 4.2. The obtained results can be seen in the form
of a heat map in figure 4.5 and the accurate values can be seen in Appendix C in
Table C.21.

39

4.4. Results

012 5 10 15 30 50 70 90 110 130 150
Number of Hidden Nodes

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16
M

e
a
n
 &

 S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 i
n
 M

e
te

rs
Mean & Standard Deviation Plot for LR0.717,E0.233

Figure 4.4: Mean & Standard Deviation of average positioning error (over testing
cycles for best case of LR0.717 & E0.233). For optimal number of nodes the best
result (against 10 Hidden Nodes) obtained can be viewed in red color. These
experiments shows the exploration results for 50,000 iteration each.

The results in figure 4.5 show that 0.35 perturbation works faster and it is
true. However, the problem is that we are only testing for 50,000 iterations and
when we ran the experiments with full length of 100,000 lines exploration final
error is more than the 0.25 perturbation values. The phenomenon here is that
the values of perturbation above 0.25 quickly reduces the error over the whole
space due to covering more space in exploration in less time. The behavior after
50,000 iterations is almost consistent as compared to reduction in error. We need
a detailed exploration to further reduce the error on space which is difficult with
the high perturbation term such as 0.3-0.35. Furthermore, if we are using such
high perturbation values it may happen that the region boundaries are not fully
explored. We therefore propose that the 10 hidden nodes along with Learning
Rate 0.7-0.9 and perturbation 0.15-0.25 can be used as the optimal parameter
region.

4.4.2 MLP With Best Results (LR0.717 & E0.233 &10
Hidden Nodes)

At the beginning, we tried to work with the parameters suggested by the ex-
perimental setup of Rolf [2013]. We worked with the learning rate of 0.1 and the
perturbation term E of 0.1. With this combination of LR and E, we tried different
number of nodes in the hidden layer. The initial experiment gave us a lead to also

40

4.4. Results

5 10 15

Number of Nodes in Hidden Layer

LR0.7&E0.2

LR0.7&E0.25

LR0.7&E0.3

LR0.7&E0.35

LR0.8&E0.2

LR0.8&E0.25

LR0.8&E0.3

LR0.8&E0.35

LR0.9&E0.2

LR0.9&E0.25

LR0.9&E0.3

LR0.9&E0.35

LR1.0&E0.2

LR1.0&E0.25

LR1.0&E0.3

LR1.0&E0.35

C
on

bi
na

ti
on

 o
f

Le
ar

ni
ng

 R
at

e
&

 P
er

tu
rb

at
io

n
Te

rm

Paramter Optimization (50,000 Iterations/Experiment)

0.0350

0.0375

0.0400

0.0425

0.0450

0.0475

0.0500

0.0525

0.0550

0.0575

0.0600

M
ea

n
of

 T
es

ti
ng

 E
rr

or
 (

M
et

er
s)

Figure 4.5: The plot shows the result of parameter exploration for parameters close
to the best case (LR0.717 & E0.233 & 10 Hidden Nodes). The heat values in the
map are the mean of positioning error over testing cycles.

check the higher learning rates. Another set of performed experiments gave better
results than the initial ones. Here we will show the experiment that provided the
best results under limited iteration numbers of 50,000. We reran this experiment
to explore 100,000 lines in the reachable space. After every 200 line exploration,
the testing was performed on seen testing points set as well as the fixed point
testing set. The variation in the testing error for seen and fixed testing points for
the experiment with the best results can be seen in figure 4.6.

It can be seen from the figure that the error over already seen points is always a
bit less than the fixed testing points. The reason is that the fixed data set contains
the points over the complete area that may not be explored by the algorithm
and the algorithm had to approximate these points considering its knowledge.
Moreover, we can see noise in the graph. The noise comes due to the random
exploration. One testing is performed after training the Neural Network over 200
explored lines. If this exploration is not uniform over the whole reachable space
and is focused in a small region of the reachable space then the network gets biased.
This biased network cannot approximate the whole space with the same accuracy
as it was doing in the previous test. We also observe that once the network gets
biased, the next exploration can be relatively unbiased and it tries to counter the
effect of network biasness. Therefore, we observe the cycles of biased exploration
and counter biased exploration. It is also important to see the space explored by

41

4.4. Results

0 100 200 300 400 500
Testing (After Every 200 Line Exploration)

0.00

0.05

0.10

0.15

0.20

0.25

P
os

iti
on

in
g

E
rr

or
 in

 M
et

er
s

Reduction of Error (LR0.717,E0.233, 10 Hidden Nodes)

Testing on Already Seen Points
Testing on Fixed Testing Points

Figure 4.6: Average testing Error over Seen and Fixed Testing Sets

Figure 4.7: Area Explored by the MLP (LR0.717, E0.233 & 10 Hidden Nodes).
The robot origion is at (x,y,z = 0.56,0.35,0.31)

42

4.4. Results

this experiment. While running the experiment the data for exploration was also
recorded and the visualization of the normalized explored area can be observed in
figure 4.7.

0 20 40 60 80 100 120
Testing Point Number

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
A

bs
ol

ut
e

E
rr

or
 (M

et
er

s)
Error on Last Testing for 10,000 lines exploration (LR0.717 & E0.233)

fixed points
seen points

Figure 4.8: Error of each points in testing cycle for which average error over fixed
testing set is 0.024745 & for seen testing set is 0.017962 meters. Absoulte error
here is the positoning error of every single point in the corrosponding testing set

Another important thing here is to observe the error values for the last testing
points for best case (10 nodes, LR0.717 & E0.233). Figure 4.8 shows some high
peaks of error for some points in the fixed test set. The reason for these peaks is
the fact that this test set was created from a highly dense exploration that was
done using very small perturbation value. This means that we almost have every
single point on the reachable space. It also included points that are very less likely
to be reached by the arm for example the points may be explored once or twice.
It also contained points inside the robot body because we did not use the collision
detection in our experiments. There is one point in the fixed testing set that is
not in the reachable space; therefore it always shows a constant error of around
15-18cm. Furthermore, the points on the extreme ends of the reachable area are
difficult to reach. This is quite similar for us (humans) also. It is easy for us to
reach the points right next to us and it gets difficult to take the arm behind the
back or at its corner limits. In fact to avoid this situation we always try to place
our body around the objects such that they will be right in front of us and will be
easy to reach. So if we exclude these points that are difficult to reach and consider
the concerned area right next to the robot chest (only green points in figure C.1)

43

4.4. Results

we have an average error of 1.88 cm. In order to confirm this justification, we
have included a visual for understanding of this phenomenon. It can be viewed
in the figure C.1. If we see the error for seen points the results are much nicer.
The error fluctuates around 2cm and in few points it goes above 3cm. Again these
points are located either at the boundary of reachable space or quite close to the
robot body. So if we only see the average error over green point (see figure C.2),
we observe an average error of 1.73 cm. We have also included to show a visual
for this phenomenon in figure C.2. The green points have error less than 3cm and
the red points have more than 3cm. The blue cross shows the center of thr robot
body.

4.4.3 Single Layer Perceptron

Another interesting result in table 4.2 is with the linear perceptron. Linear
perceptron also tries to approximate the whole space but the final error observed
is a bit higher than with the multilayer perceptron. Running an experiment to
50,000 iterations can tell about how fast the network is approximating. However,
it is difficult to address the future behavior with this experiment. Therefore we
also reran this experiment to explore 100,000 lines similar to the one we did in the
MLP case. The results of Linear Perceptron experiment for the same learning rate
and perturbation term can be seen in figure 4.9. It can be seen from the figure that

0 100 200 300 400 500
Testing (After Every 200 Line Exploration)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

P
os

iti
on

in
g

E
rr

or
 in

 M
et

er
s

Reduction of Error (LR0.717,E0.233, 0 Hidden Nodes)

Testing on Already Seen Points
Testing on Fixed Testing Points

Figure 4.9: Average Testing Error over Seen and Fixed Testing sets For Single
Layer Perceptron

44

4.4. Results

Single Layer Perceptron(SLP) quickly reduces the error to 6 cm and then stays
there. The SLP can be considered a good case but our long term goal is to get an
accuracy of around 2 cm and it seems difficult. Due to the fact that SLP cannot
map the complex non linearity in the data as good as the MLP. For example the
region where the elbow has a higher bend angle, the SLP performance is not good.
SLP works well on some areas but relatively bad in others. Overall it is not as
good as the MLP for the approximation of the whole region. In the next section
we will also show that MLP takes more iterations for the same line exploration as
compared to SLP which enables it to cover more points in space. However, the
common thing that was observed in the results is that the error reduction for seen
points is more than fixed testing points, similar to the MLP. The area explored
by the SLP can be seen in figure 4.10. If we compare this exploration with the
exploration of MLP, we see some regions not covered as good as the MLP do.

Figure 4.10: Area Explored by the SLP (LR0.717, E0.233 & 0 Hidden Nodes).
The robot origion is at (x,y,z = 0.56,0.35,0.31)

4.4.4 Comparison of MLP and SLP

Considering the results discussed above, it was considered important to make
a thorough comparison for better understanding of the behavior of MLP and SLP.
The graph in figure 4.11 compared the error reduction of both perceptrons on fixed
testing points. The SLP does error reduction faster and reaches its settling value
quicker than the MLP. However, once it reaches the settling value, it increases the
error a bit and just fluctuates on this value. Roughly it learns till 20th testing

45

4.4. Results

0 100 200 300 400 500
Testing every 200 Exploration Lines

0.00

0.05

0.10

0.15

0.20

0.25

Po
sit

io
ni

ng
 E

rro
r i

n
M

et
er

s

Comparison of Single and Multilayer Perceptron(LR0.717,E0.233)

Single layer Perceptron
Multilayer Perceptron with 10 hidden nodes

Figure 4.11: Comparison of fixed testing points error of MLP & SLP. Positioning
error here is the average over the complete test set.

cycle which means that after 4,000 lines of exploration it stops learning. On the
other hand MLP keeps on reducing the error till roughly 300th testing cycle. This
means that the MLP is still getting better till exploring 60,000 lines. Further,

0 50000 100000 150000 200000 250000 300000
Iteration Number

0.00

0.05

0.10

0.15

0.20

0.25

Po
sit

io
ni

ng
 E

rro
r i

n
M

et
er

s

Reduction of Error Over Learning(LR0.717,E0.233)

 Single Layer Perceptron
 Multilayer Perceptron(10 Hidden Nodes)

Figure 4.12: Reduction of error over iterations. Positioning error here is the average
over the complete testing set

we compared the feasibility of our algorithm with Rolf [2013]. We plotted the
reduction in error over iterations and the results can be viewed in figure 4.12.

46

4.4. Results

MLP takes more iterations than SLP for the exploration of 100,000 lines. The
exploration is purely random and answering why MLP takes more iterations is
answered in terms of a more smoother line steps by the MLP. Also considering the
fact that MLP is trying to trace the non-linearity better than the SLP, it jumps
less inside the space and does more systematic exploration. Systematic exploration
here means that the reachable space is explored is in lines and not random. As the
MLP is taking more iterations than the SLP, this is the reason it takes more time
in computation. Every 50,000 iterations take an average of 2 hours of computation
time. The reduction of error over time can be seen in Appendix B in figure C.3

47

4.5. Conclusion

4.5 Conclusion

In this chapter we explained the model of the Neural Network learner for the
designed arm of the robot NICU. We explained the approach of Rolf [2013] in
detail at the start of the chapter. Later our approach for the learner was explained.
We extended the original idea to explore three dimensional space with the use of
Neural Networks. The safe use of high learning rate for online back-propagation
was analyzed and explained. A detailed comparison of the performance of SLP
and MLP was made in section 4.4.4. The parameter space was explored to find
the best parameters in section 4.4.1. The best results were obtained using MLP
and are explained in section 4.4.2 .This Neural learner required roughly 200,000
iterations to approximate the whole space as compared to the iteration 1,000,000
in 2D space in the approach mentioned earlier. Therefore, we can conclude the
following points

1. Artificial Neural Networks (ANNs) can learn the inverse kinematics of a
robotic arm in 3D space

2. Online back-propagation can safely handle high learning rates and perform
better

3. Our learner learns the inverse kinematics faster than the original approach of
Rolf [2013]. Furthermore, our learner traces points in space within accuracy
of around 2 cm.

4. This learner can be easily extended to involve vision and head joints for real
time grasping training.

There was a considerable amount of ideas that could not be implemented. So
far the learner allows the robot to reach points in 3D space with an accuracy of
2 cm. In order to perform grasping, one important task is to detect the position
of the objects in space. The robot has two cameras in the eyes that can be used
to detect the objects. Once the object is detected this position will act as a goal
and the arm will try to reach using the learner. An important modification here
can be to put the eyes of the robot on object tracking. When the position of the
object will be detected, the learner will take the position of the object as input
as well as the position of two motors responsible for the head movement (See
figure 3.8). The network can be trained in the simulator using the same algorithm
with the extension that the inputs will take the position and orientation of the
object as well as the position of the head and the neck motor to fully learn the
3D space around the robot. While performing grasping the robot head will again
be on object tracking, the goal and head motor position will go as an input to
the network and the learner can provide the accurate motor position to reach the
object.

48

Chapter 5

Implementation on SURALP

5.1 Introduction

SURALP is a human sized full body humanoid robot developed by Sabanci
University, Turkey. As stated in Erbatur et al. [2009], the robot has a total of
29 DOFs that include legs, arms, neck and the wrist of the robot. The actuators
consist of a mechanism containing DC motors, belt and pulley system along with
harmonics drive reduction gears. This robot contains inertial measurement sys-
tems, force/torque sensors, joint incremental encoders and cameras which are used
for sensory feedback for the working of the robot.

Figure 5.1: SURALP, A human sized full body humanoid robot

49

5.2. Simulator

The control algorithm for the legs and walking trajectory generation is intro-
duced in Erbatur et al. [2008a] .The legs contain 12 DOFs and are explained in
Erbatur et al. [2008b]. This work explains the design of the legs and provides the
detailed explanation about the components used in the design. The results reveal
that the control algorithm used for the legs of the robot is successful in achieving
a stable walk for the robot. SURALP can be visualized in figure 5.1.

SURALP also possess sophisticated and well performing arms with total of six
DOFs on each arm. The shoulder contains three DOFs and additionally one on
the elbow just like humans. The axes of the shoulder motion are orthogonal to
each other and are followed by a revolute joint at the elbow. The wrist of the
robot contains two DOFs for the orientation of the gripper that is present at the
end of the arm. These joints at the wrist have rotations around one pitch and one
roll axis.

In this chapter, we will further extend the approach explained in Chapter 4.
The presented approach will be tested on the SURALP to enable it to position the
gripper correctly in space. For this purpose, the simulator of the SURALP will
be used for training the network and later the performance of the learner will be
tested.

5.2 Simulator

The simulator model of SURALP is designed in MATLAB. An m-file computes
the forward kinematics on the back of the simulator and the simulator provides
the visual of the moment intended by the user. SURALP simulation model can
be viewed in the figure 5.2. The simulator takes the joint angles and returns the

Figure 5.2: SURALP’s Simulator Model

position of the point right in the middle of the grip of the robot. This simulation
was very fast as compared to the simulation of NICU, due to the reason that it

50

5.3. Experimental Setup

is based on the computation of just one m-file. It was also possible to run the
simulator without running the visual simulation and this was even faster in terms
of running the experiments.

5.3 Experimental Setup

The arm design of SURALP has already been explained in the introduction
of this chapter. It has a total six DOFs per arm. However, we will use first four
i.e. three at the shoulder and one at the elbow. We want to solve the positioning
problem of the end effector and this is reason we only want the first four DOFs.
Humans also use these four DOFs for positioning; the later DOFs at the wrist are
used to achieve the correct orientation.

The same idea of the neural network as explained in Chapter 4 is used for
SURALP. The simulator model of SURALP runs with Matlab; therefore, it was
more favorable to implement the algorithm in Matlab. The implemented algorithm
was very fast regarding the computation. Our algorithm was already implemented
in python in case of the experiments of robot NICU. Therefore, the idea of con-
necting the Python algorithm with Matlab was also considered. However, due to
the delays in Python-Matlab connections, it was consider better to only use the
whole experimental setup in Matlab.

Figure 5.3: Artificial Neural Network Architecture for SURALP

We have the goal coordinates in 3D space (x,y,z) as the input and four motor
values as the output of the learner. All the joints were used in a restricted space to
avoid the collisions with the robot body. For the motors 1,2,3,4 respectively rota-
tions of 90◦,90◦,45◦,90◦ were allowed. We are using multilayer perceptron (MLP)
as a learner with the help of online back-propagation. Our network has biases
and does not have the momentum term. The sigmoid activation function (also see
figure 1.6) is used on the hidden and output layer of the network for activation.
The architecture of our Artificial Neural Network can be observed in 5.3.

51

5.4. Results

Similar to the testing performed on robot NICU, we will create two testing
set to check the learner’s performance after a certain period of exploration. This
means that in every testing after exploring 200 lines we will have different points for
testing in the seen test set. This set will keep a check on the system’s performance
regarding the already seen points and will indicate if in a new exploration, the
system forgets the old explored points. So in our fixed (static) testing set, we had
a total of 60 points in the reachable space of the arm of SURALP that were at
least 16 cm away from each other.

5.4 Results

In this section we will discuss the results obtained against the experimental
setup explained in the last section. We explored several possibilities for the hyper
parameters for SURALP experiments. However, a detailed exploration of param-
eters for SURALP was not possible. The best results were obtained against the
network architecture of two hidden layers with 40 neurons each with learning rate
of 0.7 and perturbation term of 0.233. The learning in the case of SURALP was
more complex then NICU due to the non-linearity imposed by the shoulder de-
sign of SURALP. The reduction of error for the fixed testing set (No. of training
samples) is demonstrated in figure 5.4.

In can be seen that after 2839 testing we reached an average error of 2.8 cm and
it is further decreasing as the learner continues to learn the space. One important
aspect here is to check the number of samples needed for reaching this error level
and it can be seen in the figure 5.5.

The error over the testing set for the seen points was also recorded and it can be
observed in 5.6. We reached an average error as low as 1.9 cm. The difference in the
error value for fixed and seen testing can be justified same way as explained in the
case of NICU. The fixed testing set gives the measure of error reduction over the
whole reachable space. The complete reachable space also comprises of the points
that are very difficult to reach or are maybe covered only few times. Therefore,
the network is not able to learn these points very accurately. The reduction of
error over the seen point against the iterations (Number of samples) can be seen
in figure 5.7.

In the case of SURALP, the iteration required for the learner to reach an
acceptable error level is the same as was needed for the experiment of Rolf [2013].
However, there is one thing to be considered, the problem size. Our problem is
bigger in comparison to the problem of the above mentioned work, as it is spread
in 3D and the author’s problem is for 2D planer arm. Therefore, it can be said that
our approach is faster than the approach of the author mentioned above. Another
important aspect is visualization of the area covered by the arm during exploration
of space. For experimentation we used only the right arm of SURALP and the
area covered by the arm can be seen in figure 5.8

52

5.4. Results

Figure 5.4: Reduction of average error over fixed testing set

Figure 5.5: Reduction of average fixed testing error over iterations

53

5.4. Results

Figure 5.6: Reduction of average error over seen testing set

Figure 5.7: Reduction of average seen testing error over iterations

54

5.5. Conclusion

Figure 5.8: Area explored by the right arm of SURALP. Robot’s origin is at (0,0,0)

5.5 Conclusion

In this chapter we explained the model of the Neural Network learner designed
for the arms of the robot SURALP. The best results were obtained for a network
with two hidden layers that suggest that spreading the problem over higher space
(increased rotations of joints) and the shoulder design of SURALP makes the
problem harder to learn. The results of the algorithm implementation on SURALP
also strengthen the generalizing approach of our algorithm. Therefore, we can
conclude the following points

1. Artificial Neural Networks (ANNs) can learn the inverse kinematics of a
humanoid robotic arm in 3D space.

2. Changing the shoulder design or the rotation joints or spans of rotation make
the learning problem more difficult.

3. This learner can easily be extended to involve vision and head joints for the
training of real time grasping.

So far the learner allows the robot to reach points in 3D space and we have
not included the orientation of the gripping. The orientation of the gripper can be
included and the network can be retrained until an acceptable error is achieved.

55

Chapter 6

Conclusion

In this thesis we worked on the design of the arms of a humanoid robot and
the control algorithm of it. Chapter 2 showed the related work done in the field
of humanoid robotic arm design and later showed some approaches for solving the
inverse kinematics problem. Chapter 3 explained the approach and the design of
the robotic arm. There we explained in detail the design procedure of the arm as
well as the design procedure for the URDF file of the robot. The printing of the
parts in plastic depicts an excellent use of 3D plastic printer for rapid prototype
design. The advantages achieved by this design have been stated in section 3.6.

In chapter 4, we worked on solving the inverse kinematics of the arm. We
introduced the inspiration for using online goal babbling with direction sampling
and then explained our approach. The approach works well with the use of Artifi-
cial Neural Networks (ANNs). The inverse kinematics problem is solved by using
goal babbling with direction sampling and ANNs as the learner in the process.
The network requires no prior knowledge about the arm. It starts with one single
position and explores the whole space with time. Another task on the way was to
find the best parameters for the network. This has been addressed in section 4.4.1.
After the exploration the network can approximate the whole 3D space with an
accuracy of 2 cm. The results have been shown in section 4.4. The contribution
with this learner design has already been mentioned in section 4.5. However, they
will be highlighted again in this chapter. In chapter 5, we implemented the same
algorithm on SURALP, a full human sized humanoid robot with bigger arms. The
algorithm worked well for the bigger sized robot. Also the learner worked for a
higher span of joint movements as compared to NICU.

Now we will discuss the thesis goals set in section 1.3. We modified the design
of the robot arms of NICU and equipped it with a multi degrees of freedom arms.
This arm design removed the problem of movement restriction due to an extended
chest of the robot. The arm joints are bio-inspired but we could not make it
a completely bio-inspired 7 degrees of freedom arm. The reason why we used
5 instead of 7 degrees of freedom was to keep the weight of the new arm close
to the old one. This removes the stability issue for the safe walk of the robot
with new arms. Also with this design the robot can reach considerable amount
of points in 3D space as shown in section 4.4. In the light of this discussion, we

56

6.1. Contributions

can conclude that we met the requirements for an arm design task. The second
task was to implement a bio-inspired learner for the arm. We implemented an
Artificial Neural Network that is inspired by bio logical brain to learn the inverse
kinematics of the arm. The learner allows the robot to reach the points in 3D
space with an accuracy of around 2 cm. Our learner learns the inverse kinematics
faster compared to Rolf [2013]. The third task was to implement the algorithm on
SURALP. It also worked well for SURALP and the results can be seen in section
5.4.

The learner design can easily accumulate vision input and can be retrained to
check its utility with vision input. Considering this discussion, we can conclude
that we were successful in designing a neural arm learner design that can also
adaptive.

6.1 Contributions

In the light of the discussion in the last section and the thesis goal defined in
section 1.3, we can conclude that the thesis fulfilled the targeted tasks successfully.
The completion of three targeted tasks can be justified as below answers;

X The designed arms of robot NICU have five degrees of freedom that can allow
it to maneuver excellently in the a 3D space. All the designed parts of the
arm were printed using 3D printer. A grip at the end of the arm allows the
robot to have a physical interaction with the environment and it can perform
grasping in the future.

X We implemented a learner model using bio-inspired Artificial Neural Net-
works. The learner allows the robot NICU’s arm to successfully trace multi-
ple test points in the 3D space with an accuracy of around 2cm.

X We implemented the learner on SURALP and it successfully traced multiple
points in 3D space with an accuracy of roughly around 2.5-3 cm.

Furthermore, this thesis also contributes to following topics

1. A multi DOF arm design using Dynamixel Servos for humanoid robot.

2. A structure for the shoulder design of the robot that will minimize the danger
to the stability of the robot.

3. The procedure of creating the accurate robot model (URDF) for the simula-
tor.

4. Online learning can handle high learning rates and can provide better results.

5. Multilayer Perceptron can approximate the problem of inverse kinematics in
3D space.

57

6.2. Future Works

6. The developed learner works faster than the original learner of Rolf [2013].
The mentioned work is in 2D and a comparison can be viewed in the Ap-
pendix A.

6.2 Future Works

There were considerable amount of ideas that could not be implemented. The
future work has already been discussed in section 3.6 for the arm design, the learner
design of NICU in section 4.5 and the learner design of SURALP 5.5; they will be
shortly summarized again.

1. The wrist of the arm can be extended to have one or two more degrees of
freedom to provide more orientation possibilities for the gripper.

2. The learner can be extended to take vision and head motor positions as input
and can be trained to perform real time grasping.

58

Appendix A

Additional Information

A.1 The case of the planner arm

Rolf [2013] implements the idea on a planner arm of one meter length with
5 degrees of freedom. In order to have a clear comparison we reconstructed the
environment for this experiment. This section will provide the details of the ex-
periments and discuss the results obtained.

A.1.1 Simulator and Experimental Setup

We created a 5 degrees of freedom planner arm with a length of one meter in
V-rep which was controlled in the similar way the simulator of NICU. We trained
this arm with our algorithm. The arm can be seen in figure A.1.

For quick experimental result, we used a Neural Network learner with two
hidden layers with 100 neurons in each. This high sized network was chosen to
exploit the results and the hyper parameter optimization was not performed for the
optimal number of neurons selection. There can be a solution that can approximate
the problem with much smaller network size, but we did not explore the network
size due to a lack of time. The network architecture can be seen in figure A.2.
We have x and y coordinate of the point in 2D space as input and there are five
joints values at the output of the network. The network has learned the sequence
of joints positions to reach a goal successfully.

A.1.2 Results

Similar to the experiments explained in the chapter 4 and 5, we explored 200
lines in this experiment and performed the testing. The reduction in the testing
error against the testing cycles can be seen in figure A.3.

It can be seen from the figure that the network starts to settle between 250 to
300 testing cycles that roughly correspond to 250,000 to 300,000 samples. Though
our final settling error is high, it can be reduced once the optimal size and hyper
parameters for the network are discovered. Figure A.4 can be seen to have more
clarity about the reduction in error over iterations (samples).

59

Appendix A. Additional Proof

Figure A.1: SURALP, A human sized full body humanoid robot

Figure A.2: Artificial Neural Network Architecture

60

Appendix A. Additional Proof

Figure A.3: Reduction in average testing error

Figure A.4: Reduction in average testing error over iterations

61

Appendix A. Additional Proof

A.1.3 Workspace discovery

In the experiment of Rolf [2013], a claim was made about the workspace dis-
covery. The author shows the exploration of the reachable space in 103,104,105 and
106 samples of exploration. Similarly, we draw the work space discovery for our
experiment and figure A.5, A.6, A.7 and A.8 shows the workspace discovery for
103,104,105 and 105.7784 samples of exploration. It can be seen from the exploration
till 104 that the algorithm has already covered major part of the reachable space.
Nevertheless, author’s approach need more samples to see the full space.

Figure A.5: Workspace exploration till 103 samples. Red dot in the figure shows
the origin of the arm.

A.1.4 Conclusion

Considering the results generated above and the case of 3D problem of NICU
and SURALP, we can claim that our algorithm works faster than the original of
Rolf [2013]. Also the space is covered more quickly by our algorithm. A good
choice of the parameters and size of the network can enable fast exploration as
well as fast learning of the inverse estimate as was seen in the case of robot NICU.

62

Appendix A. Additional Proof

Figure A.6: Workspace exploration till 104 samples. Red dot in the figure shows
the origin of the arm.

Figure A.7: Workspace exploration till 105 samples. Red dot in the figure shows
the origin of the arm.

63

Appendix A. Additional Proof

Figure A.8: Workspace exploration till 105.7784 samples. Red dot in the figure
shows the origin of the arm.

64

Appendix B

Technical Details

B.1 NICU

This chapter will explain the tools used for programming and simulations. We
worked with Python as the programming language and V-rep as the simulator
for robot actions. The algorithm is fully developed by using ”Numpy” module of
Python. The ”Time” & ”Math” is used for additional help in implementation.
Python code is connected to v-rep with the help of remoteAPI function of V-rep.
RemoteAPI connects the algorithm with V-rep and helps to translate coded action
to the simulator action. The algorithm uses ”vrep.py” to acquire the handles for
all the joints that the program will control as well as it enables the remoteAPI.
The developed algorithm is explained on the next page

B.2 SURALP

In the case of SURALP same algorithm is used but the implementation was
done in Matlab. The simulator also worked with Matlab and the connection with
the simulator was done by calling the control file of the simulator in the algorithm.
The algorithm can be seen on the next page

65

Anhang B. Techanical Details

B.3 Learning Algorithm

Algorithm 1 Learning algorithm for the Neural Learner as explained in section
4.2
Require: Handles for All joints in V-rep
Ensure: Remote API connected & All joint handles acquired

Get End effector position PHome
(x,y,z) against motor position MHome

(m1,m2,m3,m4)

Over-fit the network on (PHome
(x,y,z),M

Home
(m1,m2,m3,m4))

while AverageError ≥ 0.25 do
while Lines ≤ 200 do

Generate a random perturbation term E
while Joints limits are not saturated do

Add perturbation term in position (Pnew = Px,y,z + E)
Run the learner on Pnew and get the output motor position M(m1,m2,m3,m4)

Add E in motors (Mnew(m1,m2,m3,m4) = M(m1,m2,m3,m4) + E)
Send MNew(m1,m2,m3,m4) to simulator and get accurate P ∗

Train Network on (MNew(m1,m2,m3,m4),P
∗)

end while
end while
while SeenTestingPoints ≤ 110(60forSURALP) do

Generate testing point from seen data PSeen

Run the network on PSeen and get MSeen(m1,m2,m3,m4)

Send MSeen(m1,m2,m3,m4) to simulator and get real Position PReal

Calculate the distance between PSeen & PReal and save
Calculate the average of error on all points and save

end while
while FixedTestingPoints ≤ 110(60forSURALP) do

Take the points one by one from Fixed data set PFixed

Run the network on PFixed and get MFixed(m1,m2,m3,m4)

Send MFixed(m1,m2,m3,m4) to simulator and get real Position PReal

Calculate the distance between PFixed & PReal

Calculate the average of error on all 110(60 in case of SURALP) points and
save as ”AverageError”

end while
end while
Save the Network weights

66

Appendix C

Additional Data

All the tables included in this section contain the mean and standard deviation
values in meters for the respective experiments. This mean and standard deviation
is calculated over the average of positioning error for the fixed testing set cycles.
Where one testing occurs after the exploration of 200 lines.

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

2 0.1 0.1 0.236096 0.026751

3 0.1 0.1 0.220356 0.019332

4 0.1 0.1 0.238868 0.023525

5 0.1 0.1 0.212238 0.026288

6 0.1 0.1 0.233760 0.029222

7 0.1 0.1 0.216312 0.032273

8 0.1 0.1 0.184633 0.026380

9 0.1 0.1 0.221171 0.023068

10 0.1 0.1 0.205095 0.025801

15 0.1 0.1 0.200731 0.039947

17 0.1 0.1 0.164684 0.038653

20 0.1 0.1 0.151482 0.021772

25 0.1 0.1 0.144096 0.011967

50 0.1 0.1 0.101859 0.024777

75 0.1 0.1 0.075518 0.010685

100 0.1 0.1 0.086544 0.031497

120 0.1 0.1 0.080635 0.010513

140 0.1 0.1 0.081105 0.019714

160 0.1 0.1 0.074059 0.009267

Table C.1: This table shows the node variation against Learning rate of 0.1 and
Perturbation of 0.1

67

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

3 0.05 0.1 0.221377 0.022174

4 0.05 0.1 0.254315 0.027652

7 0.05 0.1 0.227548 0.022398

10 0.05 0.1 0.219146 0.024870

15 0.05 0.1 0.237034 0.030213

20 0.05 0.1 0.223948 0.021444

25 0.05 0.1 0.202520 0.016187

30 0.05 0.1 0.209175 0.029464

35 0.05 0.1 0.182068 0.029732

50 0.05 0.1 0.172291 0.027626

70 0.05 0.1 0.150433 0.042675

75 0.05 0.1 0.139117 0.033082

100 0.05 0.1 0.132246 0.024265

120 0.05 0.1 0.090488 0.022088

140 0.05 0.1 0.097007 0.017543

160 0.05 0.1 0.105333 0.039306

Table C.2: Node variation for Learning rate of 0.05 and Perturbation of 0.1

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

3 0.1 0.05 0.244255 0.022113

15 0.1 0.05 0.267995 0.036022

35 0.1 0.05 0.250224 0.039265

50 0.1 0.05 0.256366 0.036852

75 0.1 0.05 0.242214 0.047565

100 0.1 0.05 0.211772 0.049542

125 0.1 0.05 0.245231 0.040243

150 0.1 0.05 0.182118 0.046863

Table C.3: Node variation for Learning rate of 0.1 and Perturbation of 0.05

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

3 0.05 0.05 0.253033 0.023304

7 0.05 0.05 0.258917 0.020386

25 0.05 0.05 0.225370 0.029799

50 0.05 0.05 0.252009 0.040319

75 0.05 0.05 0.244883 0.030021

100 0.05 0.05 0.260085 0.042495

125 0.05 0.05 0.209285 0.032891

150 0.05 0.05 0.194287 0.030509

Table C.4: Node variation for Learning rate of 0.05 and Perturbation of 0.05
68

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

10 0.1 0.02 0.294123 0.033903

30 0.1 0.02 0.272654 0.041830

50 0.1 0.02 0.266493 0.030158

70 0.1 0.02 0.272377 0.045938

90 0.1 0.02 0.272372 0.053519

110 0.1 0.02 0.289562 0.036083

130 0.1 0.02 0.288927 0.037664

Table C.5: Node variation for Learning rate of 0.1 and Perturbation of 0.02

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

20 0.7 0.1 0.059872 0.006127

40 0.7 0.1 0.065433 0.009900

60 0.7 0.1 0.073884 0.011385

80 0.7 0.1 0.068599 0.005651

100 0.7 0.1 0.088985 0.027700

120 0.7 0.1 0.075554 0.017645

Table C.6: Node variation for Learning rate of 0.7 and Perturbation of 0.1

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

15 0.7 0.05 0.185031 0.039550

35 0.7 0.05 0.116503 0.036042

55 0.7 0.05 0.138861 0.040169

75 0.7 0.05 0.113368 0.019562

95 0.7 0.05 0.124562 0.030492

115 0.7 0.05 0.122645 0.022745

135 0.7 0.05 0.130080 0.040625

Table C.7: Node variation for Learning rate of 0.7 and Perturbation of 0.05

69

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

35 0.07 0.02 0.295082 0.025513

65 0.07 0.02 0.290077 0.039307

85 0.07 0.02 0.273196 0.033505

105 0.07 0.02 0.281550 0.040388

135 0.07 0.02 0.268184 0.034184

Table C.8: Node variation for Learning rate of 0.7 and Perturbation of 0.02

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.717 0.233 0.062618 0.002161

1 0.717 0.233 0.144636 0.011873

2 0.717 0.233 0.071314 0.005665

5 0.717 0.233 0.051673 0.047163

10 0.717 0.233 0.046847 0.005433

15 0.717 0.233 0.049994 0.041104

30 0.717 0.233 0.049489 0.007825

50 0.717 0.233 0.0504315 0.006054

70 0.717 0.233 0.058008 0.009380

90 0.717 0.233 0.053945 0.002377

110 0.717 0.233 0.054893 0.005846

130 0.717 0.233 0.059206 0.006983

150 0.717 0.233 0.058645 0.006644

Table C.9: Node variation for Learning rate of 0.717 and Perturbation of 0.233

70

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.266 0.314 0.059682 0.001036

1 0.266 0.314 0.137183 0.003235

2 0.266 0.314 0.074255 0.001831

5 0.266 0.314 0.063103 0.002142

10 0.266 0.314 0.057487 0.004176

15 0.266 0.314 0.057252 0.002531

30 0.266 0.314 0.057828 0.003700

50 0.266 0.314 0.060947 0.005107

70 0.266 0.314 0.060213 0.004148

90 0.266 0.314 0.060909 0.003233

110 0.266 0.314 0.062925 0.0047789

130 0.266 0.314 0.062144 0.006594

150 0.266 0.314 0.065111 0.012237

Table C.10: Node variation for Learning rate of 0.266 and Perturbation of 0.314

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.11 0.18 0.066122 0.006199

1 0.11 0.18 0.143915 0.007858

2 0.11 0.18 0.078253 0.010661

5 0.11 0.18 0.078289 0.019845

10 0.11 0.18 0.0566002 0.011136

15 0.11 0.18 0.064612 0.00425

30 0.11 0.18 0.0627069 0.002297

50 0.11 0.18 0.063207 0.003538

70 0.11 0.18 0.056823 0.011099

90 0.11 0.18 0.066069 0.006549

110 0.11 0.18 0.056525 0.011130

130 0.11 0.18 0.067029 0.005009

150 0.11 0.18 0.066746 0.007615

Table C.11: Node variation for Learning rate of 0.11 and Perturbation of 0.18

71

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.527 0.29 0.060136 0.002843

1 0.527 0.29 0.143997 0.006232

2 0.527 0.29 0.073270 0.002021

5 0.527 0.29 0.057751 0.006119

10 0.527 0.29 0.0510503 0.006042

15 0.527 0.29 0.052934 0.006125

30 0.527 0.29 0.054537 0.006770

50 0.527 0.29 0.053361 0.003653

70 0.527 0.29 0.054875 0.004912

90 0.527 0.29 0.056487 0.005185

110 0.527 0.29 0.055359 0.002912

130 0.527 0.29 0.061873 0.008824

150 0.527 0.29 0.060922 0.006988

Table C.12: Node variation for Learning rate of 0.527 and Perturbation of 0.29

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.919 0.15 0.067429 0.005298

1 0.919 0.15 0.158841 0.019250

2 0.919 0.15 0.075729 0.005921

5 0.919 0.15 0.063710 0.012985

10 0.919 0.15 0.054506 0.010272

15 0.919 0.15 0.053417 0.014045

30 0.919 0.15 0.059211 0.010019

50 0.919 0.15 0.054364 0.005234

70 0.919 0.15 0.054606 0.006909

90 0.919 0.15 0.064199 0.011599

110 0.919 0.15 0.063820 0.010673

130 0.919 0.15 0.066861 0.006672

150 0.919 0.15 0.068034 0.019641

Table C.13: Node variation for Learning rate of 0.919 and Perturbation of 0.15

72

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.64 0.1 0.065276 0.005862

1 0.64 0.1 0.172595 0.022316

2 0.64 0.1 0.883950 0.018928

5 0.64 0.1 0.067343 0.009050

10 0.64 0.1 0.071726 0.015799

15 0.64 0.1 0.075028 0.027545

30 0.64 0.1 0.071155 0.018334

50 0.64 0.1 0.076032 0.014377

70 0.64 0.1 0.079569 0.030135

90 0.64 0.1 0.081321 0.01457

110 0.64 0.1 0.081329 0.015519

130 0.64 0.1 0.0848758 0.014430

150 0.64 0.1 0.083283 0.011265

Table C.14: Node variation for Learning rate of 0.64 and Perturbation of 0.1

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.08 0.18 0.074160 0.005019

1 0.08 0.18 0.207759 0.022851

2 0.08 0.18 0.152389 0.022036

5 0.08 0.18 0.096359 0.020687

10 0.08 0.18 0.098850 0.022148

15 0.08 0.18 0.072339 0.011962

30 0.08 0.18 0.064055 0.004669

50 0.08 0.18 0.063208 0.002735

70 0.08 0.18 0.069150 0.022853

90 0.08 0.18 0.068836 0.009135

110 0.08 0.18 0.062927 0.006195

130 0.08 0.18 0.065719 0.004893

150 0.08 0.18 0.068208 0.006928

Table C.15: Node variation for Learning rate of 0.08 and Perturbation of 0.18

73

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.02 0.314 0.093980 0.006467

1 0.02 0.314 0.189213 0.015279

2 0.02 0.314 0.184484 0.016922

5 0.02 0.314 0.138199 0.010098

10 0.02 0.314 0.099485 0.012001

15 0.02 0.314 0.091549 0.012063

30 0.02 0.314 0.088384 0.013563

50 0.02 0.314 0.061791 0.003565

70 0.02 0.314 0.060111 0.002488

90 0.02 0.314 0.059793 0.002714

110 0.02 0.314 0.058157 0.001344

130 0.02 0.314 0.059015 0.001912

150 0.02 0.314 0.059156 0.001697

Table C.16: Node variation for Learning rate of 0.02 and Perturbation of 0.314

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.0527 0.29 0.067587 0.004657

1 0.0527 0.29 0.143738 0.013429

2 0.0527 0.29 0.134324 0.004421

5 0.0527 0.29 0.067809 0.005193

10 0.0527 0.29 0.066371 0.005776

15 0.0527 0.29 0.061485 0.002714

30 0.0527 0.29 0.060614 0.002342

50 0.0527 0.29 0.060793 0.001725

70 0.0527 0.29 0.058747 0.001356

90 0.0527 0.29 0.063705 0.007110

110 0.0527 0.29 0.064936 0.003702

130 0.0527 0.29 0.061898 0.004213

150 0.0527 0.29 0.061499 0.005231

Table C.17: Node variation for Learning rate of 0.0527 and Perturbation of 0.29

74

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.011 0.18 0.195042 0.015694

1 0.011 0.18 0.223507 0.021315

2 0.011 0.18 0.214471 0.013082

5 0.011 0.18 0.221027 0.017516

10 0.011 0.18 0.215418 0.015766

15 0.011 0.18 0.214533 0.011596

30 0.011 0.18 0.211348 0.045017

50 0.011 0.18 0.144849 0.018683

70 0.011 0.18 0.224528 0.016833

90 0.011 0.18 0.123248 0.023721

110 0.011 0.18 0.136134 0.024184

130 0.011 0.18 0.090369 0.010361

150 0.011 0.18 0.089089 0.009314

Table C.18: Node variation for Learning rate of 0.011 and Perturbation of 0.18

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.717 0.023 0.243960 0.031031

1 0.717 0.023 0.243578 0.033957

2 0.717 0.023 0.284386 0.034913

5 0.717 0.023 0.27286 0.031973

10 0.717 0.023 0.263586 0.043219

15 0.717 0.023 0.28756 0.040251

30 0.717 0.023 0.273833 0.033092

50 0.717 0.023 0.265837 0.037996

70 0.717 0.023 0.262458 0.045209

90 0.717 0.023 0.249371 0.051501

110 0.717 0.023 0.243495 0.046726

130 0.717 0.023 0.239509 0.039217

150 0.717 0.023 0.259036 0.043361

Table C.19: Node variation for Learning rate of 0.717 and Perturbation of 0.023

75

Anhang C. Additional Data

Hidden Nodes Learning Rate Perturbation Mean Standard Deviation

0 0.266 0.031 0.259651 0.034883

1 0.266 0.031 0.285035 0.030802

2 0.266 0.031 0.266964 0.044683

5 0.266 0.031 0.282754 0.029072

10 0.266 0.031 0.260505 0.048857

15 0.266 0.031 0.248344 0.043904

30 0.266 0.031 0.266421 0.042296

50 0.266 0.031 0.271387 0.030441

70 0.266 0.031 0.273595 0.048482

90 0.266 0.031 0.241216 0.031597

110 0.266 0.031 0.256748 0.043586

130 0.266 0.031 0.257564 0.038239

150 0.266 0.031 0.241182 0.049682

Table C.20: Node variation for Learning rate of 0.266 and Perturbation of 0.031

LR&E 5 Nodes 5 Nodes 10 Nodes 10 Nodes 15 Nodes 15 Nodes

values Mean Std Mean Std Mean Std

0.7&0.2 0.058569 0.007935 0.046426 0.005735 0.051792 0.009372

0.7&0.25 0.048094 0.004691 0.044476 0.008253 0.042911 0.005487

0.7&0.3 0.051614 0.002864 0.047673 0.003609 0.042974 0.005500

0.7&0.35 0.058255 0.003849 0.043782 0.004286 0.044063 0.006042

0.8&0.2 0.052475 0.009998 0.048428 0.009771 0.050493 0.004559

0.8&0.25 0.056541 0.00751 0.042662 0.009311 0.042766 0.005767

0.8&0.3 0.054382 0.004600 0.047286 0.004401 0.041841 0.003568

0.8&0.35 0.048777 0.004184 0.037193 0.005857 0.044227 0.005315

0.9&0.2 0.060118 0.006952 0.045304 0.004967 0.048556 0.009201

0.9&0.25 0.048174 0.009187 0.039070 0.003072 0.046178 0.005843

0.9&0.3 0.055117 0.006072 0.040348 0.004179 0.041602 0.005468

0.9&0.35 0.055986 0.003723 0.043844 0.005933 0.043934 0.006579

1.0&0.2 0.047922 0.012682 0.039615 0.005448 0.056215 0.005706

1.0&0.25 0.058727 0.006360 0.046322 0.008512 0.044346 0.008428

1.0&0.3 0.053426 0.004635 0.044604 0.004828 0.039999 0.004517

1.0&0.35 0.053434 0.003485 0.049197 0.002724 0.039377 0.005088

Table C.21: Exploration of paramters near the best case of LR0.717 & E0.233

76

Anhang C. Additional Data

x-
p
o
in

ts

0.3

0.2

0.1

0.0

0.1

0.2

0.3

y-points

0.10.00.10.20.30.40.50.6

z-p
o
in

ts

0.1

0.0

0.1

0.2

0.3

0.4

0.5

110 points From Fixed set

Figure C.1: Fixed points testing points-red shows the points with absolute error
more than 4cm and green show less than 4cm. Blue cross show the center of the
robot model (LR0.717, E0.233 & 10 Hidden Nodes)

77

Anhang C. Additional Data

x-
po

in
ts

0.3

0.2

0.1

0.0

0.1

0.2

0.3

y-points
0.0

0.1
0.2

0.3
0.4

0.5
0.6

z-p
o
in

ts

0.1

0.0

0.1

0.2

0.3

0.4

0.5

110 points From Seen set

Figure C.2: Seen points testing points-red shows the points with absolute error
more than 3cm and green show less than 3cm. Blue cross show the center of the
robot model (LR0.717, E0.233 & 10 Hidden Nodes)

78

Anhang C. Additional Data

0 2 4 6 8 10 12 14
Time (Hours)

0.00

0.05

0.10

0.15

0.20

0.25

Po
si

tio
ni

ng
 E

rro
r i

n
M

et
er

s

Reduction of Error Over Time(LR0.717,E0.233)

 Single Layer Perceptron
 Multilayer Perceptron(10 Hidden Nodes)

Figure C.3: Reduction of Error Over Time (LR0.717, E0.233 & 10 Hidden Nodes)

79

Bibliography

S. Agatonovic-Kustrin and R. Beresford. Basic concepts of artificial neural net-
work (ann) modeling and its application in pharmaceutical research. Journal of
pharmaceutical and biomedical analysis, 22(5):717–727, 2000.

P. Allgeuer, M. Schwarz, J. Pastrana, S. Schueller, M. Missura, and S. Behnke.
A ros-based software framework for the nimbro-op humanoid open platform. In
Proceedings of 8th Workshop on Humanoid Soccer Robots, IEEE Int. Conf. on
Humanoid Robots, Atlanta, USA, 2013. URL http://www.ais.uni-bonn.de/

papers/HSR13_Allgeuer_ROS_NimbRo-OP.pdf.

M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino,
and C. Yoshida. Cognitive developmental robotics: a survey. Autonomous Men-
tal Development, IEEE Transactions on, 1(1):12–34, 2009.

R. Berka. Inverse kinematics-basic methods. Dept. of Computer Science & En-
gineering, Czech Technical University, Prague/Czech Republic. URL http:

//www.cescg.org/CESCG-2002/LBarinka/paper.pdf.

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, editor,
Online Learning and Neural Networks. Cambridge University Press, Cambridge,
UK, 1998. URL http://leon.bottou.org/papers/bottou-98x. revised, oct
2012.

K. Erbatur, U. Seven, E. Taşkıran, and Ö. Koca. Walking trajectory generation
and force feedback control for the humanoid robot leg module suralp-l. IASTED,
2008a.

K. Erbatur, U. Seven, E. Taskiran, O. Koca, G. Kiziltas, M. Unel, A. Sabanovic,
and A. Onat. Suralp-l-the leg module of a new humanoid robot platform. In
Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Con-
ference on, pages 168–173. IEEE, 2008b.

K. Erbatur, U. Seven, E. Taskran, O. Koca, M. Ylmaz, M. Unel, G. Kzltas, A. Sa-
banovic, and A. Onat. Suralp: a new full-body humanoid robot platform. In
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Con-
ference on, pages 4949–4954. IEEE, 2009.

80

http://www.ais.uni-bonn.de/papers/HSR13_Allgeuer_ROS_NimbRo-OP.pdf
http://www.ais.uni-bonn.de/papers/HSR13_Allgeuer_ROS_NimbRo-OP.pdf
http://www.cescg.org/CESCG-2002/LBarinka/paper.pdf
http://www.cescg.org/CESCG-2002/LBarinka/paper.pdf
http://leon.bottou.org/papers/bottou-98x

Bibliography

K. Grave, J. Stuckler, and S. Behnke. Improving imitated grasping motions
through interactive expected deviation learning. In Humanoid Robots (Hu-
manoids), 2010 10th IEEE-RAS International Conference on, pages 397–404.
IEEE, 2010. URL http://www.ais.uni-bonn.de/papers/IEEE_RAS_2010_

Graeve_Stueckler_Behnke.pdf.

A. T. Hasan and H. Al-Assadi. Performance prediction network for serial ma-
nipulators inverse kinematics solution passing through singular configurations.
International Journal of Advanced Robotic Systems, 7(4):10, 2010. URL http:

//dx.doi.org/10.5772/10492.

D. O. Hebb. The first stage of perception: growth of the assembly. The organization
of behavior: A neuropsychological theory, pages 60–78, 1949.

M. Islam, B. Boswell, and A. Pramanik. An investigation of dimensional accuracy
of parts produced by three-dimensional printing. In Proceedings of the World
Congress on Engineering, volume 1, pages 3–5, 2013. URL http://www.iaeng.

org/publication/WCE2013/WCE2013_pp522-525.pdf.

J. Konczak, M. Borutta, and J. Dichgans. The development of goal-directed reach-
ing in infants ii. learning to produce task-adequate patterns of joint torque.
Experimental Brain Research, 113(3):465–474, 1997.

M. Lapeyre, P. Rouanet, and P.-Y. Oudeyer. The poppy humanoid robot: Leg
design for biped locomotion. In Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, pages 349–356. IEEE, 2013. URL
https://hal.inria.fr/hal-00852858/document.

M. Lapeyre, P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Falher, and P.-
Y. Oudeyer. Poppy Project: Open-Source Fabrication of 3D Printed Humanoid
Robot for Science, Education and Art. In Digital Intelligence 2014, page 6,
Nantes, France, Sept. 2014. URL https://hal.inria.fr/hal-01096338.

M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Developmental robotics: a
survey. Connection Science, 15(4):151–190, 2003.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943. URL
http://www.aemea.org/math/McCulloch_Pitts_1943.pdf.

G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The icub hu-
manoid robot: an open platform for research in embodied cognition. In Pro-
ceedings of the 8th workshop on performance metrics for intelligent systems,
pages 50–56. ACM, 2008. URL https://flowers.inria.fr/mlopes/myrefs/

10-neuralnetworks.pdf.

C. Moulin-Frier and P.-Y. Oudeyer. Exploration strategies in developmental
robotics: a unified probabilistic framework. In Development and Learning

81

http://www.ais.uni-bonn.de/papers/IEEE_RAS_2010_Graeve_Stueckler_Behnke.pdf
http://www.ais.uni-bonn.de/papers/IEEE_RAS_2010_Graeve_Stueckler_Behnke.pdf
http://dx.doi.org/10.5772/10492
http://dx.doi.org/10.5772/10492
http://www.iaeng.org/publication/WCE2013/WCE2013_pp522-525.pdf
http://www.iaeng.org/publication/WCE2013/WCE2013_pp522-525.pdf
https://hal.inria.fr/hal-00852858/document
https://hal.inria.fr/hal-01096338
http://www.aemea.org/math/McCulloch_Pitts_1943.pdf
https://flowers.inria.fr/mlopes/myrefs/10-neuralnetworks.pdf
https://flowers.inria.fr/mlopes/myrefs/10-neuralnetworks.pdf

Bibliography

and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint International Confer-
ence on, pages 1–6. IEEE, 2013. URL https://flowers.inria.fr/CMF_PYO_

ICDL2013.pdf.

M. Quigley, A. Asbeck, and A. Ng. A low-cost compliant 7-dof robotic manipulator.
In Robotics and Automation (ICRA), 2011 IEEE International Conference on,
pages 6051–6058, 2011. URL http://people.seas.harvard.edu/~aasbeck/

papers/Quigley2011-ICRA-ALowCostCompliant7-DOFRoboticManipulator.

pdf.

R. F. Reinhart and M. Rolf. Learning versatile sensorimotor coordination with
goal babbling and neural associative dynamics. In Development and Learning
and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint International Confer-
ence on, pages 1–7. IEEE, 2013. URL http://www.cor-lab.de/system/files/

ReinhartRolf2013-ICDL.pdf.

M. Rolf. Goal babbling with unknown ranges: A direction-sampling approach. In
Development and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third
Joint International Conference on, pages 1–7. IEEE, 2013. URL http://www.

cor-lab.de/system/files/Rolf2013-ICDL.pdf.

M. Rolf, J. J. Steil, and M. Gienger. Goal babbling permits direct learn-
ing of inverse kinematics. Autonomous Mental Development, IEEE Transac-
tions on, 2(3):216–229, 2010. URL http://www.cor-lab.de/system/files/

RolfSteilGienger-TAMD2010-GoalBabbling.pdf.

M. Rolf, J. J. Steil, and M. Gienger. Online goal babbling for rapid
bootstrapping of inverse models in high dimensions. In Development
and Learning (ICDL), 2011 IEEE International Conference on, volume 2,
pages 1–8. IEEE, 2011. URL http://www.cor-lab.de/system/files/

RolfSteilGienger2011-ICDL-EpiRob.pdf.

F. Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958. URL
http://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Cognitive modeling, 5, 1986. URL http://www.iro.

umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf.

M. Schwarz, M. Schreiber, S. Schueller, M. Missura, and S. Behnke. Nimbro-op
humanoid teensize open platform. In Proceedings of 7th Workshop on Humanoid
Soccer Robots. IEEE-RAS International Conference on Humanoid Robots, 2012.
URL http://www.ais.uni-bonn.de/papers/HSR12_NimbRo-OP.pdf.

M. Schwarz, J. Stückler, D. Droeschel, K. Gräve, D. Holz, M. Schreiber, and
S. Behnke. Nimbro@ home 2014 team description. 2014. URL http://www.

ais.uni-bonn.de/nimbro/@Home/papers/TDP_NimbRo_Home_2014.pdf.

82

https://flowers.inria.fr/CMF_PYO_ICDL2013.pdf
https://flowers.inria.fr/CMF_PYO_ICDL2013.pdf
http://people.seas.harvard.edu/~aasbeck/papers/Quigley2011-ICRA-ALowCostCompliant7-DOFRoboticManipulator.pdf
http://people.seas.harvard.edu/~aasbeck/papers/Quigley2011-ICRA-ALowCostCompliant7-DOFRoboticManipulator.pdf
http://people.seas.harvard.edu/~aasbeck/papers/Quigley2011-ICRA-ALowCostCompliant7-DOFRoboticManipulator.pdf
http://www.cor-lab.de/system/files/ReinhartRolf2013-ICDL.pdf
http://www.cor-lab.de/system/files/ReinhartRolf2013-ICDL.pdf
http://www.cor-lab.de/system/files/Rolf2013-ICDL.pdf
http://www.cor-lab.de/system/files/Rolf2013-ICDL.pdf
http://www.cor-lab.de/system/files/RolfSteilGienger-TAMD2010-GoalBabbling.pdf
http://www.cor-lab.de/system/files/RolfSteilGienger-TAMD2010-GoalBabbling.pdf
http://www.cor-lab.de/system/files/RolfSteilGienger2011-ICDL-EpiRob.pdf
http://www.cor-lab.de/system/files/RolfSteilGienger2011-ICDL-EpiRob.pdf
http://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf
http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf
http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf
http://www.ais.uni-bonn.de/papers/HSR12_NimbRo-OP.pdf
http://www.ais.uni-bonn.de/nimbro/@Home/papers/TDP_NimbRo_Home_2014.pdf
http://www.ais.uni-bonn.de/nimbro/@Home/papers/TDP_NimbRo_Home_2014.pdf

Bibliography

J. Stückler and S. Behnke. Dynamaid, an anthropomorphic robot for research on
domestic service applications. Automatika–Journal for Control, Measurement,
Electronics, Computing and Communications, 52(3), 2011. URL http://www.

ais.uni-bonn.de/papers/automatika2010_dynamaid.pdf.

J. Stückler, R. Steffens, D. Holz, and S. Behnke. Real-time 3d perception and effi-
cient grasp planning for everyday manipulation tasks. In ECMR, pages 177–182,
2011. URL http://www.ais.uni-bonn.de/papers/ECMR_2011_Stueckler.

pdf.

E. Thelen, D. Corbetta, and J. P. Spencer. Development of reaching during the
first year: role of movement speed. Journal of Experimental Psychology: Human
Perception and Performance, 22(5):1059, 1996.

D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for
gradient descent learning. Neural Networks, 16(10):1429–1451, 2003. URL http:

//axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf.

83

http://www.ais.uni-bonn.de/papers/automatika2010_dynamaid.pdf
http://www.ais.uni-bonn.de/papers/automatika2010_dynamaid.pdf
http://www.ais.uni-bonn.de/papers/ECMR_2011_Stueckler.pdf
http://www.ais.uni-bonn.de/papers/ECMR_2011_Stueckler.pdf
http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf
http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf

	1 Introduction
	1.1 Motivation
	1.2 Overview of Nimbro-OP
	1.3 Thesis Goal
	1.4 Foundations
	1.4.1 Arms
	1.4.2 Neural Networks

	2 Related Work
	2.1 Robotic Arm
	2.1.1 Seven Degrees of Freedom Robot Manipulator
	2.1.2 Coginitive service robots; Dynamaid and Cosero
	2.1.3 Poppy, the open source,3D printed robot

	2.2 Learning Inverse Kinematics of a Robotic Arm
	2.2.1 Trivial Approaches
	2.2.2 Motor and Goal babbling
	2.2.3 Online Goal Babbling with direction sampling

	3 Robotic Arm Design
	3.1 Introduction
	3.2 Initial Design Attempt
	3.3 New Design of the Arm
	3.4 Printing of the Arm parts
	3.5 Robot Model for the Simulator
	3.5.1 Robot Model from AutoDesk Inventor
	3.5.2 Robot Model from Solid Works
	3.5.3 Procedure for creating Robot definition File (URDF)
	3.5.4 Robot Model (URDF) Package

	3.6 Conclusion
	3.7 Future Work

	4 Neural Learner Design
	4.1 Introduction
	4.2 Approach
	4.3 Experimental Setup
	4.4 Results
	4.4.1 Hyperparameter Optimization
	4.4.2 MLP With Best Results (LR0.717 & E0.233 &10 Hidden Nodes)
	4.4.3 Single Layer Perceptron
	4.4.4 Comparison of MLP and SLP

	4.5 Conclusion

	5 Implementation on SURALP
	5.1 Introduction
	5.2 Simulator
	5.3 Experimental Setup
	5.4 Results
	5.5 Conclusion

	6 Conclusion
	6.1 Contributions
	6.2 Future Works

	A Additional Information
	A.1 The case of the planner arm
	A.1.1 Simulator and Experimental Setup
	A.1.2 Results
	A.1.3 Workspace discovery
	A.1.4 Conclusion

	B Technical Details
	B.1 NICU
	B.2 SURALP
	B.3 Learning Algorithm

	C Additional Data
	Bibliography

