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Summary

A s a society, we have come to notice the influence and impact Artificially In-
telligent (AI) agents have on the way we live our lives. For these AI agents

to support us both effectively and responsibly, we require an understanding on
how theymake decisions andwhat the consequences are of these decisions. The
research field of Explainable Artificial Intelligence (XAI) aims to develop AI agents
that can explain its own functioning to provide this understanding. In this thesis
we defined, developed, and evaluated a core set of explanations an AI agent can
provide to support their collaboration with humans.

In Part I we studied the effects of explanations that convey why one de-
cision was made instead of another, i.e., the contrastive explanation class. Two
forms of this class were evaluated (Chapter 2), providing either rule-based or
example-based content. The rule-based form improved a human’s understand-
ing the most. Both explanations caused participants to feel they understood
the AI agent, although this did not correlate with their actual understanding.
Furthermore, with a self-explaining agent the participants proved to be more
persuaded to follow the agent’s advice even when incorrect, particularly when
the explanations were provided in an example-based form. A method to gener-
ate rule-based contrastive explanations was developed for AI agents that offer
decision support and proven to be efficient, accurate and agnostic from the AI
agent’s functioning (Chapter 3). Based on our findings of a pilot study, a second
method was presented and defined for AI agents that plan behaviour over time,
as often used in autonomous systems (Chapter 4). These findings indicated that
humans desire contrastive explanations from such planning AI agents to report
what consequences that agent expects when performing its plan. The presented
and definedmethods takes this into account by allowing humans to question the
plans of these AI agents and receive an answer addressing the agent’s expected
consequences conform human interpretable terms instead of numerical values
(i.e., that by turning right the agent expects to fall off a cliff, instead of explaining
that turning right reduces the expected utility significantly).

In Part II we defined two novel explanation classes: confidence explanations
and actionable explanations. Confidence explanations convey the likelihood of
an AI agent’s decision to prove correct, compute this in an interpretable way
and explain it using past examples of performance (Chapter 5). We proposed
an agnostic approach to generate such explanations using case-based reason-
ing. Evaluations showed this approach to be accurate and predictable, even un-
der simulated updates of the AI agent and concept drift over time. Two stud-
ies showed that both laypeople and domain experts preferred our case-based
reasoning approach for confidence explanations over state-of-the-art alternat-
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Summary

ives. Actionable explanations aim to support a human’s ability to contest and
alter an AI agent’s decision when that human is subjected to the AI agent’s de-
cision (Chapter 6). We formally defined six properties that make an explanation
actionable to enable univocal comparisons and argumentations on explanation
theories that contribute to contesting AI agents’ decisions. A literature review
was performed to provide a research agenda for the development and testing
of methods to generate actionable explanations.

Finally, in Part III we recognize that explanations serve the collaboration be-
tween humans and AI agents and their application needs to be designed within
the context of that collaboration. We extended an existing design method for
such collaborations with the notion of explanations and presented several de-
signs (Chapter 7). Each design varied in the degree of autonomy provided to
the AI agent in morally sensitive tasks and discussed the role of explanations
within such tasks. Several of these designswere then evaluated in the healthcare
domain with first responders (Chapter 8). Results showed that the participants
valued the explanations but also found them tedious when experiencing time
pressure. Furthermore, they felt less responsible for the AI agent when it be-
came more autonomous which reduced their motivation to review the explan-
ations. This illustrates the complexity of designing an explainable AI agent that
integrates various explanations to support a human–AI collaboration.

To summarize, the above findings show that explanations from an AI agent
have the potential to improve the collaboration between human and AI agents
since explanations can bring about various beneficial effects. Not all these ef-
fects are positive, however. Explanations can also induce negative effects det-
rimental to the collaboration, which is dependent on context. For instance, a
more persuasive advice due to an explanation might be detrimental in a use
case where it prohibits a desirable critical human stance but beneficial when it
remedies unwarranted under trust. The performed studies showed that explan-
ations induce effects whose value is use-case dependent. Similar future studies
measuring the variety of effects explanations bring about will provide a solid
foundation for design choices on explainable AI agents. Such design choices
could be structured and made accessible with the use of design patterns that
describe which explanations have what effects in what kind of use cases given
a particular kind of human–AI collaboration. Aside from these insights, we illus-
trated the value of a more formalized approach towards explanations that are
actionable instead of only having an epistemic value. Through distinct proper-
ties and levels, we could provide a research agenda towards explanations with
the profound practical value of enabling human autonomy when interacting or
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dealing with AI agents. Finally, we showed that the development of explanation
generating methods that are independent of the applied machine learning tech-
nique can be effective. This is especially the case when explanations do not need
to disclose every detail of an AI agent.

We conclude with advice for future research in XAI. First, our advice is to
spend more effort on the evaluation of the explanations as well as the theor-
etic foundation on how such explanations are generated. There is a need for
more rigorous evaluations grounded in realistic applications of AI agents based
on explicit theoretical models describing both positive and negative effects of
explanations. In addition, with more attention to the theoretical and mathemat-
ical foundation on how explanations should be generated, we can work towards
methods for which we are equivocally able to determine when the generated
explanation is sufficiently correct given the intrinsically complex AI agent it ex-
plains. With an increased effort in both, we should be able to provide industries
and governments with the knowledge needed to apply explanations effectively
and responsibly and to formulate best practices and regulation. Our second ad-
vice is to provide more attention to the role and embedding of explanations in
the human–AI collaboration. This will open more purposes for explanations in-
stead of solely for creating trustworthy AI agents. Explanation purposes such
as supporting long-term collaborations, aiding in knowledge discovery, educat-
ing humans in a domain. This advice comes down to a more profound focus on
human-centred research to the explanations an AI agent should provide.
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Samenvatting

A ls samenleving zijn we de invloed en impact gaanmerken die kunstmatig in-
telligente (AI) agenten hebben op onzemanier van leven. We hebben inzicht

nodig in hoe AI-agenten hun beslissingen maken en de consequenties hiervan,
willen we dat deze AI-agenten ons effectief en verantwoord ondersteunen. Het
onderzoeksveld Explainable Artificial Intelligence (XAI) heeft tot doel AI-agenten
te ontwikkelen die hun eigen werking kunnen uitleggen en hiermee dit beno-
digde inzicht te verschaffen. Dit proefschrift adresseert verschillende soorten
uitleg die een AI-agent kan geven om zo de samenwerkingmetmensen te onder-
steunen. Deze soorten uitleg worden gedefinieerd, ontwikkeld en geëvalueerd.

In Deel I hebben we de effecten bestudeerd van een uitleg waarom een AI-
agent de ene beslissing is nam in plaats van een andere, de zogenoemde con-
trastieve uitlegklasse. Twee vormen vandeze klassewerden geëvalueerd (Hoofd-
stuk 2). Een vorm gebaseerd op beslisregels en een vorm gebaseerd op gedrags-
voorbeelden. De op regels gebaseerde vorm bleek het begrip het meest te be-
vorderen in een uitgevoerd experiment. Beide verklaringen zorgden ervoor dat
de deelnemers het gevoel hadden dat ze de AI-agent begrepen, hoewel dit niet
correleerde met hun daadwerkelijk verkregen begrip. Bovendien lieten deelne-
mers zich vaker overtuigen om het gegeven advies op te volgen als de AI-agent
dit advies kon uitleggen, zelfs als dit advies onjuist was. Dit gebeurde met name
wanneer de uitleg gebaseerd werd op voorbeelden. We ontwikkelde een me-
thode omop regels gebaseerde contrastieve uitleg te genereren voor AI-agenten
die mensen adviseren over een te nemen besluit. We toonde aan dat deze me-
thode efficiënt, nauwkeurig en onafhankelijk fungeert van het functioneren van
de AI-agent (Hoofdstuk 3). Op basis van onze bevindingen van een pilotstudie
werd een tweede methode gepresenteerd en gedefinieerd voor AI-agenten die
plannen maken over de tijd, zoals autonome systemen (Hoofdstuk 4). De bevin-
dingen van deze pilotstudie gaven aan dat mensen van plannende AI-agenten
een contrastieve verklaringen willen die verklaart welke gevolgen de AI-agent
verwacht bij het uitvoeren van het plan. Een methode is gepresenteerd die der-
gelijke uitleg kan genereren door mensen in staat te stellen het gegenereerde
plan in twijfel te trekken en een alternatief voor te stellen. Hierop genereert de
voorgestelde methode een uitleg waarom de AI-agent niet voor dit alternatieve
plan koos in termen van het verschil in gevolgen. Deze gevolgen worden gege-
ven in door mensen te interpreteren termen in plaats van numerieke waarden
(bijvoorbeeld, dat als de agent naar rechts zou gaan deze van een klif zal val-
len, in plaats van uit te leggen dat rechts afslaan het verwachte nut aanzienlijk
vermindert).

In Deel II definieerde we twee nieuwe klassen van uitleg: uitleg over zeker-
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heid en actiegerichte uitleg. Een uitleg over zekerheid van de AI-agent commu-
niceert en verklaart wat de kans is dat een beslissing of advies van de AI-agent
correct zal zijn. De zekerheid moet op een interpreteerbare wijze worden bere-
kend en uitgelegdworden aan de hand van besluiten uit het verleden (Hoofdstuk
5). We ontwikkelde een methode die onafhankelijk werkt van de AI-agent die
deze berekening en uitleg kan geven door te redeneren over verleden gedrags-
voorbeelden. Evaluaties toonden aan dat dezemethode zowel nauwkeurig is als
voorspelbaar, ook als we simuleerde dat de AI-agent plots van gedrag verandert
door een update of als er concept-drift optreedt over de tijd. Twee studies toon-
den daarnaast aan dat zowel leken als domeinexperts de voorkeur geven aan de
door ons gedefinieerde uitleg van zekerheid dan andere alternatieven. Actiege-
richte uitleg zijn bedoeld om mensen te ondersteunen in hun vermogen om de
beslissing van een AI-agent te betwisten en te wijzigen. In het bijzonder wanneer
demens onderworpenwordt aan deze beslissing (Hoofdstuk 6). Zes eigenschap-
pen van een dergelijke uitleg zijn gedefinieerd en geformaliseerd. Een uitleg die
voldoet aan alle zes, maakt deze actiegericht. Deze zijn geformaliseerd om een-
duidige vergelijking en argumentaties mogelijk te maken in het onderzoeksveld
over de soorten uitleg die mensen in staat stellen om besluiten van AI-agent te
betwisten. Een onderzoek agenda is opgesteld op basis van een literatuuron-
derzoek en deze zes eigenschappen om de ontwikkeling van actiegerichte uitleg
te ondersteunen.

Ten slotte erkennen we in Deel III dat verklaringen de samenwerking tussen
mensen en AI-agenten moeten dienen en dat hun toepassing binnen de context
van die samenwerking zal moeten worden ontworpen. Een bestaande methode
om dergelijke samenwerkingen te ontwerpen is uitgebreid met AI-agenten die
zichzelf kunnen uitleggen. Verschillende van dergelijke ontwerpen zijn gepre-
senteerd (Hoofdstuk 7). Elk ontwerp varieerde in de mate van autonomie die de
AI-agent had bij moreel gevoelige taken. Elk ontwerp gaf definieerde de rol van
verschillende soorten uitleg die de AI-agent kan geven binnen dergelijke taken.
Verschillende van deze voorgestelde ontwerpen zijn vervolgens geëvalueerd in
het zorgdomein met eerstehulpverleners (Hoofdstuk 8). Uit de resultaten bleek
dat deelnemers de uitleg waardeerden, maar ze deze ook als vervelend ervaar-
den wanneer ze tijdsdruk voelden. Bovendien voelden ze zich minder verant-
woordelijk voor de AI-agent als deze autonomer werd. Dit verminderde hun
motivatie om de geboden uitleg tot zich te nemen. Deze resultaten illustreert
de complexiteit van het ontwerpen van een AI-agent en de uitleg die het geeft
om de samenwerking met de mens te ondersteunen.

Bovenstaande bevindingen tonen dat uitleg van een AI-agent de potentie
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hebben om de samenwerking tussen mens en AI-agenten te verbeteren, aan-
gezien dergelijke uitleg verschillende gunstige effecten kunnen hebben. Niet al
deze effecten zijn echter positief. Verklaringen kunnen ook negatieve effecten
hebben die nadelig zijn voor de samenwerking, wat grotendeels afhankelijk is
van de context. Een overtuigender advies door een bijgaande uitleg zal nadelig
zijn in een toepassing waar juist een kritische houding van de mens wenselijk
is. Daarentegen is een dergelijke uitleg gunstig wanneer het ongerechtvaardigd
wantrouwen mitigeert. De uitgevoerde studies toonden aan dat uitleg effecten
met zichmeebrengt die gewenst of ongewenst zijn naargelang de toepassing van
de AI-agent. Deze en soortgelijke toekomstige studies die de verscheidenheid
van effecten blootlegt die uitleg kan veroorzaken, zullen een solide basis vor-
men voor ontwerpkeuze hoe dergelijke uitleg ingezet moet worden. Dergelijke
effecten en ontwerpkeuzes samengebracht kunnen worden in ontwerppatro-
nen die de bevindingen en adviezen inzichtelijk maken gegeven een toepassing
en samenwerkingsvorm tussen mens en AI-agent. Afgezien van deze inzichten,
hebbenwedewaarde geïllustreerd omeigenschappen te formaliseren van actie-
gerichte uitleg, in plaats van uitleg met voornamelijk een epistemische waarde.
Door een dergelijke formalisatie van eigenschappen en bijbehorende niveaus
konden we een onderzoek agenda bieden voor dergelijke actiegericht uitleg. Zo
kan doelgericht onderzoek verricht worden hoe uitleg menselijke autonomie in
stand kan houden in interactie met AI-agenten die invloed uitoefent op diens
leven. Ten slotte is de effectiviteit aangetoond van uitleg genererende metho-
des die onafhankelijk werken van de toegepaste machine-learning technieken
die ten grondslag liggen van een AI-agent. Dit is met name het geval wanneer de
uitleg niet elk detail van een AI-agent hoeft te onthullen. Bovendien zijn derge-
lijke methoden robuuster voor toekomstige ontwikkelingen in AI-onderzoek.

We sluiten af met een advies voor toekomstig onderzoek in XAI. Ten eerste
is ons advies om meer aandacht te besteden aan de evaluatie van de effecten
van uitleg en aan de theoretische onderbouwing hoe dergelijke uitleg kan wor-
den gegenereerd. Er is behoefte aan meer rigoureuze evaluaties die gebaseerd
zijn op realistische toepassingen van AI-agenten en expliciete theoretische mo-
dellen die zowel de positieve als negatieve effecten van uitleg beschrijven. Met
meer aandacht voor de theoretische enwiskundige basis over hoe uitlegmoeten
worden gegenereerd, kunnen we bovendien toewerken naar methoden waar-
voor we hard kunnen maken dat de gegenereerde uitleg voldoende accuraat is,
ongeacht het intrinsiek complexe functioneren van een AI-agent. Met een ver-
hoogde inspanning in beide, zouden we in staat moeten zijn om industrieën en
overheden te voorzien van de kennis die nodig is om effectief en verantwoord
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uitleg toe te passen en correcte praktijken en regelgeving te formuleren. Ons
tweede advies is ommeer aandacht te besteden aan de rol en inbedding van uit-
leg in de mens-AI-samenwerking. Hierdoor worden de mogelijkheden van uitleg
vergroot buiten alleen bij te dragen een betrouwbare AI-agenten. Zo kan uitleg
langdurige samenwerkingen helpen ondersteunen, het bijdragen aan het ont-
dekken van nieuwe kennis, hulp bieden bij het opleiden van mensen in domein,
en meer. Dit laatste advies komt neer op een grotere focus op mensgericht on-
derzoek over wat uitgelegd moet worden in plaats van welke uitleg gegeven kan
worden.
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W e have started to create artificially intelligent (AI) agents with their own
unique ways of reasoning and doing things. We adopt these AI agents in

our lives, as they can effectively take over certain tasks and assist us in others.
They can automate the living conditions in our homes, support the doctors that
treat us, approve our loan requests, and determine our fit for our dream job,
among many other tasks. We have come to notice the influence and impact AI
agents have on the way we live our lives. Now, we must ensure that we are suf-
ficiently involved and have a level of understanding of our AI agents appropriate
to relinquish such influence to it.

As our AI agents become more independent, we risk them behaving in ways
that violate our moral values and best intentions. For example, an AI agent
played a significant role in the Dutch childcare benefits scandal, where Dutch tax
authorities were unaware that the AI agent they used was wrongfully labelling
people as fraudsters [1]. This example shows that AI agents can become harm-
ful, such as a biased AI agent that discriminates against minorities or behaves
strangely in a novel but critical situation. Wewant to be in control of our AI agents
and hold humans responsible for their behaviour. The only way to achieve this
control is to understand how, why, and when they behave in certain ways. This
understanding is seen as the key to creating and using AI agents we can trust,
rely upon, and collaborate with.

This need to understand has researchers invest in building AI agents capable
of explaining themselves, a research field referred to as Explainable Artificial In-
telligence (XAI). Ideally, we expect an AI agent to explain itself in the same way
we expect a fellow human to explain their decision if that decision affects us in
some way. Whether that decision is to adjust our home’s thermostat, to determ-
ine our medical treatment or to approve or decline a new loan. In these cases, it
would be ideal for the AI agent to explain its decision in a way that helps us ac-
cept, trust, and collaborate with it. In addition, an AI agent’s explanations about
itself can help us identify when an AI agent is harmful, how to remedy this harm
and how to further improve the AI agent. Thus, an AI agent that can explain itself
can offer numerous advantages.

There are two main challenges in achieving an AI agent as a competent ex-
plainer of itself: 1) identify what an AI agent should explain, and 2) enable the
AI agent to generate such explanations. With only the former we might know
what to explain for what purpose and what effects can be expected, but without
an AI agent generating such explanations we cannot bring it into practice. With
only the latter we might have AI agents capable of generating explanations, but
without knowing what effects such explanations have and whether they fulfil a
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desirable purpose. Both challenges need to be addressed to ensure that Explain-
able AI agents can be responsibly applied in real-world applications. Hence, the
main question XAI researchers face— and the topic of this thesis— is as follows:

What should an AI agent explain to humans,
and how can it generate such explanations?

By addressing this question, this thesis aims to contribute to the responsible
application of AI agents by offering insights in what those agents should explain,
what effects those explanations achieve, and how they can generate such ex-
planations. With these insights we can design and develop Explainable AI agents
with a purpose that match their intended real-world application.

1.1 The need for explainable artificial intelligence

Depending onwhom you ask, XAI is either a new field or a resurgence of an older
field. Historically, the combination of explanations and AI is not novel. Decades
ago, when AI research focused on what is now sometimes referred to as “good
old-fashioned AI” (GOFAI), explanations were used to communicate knowledge
within expert systems to the humans collaborating with them [2, 3, 4]. These ex-
planations had an educational role, with only a few exceptions aiming to explain
how expert systems reasoned. This approach was mostly due to expert systems
reasoning about elicited human knowledge in a way that is already familiar to us,
meaning no explanations were needed to explain this reasoning [5]. In contrast,
current AI agents are different fromAI agents of previous generations. The focus
now lies on learning from data as opposed to reasoning about knowledge [6].
The role of explanations has shifted from educational to translational, making
sense of the profoundly alien way a present-day AI makes decisions [7, 8].

Whether XAI is a novel field or simply a resurgence can be debated, but either
way the need for XAI ismore apparent than ever. Themost effective AI of today is
not engineered but taught. Their intelligence emerges from the use of iterative
algorithms applied to massive amounts of data using unprecedented compu-
tational power [9]. This emergence of intelligence based on a complex learn-
ing process results in AI agents that are difficult to understand [10]. We have
crossed a threshold, now being able to build highly effective AI agents that can
surpass humans on a variety of tasks. Such AI agents tend to consist of billions
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of learned parameters. No human can comprehend how those parameters in-
teract and how this interaction results in their impressive performance. XAI aims
to offer much-needed understanding of how to use AI without worry of its con-
sequences. XAI seeks how to facilitate the understanding that allows us to de-
termine whether and when an AI can be trusted and relied upon [7].

European political bodies propose to regulate AI agents and to set their abil-
ity to explain itself as a requirement. For example, consider the right to explana-
tion defined in the European Union’s GDPR from 2016 [11]. This loosely defined
“right” has since been further substantiated in a proposal for a legal framework
to regulate AI agents [12]. This framework dictates that the high-risk AI agents
which affect our lives “shall be designed and developed in such a way to ensure
that their operation is sufficiently transparent to enable users to interpret the
system’s output and use it appropriately” (Article 13, 1st paragraph). This reg-
ulation underlines the need for humans to understand an AI agent to improve
their collaboration with it.

Such regulations sadly originate from cases where AI agents caused harm. In
recent years, the lack of understanding in our AI agents has caused negative soci-
etal impact in some high-profile cases. For example, consider the AI agent show-
ing racist behaviour that was used to predict recidivism risk in the U.S. justice
system [13], the AI agent from Google that tagged people on photos as gorillas
based on their ethnicity [14], or the AI agent at Amazon who filtered out applic-
ants for certain vacancies based on gender [15]. In the Netherlands, we face the
consequences of the Dutch childcare benefits scandal, which involved the use of
an AI agent that discriminated against parents based on their dual citizenship [1].

The future of AI can be brighter with the advance of the field of XAI. The
agreed upon hypothesis in the XAI community is that with an AI agent capable
of explaining its decisions, a harmful AI agent can be more easily identified, pre-
vented, or otherwise mitigated [7]. The research community is working hard on
solutions, while industry is quickly adopting them [16]. Aside from the verific-
ation and corrections that XAI enables for an AI agent, researchers in this field
agree that explanations improve the acceptance and effective use of them as
well [17]. This improved acceptance is particularly relevant for domains that have
been historically hesitant to accept the use of an AI agent [18]. These domains in-
clude both healthcare and themilitary, where decisions can havemajor negative
effects and where our society tends to be conservative in introducing AI agents.
The potential for XAI research and its results to improve the acceptance and use
of AI agents thus further substantiates the economic and societal benefits of the
research.
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Figure 1.1: An overview of the main purposes of explanations addressed by the Explainable AI com-
munity. The dashed and highlighted components receive the focus in this thesis.

In sum, there is a societal and economical need for AI agents to explain their
decision making, which the XAI research field tries to fulfil. Before we detail our
research’s efforts to advance the state of the art in XAI in the following chapters,
we first elaborate on the current state of XAI.

1.1.1 The many purposes of explanations

All explanations aim to improve the collaboration between human and AI agents
on a joint task, however different explanations can have different purposes with-
in that collaboration [19]. In Figure 1.1 we summarise the most noted purposes
of an AI agent’s explanation in the literature.

We distinguish between three human roles relative to the AI agent, each im-
posing their own primary purposes: 1) the developer, 2) the regulator and 3)
the actor. These roles derive from those identified by Arrieta et al. [20], Ribera
et al. [21] and Greeff et al. [22]. The developer helps create, deploy, and up-
date an AI agent. The regulator decides when and how an AI agent is used and
whether its application remains within the appropriate legal and moral frame-
works. Finally, the actor is the human directly dealing or collaborating with the
AI agent. The actor can have full autonomy, where the AI offers only advice or
suggestions (e.g., on a medical diagnosis); limited autonomy, where the AI agent
dictates a decision (e.g., it declines your loan application); or anything in between
(e.g., some decisions left to the human others to the AI agent). Relevant actors
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include clients, patients, operators, or consultants. Notably, these roles are not
fixed. For instance, an actor whose loan application is declined can also serve
as a regulator if a decision feels unjust to that actor. Similarly, a regulator might
assume the role of developer if it can provide direct feedback to the AI agent it
will use to improve itself.

Aside from distinct roles, we differentiate between two categories of under-
standing: 1) an objectual or global understanding which is the understanding
how an AI agent functions as a whole [23] or 2) a post-hoc understanding which
is the understanding of how an AI agent came to a decision [24]. These two
categories are not mutually exclusive. Many subsequent post-hoc explanations
might induce an objectual understanding of an AI agent (e.g., an understanding
how decision trees function). Similarly, a sufficiently detailed objectual under-
standing can help indicate why a single decision was made (e.g., which decision
rules played a role in a prediction). However, the category of understanding be-
tween the two differ, as do the purposes for such understanding.

We use these three roles and two categories to provide an overview of the
most commonpurposes for explanations, illustrated in Figure 1.1. Thedeveloper
is mostly interested in an objectual understanding. Objectual explanations can
support the debugging of an AI agent [25, 26], detecting whether an AI agent is
biased [16, 27], and how compliant an AI agent is to legislation [28]. By contrast,
the actor is more interested in a post-hoc understanding of a decision, want-
ing to know whether a decision can be trusted and accepted [7] or altered [29],
or how the AI agent improves joint task performance [30] and learn co-actively
to perform such a task [31]. The regulator has the unique position of needing
both a limited objectual and post-hoc understanding. As the regulator wants to
both verify and evaluate an AI agent as a whole, but also to understand specific
decisions as necessary [20, 22].

The above-mentioned purposes have so far received the most attention in
XAI. For a more in-depth overview of these and other purposes, we refer to
Lipton [32], Doshi-Velez and Kim [33], Samek et al. [34], Abdul et. al [35], Gilpin
et al. [36] and Herman et. al [37]. Within this thesis, we focus on the actor role
and their need for a post-hoc understanding of singular decisions. These ex-
planations are deemed most useful for humans who adopt AI agents in their
everyday lives [18].

1.1.2 An explanation’s class, form, modality, and method

In the past years, hundreds of methods to generate explanations have been de-
veloped. This need is reflected by the number of articles reviewing such meth-
18
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ods. For instance, take the reviews from Adadi et. al [38], Guidotti et. al [39],
Arrieta et. al [20] and Linardatos et. al [40], these reviews combined report on
303 unique methods. The extensive review from Nauta et. al [41] report that
between 2016 and 2020 a total of 361 novel methods have been published, with
more than half that number (167) published in 2020, showing an exponential in-
crease in methods. Each review tends to adopt a different taxonomy to categor-
ize XAI research, mostly due to lack of consensus in the field’s terminology [32].
Within this thesis, we do not attempt to provide a new or even complete tax-
onomy, though for reference we use the terms “explanation class”, “explanation
form”, “explanation modality” and “generative method”.

An explanation class is the explanation’s conveyed information and, thus,
relates to the question it answers or human information need it fulfils. Reviews
such those fromAdadi et al. [38], Guidotti et al. [39] and Arrieta et al. [20] provide
comprehensive overviews of various explanation classes. For this thesis, the im-
portant classes are feature attributions [17], contrastive explanations [42], con-
fidence explanations [43], and the novel class of actionable explanations. Fea-
ture attributions and contrastive explanations comprise the state of the art of
explanations, actionable explanations are increasingly cited as necessary but
research on them is limited, and confidence explanations are proposed in this
thesis as a novel class. A feature attribution depicts which features were the
main causes of an AI agent’s decision. Contrastive explanations regard why one
decision was made instead of another. An actionable explanation explains what
changes are required for the AI agent to decide differently and how to imple-
ment such changes. Confidence explanations aim to compute and explain how
likely a decision is to prove correct.

Common explanation forms include feature-based [44], example-based [45],
and rule-based [46]. These forms, respectively, provide feature values and dis-
tributions, specific behavioural examples, and decision rules for describing an
AI agent’s decision making and reasoning. Although other forms exist, in this
thesis we limit ourselves to feature-, example-, and rule-based forms. These
forms have proven themselves as comprehensible by humans and can be gen-
erated through a variety of approaches.

The modality of an explanation captures how the information is communic-
ated. Common explanation modalities are a visual but static communication of
the explanation [47], communication through interactive interface components
and dashboards [48], or through text and dialogues [49]. Visualizations include
bar graphs, tornado diagrams, and feature highlights [35]. Such static visualiz-
ations contrast with the more interactive interfaces and dashboards that allow
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for the creation of one’s own visualization or to support a progressive discov-
ery of knowledge. Recently, textual and dialogue-based explanations are being
explored as a more natural modality for communicating explanations [50]. Ex-
amples include the automatic generation of explanatory texts, the development
of chat bots and interactions through avatars with dialogue capabilities.

Explanation generating methods, or simply methods, are the algorithms and
techniques used to obtain the necessary information fromanAI agent. Wediffer-
entiate between the use of surrogate models or intrinsically interpretable mod-
els [51]. A surrogate model approximates the AI agent’s decision making and
supports the extraction of the necessary information to generate an explanation
(i.e., a form of reverse engineering and model inference) [17]. These methods
are often used when the AI agent is deemed too complex to obtain the required
information directly (e.g., with deep neural networks) or when the method is in-
tended to apply to any AI agent (e.g., by only assuming input-output access). The
use of surrogate models is opposed to the use of intrinsically which aim to result
in an AI agent that offers direct access to the required information. For instance,
the CART algorithm allows the creation of a decision tree based on data that an
AI agent can use to base its decision on [52]. Decision trees tend to be more in-
terpretable whose content can be easily accessed to base explanations on [53].

Typically, a trade-off between an AI agent’s intrinsic interpretability and its
performance is assumed [7]. For instance, a deep neural network is viewed as
achieving high performance at the cost of interpretability, whereas a decision
tree is seen as limited in performance but more interpretable. However, such
statements do not necessarily hold in practice [58], nor can that distinction al-
ways bemade. For instance, a small neural networkmight bemore interpretable
than a large decision tree. Similarly, given the impact someone’s background has
on the explainer’s decision, a regression model might be more interpretable ac-
cording to a social scientist due to their familiarity with applied statistics than is
a support vector machine that is much more mathematical in nature. Neither
model might be interpretable for a layperson. The background and expertise of
a human has a significant impact on the design of an explanation. The degree to
which an AI agent is interpretable dictates how easy it is to access the necessary
information to generate a required explanation given ahuman’s background and
information need. As long as we do not know what explanations are required
and for whom, a debate on the trade-off between performance and interpretab-
ility is meaningless. Without knowing what needs to be explained, it cannot be
determined what approach is required to generate the explanations – i.e., the
use of intrinsic interpretable or surrogate models.
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Figure 1.2: An overview of several explanation classes, forms, modalities, and methods to generate
them. Combined they form an implementation of an explanation. Depicted here are four
examples; CLUE [54], SHAP [55], Synthesized Action Sequences [56], and Falling Rule List
models [57].

Only the combination of an explanation class, form, and modality together
with a method to generate it results in an actual explanation. A method only
extracts the information for a specific class of explanations, the form dictates
the shape of that information, with the modality dictating how it is communic-
ated. See Figure 1.2 for an illustration of four examples of such combinations:
the dashboard named CLUE for interactive explanations of an AI agent’s con-
fidence [54], the feature-attribution method called SHAP visualized in tornado

21



Chapter 1

graphs [55], action suggestions to alter an AI agent’s decision through synthes-
ized action sequences [56] and explanation of why a decision wasmade through
rule-based models [57].

1.1.3 The fragmented field of XAI

With the rapid technological progress in AI and the associated and impressive
results, the field of XAI is equally governed by a technology-centred perspect-
ive [33]. Most of the publications within XAI propose novel methods of gener-
ating explanations [38, 39]. These methods tend to lack evaluation aside from
an estimate of their accuracy and computational efficiency. Nauta et. al [41]
report that between 2016 and 2020 a total of 361 papers proposed novel meth-
ods whose evaluations were limited to such benchmarks. Only 49 publications
in that same period reported on a more involved evaluation of the generated
explanation. Doshi-Velez and Kim [33] further state that the field of XAI follows
the notion of “you’ll know it when you see it” (p1). Authors of novel methods
seem to rely on their own intuition to determine if the explanation their method
generates is beneficial and valuable [59].

Several scholars criticize this technology-centred perspective towards XAI re-
search within its community and advocate for a more human-centred perspect-
ive. Some argue that XAI should focus more on rigorous evaluations to assess
the effects of explanations [60]. Doshi-Velez and Kim [33] define three distinct
levels of evaluations: 1) application-grounded evaluations, 2) human-grounded
evaluations, and 3) functionally-grounded evaluations.

Application-grounded evaluations involve an explanation’s evaluation in a
realistic context, uses an actual AI agent, and a representative population sample
that fits the context. These evaluations provide detailed results on the effects
of an explanation in a particular application. Human-grounded evaluations are
suited to test the general notions of an explanations. These tend to use a simpli-
fied AI agent, an approximation of a relevant context, laypeople as participants
or a combination thereof. The functionally-grounded evaluations make use of
metrics serving as proxies of an explanation’s quality that can be applied to the
explanations generated by some methods. These do not include human parti-
cipants and function to evaluate a method’s adherence to an explanation class
that was either evaluated previously or cannot be evaluated due to practical or
ethical concerns. Note that the first two levels, the application- and human-
grounded evaluations, can be done quantitatively to statistically show an ex-
planation’s effect or qualitatively to explore the potential effects of an explana-
tion. Within this thesis wemake use of both quantitative and qualitative human-
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grounded evaluations and functional evaluations of developed methods. No
application-grounded evaluations are reported in this thesis.

The criticism towards the technology-centred perspective is that it invites
solely a focus on functionally-grounded evaluations with little or no reference to
the human or application-grounded applications [33]. Going a step further, oth-
ers opposing the technology-centred perspective argue that such a perspective
will result in the irresponsible use of methods in real-world applications [58, 23].
The common argument here is that, in practice, explanations require human-
grounded evaluations to give direction what explanations might be beneficial
for some purpose, followed by detailed application-grounded evaluations to fur-
ther substantiate those findings. Only then can the explanation be responsibly
applied within an application.

Aside from rigorous evaluations, one can also rely on a sound theoretical
foundation based on human psychology to determine what explanations should
be used for what purpose and in what kind of application [61, 59]. Though
ideally, one uses such a foundation to design an explanation, then evaluates
the assumptions and hypotheses made through human-grounded evaluations,
followed by application-grounded evaluations to validate the findings.

Finally, there are those who oppose the use of a self-explaining AI agent en-
tirely [62, 63, 64]. These criticisms do not necessarily discredit the value of ex-
planations, instead they argue that more is needed to achieve trustworthy and
responsible AI agents. They argue that an AI agent can be developed to omit
the need for it to explain itself, for instance by having accredited development
parties, providing clear documentation, educating those interacting with the AI
agent, and appropriate design processes to support that interaction. This stance
omits the added value explanations offer to the collaboration between humans
and AI agents. This thesis agrees that to achieve trustworthy AI more is needed
than explanations, though explanations form a part of the solution. Even when
the AI agent went through rigorous testing, has enough documentation and the
humans collaborating with it are properly educated, explanations still have the
potential to improve and enrich this collaboration.

Another trend, associated to an overall technological-centred perspective,
is that many developed methods with a lacking rigorous evaluation, are often
made open-source. The industry is quick to adopt these open-source methods
to accommodate the (expected) legal, ethical, and economical requirements for
AI agents [65]. We risk disastrous effects to our society with this trend to adopt
methods and a lack of evaluations of the effects the explanations from these
methods bring about [58]. We run the risk that our society presumes an under-
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Figure 1.3: An overview of the aspects an explanation consists of (class, form, modality, andmethod)
and the ways of evaluating such explanations. The encircled components receive the
focus in this thesis.

standing of each AI agent used, while the explanations may in fact have only a
small positive or even negative, effect on our actual collaboration with them [66,
67].

At the same time, the technology-centred community seems to refer increas-
ingly to the human-centred perspective to XAI (e.g., see the ever-increasing num-
ber of references to position papers from Miller et al. [59, 68]). Such papers re-
ceive hundreds of references each year, and most authors who refer to them
introduce novel explanation methods. The question remains, however, to what
extent these methods are generalizable, and how well their effects are known
through rigorous evaluations before being put to practice.

Figure 1.3 illustrates the focus of this thesis given the types of evaluations
and the explanation’s class, form, modality, and generative method.
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1.2 Research approach and aim

In this thesis, we adopt both the human- and technology-centred perspective to
XAI research. We limit ourselves to four purposes of explanations identified by
reviewing the human-centred research on AI and XAI. The first is the explana-
tion purpose of offering laypeople an understanding in why the AI agent makes
a certain decision. The second is calibrating the human’s trust in an AI agent’s de-
cision. The third is the human’s ability to contest those decisions effectively. The
fourth purpose we address is for explanations to improve the collaboration be-
tween human and AI agent, particularly in high-risk and morally sensitive tasks.
We identified these purposes by reviewing the human-centred literature on AI
and XAI. Furthermore, we evaluate our designed explanations using methods
inspired or taken from that same literature. Finally, if there were no methods to
generate our designed explanations, we developed our own inmost cases based
on approaches taken from the technology-centred literature on XAI.

We argue that only with a combined human- and technology-centred per-
spective can we arrive at explanations that can be responsibly and feasibly ap-
plied in real-world applications. In this thesis in particular, the societal need for
XAI made us focus on applications where the decisions of AI agents directly im-
pact the lives of the involved actors (e.g., the expert working with the AI agent
or the human eventually subjected to the decisions made). In summary, our
research aim is as follows:

To design and develop explanations that support a responsible
and effective collaboration between humans and AI agents.

1.3 Research questions, hypotheses, and outline

This thesis consists of three parts, each addressing an aspect of the above de-
scribed research aim. The first part addresses the contrastive explanation class
that aims to convey why the AI agent made a certain decision opposed to an-
other. This part addresses what form this class should take and how such ex-
planations can be generated. The second part introduces two novel explanation
classes and defines their properties: confidence explanations and actionable ex-
planations. In the case of confidence explanations, we propose a method to
generate them. For the case of actionable explanations, we provide a research
agenda to address such explanations further based on current research gaps.
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The third part addresses the effects of various explanation classes, forms, and
modalities on the collaboration between human and AI agents. A collaboration
in high-risk and morally sensitive tasks. With each consecutive part, we address
our research aim towards the entire human–AI collaboration. Below, we discuss
each part in more detail, followed by the thesis outline.

1.3.1 Part I: Explanations for understanding

Part I addresses howanAI agent should explain the reasons itmade one decision
instead of another, namely the contrastive explanation.

The oft-referenced purpose of an AI explanation is to induce human under-
standing in the AI agent’s decision-making process [17]. Contrastive explana-
tions aim to induce such an understanding, as they address most “Why?” ques-
tions humans have [68]. A sub-class of these explanations are the counterfactual
explanations which convey the minimal changes for an AI agent to behave dif-
ferently [29]. Contrastive explanations induce an exact understanding of an AI
agent’s decision boundaries [42]. On the other hand, the similar explanations
of feature attributions induce only an understanding of which features are cent-
ral to decisions. A feature attribution provides an explanation as, “feature x is
most important for this decision”, whereas a (rule-based) contrastive explana-
tion provides an explanation as, “because feature x is above threshold t, this
decision was made instead of another”.

It could be beneficial if any AI could provide such a contrastive explanation.
Their contrastive nature, comparing the reasons for making one decision to the
reasons formaking another, naturally limits the explained information to the key
differences of interest to a human [68]. However, what form the information in a
contrastive explanation should take is not yet understood, nor how that inform-
ation can be extracted from any given AI agent. In this part, we explore whether
an example- or rule-based form is the most effective for a contrastive explana-
tion class. In addition, we explore how such an explanation can be generated for
two AI technologies; classification models used in decision-support tools and re-
inforcement learning agents used in autonomous systems. This approach allows
us to assess the effectiveness and feasibility of generating contrastive explana-
tions for various kinds of AI agents.

The associated research questions in Part I are:
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RQ 1: How should an AI agent explain why it made one decision instead
of another?

RQ 1.1: What effect do example- and rule-based contrastive explana-
tions have on the understanding of an AI agent’s decision mak-
ing?
- Chapter 2

RQ 1.2: Which explanation generating method allows for the generation
of rule-based contrastive explanations for classification models
used in decision support tools?
- Chapter 3

RQ 1.3: Which explanation generating method allows for the generation
of example-based contrastive explanations for reinforcement
learning agents used in autonomous systems?
- Chapter 4

1.3.2 Part II: Explanations to act upon

Part II addresses how explanations from an AI agent help humans determine
when and how to act on the agent’s decision.

A post-hoc understanding on how an AI agent decides is viewed by XAI re-
searchers as a step towards knowing how to collaborate with an AI agent, as it
is expected that such understanding leads to better calibrated trust, which in
turn should improve joint task performance [61]. Such an understanding allows
humans to infer how they can contest and alter an AI agent’s decision, particu-
larly when they are displeased with the decision [29]. Instead of relying solely
on explanations to induce a post-hoc understanding in the hope of calibrating
trust and support contestability, we argue that explanations can do more. In
fact, humans adjust their explanations for their intended purposes [69], so why
not design an AI agent’s explanations for such purposes directly? An AI agent
can achieve more with its explanation than simply induce an understanding of
its function [23].

In this second part, we focus on two explanation classes. First, we introduce
the novel class of confidence explanations. Second, we formally define the up to
now ambiguous class of actionable explanations. Confidence explanations aim
to calibrate one’s trust in and reliance on an AI agent’s decision. We introduce
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this class, define its required properties, validate them, and propose a concrete
methodology both to compute confidence and to explain this computation. An
actionable explanation aims not only to induce post-hoc understanding but also
to support humans in inferring how an AI agent’s decision can be altered. We re-
view the literature on this explanation class and formally define the properties
required to make an explanation actionable. In addition, we propose a research
agenda based on the identified research gaps according to a literature review.
With both explanation classes we aim to support humans in deciding whether
and how to act on an AI agent’s decision, informing the human on its trustwor-
thiness and reliability and how to contest and alter the decision effectively.

The following research questions are addressed in Part II:

RQ 2: Which classes of explanations enable humans to decide whether
and how to act on an AI agent’s decision?

RQ 2.1: How should an AI agent compute and explain its confidence such
that humans can decide when to trust and rely upon the agent’s
decision?
- Chapter 5

RQ 2.2: What explanation properties support humans in effectively alter-
ing an AI agent’s decision to make it more favourable?
- Chapter 6

1.3.3 Part III: Explanations in human–AI collaboration

In Part III we propose a design methodology how explanations can be respons-
ibly integrated into human–AI collaborations and evaluate several collaboration
designs.

Johnson and Alonso [70] said “No AI agent is an island”, meaning that for any
AI agent to be successful, it needs to collaborate with humans. Currently, even
the literature from the human-centred perspective within XAI does little to ad-
dress the use of explanations to explicitly support human–AI collaboration [71].
The first two parts of this thesis have a similarly narrow focus. Hence, in this
third part, we abstract from specific explanation classes and address the role
of explanations in the context of human–AI collaboration. Specifically, we look
towards joint tasks with a morally sensitive element, which make for high-risk
applications of AI agents.
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We first propose a design method that allows for the embedding of explan-
ations in human–AI collaboration in morally sensitive tasks and their moral con-
text. This method is demonstrated through several common collaboration de-
signs. We extend each design with the idea of explaining moral context to sup-
port making joint decisions. Through a qualitative experiment involving medical
domain experts, we then evaluate several collaboration designs and explore the
effects of various explanation classes in each.

In this Part III, we aim to answer the following research questions:

RQ 3: What is the role of explanations when human and AI agents col-
laborate on morally sensitive tasks?

RQ 3.1: What is a suitable design method for human–AI collaborations
that responsibly incorporates explanations of themoral context?
- Chapter 7

RQ 3.2: What are the effects and functions of explanations according to
domain experts collaborating with an AI agent on amorally sens-
itive task?
- Chapter 8

1.3.4 Outline

Part I addresses how an AI agent can explain why it made a decision. Part II ad-
dresses which explanations aid the human in determining how to act upon an
AI agent’s decision. Part III addresses the design, function, and effects of explan-
ations in a human–AI collaboration on morally sensitive tasks. Finally, Part IV
discusses the findings, the limitations, and the societal impact of this research.
It also provides concluding remarks and future work and advice on the direction
of the field of XAI.

This outline is illustrated at the chapter level in Figure 1.4. This figure high-
lights for each chapter the class, form,modality, andmethodworked on if applic-
able. It also addresses the kind of evaluation performed: human- or functionally-
grounded; qualitatively or quantitatively. No application-grounded evaluations
were performed.

Each chapter consists of a published journal or conference paper with min-
imal changes. To prevent overlap with this introductory chapter, these changes
constitute the adaptation of the abstract and the shortening of chapter intro-
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ductions. Furthermore, minor changes were implemented in most chapters to
ensure consistent use of terms and writing style, as introduced in this chapter.
These changes are outlined on the first page of each chapter.

1.4 Defining the Scope

The scope of this research is determined by how we interpret the key concepts,
made choices and assumptions:

– We define an “explanation” in general as a communication act from one
agent to another containing one or more statements that clarify an event,
context, or process. Within the context of this research, we define an “ex-
planation” as the clarification an AI agent provides a human about its in-
ternal process and related aspects such as its observations or expected
consequences of a decision.

– We do not address the modality of explanations, only the classes, forms,
and methods.

– We do not account for explanations given by the human that the AI agent
should be able to interpret and learn from. In addition, our explanations
serve to disclose how the AI agent functions, performs, or behaves. We
do not explicitly aim to explain how to conduct the task nor to teach about
the domain or situational context.

– When we refer to “human”, we typically refer to humans with the role of
an actor, as previously explained. This human might be a domain expert
or a layperson, depending on the use case discussed; however, they are
never experts in AI agents. We do not address explanations that are bene-
ficial only to humans with the developer or regulator roles. Certain results
might apply to such roles as well, although this supposition is never valid-
ated in this thesis and is left for future work.

– Throughout, it is assumed that the human involved is motivated to col-
laborate with the AI agent and does so knowingly. An exception to this is
Chapter 6 where the human is subjected to an AI agent’s decision and not
necessarily aware of this nor an expert in the domain. Furthermore, we
do not consider more specific characteristics such as (digital) literacy and
the requirements such characteristics set upon explanations.
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– When we refer to an “AI agent”, we typically refer to a software system
capable of making decisions based on its perceptions of a situation. A
decision is assumed to be implemented either by the AI agent itself or by
the human to which some decision was offered as advice.

– The explanations in this thesis are all post-hoc, meaning that they aim to
explain a single decision. This is opposed to objectual explanations that
aim to explain the entire AI agent and its origin.

– There are multiple ways to implement an AI agent. We attempt to ab-
stract from any specific implementation and aim for explanations that
can be generated in a model-agnostic way. Model-agnostic implies that
only input-output access to an AI agent is assumed, making no further as-
sumptions on how the AI agent functions internally. However, we assume
in general that an AI agent is build using one or more machine learning
models and associated components.

Figure 1.4 (next page): The outline of this thesis. For each chapter, a brief description
is given; the explanation’s class, form, modality, and method where applicable; and the
type of evaluation performed. The relevant aspect or evaluation that receives the focus
in that chapter is underlined.
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Figure 1.432
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Contrastive explanations with rules and examples

CHAPTER 2

CONTRASTIVE EXPLANATIONS WITH
RULES AND EXAMPLES

This chapter is adapted from; van der Waa, J., Nieuwburg, E., Cremers, A., &
Neerincx, M. (2021). Evaluating XAI: A comparison of rule-based and example-
based explanations. Artificial Intelligence, 291:103404. The adaptations include
an altered abstract, shortened introduction, and an adjusted lay-out, including
the formatting of figures and tables.
Jasper van der Waa, Elisabeth Nieuwburg, Anita Cremers, Mark Neerincx
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In this chapter, we evaluate two explanation forms. Often, explanation generat-
ingmethods are based on face-value notions of what constitutes an effective ex-
planation form instead of being based on findings fromhuman evaluations. Two
examples of such explanations are contrastive rule- and example-based explan-
ations. We evaluate the effects of these two forms of contrastive explanations
on AI understanding, persuasive power, and task performance in the context of
decision support for diabetes self-management. Furthermore, we provide three
sets of recommendations based on our experience designing this evaluation to
help improve future evaluations. These address the need for a motivated theor-
etical framework of expected effects between constructs, the selection and use
of the task and context, and the selection of appropriate measurements for key
constructs. Our results show that rule-based explanations slightly improve the
user’s understanding of the AI agent’s decision making, whereas both rule- and
example-based explanations persuade humans to follow the advice even when
incorrect. This applies especially for the example-based explanations. Neither
explanation improved task performance compared to no explanation. These
findings may be explained by both explanation forms providing superficial de-
tails only without further interaction. They might not convey an underlying ra-
tionale or causality from which the participants could construct a generalized
mental model on how the AI agent made decisions.
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Contrastive explanations with rules and examples

2.1 Introduction

Humans expect others to comprehensibly explain decisions that have an impact
on them [72]. The same holds for humans interacting with decision support
systems (DSS). To help them understand and trust a system’s reasoning, such
systems need to explain their advice to humans [72, 68]. Currently, several ap-
proaches are proposed in the field of Explainable AI (XAI) that allow DSS to gen-
erate explanations [39]. Aside from the numerous computational evaluations of
implemented methods, literature reviews show that there is an overall lack of
high quality human evaluations that add a human-centered perspective to the
field of XAI [33, 73]. As explanations fulfil a human need, an evaluation is needed
whether these explanations fulfil that need. This can provide valuable insights
into an explanation’s requirements and effects. In addition, evaluations can be
used to benchmark XAI methods to measure the research field’s progress.

The contribution of this chapter is twofold. First, we propose a set of recom-
mendations on designing human evaluations in the field of XAI. Second, we per-
formed an extensive evaluation on the effects of rule-based and example-based
contrastive explanations. The recommendations regard 1) how to construct a
theory of the effects that explanations are expected to have, 2) how to select a
use case and participants to evaluate that theory, and 3) which types ofmeasure-
ments to use for the theorized effects. These recommendations are intended as
a reference for XAI researchers unfamiliar to human evaluations. They are based
on our experience designing a human evaluation and retread knowledge that is
more common in fields such as cognitive psychology and Human-Computer In-
teraction.

The presented evaluation focuses on two forms of contrastive explanations
and their evaluation. Contrastive explanations in the context of a DSS are those
that answer questions as ‘Why this advice instead of that advice?’ [42]. These ex-
planations help humans to understand andpinpoint information that caused the
system to give one advice over the other. In two separate experiments, we eval-
uated two contrastive explanation forms. An explanation form defines the way
information is structured and is often defined by the algorithmic approach to
generate explanations. Note that this is different from explanation form, which
defines how it is presented (e.g. textually or visually). The two evaluated forms
were rule-based and example-based explanations with no explanation as a con-
trol. These two explanation forms are often referred to as means to convey a
system’s internal workings to a human. However, these statements are not yet
formalized into a theory nor compared in detail. Hence, our second contribu-
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tion is the evaluation of the effects that rule-based and example-based explan-
ations have on system understanding (Experiment I), persuasive power and task
performance (Experiment II). We define system understanding as the human’s
ability to know how the system behaves in a novel situation and why. The per-
suasive power of an explanation is defined as its capacity to convince the hu-
man to follow the given advice independent of whether it is correct or not. Task
performance is defined as the decision accuracy of the combination of the sys-
tem, explanation and human. Together, these concepts relate to the broader
concept of trust, an important topic in XAI research. System understanding is
believed to help humans achieve an appropriate level of trust in a DSS, and both
system understanding and appropriate trust are assumed to improve task per-
formance [61]. Explanations might also persuade the human to various extents,
resulting in either appropriate, over- or under-trust, which could affect task per-
formance [74]. Instead of measuring trust directly, we opted for measuring the
intermediate variables of understanding and persuasion to better understand
how these affect the task.

The way of structuring explanatory information differs between the two ex-
planation forms examined in this study. Rule-based explanations are “if ... then
..." statements, whereas example-based explanations provide historical situations
similar to the current situation. In our experiments, both explanation forms
were contrastive, comparing a given advice to an alternative advice that was not
given. The rule-based contrastive explanations explicitly conveyed the DSS’s de-
cision boundary between the given advice and the alternative advice. Whilst the
example-based contrastive explanations provided two examples, one on either
side of this decision boundary, both as similar as possible to the current situ-
ation. The first example illustrated a situation where the given advice proved
to be correct, and the second example showed a different situation where an
alternative advice was correct.

Rule-based explanations explicitly state the DSS’s decision boundary between
the given and the contrasting advice. Given this fact, we hypothesized that these
explanations improve a participant’s understanding of system behaviour causing
an improved task performance compared to example-based explanations. Spe-
cifically, we expected participants to be able to identify the most important fea-
ture used by the DSS in a given situation, replicate this feature’s relevant de-
cision thresholds and use this knowledge to predict the DSS’s behaviour in novel
situations. When the human is confronted with how correct its decisions were,
this knowledge would result in a better estimate when a DSS’s advice is correct
or not. However, rule-based explanations are very factual and provide little in-
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formation to convince the participant of the correctness of a given advice. As
such, we expected rule-based explanations to have little persuasive power. For
the example-based explanations we hypothesized opposite effects. As examples
of correct past behaviour would incite confidence in a given advice, we hypothes-
ized them to holdmore persuasive power. However, the amount of understanding
a participant would gain would be limited, as it would rely on participants infer-
ring the separating decision boundary between the examples rather than having
it presented to them. Whether persuasive power is desirable in an explanation
depends on the use case as well as the performance of the DSS. A low perform-
ance DSS combined with a highly persuasive explanation for example, would
likely result in a low task performance.

The use case of the human evaluation was based on a diabetes mellitus type
1 (DMT1) self-management context, where patients are assisted by a person-
alized DSS to decide on the correct dosage of insulin. Insulin is a hormone
that DMT1 patients have to administer to prevent the negative effects of the
disturbed blood glucose regulation associated with this condition. The dose is
highly personal and context dependent, and an incorrect dose can cause the pa-
tient short- or long-term harm. The purpose of the DSS’s advice is to minimize
these adverse effects. This use case was selected for two reasons. Firstly, AI
is increasingly more often used in DMT1 self-management [75, 76, 77]. There-
fore, the results are relevant for research on DSS aided DMT1 self-management.
Secondly, this use casewas both understandable andmotivating for healthy par-
ticipants without any experiencewith DMT1. BecauseDMT1 patients would have
potentially confounding experiencewith insulin administration or certain biases,
we recruited healthy participants that imagined themselves in the situation of a
DMT1 patient. Empathizing with a patient motivated them to make correct de-
cisions, even if this meant to ignore the DSS’s advice in favor of their own choice,
or vice versa. This required an understanding of when the DSS’s advice would
be correct and incorrect and how it would behave in novel situations.

The chapter is structured as follows. First we discuss the background and
shortcomings of current XAI human evaluations. Furthermore, we provide ex-
amples on how rule-based and example-based explanations are currently used in
XAI. The subsequent section describes three sets of recommendations for hu-
man evaluations in XAI, based on our experience designing the evaluation as
well as on relevant literature. Next, we illustrate our own recommendations by
explaining the use case in more detail and offering the theory behind our hypo-
theses. This is followed by a detailed description of our methods, analysis and
results. We concludewith a discussion on the validity and reliability of the results
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and a brief discussion of future work.

2.2 Background

The following two sections discuss the current state of human evaluations in XAI
and rule-based and example-based contrastive explanations. The former section
illustrates the shortcomings of current evaluations, formed by either a lack of
validity and reliability or the entire omission of an evaluation. The latter dis-
cusses the two explanation forms used in our evaluation in more detail, and
illustrates their prevalence in the field of XAI.

2.2.1 Human evaluations in XAI

A major goal of Explainable Artificial Intelligence (XAI) is to have AI-systems con-
struct explanations for their own output. Common purposes of these explana-
tions are to increase system understanding [78], improve behaviour predictab-
ility [79] and calibrate system trust [80, 81, 74]. Other purposes include support
in system debugging [82, 78], verification [79] and justification [83]. Currently,
the exact purpose of explanation methods is often not defined or formalized,
even though these different purposesmay result in profoundly different require-
ments for explanations [32]. This makes it difficult for the field of XAI to progress
and to evaluate developed methods.

The difficulties for human evaluations in XAI are reflected in recent surveys
from Anjomshoae et al. [73], Adadi et al. [38], and Doshi-Velez and Kim [33] that
summarize current efforts of evaluations in the field. The systematic literature
review by Anjomshoae et al. [73] shows that 97% of the 62 reviewed articles
underline that explanations serve a human need, 41% did not evaluate their ex-
planations with humans. In addition, of those papers that performed a human
evaluation, relatively few provided a good discussion of the context (27%), res-
ults (19%) and limitations (14%) of their experiment. The second survey from
Adadi et al. [38] evaluated 381 papers and found that only 5% had an explicit
focus on the evaluation of the XAI methods. These two surveys show that, the
few evaluations provide limited conclusions which make it difficult for the field
of XAI to progress based on these results.

A third survey by Doshi-Velez and Kim [33] discusses an explicit issue with
human evaluations in XAI. The authors argue to systematically start evaluating
different explanations classes and forms in various domains, a rigor that is cur-
rently lacking in the evaluations. To do so in a valid way, several recommenda-
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tions are given. First, the application level of the study context should be made
clear; either a real, simplified or generic application. Second, any (expected) task-
specific explanation requirements should be mentioned. Examples include the
average human level of expertise targeted, and whether the explanation should
address the entire system or a single output. Finally, the explanations and their
effects should be clearly stated together with a discussion of the study’s lim-
itations. Together, these three surveys illustrate the shortcomings of current
human evaluations for XAI.

From several studies that do focus on evaluating the effects of explanations
on humans, we note that themajority focuses on subjectivemeasurements. Sur-
veys and interviews are used to measure satisfaction [84, 85], the goodness of
an explanation [86], acceptance of the system’s advice [87, 88] and trust in the
system [89, 90, 91, 92]. Such subjective measurements can provide a valuable
insight in the human’s perspective on the explanation. However, these results
do not necessarily relate to the behavioural effects an explanation could cause.
Therefore, these subjectivemeasurements require further investigation to see if
they correlatewith a behavioural effect [61]. Without such an investigation, these
subjective results only provide information on the human’s beliefs and opinions,
but not on actual gained understanding, trust or task performance. Some stud-
ies do perform objectivemeasurements. The work from [93] for example, meas-
ured both subjective ease-of-use of an explanation and a participant’s capacity to
correctly make inferences based on the explanations. This allowed the authors
to differentiate between behavioural and self-perceived effects of an explana-
tion, underlining the value of performing objective measurements.

The above described critical view on human evaluations is related to the con-
cepts of construct validity and that of reliability. These two concepts provide
clear standards to scientifically sound human evaluations [94, 95, 96]. The con-
struct validity of an evaluation is its accuracy in measuring the intended con-
structs (e.g. understanding or trust). Examples of how validity may be harmed is
a poor design, ill-defined constructs or arbitrarily selected measurements. Reli-
ability on the other hand refers to the evaluation’s internal consistency and re-
producibility, andmay be harmed by a lack of documentation, an unsuitable use
case or noisymeasurements. In the social sciences, a common condition for res-
ults to be generalized to other cases and to infer causal relations is that a human
evaluation is both valid and reliable [94]. This can be (partially) obtained by de-
veloping various types of measurements for common constructs. For example,
self-reported subjective measurements such as ratings and surveys can be sup-
plemented by behavioural measurements to gather data on the performance in
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a specific task.

2.2.2 Rule-based and example-based explanations

Human explanations tend to be contrastive: they compare a certain phenome-
non (fact) with a hypothetical one (foil) [97, 98]. In the case of a decision sup-
port systems (DSS), a natural question to ask is ‘Why this advice?’. This question
implies a contrast, as the person asking this question often has an explicit con-
trasting foil in mind. In other words, the implicit question is ‘Why this advice and
not that advice?’. The specific contrast allows the explanation to be limited to
the differences between fact and foil. Humans use contrastive explanations to
explain events in a concise and specificmanner [68]. This advantage also applies
to systems: contrastive explanations narrow down the available information to
a concrete difference between two outputs.

Contrastive explanations can vary depending on the way the advice is con-
trasted with a different advice, for example using rules or examples. Within the
context of a DSS advising an insulin dose for DMT1 self-management, a con-
trastive rule-based explanation could be: “Currently the temperature is below
10 degrees and a lower insulin dose is advised. If the temperature was above
30 degrees, a normal insulin dose would have been advised.” This explanation
contains two rules that explicitly state the differentiating decision boundaries
between the fact and foil. Several XAI methods aim to generate these “if ... then
...” rules [99, 100, 57, 101].

An example-based explanation refers to historical situations in which the ad-
vice was found to be true or false: “The temperature is currently 8 degrees, and
a lower insulin dose is advised. Yesterday was similar: it was 7 degrees and the
same advice proved to be correct. Two months ago, when it was 31 degrees,
a normal dose was advised instead, which proved to be correct for that situ-
ation". Such example- or instance-based explanations are often used between
humans, as they illustrate past behaviour and allow for generalisation to new
situations [102, 103, 104, 105]. Several XAI methods try to identify examples to
generate such explanations, for example those from [106, 107, 108, 109, 110].

Research on system explanations using rules and examples is not new. Most
of this research focused on exploring how humans preferred a system would
reason, by rules or through examples. For example, humans prefer an example-
based spam-filter over a rule-based [111], while they prefer spam-filter explana-
tions to be rule-based [112]. Another evaluation showed that the number of rule
factors in an explanation had an effect on task performance by either promoting
system over-reliance (too many factors) or self-reliance (too few factors) [113].
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Figure 2.1: An overview of three sets of practical recommendations to improve human evaluations
in XAI.

Work by Lim et al. [114] shows that rule-based explanations cause humans to
understand system behaviour, especially if those rules explain why the system
behaves in a certain way as opposed to why it does not behave in a different
(expected) way. Studies such as these tend to evaluate either rules or examples,
depending on the research field (e.g. recommender system explanations tend
to be example-based) but few compare rules with examples.

2.3 Recommendations for human evaluations in XAI

As discussed in Section 2.2.1, human evaluations play an invaluable role in XAI
but are often omitted or of insufficient quality. Our main contribution is a thor-
ough evaluation of rule-based and example-based contrastive explanations. In
addition, we believe that the experience and lessons learned in designing this
evaluation can be valuable for other researchers. Especially researchers in the
field of XAI that are less familiar with human evaluations can benefit from guid-
ance in their design available from other research communities. To that end, we
propose three sets of recommendations with practical methods to help improve
human evaluations in XAI. An overview is provided in Figure 2.1.
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2.3.1 R1: Constructs and relations

As stated in Section 2.2.1, the field of XAI often deals with ambiguously defined
concepts such as ‘understanding’. We believe that this hinders the creation and
replication of evaluations and their results. Through clear definitions andmotiv-
ation, the contribution of the evaluation becomes more apparent. This also aids
other researchers to extend on the results. We provide three practical recom-
mendations to clarify the evaluated constructs and their relations.

Our first recommendation is to clearly define the intended purposes of an
explanation in the form of a construct. A construct is either the intended pur-
pose, an intermediate requirement for the purpose or a potential confound to
your purpose. Constructs form the basis of the scientific theory underlying XAI
methods and human evaluations. By defining a construct it becomes easier to
develop measurements. Second, we recommend to clearly define the relations
expected between the constructs. A concrete and visual way to do so is through
a Causal Diagram which presents the expected causal relations between con-
structs [115]. These relations form your hypotheses and make sure they are
formulated in terms of your constructs. Clearly stating hypotheses allow other
researchers to critically reflect on the underlying theory assumed, proved or fals-
ifiedwith the evaluation. It offers insight in how constructs are assumed to relate
and how the results support or contradict these relations.

Our final recommendation regarding constructs is to adopt existing theor-
ies, such as from philosophy, (cognitive) psychology and from human-computer
interaction (see [68, 42] for an overview). The former provides construct defin-
itions whereas the latter two provide theories of human-human and human-
computer explanations. These three recommendations to define constructs and
their relations and grounding them in other research disciplines can contribute
to more valid and reliable human evaluations. In addition, this practice allows
results to be meaningful even if hypotheses are rejected, as they falsify a sci-
entific theory that may have been accepted as true.

2.3.2 R2: Use case and experimental context

The second set of recommendations regards the experimental context, including
the use case. The use case determines the task, participants that can and should
be used, the mode of the interaction, the communication that takes place and
the information available to the human [116]. As Doshi-Velez and Kim already
stated, the selected use case has a large effect on the conclusions that can be
drawn and the extent to which they can be generalized [33]. Also, the use case
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does not necessarily need to be of high fidelity, as a low fidelity allows for more
experimental control and a potentially more valid and reliable evaluation [117].
We recommend to take these aspects into account when determining the use
case and to reflect on the choices made when interpreting the results from the
evaluation. This improves both the validity and reliability of the evaluation. A
concrete way to structure the choice for a use case is to follow the taxonomy
provided by Doshi-Velez and Kim [33] (see Section 2.2.1) or a similar one.

The second recommendation concerns the sample of participants selected,
as this choice determines the initial knowledge, experience, beliefs, opinions and
biases humans have. Whether participants are university students, domain ex-
perts or recruited online through platforms such asMechanical Turk, the charac-
teristics of the group will have an effect on the results. The choice of population
should be governed by purpose of the evaluation. For example, our evaluation
was performed with healthy participants rather than diabetes patients as those
tend to vary in their diabetes knowledge and suffer from misconceptions [118].
These factors can interfere in an exploratory study such as ours, whose findings
are not domain specific. Hence, we recommend to invest in both understanding
the use case domain and reflecting on the intended purpose of the evaluation.
These considerations should be consolidated in inclusion criteria to ensure that
the results are meaningful with respect to the study’s aim.

Our final recommendation related to the context considers the experimental
setting and surroundings, as these may affect the quality and generalizability of
the results. An online setting may provide a large quantity of readily available
participants, but the results are often of ambiguous quality (see Paolacci et. al
for a review [119]). If circumstances allow, we recommend to use a controlled
setting (e.g. a room with no distractions, or a use case specific environment).
This allows for valuable interaction with participants while reducing potential
confounds that threaten the evaluation’s reliability and validity.

2.3.3 R3: Measurements

Multiple measurements exist for computational experiments on suggested XAI
methods (for example; fidelity [120], sensitivity [121] and consistency [122]).
However, there is a lack of validated measurements for human evaluations [61].
Hence, our third group of recommendations regards the type of measurement
to use for the operationalization of the constructs. We identify two main meas-
urement types useful for evaluations: self-reported measures and behavioural
measures. Self-reported measures are subjective and are often used in evalu-
ations in XAI. They provide insights in a human’s conscious thoughts, opinions
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and perceptions. We recommend the use of self-reportedmeasures for subject-
ive constructs (e.g. perceived understanding), but also recommend a critical per-
spective on whether the measures indeed address the intended constructs. be-
havioural measures have a more observational nature and are used to measure
actual behavioural effects. We recommend their usage for objectivelymeasuring
constructs such as understanding and task performance. Importantly however,
such measures often only measure one aspect of behaviour. Ideally, a combin-
ation of both measurement types should be used to assess effects on both the
human’s perception and behaviour. In this way, a complete perspective on a
construct can be obtained. In practice, some constructs lend themselves more
for self-reported measurements, for example a human’s perception on trust or
understanding. Other constructs are more suitable for behavioural measure-
ments, such as task performance, simulatability, predictability, and persuasive
power.

Furthermore, we recommend tomeasure explanation effects implicitly rather
than explicitly. When participants are not aware of the evaluation’s purpose,
their responses may be more genuine. Also, when measuring understanding or
similar constructs, the participant’s explicit focus on the explanations may cause
skewed results not present in a real world application. This leads to our third re-
commendation to measure potential biases. Biases can regard the participant’s
overall perspective on AI, the use case, decision making or similar. However, bi-
ases can also be introduced by the researchers themselves. For example, one
XAI method can be presented more attractively or reliably than another. It can
be difficult to prevent such biases. One way to mitigate these biases is to design
how the explanation are presented, the explanation form, in an iterative man-
ner with expert reviews and pilots. In addition, one can measure these biases
nonetheless if possible and reasonable. For example, a usability questionnaire
can be used to measure potential differences between the way explanations are
presented in the different conditions. For our study we designed the explana-
tions iteratively and verified that the chosen form for each explanation class did
not differ significantly in the perception of the participants.

2.4 The use case: diabetes self-management

In this study, we focused on personalized healthcare, an area in which machine
learning is promising and explanations are essential for realistic applications
[123]. Our use case is that of assisting patients with diabetes mellitus type 1
(DMT1) with personalized insulin advice. DMT1 is a chronic autoimmune dis-
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order in which glucose homeostasis is disturbed and intake of the hormone in-
sulin is required to balance glucose levels. Since blood glucose levels are influ-
enced by both environmental and personal factors, it is often difficult to find the
adequate dose of insulin that stabilizes blood glucose levels [124]. Therefore,
personalized advice systems can be a promising tool in DMT1 management to
improve quality of life and mitigate long-term health risks.

In our context, a DMT1 patient finds it difficult to find the optimal insulin dose
for a meal given a situation. On the patient’s request, a fictitious intelligent DSS
provides assistance with the insulin intake before a meal. Based on different in-
ternal and external factors (e.g. hours of sleep, temperature, past activity, etc.),
the system may advise to take a higher, lower or normal insulin dose. For ex-
ample, the system could advise a lower insulin dose based on the current tem-
perature. The factors that were used in the evaluation are realistic, and were
based on Bosch [125] and an interview with a DMT1 patient.

In this use case, both the advice and the explanations are simplified. This
study therefore falls under the human grounded evaluation category of Doshi-
Velez and Kim [33]: a simplified task of a real-world application. The advice is
binary (higher or lower), whereas in reality one would expect either a specific
dose or a range of suggested doses. This simplification allowed us to evaluate
with novices (see Section 2.6.3), as we could limit our explanation to the effects
of a too low or too high dosage without going into detail about effects of spe-
cific doses. Furthermore, this prevented the unnecessary complication of having
multiple potential foils for our contrastive explanations. Although the selection
of the foil, either by system or human, is an interesting topic regarding contrast-
ive explanations, it was deemed out of scope for this evaluation. The second
simplification was that the explanations were not generated using a specific XAI
method, but designed by the researchers instead. Several design iterations were
conducted based on feedback from XAI researchers and interaction designers to
remove potential design choices in the explanation form that could cause one
explanation to be favored over another. Since the explanations were not gener-
ated by a specific XAI method, we were able to explore the effects of more proto-
typical rule- and example-based explanations inspired by multiple XAI methods
that generate similar explanations (see Section 2.2.2).

There are several limitations caused by these two simplifications. First, we
imply that the system can automatically select the appropriate foil for contrast-
ive explanations. Second, we assume that the XAI method is able to identify only
the most relevant factors to explain a decision. Although this assumes a poten-
tially complex requirement for the XAI method, it is a reasonable assumption as

49



Chapter 2

humans prefer a selective explanation over a complete one [68].

2.5 Constructs, expected relations and measurements

Our evaluation focused on three constructs: system understanding, persuas-
ive power, and task performance. Although an important goal of offering ex-
planations is to allow humans to arrive at the appropriate level of trust in the
system [126, 61], the construct of trust is difficult to define and measure [32].
As such, our focus was on constructs influencing trust that were more suitable
to translate into measurable constructs; the intermediate construct of system
understanding and the final construct of task performance of the entire human-
system collaboration. The persuasive power of an explanation was also meas-
ured, as an explanation might cause a human to overly trust the system; be-
lieving that the system is correct while it is not, without having a proper system
understanding. As such, the persuasive power of an explanation confounds to
the effect of understanding on task performance.

Both contrastive rule- and example-based explanationswere compared to each
other with no explanation as a control. Our hypotheses are visualized in Fig-
ure 2.2, as a Causal Diagram [115]. From rule-based explanations we expected
participants to gain a better understanding of when and how the system arrives
at a specific advice. Contrastive rule-based explanations explicate the system’s
decision boundary between fact and foil and we expected the participants to
recall and apply this information. Second, we expected that contrastive example-
based explanations persuade participants to follow the advice more often. We
believe that examples raise confidence in the correctness of an advice as they
illustrate past good performance of the system. Third, we hypothesized that
both system understanding and persuasive power have an effect on task per-
formance. Whereas this effect was expected to be positive for system under-
standing, persuasive power was expected to affect task performance negatively
in case a system’s advice is not always correct. This follows the argumentation
that persuasive explanations can cause harm as they may convince humans to
over-trust a system [58]. Note that we conducted two separate experiments to
measure the effects of an explanation class on understanding and persuasion.
This allowed us to measure the effect of each construct separately on task per-
formance, but not their combined effect (e.g. whether sufficient understanding
can counteract the persuasiveness of an explanation).

The construct of understanding was measured with two behavioural meas-
urements and one self-reported measurement. The first behavioural measure-
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System understanding

Persuasive power

Task performance

Contrastive rule-based
explanations

Contrastive example-
based explanations

Predict advice

Identify decisive factor

Number times advice copied

Perceived system understanding

Behavioral

Self-reported

Behavioral

Behavioral

Number correct decisions

Perceived prediction of correctness

Self-reported

Figure 2.2: Our theory, depicted as a Causal Diagram. It describes the expected effects of contrastive
rule- and example-based explanations on the constructs of system understanding, per-
suasive power and task performance. The solid green arrows depict expected positive
effects and the red dashed arrow depicts a negative effect. The arrow thickness depicts
the size of the expected effect. The opaque grey boxes are the measurements we per-
formed for that construct, divided in either behavioural or self-reported measurements.

ment assessed the participant’s capacity to correctly identify the decisive factor
of the situations in the system’s advice. This measured to what extent the par-
ticipant recalled what factor the system believed to be important for a specific
advice and situation. Second, wemeasured the participant’s ability to accurately
predict the advice in novel situations. This tested whether the participant ob-
tained a mental model of the system that was sufficiently accurate enough to
predict its behaviour in novel situations. The self-reported measurement tested
the participant’s perceived system understanding. This provided insight in whether
participants over- or underestimated their understanding of the system com-
pared to what their behaviour told us.

Persuasive power of the system’s advice wasmeasured with one behavioural
measurement, namely the number of times participants copied the advice, inde-
pendent of its correctness. If participants followed the advice with an explana-
tion more often than participants without an explanation, we addressed this to
the persuasiveness of the explanation.

Task performance was measured as the number of correct decisions, a be-
havioural measurement, and perception of predicting advice correctness, a self-
reported measurement. We assumed a system that did not have a 100% accur-
ate performance, meaning that it also made incorrect decisions. Therefore, the
number of correct decisions made by the participant while aided by the system
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could be used tomeasure task performance. The self-reportedmeasure allowed
us to measure how well participants believed they could predict the correctness
of the system advice.

Finally, two self-reported measurements were added to check for potential
confounds. The first was a brief usability questionnaire addressing issues such
as readability and the organisation of information. This could reveal whether
one explanation form was designed and visualized better than the other, which
would be a confounding variable. The second, perceived system accuracy, meas-
ured how accurate the participant thought the system was. This could help
identify a potential over- or underestimation of the usefulness of the system,
that could have affected to what extent participants attended to the system’s
advice and explanation.

The combination of self-reported andbehaviouralmeasurements enabled us
to draw relations between our observations and a participant’s own perception.
Finally, by measuring a single construct with different measurements (known as
triangulation [127]) we could identify and potentially overcome biases and other
weaknesses in our measurements.

2.6 Methods

In this section we describe the operationalization of our evaluation in two sep-
arate experiments in the context of DSS advice in DMT1 self-management (see
Section 2.4). Experiment I focused on the construct of system understanding. Ex-
periment II focused on the constructs persuasive power and task performance.
The explanation form (contrastive rule-based, contrastive example-based or no
explanation) was the independent variable in both experiments and was tested
between-subjects. See Figure 2.3 for an example of each explanation form.

The experimental procedure was similar in both experiments:
1. Introduction. Participants were informed about the study, use-case and

task, and presented with a brief narrative about a DMT1 patient for im-
mersion.

2. Demographics questionnaire. Age and education level were inquired to
verify a sufficiently broad population sample.

3. Pre-questionnaire. Participants were questioned on DMT1 knowledge to
assess if DMT1 was sufficiently introduced and to verify that participants
lacked additional domain knowledge.

52



2

Contrastive explanations with rules and examples

Current situation

The system advises a

lower dose of insulin

Planned alcohol intake

Water intake so far

Hours slept

3 units

5 glasses

6 hours

Your planned alcohol intake is more than 1 unit.

If this would have been 1 unit or less, the system

would have advised a normal dose.

(a) Contrastive rule-based explanation.

Current situation

The system advises a

lower dose of insulin

The system advises a

lower dose of insulin

Planned alcohol intake

Water intake so far

Hours slept

3 units

5 glasses

6 hours

Planned alcohol intake

Water intake so far

Hours slept

3 units

5 glasses

7 hours

The system advises a

normal dose of insulin

Here, your planned alcohol intake was 3 units and

the system also advised a lower dose of insulin.

That advice had a positive effect on your

blood sugar level.

Here, your planned alcohol intake was 1 unit and

the system advised a normal dose of insulin instead.

That advice had a positive effect on your

blood sugar level.

Comparable situation
from your past

Comparable situation
from your past

Planned alcohol intake

Water intake so far

Hours slept

1 unit

4 glasses

6.5 hours

(b) Contrastive example-based explanation.
Figure 2.3: The two explanation forms. Both explanations were contrastive. Participants could view

the situation, advice and explanation indefinitely.

4. Learning block. Multiple stimuli were presented with either the example-
or rule-based explanations, or no explanations (control group).

5. Testing block. Several trials to conduct the behavioural measurements
(advice prediction and decisive factor identification in Experiment I, the num-
ber of advice copied and number of correct decisions in Experiment II).

6. Post-questionnaire. A questionnaire to obtain the measurements (per-
ceived system understanding in Experiment I and perceived prediction of ad-
vice correctness in Experiment II).
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Factor Insulin
dose

Exp. I Rules Exp. II Rules

Planned alcohol
intake

Lower dose > 1 unit > 1 unit
Planned physical
exercise

Lower dose > 17 minutes > 20 minutes
Physical health Lower dose Diarrhoea &

Nausea
Diarrhoea &
Nausea

Hours slept Higher
dose

< 6 hours < 6 hours
Environmental
temperature

Higher
dose

>26 °C >31 °C

Anticipated tension
level

Higher
dose

> 3 (a little
tense)

> 4 (quite
tense)

Water intake so far - - -
Planned caffeine
intake

- - -
Mood - - -

Table 2.1: An overview of the nine factors that played a role in the experiment. For each factor its
influence on the true insulin dose is shown and the system threshold for that influence.
These differed between the two experiments, the set of rules of the first experiment were
defined as the ground truth. Three factors acted as fillers and had no influence.

7. Usability questionnaire. Participants filled out a usability questionnaire
to identify potential interface related confounds.

8. Control questionnaire. The experimental procedure concluded with sev-
eral questions to assess whether the purpose of the study was suspected
and to measure perceived system accuracy to identify over- or under-trust
in the system.

2.6.1 Experiment I: System understanding

Thepurpose of Experiment Iwas tomeasure the effects of rule-based and example-
based explanations on systemunderstanding compared to each other and to the
control group with no explanations. See Figure 2.4 for an overview of both the
learning and testing blocks. The learning block consisted of 18 randomly ordered
trials, each trial describing a single situation with three factors and values from
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(a) Learning block, Experiment I. (b) Testing block, Ex-
periment I.

Figure 2.4: A schematic overview of the learning and testing blocks of Experiment I.

Table 2.1. The situation description was followed by the system’s advice, in turn
followed by an explanation (in the experimental groups). Finally, the participant
was asked tomake a decision on administering a higher/lower insulin dose. This
block served only to familiarize the participant to the system’s advice and its ex-
planation and to learn when and why a certain advice was given. Participants
were not instructed to focus on the explanations in the learning block, nor were
they informed of the purpose of the two blocks.

In the testing block, two behavioural measures were used to test the con-
struct of understanding: predicted advice and decisive factor identification. The
testing block consisted of 30 randomized trials, each with a novel situation de-
scription. Each description was followed by the question what advice the parti-
cipant thought the system would give. This formed the measurement of advice
prediction. Themeasurement decisive factor identificationwas formed by the sub-
sequent question to select a single factor from a situation description that they
believed was decisive for the predicted system advice.

A third, self-reportedmeasurementwas conducted in thepost-questionnaire,
which contained an eight-item questionnaire based on a 7-point Likert scale.
These items formed the measurement of perceived gained understanding. The
questions were asked without mentioning the term explanation and simply ad-
dressed ‘system output’. The eight items were deemed necessary, to obtain a
measurement less dependent on the formulation of one item.
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2.6.2 Experiment II: Persuasive power and task performance

Thepurpose of Experiment IIwas tomeasure the effects of rule-based and example-
based explanations on persuasive power and task performance, and to compare
these to each other and to the control group with no explanation. Figure 2.5
provides an overview of the learning and testing blocks of this experiment. The
learning block was similar to that of the first experiment: a situation was shown,
containing three factors fromTable 2.1. In the experimental groups, the situation
was followed by an advice and explanation. Next, the participant was asked to
make a decision on the insulin dose. After this point, the learning block differed
from the learning block in the first experiment: the participant’s decision was
followed with feedback on its correctness. In 12 of the 18 randomly ordered tri-
als of this learning block (66%), the system’s advice was correct. In the six other
trials, the advice was incorrect. Through this feedback, participants learned that
the system’s advice could be incorrect and in which situations. Instead of follow-
ing the ground truth rule set (from Experiment I), this system followed a second,
partially correct set of rules, as shown in Table 2.1.

The testing block contained 30 trials, also presented in random order, in
which a presented situation was followed by the system’s advice and a poten-
tial explanation. Next, participants had to choose which insulin dose was cor-
rect based on the system’s advice, explanation and gained knowledge of when
the system is incorrect. Persuasive power was operationalized as the number of
times a participant followed the advice, independent of whether it was correct
or not. Task performance was represented by the number of times a correct de-
cision was made. The former reflected how persuasive the advice and explana-
tion was, evenwhen participants experienced system errors. The latter reflected
how well participants were able to understand when the system makes errors
and compensate accordingly in their decision.

Also in this experiment, a self-reportedmeasurementwith eight 7-point Likert
scale questions was performed. It measured the participant’s subjective sense
of their ability to estimate when the system was correct.

2.6.3 Participants

In Experiment I, 45 participants took part, of which 21 female and 24 male, aged
between 18 and 64 years old (M = 44.2 ± 16.8). Their education levels varied
from lower vocational to university education. In Experiment II 45 different par-
ticipants took part, of which 31 females and 14 males, aged between 18 and 61
years old (M = 36.5 ± 14.5). Their education levels varied from secondary vo-
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(a) Learning block, Experiment II. (b) Testing block, Experiment II.
Figure 2.5: A schematic overview of the learning and testing blocks of Experiment II.

cational to university education. Participants were recruited from a participant
database at TNO Soesterberg (NL) as well as via advertisements in Utrecht Uni-
versity (NL) buildings and on social media. Participants received a compensation
of 20,- euro and their travel costs were reimbursed. Both samples represented
the entire Dutch population and as such the entire range of potential DMT1 pa-
tients, hence the wide age and educational ranges.

The inclusion criteria were as follows: not diabetic, no friends or close relat-
iveswith diabetes, and no extensive knowledge of diabetes throughwork or edu-
cation. General criteria were Dutch native speaking, good or corrected eyesight,
and basic experience using computers. These inclusion criteria were verified
in the pre-questionnaire. A total of 16 participants reported a close relative or
friend with diabetes and one participant had experience with diabetes through
work, despite clear inclusion instructions beforehand. After careful inspection of
their answers, nonewere excluded because their answers on diabetes questions
in the pre-questionnaire were notmore accurate or elaborate than others. From
this we concluded that their knowledge of diabetes was unlikely to influence the
results.
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2.7 Data analysis

Statistical tests were conducted using SPSS Statistics 22. An alpha level of 0.05
was used for all statistical tests.

The data from the measures in Experiment I were analyzed using a one-way
Multivariate Analysis of Variance (MANOVA) with explanation form (rule-based,
example-based or no explanation) as the independent between-subjects variable
and predicted advice and identified decisive factor as dependent variables. The
reason for a one-way MANOVA was due to the multivariate operationalization
of a single construct, understanding [128]. Cronbach’s Alpha was used to assess
the internal consistency of the self-reported measurement for perceived system
understanding from the post-questionnaire. Subsequently, a one-way Analysis of
Variance (ANOVA) was conducted with the mean rating on this questionnaire as
dependent variable and the explanation form as independent variable. Finally,
the relation between the two behavioural and the self-reported measurements
was examined with Pearson’s product-moment correlations.

For Experiment II two one-way ANOVA’s were performed. The first ANOVA
had the explanation form (rule-based, example-based or no explanation) as inde-
pendent variable and the number of times the advice was copied as dependent
variable. The second ANOVA also had explanation form as independent vari-
able, but number of correct decisions as dependent variable. The internal con-
sistency of the self-reported measurement of perceived prediction of advice cor-
rectness from the post-questionnaire was assessed with Cronbach’s Alpha and
analyzed with a one-way ANOVA. Explanation form was the independent and
the mean rating on the questionnaire the dependent variable. The presence of
correlations between the behavioural and the self-reported measurements was
assessed with Pearson’s product-moment correlations. Detected outliers were
excluded from the analysis.

2.8 Results

2.8.1 Experiment I: System understanding

The purpose of Experiment Iwas tomeasure gained system understanding when
a systemprovides a rule- or example-based explanation, compared to no explan-
ation. This was measured with two behavioural measures and one self-reported
measure.

Figure 2.6 shows the results on the two behaviouralmeasures: correct advice
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Figure 2.6: Bar plot of themean percentages on correct prediction of the system’s advice and correct
identification of the decisive factor for that advice. Values are relative to the 30 random-
ized trials in Experiment I. The error bars represent a 95% confidence interval. Note; ***
p < 0.001

prediction in novel situations and correct identification of the system’s decisive
factor. A one-way MANOVA with Wilks’ lambda indicated a significant main ef-
fect of explanation form on both measurements (F (4, 82) = 6.675, p < 0.001,
∆ = .450, η2

p = .246). Further analysis revealed a significant effect for explana-
tion form on factor identification (F (2, 42) = 14.816, p < 0.001, η2

p = .414), but
not for advice prediction (F (2, 42) = 14.816, p = .264, η2

p = .414). One assump-
tion of a one-way MANOVA was violated, as the linear relationships between
the two dependent variables and each explanation form was weak. This was in-
dicated by Pearson’s product-moment correlations for the rule-based r = .487
(p = .066), example-based r = −.179 (p = .522) and no explanation r = .134
(p = .636) groups. Some caution is needed in interpreting these results, as this
lack of significant correlations shows a potential lack of statistical power. Fur-
ther post-hoc analysis showed a significant difference in factor identification in
favor of rule-based explanations compared to example-based explanations and
no explanations (p < 0.001). No significant difference between example-based
explanations and no explanation was found (p = .796).
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Figure 2.7: Bar plot of the mean self-reported system understanding. All values are on a 7-point
Likert scale and error bars represent 95% confidence interval. Note; ** p < 0.01

Figure 2.7 shows the results on the self-reported measure of system under-
standing. The consistency between the different items in the measure was very
high, as reflected by Cronbach’s alpha (α = .904). The mean rating over all eight
items was used as the participant’s subjective rating of system understanding.
A one-way ANOVA showed a significant main effect of explanation form on this
rating (F (2, 41) = 7.222, p = .002, pη2

p = .261). Two assumptions of a one-way
ANOVA were violated. First, the rule-based explanations group had one outlier,
which did not affect the analysis in any way. Second, Levene’s test was not signi-
ficant (p = .017) signalling inequality between group variances. However, ANOVA
is robust against the variance homogeneity violation with equal group sizes [129,
130]. Further post-hoc tests revealed that only rule-based explanations caused
a significantly higher self-reported understanding compared to no explanations
(p = .001). No significant difference was found for example-based explanations
with no explanations (p = .283) and with rule-based explanations (p = .072).

Finally, Figure 2.8 shows a scatter plot between both behavioural measures
and the self-reportedmeasure. Pearson’s product-moment analysis revealed no
significant correlations between self-reported understanding and advice predic-
tion (r = −.007, p = .965), not within the rule-based explanation group (r =
−.462, p = .129), the example-based explanation group (r = −.098, p = .729),
nor the no explanation group (r = .001, p = .996). Similar results were found
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Figure 2.8: Scatter plots displaying the relation between a) advice prediction and b) decisive factor

identification with self-reported understanding. Outliers are circled.

for the correlation between self-reported understanding and factor identifica-
tion (r = .192, p = .211) and for the separate groups of rule-based explanations
(r = −.124, p = .673), example-based explanations (r = .057, p = .840) and no
explanations (r = −.394, p = .146).

2.8.2 Experiment II: Persuasive power and task performance

The purpose of Experiment II was to measure a participant’s ability to use a de-
cision support system appropriately when it provides a rule- or example-based
explanation, compared with no explanation. This was measured with one be-
havioural and one self-reported measurement. In addition, we measured the
persuasiveness of the system for each explanation form, compared to no ex-
planations. This was assessed with one behavioural measure.

Figure 2.9 shows the results of the behavioural measure for task perform-
ance, as reflected by the huma’s decision accuracy. A one-way ANOVA showed
no significant differences (F (2, 41) = 1.716, p = .192, η2

p = .077). Two viola-
tions of ANOVA were discovered. There was one outlier in the example-based
explanations, with 93.3% accuracy (1 error). Removal of the outlier did not af-
fect the analysis. Levene’s test showed there was no homogeneity of variances
(p = .007), however ANOVA is believed to be robust against this under equal
group sizes [129, 130].

Figure 2.9 shows the results of the behavioural measure for persuasiveness,
i.e. the number times system advice was followed. Note that in Experiment II the
system’s accuracy was 66.7%. Thus, following the advice in a higher percentage
of cases denotes an adverse amount of persuasion. A one-way ANOVA showed
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Figure 2.9: Results on task performance and persuasiveness as the mean percentage of correct de-
cisions (a) and percentage of decisions similar to system’s advice independent of correct-
ness (b) respectively. Error bars represent a 95% confidence interval. Note; * p < 0.05,
*** p < 0.001

that explanation form had a significant effect on following the system’s advice
(F (2, 41) = 11.593, p < .001, η2

p = .361). Further analysis revealed that parti-
cipants with no explanation followed the system’s advice significantly less than
those with rule-based (p = .049) and example-based explanations (p < .001).
However, therewas no significant difference between the two explanation forms
(p = .068). One outlier violated the assumptions of an ANOVA. One participant
in the rule-based explanation group followed the system’s advice only 33.3% of
the time. Its exclusion affected the outcomes of the ANOVA and the results after
exclusion are reported.

Figure 2.10 displays the self-reported capacity to predict correctness, oper-
ationalized by a rating how well participants thought they were able to predict
when system advice was correct or not. The consistency of the eight 7-point
Likert scale questions was high according to Cronbach’s Alpha (α = .820). Hence,
we took themean rating of all questions as an estimate of participants’ perform-
ance estimation. A one-way ANOVA was performed, revealing no significant dif-
ferences (F (2, 41) = 2.848, p = .069, η2

p = .122). One outlier from the rule-based
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Figure 2.10: Bar plot of the mean self-reported system performance estimation. All values are on a
7-point Likert scale and error bars represent 95% confidence interval.

explanation group was found, its removal did not affect the analysis.
A correlation analysis was performed between the self-reported measure-

ment of the predicted correctness and the behavioural measurement of making
the correct decision, two measurements of task performance. The accompany-
ing scatter plot is shown in Figure 2.11. A Pearson’s product-moment correlation
revealed no significant correlation between the self-reported and behavioural
measure (r = .146, p = .350). Also, there were no significant correlations in
the rule-based (r = .411, p = .144) and example-based explanation (r = −.347,
p = .225) groups, or in the no explanation group (r = .102, p = .718). Both out-
liers from each measurement were removed in this analysis and did not affect
the significance.
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Figure 2.11: Scatter plot displaying the relation between number of correct decisions made and self-
reported capacity to predict advice correctness. Outliers are circled.

2.8.3 Usability and biases

A usability questionnaire was used to evaluate if there were differences in usab-
ility between the two explanation forms, as this could influence the results. The
questionnaire contained five questions on a 100-point scale about readability,
organisation of information, language, images and color. The consistency be-
tween the five questions was relatively high, as revealed by a Cronbach’s Alpha
test (α = .722). Figure 2.12 shows the mean ratings for each question, broken
down by explanation form (rule-based, example-based, no explanation). No stat-
istical analysis was performed, as this questionnaire only functioned as a check
for potential usability confounds in the experiment.

In addition to the ratings, participants were asked about the positive and neg-
ative usability aspects of the system in two open questions. Common positive
descriptions included “clear", “well-arranged", “clear and simple icons" and “un-
derstandable language". Although not many participants had negative remarks,
most addressed insufficient visual contrast due to the colors used. Unique to
the example-based explanations participant group were remarks about a lack
of concise and well-arranged information.

In the control questionnaire we asked participants to give an estimate of the
overall system’s accuracy. This was to validate any potential overly positive or
negative trust bias towards the system. In Experiment I the system was 100%
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Figure 2.12: The mean ratings on the usability questions, separated on explanation form. The error-
bars represent a 95% confidence interval.

accurate, but this was unknown to the participants since there was no feed-
back on correctness included. Nonetheless, estimates ranged from 30% to 90%
(µ = 75.2%, σ = 12.8%). This meant that all participants believed the system
to make errors based on no information. In Experiment II the system’s accuracy
was 66.7%. Participants experienced this due to the feedback onmade decisions
in the learning block. Estimates ranged between 50% and 95% (µ = 74.8%,
σ = 8.8%), indicating that on average, system accuracy was overestimated.

After the experiment, brief discussions with participants revealed additional
perspectives. Several participants from the no explanation group wished the
system could give an explanation for its advice. One participant expressed a
need for knowing the system’s rules governing the system’s advice. In the two
explanation groups, participants experienced the explanations as useful. Rules
were valued for there explicitness, whereas examples were viewed as inciting
trust. However, in the two explanation groups several participants found it un-
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clear what the highlight of a factor (see Figure 2.3) meant. Several participants
alsomentioned that, although useful, the explanations lacked a causal rationale.

2.9 Discussion

Below we discuss the results from both experiments in detail and relate them to
our theory presented in Section 2.5.

2.9.1 Experiment I: System understanding

Experiment I measured the participant’s capacity to understand how and when
the systemprovides a specific advice. This constructwas operationalized in three
measurements: identification of decisive factor, predicting advice and perceived
system understanding. We hypothesized that participants receiving contrastive
rule-based explanations would score best on all three measurements. Contrast-
ive example-based explanations were only expected to improve understanding
slightly more than no-explanations (see Figure 2.2).

The results from our evaluation support these hypotheses in part. First, rule-
based explanations indeed seem to allow participants to more accurately identify
the factor from a situation that was decisive in the system’s advice. However,
rule-based nor example-based explanation allowed participants to learn to pre-
dict system behaviour. The rule-based explanations however, did cause to parti-
cipants to think that they better understood the system compared to example-
based and no explanations. The example-based explanations only showed a small
and insignificant increase in perceived system understanding. It is important
to note that there was no correlation between the self-reported measurement
of understanding and the behavioural measurements of understanding. This
shows that participants had a perception of understanding that differed from
the understanding as measured with factor identification and advice prediction.

Close inspection of the results showed two potential causes for the lack of
support for our hypotheses. The first reason might be because the described
DMT1 situations and accompanying system advice was too intuitive. This is sup-
ported by the fact that participants with no explanationwere already quite adapt
in identifying decisive factors (nearly 70% compared to 33% chance). The second
reason we inferred from open discussions with participants after the experi-
ment. Most participants who received either explanation form mentioned diffi-
culty in applying and generalizing the knowledge from the explanations to novel
situations. Several participants even expressed the desire to know the rationale
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of why a certain rule or behaviour occurred. This is in line with the theory that
explanations should convey specific causal relations obtained from an overall
causal model describing the behaviour of the system, instead of just factual cor-
relations between system input and output.

If we generalize these results to the field of XAI, we have shown that con-
trastive rule-based explanations as “if ... then ...” statements are not sufficient to
predict system behaviour. However, such explanations are capable of educating
a human to identify which factors would play a decisive role in system advice
given a specific situation. Also, such explanations seem to provide the human
with the perception that (s)he is better capable of understanding the system. The
contrastive example-based explanations however showed no improvement on ob-
served or self-reported understanding. This experiment illustrated the need for
explanations that providemore causal information, instead of solely information
depicting system input and output correlations. Furthermore, we illustrated that
self-reported and behavioural measurements of understanding may not correl-
ate, underlining the need for (a combination of) measures that accurately and
reliably measure the intended construct.

2.9.2 Experiment II: Persuasive power and task performance

In Experiment II we investigated the extent to which an explanation increases
the persuasiveness of an advice, as well as the explanation’s effect on task per-
formance. The persuasive power of an explanation was operationalized with the
number of times the advice was copied. Task performance was represented by the
number of correct decisions and the self-reported perception of predicting advice
correctness. We hypothesized that especially contrastive example-based explana-
tions would increase persuasive power, while these in turn would lower actual
task performance. In contrast, the understanding participants gained from rule-
based explanations was expected to cause an increase in task performance (see
Figure 2.2).

Both contrastive rule-based and example-based explanations showed more
persuasive power than when no explanation was given. The example-based ex-
planations also showed slightly more persuasive power than the rule-based ex-
planations, but this difference was not significant. These results partly support
our theory about persuasive power, as they illustrate that explanations persuade
humans to follow a system’s advice more often. These results however, do not
support that example-based explanations are that much more persuasive than
rule-based explanations.

With respect to task performance, we saw that explanations caused small
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but insignificant improvements on both behavioural and self-reported data. In
fact, the example-based explanations showed the highest (but still insignificant)
improvement. Due to a lack of statistical evidence not much can be inferred
from this, and further evaluation is required.

Similar to Experiment I we found a lack of correlation between participants
reporting their perception of predicting advice correctness, and the number of cor-
rectly made decisions. In other words, these measures do not seem to measure
the same construct. An explanation could be that participants were unable to
estimate their own capacity of predicting the correctness of advice.

We have shown that providing an explanation with an advice results in hu-
mans following that advice more often, even when incorrect. In addition, there
was a suggestion that explanations also improve task performance, especially
contrastive example-based explanations. However, these effects were marginal
and not significant. These results underline the need in the field of XAI to take
a different stance on which explanations should be generated. Two common
forms of explanations answering a contrasting question did not appear to in-
crease task performance, an effect often attributed to such explanations within
the field.

2.10 Limitations

This study has several limitations that warrant caution in generalizing the res-
ults to other use cases or to the field of XAI in general. The first set of limita-
tions is related to the selected use case of aided DMT1 self-management. This
use case falls into the category ‘simplified’ from Doshi-Velez and Kim [33] as it
approximates a realistic use case. However, two major aspects differ from the
real-life situation. First, we recruited healthy participants who had to empathize
with a DMT1 patient, instead of actual DMT1 patients. Nevertheless, participants
were sampled from the entire Dutch population, resulting in a wide variety of
ages and education. These choices allowed us to measure the effects of the ex-
planation forms without focusing on a specific demographic or having to com-
pensate for varying domain knowledge in DMT1 participants to correct for in the
measured effects. Second, the system itself was fictitious and followed a pre-
determined set of rules rather than comprising the full complexity of a realistic
system. These two simplifications prevent us to generalize the results and to
apply our conclusions to construct an actual system for aiding DMT1 patients in
self-management. However, this was not the purpose of this study. Instead, we
aimed to evaluate whether the supposed effects of two often cited explanations
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forms were warranted. We believe the selected use case allowed us to do so,
as it gave both context as well as motivation for the humans to understand ex-
planations. Also, laymenwere chosen opposed to DMT1 patients tomitigate any
difference in diabetes knowledge andmisconceptions which can vary greatly be-
tween patients (e.g. see Odili et. al [118]). Future research specifically targeted
at the development of a DSS for DMT1 self-management should include DMT1
patients as participants.

The second set of limitations is related to suspected confounds in the ex-
periment. A brief usability questionnaire showed that participants held an over-
all positive bias towards the system, whether an explanation was provided or
not. In addition this questionnaire showed that participants’ perception of the
organisation of the information was not always positive. Hence, a potential lim-
itation lies in the way the explanations were presented. Also, surprisingly, in
Experiment I participants attributed a low performance to the system, while they
had no information to do so. In Experiment II however, participants tended to
slightly overestimate the system’s actual performance. This occurred independ-
ent of the explanation form. This shows that the participants could have had
a natural tendency to distrust the system’s advice. This may have affected the
self-reported results.

Finally, a few limitations arose from the design of both experiments. The res-
ults for the example-based explanations could have been different with a longer
learning block, as it takes time to infer decision boundaries from examples. Also,
both testing blocks were relatively long, which could have caused participants to
continue learning about the system while we were measuring their understand-
ing. We did not perform any analyses on this, as it would add another level of
complexity to the design. Hence, we cannot say for certain that the learning block
was of sufficient length to allow participants to learn enough from the explana-
tions. However, if this was the case, we believe that prolonging the learning block
would have only resulted in stronger effects. Lastly, due to the choice of different
participant groups for both experiments, we could only draw limited conclusions
on the relation between the understanding on the one hand and task perform-
ance and persuasiveness on the other hand. We selected this approach instead
of combining the constructs in a single experiment with a within-subject design,
to avoid learning effects not sufficiently compensated through randomizing the
understanding and task performance/persuasion blocks.
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2.11 Conclusion

A lack of human evaluations characterizes the field of Explainable Artificial Intel-
ligence (XAI). A contribution of this paper was to provide a set of recommenda-
tions for future evaluations. Practical recommendations were given for XAI re-
searchers unfamiliar with them. These addressed the evaluation’s constructs
and their relations, the selection of a use case and the experimental context,
and suitable measurements to operationalize the constructs in the evaluation.
These recommendations originated from our experience designing an extens-
ive human evaluation. Our second contribution was to evaluate the effects of
contrastive rule-based and contrastive example-based explanations on the parti-
cipant’s understanding of system behaviour, persuasive power of the system’s
advice when combined with an explanation, and task performance. The eval-
uation took place in a decision-support context where participants were aided
in choosing the appropriate dose of insulin to mitigate the effects of diabetes
mellitus type 1.

Results showed that contrastive rule-based explanations allowed participants
to correctly identify the situational factor that played a decisive role in a system’s
advice. Neither example-based or rule-based explanations enabled participants to
correctly predict the system’s advice in novel situations, nor did they improve
task performance. However, both explanation forms did cause participants to
follow the system’s advice more often, even when this advice was incorrect. This
shows that both rules and examples that answer a contrastive question are not
sufficient on their own to improve a human’s understanding or task perform-
ance. We believe that the main reason for this is that these explanations lack a
clarification of the underlying rationale of system behaviour.

Future work will focus on the evaluation of a combined explanation form
provided in interactive form, to assess whether this interactive form helps hu-
mans to learn a system’s underlying rationale. As an extension, potential meth-
ods will be researched that can generate causal reasoning traces, rather than
decision boundaries, to expose the behaviour rationale directly. In addition, fu-
ture work may focus on similar studies with actual diabetes patients to study
potential homogeneous groups in terms of explanation effects (e.g. effect of
age, domain knowledge, etc.). Finally, during the design and analysis of this eval-
uation we discovered a need for validated and reliable measurements. We will
continue to use different types ofmeasurements tomeasure constructs in a valid
and reliable way in future evaluations.
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CHAPTER 3

CONTRASTIVE EXPLANATIONS FOR
CLASSIFICATION MODELS
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Brinkhuis, M., & Neerincx, M. (2018). Contrastive explanations with local foil
trees. Proceedings of theWorkshop on InterpretableMachine Learning, International
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stract, shortened introduction, and an adjusted lay-out, including the formatting
of figures and tables.
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Explanation generating methods tend to aim for feature attributions; quantify-
ing the relative importance of a feature in an AI’s decision. These explanations
tend to be superficial, as they do not explain what the feature’s role is in that
decision. In addition, the amount of information in the explanation grows with
the number of referred to features, risking information overload and commu-
nicating redundant information. The previous chapter argued that contrastive
explanations offer a natural way to limit the explained information to what is
important by contrasting the current decision with a decision of interest. As the
previous chapter illustrated the potential benefit of explaining this information
in a rule-based form, this chapter proposes a method to generate rule-based
contrastive explanations for an AI providing decision support. This method is
based on the idea of training localized one-versus-all decision trees. These trees
can then be used to identify the disjointed set of rules that causes an AI to make
one decision instead of another within that area of the feature space. A tech-
nical evaluation of this method on three benchmark classification tasks reveals
its efficiency and faithfulness to the AI’s decision making.
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3.1 Introduction

Machine learningmodels form at present the core of the AI we engineer, models
that tend to be complex. The field of Explainable AI (XAI) thus aims to generate
explanation for such models. For reasons such as: 1) facilitate understanding in
the humans collaborating with such models [37]; 2) aid the detection of biased
views in a model the AI uses [131, 132]; 3) help identify situations in which the
model works adequately and responsibly [133, 134, 135]; 4) offer novel insights
in an underlying causal phenomena the model learned [32]; and 5) as a tool to
let engineers build better models and debug existing ones [136, 82].

The existing methods in Explainable AI (XAI) focus on different approaches to
obtain the information needed an explanation. See for example for an overview
the review papers of Guidotti et al. [39] and Chakraborty et al. [137]. A number
of examples of common methods are; ordering the features’ attributions on a
decision [138, 139, 140], saliency an attention feature maps [141, 142, 143, 144],
prototype selection, construction and presentation [145], word annotations [86,
146], and summaries with decision trees [147, 148, 149] or decision rules [150,
151, 152, 153]. In this chapter we focus on explaining the role and importance
of features on a single decision made by an AI given a tabular feature vector.
Such explanations tend to be long when based on all features or use an arbitrary
cutoff point to reduce the number of features in the explanation. Instead, we
propose a model-agnostic method to limit the explanation length with the help
of contrastive explanations. Not only offers a natural way to prevent information
overload, it also aims to explain the role the relevant features had, summarized
as decision rules.

Throughout this chapter, the main reason for explanations is to offer un-
derstanding in a machine learning model underlying an AI’s decision making or
support (i.e., a classification task). An understanding on which features played
a role in a decision and what that role was. A few methods that offer similar
explanations are LIME [140], QII [138], STREAK [154] and SHAP [155]. Each of
these approaches answers the question “Why this decision?” in some way by
quantifying the attribution to a single decision, either as a subset of features or
an ordered list of all features. However, when humans answer such questions
to each other they tend to limit their explanations to only few vital aspects [156].
Huysmans et al. [157] argues for something similar in XAI; when different explan-
ations apply we should pick the simplest explanation that is consistent with the
data. The aforementioned approaches do this by either thresholding the contri-
bution parameter to a fixed value, presenting all features as an ordered list or
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by applying it only to low-dimensional data.
This study offers a more human-like way of limiting the contributing features

by setting a contrast between two decisions. The proposed contrastive explana-
tions present only the information that causes some data point to have one de-
cision instead of another [59]. Recently, Dhurandhar et al. [158] proposed con-
structing explanations by finding contrastive perturbations—minimal changes
required to change a current decision to an arbitrary other decision. Instead, our
approach creates contrastive targeted explanations by first defining the altern-
ative decision of interest to a human. In other words, our generated contrastive
explanations answer the question “Why this decision instead of that decision?”.
The contrast is made between the fact, the current decision, and the foil, the
decision of interest.

A relative straightforward way to construct contrastive explanations given a
foil can be based on solely feature attributions. First the feature attributions for
the fact and foil decisions are computer, resulting in two ordered feature lists
associated to each. Then the ranking of a feature in each lists can be compared
and used to explain why one decision was made instead of another; because
some features play a larger role and other a smaller role. However, this does
not explain what that role was and featuresmay have the same rank in both lists
but have entirely different roles. We propose a more meaningful comparison by
comparing the approximate decision rule associated to each feature to decide
for either the foil or fact. To do so, we train a surrogate model to distinguish
between fact and foil in a more localized area of the input space. From that
model we distill two sets of rules; one used to identify data points as a fact and
the other to identify data points as a foil. Given these two sets, we subtract
the factual rule set from the foil rule set. This relative complement is used to
construct our contrastive explanation. See Figure 3.1 for an illustration.

Our proposed method obtains this complement by training a one-versus-
all decision tree to recognize the foil within a localized area of the input space
around the current data point. We refer to this decision tree as the Foil Tree.
Next, we identify the fact-leaf—the leaf in which the current data point resides.
Followed by identifying the foil-leaf, which is obtained by searching the tree with
some strategy. Currently our strategy is simply to choose the closest leaf to the
fact-leaf that classifies data points as the foil. The complement is then the set of
decision nodes (representing rules) that are a parent of the foil-leaf but not of
the fact-leaf. Rules that overlap are merged to obtain a minimum coverage rule
set. The rules are then used to construct our explanation.

Themethod is discussed inmore detail in Section 3.2. An example of its usage
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Figure 3.1: This figure illustrates our general idea of towards meaningful and targeted contrastive
explanations. Given a set of rules that define data points as either the fact or foil, we take
the relative complement of the fact rules in the foil rules to obtain a description how the
foil differs from the fact in terms of features and decision rules.

is discussed in Section 3.3 on three benchmark classification tasks. The valida-
tion on these three tasks show, compared to other methods, that the proposed
method constructs shorter explanations, provides more information on a fea-
ture’s role and that this contribution matches the underlying model closely.

3.2 Foil Trees; a way for obtaining contrastive explanations

Our method learns a decision tree centred around any queried data point, com-
monly the current data point. The decision tree is trained to locally distinguish
the foil-decision from any other decision, including the fact. We thus aim to re-
veal the decision boundary of the original AI through a one-versus-all classifica-
tion task between foil and non foil decisions. We solve this task by training a de-
cision tree, which allows a relatively straightforward description of the decision
boundary in terms of decision rules.

The tree’s training occurs on data points that can either be generated or
sampled from an existing data set, each labeled with predictions from themodel
it aims to explain. As such, our method is model-agnostic through the use of a
surrogatemodel. Similar to LIME [140], the sample weights of each generated or
sampled data point depend on its similarity to the data point in question. With
a Euclidean similarity, samples near the queried data point in the Euclidean fea-
ture space receive higher weights in training the tree. The purpose to this is to
ensure the trained decision tree is more likely to be faithful to the AI’s actual
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decision making closer to the queried data point.
Given this tree, the ‘Foil Tree’, we search for the leaf in which the queried

data point resides, the so called ‘fact-leaf’. This gives us the set of rules that
defines that data point not belonging to the foil. These rules respect the decision
boundary of the underlying model governing the AI’s decision making, as it is
trained to reflect these decisions albeit locally. Next, we use an arbitrary strategy
to locate the ‘foil-leaf’—for example the leaf that classifies data points as the foil
as close as possible to the fact-leaf within the tree. This results in two sets of
decision rules, whose relative complement define how the data point in question
differs from the foil data points as classified by the foil-leaf.

In summary, the proposed method goes through the following steps to ob-
tain a contrastive explanation:

1. Retrieve the fact; the decision of the queried or current data point.
2. Identify the foil; the decision explicitly given in the query or otherwise

derived (e.g. second most likely decision).
3. Generate or sample a local data set; either randomly sampled from an

existing data set, generated according to a normal distribution, marginal
distributions of feature values or similar.

4. Train a decision tree; in a weighted fashion based on a training point’s
similarity to the queried data point.

5. Locate the ‘fact-leaf’; the leaf in which the queried data point resides.
6. Locate a ‘foil-leaf’; the leaf that classifies data points as part of the foil

with the lowest number of decision nodes between it and the fact-leaf.
7. Compute differences; obtain the difference between the rules leading to

the fact- and foil-leaf. Rules regarding the same feature are combined to
form a single literal.

8. Construct explanation; the presentation of the differences between the
fact- and foil-leaf.

Figure 3.2 illustrates these steps. The search for the appropriate foil-leaf in
step 6 can vary. In Section 3.2.1 we discuss this more in detail. Finally, note that
the method is not symmetrical. There will be a different answer on the question
“Why decision A instead of B?” than on “Why decision B instead of A?” as the Foil
Tree is trained in the first case to classify decision B and in the second case to
classify decision A. This is because we treat the foil as the the decision of interest
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Figure 3.2: The steps needed to define and train a Foil Tree and to use it to construct a contrastive
explanation. Each step corresponds with the listed steps in Section 3.2.

to which we compare everything else. Even if the trees end up similar, their
relative complements will differ.

3.2.1 Foil-leaf strategies

We mentioned one strategy to find a foil-leaf, however multiple strategies are
possible—although not all strategies may result in a satisfactory explanation ac-
cording to the human. The strategy used in this study is simply the first leaf
that is closest to the fact-leaf in terms of number decision nodes, resulting in a
minimal length explanation.

A disadvantage of this strategy is its ignorance towards the value of the foil-
leaf compared to the rest of the tree. The nearest foil-leaf may be a leaf that
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classifies only a relatively few data points or classifies themwith a relatively high
error rate. To mitigate such issues the foil-leaf selection mechanism can be gen-
eralized to an acyclic graph-search from a specific (fact) vertex to a different (foil)
vertex while minimizing edge weights. The Foil Tree is treated as a graph whose
decision node and leaf properties influence some weight function. This gener-
alization allows for a number of strategies, and each may result in a different
foil-leaf. The strategy used in this preliminary study simply reduces to each edge
having a weight of one, resulting in the nearest foil-leaf when minimizing the
total weights.

As an example, an improved strategy may be where the edge weights are
based on the relative accuracy of a node or leaf. Where a higher accuracy results
in a lower weight, allowing the strategy to find more distant, but more accurate,
foil-leaves. This may result in relatively more complex and longer explanations,
which nonetheless hold in more general cases. For example the nearest foil-leaf
may only classify a few data points accurately, whereas a slightly more distant
leaf classifies significantly more data points accurately. Given the fact that an
explanation should be both accurate and fairly general, this proposed strategy
may be more beneficial in some cases [159].

Note that the proposed method assumes the knowledge of the used foil. In
all cases we take the second most likely decision as our foil. Although this may
be an interesting foil it may not be the contrast a human actually wants to make.
Either the human makes its foil explicit or we introduce a feedback loop in the
interaction that allows our approach to learn which foil is asked for in which
situations. We leave this for future work.

3.3 Validation

The proposed method is validated on three benchmark classification tasks from
the UCI Machine Learning Repository [160]; the Iris data set, the PIMA Indians
Diabetes data set and the Cleveland Heart Disease data set. The first data set is a
well-known classification task of plants based on four flower leaf characteristics
with a size of 150 data points and three classes. The second data set is a bin-
ary classification task whose task is to correctly diagnose diabetes and contains
769 data points and has nine features. The third data set is the classification of
four risk categories for heart disease, consisting of 297 data points and thirteen
features.

To show themodel-agnostic nature of our proposedmethod we applied four
distinct classification models to each data set; a random forest, a logistic classi-
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fier, a support vector machine (SVM) and a neural network. Table 3.1 shows
for each data set and classifier the F1 score of the trained model. We validated
our approach on four measures; explanation length, accuracy, faithfulness and
computation time. These measures for evaluating XAI decision rules are adap-
ted from Craven and Shavlik [159], where the mean length serves as a measure
for a rule-based explanation’s interpretability [33]. The faithfulness allows us to
state how well the tree explains the underlying model, and the accuracy tells us
how well its explanations generalize to unseen data points. Below we describe
each in detail:

1. Length; Mean length of the explanation in terms of decision nodes. The
ideal value is in the range [1.0, Nr. features). A length of zero would mean
that no explanation could be found. A length near or equal to the number
of features could become a complex and difficult to interpret explanation.

2. Accuracy; F1 score of the Foil Tree for its binary classification task on a test
set compared to the true labels. Higher values indicate a method capable
of generating explanations that apply to unseen data.

3. Faithfulness; F1 score of the Foil Tree on the test set compared to the
model’s outcome. This measure provides a quantitative value of how well
the Foil Tree agrees with the underlying classification model it tries to ex-
plain. Higher is better.

4. Time; Mean number of seconds needed to generate and explain an un-
seen data point. For explanations to be of practical use, they need to be
generated in a feasible amount of time.

Each measure is cross-validated three times to account for randomness in a
Foil Tree’s construction. The results are shown in Table 3.1. They show that on
average a Foil Tree is able to provide concise explanations, with a mean length
of 1.33, while accurately mimicking the decision boundaries used by the model
with amean faithfulness of 93% and generalizes well to unseen datawith amean
accuracy of 92%. The Foil Tree performs similar to the underlying ML model in
terms of accuracy. Note that for theDiabetes data set, the random forest, logistic
classification and SVMmodels, found explanations of length zero. In such a case,
differences in rule sets could be found, which resulted in a mean length of less
than one. For all other models our method was able to find a difference, and
thus explanation, for every queried data point.

To further illustrate the proposedmethod, belowwe present a single explan-
ation of two classes of the Iris data set in a dialogue setting;
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Data set Model F1 Score Length Accuracy Faith-
fulness

Time

Iris
RF 0.93 1.94 (4) 0.96 0.97 0.014
LR 0.93 1.50 (4) 0.89 0.96 0.007
SVM 0.93 1.37 (4) 0.89 0.92 0.010
NN 0.97 1.32 (4) 0.87 0.87 0.005

Diabetes
RF 1.00 0.98 (9) 0.94 0.94 0.041
LR 1.00 0.98 (9) 0.94 0.94 0.032
SVM 1.00 0.98 (9) 0.94 0.94 0.034
NN 1.00 1.66 (9) 0.99 0.99 0.009

Heart
Disease

RF 0.94 1.32 (13) 0.88 0.90 0.106
LR 1.00 1.21 (13) 0.99 0.99 0.006
SVM 1.00 1.19 (13) 0.86 0.86 0.012
NN 1.00 1.56 (13) 0.92 0.92 0.009

Table 3.1: Performance of Foil Tree explanations on the Iris, PIMA Indians Diabetes and Heart Dis-
ease classification tasks. ‘Length’ is the mean number of rules in each explanation with
the number of features in parenthesis as its upper bound. ‘Time’ is the mean number of
seconds to generate an explanation. The model abbreviations are; Random Forest (RF),
Logistic Classification (LR), Support Vector Machine (SVM) and Neural Network (NN).

• AI: The type of Iris you describe is a Setosa.
• Human: Why a Setosa instead of a Versicolor?
• AI: Because for it to be a Versicolor the petal width should be
smaller and the sepal width should be larger.

• Human: How much smaller and larger?
• AI: The petal width should be smaller than or equal to 0.8cm and
the sepal width should be larger than 3.3cm.

The fact is the ‘Setosa’ flower type, the foil is the ‘Versicolor’ flower type and
the total length of the explanation is two decision rules. The generation of this
small dialogue is based on text templates and fixed interactions for the user.

3.4 Conclusion

Current developments in Explainable AI (XAI) created new methods to answer
“Why decision A?”. Many XAI methods compute the amount with which each
feature can be attributed to the decision A. To prevent information overload,
often only a subset of features is communicated whose contribution is above
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a threshold, all attributions are communicated but as an ordered list, or the
method apply is applied only to cases with few features.

This chapter presented a novel method answer a contrasting query of the
form “Why decision A (fact) instead of decision B (foil)?” for an arbitrary data
point. This served as a natural way to reduce explanation length by only explain-
ing the decision contrast. Furthermore, instead of only conveying the features’
attributions we also aimed to convey a features role in the decision in the form
of its relevant decision rule.

Our method finds the contrastive explanation by taking the relative comple-
ment of decision rules for the fact with respect to the rules for the foil. In this
chapter we implemented this idea by training a decision tree to distinguish the
foil from all other decisions (a one-versus-all approach). A fact-leaf is selected as
the leaf in the tree in which the queried or current data point resides. Also, a foil-
leaf is selected according to some strategy that classified data points as the foil.
Overlapping rules are merged, and used to construct the actual explanation.

We introduced a strategy of finding a foil-leaf that minimizes explanation
length. An weighted acyclic graph-search approach was suggested as a generic
way to describe various strategies. In this chapter we evaluated if the proposed
method is viable on three different benchmark task. In addition, the method’s
faithfulness on different underlying models to show its model-agnostic capacity.
The results showed that for different classifiers our method is able to offer con-
cise explanations that accurately describe the decision boundaries of the model
it explains.
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CHAPTER 4

CONTRASTIVE EXPLANATIONS FOR
REINFORCEMENT LEARNING

This chapter is adapted from; van der Waa, J., van Diggelen, J., van den Bosch,
K., & Neerincx, M. (2018). Contrastive explanations for reinforcement learning in
terms of expected consequences. Proceedings of the Workshop on Explainable AI,
International Joint Conference of Artificial Intelligence. The adaptations include an
altered abstract, shortened introduction, and an adjusted lay-out, including the
formatting of figures and tables.
Jasper van der Waa, Jurriaan van Diggelen, Karel van den Bosch, Mark Neerincx
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While machine learning is used in AI agents that makes or advises on decisions,
it is also used for agents to plan their behaviour, known as reinforcement learn-
ing (RL), a form of unsupervised trial-and-error learning. As the capabilities of RL
agents grow, so does their complexity, which hinders human trust and accept-
ance. Within this chapter, we propose amethod that lets RL agents generate con-
trastive explanations. The method aims to explain the differences in expected
and exemplar state transitions and outcomes between the agent’s determined
policy of behaviour and a policy of interest, derived from a human query (e.g., an
explicit question or interface interaction for more information). The method can
be applied to the next determined action or to an entire policy ofmany future ac-
tions. It also accounts for a translation between the agent’s perceived states and
actions and conceptions of these that are interpretable to humans. This inform-
ation is to support the interpretability of the eventual contrastive explanation for
whichwe offer a textual template. A pilot human studywas conducted to explore
human preferences for different properties of explanation. The results indicate
that humans tend to favour explanations of an entire policy of behaviour rather
than of the next single action.
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4.1 Introduction

Compared to other machine learning approaches such as classification, receive
reinforcement learning (RL) agents little attention in Explainable AI [39, 161, 162,
150]. Even though some of themost impressive results in AI rely on such agents,
such as AlphaGo defeating the reigning human champions in Go. Due to the
intrinsic different nature of RL compared to other approaches, many of the ex-
planation generating methods that are model-agnostic do not readily apply to
RL.

The scarcity of methods for RL agents to explain their actions towards hu-
mans severely hampers the practical applications of RL. It also diminishes the
value of RL to Artificial Intelligence [150, 163]. Take for example a simple agent
within a grid world that needs to reach a goal position while evading another
agent and traps. At present, even such a simple RL agent cannot easily explain
why it takes the route it has learned. For instance, because the agent is only
aware of numerical rewards, its coordinates in the grid and distance to the other
agent. The agent has no grounded knowledge about the other ‘evil’ agent that
tries to prevent it from reaching its goal nor has it knowledge how certain ac-
tions will effect such grounded concepts. Present day RL agents tend to learn
and make use of abstract state features and rewards. This is what drives them
and their success, but do not lend themselves for an explanations. Often con-
cepts useful for a RL agent are very difficult to understand for a human. There
is a need to translate the RL agent’s perceptions and reasoning into a more in-
terpretable manner and formulate an explanation on its behaviour.

Important pioneering work has been done by Hayes and Shah [78]. They
developed a method for explainable Reinforcement Learning that can generate
explanations about a learned policy in a way that is understandable to humans.
Their method converts state feature vectors to a list of predicates by using a
set of binary classification models. This list of predicates is searched to find
sub-sets that tend to co-occur with specific actions. The method provides in-
formation about which actions are performed when certain predicates hold. A
method that uses the co-occurrence to generate explanations may be useful for
small problems, but becomes less comprehensible in larger planning and control
problems. Simply due to the combinatorial explosion of predicates and action
combinations. Also, the method addresses only what the agent does, and not
why it acts as it does. In other words, the method presents the human with the
correlations between states and the policy but it does not provide a motivation
why that policy is used in terms of rewards or state transitions.
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This chapter proposes a method that allows a RL agent to answer questions
about its actions and policy in terms of their consequences. Other questions
unique to RL are also possible, for example those that ask about the time it
takes to obtain some goal. However we believe that laymen in RL are mostly
interested in the expected consequences of the agent’s learned behaviour and
the agent’s appraisal of those consequences. This information can be used as an
argument why the agent behaves in someway. This would allow humans to gain
insight in what information the agent can perceive from a state and which out-
comes it expects from an action or state visit. Furthermore, to limit the amount
of information of all consequences, our proposed method aims to support con-
trastive explanations [68].

Contrastive explanations are a way of answering causal ’why’-questions. In
such questions, two potential items, the fact and foil, are compared to each other
in terms of their causal effects on the world. Contrastive questions come natural
between humans and offer an intuitive way of gathering motivations about why
one performs a certain action instead of another [68]. In our case we allow the
human to formulate a question of why the learned policy πt (the ’fact’) is used
instead of some other policy πf (the ’foil) that is of interest to the human. Fur-
thermore, our proposed method translates the set of states and actions in a set
ofmore descriptive state classesC and action outcomesO similar to thework by
Hayes and Shah [78]. This allows the human to query the agent in amore natural
way as well as receive more informative explanations as both refer to the same
concepts instead of plain features. The translation of state features to more
high-level concepts and actions in specific states to outcomes, is also done in
the proposed algorithm of Sherstov et al. [164]. The translation in this algorithm
was used to facilitate transfer learning within a single action over multiple tasks
and domains. In our method we used it to create a human-interpretable variant
of the underlying Markov Decision Problem (MDP).

For the purpose of implementation and evaluation of our proposed method,
we performed a pilot study. In this study, a number of examples of various ex-
planation forms were presented to participants to see which they preferred. For
instance, two forms differed between addressing the next action or the entire
policy.

4.2 Method for consequence-based explanations

The underlying Markov Decision Problem (MDP) of a RL agent consists of the
tuple 〈S,A,R, T, λ〉. Here, S and A are respectively the set of states described
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by a feature vector and actions. R : S × A → R is the reward function and
T : S×A→ Pr(S) the transition function that provides a probability distribution
over states. λ is the discount factor that governs how future rewards are scaled.
This tuple provides the required information to derive the consequences of the
learned policy πt or the foil policy πf specified by a human’s query. We refer to
these sets of consequences as γ and γf for the fact and foil policies respectively.

Identifying the consequences γ and γf relies on simulating πt and πf by
sampling the transition function T with the current state st ∈ S as starting point.
In the case T is not a given, one may use a separate ML model to learn in paral-
lel to the learning process of the agent. Through this simulation, one constructs
a Markov Chain of state visits under each policy πt and πf and can present the
difference to the human as a contrastive explanation.

Through the simulation of future states with T , information can be gathered
about state consequences. In turn, from the agent itself the state or state-action
values for simulated state visits can be obtained to develop an explanation in
terms of rewards. However, the issue with this approach is that the state fea-
tures and rewards may not be easy to interpret for a human as it would consist
of possibly low-level concepts and numerical reward values. To mitigate this is-
sue we can apply a translation of the states and actions to a set of predefined
state concepts and outcomes. These concepts can be designed to be more de-
scriptive and informative for the potential human. A way to do this translation is
by training a set of binary classifiers to recognize each outcome or state concept
from the state features and taken action. Their training can occur during the ex-
ploratory learning process of the agent. This translation can be combined with
a policy simulation to arrive at a more human-interpretable contrastive explan-
ation.

4.2.1 A human-interpretable MDP

The original set of states can be transformed to a more descriptive set C ac-
cording to the function k : S → C. This is similar to the approach of Hayes and
Shah [78] where k consists of a number of classifiers. Also, rewards can be ex-
plained in terms of a set of previously specified action outcomes O according to
t : C×A→ Pr(O). This provides the results of an action in some state in terms
of the concepts O. For example, the outcomes that the developer had in mind
when designing the reward function R. The combined translation of states and
actions in outcomes is adopted from the work of Sherstov et al. [164]. In their
work the transformations are used to allow for transfer learning in RL. Here how-
ever, we use them as a translation towards a more human-interpretable repres-
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Figure 4.1: An overview of the proposed method. A dotted line represents the start of a new in-
stance of a feedback loop. We assume a general reinforcement learning agent that acts
upon a state s through some action a and receives a reward r. We continuously train
a transition model T on the agent’s transitions. This T is used to simulate the effect of
actions on states. By repeatedly sampling a potential next state si from T , we can obtain
the expected consequences γ of an entire policy. In a similar way we obtain the expected
consequences γf by sampling transitions using a constrastive behaviour policy. Finally, in
constructing the explanation we transform the consequences into human-interpretable
concepts and construct an explanation.

entation of the actual MDP.
The result is the new MDP tuple 〈S,A,R, T, λ,C,O, t,k〉. An RL agent is still

trained on S,A,R and T with λ independent of the descriptive setsC andO and
functions k and t. This makes the translations independent of the RL algorithm
used to train the agent. See Figure 4.1 for an overview of this approach.

As an example take the grid world illustrated in Figure 4.2 that shows an
agent in a simple myopic navigation task. The states S are the (x, y) coordin-
ates and the presence of a forest, monster or trap in adjacent tiles with A =
{Up,Down, Left,Right}. R consists of a small transient penalty, a slightly larger
penalty for tileswith a forest, a large penalty shared over all terminal states (traps
or adjacent tiles to a monster) and a large positive reward for the finishing state.
T is skewed towards the intended result with small probabilities for the other
results if possible.
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Figure 4.2: A simple RL problemwhere the agent has to navigate from the bottom left to the top right
while evading traps, a monster and a forest. The agent terminates when in a tile with a
trap or adjacent to the monster. The traps and the monster only occur in the red-shaded
area and as soon as the agents enter this area the monster moves towards the agent.

The state transformation k can consist out of a set of classifiers for the pre-
dicates whether the agent is next to a forest, a wall, a trap or monster. For ex-
ample; NearForest (st = (1, 3)) or NearMonster (st = (3, 6)). Applying k to some
state s ∈ S results in a Boolean vector c ∈ C whose information can be used to
construct an explanation in terms of the stated predicates.

The similar outcome transformation t may predict the probability of the out-
comesO given a state and action. In our example,O could consist ofwhether the
agent will be at the goal, in a trap, next to the monster or in the forest. Each out-
come o can be flagged as being positive o+ or negative o− based on the received
reward. This allows them to be addressed as such in the eventual explanation.

Given the above transformations we can sample the next state of a single
action a with T or even the entire chain of actions and visited states given some
arbitrary policy π. These can then be transformed into state descriptions C and
action outcomes O to form the basis of an explanation. As mentioned, humans
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usually ask for contrastive questions especially regarding their actions [68]. In
the next section we propose a method of translating the foil in a contrastive
question into a new policy.

4.2.2 Contrastive questions translated into value functions

A contrastive question consists of a fact and a foil, and its answer describes the
contrast between the two from the fact’s perspective [68]. In our case, the fact
consists of the entire learned policy πt, the next action from it at = πt(st) or
given number of consecutive actions from πt. We propose a method of how one
can obtain a foil policy πf derived from a human’s query. An example of such a
question could be (framed within the case of Figure 4.2);

"Why do you move up and then right (fact) instead of moving to the
right until you hit a wall and then move up (foil)?"

The foil policy πf is ultimately obtained by combining a state-action value
function QI – that represents the human’s preference for some actions accord-
ing to his/her question – with the learned Qt to obtain Qf ;

Qf (s, a) = Qt(s, a) +QI(s, a), ∀s, a ∈ S ×A (4.1)
Given that Q : S ×A→ R.
QI only values the state-action pairs queried by the human. For instance, the

QI of the above given question can be based on the following reward scheme
for all potentially simulated s ∈ S;

– If ‘RightWall’ ∈ k(s), then a1
f = ‘Up’ receives a reward such thatQf (s,Up) >

Qt(s, πt(s)).
– Otherwise, a2

f = ‘Right’ receives a reward such that Qf (s,Right) >
Qt(s, πt(s))

Given this reward scheme we can obtainQf according to Equation (4.1). The
state-action valuesQf can then be used to obtain the policy πf using the original
action selection mechanism of the agent. This results in a policy that tries to fol-
low the queried policy as best as it can. The advantage of having πf constructed
from Qf is that the agent is allowed to learn a different action then those in the
human’s question as long as it approximates it sufficiently. For instance, instead
of moving to the right in trap the agent could try and evade the trap so it can
move more to the right. Also, it allows for the simulation of the actual expected
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behaviour of the agent as it is still based on the agent’s action selection mech-
anism. Both would not be the case if we simply forced the agent to do exactly
what the human stated.

The construction ofQI is done through simulation with the help of the trans-
itionmodel T . The rewards that are given during the simulation are selectedwith
Equation (4.1) in mind, as they need to eventually compensate for the originally
learned action based onQt. Hence, the reward for each state and queried action
is as follows;

RI(si, af ) = λf
λ
w(si, st) [R(si, af )−R(si, at] (1 + ε) (4.2)

With at = πt(st) the originally learned action and w being a distance based
weight;

w(si, st) = e
−
(
d(si,st)

σ

)2 (4.3)
First, si with i ∈ {t, t + 1, ..., t + n} is the i’th state in the simulation starting

with st. af is the current foil action governed by the conveyed policy by the hu-
man. The fact that af is taken as the only rewarding action each time, greatly
reduces the time needed to construct QI . Next, w(si, st) is obtained from a Ra-
dial Basis Function (RBF) with a Gaussian kernel and Euclidean distance function
d. This RBF represents the exponentially decreasing distance between our ac-
tual state st and the simulated state si. The Gaussian kernel is governed by the
standard deviation σ and allows us to reduce the effects of QI as we get fur-
ther from our actual state st. The ratio of discount factors λf

λ allows for the
compensation between the discount factor λ of the original agent and the po-
tentially different factor λf for QI if we wish it to be more shortsighted. Finally,
[R(si, af )−R(si, at)] (1 + ε) is the amount of reward that af needs such that
QI(si, af ) − Q(si, at) = ε. With ε > 0 that determines how much more QI will
prefer af over at.

The parameter n defines how many future state transitions we simulate and
are used to retrieve QI . As a general rule n ≥ 3σ as at this point the Gaussian
kernel will reduce the contribution ofQI to near zero such thatQf will resemble
Qt. Hence, by setting σ one can vary the number of states the foil policy should
starting from st. Also, by setting ε the strength of how much each af should
be preferred over at can be regulated. Finally, λf defines how shortsighted QI
should be. If set to λf = 0, πf will force the agent to perform af as long as si is
not to distant from st. If set to values near one, πf is allowed to take different
actions as long as it results into more possibilities of performing af .
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4.2.3 Generating explanations

At this point we have the human-interpretable MDP consisting of state concepts
C and action outcomes O provided by their respective transformation function
k and t. Also, we have a definition ofRI that values the actions and/or states that
are of interest by the human which can be used to obtainQI through simulation
and Qf according to Equation (4.1). This provides us with the basis of obtaining
the information needed to construct an explanation.

As mentioned before, the explanations are based on simulating the effects
with T of πt and that of πf . We can call T on the previous state si−1 for some
action π(si−1 to obtain si and repeat this until i == n. The result is a single
sequence or trajectory of visited states and performed actions for any policy π
starting from st;

γ(st, π) = {(s0, a0), ..., (sn, an) | T, π} (4.4)
If T is stochastic, multiple simulations with the same policy and starting state

result in different trajectories. To obtain the most probable trajectory γ∗(st, π)
we can take the transition from T with the highest probability. Otherwise a
Markov chain could be constructed through sampling instead of a single traject-
ory.

The next step is to transform each state and action pair in γ(st, π)∗ to the
human-interpretable description with the functions k and t;

Path(st, π) = {(c0, o0), ..., (cn, on)} , (4.5)
ci = k(si), oi = t(si, ai), (si, ai) ∈ γ∗(st, π)

From Path(st, πt) an explanation can be constructed about the state the
agent will most likely visit and the action outcomes it will obtain. For example
with the use of the following template;

“For the next n actions I will mostly perform a. During these actions, I
will come across situations with ∀c ∈ Path(st, πt). This will cause me
∀o+ ∈ Path(st, πt) but also ∀o− ∈ Path(st, πt).”

Let a here be the action most common in γ(st, πt) and both o+ and o− the
positive and negative action outcomes respectively. Since we have access to the
entire simulation of πf , a wide variety of explanations is possible. For instance
we could also focus on the less common actions;
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“For the next n actions I will perform a1 when in situations with ∀c ∈
Path(st, πt|πt = a1) and a2 when in situationswith∀c ∈ Path(st, πt|πt =
a2). These actions prevent me from ∀o+ ∈ Path(st, πt) but also
∀o− ∈ Path(st, πt).”

A contrastive explanation given somequestion from thehuman that describes
the foil policy πf can be constructed in a similar manner but take the contrast.
Given a foil we can focus on thedifferences betweenPath(st, πt) andPath(st, πf ).
This canbeobtainedby taking the relative complementPath(st, πt)\Path(st, πf );
the set of expected unique consequenceswhenbehaving according toπt andnot
πf . A more extensive explanation can be given by taking the symmetric differ-
ence Path(st, πt)4Path(st, πf ) to explain the unique differences between both
policies.

4.3 Human study

The above proposedmethod allows a RL agent to explain andmotivate its beha-
viour in terms of expected states and outcomes. It also enables the construction
of contrastive explanations where any policy can be compared to the learned
policy. This contrastive explanation is based on differences in expected out-
comes between the compared policies.

We performed an online human pilot study in which 82 participants were
shown a number of exemplar explanations about the case shown in Figure 4.2.
These explanations addressed either the single next action or the policy. Both ex-
planations can be generated by the above method by adjusting the Radial Basis
Functionweighting scheme and/or the foil’s discount factor. Also, some example
explanations were contrastive with only the second best action or policy, while
others provided all consequences. Contrasts were determined using the relat-
ive complement between fact and foil. Whether the learned action or policy was
treated as the fact or foil, was also systematically manipulated in this chapter.

We presented the developed exemplar explanations in pairs to the parti-
cipants and asked them to select the explanation that would help them most to
understand the agent’s behaviour. Afterwards we asked which of the following
properties they used to assess their preference: long versus short explanations;
explanations with ample information versus little information; explanations ad-
dressing actions versus those that address entire behaviour policies; and explan-
ations addressing short-term consequences of actions versus explanations that
address the long-term consequences.
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Figure 4.3: A plot depicting the percentage of participants (y-axis) preferring which explanation prop-
erty (x-axis) the most over others. Answers of a total of 82 participants where gathered.

The results of the preferred factors are shown in Figure 4.3. This shows that
the participants prefer explanations that address a policy that provide ample in-
formation. We note here that, given the simple case from Figure 4.2, participants
may have considered an explanation addressing a single action only as trivial,
because the optimal action was, in most cases, already evident to the human.

4.4 Conclusion

We proposed a method for a reinforcement learning (RL) agent to generate ex-
planations for its actions and strategies. The explanations were based on the ex-
pected consequences of its policy. These consequences were obtained through
simulation according following a state transitionmodel. Since state features and
numerical rewards do not lend themselves easily for an explanation that is in-
formative to humans, the method supports the translation of states and actions
into human-interpretable concepts and outcomes.

We also proposed a method for converting the foil, an alternative policy of
interest to the human, within a contrastive ‘why this instead of that?’ ques-
tion about actions into a policy. This simulated policy attempts to approximate
the human’s intent and gradually transgresses back towards its original learned
policy as time progresses. How much is approximated and when the queried
policy fades can each be set with a single parameter.

Through running simulations for a given number steps of both the policy de-
rived from the human’s question and the actually learned policy, we were able
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to obtain expected consequences of each. From here, we were able to con-
struct contrastive explanations: explanations addressing the consequences of
the learned policy and what would be different if the derived policy would have
been followed.

An online survey pilot study was conducted to explore which of several ex-
planations are most preferred by humans. Results indicate that humans prefer
explanations about policies rather than about single actions.
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Measuring and explaining decision confidence

CHAPTER 5

MEASURING AND EXPLAINING
DECISION CONFIDENCE

This chapter is adapted from; vanderWaa, J., Schoonderwoerd, T., vanDiggelen,
J., &Neerincx, M. (2020). Interpretable confidencemeasures for decision support
systems. International Journal of Human-Computer Studies, 144:102493. The ad-
aptations include an altered abstract, shortened introduction, and an adjusted
lay-out, including the formatting of figures and tables.
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The previous chapters discussed how explanations improve human understand-
ing andhow to generate them for diverse types of AI agents. An oft-cited purpose
of this understanding is that humans can determine whether the AI’s decisions
can be trusted. In this chapter, we propose a more specific use of explanations
to support such calibration of trust: computing an AI agent’s confidence in an
interpretable manner and explain that computation. We define such computed
confidences and their explanations as interpretable confidence measures (ICM).
In two human studieswe investigatewhat properties should define an ICM: 1) ac-
curacy, 2) transparency, 3) explainability and 4) predictability. Case-based reas-
oning is presented as a method to compute such confidence measures, and
exemplar implementations are proposed and evaluated on several data sets.
The results show that ICM can be as accurate as common confidence measures,
while behaving more predictably. The ICM’s underlying idea of case-based reas-
oning enables an AI to explain the computation of the confidence value and fa-
cilitates a human’s ability to interpret the algorithm.
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5.1 Introduction

The successes in Artificial Intelligence (AI), Machine Learning (ML) in particular,
caused a boost in the accuracy and application of intelligent decision support
systems (DSS). They are used in lifestyle management [165], management de-
cisions [166], genetics [167], national security [168], and in prevention of envir-
onmental disasters in the maritime domain [169]. In these high-risk domains, a
DSS could be beneficial as it can reduce human workload, and increase task per-
formance. However, the complexity of current DSS (e.g., those based on Deep
Learning) impedes a humans’ understanding of a given advice, often resulting
in too much or too little trust in the system, which can have catastrophic con-
sequences [170, 171].

The field of Explainable AI (XAI) researches how a DSS can improve a hu-
man’s understanding of the system by generating explanations about its beha-
viour [68, 59, 172, 173, 39]. More specifically, the goal of these explanations is
to increase understanding of the system’s rationale and certainty of an advice
that it provides [126, 42, 174]. It is hypothesized that the understanding that a
human gains from these explanations facilitates adequate use of the DSS [61],
and calibrates the human’s trust in the system [175, 176, 177].

Although understanding of the system can help humans to decide when to
follow the advice of a DSS, it is often overlooked that a confidence measure can
achieve the same effect [43]. In this paper, we define a confidence measure as
a measure that provides an expectation that an advice will prove to be correct
(or incorrect). To help develop such measures, we introduce the Interpretable
Confidence Measure (ICM) framework. The ICM framework assumes that a con-
fidence measure should be 1) accurate, 2) able to explain a single confidence
value, 3) use a transparent algorithm and 4) providing confidence values that are
predictable for humans (see Figure 5.1).

To illustrate the ICM framework, we will define an example ICM. We evalu-
ated its accuracy, robustness and genericity on several classification tasks with
differentmachine learningmodels. In addition, we applied the concept of an ICM
on the use case of Dynamic Positioning (DP) within the maritime domain [169].
Here, a human operator supervises a ship’s auto-pilot while receiving assistance
from a DSS that provides a warning when human intervention is deemed neces-
sary (e.g. based on weather conditions). It can be catastrophic if the operator
fails to intervene in time. For example, an oil tanker might spill large amounts
of oil in the ocean, because the operator failed to intervene to prevent the ship
from rupturing its connection to an oil rig. This use case provided a realistic data
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Figure 5.1: The four properties of an Interpretable Confidence Measure to perform effective trust
calibration.

set to evaluate our example ICM, as well as a context for a qualitative usability
study with these operators. In that study, we evaluated the transparency and
explainability properties of the ICM framework. To further substantiate these
results, we performed a quantitative online human study in the context of self-
driving cars.

We provide the ICM framework in Section 5.3, describe our example ICM in
Section 5.4, our evaluations on the data sets in Section 5.4.1, and the two human
studies in Section 5.5 and 5.6. The next Section presents related work in the
field of XAI and confidence measures in Machine Learning, which defines many
current DSS.

5.2 Related work

Explainable AI (XAI) researches how we can improve the human’s understanding
in a DSS to reach an appropriate level of trust in its advice [68, 59, 37, 172, 173].
For example by allowing humans to detect biases [178, 33, 179, 180]. Some XAI
research focuses on these aspects from a societal perspective, trying to identify
how intelligent systems should be implemented, when they should be used, and
who should regulate them [180, 32, 181, 33]. Other researchers approach the
field from amethodological perspective, and aim to develop methods that solve
the potential issues of applying intelligent systems in society. See for example
the overview of methods from Guidotti et. al [39].

To generate explanations, many XAI methods use a meta-model that de-
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scribes the actual system’s behaviour in a limited input space surrounding the
to be explained data point [140]. It only has to be accurate in this local space
and can thus be less complex and more explainable than the actual system. A
disadvantage of these approaches is that themeaningfulness of the explanation
is dependent on the size of the local space and the brittleness of the used meta-
model. When it is too small, the explanation cannot be generalized, and when it
is too large, the explanation may lack fidelity. The advantage is that these meth-
ods can be applied to most systems (i.e. they are system- or model-agnostic).
A second advantage is that the fidelity of explanations can be measured, since
themeta-model’s ground truth is the output of the system, which is readily avail-
able. This can be exploited to measure a meta-model’s accuracy through data
perturbation. In our proposed ICM framework, we apply the idea of system-
agnostic local meta-models to obtain an interpretable confidence measure, not
a post-hoc explanation of an output.

Confidencemeasures allowDSS to conveywhen an advice is trustworthy [43].
However, a human’s commitment to follow a DSS’ advice is linked to his or her
own confidence and that conveyed by the DSS [182]. A confident human con-
fronted with a low system confidence reduces the human’s confidence in his
or herself, and vice versa. The works from Ye et. al [88] and Waterman [183]
show that this can be mitigated by explaining the DSS’ confidence value by us-
ing a transparent algorithm. The work from Walley [184] shows humans tend
to change their confidence when evidence for a correct or incorrect decision
is gained or lost. Humans expect the same predictable behaviour from a DSS’
confidence measure. Hence, it should not only be transparent with explainable
values but also behave predictable for humans.

Current DSS are often based on Machine Learning (ML). Different categor-
ies of confidence measures can be identified from this field, see Table 5.1 for
an overview. The first, confusion metrics such as accuracy and the F1-score, are
based on the confusion matrix. These tend to be transparent and predictable
but lack accuracy and explainability for conveying the confidence of a single ad-
vice [185, 190]. A ML model’s prediction score such as the SoftMax output of a
Neural Network, are also common as confidence measures. They represent the
model’s estimated likelihood for a certain prediction [191]. They are highly accur-
ate but their transparency and explainability is often low [34, 192]. Furthermore,
these measures tend to behave unpredictable as small changes in a data point
can cause non-monotonic increases or decreases in the confidence value [193,
194]. In rescaling such as with Platt Scaling [187] or Isotonic Regression [195,
196], the prediction scores are translated into more predictable and accurate
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Category
Property Confusion

metrics
Prediction
scores

Rescaling Probability Voting

Accurate - + + + +
Predictable + - + - -
Transparent + - - - -
Explainable - - - + +
Example F1-score

[185]
SoftMax
[186]

Platt
Scaling
[187]

RVM [188] Random
Forest
[189]

Table 5.1: Categories and examples of commonly used confidence measures in Machine Learning
and if their adherence to the four properties of an ICM.

values [197, 198]. However, these are used to enable post-processing and not
intended to be explainable or transparent [199]. Some ML models are inher-
ently probabilistic and output conditional probability distributions over its pre-
dictions. Examples are Naive Bayes [200], the Relevance Vector Machine [188]
and using neuron dropout [201] or Bayesian inference [202, 203, 204] on trained
Neural Networks. Although they are accurate, they are also opaque and diffi-
cult to predict as conditional probabilities are difficult to comprehend by hu-
mans [205, 206]. There are efforts to make such values more explainable for
specific model types, see for example Qin et. al [207] and Ridgeway et. al [173].
Finally, ML models are known to use voting to arrive at a confidence value [208,
209, 210]. Known examples are Random Forest, Decision Trees and ensembles
of Decision Stumps [211]. These confidence values can be explained through ex-
amples [212]. However, their algorithmic transparency depends on the model
and their values tend to change step-wise given continuous changes to the input,
making them hard to predict by humans.

As can be seen in Table 5.1, neither category is accurate, predictable, explain-
able and transparent in aDSS context. A likely reason is that the purpose of these
measures is to convey performance of a ML model to a developer, not the con-
fidence of a DSS in an advice to a human. As a consequence, many of these
measures are tailored to work for a specific or subset of model types. Only the
confusion metrics of these categories are system-agnostic. In the next section
we propose a system agnostic approach to confidencemeasures based on case-
based reasoning that are not only as accurate as the above describedmeasures,
but also transparent, explainable and predictable.
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5.3 A framework for Interpretable Confidence Measures

In this sectionwepropose a framework to create Interpretable ConfidenceMeas-
ures (ICM) that are not only accurate in their confidence assessment, but whose
values are predictable as well as explainable based on a transparent algorithm.
The ICM framework relies on a system-agnostic approach and performs a re-
gression analysis with the correctness of an advice as the regressor. It does so
based on case-based reasoning.

Case-based reasoning or learning provides a prediction by extrapolating la-
bels of past cases to the current queried case [213]. The basis of many case-
based reasoning methods is the k-Nearest Neighbours (kNN) algorithm [214].
This method follows a purely lazy approach [215]. When queried with a novel
case, it selects the k most similar cases from a stored data set and assigns the
case with a weighted aggregation of the neighbour’s labels. The advantage of
case-based learning methods is that its principle idea is closely related to that of
human decision making [216, 217, 218]. This makes such algorithms easier to
understand and interpret [219]. In addition, they allow for example-based ex-
planations of a single prediction [220]. These properties are exploited in the ICM
framework to define a confidence measure as performing a regression analysis
with case-based reasoning.

5.3.1 The ICM framework

In this section we formally describe the ICM framework. We assume the DSS as a
function f : Rl → Y that assigns an advice y ∈ Y to data points ~x of l dimensions.
It does this with a certain accuracy relative to the ground truth or label y∗ ∈ Y.
An ICM goes through four steps to define the confidence value C(~x) for ~x: 1) an
update step, 2) a selection step, 3) a separation step, and 4) a computation step.
Below we discuss these steps, and an overview is shown in Figure 5.2.

In the first step, the update, a memoryD = {(~x1, y
∗
1), ..., (~xn, y∗n)} is updated.

This D forms the set of cases from which the confidence is computed. Given
an update procedure u and new data-label pairs (~x, y∗), an ICM continuously
updates this memoryD′ = u ((~x, y∗) , D) such that |D| = n. This ensures thatD
adapts to changes in the DSS over time. The initialD is initialized with a training
set but is expanded and replaced with novel pairs during DSS usage. The size of
D is fixed to n, and maintained by u. Examples of u can be as simple as a queue
(newest in, oldest out) or based on more complex sampling methods (e.g. those
that take the label and data distributions into account).

In the selection step a setS is sampled fromD such thatS = s(~x, y|D), where s
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Figure 5.2: A visual depiction of the ICM framework and its four steps for computing the confidence
value C for a data point ~x and advice y. Given a continuously updated data set D, set S
is selected containing relevant data-label pairs. This S is separated in S+ and S− with
the points that show y is correct or incorrect respectively. The confidence value C(~x) is
computed using S+ and S−.

is some selection procedure. The purpose of s is to select all relevant data-label
pairs to define the ICM’s confidence value for the current (~x, y). For example,
following kNN, the k closest neighbours to ~x can be selected based on a similarity
or distance function.

In the separation step, S is split into S+ and S− based on the current (~x, y).
The S+ contains all (~x, y∗) where y = y∗, with S− = S\S+. In other words,
S+ contains all data points whose advice was similar to the current advice and
correct. The S− contains all data points with a different correct advice.

In the computation step, the S+ and S− are used to calculate the confidence
value C(~x|S+, S−) with a weighting scheme w : Rl → R (often abbreviated as
C(~x):

C(~x | S+, S−) = Z(~x|S)−1
∑
~xi∈S+

w(~x, ~xi)−
∑

~xj∈S−
w(~x, ~xj) (5.1)

The weights w represent how much a data point in S+ or S− influences the
confidence of the advice for ~x. Again, taking kNNas an example, thew can simply
contain a delta-function to ‘count’ the number of points in S+ and S−. Although,
more complex weighting schemes are possible and advised. The Z−1 is a nor-
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malization factor:
Z(x)−1 = 1∑

~xi∈S w(~x, ~xi)
(5.2)

This ensures that the confidence value is bounded; C ∈ [−1, 1], with −1 and
+1 denoting the confidence that some y would prove to be incorrect or correct
respectively. Intermediate values represent the surplus of available evidence for
a correct or incorrect advice relative to all available evidence. For example, when
C(~x) = −0.5 there is 50% surplus evidence that the advice y will be incorrect,
relative to all available evidence. What constitutes as ‘evidence’ is determined by
s to select relevant past data-label pairs and the weighting scheme w to assign
their relevance. An ICM allows w and s to be any weighting scheme or selection
procedure. Following other case-based reasoning methods, w and s often use a
similarity or distance measure (e.g. Euclidean distance).

5.3.2 The four properties of ICM

In this sectionwe explain why the above proposed ICM framework results in con-
fidence measures that are not only accurate, but also predictable, transparent
and explainable.

Accurate. We define the accuracy of a confidence measure as its ability to
convey a high confidence for either a correct or incorrect advice, when the advice
is indeed correct or incorrect. For an ICM, this can be defined as:

a = 1
|D|

|D|∑
i=0

δ (~xi, y∗i , C(~xi)) (5.3)
Where δ is the Kronecker delta, with δ = 1 when f(~x) = y∗ and C(x) ≥ 0, or

when f(~x) 6= y∗ andC(x) < 0. Overall, case-based reasoningmethods are often
accurate enough for realistic data sets [221]. However, the accuracy depends on
the choice for the selection procedure s and weighting schemew. If one chooses
a simple kNN paradigm, one may expect a lower accuracy then when using a
more sophisticated s and w. More complex options could include learning a
complex similarity measure [186]. This potentially increases the accuracy, but at
the cost of ICM’s transparency and predictability.

Predictable. A confidence measure should behave predictable; it should
monotonically increase or decrease whenmore evidence or data becomes avail-
able for an advice being correct or incorrect respectively. For an ICM to be pre-
dictable, it must use a monotonic similarity function. Any step-wise or non-
monotonic similarity function creates confidence values that suffer fromchanges
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that are unexpected for humans. In addition, with the update procedure u an
ICM adjusts its confidence according to any changes in the data distribution or
DSS itself.

Transparent. An ICM is transparent; its algorithm can be understood relat-
ively easily by humans. Case-based reasoning is often applied by humans them-
selves [216]. This makes the idea of an ICM, recall past data-label pairs and ex-
trapolate those to the current data point into a confidence value, relatively easy
to comprehend. A deeper understanding of the algorithm may be possible, but
depends on the complexity of the similarity measure, the selection procedure s
and weighting scheme w.

Explainable. The confidence of an ICM can be easily explained using ex-
amples as selected from S+ and S−. It allows for a template-based explanation
paradigm, for example:

“I am C(~x) confident that y will be correct based on |S| past cases
deemed similar to ~x. Of these cases, in |S+| cases the advice y was
correct. In |S−| cases the advice y would be incorrect.”

These cases can then be further visualized through an interface, for example
with a parallel-coordinates plot [222]. Such plots provide a means to visualize
high-dimensional data and convey the ICM’s weighting scheme. They allow hu-
mans to identify if the selected past data points and their weights make sense
and evaluate if what the ICM constitutes as evidence should indeed be treated
as such. It may even enable a human to interact with the ICM by tweaking its
potential hyper parameters (e.g. parameters for the selection procedure and
weighting scheme).

Existing research such as that by Mandelbaum et. al [223], Subramanya et.
al [224] and Papernot et. al [186] can be framed as an ICM. All are based on
case-based learning and can be described by the four steps of the framework.
However, their transparency and predictability tends to be limited due to their
choice to use a Neural Network to define their similarity measure. This hinders
the ICM’s transparency and predictability, but still allows the generation of ex-
planations.

5.4 ICM examples

In this section we propose three examples of implementing an ICM using relat-
ively simple techniques from the field of case-based reasoning. To define our
ICM, we need to define the update procedure u, the selection procedure s and
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the weighting scheme w. The u remains unchanged: A queue mechanism that
stores the latest (~x, y∗) pair and removes the oldest fromD.

The first example, ICM-1, is based on kNN and use it to define both s and
w. The selection procedure is S = s(~x|D, k, d) which selects the k closest neigh-
bours inD to ~xwith d being a distance function. The weighting scheme becomes
w(~x, ~xi) = 1,∀~xi ∈ S. When applied to Equation (5.1), the resulting ICM counts
and the relative number of points in S+ and S− to arrive at a confidence value:

C(x | S+, S−) = 1
k

(
|S+| − |S−|

) (5.4)
This reflects the idea that confidence is ≥ 0 when the majority of k nearest

neighbours are in favor of the given advice, and < 0 otherwise.
For our second example, ICM-2, we extend ICM-1 with the idea of Weighted

kNN [225, 226]. It weights each neighbour with a kernel based on its similarity
to ~x according to a distance function d. Given a Radial Basis Function (RBF) as
kernel, the weighting scheme becomes w(~x, ~xi) = exp [− ( 1

σd(~x, ~xi)
)2]. The σ

is the standard deviation of the RBF and we set it to σ = d(~x, ~xk+1) where ~xk+1

is the k + 1 distant neighbour of ~x. If we choose to use the Euclidean distance
d = ||~x− ~xi||2, the confidence value becomes:

C(x|S+, S−, d) = 1
|S+|

∑
~xi∈S+

exp
[
−
(

1
σ
||~x− ~xi)||2

)2
]
−

1
|S−|

∑
~xj∈S−

exp
[
−
(

1
σ
||~x− ~xj)||2

)2
] (5.5)

These values depend not only on the number of points in S+ and S−, but
also on their similarity to ~x. With this RBF kernel neighbours are weighted expo-
nentially less important as they become dissimilar to ~x.

In our third example, ICM-3, we build further on ICM-2. In it, we estimate σ
for each confidence value as the average similarity between the k neighbours.
Hence, ICM-3 remains equal to Equation (5.5), instead with σ = 1

k

∑
~xi∈S ||~x −

~xi||2. With it, ICM-3 provides confidence values that take the number of data
points in S+ and S− into account, but also weighs their similarity to ~x according
to how similar the k neighbours are to each other. Meaning that the neighbour
most similar to ~x contributes the most to the confidence estimation relative to
the other k − 1 neighbours.
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5.4.1 Comparison of exemplar ICM behaviour

In this section we evaluate ICM-1, ICM-2 and ICM-3 and assess their behaviour,
accuracy and predictability over changes in the data.

See Table 5.2 for the confidence values of all three example ICM on a syn-
thetic 2D binary classification solved by standard SVM. This data set was gen-
erated using Python’s SciKit Learn package [227]. The table contains six plots
of ICM-1, ICM-2 and ICM-3 with k = 2 and k = 8. ICM-1 shows a high confid-
ence when we would expect it. As points with a certain prediction approaches
memorized points (in Euclidean space) with that prediction as their label, the
confidence for a correct predictions increases. As opposed to an increasing con-
fidence for an incorrect prediction when such points approach memorized data
points whose label is different than the prediction. ICM-1 does show abrupt con-
fidence changes with k = 2, that decrease for k = 8. Similar behaviour can be
seen for ICM-2 and ICM-3. The difference is that both show even smaller abrupt
changes due to their RBF kernel, with ICM-3 being the smoothest as the kernel
adapts to the local density. For k = 8 we see that ICM-2 and ICM-3 result in an
overall lack of confidence. With higher k values, S starts to contain nearly all data
points from D. The summed weights for S+ and S− begin to represent the la-
bel ratio and confidence goes to zero. This sensitivity is likely unique to our ICM
examples, and state of the art case-based reasoning algorithms are less likely to
be as sensitive to k or use a different mechanism than kNN.

Next, we evaluate the accuracy of ICM-3 on two benchmark classification
tasks each solved by a Support Vector Machine (SVM), Random Forest andMulti-
layer Perceptron (MLP). We chose for ICM-3 as the most sophisticated ICM ex-
ample. The confidence accuracy of ICM-3 was computed using Equation (5.3).
The confidence values of the SVM were computed using Platt scaling [187], of
the Random Forest using its voting mechanism, and of the MLP by setting Soft-
Max as its output layer’s activation function. Since neither of these confidence
values could express a high confidence for an incorrect classification, the accur-
acy from Equation (5.3) was adjusted to measure zero confidence as correct for
an incorrect classification. The two classification tasks were a handwritten digits
recognition task [228] and the diagnoses of heart failure in patients [229]. The
data set properties, trainedmodels and their hyper parameters are summarized
in Tables Table 5.3 and Table 5.4 respectively.

Figure 5.3 shows the results from ten different runs per test set and model
combination. The ICM performs equally well in confidence estimation as the
models on both data sets. It shows that an ICM can be applied to a variety of
models and performs equally well in terms of estimating when a classification
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Figure 5.3: The accuracy of ICM-3 on two data sets with the accuracy of the confidence estimates
from variousmodels. It shows that ICM implementations are applicable to different mod-
els and can be equally accurate as the model itself. The error bars represent the 95%
confidence intervals.

would be correct. In addition, an ICM conveys also its confidence in a classifica-
tion being incorrect and tends to be more transparent, predictable and explain-
able.

Figure 5.4 shows the accuracy of the example ICM over different values for
k. The n was set to encapsulate the entire training data set. This figure shows
that ICM-3 is most robust against different values for k. More state of the art
algorithms based on kNN can be applied to increase this robustness further, or
algorithms based on an entirely different paradigm can be used to define the
selection procedure s.

Figure 5.5 shows how the example ICM behaves with different numbers of
memorized data points. The k was fixed to its optimal value of 10 neighbours for
both data sets. These results show that even these simple ICM are accurate at
memory sizes around 10% of the data the models needed for training.

In a separate study [169] we applied ICM-3 to a real-world DSS in the Dynamic
Positioning case described in the introduction. This case was also used in one
of our human studies, described in detail in Section 5.5. Here, a Deep Neural
Network predicted when an ocean ship was likely to drift of course and notified a
human operator to intervene. The ICM-3 was used to express more information
to the operator on whether a prediction could be trusted to prevent under- or
over-trust. In this study, we showed that ICM was able to compute a confidence
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Figure 5.4: The accuracy of ICM on two data sets for different numbers of nearest neighbours used.
It shows our proposed Robust Weighted kNN algorithm (ICM-3) compared to ICMs with
weighted kNN (ICM-2) and kNN (ICM-1). It illustrates the robustness of ICM-3 against
different k.

Figure 5.5: The accuracy of the example ICM on the two benchmark data sets for different values of
n, the number of memorized data points. It illustrates the robustness of each ICM with
different n.

value of the Deep Neural Networks prediction with 87% accuracy [169].
Finally, we evaluated howwell ICM-3 could to adjust its confidence values to a
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Figure 5.6: The moving average accuracy of querying confidence values from ICM-3, a static Random
Forest and a continuously updated Random Forest. It shows a shift in the label distri-
bution after 100 data points in the synthetic data. The plot shows that ICM-3 is capable
of adjusting its confidence values nearly as well as the confidence from the continuously
updating model.

shift in data and label distributions. As stated in Section 5.4, the update proced-
ure u used a simple queuing method to update D. To test the effects this u has
on the accuracy, we synthesized a non-linear classification task and shifted its
distributions after computing the confidence of 100 data points. We compared
this confidence accuracy over time with the performance of the Random Forest
model with and without continuously updating that model.

The results of are shown in Figure 5.6, repeated ten times with different ran-
dom seeds to obtain the shown confidence bounds. The plot shows that ICM-3
can adjust its confidence estimation to abrupt changes in the data distribution.
It performs nearly equal to continuously retraining the model for each new data
point, however the ICM requires no explicit update.

The results illustrate that an even simple ICM can perform surprisingly ac-
curate on two benchmark data sets and different models. Even a simple up-
date of the memorized data points result in an confidence estimation adaptive
to changes in the data. It shows that ICM can provide a common framework to
devise system-agnostic confidence measures.
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k = 2 k = 8

ICM-1

ICM-2

ICM-3

Table 5.2: These figures show the confidence values for the three example ICM implementations on
a 2D synthetic binary classification task for k = 2 and k = 3. The background of each
figure represents the confidence value at that point, the classification model’s decision
boundaries are shown by the dashed lines and D is plotted as points coloured by their
true class label.

Name Classes Type Features Train/test
Heart [229] 3 Tabular 4 227/76
Digits [228] 10 Images 64 1347/450
Synthetic 6 Tabular 2 100/300

Table 5.3: The properties of the two benchmark data sets used to evaluate the three ICM examples.
Also shows the properties of the synthetic data used to evaluate the robustness to changes
in data distributions.
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Data Model Accuracy
(train)

Parameters

Heart SVM 77.63%
(94.27%)

RBF kernel, γ = 0.1, C = 1.0

Heart MLP 76.32%
(91.85%)

Adam optimizer (α = 1e−3, decay= 1e6), 100
epochs, 16 batch size, Softmax output layer,
2 hidden Layers ([16, 3], ReLu, 20% dropout)

Heart Random
Forest

73.68%
(100%)

Gini, Bootstrapping, 50 estimators
Digits SVM 98.22%

(100%)
RBF kernel, γ = 0.01, C = 10.0

Digits MLP 99.33%
(99.73%)

Adam optimizer (α = 1e−4, decay= 1e6), 250
epochs, 16batch size, Softmax output layer, 3
hidden layers ([64, 32, 6], ReLu, 20% dropout)

Digits Random
Forest

97.33%
(100%)

Gini, Bootstrapping, 100 estimators
Synthetic Random

Forest
97.33%
(100%)

Gini, Bootstrapping, 100 estimators

Table 5.4: Shows the hyper parameters and accuracy on train- and test set for each model and data
set combination used to compare our example ICMwith. We used the SciKit Learn package
from Python as the implementation of each model [227].

117



Chapter 5

5.5 Aqualitativehumanstudy: Interviewswithdomainexperts

This section summarizes the first of two human studies, it is explained in more
detail in our previous work [230]. In this study, several domain experts were
interviewed to evaluate the transparency of the case-based reasoning approach
underlying an ICM compared to other confidence measures.

Dynamic Positioning (DP) formed the use case of the study. Here, a ship’s
bridge operator is responsible for maintaining the ship’s position aided by an
auto-pilot and a DSS [169]. The DSS warns the operator when the ship’s posi-
tion is expected to deviate from course and operator intervention is required.
Structured interviews with DP operators were conducted where we elicited their
understanding and needs of a confidence value that accompany the DSS’ pre-
diction. Three confidence measure categories were evaluated; 1) ICM, 2) Platt
Scaling and 3) SoftMax activation functions.

The interview was structured in three phases. In the first phase we provided
a layman’s - but complete - description of each confidencemeasure. Participants
were asked to select their preferred method followed by explaining each meas-
ure in their own words. This enables us to discover which algorithm they pre-
ferred, but also which they could reproduce accurately (signifying a better un-
derstanding). We found that they understood ICM best, but preferred the Soft-
Max measure. When asked, participants mentioned that estimating confidence
in their line of work is difficult and as such they expected a confidence meas-
ure to be very complex. This result points towards what humans might prefer
in a confidence measure (complexity), may not necessarily be what they need
(transparency).

The second phase provided examples of realistic situations, the DSS’ predic-
tion and a confidence value. Each example was accompanied by three explana-
tions, one from each measure. Participants were asked which explanation they
preferred for each example. On average, they preferred the explanations from
ICM as it specifically addressed past examples and explained their contribution
to the confidence value. Afterwards, participants were asked to explain in their
own words how each confidence measure would compute their values for un-
seen situations. The results showed that the operators could replicate ICM’s ex-
planations more easily than that of the other two.

The third and final phase allowed the participants to describe their ideal con-
fidence measure for the DSS. Several participants described a case-based reas-
oning approach as used by ICM. Others preferred a combination of both an ICM
and SoftMax. When asked why, they replied that they preferred the case-based
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reasoning approach but they believed it to be too simplistic on its own to be ac-
curate in their line of work. They tried to add their interpretation of a SoftMax
activation function to ICM to satisfy their need for added complexity.

These results may indicate that domain experts are able to understand a
case-based reasoning approach for a confidence measure more easily than the
DSS’ prediction scores defined by a SoftMax output layer, or the scaled predic-
tion scores with Platt Scaling.

5.6 A quantitative human study: An online survey on human
preferences

The second study was performed using a quantitative online survey. We evalu-
ated humans’ interests and preferences concerning explanations about the con-
fidence of an advice as provided by a DSS. Moreover, we investigated if the pro-
posed ICM, based on case-based reasoning, is in line with what humans desire
from a confidence measure and explanations.

Below we describe the use case, participant group, stimuli, design and ana-
lyses in more detail, followed by the results.

5.6.1 Use case: Autonomous driving

In the survey, participants were provided a written scenario about an autonom-
ous car. This scenario stated that the car could provide an advice to turn its self-
drivingmode on or off, given the current and predicted road, weather and traffic
conditions. The advice would be accompanied by a confidence value as calcu-
lated by the car. Participants were instructed to assume several years of experi-
ence with the car and that the car showed to be capable of driving autonomously
on frequently used roads. At some point on such a familiar road, the car would
provide the advice to turn on automatic driving mode. The study followed with
a questionnaire revolving around this advice and the given confidence value.

5.6.2 Participants

Recruitment was done via Amazon’s Mechanical Turk, and each participant re-
ceived $0.45 for participating in the survey based on the estimated time for
completion and average wages. Only participants of 21 years or older were in-
cluded. A total of 26men and 14 women aged between 24 and 64 years (M=35.6,
SD=9.4) were recruited, who were all (self-rated) fluent English speakers. On av-
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erage, participants indicated on a 5-point Likert scale that they had some prior
knowledgewith self-driving cars (M=3.00, SD=0.68). Hence, participants could be
biased towards answering questions based upon knowledge about self-driving
cars, instead of using the description in the questions. However, the scores on
the dependent variables of the participants indicated they were knowledgeable
(n=6) or very knowledgeable (n=1) did not significantly differ from the scores of
others and were included.

5.6.3 Stimuli

We composed a survey in which participants were asked about their interests
and preferences concerning explanations about the confidence of an advice as
provided by a self-driving car. The system was presented as being able to drive
perfectly without assistance from a human within most situations, but unable to
drive fully autonomously in some other undefined situations. We asked parti-
cipants to indicate how much importance they would attach to: 1) understand-
ing the confidencemeasure’s underlying algorithm, 2) their past experience with
other advice from the car, and 3) predictions about future conditions such as the
weather. The importance was indicated on a 7-point Likert scale with 1 meaning
’not at all important’ and 7 meaning ’very much important’.

Moreover, we asked participants to rank five methods of presenting the ad-
vice that the car could provide (with 1 being most preferred, and 5 being least
preferred):

a. No additional information;
b. A general summary of prior experiences;
c. General prior experience accompanied by an illustrative specific past ex-

perience;
d. Current situational aspects that played a role;
e. Predicted future situational characteristics that could affect the decision’s

outcome.
Figure 5.7 shows a screenshot that contains the question in that asked par-

ticipants to rank different types of explanations according to their preference.
Advice 2 and 3 provide illustrative examples of the type of information that an
ICM can provide to a human (corresponding to b) and c) in the above enumer-
ation). That is, the confidence of the DSS is explained in terms of similar stored
past experiences with its own performance. The difference between advice 2
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Figure 5.7: Screenshot of the section of the survey in which participants were asked to rank differ-
ent kinds of explanations based on their preference. Advice 2 and 3 provide illustrative
examples of the type of information that an ICM can provide to a human.

and 3 is that the latter includes a specific example of a situation in which the
advice appeared not to be correct, while the former does not.

5.6.4 Experimental design

We investigated two variables. 1) The importance of different information in
determining when to follow an advice: information about the confidence meas-
ure’s algorithm, information about prior experience, or information about the
predicted future situation. 2) The information preference in an accompanying
explanation: no additional explanation, general prior experience, specific prior
experience, current situation, or predicted future situation. Both dependent
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Figure 5.8: Boxplot of the Likert scale ratings indicating the importance of different types of informa-
tion used to determine to follow the advice to turn on automatic drivingmode. The higher
the ratings, the more the information was preferred.

variables were investigated within-subjects, meaning that all participants indic-
ated their importance rating and preference rankings for all types of information
and explanations respectively.

5.6.5 Analyses

Weperformed twonon-parametric Friedman testswith post-hocWilcoxon signed
rank tests on the ordinal Likert scale data to investigate two topics: 1) The rel-
ative importance of information that taken into account when deciding whether
or not to follow the advice, and 2) the difference between preference ratings of
the types of explanation.

5.6.6 Results

Figure 5.8 shows the distribution of Likert scale ratings concerning the import-
ance of information in the advice. Ratings are high in general, as indicated by
the high medians and the minor deviations from these median scores.

There is a statistically significant difference in importance ratings of the con-
sidered information when evaluating an advice, χ2(2) = 16.77, p < .001. Wil-
coxon signed-rank tests showed that participants rated prior experience with
the system as more important for deciding about following an advice than un-
derstanding the advice system (Z = −3.71, p < .001), but not more important
than predictions about future situational circumstances (Z = −1.58, p = .115).
However, predictions about future circumstances were rated as being more im-
portant than understanding the advice system (Z = −2.89, p = .004).
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Figure 5.9: Means and 95% confidence intervals of the preference rankings concerning the different
types of advice that are provided by the autonomous car. The rankings are inverted, the
higher the rank the more preferred.

Figure 5.9 shows the means and 95% confidence intervals of the rankings
concerning the preferences of participants for different types of additional in-
formation given in an advice.

There is a statistically significant difference in rankings of the five types of
advice, χ2(4) = 39.38, p < .001. Table 5.5 shows the results of the post-hoc
tests. Importantly, participants preferred the explanation that contained general
prior experiences over the one that presented a specific experience of a case in
which the advice was not followed. They also preferred general prior inform-
ation over information concerning the future situation, and over no additional
information. However, preference ratings for using general prior experience as
explanation about an advicewere, on average, not higher than using information
about present situational circumstances.

In this human study, we investigated how participants judged various types
of information a confidence measure may include in an explanation. Overall,
the use of relevant prior experiences was judged as important in both defining
confidence values and explaining them. Equally important was the information
contained in the current situation. This indicates that ICM and its explanations
match people’s expectations and preferences of a confidence estimation. It un-
derlines the importance of confidence values being explainable, something ICM
readily supports. However, confidence measures may need to explain how the
current situation relates to those past experiences. For ICM that entails explain-
ing the similarity function and why it selected those past experiences. To do so,
the similarity function needs to be easily understood or otherwise explainable.
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Present
Situation

General past
experience

Future
situation

Specific past
experience

Present
situation

General past
experience

n.s.

Future
situation

Z = −2.00,
p = .045

Z = −2.35,
p = .019

Specific past
experience

Z = −2.77,
p = .006

Z = −3.34,
p = .001

n.s.

No
information

Z = −3.86,
p < .001

Z = −4.39,
p < .001

Z = −3.40,
p = .001

Z = −2.28,
p = .023

Table 5.5: Results of the Wilcoxon signed rank post-hoc tests on the preference rankings of inform-
ation that is included in an explanation about the advice.

5.7 Discussion

Although the proposed ICM framework relies on a case-based reasoning ap-
proach, it is also closely related to the field of conformal prediction [231]. Meth-
ods from this field define a set of predictions that is guaranteed to contain the
true prediction with a certain probability (e.g. 95%). Conformal prediction meth-
ods share many similarities to ICM, such as their model-agnostic approach and
use of (dis)similarity functions. Current research focuses onmaking these meth-
ods more explainable and transparent [232]. Our experimental work on these
topics may provide valuable insights for future conformal prediction methods.
In addition, future work may aim to explore how conformal prediction methods
can be used in the ICM framework.

An important trade-off in an ICM is between its accuracy and transparency,
as an increase in accuracy implies an increase in complexity. A concrete example
is the similarity measure, it can be as straightforward as Euclidean distance or as
complex as a trainedDeepNeural Network (as donebyMandelbaumet. al [223]).
For some domains, a relative simple similarity measure may not suffice due to
its high dimensional nature or less-than apparent relations between features
(e.g. the many pixels in an image recognition task). A more complex or even
learned similarity measure may solve such issues. However, it may may prevent
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humans from from adopting the system in their work due to a lack of under-
standing [88]. This is sometimes referred to as the accuracy and transparency
trade-off in current AI. To solve this, simplified model-agnostic methods gener-
ating explanations may be a solution. However, it also requires exploring where
humans allow for system complexity and where transparency is required.

Besides such technical issues, an interesting finding from the online survey
was that participants did not found it important for an explanation to refer to
past situations in which the provided advice proved to be incorrect. This could
indicate the tendency of people to favor information that confirms their preex-
isting beliefs and to be ignorant towards falsification, a phenomenon known as
the confirmation bias [233]. Importantly, such a preference does not necessarily
mean that it is best to omit this kind of information. That is, the main goal of
the transparency and explainability properties of an ICM is to enable humans to
better understand where the confidence value originates from in order to more
accurately predict the extent to which an advice of the system can be trusted. In
order to enable people tomake an accurate assessment, it is essential to provide
both confirming and contradictory information, precisely because we know that
people are prone to ignore information that does not confirm their beliefs. Fu-
ture work on confidence measures should not only conduct human studies re-
volving around preferences, but also on how they affect system adoption, usage
and task performance.

Moreover, findings from our human studies implied that people prefer to
know about the current situational circumstances. This preference holds even
when a given confidence value was high and they said they trusted this estim-
ation. This could indicate that people still want to be able to form their own
judgement about the DSS’ advice based on their own observations, in order to
maintain a sense of control and autonomy [234]. Hence, a confidence measure
is not a substitute for a human’s own judgement process and should be designed
to facilitate this process. ICM’s property of explainability may offer a vital contri-
bution to this process. Further investigation is required to identify what should
be explained in addition to an ICM and how this should be presented.

5.8 Conclusion

In this chapter we proposed the concept of Interpretable Confidence Measures
(ICM). We used the idea of case-based reasoning to formalise such measures. In
addition, we motivated the need for confidence measures to be not only accur-
ate, but also explainable, transparent and predictable. An ICM aims to provide
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human collaborating with a decision support system (DSS) information whether
the provided advice should be trusted or not. It does so by conveying how likely
it is that the given advice turns out to be correct based on past experiences.

Three straightforward ICM implementations were proposed and evaluated,
to serve as concrete examples of the proposed ICM framework. Two human
studies showed that participants were able to understand the idea of case-based
reasoning and that this was in line with their own reasoning about confidence.
In addition, participants especially preferred their confidence values to be ex-
plained by referring to past experiences and by highlighting specific experiences
in the process.
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Actionable explanations for contestable AI

CHAPTER 6

ACTIONABLE EXPLANATIONS FOR
CONTESTABLE AI

This chapter is adapted from the paper under review; van der Waa, J., van
Diggelen, J., Neerincx, M. & Jonker. C. (2022). Actionable Explanations for con-
testable AI. Journal of Artificial Intelligence Research. The adaptations include an
altered abstract, shortened introduction, and an adjusted lay-out, including the
formatting of figures and tables.
Jasper van der Waa, Jurriaan van Diggelen, Catholijn Jonker, Mark Neerincx
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While the previous chapter discussed the use of confidence and its explanations
to calibrate one’s trust. This chapter addresses the human’s ability to contest the
AI agent’s decision and take action to alter it. As AI agents govern more parts of
our lives, humanswill find themselves subjected to their decisions, either directly
(e.g., the decision involves the initial automated screening for a loan application)
or indirectly (e.g., the decision initiatesmore scrutinized research into someone’s
finances). Such decisions will often prove to be unfavourable for our human
goals (e.g., getting a loan or not to be registered as a fraud). Humans should have
the ability to contest an AI agent’s decision. Such an AI agent can support that
ability by providing actionable explanations, making clear how its decisions can
be altered through appropriate action. This chapter formally defines six prop-
erties that make an explanation actionable. This formalisation enables univocal
comparisons and argumentations on explanation theories or models that con-
tribute to contesting AI agents’ decisions and provide the steppingstones for the
development and testing of methods to generate such explanations. A literat-
ure review showed not all “actionable properties” are being addressed appropri-
ately. Current explanations are faithful to the AI agent’s functioning and of coun-
terfactual nature, with an increase in attention to the explanation’s interpretabil-
ity. However, current actionable explanations do not convey explicit and feasible
action suggestions that acknowledge human preferences. We conclude with a
call to the research community to address these research gaps more actively
such humans can maintain their autonomy even when subjected to decisions
made by an AI agent.
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6.1 Introduction

Within the field of Explainable AI (XAI) the main referred purpose of explana-
tions is to calibrate trust by justifying an AI agent’s decision or behaviour. See
for instance Miller et. al [68], Hoffman et. al [61], Shin et. al [235], Neerincx
et. al [236] and Waa et. al [237]. Trust calibration is of importance when the
human and AI agent collaborate to make a best possible decision [236]. How-
ever, AI agents are increasingly used in cases where they make a decision about
a human who is then subjected to that decision. Examples of such use cases
are the automated processing of loan applications [238] or the initial filtering of
job-applicants [239]. Even in use cases where human and AI agent collaborate in
their decision, there is often another human subjected to that decision. For ex-
ample in the case where a doctor is aided in their diagnosis of a patient with he
help of an AI agent [240]. In these examples the life and autonomy of a human
is affected by, in part, what an AI agent determines.

However, there is an intrinsic human value for humans to retain autonomy
over their own lives, even when parts of their lives are governed by AI agents
[241]. Autonomy, or self-determination, can be retained by enabling AI agents
that are contestable by thosewho are subject to the AI agent’s decisions. The field
of XAI can help support this contestability of AI agents by providing explanations
that are actionable [242], the term “algorithmic recourse” is also at times used
to refer to contestability [29]. This implies that the explanation conveys the un-
derstanding humans need to identify the appropriate action needed to contest
the AI agent’s decision in a way such that this AI agent makes a more preferable
decision about them. Such action might entail directly influencing the situation
such that the AI agent makes a different decision [29]. However, it might also
entail actions where humans are supported in filing sufficiently motivated com-
plaints or requests to an appropriate oversight committee who can decide to
recall and improve the AI agent [243]. The former is useful when the AI agent
uses information that can be corrected or otherwise influenced by the human,
whereas the latter is useful when the AI agent perceived as being unfair or mal-
functioning.

To provide humanswith the ability to effectively contest and alter anAI agent’s
decisions, they need an understanding about how such decisions are made and
can be influenced through action [244, 179]. In other words, humans require
actionable knowledge about an AI agent’s internal decision making to contest its
decisions. Not only could such actionable knowledge improve the collaboration
and acceptance of AI agents, the need for contestability is emphasized in upcom-
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ing regulations proposed by the European Union to regulate the application of
AI agents [245]. Although within the field of XAI there is increasingly more atten-
tion to support human contestability of AI agents through explanations, there is
no consensus on what makes explanations support contestability. There is an
overall lack in what defines an explanation as conveying actionable understand-
ing to support contestability, explanations we refer to as actionable explanations.
The lack of a clear definition of what makes an explanation actionable, limits us
in determining whether such explanations actually support a human’s contest-
ability. This in turn prohibits the creation of a shared research agenda and the
evaluationwhether such explanations cause an AI agent to adhere to regulations
requiring AI agent’s to be contestable.

This work aims to remedy this and formally define six properties that would
define an explanation as being actionable and thus supporting contestability
(see Figure 6.1 for an overview). We do so by taking a socio-technical system
(STS) perspective [246]. Such an perspective includes the AI agent, the human
agent and their shared context. Three components are needed to address the
challenge of contestability and to help formalize the notion of actionable explan-
ations. As only by recognizing the effects an AI agent has on human agents and
how such humanagents can influence their shared situation canwe fully address
contestability.

We present a formal framework to define the role and purpose of an explan-
ation generated and communicated by an AI agent. Next, this framework is used
to formalize the six proposed properties. This formalization aims to remove am-
biguity in their definition to foster scientific discussion, support the development
of explanation generating methods, and the derivation of metrics to measure
such properties. Finally, we perform a literature review of explanation gener-
ating methods whose explanations are referred to as supporting contestability.
Each method is reviewed on whether it adheres to any of the six properties,
with the aim to identify potential research gaps. This review shows the current
state of the art on actionable explanations and open research challenges that
still need to be resolved to truly support humans’ contestability of AI agents.

Throughout this work we will illustrate our reasoning with a concrete ex-
ample of an AI agent that functions as a vaccination planning tool during a pan-
demic. The tool’s purpose is to plan vaccination dates given theirmedical records
and lifestyle. Imagine someone receiving a date three months from now. That
person however expected to be vaccinated within this month as it believes it
should receive priority over others. Contestability in this example means that
this person is capable of identifying the most effective action that would res-
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Figure 6.1: An overview of the proposed six properties that define and explanation as actionable. An
actionable explanation is an explanation that provides humans with the understanding
needed to effectively contest an AI agent’s decision. These properties are separated into
three levels of increasing complexity.

ult in a more favourable vaccination date or a tool more in line with their own
values. We will use this example of a vaccination planning tool throughout the
paper. See below for an actionable explanation that adheres to all six proposed
properties:

“Your vaccination is in three months due to your good health. Your
records indicate you previously risked obesity. If this would still be
the case with no other changes, your vaccination date would be in
two weeks. If you believe you still risk obesity, contact your general
physician to verify this and update your medical records accordingly,
which would initiate a reschedule from three months to possibly two
weeks."

This chapter is structured as follows. First, in Section 6.2 we introduce our
socio-technical perspective towards contestability and actionable explanations.
We then propose in Section 6.3 a formal framework to formalize explanations
between the AI and human agent from such a perspective. This framework is
then used to formalize of each of the six proposed properties, separated in three
consecutive levels: an actionable explanation should be accurate (Section 6.4),
indicative (Section 6.5), and personalized (Section 6.6). Next, Section 6.7 presents
our literature review and identifies future research directions. Finally, we discuss
and reflect on our work in Section 6.8 followed by our conclusions in Section 6.9.
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6.2 Actionable explanations in a socio-technical system

See Figure 6.1 for an overview of the six proposed properties. They are sub-
divided into three levels. The first level states that the explanation should be
accurate, which implies that the explanation should be faithful to the AI agent’s
reasoning and inner working as well as interpretable to the human agent. The
second level describes that the explanation should be indicative. We will argue
that this implies that the explanation should describe alternative situations in
which different decisions will be made (e.g., counterfactuals) as well as suggest
explicit actions to arrive at such alternative situations. Lastly, we will argue that
this explanation should contain actions feasible for the human agent to perform
as well as resulting in an AI agent’s decision deemed preferable by that human
agent. Thus, the third and final level describes the personalization of the ex-
planation. Together, these properties define what would make an explanation
actionable to support one’s contestability.

The six properties are motivated and defined through a socio-technical sys-
tem perspective. Evenwhen a system is technologically sound, its functioning on
deployment is not guaranteed [246]. This typically occurs when in the design the
social and organisational context of its application is omitted. A socio-technical
systems (STS) perspective tries to remedy this, as it ensures consideration of ap-
plication context in system design [247]. It supports the reasoning about the
effects a system brings about in the application context, whether such effects
are preferred, and if not, how they should be addressed.

With the notion of contestability, the AI agent, human agent and their shared
context come together. Contestability is the human’s ability to effectively identify
the actions needed to alter the shared context to induce a more favourable de-
cision from the AI agent [242]. This ability is also referred to as algorithmic re-
course [29]. Current research towards actionable explanations to support con-
testability focuses on conveying counterfactuals. A counterfactual explanation
conveys alternative situations where the AI agent would make a different de-
cision [29]. It is hypothesized that this enables human agents to select the altern-
ative situation with a more favourable outcome and infer which actions to take
to arrive at that situation. Although the communication of counterfactuals re-
cognizes the relation of the AI agent with its own situational context, they forego
the human agent and its context, which risks resulting in sub-optimal actionable
explanations. For example when the human agent is incapable of correctly in-
terpreting the counterfactuals and incapable of inferring an effective contesting
action from them.
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Figure 6.2: A socio-technical system (STS) perspective onhowexplanations can support the explainee
to take appropriate action when an AI agent’s decision is deemed unfavourable.

We argue that an STS perspective towards actionable explanation results in
better explanations to support contestability. Specifically that the recognition of
the AI and human agent as well as their shared context allows the field of XAI to
designmore effective actionable explanations. In Figure 6.2 we illustrate the STS
focused on contestability and the role of explanations therein.

This figure shows the AI agent, referred to as the explainer, and the human
agent, referred to as the explainee, interactingwith each other in a sharedworld.
Both the explainer and explainee observe this world, inferring their own unique
set of observations. The explainer uses these observations to decide on a de-
cision or advice which it attempts to explain. The explainer communicates both
to the explainee. Who interprets the explanation, adding to its understanding
how the explainer makes decisions, and appraises the decision, reflecting how
pleased the explainee is with the decision. The explainee combines this inter-
pretation, appraisal and its observations of the world to determine whether ac-
tion is required, useful or possible to contest the explainer’s decision. This is
the process where the explainee decides on a contesting action if required and
which action that should be chosen to alter the explainer’s decision into a more
favourable one. When such an action is determined, the explainee performs it,
changing the world in a way that ideally results in the intended effects and a
more favourable decision.

In our running example the vaccination planner tool is the explainer, and the
person querying it for a vaccination date the explainee. The process of observing
the world means for both that they know the explainee’s medical records and
lifestyle. The vaccination planner tool, uses these observations to plan a date
threemonths fromnow, a decision that affects the explainee’s life. The explainee
subsequently appraises the decided date and feels this is unfavourable. If no
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explanation would be given, the explainee can only rely on its own experience,
knowledge and assumptions to decide upon an action to try and change this
decision. However, the tool does provide an explanation which the explainee
can interpret. This explanation becomes actionable when it directly supports the
explainee to determine which action to take to contest the explainer’s decision.

In the explanation example given in the introduction, the planner tool jus-
tifies its decision by referring to the observation that the explainee is in good
health. The proposed properties faithfulness and interpretable state that this jus-
tification adheres to the tool’s reasoning and is interpretable by the explainee.
The explanation is also a counterfactual explanation, the third property. In this
example the communicated counterfactual is the alternative context when the
explainee would still suffer from a risk for obesity. This would cause the vac-
cination date to fall within two weeks instead of three months. The explanation
also contains explicit action suggestions, thus adhering to the fourth property. It
suggests the action to contact its physician to report the risk of obesity, which
could result in an updated medical record causing a rescheduling of the vaccin-
ation date. Finally, the explanation is feasible and preferable since the explainee
is able to contact its physician and would favour a vaccination date within two
weeks over three months. These final two properties limit the number of relev-
ant counterfactuals to be communicated to only those which the explainee can
act upon.

In the next sections we formally define each of these six properties to explic-
ate their meaning and remove any ambiguity. We do so given a formal frame-
work based on the socio-technical system perspective outlined in Figure 6.2. The
next section provides this framework.

6.3 Formal framework to explanations

Below we describe the framework used to formalize the proposed properties.
Below we introduce we list the sets used in our formalization.

– Worlds. W is the set of possible worlds, where w,w′ ∈ W are variables
ranging over worlds. For example, two worlds might differ in the person
querying the planner tool with different medical records and lifestyles.

– Agents. A is the finite set of agents, where a, a′ ∈ A are variables ran-
ging over agents. For example the vaccination planner AI and the human
querying it could be agents in A.
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– Decisions. D is the finite set of all decisions that agents can make. Where
Da ⊆ D is the finite set of decisions agent a can take. Where d ∈ D

is a variable ranging over D, and similarly da ∈ Da a variable ranging
over the possible decisions from agent a. For example, the decision of the
scheduled date for vaccination by the vaccination planner agent.

– Contesting actions. Π is the finite set of all possible actions agents can
undertake in the world to contest an agent’s decision. With Πa′ ⊆ Π the
set of all actions agent a′ ∈ A can undertake. Where πa′ ∈ Πa′ is a variable
ranging over single actions from a′. For example, to contact one’s physi-
cian to update the usedmedical records. Wewrite ε ∈ Πa′ to signify taking
no action.

– Decision-making functions. Q is the set of decision-making functions that
describe the decision-making processes of agents. Let Qa ⊆ Q denote
the set of decision-making functions of agent a. Where q ∈ Q is a variable
ranging over Q, and similarly qa ∈ Qa a variable ranging over all decision-
making functions of agent a. For example the rule to prioritize people with
a risk for obesity for vaccination. Similarly, a counterfactual is also such
a function, as it is a specific set of observations (medical records) with its
associated decision (vaccination in three months).
For any Q′ ⊆ Q we use |=Q′ to express that a decision making process
satisfies the decision making functions of Q′. Formally, we define this re-
cursively as follows.
The base case is: ∀q, w, da: w |={q} da iff da ∈ q(w). If no confusion is
possible, we write |=q instead of |={q}. The general case is: ∀Q′ ⊆ Q,
∀w, da: w |=Q′ d iff ∃q ∈ Q′ : w |=q d.
In general, we assume that for any agent a, the set Qa is consistent. Con-
sistency means that in the same state there are no decision functions ap-
plicable that would lead the agent to make decisions that contradict each
other.

– Explanations. E is the set of possible explanations. With E = 2Q which
denotes that explanations consist of one or more decision-making func-
tions. WhereEdaa ∈ E is the explanation from agent a about a decision da.
For example,Edaa can contain the decision rule that people risking obesity
are prioritized for vaccination, when explaining the decision to plan the
vaccination in three months.
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These sets will be used to formalize each of the distinct steps shown in Fig-
ure 6.2. We do so following a multi-agent system formalization that makes use
of the notion of beliefs. Beliefs represent (possibly) imperfect information which
are believed to be true by some agent [248]. For instance, an agent can have
beliefs about the world state (e.g., observations [248]), its own decision making
(e.g., introspective beliefs [249]), and of other agents (e.g., mental models [250]).
This offers a basis to formally define explanations and their properties, as ex-
planations can be viewed as formulating, conveying and interpreting beliefs be-
tween agents for a certain purpose.

The notion of beliefs is used in combination with the above sets to formalize
the processes from Figure 6.2. We denote Bela( ·) as agent a ∈ A believing that
a statement · is true. For example,Bela′( q ∈ Qa) signifies that a′ believes that a
makes decisions according to decision-making function q. This q can be commu-
nicated in an explanation. We can then use this to formalize the interpretation
of an explanation.

Below we formally define the processes from Figure 6.2, starting with those
of the explainer.

6.3.1 Explainer processes

The explainer a ∈ A from Figure 6.2 makes use of three processes; observe
the world, decide on a decision or advice, and explaining that decision to an
explainee. Below we list the definition of each, making use of the previously
discussed sets.

Definition 6.3.1 (Observe).
Let a ∈ A be an agent, then Oa : W 7−→ W is the agent’s observation
function. If w is the current world state, Oa(w) denotes the agent’s cur-
rent observations. The agent believeswhat he observes, i.e.,Bela(Oa(w)) .
Ideally, the observations are correct, such thatOa(w) ⊆ w. We writeOa to
denote the current observations by the agent if no confusion is possible.

The planner tool from our example observes the medical records of anyone
querying it. Those records are part of the world, and are the observations the
planner tool agent makes about it. Note that this process is also occurs for the
explainee, a′ ∈ A, whose current observations are denoted as Oa′ .
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Definition 6.3.2 (Decide).
Let a ∈ A be an agent, then Oa |=Qa da is its decision-making process
basedon its own current observations anddecision-making functions, with
da ∈ Da as the made decision.

With our running example, the decision for vaccination in three months or
two weeks are decisions. The planner tool makes these decisions based on its
observed medical records and according to its set of decision making functions,
which can be anything, e.g. a set of rules or a deep neural network.

Definition 6.3.3 (Explain).
Explaining leads to an explanationEdaa ∈ E about the decision da provided
by agent a. We assume that agent a believes its explanations in the sense
that it believes that the decision da is made according to Edaa . Formally,
Bela(Oa |=Edaa

da) .

Recall that explanations consist of one or more decision-making functions
(E = 2Q). In our example the explanation consists out of two of such func-
tions. First, the planner tool conveys that people risking obesity are prioritized (a
decision-rule, which is a decision-making function). Secondly, if nothing changed
except for the querying person to have that risk, its vaccination would be in two
weeks instead of three (a counterfactual, a very specific decision-making func-
tion). Note, that the planner tool’s actual decisions do not necessarily have to be
made according to these two. For instance when the tool’s explanation or de-
cision process is faulty. We only assume that the planner tools believes it makes
decisions according to them.

6.3.2 Explainee processes

The explainee a′ ∈ A from Figure 6.2makes use of four unique processes. That of
interpreting an explanation, appraising the decision from the explainer, deciding
if action is needed, and perform that action if so. We define these as follows:

Definition 6.3.4 (Interpret).
The interpretation of agent a′ for some explanation is done by the function
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Ia′ : D × E 7−→ E. Given an Edaa from agent a about decision da, the in-
terpretation Ia′(Edaa , da) are all decision-making functions of which agent
a′ believes that a uses them to make its decision da; Bela′( Idaa′ ⊆ Qa) . We
abbreviate Ia′(Edaa , da) to Idaa′ .

Ideally, Idaa′ = Edaa , but, in general, this need not be the case. In the running
example, the explanation conveys the decision rule that people risking obesity
are prioritised. However, the person querying the planner tool (the explainee),
might have a different interpretation ofwhat constitutes as "risking obesity" than
the planner tool (the explainer). For instance, the interpretation could become
that people weighing more than the explainee receive priority, which is not ne-
cessarily a correct interpretation of the explanation.

Definition 6.3.5 (Appraise).
Appraising a decision leads to the appraisal v ∈ R of a decision da by the
explainee a′. Let v′ be the appraisal for any d′a ∈ Da where d′a 6= da. Then
v > v′ denotes that da is favoured over d′a and v ≤ v′ denotes da is fa-
voured less than d′a by agent a′. The explainee’s appraisal thus definesDa

as a total ordered set unique to that explainee.

The above definition relies on the fact that people have a certain prefer-
ence for decisions and that they are (dis)pleased with a decision when a certain
threshold is reached. In the example, this could mean that the explainee would
favour any vaccination date within 2months equally well, but any date later then
that would be less and less preferable.

Definition 6.3.6 (Decide on contesting action).
The decision for an contesting action leads to a given action πa′ ∈ Πa′ by
a′ based on the appraisal v of the current decision da. Where πa′ 6= ε iff
v < t, with t ∈ R being an arbitrary threshold, meaning that the explainee
decides on an action when the current decision is deemed unfavourable.
We assume that πa′ is made on the basis of its interpretation Idaa′ and ob-servations Oa′ .

Combined with the appraisal, this definition follows the notion that at some
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point a decision is unfavourable enough to warrant action. Recall that ε was the
“empty” action, signifying a decision to take no action. In the example this might
have been the case if the vaccination date was within two months. Instead it
is planned in three months, thus triggering the process of deciding on an actual
action, which it will try to do based on its appraisal of the decision (e.g., reflecting
its motivation), the interpretation of the explanation (e.g., if risking obesity the
date would be in two weeks), and its own observations (e.g., currently risking
obesity). Potentially deciding to indeed contact its physician as the explanation
suggests.

Definition 6.3.7 (Perform contesting action).
By performing a contesting action πa′ , a newworldw′ is achieved following
from the current world w. This is expressed with the transition function
w′ = Act(πa′ , w).

If the person querying our example planning tool decided to contact its phys-
ician, a world might be achieved where that person indeed runs the risk for
obesity according to its medical records.

In this treatise, we assume that the human agent, the explainee, decides to
take action based on its own observations, its appraisal of the decision and its
interpretation of the explanation. Under this assumption, it is thus vital that the
offered explanation supports the explainee in taking the correct action. When it
offers this support, that explanation is referred to as an actionable explanation.

Below we formally define each of our six proposed properties that would
make an explanation actionable. We make use of the above defined sets and
processes of both explainer and explainee, which we typically denote as a and
a′ respectively.

6.4 Level 1: Accuracy

The first two properties for an actionable explanation revolve around the ex-
planation’s accuracy. To best support contestability, an explanation needs first-
most to be accurate, hence we refer to this as a Level 1 actionable explana-
tion. However, explanation accuracy is an ambiguous concept with many differ-
ent interpretations and perspectives [32]. To remove this ambiguity we distin-
guish between two aspects of accuracy, namely faithfulness and interpretability.
The former addresses how sound the explanation is to the explainer’s decision-
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making. The latter addresses how resembling the interpretation of the explainee
is to the explanation. We argue that both are required to identify an explanation
as accurate.

In theory, when an explanation is both faithful and interpretable, the ex-
plainee could rely on that information to decide if and how to act. However,
the explainee is limited in estimating the faithfulness and interpretability of an
explanation. As it is unlikely that the explainee understands the explainer suffi-
ciently to identify an explanation as unfaithful. It is even less likely that the ex-
plainee would be aware of an incorrect interpretation on its own end. As such,
assuring that explanations are faithful and interpretable is the responsibility of
the explanations’ designer.

6.4.1 Explanation faithfulness

Informally, a faithful explanation is an explanation whose conveyed description
of a decision-making process is correct compared to that same process: the ex-
planation contains no falsehoods. If an explanation is not faithful, it cannot be
relied upon to incite a good understanding nor the inference of an appropriate
action, which reduces the ability for the explainee to contest the explainer’s de-
cision based on this explanation.

If in our example, the planner tool would actually make its decision based
on age instead of the risk for obesity, the communicated explanation would not
be faithful. The supported contestability is reduced, as even when the explainee
decides to contact its physician and it is decided that the explainee indeed risks
obesity, nothing would change. Thus it is vital that explanations are faithful due
to an explainee’s dependency on them.

We formalize the faithful property as follows:

Property 6.4.1 (Faithful).
Let Edaa be an explanation from explainer a about some decision da. Then
Faithful(Edaa ) iff Oa |=Edaa

da, where Oa is the current set of observations
made by the explainer.

In other words, an explanation is Faithful when all the descriptive decision-
making functions that the explanation contains leads to the explainer’s decision.
Given that the explainer only adds decision-making functions to its explanations
if it believes that these apply, this definition implies that in case of a faithful ex-
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planation these beliefs are indeed true.

6.4.2 Explanation interpretability

Even a faithful explanation can be misinterpreted, resulting in incorrect infer-
ences from that explanation by the explainee. When inferring which action to
take to contest the explainer’s decision, the supported contestability is reduced.
Informally we define an explanation to be interpretable when its interpretation
by the explainee results in exactly the same information as was conveyed by the
explainer.

In the example, an incorrect interpretation would be to infer that all who
weigh more than the person querying the planning tool have priority. As this
does not necessarily follow a medical definition of risking obesity. This might
incite a different kind of action, one based on a feeling of unfairness. Hence, it
does not matter how faithful an explanation is, if its interpretation is not sound,
the support to the explainer’s contestability is limited.

We define an interpretable explanation as follows:

Property 6.4.2 (Interpretable).
Let Edaa be an explanation from explainer a about decision da. Then
Interpretable(Edaa ) iff Idaa′ ≡ Edaa . 9

Note that this definition does not explicitly require that the explainee has the
exact interpretation of what was conveyed. Instead, an equivalent interpretation
suffices. For instance, the interpretation "people with a weight above mine are
prioritized" might be a correct interpretation of "people running risk for obesity
are prioritized", if that person runs the risk themselves which would make the
two decision-rules equivalent. Furthermore, as long as the interpretation is equi-
valent, the medium with which the explanation is conveyed does not matter.
Whether visualized or textual, the above definition supports that both can result
in the same interpretation.

To summarize, ideally we would like explanations to be both faithful and in-
terpretable. This ensures that the knowledge that is communicated can reliably
be used to infer any contesting actions.

9≡means here that ∀w ∈W,∀d ∈ D : w |=
E
da
a

d⇔ w |=
I
da
a′

d.
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6.5 Level 2: Indicative

Besides being accurate, for an explanation to be actionable, it should specifically
aim to support the explainee’s ability to take action. Thus, we argue that action-
able explanations should contain counterfactuals and be explicit in the contesting
actions to achieve those. The former ensures that alternative observation sets
and their subsequent decision are communicated, which help the explainee in-
fer favourable decisions and when they are given. The latter ensures that the
explanation also contains actions that result in aforementioned counterfactuals.
This removes an additional inference step for the explainee.

These two properties create a more indicative explanation. Such an explan-
ation better indicates what options are available to the explainee and how to
achieve them, improving the support to the explainer’s ability to contest de-
cisions. Albeit, these proposed counterfactuals and actions should be faithful
as well as correctly interpreted. Therefore, we refer to this as the second level
of actionable explanation. It builds on the former level of requiring accurate ex-
planations.

6.5.1 Counterfactual

The purpose of an explanation is to explain why a decision was made. For ex-
ample through providing decision rules or behavioural examples. Counterfactu-
als are such example-based explanations. A counterfactual consists of 1) hypo-
thetical observations different from the current observations and 2) the decision
the explainer believes it would make in those hypothetical situations. Coun-
terfactual explanations are viewed as a way to support contestability [29]. In
a sense, a counterfactual tells the explainee; "if this and that would be observed,
I would make this decision instead". Only the differences between the hypo-
thetical observations and current observations tend to be explained [29]. This is
done to minimize the explained information to only that what is vital [42].

We can formalize a counterfactual using our framework. We denote the hy-
pothetical observations as O′a. Then, using the decision-making functions the
explainer follows Qa, we can write Bela(O′a |=Qa d

′
a) . This expresses that the

explainer believes it wouldmake decision d′a when observingOa through the useof Qa. We denote (O′a → d′a) ∈W ×Da as the counterfactual; the observations
O′a of which the explainer believes would lead to some decision d′a.The counterfactual (O′a → d′a) is a specific type of decision-making function.
As it explicitly describes which decision will be made with what observations.
Thus we can say that (O′a → d′a) ∈ Q, and that Bela( (O′a → d′a) ∈ Qa) .
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For an explanation to support contestability, we thus want it to contain coun-
terfactuals. We define this as the property Counterfactual, denoting that the ex-
planation contains counterfactuals. Formally;

Property 6.5.1 (Counterfactual).
Let CFa(da) = {(O′a → d′a) ∈ W × Da | Bela(O′a |=Qa d

′
a) ∧ d′a 6= da},

which represents the set of all possible counterfactuals whose decisions
are different then the current decision da.
Then Counterfactual(Edaa ) iff CFa(da) ∩ Edaa 6= ∅.

This defines any explanation as being Counterfactualwhen it contains at least
one counterfactual from CFa(da), the set of all counterfactuals with a different
decision. This property already limits the counterfactuals to only those with a
different decision than the current one, with next properties limiting this set
further. In our running example, the explanation contains one of such coun-
terfactuals although only the actual differences with the current observations
are communicated. Namely, it contains the counterfactual where the explainee
would have the same medical records except for an added risk for obesity. With
those observations, the planner tool would plan the vaccination in two weeks
instead of three months.

The difficulty with this property is that so far it only limits the counterfactu-
als in an explanation based on them having a different decision than the cur-
rent one. Besides that, there is no limit to the number of counterfactuals in the
explanation. The properties in the next section will remedy this, for now the
Counterfactual property simply states that an explanation should contain coun-
terfactuals whose decision is different.

These counterfactuals enable the explainee to appraise each different de-
cision, and select one decision that is more acceptable. In this case, when de-
ciding on an action, the explainee only needs to infer which actions would lead
to the explainer making those observations. In our example this would be the
action to visit a physician and let that physician note a potential risk of obesity in
the explainee’s records. As such, the Counterfactual property is a step towards
an actionable explanation that supports contestability.

This property relies on the properties Faithful and Interpretable. When the
explanation is Faithful it means that a counterfactual (O′a → d′a) ∈ Edaa is sound,
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meaning that the explainer indeed makes the decision d′a when observing O′a.It relies on the Interpretable property, in the sense that the explainee should
understand both the observations and different decision from a counterfactual
(O′a → d′a) ∈ Edaa . Otherwise the inference for a contesting action might be in-
valid. For example, if the explainee would not understand what it means to have
"a risk for obesity", it cannot infer whether it has that risk but it simply is missing
from the medical records.

6.5.2 Action explicitness

Even if the explanation contains counterfactuals, the explainee still has to infer
suitable contesting actions that result in the explainer making those other ob-
servations. This can be difficult if the explainee is not a domain expert or may
not understand how the explainer observes the world. Thus we argue that the
explainer should explicitly convey action suggestions that could lead to a com-
municated counterfactual. Such suggestions simplify the explainee’s inference
for a suitable action.

We refer to an explanation conveying contesting action suggestions as being
Explicit. Interestingly such suggestions do not explain anything about the ex-
plainer’s decision-making, instead they explain how to achieve a more desirable
decision from that explainer. The result is that the Explicit property implies an
extension of the definition of an explanation. Where an explanation Edaa was
defined as only containing decision-making functions, Edaa ⊆ Q, we now extend
this to also include actions. Any explanation who thus wants to support an ex-
plainee’s contestability should contain more than just an explanation about how
decisions are made. It should also explicitly suggest actions the explainee might
want to take to achieve a different decision.

To formally define the property Explicit, we first have to define the process of
selecting one or more actions as suggestions related to a counterfactual (O′a →
d′a). We refer to this process or function as ρ, and we define it as follows:

Definition 6.5.1 (Action suggestion identification).
Let the function ρ : CFa(da) 7→ 2Π determine the set of contesting actions
for counterfactuals, defined by ρ((O′a → d′a)) = {π ∈ Π | Bela(O′a ⊆
Acta′(π,w)) }.

Less formally, this function ρ takes a counterfactual (O′a → d′a) and selects
one or more contesting actions. The explainer believes that when any of these
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actions is performed by the explainee the world changes in a way that causes
the explainer to observe O′a instead. In our example, this function ρ identifies
the action to contact a physician to achieve a change, a risk for obesity, in the
explainee’s medical records, which is the action related to the counterfactual
where with a risk for obesity the vaccination is planned in two weeks.

We can use this function ρ to formalize the Explicit property. Specifically, we
can use it to obtain and add actions suggestions for every counterfactual in the
explanation. More formally:

Property 6.5.2 (Explicit).
Let Edaa be a counterfactual explanation from explainer a about decision
da.
Let the function X : E 7→ E

⋃
(E×Π) be defined as follows:

X(Edaa ) =
{
q ∈ Edaa | q /∈ CFa(da)

} ⋃
{〈
ρ ((O′a → d′a)) , (O′a → d′a)

〉
|

(O′a → d′a) ∈ Edaa ∧ (O′a → d′a) ∈ CFa(da)
}

This function adds action suggestions to every counterfactual in the ex-
planation.
We call X(Edaa ) an Explicit explanation.

This function X takes an explanation and make all of its counterfactuals ex-
plicit by applying ρ to get the suggested contesting actions. These actions are
combined with the counterfactual. So for an arbitrary counterfactual (O′a →
d′a) ∈ Edaa , the function X extends it to 〈πa′ , (O′a → d′a)〉 if {πa′} = ρ((O′a → d′a)).
In our running example, 〈πa′ , (O′a → d′a)〉 is the counterfactual with a date in two
weeks when a risk of obesity is in the medical records, and πa′ is the suggestion
to contact a physician to check and add such a risk to the records.

When an explanation is Explicit it specifically supports the explainee’s ability
to contest decisions through actions, thus it becomes a more actionable explan-
ation. It reduces the amount of inference the explainee has to perform to decide
upon a contesting action, as it can review each suggestion and decide whether
it is worth it.
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6.6 Level 3: Personalized

An issue with both a Counterfactual and Explicit explanation is the large num-
ber of possible counterfactuals and action suggestions. A selection needs to be
made which will prove to be the most effective in supporting selecting the most
appropriate and effective action. The communicated action suggestions should
be limited to those that are Feasible for the explainee to perform. Whereas the
communicated counterfactuals should be limited to the Preferable alternative
decisions the explainee. We argue that these two properties lead to a natural
way of reducing the number of communicated counterfactuals and action sug-
gestions to those that effectively support contestability.

The properties Feasible and Preferable lead to a personalized explanation.
Ideally, with a single counterfactual that leads to the most preferred alternative
decision, combined with action suggestions the explainee is capable of perform-
ing.

6.6.1 Feasible

In particular, the idea of a feasible explanation is not novel in the literature on
creating explanations supporting contestability [251]. This property is often im-
plemented as the similarity between the current observations Oa and the al-
ternative observations O′a from (O′a → d′a). The greater the similarity, the more
feasible the counterfactual is assumed for an explainee to accomplish. How-
ever, this notion is being critiqued as observational differences do not need to
be in proportion to effort [252]. Some observations might be changed relatively
easy by the explainee (e.g., correcting a mistake in the medical records), oth-
ers take more effort (e.g., adjusting one’s lifestyle) and others can be impossible
(e.g., changing one’s age). We agree with these criticisms; that the feasibility of
achieving an counterfactual is the degree to which the explainee is capable of
performing the required actions, not the differences those actions effectuate in
the explainer’s observations.

We thus define a Feasible explanations, as an explanation containing action
suggestions that are part of the set of contesting actions the explainee can take.
To formally define this, we introduce a function Γ which identifies all such ac-
tion suggestions in an (explicit) explanation. If all these actions are part of the
explainee’s actions Πa′ , the explanation is deemed feasible. More formally:
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Property 6.6.1 (Feasible).
Let X(Edaa ) be an explicit explanation from the explainer a about some
decision da.
We define the function Γ : E

⋃
(E×Π) 7→ Π inductively as follows:

- Γ
(
∅
)

= ∅

- Γ
(〈

(O′a → d′a), ρ((O′a → d′a))
〉)

= ρ((O′a → d′a))

- Γ
(

X(Edaa )
)

=
{
ρ((O′a → d′a)) |

〈
ρ((O′a → d′a)), (O′a → d′a)

〉
∈ X(Edaa )

}
This function identifies and extracts all contesting actions within an explicit
explanation.
Then Feasible(X(Edaa )) iff Γ(X(Edaa )) ⊆ Πa′ .

This property dictates that for an explicit explanation to be feasible, all its
proposed contesting actions should be possible to perform by the explainee. In
our running example the explainee is deemed capable of contacting its physician
to update its medical records with a risk for obesity if applicable. Another sug-
gested action could have been to adjust the explainee’s lifestyle such that this
risk of obesity is guaranteed. Both actions might have the same result; a risk
for obesity, causing a prioritizes the explainee’s vaccination. However, the latter
action is not part of the set of actions the explainee as it already believes it has
a risk for obesity and is not willing to change it lifestyle to increase it.

Previously we argued that an explicit explanation improves contestability.
With the given explicit action suggestions an explainee only has to choose in-
stead of also inferring them. When these action suggestions are also all guaran-
teed to be Feasible, contestability is further improved, as the number of sugges-
tions are reduced to those that matter for the explainee.
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6.6.2 Personalized content

The above definition of Feasibility limits the action suggestions to those that the
explainee is capable of. However, they do not limit the number of counterfactu-
als that could be communicated. We argue that the natural way of doing so is
to account for what decisions the explainee prefers the explainer to make. Thus
only communicating counterfactuals in its explanation that result in an alternat-
ive decision that is more preferred then the current one. Ideally, we would like
this to be the most preferred decision the explainer can take. In other words,
we want the explanation to communicate the Preferable, which offers a way to
intelligibly select counterfactuals while further supporting the explainee’s con-
testability.

For an explanation to become Preferable, all of its counterfactuals should
have alternative decisions that appraisedmore than the currentlymadedecision.
Formally:

Property 6.6.2 (Preferable).
LetCounterfactual(Edaa )be anexplanation from the explainer a about some
decision da. Also, let v be the appraisal of da by a′.
Then Preferable(Edaa ) iff ∀(O′a → d′a) ∈ Edaa : v′ > v where v′ is the ap-
praisal of d′a.

According to this definition, an explanation is deemed preferable if all its
counterfactuals result in a better appraisal then the currently made decision,
which implies that the explainer is aware of what the explainee prefers in de-
cisions. In our running example, this means that the vaccination planner tool is
aware that a vaccination date within two weeks is preferred more than a date
within three months.

The property Preferable offers away to select counterfactuals from the poten-
tially infinite possible counterfactual. In doing so, it also improves the explainee’s
contestability as the explanation only addresses what needs to change to get a
more preferred decision.
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6.6.3 Actionable explanations

To summarize, we introduced three levels of explanation properties; 1) accur-
ate explanations, 2) indicative explanations and 3) personalized explanations.
The first level states that explanations should be faithful and interpretable. The
second level states that the explanation should contain counterfactuals as well
as explicit action suggestions. Finally, the third level states that these counter-
factuals should be limited to those with decisions the explainee prefers while the
action suggestions are feasible for the explainee to perform.

For an explanation to support the explainee’s ability to contest the explainer’s
decisions, all three levels need to apply to that explanation. We define such
an explanation as Actionable. As it not only explains how the explainer makes
decisions, but does so in a way that supports the explainee to contest the ex-
plainer’s decisions. When explanations are accurate, their content can be re-
lied upon as well as understood. When explanations are indicative, they reduce
the explainee’s required inference based on knowledge they might not have. Fi-
nally, when explanations are personalized, they recognize the potentially unique
needs of the explainee. Thus conveying reliable and interpretable knowledge
that allows the explainee to take control over their life, even when that life is
partially governed by decisions made by AI agents.

6.7 Future research areas for actionable explanations

A concise literature reviewwas conducted tomap the state of the art explanation
generatingmethods to the above defined properties. The aim of this review is to
find the current state of achieving actionable explanations and future research
areas.

The review was conducted by combining several literature survey papers on
explanation generating methods. These were the works from Adadi et. al [38],
Guidotti et. al [39] and Arrieta et. al [20]. This resulted in a total of 237 papers on
methods. These were then pruned to only thosemethods that stated to address
the topic of contestability. This resulted in a total of 75 uniquemethods who aim
to generate an explanation to help the human to contest the AI agent’s decisions.

In Table 6.1 we show the percentages of the 75 reviewed methods per ad-
dressed,mentioned or not present property. Table 6.2 shows the complete over-
view for eachmethod. Nomethod seems to currently adhere to all six properties.

Most of the reviewed methods (81%) aim to identify or generate counterfac-
tuals from a given set of alternative situations. These methods can often be led
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back to the approach proposed byWachter et. al [29]. They propose the use of a
loss or optimisation function that assesses how well a given counterfactual suits
some measurable aspects of a counterfactual. Originally the only two aspects
accounted for were whether the counterfactual caused a different decision and
the proximity of that counterfactual to the current situation. The former could be
viewed as the faithfulness of the explanation and most of the reviewed papers
perform such an analysis (59%). However, the latter only roughly approximates
the idea behind our property of feasibility. Our definition of feasibility applies
to how feasible the explicitly proposed actions are to perform by the human ex-
plainee. Since most methods do not propose actions to achieve their identified
counterfactual, they cannot adhere to the property of feasibility.

In fact, only very few of the reviewedmethods address the property of gener-
ating explicit explanations (4% does). All of these methods introduce the notion
of linking particular actions to a change in a situational attribute. In particular
the method by Ramakrishnan et. al [56] stands out. They describe the idea to
link actions to situational changes and take this a step further by also assigning
weights to such actions. This allows their method to personalize explanation to-
wards what is feasible for the human to perform. A lower weight would directly
model a more feasible action and allow feasibility to be modelled in the loss or
optimisation function used so commonly to identify counterfactuals.

The most underrepresented property in the reviewed methods (3%) is that
of using counterfactuals that result only in a preferable decision for that partic-
ular human. Interestingly it is the method proposed by Wachter et. al [29] that
attempts to adhere to this property. Although their work formed the basis of
most of the reviewed methods, none of the reviewed methods continued with
this aspect of their work. They argued that the loss or optimisation function used
to identify counterfactuals, should be tailored to include what the human deems
as a more favourable decisions. The other reviewed methods only required the
decision to be different, not necessarily favourable (or their exemplar use case
only involved two potential decisions).

Finally, the property of generating interpretable explanations is not often ad-
dressed in the reviewed methods (only 16% did so). Those that did, performed
a limited user study to assess this property. Limited in the sense that they intro-
duced participants with a proxy task and relied upon subjective measurements
only. An approach for which Doshi-Velez and Kim [33] argue that it mostly eval-
uates a method’s face validity but does not contribute to the field of XAI with a
more theoretical insight why certain explanations are more interpretable than
others. Nonetheless, these works did illustrate the interpretability of their pro-
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Level 1: Accurate
explanations

Level 2: Indicative
explanations

Level 3:
Personalized
explanations

Faithful Interpretable Counterfactual Explicit Feasible Preferable
Addressed 59% 16% 81% 4% 7% 3%
Mentioned 28% 31% 5% 8% 29% 11%
Missing 13% 53% 13% 88% 64% 87%

Table 6.1: The percentage of the reviewed papers (75 in total) on explanation generating methods
to support algorithmic recourse. "Addressed" means that the property was validated or
otherwise proven. "Mentioned" means that the property was only discussed or assumed.
See Table 6.2 for a complete overview per method.

posed methods.
To summarize our limited literature review, we noticed a research trend that

does not seem to recognize the human in an explicit sense. Attention is given
to the identification or generation of counterfactuals. Whereas little attention is
given tomore human-centred properties. Properties such as the communication
of explicit actions, their feasibility andwhat decisions are in fact preferable to the
human. So far, following our proposed properties of what makes an actionable
explanation, the approach proposed by Ramakrishnan et. al [56] that links coun-
terfactual changes to actions and those actions to weights seems to be the most
promising method to generate actionable explanations so far. There also seems
no conflict between this approach and the general approach to generate action-
able explanations through the identification of counterfactuals based on a loss
function. In fact, these two can be easily combined following a multi-objective
loss function [253].

6.8 Discussion

Here we discuss the implications of the six proposed properties and their inter-
actions.

We defined that an accurate explanation is not only faithful to the AI agent’s
decision making but that it is also sufficiently interpretable by the human agent.
Following our definition, interpretability is the notion of an explanation’s content
becoming part of a human agent’s mental model. An explanation is said to be
interpretable, if all of its content is accurately made part of this mental model.
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According to our definition of faithfulness, this explanation content should ac-
curately reflect the AI agent’s decision-making process. Thus an accurate ex-
planation entails the consideration of both human and AI agent. Without being
interpretable, the explanation might be misinterpreted or parts of its omitted.
This results in an inaccurate mental model on how the AI agent makes decisions
and thus hinders an accurate inference for actions. Without being faithful, the
explanation contains falsehoods resulting in a similar inaccurate mental model.

Whether a faithful explanation should be favoured over an interpretable one
or vice versa, is a matter of debate. Paez [23] argues that a pragmatic view on
explanation would show that it is better to have an interpretable explanation the
human can understand, then to have a faithful one that cannot be understood.
A faithful explanation of a complex decision-process would require a complete-
ness that hinders its interpretability thus reducing the benefit of the explanation.
On the other hand, the extreme case of completely unfaithful explanation that
is entirely interpretable is not a beneficial explanation either. A likely balance
should likely be found given a specific domain and use case. This might imply
that faithfulness and interpretability are scales instead of binary, as defined in
this work. However, assuming that given specific use case a correct balance be-
tween the two exists, both properties can thus be defined as binary again.

Table 6.1 shows that only few methods of those we reviewed validate the in-
terpretability of generated explanations. This is likely due to such evaluations
requiring rigorous experiments with human subjects for which no good designs
are currently available [33] nor are their established metrics available to meas-
ure explanation effects [237]. However, we also see an increase in the research
addressing such issues [254, 59, 61, 33]. Finally, we note that the XAI literature of-
ten uses various different terms, adding to the field’s ambiguity [32]. Terms such
as consistency, predictability, reliability, usability, readability andmore. These all
refer to a particular and measurable element of an explanation’s faithfulness or
interpretability.

Aside from an explanation’s accuracy, we defined an actionable explanation
to be both indicative and personalized. Within the XAI literature on contestabil-
ity, Wachter et. al [29] proposed the use of counterfactuals and amethodology to
find them. This caused a trend to present accurate counterfactuals as actionable
explanations. Within this work we argue that actionable explanations should not
only be accurate and counterfactual but also explicit, feasible and preferable.
This offers a natural way of addressing the issue of identifying which counter-
factuals should be provided, if any. Following these properties, a valid counter-
factual is one can be achieved through actions the human agent is capable of
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and results in an AI agent’s decision it prefers over the current decision. By ex-
tension, this also implies that if the made decision is already the most preferred
one, there is no need for an actionable explanation or contestability, something
the AI agent can determine on its own with sufficient awareness on what is feas-
ible and preferred by the human agent.

The feasibility of a counterfactual is relatively often mentioned (29%) within
the reviewed works. Many of such mentions are from XAI methods that are de-
signed to specifically identify feasible counterfactual. However, these do not fol-
low the same definition of what is deemed feasible. Instead, these methods
take on an approximation of feasibility, meaning that a counterfactual is often
deemed feasible when it is as similar as possible to the current world state [255,
256, 29] or when it is very similar to past viewed world states [251, 257]. Both
are imply that similarity is a suitable proxy for feasibility, which may not be the
case [252]. For example, a counterfactual where one’s age is 39 instead of 40 is
quite similar to the current world state but it is not a feasible one. Within this
work, we thus categorized such methods as mentioning the need for feasibility
but not addressing it. Instead, we follow the reasoning of Mahajan et. al [252]
and Ramakrishnan et. al [56] who argue that feasibility should be defined as the
human agent’s capability of enacting the counterfactual.

The level of personalization implied to achieve a feasible and preferable ac-
tionable explanations, requires the AI agent to have a soundmodel of the human
agent. According to our definition of an actionable explanation, the AI agent re-
quires 1) a (causal) model of the world to identify correct actions, and 2) a model
of the human agent on its capabilities and preferences to identify a feasible and
preferable counterfactual if needed.

6.9 Conclusion

In this work, we formally defined what constitutes as an actionable explanation
to support human’s contesting decisions made by AI agents. Six properties were
defined using a formal framework based on a socio-technical perspective to-
wards contestable AI agents. Through these formal definitionswe aim to remove
any ambiguity in their definitions to support future research on actionable ex-
planations through discussion and the design of methods capable of generat-
ing explanations adhering to these properties. A literature survey showed that
most state of the art methods for generating them, address the explanation’s
faithfulness and communicate counterfactuals while mentioning the need for
their interpretability. Explanation feasibility is often mentioned as well, but not
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addressed from the human’s perspective. Explicit action suggestions and prefer-
able counterfactuals are not addressed or mentioned in current methods. We
propose for the research community to actively pursue these research gaps in
a joint research agenda towards methods that generate explanations that sup-
port humans inmaintaining their autonomy and self-determination by providing
them with the actionable knowledge needed to contest an AI agent’s decision.

6.10 Acknowledgements

This work was partially supported by the TNO funded program Appl.AI FATE,
the European Commission funded projects “Humane AI: Toward AI Systems That
Augment and EmpowerHumansbyUnderstandingUs, our Society and theWorld
Around Us” (grant #820437), “Foundations of Trustworthy AI – Integrating Reas-
oning, Learning and Optimization” (TAILOR) (grant #952215), and by the Na-
tional Science Foundation (NWO) project “Hybrid Intelligence” under (Grant No.
1136993). Any opinions, findings, and conclusions or recommendations expres-
sed in this material are those of the author(s) and do not necessarily reflect the
views of supporting agencies. The support is gratefully acknowledged.

156



6

Actionable explanations for contestable AI
Le
ve
l1

Le
ve
l2

Le
ve
l3

Re
fe
re
nc
e

Fa
it
hf
ul

In
te
rp
re
ta
bl
e

Co
un

te
rf
ac
tu
al

Ex
pl
ic
it

Fe
as
ib
le

Pr
ef
er
ab

le
[56

]
+

+
+

+
∼

[25
8]

+
+

+
∼

∼
[25

3]
+

∼
+

∼
∼

[25
9]

∼
+

+
∼

∼
[26

0]
+

+
+

+
[25

7]
+

+
∼

+
[26

1]
+

+
∼

+
[29

]
+

+
∼

+
[26

2]
+

∼
+

∼
[26

3]
∼

+
∼

+
[26

4]
+

∼
+

∼
[26

5]
+

∼
+

∼
[26

6]
∼

+
∼

∼
[26

7]
∼

∼
+

∼
[25

2]
∼

+
∼

∼
[26

8]
∼

+
∼

∼
[26

9]
+

+
+

[27
0]

+
+

+
[27

1]
+

+
+

[27
2]

+
+

+
[27

3]
+

+
∼

[27
4]

+
+

∼
[27

5]
+

∼
+

[27
6]

+
∼

+
[27

7]
+

+
∼

[27
8]

+
∼

+
[27

9]
+

∼
+

[28
0]

+
∼

+
[28

1]
+

+
∼

[28
2]

+
+

∼
[28

3]
+

∼
+

[28
4]

+
+

∼
[28

5]
+

∼
+

[25
1]

+
+

∼
[28

6]
+

+
∼

[23
8]

+
+

∼
∼

[28
7]

∼
∼

+
[28

8]
∼

∼
+

Le
ve
l1

Le
ve
l2

Le
ve
l3

Re
fe
re
nc
e

Fa
it
hf
ul

In
te
rp
re
ta
bl
e

Co
un

te
rf
ac
tu
al

Ex
pl
ic
it

Fe
as
ib
le

Pr
ef
er
ab

le
[28

9]
∼

∼
+

[29
0]

∼
+

∼
[29

1]
∼

+
∼

[29
2]

∼
∼

+
[29

3]
∼

+
∼

[29
4]

+
∼

∼
[29

5]
∼

∼
∼

[29
6]

+
+

[29
7]

+
+

[29
8]

+
+

[29
9]

+
+

[30
0]

+
+

[26
]

+
+

[30
1]

+
+

[82
]

∼
+

+
[30

2]
+

+
[25

5]
+

+
[30

3]
+

+
[30

4]
∼

∼
+

[30
5]

+
∼

[30
6]

∼
+

[30
7]

∼
+

[30
8]

∼
+

[30
9]

∼
+

[31
0]

∼
+

[31
1]

∼
+

[31
2]

∼
+

[31
3]

∼
+

[31
4]

∼
+

[10
0]

+
∼

[31
5]

∼
+

[31
6]

∼
∼

[31
7]

∼
∼

[31
8]

+
[31

9]
+

[32
0]

∼
+

[32
1]

+

Tab
le6

.2:
An

ove
rvie

wo
fal

lre
view

ed
exp

lan
atio

ng
ene

rati
ng

me
tho

ds
use

din
the

lite
ratu

rer
evie

w.
For

eac
hp

rop
erty

and
me

tho
d,i

tis
illu

stra
ted

wh
eth

er
the

me
tho

da
ddr

ess
ed

tha
tpr

ope
rty

dire
ctly

(de
not

ed
bya

+
)or

onl
yre

ferr
ed

toi
t(d

eno
ted

bya
∼
).N

ote
tha

tth
eta

ble
iss

plit
int

wo
,wi

tht
he

righ
t

tab
lec

ont
inu

ing
wh

ere
the

left
tab

lee
nde

d.

157



i
i

i
i

i
i

i
i



PARTIII

EXPLANATIONS INHUMAN-AI
COLLABORATION





Human–AI collaboration designs with explanations

CHAPTER 7

HUMAN–AI COLLABORATION
DESIGNS WITH EXPLANATIONS

This chapter is adapted from; van der Waa, J., van Diggelen, J., Siebert, L. C.,
Neerincx, M., & Jonker, C. (2020). Allocation of moral decision-making in human-
agent teams: A pattern approach. In International Conference onHuman-Computer
Interaction (pp. 203-220). Springer. The adaptations include an altered abstract,
shortened introduction, and an adjusted lay-out, including the formatting of fig-
ures and tables.
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This chapter explores how explanations can be taken into consideration when
designing the collaboration within a human-agent team (HAT). Specifically, when
such a HAT works on a morally sensitive task where moral decisions need to be
allocated or supervised by either human or AI. Such teams become possible due
to advances in AI that allow for various forms of Artificial Moral Agents (AMAs).
An AMA is an AI capable of taking part in or making moral decisions. To help
ensure that AI behaves morally acceptable, the way it collaborates with humans
should be design properly. Such collaboration forms vary what work is conduc-
ted by the human or AI. Work such as supervising the other, making a decision
or supporting the other in doing so.

Within such a collaboration there is an apparent role for explanations. An AI
can explain its moral decision, offer support by explaining what it knows of the
situation, why it allocated a decision to the human or why it rejects a decision the
human allocates to it. We adapt the approach of TeamDesign Patterns (TDPs) to
designing a HAT to account for morally sensitive tasks and the role of explana-
tions therein. A TDP describes what work is performed by whom in what kind of
situation, together with the positive and negative effects of such a collaboration.
Four TDPs are proposed, each varying in the role of explanations and the AI. Two
scenarios are used to illustrate these patterns; the use of a surgical robot and
that of drones for public surveillance. We discuss the advantages of using TDPs
to help design the human–AI collaboration and how to incorporate explanations
into the design.
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7.1 Introduction

As the field of Artificial Intelligence (AI) progresses, agents will be endowed with
far-reaching autonomous capabilities, making them particularly suited for dull,
dirty and dangerous complex tasks. Inevitably, such systems must be capable
of dealing with morally sensitive situations. The field of Machine Ethics aims
to create artificial moral agents (AMAs) that follow a given set of ethical prin-
ciples [322, 323]. Such agents could be developed by constraining their actions
or operational environment, by incorporating ethical principles in their decision
making processes [324], or by making them learn morality from humans [325].
Whereas some authors have speculated about the possibility of obtaining AMAs
with human-, or super-human level moral decision making, we believe that this
is likely not achievable in the short term [324], if ever.

In the foreseeable future practice, AMAs must collaborate with humans and
ensure that humans always remain in control, and thus responsible, over any
morally sensitive decision (also referred to as meaningful human control [326]).
In this way, the moral decision making takes place at the team level. Different
tasks, such as identifying amorally sensitive situation,making the actual decision
and explaining this decision, can be allocated at run-time to different teammem-
bers depending on the current circumstances. This is known as dynamic task
allocation [327].

By regarding AMAs as part of a larger human-agent team, the ideas, con-
cepts and theories from Human Factors literature can be used to complement
the relative new field of Machine Ethics. This chapter aims to structure and pro-
pose potential solution directions by proposing the use of team design patterns
(TDPs) that capture reusable, and proven solutions to a common problem in a
HAT [328].

The purpose of this chapter is twofold. First, we show how moral decision
making can be construed as a team task. This allows meaningful human control
to be achieved by dynamically allocating tasks to humans and agents depend-
ing on properties such as the moral sensitivity, available information and time
criticality. We also aim to show the various roles of explanations in this dynamic
allocation of tasks. Depending on which task allocation strategy is chosen, dif-
ferent levels of moral competences are required from each agent and different
explanations are required. Our second contribution lies in utilizing the concept
of TDPs to describe these options in a structuredway. Four patterns are provided
and will be discussed within two problem scenarios, namely drone surveillance
and robotic medical surgery. Our approach helps to structure current and fu-
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ture research in the application of AMAs and allows for a precise specification of
human-AMA collaboration.

In the following sections we briefly discuss possible approaches to develop
AMAs and the field of Human-Agent Teaming. This is followed by a description
of two scenarios in which moral decision making plays an important role. We
continue with the identification of a set of tasks in moral decision making, in-
cluding relevant stakeholders. Next, we describe four illustrative TDPs andmen-
tion for each requirements for both humans and AMAs and the (dis)advantages
of that pattern. The final sections contain a discussion and conclusion on how
the concept of task-allocation defined through TDPs offers a novel perspective
to deal with morally sensitive situations in human-agent teams.

7.2 Background

7.2.1 Artificial Moral Agents

The field of Machine Ethics aims to create AMAs that follow a given set of ethical
principles [323, 322]. Such agents can be developed by implicitly constraining
their action set or the context in which they operate, or by explicitly incorporat-
ing ethical principles and theories in their decision making processes [324]. The
former method could improve morality because internal functions can be de-
veloped in a manner that avoids unethical behavior, e.g. by properly shifting the
responsibility of such decisions to a human or by designing the environment in a
manner that such decisions are not necessary. The latter approach allows agents
themselves to be intrinsically moral. However, it may be difficult to reach con-
sensus on a moral standard due to cultural, philosophical, and individual differ-
ences [329]. In both approaches, it is important to properly identify all relevant
stakeholders and elicit their value-requirements for the AMA using approaches
such as Value-Sensitive Design [330].

Wallach et al. [329] classify the architectures for explicit AMAs in the top-down
imposition of ethical theories, and the bottom-up building of systems which aim
at goals or standards. Top-down approaches must deal with the difficulty of
reaching consensus on which ethical theories such a system should follow, and
with uncertainty on the world regarding the reasons or impacts of a given ac-
tion. If such theories are defined too abstract their real-world application might
not be possible, but if they are defined too statically, they probably will fail to
accommodate new conditions [322, 329]. In bottom-up approaches the system
builds up through experience what is to be consideredmorally correct in certain

164



7

Human–AI collaboration designs with explanations

situations [331], for example by analyzing dilemmas and interacting with ethi-
cists [332] or by learning (moral) preferences from human behavior [333, 334,
325]. Finally, AMAs may also be developed with a hybrid approach (top-down
and bottom-up), e.g. [335, 336].

Thebenefits of developingAMAs andwhetherwe should develop such agents
is controversial [337]. There are twomain lines of arguments supporting the de-
velopment of AMAs: to avoid negative moral consequences of AI or to better
understand moral decision making. We will be focusing on the first one, which
relates to a myriad of factors such as which moral values to include, the risks
of moral decisions, the complexity of human-agent interaction, the time critical-
ity of moral decisions, and the automation level of the system [338]. Since the
development of full AMAs (agents which are capable of autonomously making a
“proper”moral decision in any situation) is not achievable in the short term [324],
if ever, it is fundamental to understand the limitation of AMAs and research how
such agents might be combined in complex human-agent teams.

7.2.2 Human-agent teaming and design patterns

The behavior of AI systems should not be studied in isolation [339]. Contextual
factors have a major impact on its performance. Furthermore, humans are in-
volved in various ways, e.g. for providing instructions, for correcting the agent if
needed, or for interpreting the agent’s outcomes. A recent article by Johnson et
al. [70] summarizes this as “no AI is an island”, and argues that AI agents should
be endowed with intelligence that allows them to team up with humans.

Whereas teaming skills come naturally to humans, coding them into an agent
has proven challenging. Some first attempts have been made in Neerincx et
al. [77]. It involves (among others) making the agent decide which information
to share with teammates, which actions to undertake to complement those of
its teammates, when to switch tasks, and how to explain its behavior to others
that depend on it. Such team behaviors change over time, and depend on the
context, competencies and performance of the involved actors, risks, and the
state of others.

Despite the intricacies involved, we can observe patterns in team behavior
which allow us to describe at a general level how AI systems are to collaborate
with humans [340, 341]. A team design pattern (TDP) is defined as a descrip-
tion of generic reusable behaviors of actors for supporting effective and resilient
teamwork [342]. In Diggelen et al. [328], a simple graphical language is defined
to describe team patterns, providing an intuitive way to facilitate discussions
about human-machine teamwork solutions among a wide range of stakehold-
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ers including non-experts. The language includes ways to represent different
types of work, different degrees of engagement, and different environmental
constraints. The graphical language can be used to capture both time and nest-
ing, which are critical aspects to understanding teamwork. It enables a holistic
view of the larger context of teamwork.

This chapter aims to provide TDPs as a designmethod for incorporating AMAs
in morally sensitive tasks and to integrate the use of explanations.

7.3 Problem Scenarios

7.3.1 Surgical robots

Medical surgery may benefit from the accuracy and precision of robotic devices.
Nevertheless, it is not trivial how to use surgical robots in critically constrained
situations involving delicate surrounding tissues, and intricate anatomical struc-
tures aroundwhich tomaneuver [343]. Current surgical robots operate under no
autonomy (master-slave tele-operation). Future surgical robot autonomy can be
achieved by constraining or correcting human action, carrying out specific tasks,
or even operating without any human supervision. Scenarios in which robots
perform entire medical procedures (with or without human supervision) are not
likely in the foreseeable technological future [344].

From a moral standpoint, it must be possible to hold someone responsible
when surgery fails, avoiding a so-called responsibility gap [344]. Moral implica-
tions on the development and use of surgical robots are largely depending on
its autonomy [345]. If a surgical robot is not autonomous at all, moral issues are
mostly related to the surgeons’ fitness, or training. With increasing autonomy
the systemmight be confronted with moral dilemmas that arise during surgery.
Depending on the time that is available to make a decision, the robot or the sur-
geon must make that decision (assuming that passing the decision making task
to the human requires more time). Surgical robots must align with best prac-
tices in codes of conduct in the medical domain as well as different values and
best practices among surgeons [346]. The surgical robot problem scenario can
be characterized as follows:

– Moral values, e.g. human welfare (curing the patient, performing safe
surgery), autonomy (surgical robots should respect a patient’s decision).

– Moral dilemmas, e.g. choosing between performing a critical task in brain
surgery with risk of brain damage (conflicts with safe surgery), or abort-
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ing the surgery with the consequence of greatly reduced life expectancy
(conflicting with curing the patient).

– Risks: Improper actions during the surgery may impose long term risks
(e.g. incomplete recovery), or short-term risks (e.g. acute medical com-
plications). The severity of these risks may be small (leading to minor in-
conveniences or temporary light pain), to severe (leading to severe life
long handicaps, or death).

– Time criticality: Somedecisions (such as stopping a bleeding) require high
decision speed. Other tasks (such as disinfecting a wound) may be less
urgent.

7.3.2 Drone Surveillance

Unmanned aerial vehicles are aircraft that can fly without an onboard human
operator. Such vehicles are attractive for military applications, e.g. for surveil-
lance and even delivering airstrikes [347]. However, these applications come
with moral implications, especially for autonomous aircraft which might select
and engage targets autonomously [326]. It is also within this context that the
termmeaningful human control has been coined.

The use of unmanned aerial vehicles (commonly known as drones) is not ex-
clusive to military applications. Surveillance applications of drones include en-
vironmental monitoring, tracking of livestock and wildlife, observing large infra-
structures such as electricity networks, and the surveillance of people and the
spaces they pass through [348].

One of the most widely discussed moral implications of drone surveillance
is related to privacy, which is not unique to the application of drones but is
heightened by technology [349]. We can identify three sub-tasks for surveillance
drones (adapted from Beckers et al. [347]): search an area to find a person with
suspicious behavior or that matches given criteria, profile the person by classify-
ing appearance and movement, and warn the person. One example of a moral
implication is to profile a person in an open space. This task may require a drone
to harm people’s behavioral privacy and freedom. Such systems should be prop-
erly designed to account for an individual’s rights and potential moral implica-
tions. This drone surveillance problem scenario can be characterized as follows:

– Moral values, e.g. privacy, safety, physical integrity [348].
– Moral dilemmas: Profiling (which compromises privacy) versus not pro-

filing a person (which compromises safety).
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– Risks: Risks can be low (such as a minor invasion of privacy through video
recording during profiling, or failing to prevent shoplifting), or high (such
as warning innocent people with force, or failing to prevent a terrorist at-
tack).

– Time criticality: Some decisions (such as stopping a person that is about
to attack someone) require high decision speed. Other decisions (such
as deciding where to do surveillance in a peaceful situation) require low
decision speed.

7.4 Tasks and actors

This section outlines a set of common abstract tasks and actors that are relevant
in teamwork within morally sensitive environments.

Figure 7.1 shows a decomposition of teamwork in general andwork required
for moral decision making in specific. In this chapter, we refer to a task as work
to stress that it need not be ordered by someone.

Work can be divided in direct and indirect work. As defined by Diggelen et
al. [328], direct work is any type of work that aims at reducing the distance to
the team goal, whereas indirect work aims at making the team more effective
or efficient at achieving the team goal, but does not move the team closer to
its goal. Direct work includes, but not limited to, sensing, decision making and
acting. A special type of decision making, particularly relevant for this chapter,
is moral decision making. We define this as making decisions that have a moral
dimension; that is, ‘right’ or ‘wrong’, or something in between [350].

Indirect work includes standing by, work handover, and work supervision. An
agent on standby is receptive to requests from other agents to intervene work.
Supervisionmeans that the agent is not doing thework by itself, but ismonitoring
other agents for events that require intervention. One of the resulting interven-
tions could be a reallocation of tasks, which are often facilitated by a work han-
dover activity. During handover, agents share information (or lack thereof) about
task progress, present threats and opportunities, relevant contextual factors,
etc. to allow for a fluid transition.

Indirect work related tomoral decisionmaking aremoral supervision, value eli-
citation and explaining the moral context. This follows in part the model of ethical
reasoning from Sternberg et al. [351]. This model identifies the need for moral
supervising: The identification of a situation as being morally sensitive. A morally
sensitive situation involves moral dimensions sufficiently important to warrant
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Figure 7.1: An overview of several important kinds of work for moral decision making in a human-
agent team context. Solid colors denote work directly related or contributing to the main
task, whereas a pattern fill denotes indirectly related or supportive work. Blue denotes
regular work, as opposed to red that denotes work related to moral decision making.

the more involved moral decision making as opposed to regular decision mak-
ing. Hence, moral supervision consists of recognizing situations, identifying moral
dimensions, and decide on dimension significance [351]. Value elicitation is thework
in which human moral values are made explicit and transferred to an artificial
agent. This can be done once, iteratively or continuously. Finally, agents might
require to explain themoral context to allow other agents to take part in themoral
decision making work.

In this chapter, we distinguish between four types of agents relevant inmoral
decision making as depicted in Figure 7.2. These play a role in our illustrative
TDPs. This list can be extendedwithmore agents when relevant and required for
a pattern (e.g. with clients, designers, developers, etc.). The four agent types are
Human Agent, Artificial Agent, Partial AMA and Full AMA. Each differ in their compet-
ence with moral decision making and related indirect work. The Human Agent is
capable of performingmoral decisionmaking due to a human’s (assumed) innate
ability in moral supervision and decision making. The Artificial Agent is only com-
petent in work not related tomoral decisionmaking. Most current AI systems fall
under this type of agent. The Partial AMA cannot autonomously perform moral
supervision, moral decision making or both. However, it can support a more
competent agent (e.g. a Human Agent with such work. The Full AMA is able to
make human or super-human moral decisions independently. These examples
of agent types serve as an exemplar decomposition of competencies in agents
to construct TDPs on moral decision making as we do below.
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Figure 7.2: A visual overview of the related actors for moral decision making in a human-agent team
context. The heart signifies the ability to take part in moral decisions.

7.5 Team Design Patterns for Moral decision making

This section illustrates four patterns that dynamically assignmoral decisionmak-
ing work to different agents. A pattern is described in a single table, containing
its name, both a textual and visual description, requirements for both humans
and agents, and potential advantages and disadvantages. For the visual descrip-
tion, we adopt the graphical language proposed by [328], which also allows direct
translation to a formal language. In addition to a table, the scenarios described
in Section 7.3 function as examples on how each pattern could function.

The visual pattern language is intended to be intuitive and serves to quickly
explain an approach to a multi-disciplinary group of researchers and facilitate
focused discussions. Task allocation is expressed in a single frame where cer-
tain agents lift certain blocks, signifying that they are (jointly) performing that
work. Dynamic task allocation is represented by a temporal succession of such
frames, separated by arrows. A dashed arrow from an agent to a temporal ar-
row denote that that agent takes the initiative to switch between an alternative
task allocation.

7.5.1 TDP1: Human moral decision maker

In this first pattern, all work related tomoral decisionmaking are allocated toHu-
man Agents. All work that is not morally sensitive is assigned to Artificial Agents.
The Human Agents need to performmoral supervision and work supervision to ob-
tain sufficient situation awareness to halt relevant Artificial Agents and make the
moral decisions in time. The pattern’s effectiveness relies heavily on a sufficient
cognitive workload for the Human Agents. An overload might result in reduced
moral decision performance as the human lacks important situation awareness.
An underload might result in distractions or drowsiness which is detrimental to
moral supervision, resulting in missed moral decisions that end up being impli-
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citly made by the Artificial Agents.
In the surveillance scenario, the drones can perform largely autonomously

as moral decision making applies only to the less frequent decisions of profiling
and warning. Human operators are supervising the intentions and information
streams from drones. Their task is to monitor the progression of work to suffi-
ciently understand situations relative to the task at hand, while also processing
drone intentions to intervene when a drone decision is morally sensitive. As the
number of drones increases, operators will lack the required situational under-
standing due to cognitive overload. Decisions to profile or warn might be made
too often or too little, affecting task performance. Similar issues will play a role
in the surgical robot problem scenario.

This pattern allows Artificial Agents to behave autonomously while moral re-
sponsibility lies fully at the human. However, this pattern is unsuited when con-
stant task andmoral supervision demands a too high of a cognitive workload on
the available Human Agents.
Name: Human moral decision maker

Description: An Artificial Agent performs autonomously the main task, while a Hu-
man Agent supervises for sufficient situational awareness and to as-
sess a situation’s moral sensitivity. When the human perceives the
need for a moral decision, the human takes over decision making.

Structure:

Requirements: R1 The Human Agent must predict morally sensitive decisions in
time.

R2 The Human Agent must have a sufficient understanding of the
moral implications.

R3 The Artificial Agent must be capable of halting and resuming its
work at any time.

Advantages: A1 The Human Agent is responsible for any made or missed moral
decisions.

A2 Artificial Agents do not require any moral competencies.
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Disadvantages: D1 The Human Agentmay suffer from cognitive under- or overload
when performing both task and moral supervision, preventing
the perception of morally sensitive decisions and/or to make
them in time.

D2 The Human Agent may become an ethical scapegoat if this pat-
tern is wrongly applied.

Table 7.1: TDP1: Human Moral Decision Maker.

7.5.2 TDP2: Supported moral decision making

This pattern is similar to TDP1 but does not require Human Agents to supervise
work. A major disadvantage of the previous pattern, TDP1, was that both work
andmoral supervision could result in the cognitive overload ofHuman Agents. The
omission of task supervision from Human Agents alleviates this but would lead to
an insufficient situational understanding for moral decision making. To remedy
this, the interrupted agent explains the situational context in such a way that
supports Human Agents in their moral decision making. Hence, an Artificial Agent
with no knowledge about morality is insufficient, and a Partial AMA is required
with enough knowledge about morality to identify what to explain and do so
sufficiently.

Under this pattern, the surgical robot would provide relevant information
when interrupted by a doctor. This relevance should be based on a combination
between context and a model of moral values. For example, the robot is aware
of a complication that comprises the patient’s welfare. At this point a doctor in-
terrupts and intents to remedy this complication. However, the robot is aware
that remedying this complication could reduce the patient’s quality of life to such
an extent that conflicts with the patient’s previously communicated decision re-
garding quality of life. This is a clear dilemma caused by conflicting moral values
(human welfare and human autonomy). As such, the robot reiterates the pa-
tient’s decision and explains how the available decisions reduce the quality of
life. This allows the doctor to make this moral decision with more information,
as opposed to acting instinctively and remedy the complication.

The main advantage of this pattern is that it still attributes moral decision
making to a Human Agent while omitting the need for constant task supervision.
However, the explanations from a Partial AMA could potentially bias the Human
Agent in a decision, causing a potential responsibility gap. Furthermore, moral
supervisionmayprove to strain cognitiveworkload just asmuch as task andmoral
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supervision combined. Both would severely reduce the use of this pattern.
This pattern is an example on how the disadvantage of one pattern (TDP1)

can lead to another pattern (TDP2) and introduce an additional multidisciplinary
research challenge (how to sufficiently explain a moral context). In addition, the
pattern description directly supports multi-disciplinary research. In this case,
researchers fromHuman Factors can provide explanation requirements to allow
unbiased and effective moral decision making. These requirements can then be
used by researchers fromMachine Ethics to research how a Partial AMA can fulfil
these requirements. Throughout, the TDP offers a common ground.
Name: Supported moral decision making

Description: An Artificial Agent performs autonomously the main task, while a Hu-
man Agent only supervises for the situation’s moral sensitivity. When
the human perceives the need for a moral decision, the human takes
over decision making. The Partial AMA supports the Human Agent
through explanations about the situation relevant for the current
moral decision.

Structure:

Requirements: R1 The Human Agent must predict morally sensitive decisions in
time.

R2 The Human Agent must have a sufficient understanding of the
moral implications.

R3 The Artificial Agent must explain the moral context sufficiently
to allow a Human Agent to make moral decisions.

R4 The Artificial Agent must be capable of halting and resuming its
work at any time.

Advantages: A1 TheHuman Agentmay suffer from less cognitive overload as the
need for sufficient situational understanding is reduced.

A2 The Human Agent is responsible for any made or missed moral
decisions.
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Disadvantages: D1 The Human Agent may suffer from cognitive underload when
performing moral supervision, preventing the perception of
morally sensitive decisions and/or to make them in time.

D2 The explanationmay bias theHuman Agent unintentionally, cre-
ating a responsibility gap.

Table 7.2: TDP2: Supported moral decision making.

7.5.3 TDP3: Coactive moral decision making

This third pattern alleviates humans even further compared to TDP2. This pat-
tern sets Human Agents on stand by, meaning that they are free to perform other
unrelated work. However, it requires from Partial AMAs to also perform moral
supervision to warn Human Agents when a moral decision has to be made. Fur-
thermore, since Human Agents are not at all involved awork handover is required.
This is a sufficient period of time to update Human Agents with the current task
at hand, progression, situational context and more. In addition, as Partial AMAs
identify the need for a moral decision in this pattern, they are obliged to also
explain the moral context. Finally, to further ensure Human Agents to be capable
of making a moral decision, the Partial AMA is involved directly in moral decision
making. Here, the Partial AMAs function as a decision-support systems. They
might analyze boundaries based on their computational moral model to rule
out certain decisions, or take a data-driven approach and suggest decisions in
line with past desirable outcomes. These approaches all require Partial AMAs, as
they require a broad sense of morality but not sufficiently detailed enough to
allow them to make moral decision autonomously.

Using this pattern both the surveillance drones and surgical robot would play
a vital role in moral decision making. The drones are allowed to identify civilians
that should be profiled or warned, and to provide their human operator with an
overview of the situation, followed with a decision supported directly by their
input. The surgical robot performs its work autonomously but when it needs
to make a decision that could affect the patient’s (quality of) life in an unexpec-
ted way, the surgeon will be involved through tele-operation where the surgical
robot provides an information feed, reasoning and potential limitations on the
surgeon’s decisions.

The main advantage of this pattern is that it allows Partial AMAs to fully act
autonomously until a moral sensitive situation. In such a case, the Human Agent
is involved, updated and supported in making the moral decision. The main dis-
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advantage is that this pattern could widen the responsibility gap as the Human
Agent relies almost fully on the Partial AMA for moral decision making, except for
making the actual decision.

This third pattern illustrates howTDPs canbeused to describe complex ideas,
while making potential flaws more transparent that would require future re-
search. In addition, this pattern illustrates how TDPs can have complex intric-
acies, dependencies and effects, which all require extensive evaluation in exper-
iments.
Name: Coactive moral decision making

Description: AHuman Agent is on stand by, while an Partial AMAperforms direct work
andmoral supervision to detectmorally sensitive situations. When this
occurs, the Partial AMA initiates a work handover and explanation of
moral context to involve the human. Then the Human Agent and Partial
AMA jointly make the decision.

Structure:

Requirements: R1 Human Agent needs to be on standby.
R2 Both agentsmust have an understanding of moral implications.
R3 The Artificial Agent must explain the moral context sufficiently

to involve a Human Agent.
R4 The Artificial Agent must support the Human Agent in moral de-

cision making.
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Advantages: A1 The Human Agent does not need to supervise work or perform
moral supervision.

A2 The Human Agent makes moral decisions and receives support
from a Partial AMA.

A3 The Artificial Agent does not make moral decisions autonom-
ously.

Disadvantages: D1 The Human Agent cannot intervene in the Partial AMA’s work.
D2 The work handover, explanation of moral context and co-active

moral decision making may bias the Human Agent.
D3 The handover may introduce too much overhead for agents

and humans to make a moral decision in time.

Table 7.3: TDP3: Coactive moral decision making.

7.5.4 TDP4: Autonomous moral decision making

This final pattern makes use of Full AMAs to fully automate both direct work as
well as moral decision making. This pattern illustrates how such a Full AMA, and
a Partial AMA for that matter, can be obtained and maintained. It introduces
value elicitation to explicitly elicit the moral values from Human Agents and reli-
ably transfer these in Full AMAs. This process can be repeated after a predeter-
mined time (e.g. after a single decision or a longer period of time) to warrant
for inadequacies, moral drift and other factors. This elicitation process allows
Full AMAs not only to perform the direct work autonomously, but also to perform
moral supervision and independently make moral decisions. The explicit work of
moral supervision allows humans to check when, and even if, the Full AMA identi-
fies morally sensitive situations adequately.

Within the surveillance scenario, drones will act as the Full AMAs and require
a decision-model that follows the set of relevant human values elicited before-
hand. The drones will be activated and no human will be further involved in the
direct work or moral decision making, up until a new value elicitation is deemed
necessary. The same occurs for the surgical robot scenario, where the doctor
will only activate the surgical robot after some elicitation process.

A major advantage is that any moral decisions can be traced back to a con-
trolled elicitation process. However, this is only true when the method with
which human values are elicited is adequate and their incorporation into the
agent is faithful to those elicited. Also, human values are subject to change hence
new iterations of value elicitation should be determined.
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This final pattern illustrates how TDPs may look seemingly simple, but may
require a substantial effort from the research community to achieve. Further-
more, this pattern illustrates the idea that patterns can regard any abstraction
and temporal level. Finally, this shows that patterns can be combined. A value
elicitation can be deemed necessary to obtain a Partial AMA as well. As such, this
pattern may find a place in any of the previous three TDPs.
Name: Autonomous moral decision making

Description: Values are being elicited from the Human Agent and incorporated in
the Full AMA’s decision model. The agent performs the direct work,
moral supervision andmoral decisionmaking autonomously leaving the
Human Agent free.

Structure:

Requirements: R1 Moral values need to be adequately elicited from the Human
Agent.

R2 The Full AMA must adequately incorporate human values in a
decision model.

R3 The Full AMAmust predict morally sensitive decisions in time.
R4 The Full AMAmust have a sufficient understanding of the moral

implications.
Advantages: A1 No Human Agent required after value elicitation.

A2 All relevant work except for value elicitation is done autonom-
ously.

A3 Autonomousmoral decisions can be traced back to a controlled
value elicitation.

Disadvantages: D1 Impossible with the current state of the art to effectively imple-
ment this pattern.

D2 Human values may prove to be impossible to elicit adequately.
D3 Difficult to determine when to repeat value elicitation.

Table 7.4: TDP4: Autonomous moral decision making.
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7.6 Discussion

The above four TDPs illustrated our proposed approach on a dynamic task alloc-
ation perspective to moral decision making and the role of explanations herein.
In this sectionwe discuss the versatility of this approach, aswell as its drawbacks,
in more detail.

Each TDP proposes a solution on an abstract level, which can then be made
concrete with more detailed sub-patterns. A sub-TDP describes an aspect of its
super-TDP in more detail. For example, value elicitation can be done through
forced choice experiments and discrete choice modelling [350], inverse reward
design [334], but also through value-sensitive design [330]. Each of these could
be used as a sub-TDP to realize value elicitation in TDP4. This varying level of ab-
straction in TDPs and the capability to nest and/or link them, shows the versatility
of a TDP approach to dynamic task allocation for moral decision making.

However, a difficulty of the TDP approach could arise from the potential com-
binatorial explosion of TDPs than can be nested and linked. This can be handled
by two approaches on how to define and construct a TDP. The first approach is
top-down, where all possible combinations in nesting and linking a set of TDPs
is viewed as a complete description of the solution space. Next, the space will be
pruned by scientific theories, the current state of what is possible, and rigorous
evaluations over different scenarios. The advantage of this approach is that it
can be done systematically and is scenario independent. The disadvantage lies
in how the initial set of sub-TDPs should be defined. The second approach is
bottom-up and is more scenario-driven. Given a specific problem within a scen-
ario, a solution is found, generalized to a TDP, and followed by evaluations over
scenarios. The advantage is that this approach is driven by a current problem
and its solution is generalized to apply for other scenarios as well. However, a
disadvantage is that the complete solution space is never fully acknowledged
and certain solutions may be overlooked.

As discussed earlier, the TDP approach enables a dynamic task allocation and
teaming perspective tomoral decisionmaking. However, when there is disagree-
ment around this perspective, the TDP approach is not suited to structure that
discussion as it assumes it by default. Furthermore, TDPs assign responsibility
to humans and agents but they are not meant to define responsibility in a legal
way. A TDP defines a generic solution to an often occurring problem over differ-
ent scenarios, it does not define regulation or policy on responsibility. TDPs can
however, structure the discussion around policy on task allocation strategies.
For example, policies on meaningful human control and if TDPs should allow for
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it directly (e.g. TDP1 and 2), indirectly (e.g. TDP3 and 4), or prevents it.
The clear visual language, structured description and formalisation of a TDP

invites different disciplines and parties to discuss and share research, ideas and
arguments. This is a clear advantage in themulti-disciplinary and -party research
on both moral decision making and Explainable AI. The risk lies in that TDPs can
become simplifications of a problem. This risk arises when a TDP becomes to
generic and loses a connection to a reoccurring problem, but it may also arise
when TDPs are only used as a tool for discussion and never actually evaluated
or implemented.

7.7 Conclusion

In this chapter, we proposed the concept of team design patterns (TDPs) to unify
ideas from Machine Ethics on artificial moral agents (AMAs) with ideas from Hu-
man Factors on dynamic task allocation in human-agent teams (HATs). Such pat-
terns describe how and when AMAs can be applied to perform moral decision
making within a HAT, as well as the potential roles of explanations. These pat-
terns offer a way to structure and specify generic solutions, and the discussion
around them, on issues related to responsibility gaps, meaningful human con-
trol and co-active moral decision making.

We provided a task decomposition relevant to moral decision making, spe-
cifically moral supervision and (co-active) moral decision making. A similarly set
of actors were identified, where we defined an AMA as either being a Partial
AMA that supports only specific elements of moral decision making, or a Full
AMA that has the capabilities to perform moral decision making fully autonom-
ously. These tasks and actors were then used in four illustrative TDPs on how
humans and AI can collaborate. These patterns ranged from the human per-
forming all morally sensitive tasks, towards the AMA performing them all. Two
patterns illustrated that a Full AMA is not required to aid humans in moral de-
cisionmaking. By defining these four collaboration forms, we showed how TDPs
can help define requirements on moral decision making, how the difficulties on
implementing AMAs can be bypassed by an appropriate TDP, and how explana-
tions can be integrated in the collaboration’s design. Although none of the four
illustrative TDPs offer the golden solution to moral decision making, we believe
that a TDP approach stimulates structured discussions when it comes tomorally
sensitive AI applications and the role of explanations therein.

We offered the TDP approach to structure the research towards moral de-
cision making and the role of explanations herein.
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CHAPTER 8

HUMAN-AGENT COLLABORATION
THROUGH EXPLANATIONS

This chapter is adapted from; van derWaa, J., Verdult, S., van den Bosch, K., van
Diggelen, J., Haije, T., van der Stigchel, B., & Cocu, I. (2021). Moral decision mak-
ing in human-agent teams: Human control and the role of explanations. Fron-
tiers in Robotics and AI, 8:640647. The adaptations include an altered abstract,
shortened introduction, and an adjusted lay-out, including the formatting of fig-
ures and tables.
Jasper van der Waa, Sabine Verdult, Karel van den Bosch, Jurriaan van Diggelen,
Tjalling Haije, Birgit van der Stigchel, Ioana Cocu
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In the previous chapter we introduced the use of Team Design Patterns (TDPs)
to design the human—AI collaboration for morally sensitive tasks, including the
use of explanations. In this chapter we explore how domain experts experience
three implementations of TDPs in amorally sensitive task. We evaluate how they
their control over the AI. In addition, we evaluate their experience with various
explanations classes integrated in each collaboration form. These three forms
differ in how morally sensitive decisions are allocated between human and AI.
The explanations aim to explain this allocation by conveying (moral) context and
the AI’s reasoning. A simulation of medical triage during a crisis was used. With
this testbed we simulated moral decision making under time pressure, with lim-
ited resources andunder strictmedical guidelines. Several first responder health
care professionals were recruited for this qualitative study.

Our findings include that the interviewed domain experts experienced con-
trol when this control had immediate effect on the AI. With a more delayed ef-
fects, experts felt less in control and even less responsible for the AI’s behaviour.
Explanations were viewed as valuable when asked afterwards but were only act-
ively used when they felt there was time to do so. Explanations did not add to
their feeling of being responsible for the AI, although it did help them to under-
stand the (moral) context. We conclude that explanationsmight only be effective
if they are adapted to the role and cognitive state of the human.
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8.1 Introduction

The increasing development of Artificial Intelligence (AI) and technological innov-
ations are changing the way artificially intelligent agents are applied. In morally
sensitive tasks it is considered especially important that humans exert mean-
ingful control over the agent’s behaviour [352]. Morally sensitive tasks require
decision making to be in accordance with ethical and moral values to which hu-
mans adhere [337]. So, when agents are tasked with making morally charged
decisions, they need to be underMeaningful Human Control (from now on: MHC).
This ensures that humans can be held accountable for an agent’s behaviour at
any time [326]. Examples of agents being applied in morally sensitive tasks can
be found in healthcare [353], autonomous driving [354], AI-based defense sys-
tems [355], and in many other societal domains [356].

The developments in AI also enable agents to collaborate with humans in
a human-agent team (HAT) to achieve a common team goal. Taking moral val-
ues into account when making decisions is typically regarded as a human com-
petence [357]. Thus, when a human-agent team is involved in making moral
decisions, the human is assigned with responsibility over the decisions, to safe-
guard that moral standards are maintained and that a person can be held ac-
countable in case the team fails to do so. In other words, humans require mean-
ingful control over agents when teamed together. A key research challenge is
then: how to design a human-agent team for morally sensitive domains, in such
a manner that the team achieves its goals effectively and efficiently, while hu-
mans have meaningful control over the agents?

The collaboration in a team consisting of humans and artificial agents can
be designed in multiple ways, for example with different levels of autonomy
[328]. We adopt the approach to define human-agent collaboration as stand-
ardized sequences of interactions, as proven solutions to commonly recurring
issues in team tasks. These are called Team Design Patterns (TDPs) [342], and
they define the interactions and collaborations within the team (e.g., task divi-
sion; autonomy; authorities andmandates; communication). Based on the work
from the previous Chapter 7, we select three TDPs for human-agent team collab-
oration (see Section 8.4, and use these for our exploration into their effects on
MHC. We expect that each of the selected Team Design Patterns will have differ-
ent implications for the control that the human has or feels over the team’s per-
formance. However, what those implications are has not yet been thoroughly
investigated. In the present study we explore how domain experts appreciate
and evaluate the different designs of collaboration with intelligent agents when
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performing a morally sensitive task. In particular we are interested in how do-
main experts experience and evaluate the control (or lack of control) for the in-
vestigated patterns of team collaboration.

The task domain for our exploratory study is medical triage under conditions
of a crisis, a pandemic virus outbreak. We developed a simulation of an emer-
gency unit with a large number of sick patients arriving. The medical team, con-
sisting of a medical doctor and an intelligent agent, has to assign patients to
either the IC-unit, a hospital ward, or to home-treatment. The task simulates
that there are too few resources to provide all patients with the care they need,
so the circumstances force the team to make moral decisions. Qualified and
experienced ambulance nurses participated in the study as the human doctor,
and they performed the task in collaboration with their team agent. Qualitative
methods such as thinking aloud and structured interviews were used to reveal
how the experts experienced and evaluated the collaborationwith the agent. We
focused in particular on the value of the agent’s explanations on their behaviour,
and on whether the experts felt in control over the team’s decisions.

This exploratory study provides insight into the consequences that different
options for human-agent team collaboration are likely to have for the control
that the human has over the team’s performance and decisions. The outcomes
will firstly be relevant for how to introduce intelligent technology into themedical
domain, but is expected to be of relevance for other morally sensitive domains
as well.

8.2 Meaningful Human Control in Human-Agent teams

The termMHC originated from the legal-political debate around lethal autonom-
ous weapon systems [358, 359, 360, 360, 355]. A serious concern driving this de-
bate is the possibility of an accountability gap, where no one can be held account-
able for potential war crimes committed by these systems. Another commonly
raised objection stems from the sentiment that a machine should never be al-
lowed to make morally charged decisions such as taking a human life. Whereas
this example might appear extreme, the notion of meaningful human control
has proven important in various morally sensitive domains, such as autonom-
ous driving, healthcare, and, in our case, automated triage of patients in a pan-
demic [361, 362].
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8.2.1 Understanding meaningful human control

Although a commonly accepted definition of MHC ismissing, many authors have
provided useful analyses of the concept.

The NATO research task group HFM-ET-178 [363] argues that MHC requires
humans to be able to make informed choices in sufficient time to influence AI-
based systems in order to enable a desired effect or to prevent an undesired
immediate or future effect on the environment. Two aspects are particularly
important in this definition. Firstly, it should be an informed decision, meaning
that the human has sufficient situation and system understanding and is cap-
able to predict the behavior of the system and its effect on the environment.
Secondly, the human should have sufficient time to make these decisions. This
is particularly important as many processes in which AI-algorithms play a role
(such as cyber attacks) take place atmachine speed, leaving little time for the hu-
man to intervene. The above definition encompasses cases from instantaneous
(e.g., number of seconds) to very delayed responses to control (several hours to
months, e.g., during mission preparation, or system-design).

Santoni et. al. [326] propose so-called tracking and tracing conditions for an
autonomous system to be undermeaningful human control. The tracking condi-
tion states that the system should always be able to respond to the moral reas-
ons of humans, no matter how complex the system is that separates the human
from the ultimate effects in the world. The tracing condition states that the sys-
tem’s actions should be traceable to a proper moral understanding by one or
more humans who designed or interact with the system.

Both proposed definitions refer to the larger system consisting of humans
and agents working together. Also in practical situations, control is hardly ever
exercised by one entity alone, but is executed by an accumulation of different
entities aiming to influence the overall system behavior [364, 365]. Therefore,
when designing for systems that satisfy the demand of MHC, we should not
only focus on individual human-agent interaction, but adopt a collective intel-
ligence perspective on the entire human-agent team (HAT) [356]. HAT-research
revolves around solving a number of core challenges [366], such as dynamic-
ally rescheduling tasks to adapt to changes in the environment, and obtaining
and maintaining accurate mental models of each other. Both topics, and their
relation to MHC, are discussed below.

A well-designed HAT [367, 368] is resilient against disturbances and unexpec-
ted events as it allows humans and agents to take over each other’s task in case
of calamities or system failure. This is known as dynamic task allocation and is
an important mechanism for achieving MHC in morally sensitive tasks. For ex-
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Figure 8.1: Three measurable dimensions of meaningful human control

ample, if the human does not trust themachine tomakemoral decisions, it could
retake control from the machine whenever the task progresses into moral ter-
ritory. However, this only works when the human has an accuratemental model
of the machine and can recognize its shortcomings. In turn, the machine should
facilitate this human understanding by acting transparent and being capable of
explaining itself (which is further discussed in Section 8.3).

To meet these requirements of MHC, the design of a HAT involves answering
questions like: who doeswhat?, whenwill tasks be reallocated?, how do different
actors keep each other informed?, etc. These choices can be made explicit using
Team Design Patterns, which are further described in Section 8.4.

8.2.2 Measuring Meaningful Human Control

To impose meaningful human control as a non-negotiable requirement on AI-
based systems (as proposed by Article 36 [359]), we must be able to verify and
measure MHC. Although various authors have emphasized the importance for
achieving Meaningful Human Control in human-agent teams [363, 369], so far,
very few (if any) concrete methods and measures have been proposed that can
be practically applied for this purpose. This section proposes a starting point
of such a measure. The human study in this chapter serves to obtain practical
experience with this measure by exploring the component experienced MHC. The
idea is presented in Figure 8.1.
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The Figure distinguishes between three measurable components of mean-
ingful human control (corresponding to the three incoming arrows in the green
oval):

1. Experienced MHC. This measures corresponds to the subjective experi-
ence of control by humans in the HAT. This can, for example, bemeasured
using questionnaires and interviews. The human team partner may be a
system operator that directly interacts with the agent(s), but may also be
somebody that collaborates with the agent in an indirect manner, e.g., the
human that configures the system before the operation.

2. Behavioral compliance with ethical guidelines. This measure compares
the behavior produced by the entire HAT with the ethical guidelines that
have been issued as context for conducting the mission or task. Ethical
guidelines are explicit rules or laws that describe what is considered as
ethical in a domain, e.g., documented as codes of conduct, laws, military
rules of engagement, etc.

3. Behavioral compliance withmoral values. Adhering to ethical guidelines
is typically not sufficient to guaranteemoral behavior. Most people would
agree that people can behave immoral, yet still act within legal boundar-
ies, e.g. being disrespectful, dishonest, disloyal, etc. Therefore, we adopt
a second measure which measures whether the team behavior corres-
ponds with the human’s moral values. In contrast to documented ethical
guidelines, a human’s moral values is not directly accessible. A possibility
to assess the human’s moral values is by asking themwhether they found
the behavior of their team ethically appropriate.

Note that this conceptualization of meaningful human control does not ne-
cessarily require the human to be in the loop all the time. If agents are the sole
producers of the team’s actions during operations, the system can still be as-
sessed as being under meaningful human control; as long as the team’s beha-
vior corresponds to human moral values and ethical guidelines, and as long as
humans experience that they have control (e.g., when they have instructed the
agents to act in a certain manner prior to the operation, and establish that the
team acts accordingly).
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8.3 The role of explanations

As discussed in Section 8.2.1, humans require an accurate and up to date men-
tal model of their agent team partners to maintain meaningful control. Such a
mental model should include knowledge on what agents observe and how these
observations are used to arrive at a decision. To achieve this the agent should ex-
plain itself [370]. Without these explanations, humanswill not be able to exercise
control in a timely and accurate manner. As such, explanations are intrinsically
part of the human-agent collaboration and should be included in the design for
such collaborations.

The field of eXplainable Artificial Intelligence (XAI) focuses on evaluating and
developing explanations that support human-agent collaboration [371, 20]. Ex-
planations can improve trust and acceptance [235] as well as task performance
[372, 373]. More importantly for this chapter, explanations enable humans to
better estimate when and which control should be exercised [374, 375]. Within
the field of XAI, various types of explanation have been evaluated, but not yet in
a situated morally sensitive task [33].

The three collaboration designs introduced in this chapter use the following
types of explanations: 1) confidence explanations (explain how confident the
agent is), 2) feature attributions (explain which observations are attributed to an
agent’s decision), and 3) contrastive explanations (explain why the agent made
a certain decision over another). Below we introduce each explanation type and
discuss their advantages and disadvantages for MHC.

8.3.1 Confidence explanations

Agents can make correct or incorrect decisions, and should convey their confid-
ence to humans in an interpretable manner [376]. Such a confidence estimation
helps humans to decide whether to trust the agent or not. Preferably, the agent
should also explain why it is confident or not, e.g., by presenting a reflection on
past decisions in similar situations. This allows the human to asses the agent’s
performance in those types of situations [377]. This not only explains why the
agent is confident or not, it also enables a better understanding of the agent’s
behaviour. However, reviewing past situations is costly as it consumes time and
cognitive workload of the human. A minimal confidence explanation might thus
only explain in how many of those past situations the agent behaved correctly,
allowing the human to calibrate trust in the agent with less effort.
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8.3.2 Feature attributions

Feature attributions are a commonexplanation typewithin the field of XAI. These
explanations expose what the agent found relevant features of a situation that
influenced its decision. This includes features that indicated a different decision
according to the agent, but who were found not important enough to merit a
change.

Feature attributions come in different forms, such as importance [378] and
saliency [379]. Their purpose is to explain what an agent deemed relevant for
which decision. Studies showed that this type of explanation can improving the
predictability of agents [237, 380, 381]. A feature attribution can also be easily
visualized using graphs or highlights [380, 382]. This enables a quick interpreta-
tion of the explanation.

However, feature attributions tend to be interpreteddifferently by users [383,
384]. They may provide a false sense of trust as they can be unreliable [385, 383,
386], misleading [387, 388, 389, 390] or even manipulated [391, 392]. Further-
more, presenting which feature was important in a decision does not explain
why it was important [393, 237]. Nonetheless, a feature attribution can be a
useful tool for human team members to identify biases in their agent partners
that require adjustment.

8.3.3 Contrastive explanations

A contrastive explanation explains why the agent behaved in one way instead
of another [42]. It contrasts the current decision and a decision of interest and
explains why the former was chosen over the latter. This explanation exposes
the internal reasoning of the agent. A contrastive explanation makes the agent
more predictable and improves human understanding in its reasoning [237]. Es-
pecially this understanding is valuable to help identify what kind of control is
optimal.

The contrastive explanation answers almost every ‘Why?’ question humans
might have in a HAT setting [68]. However, the difficulty is to identify the decision
to use as a contrast [100]. The contrast is what limits the explanation to a few im-
portant reasons, and makes the explanation concise and usable [68]. Currently,
the complexity of amorally sensitive tasks prevents agents fromaccurately infer-
ring the contrast from the open-ended question ‘Why this decision?’. However, a
contrastive explanation can be provided in those situations where only two de-
cisions are possible, the contrast is always constant or humans have the time to
explicitly state the contrast.
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8.4 Team Design Patterns for Human-Agent collaboration

Within HAT research, and related fields such as human-computer interaction,
problem solutions are often formulated using design patterns [394, 341, 342].
A design pattern is an evaluated and abstracted solution for a common prob-
lem [395]. Specifically, team design patterns (TDPs) can be used to describe
forms of collaboration with various team properties [342]. TDPs describe in
a task-independent way how humans and agents collaborate and communic-
ate, the requirements needed to do so, and the advantages and disadvantages
when applied. A library of available TDPs enables researchers, developers and
designers to discuss, extend and select an appropriate HAT design for a spe-
cific task [396]. After introducing the TDP definition language, we describe three
promising TDPs with their hypothesized advantages and disadvantages. The
three TDPs differ greatly w.r.t. the level of agent autonomy and as such the hu-
man’s direct involvement in moral decision making.

8.4.1 Team Design Pattern descriptions

We follow the TDP language proposed by Diggelen et al. [328]. We provide a de-
scription of the design rationale, and provide a table with a visual representation
of the collaboration design, the necessary requirements, advantages and disad-
vantages. A team design pattern (see for example the figure in Table 8.1) may
consist of various phases in which different types of collaboration take place (in
the example, there are two of such phases). Transitions between phases are de-
noted with solid or dashed arrows, representing an immediate transition or a
delayed transition of days or longer. Within a phase, the human is represented
by a round character and the agent as a rectangular character. If a team partner
observes another, this is denoted as a dashed arrow going fromone to the other.
Performed tasks are denoted as the blocks lifted by a human or an agent. If a
task is performed jointly, they both lift the same block. Blue blocks denote non-
moral tasks, while red blocks denote moral tasks. Humans always have a model
of (their own) moral values, as denoted by a heart. However, agents might have
no explicit model of moral values (no heart), a limited model (half a heart), or a
complete model (a full heart). The difference between a limited and complete
model is that in the former the agent only has sufficient knowledge to identify
a morally sensitive decision or task, while the latter allows for resolving such
decisions or tasks (also known as an artificial moral agent [397]).

For our patterns we distinguish the following tasks:
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– Make decision: The act of deciding that involves nomoral values or ethical
guidelines.

– Makemoral decision: The act of deciding which involvemoral values, eth-
ical guidelines, or both.

– Allocate decision: The act of allocating decision making tasks to humans
or agents.

– Reallocate decision: The act of adjusting a decision allocation.
– Identify saliency: The act of identifying moral saliency based on the con-

text.
– Advice: The act of giving advice on a decision.
– Learn to decide: The act of learning from data or observations which de-

cisions should be taken in various contexts.
– Value elicitation: The act of eliciting moral values from humans and im-

plementing them in agents.
– Explain decision: The act of explaining an intended decision.
– Explain advice: The act of explaining a given advice.
– Explain allocation: The act of explaining a proposed decision allocation.

8.4.2 TDP-1: Data-driven decision support

Decision support agents are an application of AI since the field’s origin. Recent
progress in machine learning and an abundance of available data allow for data-
driven support agents in an increasing number of domains. In this first TDP,
presented in Table 8.1, data-driven decision support agents provide advice and
enrich the context with computed statistics. They accompany this advice with ex-
planations why a specific advice was given, their confidence that the given advice
will prove to be correct and, if humans decide otherwise, why that decision was
not advised instead. For example, in a medical triage task these agents advice
human doctors what care should be assigned to incoming patients. In addition,
they compute survival chances for each possible medical care. They do so based
on what they learned from observing patients and decisions made by other doc-
tors in the past. The human doctors still make all triage decisions, but if they
experience pressure they can rely on these agents to provide advice, informa-
tion and explanation to ease decision making.
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This collaborationdesign requires agents’ advice (R1) and explanations (R2) to
be accurate. Without these, the advice will often be incorrect while the explana-
tions might not suffice for humans to detect this. As a consequence humans can
be unknowingly biased towards the incorrect advised decisions, affecting overall
performance as well as negatively impacting moral decisionmaking. However, if
these two requirements are sufficientlymet, the agents can successfully help hu-
mans make all of the decisions. This results in humans experiencing both com-
plete control (A1) and being assisted by other humans who taught the agents
(A2). All agents function as representatives of the many humans who taught
them and at no point in time will the agents make a decision, morally sensitive
or not. As such, agents require no explicit model of moral values to provide this
support.

The teamcanbenefit fromall three explanation types discussed in Section 8.3.
The confidence explanations help humans decide whether the advice can be
trusted. This helps tomitigate potential over- or under-trust in the agents. A fea-
ture attribution helps humans further to estimate whether the given advice suf-
fers from potential biases or incorrect reasoning (e.g., favoring certain patients
based on marital status while ethical guidelines prohibit this). The contrastive
explanation is useful to help humans reconsider their intended decision when
going against agents’ advice. The contrast is the advised decision and the ex-
planation can for instance show information the human overlooked when mak-
ing their decision. As such, it can improve morally sensitive decision making, at
the cost of added workload.

Disadvantages of this collaboration could be that any advice unknowingly bi-
ases the human towards that decision (D1), the agents do not reduce the work-
load of humans (D2) and the interpretation of explanations only adds to this
(D3). The explanations should only convey limited amounts of information while
remaining effective.

This TDP is not suited when decisions require above-human response times.
However, the TDP is suited when humans are required to experience full control
and an explicit model of moral values is not possible.
Name: Data-driven decision support

Description: Humans make all the (moral) decisions assisted by agents who
provide advice and support. These agents learned this fromobserving
or being directly by humans performing the task. Agents also explain
their advice in various ways.
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Structure:

Requirements: R1 Agents must be taught sufficiently accurate how humans de-
cide in various situations.

R2 Explanations must be accurate to the agent’s reasoning.
Advantages: A1 Humans experience complete control.

A2 Humans feel they are supported by the humanswho taught the
agents.

A3 The additional information and explanations from agents is
viewed as valuable.

Disadvantages: D1 Humans are unknowingly biased by the agents decisions.
D2 Agents do not alleviate workload for humans.
D3 Explanations can be ignored when under time pressure.

Table 8.1: TDP-1: Data-driven decision support

8.4.3 TDP-2: Dynamic task allocation

In the first TDP, the agents did not reduce human workload as no decisions were
made autonomously by them. However, it did ensure all decisions are made by
humans. This second TDP, dynamic task allocation, introduces the idea of letting
agents identify morally sensitive decisions and allocate those to humans while
allocating normal decisions to themselves. This TDP-2 is presented in Table 8.2.
It describes a collaboration where agents assess the situation, categorize the re-
quired decisions as being morally sensitive or not and assign these decisions to
humans or themselves respectively. The agents should explain this allocation to
humans as they can still adjust it to their liking. The explanation helps humans
identify the reasoning behind the allocation. The agents should also explain their
intended decisions to humans, as this further enables humans to assess if the
agent should indeed make that decision or that intervention is required. This
TDP ensures that humansmake themorally sensitive decisions while their work-
load is reduced as the agents take care of the other decisions.

For agents to identify a morally sensitive decision, they should understand
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when a decision requiresmoral values: Amodel ofmoral values is thus required.
This model to identify whenmoral values should be applied (e.g., when a certain
decision results in loss of life). However, the agents themselves do not need to
knowhow these values apply (e.g., how the value of human life should be used to
decide whose life is lost). We argue that this requires a less sophisticated model
of moral values.

To clarify, take our example of medical triage. Within this task, agents should
bemade aware of the relevantmedical guidelines and humanmoral values. This
allows them to infer how humans wish to triage patients and can combine this
knowledge with the situational context to identify morally sensitive triage de-
cisions. For instance, an agent might observe two patients in need of intensive
care with only one bed available. The agent is not equipped to make this de-
cision, but is able to identify it as a morally sensitive decision. The agent thus
assigns both patients to a human doctor. In the mean time, the agent continues
assigning patients with the care they need. However, if another patient requires
intensive care and there are still insufficient beds available, it is also assigned to
the human doctor.

For this TDP to work the model of humanmoral values should be sufficiently
accurate (R1) and to support human intervention in the agents’ allocation of
decisions the offered explanations should be accurate (R2). If the former re-
quirement is not met, the allocation might be erroneous. If the explanations are
also inaccurate, humans are not able to accurately identify this, which results
in agents making morally sensitive decisions they are not designed for. If these
requirements are met however, humans feel they are performing the task to-
gether with agents (A1) while experiencing control over the made decisions (A2).
The offered explanations are also experienced as valuable, since they enable an
understanding of how agents allocate and decide (A3). This helps humans to
alter the allocation if needed and to learn when such an intervention is often
needed. Finally, humans experience a lower workload which gives them more
time to deal with the difficult morally sensitive decisions (A4).

The explanation why a certain task allocation is proposed should explain why
a morally sensitive decision is required. The contrastive explanation is ideal for
this, as it can explain themain reasons whymoral values are involved compared
to amore regular decision. It can also be used to explain why some decision was
not allocated to the human by explaining why nomoral values are required. The
former helps humans understand why the agent is unable to make a decision
while the latter helps humans understand why they were not assigned a certain
decision. However, a contrastive explanation is less suited to explain why an
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agent intends to make a certain decision as the contrast is less clear. As such,
a feature attribution is more suited. It provides a more general understanding
why some decision is intended and which situational features played a role in
this.

A major disadvantage of this collaboration design is that humans do not in
fact make all the decisions as in TDP-1 (D1). In addition, both reviewing the
task allocation (D2) and explanations (D3) require additional time. As a con-
sequence of these disadvantages, humans might experience control because
they can change the task allocation but they might not have the time to do so
accurately. Thus if reviewing the allocation and interpreting explanations costs
more time than is available, this TDP might result in team behaviour that is not
compliant to moral values and ethical guidelines. However, if this time is avail-
able the TDP describes a HAT where humans and agents truly complement each
other.
Name: Dynamic task allocation

Description: Human moral values are elicited and implemented in the agents.
Agents identify moral dilemmas and allocate the related tasks to the
humans and take on the rest. All humans can alter this allocation at
any time on which the agents motivate the allocation. While agents
make decisions they can explain them on request.

Structure:

Requirements: R1 The agents’ model of moral values should be sufficiently accur-
ate to identify morally sensitive decisions.

R2 Explanations must be accurate to the agent’s reasoning.
Advantages: A1 Humans feel that they are collaborating with agents.

A2 Humans feel in control for all morally sensitive decisions.
A3 The explanations from agents are viewed as valuable in under-

standing moral saliency and agents’ decisions.
A4 Agents reduce the workload of humans, providing them with

more time to deal with morally sensitive decisions.
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Disadvantages: D1 Humans do not make all decisions.
D2 Reviewing the proposed task allocation requires additional

time.
D3 Explanations require additional time to interpret.

Table 8.2: TDP-2: Dynamic task allocation

8.4.4 TDP-3: Supervised autonomy

In TDP-1 agents only had a supporting role, while in TDP-2 agentswere allowed to
make their own decisions if not morally sensitive. However, some tasks require
either a high decision speed (e.g., missile defense systems) or the communica-
tion between agents and humans is too unreliable to enable control (e.g., sub-
terranean search and rescue). In these cases the agents require a high degree
of autonomy, up to the point where they can make morally sensitive decisions.
The TDP described in Table 8.3 shows agents who do so based on a value elicita-
tion process to ensure decisions are compliant to ethical guidelines and human
moral values. The agents provide humans with explanations of their decisions
to enable an understanding on how they reason. When a human discovers an
error in some agent, it can use this knowledge to improve a future elicitation
process.

In TDP-2 the elicitation process should only support the identification ofmor-
ally sensitive decisions, in this TDP agents need to make those decisions as well.
As such, the model of moral values in each agents should be sufficiently rich
and accurate (R1). Furthermore, as in TDP-1 and TDP-2, explanations need to be
accurate (R2). Without these requirements the TDP will fail to function due to
agents making mistakes while humans fail to understand why.

In themedical triage example, this TDP implies that agents extract andmodel
the moral values of human doctors using an elicitation process. When com-
pleted, these models are used to assign medical care to patients where agents
make all decisions with humans in a supervisory role. The human team partners
observe the decisions made, and may request explanations for some of them.
As such, no patient has to wait for a decision as they can be made almost in-
stantaneously, only allotting time for humans to review the explanations. This
means that patients do not worsen or even die while waiting for a decision. Also,
humans improve their mental model of how agents function by observing agent
behaviour and the requested explanations. After a fixed period of time, agents
can be recalled to repeat the elicitation process to further improve their moral
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behaviour.
A major advantage of this TDP is that agents make all of the decisions and do

so at machine speed (A1). This makes this TDP especially suited where humans
are too slow, or the situations prohibit humans fromoperating (safely). Similarly,
with limited communication between agents and humans this TDP still allows
agents to operate. Other advantages include that through the elicitation pro-
cess, humans can still enact control by iteratively (re)programming agent beha-
viour (A2). Furthermore, the offered explanations help humans in understanding
how certain moral values impact the agent’s behaviour (A3). This is valuable for
the iterative elicitation processes, as humans are better equipped to adjust the
model of moral values such that a more desirable behaviour is shown.

The provided explanations should should be minimal, as both communica-
tion bandwidth and time might not be guaranteed in tasks where this TDP is
advantageous. Feature attributions, as discussed in Section 8.3, signal the most
important aspects that played a role in this decision, including potential moral
values. They also present potential situational aspects that might contradict the
decision. A downside of feature attributions is that they do not provide a deep
understanding, as it is not explained why these features are important. How-
ever, they are quick to interpret and can be easily visualized.

The obvious disadvantage of this TDP is that humans do not make any of the
decisions and are only supervising (D1). The compliance of the team’s behaviour
to human moral values and ethical guidelines fully depends on the accuracy of
the model agents have of the relevant moral values. Even if this model is suf-
ficiently accurate and behaviour is deemed compliant, humans may not feel in
control as the effects of a repeated value elicitation are not necessarily apparent.
Finally, since agents can make decisions swiftly not all decisions can be tracked
by the humans (D2). This may further decrease their experienced control, as
they can only supervise a small part of the agents’ behaviour.
Name: Supervised autonomy

Description: Human moral values are elicited and implemented in the agents,
which is repeated after every task. During the task the agents make
all decisions autonomously under human supervision. Humans su-
pervise to be able to improve the agent in the next value elicitation.

197



Chapter 8

Structure:

Requirements: R1 The agents’ model of moral values should be sufficiently accur-
ate to allow moral decision making.

R2 Explanations must be accurate to the agent’s reasoning.
Advantages: A1 Agents make all decisions swiftly.

A2 Humans can repeat the elicitation process to improve the agent
iteratively.

A3 Explanation enable a targeted elicitation process.
Disadvantages: D1 Humans feel uncomfortable in their supervisory role.

D2 Humans cannot track all decisions.

Table 8.3: TDP-3: Supervised autonomy

8.5 A MHC testbed: Automated triage during a pandemic

To measure effects such as behavioural compliance and experienced control
(See Section 8.2.1), domain experts should experience the collaboration with
agents within an ecologically valid and immersive task. We refer to this as a
situated experimental task. Situated tasks give their participants an immersive
experience required to draw generic conclusions regarding collaboration, beha-
vior compliance and experienced control. Furthermore, morally sensitive tasks
are complex and tasks lacking ecological validity, such as toy tasks, may not re-
flect this complexity.

We took the case of medical triage in an emergency hospital setting during
a pandemic. In this task, several domain experts were asked to assign medical
care to incoming patients while accounting for the medical and ethical triage
guidelines, their own moral values, and the available resources. Each patient
could be send home (receiving no care), to the general ward (receivingmoderate
care), or the intensive care unit (receiving maximum care).

This triage task was implemented1 using the MATRX Software package [398].
1The task’s implementation is available on request by contacting the author of this thesis.
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Figure 8.2: A screenshot of the reusable task developed to test meaningful human control. It depicts
a triage task where task participants assign medical care to artificially generated fictitious
patients under time pressure and with limited resources (e.g., hospital beds). On the left
it shows patients awaiting a triage decision and on the right it shows a top-down view
of the hospital with the waiting room, intensive care unit, general ward and the exit for
those who recovered or are send home. The top bar shows several statistics on occupied
beds and the total number of recoveries and deaths so far.

The MATRX software enables rapid experimentation of new HAT concepts as
it simplifies the creation of tasks that require teamwork. See Figure 8.2 for a
screenshot of the developed task. Within it, patients were presented in a cer-
tain order, structured in such a way that moral dilemmas would arise as tested
in several pilots. Morally sensitive decisions involved deciding which patients
could be assigned to the last bed in the general ward or intensive care unit. An-
other moral dimension was decision speed; patients that were not yet triaged
received no medical care and their health would start to deteriorate. The par-
ticipating domain experts could view a patient’s age, profession, marital status
as well as their symptom severity and general fitness. The patient flow was de-
signed tomimic a realistic situation under pressure, albeit both health deteriora-
tion and improvement were sped up. Health changes were reflected in a change
of symptom severity and eventual recovery or death. These changes followed a
relatively simple linear function accounting for a patient’s symptom severity, its
fitness and assigned care (if any).

Within the present study, this triage task was performed by a single human
and agent although the task allows for larger teams. Furthermore, every TDP
resulted in a unique implementation of the agent and interface. The decision
support agent of TDP-1 was trained using crowd-sourced labels on several pa-
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tients and its advice was embedded in the additional patient information (see
Figure 8.3a). The task allocation agent of TDP-2 was elicited using a question-
naire about moral values and its allocation was embedded in the patient over-
view (see Figure 8.3b). Finally, the autonomous agent of TDP-3 used the same
elicited values from TDP-2 but performed the task autonomously, waiting a fixed
time per patient before enacting a decision (see Figure 8.3c).

In all TDPs, explanations from the respective agents were given on various
moments; in the patient overview, the detailed patient view, or when making
a decision against the agent’s advice or task allocation. The explanation con-
tent for TDP-2 en TDP-3 were generated in real-time as they were dependent on
the value elicitation outcome. The explanation content for TDP-1 was generated
beforehand as the provided advice for a decision were computed beforehand
based on the fitted agent.

8.6 The present study

This chapter is concerned with exploring and conceptualizing meaningful hu-
man control in human-agent teams by performing early experimentation. We
consider a variety of designs for the collaboration between humans and agents,
and expect each of them to have different effects on teamwork, and the (exper-
ienced) level of human control. The human study serves to obtain evidence for
these claims and guide future research. We developed three distinct types of
human-agent collaboration in the form of TDPs (see Section 8.4.1), and imple-
mented these in a medical triage task. This forms the basis for our research on
Meaningful Human Control. This is a first study, in which we present to health-
care experts our experimental environment, the task to be performed, and the
designed human-agent collaborations.

The objective is to investigate how domain experts evaluate: the ecological
relevance of the task; the potential value and possible obstacles of agents as
their partners in the task, the impact of different TDPs on the control over the
team’s moral compliance, and the role of explanations to support that control.
This first study is therefore qualitative in nature. Results will be used to adjust
and improve the current TDPs or create new designs, including the use, present-
ation and design of the explanations. Results will also be used to improve upon
the experimental task, measurements and methods. Further studies can thus
better investigate the effects of TDPs on human control in a comparative and
quantitative manner.
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(a) A screenshot of the detailed patient view of the triage task under TDP-1. On the right it shows the additional
computed information, advice, confidence explanation and feature attribution.

(b) A screenshot of the patients waiting for a decision in TDP-2. Patients are assigned by the agent to either itself
(blue background) or the human (white background). The human could reassign patients with the slider on the
top-right of each patient.

(c) A screenshot of TDP-3 where the agent decides for all patients autonomously. Each patient has a time window
in which the human could review the feature attribution if so desired.

Figure 8.3: Three screenshots of the three TDPs in the triage task with artificially generated patients.
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8.6.1 Agent implementations

For each of the three TDPs, an agent was constructed to let domain experts ex-
perience collaboration with such an agent. These were simple rule-based agents
to reduce complexity and stochasticity during the human study. The implement-
ation of both the task and agents is publicly available 2.

TDP-1, Data-driven Decision Support, used an agent whose advice was based
on crowd sourced data. A total of ten non-experts were confronted with each of
the 16 patients and asked to assign care to each with no resource constraints.
They were also asked to rate each aspect of a patient (e.g., symptom severity,
age, etc.) for their role in their made decision. The decisions were aggregated,
to arrive at an ordering of possible care (IC, ward or home) for each patient.
During the human study, the agent selected the most frequently selected care
if available and otherwise select the next. The ratings were used to manually
create the explanation types. For example, the feature attribution explanations
container the top-5 of most mentioned patient aspects given that assigned care.

The behaviours of both agents from TDP-2 and TDP-3 were defined by a scor-
ing mechanism to each possible care (IC, ward or home). Given some patient P
and our two-part scoring mechanism, we summarize this rule-based decision
process as:

Care(P ) =


IC, if Score(P ) ≥ 2.5

Ward, if 1.5 ≤ Score(P ) < 2.5

Home, otherwise
Where Score(P ) = BaseScore(P ) + ElictedScore(P )

A patient’s base score was defined by its symptom severity;

BaseScore(P ) =


3, if Psymptoms = Severe
2, if Psymptoms = Average
1, if Psymptoms = Mild

TheElicitedScorewas determined using a set of rules obtained from a ques-
tionnaire before TDP-2. See Table 8.4 for an overview of these questions. Each
question addressed a patient demographic aspect that could influence the de-
cision. Depending on the answers, a rule was selected that added or subtracted
0.25 to the base score. As such, the elicited rules contributed a total of +1 or −1
2The implementation of both the task and agents is available under the MIT License (2020) and can
be found on this link: https://github.com/matrx-software/MHC-for-triage-agents.
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Demographic Answer options Associated rule

Age
No priority. -
Prioritize patients above 60. If Page ≥ 60,

then +0.25 else −0.25.
Prioritize patients below 60. If Page < 60,

then +0.25, else −0.25.
Profession

No priority. -
Prioritize patients withmedical
profession.

If Pprofession = Medical,
then +0.25 else −0.25.

Prioritize patients with no
medical profession.

If Pprofession 6= Medical,
then +0.25 else −0.25.

Gender
No priority. -
Prioritize men. If Pgender = Male,

then +0.25 else −0.25.
Prioritize women. If Pgender = Female,

then +0.25 else −0.25.
Family situation

No priority. -
Prioritize patients with chil-
dren.

If Pchildren = T rue,
then +0.25 else −0.25.

Prioritize patients without chil-
dren.

If Pchildren = F alse,
then +0.25 else −0.25.

Table 8.4: An overview of the elicitation questionnaire, showing the four demographics questioned,
the possible answers and the associated rule that adjusted the patient’s triage score (a
higher score resulted in intensive care).

to the score. In case two patients had the same score and only one bedwas avail-
able, the TDP-2 agent assigned them to the human and the TDP-3 autonomous
agent assigned the care to the first patient.

8.6.2 Methods

8.6.2.1 Design
Team Design Pattern is manipulated within-subjects. All our participants were
domain experts and practiced the triage task under each of the three TDPs, in
the following order: solo, without the agent being involved (baseline); with the
agent providing decision advice (TDP-1); with dynamic task allocation between
human and agent (TDP-2); and with the agent acting autonomously according to
a model of the human’s moral values (TDP-3).
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8.6.2.2 Recruited domain experts
A total of 7 health care professionals participated in this human study. Four of
themhave a history as volunteers in health care to conduct triage (e.g., volunteer
of the Red Cross); three worked in a hospital as medical professionals. The latter
were more experienced in working with intelligent machines.

The human study was approved by the TNO ethics committee. The domain
experts were recruited through personal and professional networks. Inclusion
criteria were an academic background and experience in the healthcare domain.
All experts stated to have sufficient technical ability to participate in an human
study held in a digital environment. Ae25,- compensation and travel reimburse-
ment was offered. One expert did not perform the triage task with TDP-2 due to
technical issues.

8.6.2.3 Measures
The objective of the present study is to obtain information how domain experts
appreciate and evaluate the distinguished designs of collaboration with intelli-
gent agents when performing a morally sensitive task. We are particularly inter-
ested in how the experts assess the control they experience over the task pro-
cesses and the decision making, and whether this differs for the distinguished
designs of human-agent collaboration. Furthermore, the study aims to obtain in-
formation how the experts understand and evaluate the explanations provided
by the agents, and whether they consider these explanations as supportive for
the collaboration.

In order to obtain the participating expert’s assessment, thinking-aloud and
semi-structured interviewsmethods were used. The experts were asked to think
aloud while they were carrying out the task. Afterwards the experimenter asked
them questions with respect to their experiences and opinions. In order to ob-
tain input for these interviews, a series of exercises and questionnaires were ad-
ministered. Below we provide a concise description of the measurements used.
Semi-structured interviews
The key measure used was that of a semi-structured interview, to which the
other measures provided input. The nature of the interview was interactive and
open. The goal of the questions was to guide the experimenter during the con-
versation and to collect qualitative data. As such, the proposed questionnaires
discussed below were by no means intended as stand-alone justified measures.
Responses to these questionswere used to ask open-endedquestions to acquire
a free-format and detailed account of the domain experts’ experiences.
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The interview started with questions about their profession and experience
with (intelligent) machines, followed by questions regarding the collaboration,
control and explanations. For instance, questions were asked regarding their
preferred TDP and motivation for this preference. When necessary, the exper-
imenter could ask follow-up questions. An example of this was to investigate
why a particular expert was optimistic about HAT solutions for the health care
domain (e.g. "Why are you positive about the collaboration between human and
machine in the health care domain?").
Thinking Aloud
The interviewed experts were instructed to think aloudwhen theywere perform-
ing the task [399], especially concerning how they experienced the collaboration
with the agent. If needed, the experimenter prompted the expert to not only
describe what they were doing, but also to verbalize the why of their thoughts
and actions.

Ecological validity
In order to reveal how the healthcare professionals evaluated the ecological
representatives and validity of the task, we administered two written questions
(translated from Dutch): (1) "From 0 to 100, to what extend does our interpreta-
tion of medical triage match yours?", and (2) "From 0 to 100, to what extend do
the induced stressorsmatchwithwhat you expect in reality?". After scoring each,
a brief open interview with the experimenter followed regarding their scores.
These questions assessed the experts’ judgment on: (1) the provided informa-
tion and the administered triage task, and (2) the introduced task stressors, such
as the induced time pressure and the imposed limitation of available resources.
Control
Unfortunately, standardized and validated questionnaires formeasuring a parti-
cipants’ control over task performance in a human-agent context do not yet exist
(see Section 8.2.2). We therefore composed such a questionnaire, consisting of
eight statements (see Table 8.5). For each statement, the interviewed experts
were asked to indicate their level of agreement on a 5-point Likert scale. The
goal of this questionnaire was to identify the expert’s initial experiences, provid-
ing input for relevant follow-up questions regarding their answers.
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Strongly disagree - Strongly agree

1. It was difficult to keep an overview of patients and available resources. 1 2 3 4 5
2. I experienced time pressure during decision making. 1 2 3 4 5
3. I felt responsible for the well-being of patients. 1 2 3 4 5
4. I made decisions under inconclusive medical- and ethical guidelines. 1 2 3 4 5
5. I made decisions during the task that I would not want to make in real life. 1 2 3 4 5
6. I felt uncomfortable during (some) decisions I made. 1 2 3 4 5
7. I mostly made decisions for patients that led to a good division of care. 1 2 3 4 5
8. I mostly made decisions that led to a good division of care for all patients. 1 2 3 4 5

Table 8.5: The statements used to serve as input to the semi-structured interviews about the exper-
ienced control.

Strongly disagree - Strongly agree

1. I found that the data included all relevant known causal factors with sufficient precision and granularity. 1 2 3 4 5
2. I understood the explanations within the context of my work. 1 2 3 4 5
3. I could change the level of detail on demand. 1 2 3 4 5
4. I did not need support to understand the explanations. 1 2 3 4 5
5. I found the explanations helped me to understand causality. 1 2 3 4 5
6. I was able to use the explanations with my knowledge base. 1 2 3 4 5
7. I did not find inconsistencies between explanations. 1 2 3 4 5
8. I think that most people would learn to understand the explanations very quickly. 1 2 3 4 5
9. I did not need more references in the explanations: e.g., medical guidelines, regulations. 1 2 3 4 5
10. I received the explanations in a timely manner. 1 2 3 4 5

Table 8.6: An adapted form of the System Causability Scale by Holzinger et. al [400] to provide input
on the semi-structured interview on the quality of the offered explanations to support
control.

Explanations
To obtain information from the domain experts as to how they appreciated the
provided explanations, and how they valued the role of these explanations for
their collaboration with the agent, an adapted version of the System Causability
Scale (SCS) [400] was administered after completing each round. The adapted
SCS consisted of ten questions (see Table 8.6). Again, these answers were used
to ask detailed follow-up questions to explore the experts’ experiences with the
collaboration.
Usefulness of explanation types
Each TDP utilized one or more of the three explanation types as discussed in
Section 8.3. In order to gain insights in the perceived usefulness of these dif-
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Strongly disagree - Strongly agree

1. The explanations helped me during task performance. 1 2 3 4 5
2. The explanations mostly confirmed me in what I already knew. 1 2 3 4 5
3. The explanations provided me new information. 1 2 3 4 5
4. The explanations led to new insights. 1 2 3 4 5
5. I understood the explanations well. 1 2 3 4 5
6. The explanations helped me to determine whether I could trust the computer. 1 2 3 4 5
7. The explanations made me reason about how to make triage decisions. 1 2 3 4 5
8. The explanations gave me new insights of how intelligent systems should support humans. 1 2 3 4 5

Table 8.7: The statements used to provide input on the semi-structured interviews regarding the
perceived usefulness of the explanations. Thesewere provided togetherwith a screenshot
of a single explanation type used in that condition.

ferent types, screenshots of the explanations were presented and seven state-
ments were provided (see Table 8.7). Each expert was asked to indicate its level
of agreement using a 5-points Likert scale. These statements were developed
as an extra and more systematic approach, next to the semi-structured inter-
view questions, to gain valuable insights in the explanation types. It would evoke
follow-up questions for the semi-structured interview. For example; "What in the
particular explanation helped you gain trust in the intelligent system?".

8.6.2.4 Procedure
The participating domain experts took part on a one-to-one basis (one expert,
one interviewer). A session took approximately two hours, held in November
2020 within the Netherlands. First, the experimenter explained the goal and
nature of the study, and provided an outline of the procedure. The expert read
the information sheet and signed the informed consent form.

The expert received a detailed instruction to the triage task and were instruc-
ted to read the scenario of the pandemic, as well as the ethical and medical
guidelines to triage for the present study (which were based upon actual Dutch
guidelines). Here, the expert was also motivated to ask clarifying questions at
any time.

Then, the expert was asked to conduct triage in the implemented testbed
without the help of an artificial agent. In this baseline condition, 16 patients had
to be triaged. The expert was instructed to apply the given ethical and medical
guidelines. After completion of the baseline task, questions addressing the eco-
logical validity were administered (as proposed in Section 8.6.2.3).

The expert was then asked to triage a new set of 16 patients, this time re-
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ceiving decision advice from their personal artificial agent according to TDP-1.
During the task, instructions were given to think aloud (TA), which was recorded
while notes were taken. When the expert considered the guidelines to be inde-
cisive or inappropriate, instruction was given to follow their own personal moral
values and decide accordingly. After completion of the task, subjectivemeasure-
ments were taken concerning experienced control and the value and usefulness of
explanations to serve as input for the semi-structured interview afterwards. This
process was repeated for TDP-2 and TDP-3.

When all conditions were completed, the expert was asked to reflect on all
three TDPs. An indication had to be given which TDP they would prefer to use
in their work (if at all), and why. After the interviews, all collected data was an-
onymized using pseudonymization and a key-file that was removed after two
weeks.

8.6.3 Results

The findings per TDP will be reported as follows:
– Team collaboration: The participating expert and the agent jointly per-

formed the assigned task of assigning medical care to a set of patients.
The nature of this human-agent collaboration was shaped by the particu-
lar TDP. Per TDP we report on how the expert evaluated the collaboration
and the task division.

– Control: Per TDPwe report if the domain experts experienced to be in suf-
ficient control to ensure that all decisions were made according to their
own personal moral values. For this, we used results from questionnaires
and interviews, seeking for trends in how much control the expert exper-
ienced.

– Explanations: For humans to exercise control efficiently and accurate,
they need to have an understanding about their agent partners which
explanations can help ascertain. Outcomes from the explanation ques-
tionnaires and semi-structured interviews were used to report how the
experts evaluated the agent’s explanations, and if they supported a bet-
ter understanding of the team.

8.6.3.1 Ecological validity
The domain experts scored the ecological validity of the used scenario in which
medical triage was conducted and the available information for doing so with
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an average of 75.71 (SD=10.50) out of 100. They scored the ecological validity of
the stressors in the task with 76.43 (SD=6.39) out of 100. Two respondents indic-
ated that the time pressure induced by the pace of patients being submitted for
triage was too high. We take these findings as a reassurance that the developed
testbed and task is suitable for investigating MHC in a situated manner.

8.6.3.2 Findings TDP-1
In this design of human-agent team collaboration, the agent provides informa-
tion and gives advice with the human making the actual triage decision.
Team collaboration
The domain experts evaluated this pattern of collaboration with the agent fairly
positively. Three out of the seven experts preferred TDP-1 over the other two
Team Design Patterns. Two out of the seven experts mentioned TDP-1 in com-
bination with TDP-2 as their ideal collaboration with an intelligent system. Fur-
thermore, they pointed out that the agent did what computers are best at, dis-
covering and presenting statistical relationships in the domain; and that they
themselves could concentrate on making decisions. One interviewee said: “The
agent provided quick computational power to calculate valuable data, whereas
I as a human could make the actual moral decision".

The interviewer asked each expert how they experienced the role of the de-
cision support agent. They indicated that if the agent’s advice corresponded to
their initial opinion, the congruence was regarded as a confirmation that it was
an appropriate decision. If, however, the agent’s advice deviated from the own
opinion, then this was for many the sign to change their decision. Overall the
experts elaborated that they interpreted the agent’s advice to be representative
for what doctors in general decide. One expert argued: “all those other doctors
probably know best".
Control
The domain experts found the taskwith the decision support difficult and strenu-
ous. Most experts pointed out during the interview to feel responsible to assign
the best possible care to all patients, which aligned with the results of question 3
of Table 8.5. Four experts scored a “totally agree" on the experienced responsib-
ility over the patients well-being. The other three experts scored this with a “very
much agree". They said to realize that a swift processing was important, as to
prevent deterioration of a patient’s condition pending their triage decision, sub-
sequently experiencing stress about this. On being asked whether they judged
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this as a threat to maintaining control, most experts indicated to be able to cope
with the time pressure. They said that the support offered by the agent (such as
computational information about a patient’s survival chances for every possible
care) helped them to manage the imposed time pressure. Overall, the experts
reported to experience adequate control over the process and decision making.
Furthermore, all evaluated their triage decisions to be compliant with their own
moral values and the provided ethical guidelines.
Explanations
The predominant response of domain experts was that the conditions imposed
by the experimental simulation did not allow them to form a proper judgment
about the value of the explanations. They felt to be working under extreme time
pressure (see above), which precluded them to process the explanations. One
expert remarked: “all that text took too much time to read", and suggested to
provide explanations in a visual form instead. Another expert indicated that the
assumption that “the agent acted as a representative of other human doctors",
allowed him to disregard the explanation altogether. Ironically, one purpose of
explanations in human-agent teams is to establish and support appropriate trust
in each other. Thus, during the interview the experts mentioned to be unable
to conduct a proper evaluation of the given explanations. However, in response
to the questions about the value of explanations, they rated the explanations
as neutral to positive for achieving a better understanding. Here, an average
of 3.38 (SD=0.49) was given to the usefulness of explanation types where 1 was
considered as “Strongly disagree" and 5 as “Strongly agree" (see Section 8.6.2.3).

8.6.3.3 Findings TDP-2
In this design of human-agent team collaboration, the agent proposes which
patients to assign to the human and which patients to the agent. This is done
based on an earlier value elicitation process using a questionnaire. The agent
can provide an explanation for its intended decision as well as the allocation
of each single patient. The human can overrule this allocation. Each patient
is independently triaged by both human and agent based on this (overruled)
allocation.
Team collaboration
The interviewer asked the domain experts how they experienced the role of the
dynamic task allocation agent. They indicated that the division within the triage
task helped them focus on their own patients. Also, they experienced the task to
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go faster in comparison to TDP-1, which was evaluated as a pleasant effect. Two
experts mentioned that reviewing the explanation took too long and would have
a detrimental effect on task performance. Instead, they kept patients allocated
to the agents without reviewing the relevant explanations.

All experts mentioned to trust the agent in the decisions it made for the pa-
tients that were assigned to it. The overall motivation was that they understood
and accepted why and how the agent assigned patients. To quote one expert;
“I understood why the intelligent system assigned certain patients to itself (...),
and that its decisions were based on my value elicitation".
Control
During the interview most domain experts indicated that they considered it a
challenge to maintain an overview of the patients requiring a triage decision.
One expert rated complete agreement (5/5), and four a strong agreement (4/5)
on question 1 of Table 8.5 of not being able to keep an overview. These ex-
pert argued that they felt a need to continuously monitor all patients, including
those assigned to the agent. This required too much effort according to them,
to exercise adequate control. When asked to elaborate on this, they argued that
the agent’s triage decisions (e.g., assigning a patient to the IC) had an impact
on their own decision space (e.g., all available IC-beds occupied). Keeping over-
view onwhat the agent was doing, while simultaneously paying attention to their
own patients often imposed toomuch pressure to exercise adequate control, as
three experts emphasized explicitly.

Opposed to the five experts experiencing high workload, the other two ex-
perts reported to not feel this pressure. They explicitly reported to rely on the
qualities of the agent and its triage decisions. When asked what caused this
reliance, they argued that they had noticed the agent to comply to the their per-
sonal moral values, assessed earlier during elicitation. This resulted in a feeling
for them that decisions could be safely dealt with by the agent. Which in turn
made the experts experience more time available to focus on assigning care to
their own patients.

On average the experts felt slightly less responsible for the patient’s well-
being compare to TDP-1 (TDP-1 scored an average of 4.58 ((SD=0.49) and TDP-2
scored an average of 4.16 (SD=0.68) on question 3 from Table 8.5).

All experts were positive about the option to overrule the agent’s assignment.
This was evaluated as a valuable asset of this TDP and they all indicated that it
contributed to their experienced control.
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Explanations
Five of the experts mentioned that they missed the statistical data that was pre-
sented in TDP-1. They interpreted this data as an explanation of agent reasoning,
even though it was not presented as such.

Similar to the previous condition, the view on how the explanations were
presented was referenced by all experts. Again, it was suggested that visualiza-
tions might be beneficial, since the provided text took them too much time and
effort to interpret.

Overall, the explanations were not utilized excessively, as four experts repor-
ted. However when they felt they had the time, they were perceived as helpful,
establishing a form of trust and understanding of the system. The open-ended
interview question on whether the experts considered the explanations as im-
portant, all answered with “yes". One expert indicated that: “The explanations
help me during the task. If these would not be provided, it would have been very
unpleasant".

8.6.3.4 Findings TDP-3
In this design of a human-agent team collaboration, the agent autonomously
makes all decisions swiftly based on the elicited moral values elicited before the
task. The human observes the agent making these decisions to understand how
the elicited values impact agent behavior and to make adjustments next time if
needed. More information about the agent’s reasoning behind a decision could
be requested. Note that this collaboration does not allow the human to exercise
instantaneous control such as intervening in an agent’s decision.
Team Collaboration
All experts reported this collaboration as uncomfortable during the interview.
Two explicitly motivated this by the fast pace patients entered the environment,
and two with not being able to overrule the agent. In some cases, experts were
not motivated to request an explanation on why certain decisions were made.
One argued: “I do not feel part of a team, because I don’t play a role in the de-
cision making process". As a result, the experts did not feel responsible for the
decisions made by the agent, similar as in TDP-2.
Control
In all cases, the experts stressed the discomfort that arose from not having the
opportunity to overrule the intelligent agent. When asked about their trust in the
agent, two experts responded that the agent was compliant to the earlier given
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value elicitation. Three also mentioned they understood the reasoning of the
agent, which also established trust. Interestingly, one mentioned that this did
not meant that (s)he always agreed with the triage decisions made by the agent.

The four experts who noted a high pace and time pressure, also lacked mo-
tivation to take on a supervisory role in the collaboration. Their reason was the
stress and lack of overview evoked by this pace.
Explanations
The two experts who reported on the uncomfortable high pace, indicated to sel-
domly read the explanations. One of them commented: “If I read one explana-
tion, I miss out on three other patients and the decision made for those.". The
five experts who indicated they did read the explanations, scored on average
3.67 (SD=0.75) to question 5 of Table 8.6. Indicating they found the explanations
useful in understanding the agent’s reasoning.

The interviewer asked these five experts about the trigger for wanting more
information about the agent’s reasoning. Two explained that this was only when
they did not agreewith the decisionmade by the agent. They expressed a curios-
ity in why the agent would make such a decision to be able to better understand
the system. The other three explained to have an overall curiosity, independent
of the made decision.

8.6.3.5 Comparative findings
This section highlights similarities and differences within the three collaboration
designs (summarized in Table 8.8):
Team Collaboration
Overall, all interviewed domain experts reported TDP-1 as their preferred collab-
oration design. They substantiated this preference by the clear division between
human and machine, which was appreciated.

Notably is that four out of seven experts motivated their interest in TDP-2,
especially when the agent would be “more mature", as one expert described
it. When asked to elaborate on this, they referred to the agent in TDP-1 who
provided additional information as well as advice. Effectively, they proposed a
combination of the data-driven decision support agent from TDP-1 with the dy-
namic task allocation functionality of the agent in TDP-2, implying that the data-
driven agent would make its own decisions.

In all three conditions, the speed of incoming patients was emphasized. In-
terestingly, in TDP-1 and TDP-3 this was perceived as unpleasant, while in TDP-2
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Aspect General findings TDP-1 TDP-2 TDP-3
Team collaboration Valued the more dir-

ect control was exper-
ienced.

Most valued due the
direct control.

Mostly valued for its
high potential.

Did not feel like a col-
laboration.

Sense of control Only when capable of
influencing decisions
directly

High degree due to
agent not making any
decisions.

Some experienced
control, due to feeling
capable of interven-
tion.

No feeling of control,
as it was a delayed
form of control.

Use of explanations Perceived as useful in
hindsight, but not ac-
tually used.

Intermediate statistics
were found most valu-
able.

Explanations were not
used or ignored.

Observing behaviour
more useful than
explanations due to
agent decision speed.

Table 8.8: A summary of the key findings separated on the three aspects measured and the Team
Design Patterns tested. In TDP-1 the agent provides advice to an expert making decisions.
In TDP-2 the agent distributes decisions between itself and the expert, which can be over-
written. In TDP-3 the agent made all decisions under supervision according to elicited
decision rules beforehand.

the speed of assigning patients as a team was being appreciated. In fact, in this
condition one expert mentioned to deliberately leave patients assigned to the
agent, as to make sure those patients received care earlier.

Furthermore, there was a sense of confirmation amongst all experts in TDP-1
and TDP-2. They experienced it as helpful when the advice (TDP-1) or decision
(TDP-2) was congruent with their own initial decisions. Within TDP-1, they felt
supported by the agent rather than collaborating with it. As such, TDP-1 did not
result in a feeling of collaborating with the agent. The supervised autonomy col-
laboration from TDP-3 received the least willingness from experts to collaborate,
since they felt they could not take part in the decision making process.
Control
A comparison of the results per TDP revealed that TDP-1 was favoured by three
experts when it came to the sense of control. Furthermore, when the interviewer
asked to rank their top 3 of the TDPs, TDP-1 was placed first by five experts. The
main reason for this was their sense of having complete control over decision
making. In contrast to TDP-1, TDP-3 was the least preferred by six experts due
to the inability to directly influence the decision making process. The seventh
expert who favored this TDP, only did so under the condition that the human
team member would receive the ability to overrule the agent.

Even though speedwasmentioned to be an asset in TDP-2, it also effectuated
a lack of overview. Because both expert and agent could influence the environ-
ment, all experts had difficulties keeping track of the situation. However, they
214



8

Human-agent collaboration through explanations

did experienced control as they could influence on the task allocation. In other
TDPs, increased collaboration speed resulted in increased time pressure, overall
resulting in experiencing less control.

Furthermore, none of the experts experienced the ability to exercise con-
trol through the value elicitation process, which determined the agent’s decision
making in TDP-2 and TDP-3. At times, they mentioned that they felt the agent
did comply to the elicited moral values, but this did not result in an experience
of being in control. This was especially the case in TDP-3, where intervention was
not possible as was the case in TDP-2.

Lastly, TDP-3 evoked the least feeling of responsibility over patients in com-
parison with TDP-1 and TDP-2. The lack of experiencing control through value
elicitation over the agent negatively impacted the sense of responsibility for the
agent’s decisions.
Explanations
In general, explanations were found useful, as all expertsmentioned in the semi-
structured interview, but mostly in retrospect as they were utilized only occa-
sionally in TDPs. The main reason for not requesting an explanation was the
experienced time pressure.

The most common trigger for requesting an explanation from the agent was
when the agent showed incongruency with the expert’s initial own decision. In
those cases, it established a form of trust as well as better comprehension of the
system according to the experts.

During TDP-3, all experts felt overwhelmed by the agent’s decision speed and
felt they learned more from observing the agent than by reading explanations.

8.7 Discussion

The advancements of embedded artificial intelligence allowsmodern technology
to conduct complex tasks more and more. This provides new opportunities, but
it also raises the question whether and how humans can still exert meaningful
control over the technology’s behavior. This is especially important for tasks for
which ethical and moral values apply. To address this question it is important to
first definemultiplemanners of organizing the contribution of humans and tech-
nology in human-agent teams. Subsequently, research is needed into how these
different patterns of human-agent collaboration affect the human’s control over
the agent’s behavior and the team’s performance. This chapter addressed both
needs.
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Three different design patterns for human-agent collaboration have been
developed and implemented into a medical triage task. Then, medical domain
experts were asked to work with these agents under these team design pat-
terns. Multiple qualitative methods and measures were used to learn how the
domain experts experienced the collaboration with the agents, and, in particu-
lar, how well they felt in control over the task and over the decisions taken by
the team. We feel that this kind of qualitative research is important to obtain a
better understanding of how different collaboration options affect the feasibility
of humans to exert meaningful human control. This understanding is needed to
define and refine the team design patterns for use in future practical applica-
tions.

Findings indicated that the domain experts wished to make as many de-
cisions as possible even when experiencing an already high workload. Further-
more, they only felt responsible for their own decisions instead of all decisions
made within the team. As such we identify several challenges in the design
of a human-agent team based on these finding. First, the way humans and
agents collaborate should ensure that humans feel responsible for agent beha-
viour, otherwise they will lack the motivation to exercise the necessary control.
Secondly, humans need to be prevented from exercising control unnecessary
often when they do feel responsible as this will increase their perceived work-
load. This includes protecting humans from their tendency to take on too many
decisions. These two challenges could be solved by making agents more aware
of the human’s mental state to adjust the way they collaborate (e.g. through
physiological measurements or lack of response time thresholds).

Several findings indicated that the experience of control depends on how
immediate its observed effects were. Two control mechanisms were evaluated
varying in how instantaneous their effects were, with the domain experts favour-
ing the more instantaneous control (task reallocation) over the other (iterative
value elicitation). Depending on the task, instantaneous control is not possible
or not doable for humans. When a effects are delayed, agents could explain the
consequences of the exercised control to humans. This ‘consequential explana-
tion type’ could improve the experienced control as well as support the human
assessment if the exercised control would have the intended effects. These type
of explanations could for instance include simulations of agent behaviour given
the intended control signal.

Different types of explanations were used in the various collaboration de-
signs. Their purpose was to improve control and calibrate trust by enabling an
accurate mental model of the agent’s reasoning. However, findings indicated
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that the experts almost never reviewed the explanations due to the experienced
time pressure caused by their desire to decide quickly. Interestingly they did
value all the explanations in retrospect and could see their potential. This shows
that research into agent-generated explanations should not only focus on their
content but put equal, if not more, focus on how and when they are presented.
Ideally, the agent should be made aware of human workload and adjust its ex-
planations accordingly. This again underlines the need for agents to be aware of
the human’s mental state, not only to adjust how they collaborate but also how
they explain.

Somefindings indicated that the domain experts trusted the agents toomuch,
and relied at times more on the agent’s judgement than their own. Even though
they were instructed to be critical as they were held responsible for the agent’s
behaviour. This indicates a potential automation bias. This would explain why
they did not feel the need to make time to review and interpret the explana-
tions. Interestingly, the explanations were intended, among others, to counter
this over trust. Within the field of Explainable AI it is oftenmentioned that explan-
ations support appropriate trust calibration. However, if toomuch trust prevents
humans from interpreting the explanations, those explanations become mean-
ingless. Further research on the relation between automation bias and the use
of explanations is warranted. If this hypothesis proves to be true, agents need
to be aware how much their human partners rely on them and adjust their way
of presenting explanations accordingly.

A limitation of the study is its qualitative nature to evaluate the different col-
laboration designs. Although, as we argued, a qualitative study is better suited
in exploratory research as it provides more information compared to a quantit-
ative study. However, only one task was used with specific properties, making it
difficult to generalize the results. Future studies should focus on further similar
evaluations with tasks combining both objective and subjective measurements.
Research could expand our designs to include agents who model and track the
human mental state and adjusts their collaboration and explanations accord-
ingly. Specifically, further study is warranted on how agents can foster a human
feeling of responsibility and facilitate the experience of control when its effects
are delayed. Finally, it is important to research how agents should formulate and
present their explanations such that humans feel they have the time and need
to review them.
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8.8 Conclusion

This chapter addressed the design of human-agent collaborations, specifically in
morally sensitive domains where humans should have meaningful control over
the agents. This control needs to ensure that team behaviour is compliant to
human moral values and ethical guidelines. Otherwise, the human should be
able to be held responsible. Three of such collaboration designswere presented.
Each varied in the agent’s autonomy and we evaluated the experienced control
and the value of provided explanations in each using structured-interviews with
domain experts.

These three design patterns and the performed interviews form a first iter-
ation towards designing human-agent teams that support meaningful human
control for various tasks. A design pattern approach was taken, and a first set
of measurements were introduced together with a reusable testbed to evaluate
human-agent collaboration to support meaningful human control.

Results from the expert interviews showed that the used task of medical
triage was sufficiently realistic and its simulation valid. Furthermore, we found
that how responsible humans feel for agent decisions relates to their involve-
ment in those decisions. If the experts only supervised they did not feel respons-
ible, even though they could exercise control by defining agent behaviour before-
hand. The more the experts felt in collaboration with agents, the more they felt
in control. With having sufficient time and influence over the agent as prerequis-
ites for this collaboration. To support this, agents could benefit frommonitoring
the workload of humans and adjust their collaboration form and explanations
accordingly. Specifically when humans experience time pressure, agents could
motivate humans to remain involved in their decisions as they can be held re-
sponsible for them. In addition, agents need to adjust when and how they com-
municate their explanations in these cases to also motivate humans to review
their explanations. As the results from our interviews showed that pressured
humans might tend to trust the agent too much and ignore its explanations de-
signed to prevent such over-trust.

This chapter presented a first step in exploring how domain experts experi-
ence human-agent team designs that aim to enable meaningful human control
supported by explanations from the AI.
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Chapter 9

In this thesis, we aimed to design and develop explanations an AI agent can
and should provide to support a responsible and effective collaboration with
humans. In this chapter we review our main findings towards this aim and dis-
cuss them with respect to the literature. First, we discuss our findings from
Part I where we addressed the contrastive explanation class to disclose how an
AI agent arrives at a decision. Next, we discuss our proposed confidence and
actionable explanation classes from Part II that support respectively trust cal-
ibration and contestability in an AI agent’s decision. We then discuss our work
presented in Part III on how design patterns can be extended and used to embed
explanations in the design of human–AI collaborations.

After discussing our main findings and reviewing each posed research ques-
tion, we discuss the limitations of our research. These relate to our performed
user studies, benchmark tests, the post-hoc and one-shot nature of our explan-
ations and the model-agnostic approach of methods proposed. We also review
the gaps in our research, in particular that we did not research the modality of
explanations which is expected to have an impact on several of our conclusions.

Finally, we reflect on the societal implications of our work. We do so based
on current societal developments with respect to upcoming regulations and ex-
amples of (unwitting) misuse or bad design of AI agents, as well as based on our
own experience and conversation with the industry, government institutes and
relevant organizations who are looking to adopt XAI research results in their AI
agents.

9.1 Findings: Part I

In Part I, we began with addressing how an AI agent should explain the reasons
for amade decision. We addressed the contrastive explanation class that aims to
explain why one decision was made instead of another. Its purpose is to convey
a general understanding of the AI agent’s decision making in a comprehensible
and intuitive format. However, no suitable form to convey such information in
an explanation was yet determined [42], hence the question in this part was as
follows:

RQ 1: How should an AI agent explain why it made one decision instead
of another?
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Chapter 2 evaluated two forms of a contrastive explanation in a human study:
the rule-based and example-based forms. Both aimed to explain the decision
boundary between a current decision and another decision of interest. These
are two common forms to convey explanations [57, 45]. We found that only the
rule-based form improved the actual understanding, albeit slightly. Both forms
did, however, improve our participants’ subjective feeling that they understood
the AI agent better, although that feeling did not correlate with their actual un-
derstanding. In addition, both forms but the the example-based form in partic-
ular, resulted in a more persuasive AI agent causing a blind following of the AI
agent’s advice.

These results indicate that the effects of explanations can be diverse and
that not all effects are equally desirable. Depending on the use case, it can be-
come beneficial or detrimental for an AI agent to become more persuasive. For
instance, such an effect is beneficial when a persuasive AI agent is required to
support a patient in making the necessary behavioural changes to improve their
health [401]. However, in other cases creating a more persuasive AI agent is am-
bivalent, such as the use of AI agents and explanations to protect users in social
networks to disclose too much personal information [402]. Here, it is argued
that a more persuasive AI agent protects the privacy of users but at the cost of
limiting their autonomy. In other use cases, especially those we associate with
high risks such as medical triage, we feel a persuasive AI agent is entirely un-
ethical [403]. These examples show the value of our evaluation of contrastive
explanations, as our findings, combined with literature on the use of persuas-
ive AI agents, indicate that the application of contrastive explanations should be
carefully considered given the use case and its context.

In addition, our results indicate that simply providing information about how
an AI agent decides does not necessarily result in an understanding that im-
proves the human–AI collaboration. Interviews with participants revealed that
the rule- and example-based explanations felt to them as a collection of inde-
pendent facts lacking an underlying common rationale. Further questioning re-
vealed that this hindered the participant’s ability to recall these facts due to the
difficulty of distilling a mental model about the AI agent from the explanations.
This would explain the limited understanding they gained from the explanations,
even though it caused a feeling of understanding. As they might now feel that
they know many facts about the AI agent’s functioning, but lack the ability to
generalize from such facts. This is the first empirical indication of the theory
that explanations can foster an illusion of understanding in AI agents [404]. The
instigation of this illusion through explanations creates a profound risk that an
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AI agent will be used irresponsibly when it can explain itself only superficially.
This risk is further increased when explanations are personalized based on self-
reported and observed human cues. For instance, the proposed methods from
Kouki et. al [405], Martijn et. al [406] and Sreedharan et. al [407] utilize such cues
to generate explanations to which humans react positively. Since the illusion of
understanding can be entirely unconscious, such personalization increases the
risk of instigating the illusion of understanding through a feedback-loop. A loop
that would result in humans feeling a sense of understanding and acting upon
that feeling, without having an actual understanding of the AI agent.

Our findings help illustrate the still open challenges in the research towards
contrastive explanations for AI agents. The results from this human study show
that an explanation can do more than offer a general understanding in how an
AI agent makes its decisions. Similarly, the results also indicate potential harm-
ful or unwanted effects an explanationmay cause which warrant further studies
about such effects. Three recommendations were offered on how to approach
such additional studies: 1) offer motivated hypothesized relations between ef-
fects and explanation including potential negative effects; 2) decide on a task
and population sample that matches the purpose of the explanation and the
study; and 3) select multiple appropriate measurements per effect and make
use of measurement triangulation to assess the study’s validity and credibility.
These recommendations assist in the design of rigorous human studies to eval-
uate an explanation and all the effects it may cause. Without such evaluations,
we risk the use of explanations with adverse side effects, without ever achieving
the intended effect.

We next addressed how an AI agent could generate the promising rule-based
form of contrastive explanations. Having found the rich effects such explan-
ations could cause, we considered whether an AI agent can indeed generate
them. Chapter 3 addressed this question for AI agents providing decision sup-
port based on classification models. Chapter 4 addressed the question for AI
agents based on reinforcement learning who determine their behaviour over
time given on a goal to achieve.

Both chapters introduced the idea of using surrogate models to describe the
decision-making process of an AI agent. This approach is opposed to the devel-
opment of an intrinsically interpretable decision-making process [46]. In both
chapters, an algorithm was devised where a surrogate model perturbed the AI
agent’s behaviour, assuming access to only its inputs and outputs. These per-
turbations were used to extract information on that AI agent’s behaviour, form-
ing the basis of the eventual explanation after a computed output. The use of
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input-output perturbations enabled the development of a method that could
generate explanations without setting any requirements on the implementation
of the AI agent. This makes the proposedmethods generally applicable, both for
current and future AI agents. This approach is referred to as the modal-agnostic
approach [140].

In Chapter 3 we proposed amethod that could generate rule-based contrast-
ive explanations following the model-agnostic approach. We showed this ap-
proach to generate these explanations in reasonable time while being faithful
to the functioning of diverse classification models and task complexities. With
this method, we were able to create AI agents that can explain why they made a
decision instead of another by conveying interpretable decision rules that accur-
ately describe the AI agent’s behaviour. Thismethod thus describes an AI agent’s
decision boundary for amade decision. Whereas previousmethodswere limited
to indicate only themost important data features used tomake that decision [59,
42].

Chapter 4 discussed how the idea of surrogate models could be extended
to generate example-based contrastive explanations for reinforcement learning
agents. Only few methods exist that allow an AI agent taught through reinforce-
ment learning to explain itself [408, 409]. There is also little known about what
kind of explanation humans expect from such an AI agent [410]. The cause could
be that this research community tends to disregard the human who interacts
with an – on reinforcement learning based – AI agent and for whom the explan-
ation is intended [411]. To remedy this, we conducted a human study to explore
what kind of explanations humans would find desirable from such agents. The
results showed that humans prefer explanations about the long-term elements
of the devised plan and the consequences the AI agent expects when performing
this plan. We hypothesized that this is due to humans wanting to know what the
AI agent will do, what it is expecting to achieve and whether it correctly under-
stands how its actions impact the world. Based on these findings, we developed
a model-agnostic method to generate such explanations. This method could ex-
plain an AI agent’s plan in interpretable and abstracted terms as well as answer
queries probing why the AI agent opted for its current plan instead of another.
Since then, several methods extended our proposed method and findings. See
for example Lin et. al [412] and Sreedharan et. al [413] who applied our idea of
representing series of actions as abstracted and interpretable concepts or Mad-
umal et. al [414] who extended our idea of consequences with the concept of
causal relations between actions and changes.

To conclude this first part, these findings show that it is feasible to generate
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contrastive explanations for various AI techniques. In addition, contrastive ex-
planations have value as they cause several effects. However, these effects can
also be potentially negative depending on the context in which they are used.
Additional sound and rigorous human studies are needed to assess such effects
in relation to this context. Three recommendations were made on how to con-
duct such rigorous evaluations.

9.2 Findings: Part II

In Part II we defined two novel explanation classes whose purpose is more spe-
cific than simply providing an understanding of the AI agent’s functioning. As
humans have a specific goal in mind when collaborating with an AI agent, an ex-
planation should support that goal. For example, humans might want to make
decisions that are as accurate as possible (e.g., a doctor making a diagnosis). An
AI agent can offer advice and support in this pursuit. Another example is when
humans need something that is determined (partly) by an AI agent (e.g., the ac-
ceptance of a loan). In both cases, it is important for the human to determine
when and how to act upon the AI agent’s output, whether this is an advice or
a decision. In a decision-support setting, the human needs to determine when
to trust and rely upon the AI agent’s decision (i.e., whether the AI agent is trust-
worthy) [415]. In a setting where the human is subjected to the AI agent’s de-
cision in some way, they want to be able to enact a degree of control over the
AI agent or otherwise be able to contest it [416], particularly when that decision
is unfavourable to them, limits their autonomy, conflicts with their values, or
causes harm in any way [241].

In Part II we thus addressed the following question:

RQ 2: Which classes of explanations enable humans to decide whether
and how to act on an AI agent’s decision?

Chapter 5 presented the novel class of confidence explanations. These ex-
planations regard how likely it is that the AI agent’s advice will prove correct and
how this confidence was computed. The purpose of confidence explanations
is to assist a human in determining whether its output should be trusted. This
explanation class aimed to fulfil the research gap for explanations that expli-
citly support the human’s decision to rely on an AI agent’s decision or not [417].
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Based on the literature and on two human studies, four properties were defined
and validated to define effective confidence explanations; a confidence estimate
should be accurate, predictable, transparent, and explainable. Case-based reas-
oning was proposed to compute confidences matching all four. This approach
defines confidence as the likelihood of a correct or incorrect decision given a set
of similar past cases and how the advice of the AI agent turned out.

Three methods were provided as examples and evaluated based on nine
combinations of AI techniques and benchmark data sets, as well as a single real-
world decision-support use case. The results showed that case-based reasoning
is a valid approach to accurately compute an AI agent’s confidence. The use of
synthetic data sets showed that the same approach is also accurate when the
data distribution drifts over time or with sudden changes to the AI agent’s beha-
viour (e.g., due to an update). In addition, these tests showed a higher degree
of predictability than other common ways to compute confidences such as scor-
ing [186], scaling [187], and voting [189] mechanisms.

Two human studies were performed to evaluate how easy to understand this
case-based reasoning approach was (i.e., the method’s interpretability). One
study involved a controlled experiment and follow-up interview with domain
experts. It showed that case-based reasoning matched their subjective intu-
ition about how confidence should be computed. As such, they preferred this
method over others. There was consensus that a case-based confidence estim-
ation would make them more receptive to the use of an AI agent in their work
and accept the support it offers. Finally, they viewed the possible explanations as
valuable, particularly because they reminded them of the underlying case-based
reasoning approach and helped them to assess the reliability of the confidence
estimation.

The second study involved an online experiment with laypeople. The findings
further indicated that, again, case-based reasoning matched their subjective in-
tuition about confidence. Participants preferred a confidence explanation ad-
dressing past and current situations, as opposed to explanations addressing ex-
pected future elements that might influence the decision’s outcome. Combined
with those of the first study, these results indicate that a case-based reasoning
approach to confidence estimation is transparent due to its underlying intuit-
ive nature. It also offers explanations deemed valuable, as it refers to the past
situations involved in the computation.

Chapter 6 addressed how an explanation could support a human contesting
and altering an AI agent’s decision, in particular when that decision has been
deemed unfavourable or otherwise unreasonable. We focused particularly on
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cases in which the human has little to no direct influence on the AI agent itself
and is subjected to its decision (e.g., when someone’s loan or job application is
rejected by an AI agent). This chapter formally defined the class of actionable ex-
planations in such a context. Their purpose is to support humans taking effective
action to alter an AI agent’s decision to become more favourable or, otherwise,
to effectively contest this decision through an accurate complaint to regulators.

This formal definition aimed to remove current ambiguity in what an action-
able explanation is, with the purpose to provide direction. The formalisation
should remove any ambiguity in concepts and requirements, something that is
often the case within the field of XAI [32]. Such a formalisation allows research-
ers to assess if their method indeed generates actionable explanations through
measurements addressing parts of the definition. This can further improve the
much-neededmeasurements to assess progress in research towards actionable
explanations, as it allows for the comparison betweenmethods [33]. In turn, this
supports a need for a more structured research community with a common re-
search agenda [418, 419]. Finally, formal definitions of explanations open the
possibility for AI agents to reason about their own explanations in symbolic and
formal representation, enabling adaptive explanations [236].

To support these aims, the definition of an actionable explanation was di-
vided in several properties. When an explanation would adhere to all proper-
ties, we deemed it actionable. This separation in distinct properties supports
the identification of specific measurements, compare progress and methods,
and the establishment of a research agenda. First, we defined that the explana-
tion should be faithful to the AI agent’s decisionmaking and interpretable by the
human. Second, the explanation should communicate alternative situations in
which a different decision would be made. Such an alternative situation should
be accompanied with suggestions on actions to realize those situations. Third,
these actions should be feasible for that human, and the eventual alternative de-
cisions should be deemed more favourable by them. These properties imply an
accurate explanation and its communication, explicit communication to support
actionability and a degree of personalization.

A literature review was conducted on methods that aim to generate action-
able explanations. This review differed from others such as the one from Arrieta
et. al [20] and Doshi-Velez et. al [33]. Ours aimed to provide an overview to
which properties current methods adhere to and which are still open research
challenges, this opposed to such other reviews that offer taxonomies or review
the evaluation of methods. The review indicated an overall lack of provision of
explicit action suggestions and personalization of such explanations. Currently,
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the literature on XAI methods is almost entirely limited to the faithful generation
of these explanations, in particular the identification of alternative situations.
However, the actual interpretability of these generated explanations is a matter
of growing concern.

The topic of ‘Contestable AI’ is of growing interest to researchers [420], espe-
cially in healthcare [421]. A recent design-framework for instance, sets explan-
ations as a requirement to enable human control and interventions [422]. Our
work on actionable explanations offers a formalised framework to discuss and
develop such explanations further.

To conclude, this second part identified and defined the novel explanation
class of confidence explanations and defined and formalized the class of action-
able explanations. Both aim to support humans to determine when and how to
act appropriately when collaborating with an AI agent. With confidence explan-
ations we enable humans to determine when it is best to rely on an AI agent’s
decision. With actionable explanations we support humans subjected to an AI
agent’s decision to effectively contest and alter anAI agent’s decision. Both target
an explicit information need needed that contribute to the responsible applica-
tion of AI agents.

9.3 Findings: Part III

Explanations are a part of the human–AI collaboration that can take various
forms depending on the use case. Thus, it is important to address the role of
explanations in these various collaboration forms. In Part III, we address the
following research question:

RQ 3: What is the role of explanations when human and AI agents col-
laborate on morally sensitive tasks?

In Chapter 7, we first extended a design method to human–AI collaboration,
namely that of team design patterns [328]. Such patterns describe forms of col-
laboration by assigning certain work to humans, AI agents or both, depending
on the situation. We reviewed this design approach for tasks involving morally
sensitive decisions, and we extended the method’s ontological decomposition
of work with the notion of explaining moral context.

Four forms of collaboration were proposed that include the idea of explain-

231



Chapter 9

ing moral context. In the first form the human made all moral decision minim-
ally supported by the AI agent performing supportive tasks such as collecting in-
formation, explanations were limited to disclose this collected information. The
second form allowed the AI agent to support the human directly in their moral
decisions by explaining relevant moral context and providing advice. The third
form introduced the idea of the AI agentmaking all decisions but those for which
it identified were beyond its capabilities, the role of explanations was to facilitate
the handover of the decision by explaining why it lies outside of the AI agent’s
capabilities as well as the (morally) relevant context tomake the decision. Finally,
the fourth form introduced an AI agent that autonomously makes all decisions
based on the elicited moral values from the human beforehand. The role of ex-
planations in this collaboration form explained every decision made by the AI
agent so the supervising human could adjust the agent in a next value elicitation
process.

These four collaboration forms vary in the autonomy given to an AI agent
and how the role of explanations varies with this degree of autonomy. We also
addressed the benefit explanations can offer to establish such various forms in
a high-risk application where morally sensitive decisions are involved. We espe-
cially addressed the benefit explanations about moral context can help humans
make better moral decisions by preventing that humans overlook some vital as-
pects.

Our method to utilize team design patterns to address the role of explana-
tions in human–AI collaborations enables a visual and comprehensible way to
report on all effects of explanations within the socio-technical system formed
by human, AI agent, task, and context. With this method we follow ideas sim-
ilar to other design methods such the Socio-Cognitive Engineering method from
Neerincx et. al [423, 77]. With the four proposed human–AI collaboration forms
we discuss how explanation effects can be incorporated in a responsible design
process of an AI agent where effects are well documented and evaluated.

Chapter 8 reports on a qualitative user study in which experts could experi-
ence three forms of human–AI collaboration in amedical triage task. These three
were the following forms proposed in the previous chapter: 1) the AI agent as
decision support to the human, 2) the AI agent acting autonomously but hand-
ing over decisions to the human when necessary, and 3) the AI agent acting
autonomously under human supervision. These forms offered various degrees
of human control over the AI agent by following a static (first and third form) or
dynamic (second form) allocation of morally sensitive decisions. Each form used
several classes of explanations: feature attributions, confidence explanations,

232



9

Discussion

and contrastive explanations. These explanations were applied to facilitate the
human–AI collaboration during specific interactions. For example, a confidence
explanation when the human proposed a certain decision to the AI agent.

The performed user study included first responders experiencing each col-
laboration form and the associated explanations. The experts reported that the
simulated task was a valid representation of medical triage and that they felt
most in control if that control immediately influencedwhat decisions the AI agent
would make. In other words, they favoured the AI agent in a decision support
role or to have the ability to take over decisions when deemed necessarily. They
did not value their supervisory role with only the option to exercise control be-
fore and after the AI agent made all its decisions. The experts also did not feel
any responsibility for the AI agent in their supervisory role.

Regarding the explanations, experts experienced them as valuable, though
only when they felt they had the time to review them. In those cases, they men-
tioned that the information helped them determine when the AI agent could
be trusted, and which tasks were best to take on themselves. When they were
put under time pressure, they mostly emphasized the modality of the explana-
tion (i.e., highly textual). They felt that reading and interpreting these explana-
tions was time consuming and not worthwhile, as compared to making timely
decisions and observing the AI agent’s behaviour instead of reading about it in
explanations. Finally, they also viewed parts of the interface that provided stat-
istical data as explanation, although they were not intended as such.

These findings show the importance, possibilities, and difficulty of embed-
ding explanations from an AI agent in an actual human–AI collaboration. Not
only does the class and form of an explanation become important, but also its
modality and embedding in the interface and task itself. It also points towards
explanations that are adaptive to the context, for instance that presented in-
formation in an explanation is reduced when the human is under time pressure.
This aligns with previous findings from the field of adaptive interface design that
proposes the use of adaptive interfaces to match the cognitive and contextual
demands humans experience during tasks [424].

To conclude, in this part we showed how to design a human–AI collaboration
that accounts for a meaningful role for explanations. An evaluation of several
of those designs illustrates the challenge of embedding explanations effectively
in an interface, such that they do not become a hindrance instead of an aid.
However, this evaluation has also revealed that humans perceive explanations
as valuable for their collaboration with an AI agent, in terms of calibrating their
trust and understanding the AI agent itself.
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9.4 Limitations

The above reported results are limited in four aspects.
First, most of our performed quantitative user studies included proxies of

real tasks, simulated AI agents and under-representative population samples.
Thiswas decided to guarantee a controlled experimental environment, to achieve
a sufficient sample size and to be able to generalize outside of a particular use
case. Although these limitations are common in user studies within the field of
XAI, their results are limited in advancing the application of XAI in specific use
cases [33]. These so-called human-grounded studies offer meaningful insight
but do not explicitly contribute to the design choices we face in specific applic-
ations of AI agents. This opposed to application-grounded studies that involve
the rich complexities of a realistic application of an AI agent. For instance, our
evaluation on contrastive explanations from Chapter 2 indicates how such ex-
planation can create for a more persuasive AI agent. However, further studies
are required to what the extent this finding holds and under what kind of con-
text such as the involved humans (e.g., domain experts, laypeople), task (e.g.,
low-risk, high-risk) and domain (e.g., diagnostic support, product recommenda-
tions). Although in some cases we did perform a study with domain experts such
as in Chapter 5 and Chapter 8, these studies took the form of pilot studies and
were of a more qualitative and exploratory nature.

Second, all explanations provided are one-shot and post-hoc explanations.
One-shot refers to that limited interaction of the explanations and the lack of
adaptation to that what was explained in the past. An understanding of a com-
plex system is rarely obtained through a single explanation. Interaction between
the AI agent and the human is needed to achieve a true understanding of the AI
agent’s functioning, especially if we regard a more long-term collaboration be-
tween human and AI agent [74]. Post-hoc explanations refer to those explan-
ations that address a single decision after the AI agent arrived at it. There is
growing concern that such an approach adds little to the trustworthiness of AI
agents and the human ability to apply them responsibly [425, 426]. An increas-
ing amount of merit is assigned to explanations that address how an AI agent
is designed, developed, evaluated, and monitored. Such explanations need to
be combined with post-hoc explanations, and ideally not independent of each
other, to achieve trustworthy AI agents [24]. This thesis thus only addressed one
potential topic of explanations, that of an AI agent’s isolated decision.

Third, this thesis addressed the explanation’s class (i.e., what is explained)
and generative methods (i.e., how to acquire the explanation), we did not ad-
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dress the explanation’s modality (i.e., how was explained). Insights from the
field of human-computer interaction (HCI) were only integratedminimally in this
thesis. Our studies however, showed the importance of an explanation’s mod-
ality. For instance, the results from Chapter 7 and Chapter 8 indicate how ex-
planations can be ignored or misused when not appropriately designed. The
field of HCI offers expansive insights into the design of explanations [427]. In
the past few years, the field’s attention towards explanations pro-actively gener-
ated by AI agents has increased [428, 35]. Examples of related research are; the
value of visual and textual contrastive explanations [429], the visualization of an
AI agent’s behaviour policy [430], the role of interaction design in AI contestabil-
ity [431], and the co-creation of explanations in human-AI collaborations [432].

Fourth, the methods proposed to generate explanations in this thesis are all
model agnostic. Although this allows suchmethods to be applied to awide range
of AI agents, they also suffer from a critical weakness [58]. Such explanations are
mere approximations of an AI agent’s decision-making process. Although such
explanations should ideally be faithful to this process, meaning that they accur-
ately approximate the process, they will never explain how the AI agent is mak-
ing its decision. For example, we can approximate a neural network’s decision
boundary with a linear decision rule fairly accurate, but the decision rule will
never capture the non-linear nuance of the decision boundary. Furthermore, as
the AI agent grows so complex that no human can truly grasp its functioning, it
becomes impossible to address how faithful an approximated explanation from
amodel-agnostic method is. After all, how can we determine that the approxim-
ation is faithful to the AI agent if we do not know what the explanation should
be? Although this may not necessarily be an issue if it improves the human–AI
collaboration, the problem remains that in most cases we still desire explana-
tions to be empirically validated on their faithfulness lest they be perceived as
false explanations.

9.5 Societal implications

The European Union recently published its approach to AI [433]. This draft for
regulations dictates that AI agents should be safe and trustworthy. Their applic-
ation should improve our lives without violating our fundamental rights. These
proposed regulations underline both the promise and the risk of AI research.
Rightly so, as we continue to experience the issues with the AI agents we apply
increasingly.

A recent and relevant example is the use of a classification model used by
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theDutch Tax andCustomsAdministration that discriminated against vulnerable
minorities through ethnic profiling [1]. Over fifteen years, thismodel contributed
to the accusation of around 27,000 parents of fraud, resulting in financial hard-
ship formany. This scandal illustrates how AI agents canmajorly impact people’s
lives.

This example and others contribute to our worries about using AI agents we
do not understand. Such a lack of understanding prevents us from knowing if,
when and how to use an AI agent responsibly and effectively. Luckily, this worry
is shared among the research community, companies, and governments. As we
performed this research, we discussed the topic of XAI with municipalities, gov-
ernmental bodies, businesses (e.g., banks and software companies) and start-
ups offering XAI solutions to such organisations. All believe that XAI can provide
much-needed understanding of our AI agents. Consequently, we have exper-
ienced an increasing trend in the willingness to adopt explanation generating
methods.

Considering the societal issues revolving around AI and the trend to adopt
XAI methods, we feel responsible to reflect on our research and the societal im-
plications of our findings. We want to reflect on our finding that explanations
have both positive and negative effects, as determined by context. For instance,
in Chapters 2 and 8 we discussed that many explanations we can currently gen-
erate only offer a limited understanding for non-AI experts. However, they can
still significantly contribute to the calibration of trust and reliance on AI agents
nonetheless, and offer various other benefits to a human–AI collaboration.

We believe that this finding is overlooked by the technology-centred research
community of XAI. Many XAI methods are motivated solely by the authors’ intu-
ition, as we experienced in our own literature search (e.g., see Ehsan et al. [71]
and Miller et al. [59]) and discussed by others such as Nauta et al. [41]). There
is a clear societal risk to this perspective. It seems that within the field of XAI,
the focus is on the question, “What can be explained?” instead of the question,
“What should be explained?” Our findings indicate that the latter is equally im-
portant, if not more, if we want to ensure responsible use of AI agents. Without
becomingmore aware of all the effects explanations have, positive and negative,
we risk issues like to those encountered in the Dutch childcare benefits scandal
— worse, if the explanations inadvertently remove our current critical attitude
towards AI agents.

Another finding we wish to reflect upon is that regarding the role of explan-
ations. Currently, explanations are seen as a means to create trustworthy AI
agents. However, explanations can be much more tailored to specific and con-
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crete purposes, given the use case and joint task. Examples include the confid-
ence explanations from Chapter 5 and actionable explanations from Chapter 6.
In Chapters 7 and 8 we proposed a design method that embeds explanations
in the human–AI collaboration with such specific purposes in mind. Our re-
search illustrates that we can let AI agents generate explanations that are much
more tailored, from explicitly calibrating human trust to help humans remain
autonomy over their lives. This makes the field of XAI not only a solution to our
worries about AI, but also an opportunity to expand on the possibilities of AI for
our society.

The research should next regard how to thoroughly combine the technology-
centred and human-centred perspectives in XAI research and their associated
communities. Only then can we ensure that we responsibly apply the developed
explanation generatingmethods. Luckily, thismerging of communities is already
occurring. To us personally this is most noticeable within the Netherlands Or-
ganisation for Applied Scientific Research (TNO), where our research was con-
ducted. At TNO, the number of projects on XAI has increased. Their focus also
moved from a few fundamental research projects developing new XAI meth-
ods to increasingly more applied research projects evaluating and validating
such methods in particular use cases, especially in high-risk domains such as
lifestyle advice [434], job vacancies [435], legal decision-support [436], human-
machine teaming for the military [437], auditing the use of AI agents in the gov-
ernment [438], and meaningful and supervisory control over autonomous ves-
sels [439].

Outside of TNO, we see various initiatives focusing on amore human-centred
approach to XAI. Examples include the HI centre [440], the CEE-AI [441], the XAI
Project [442]. Other initiatives aim to bolster Dutch and European research on
AI with a human-centred perspective, often entailing some focus on XAI. These
include the NLAIC [443], ELLIS Society [444], and CLAIRE [445].

We argue that these trends should continue and accelerate. Only through a
combined human- and technology-centred perspective on XAI research will we
learn what explanations an AI agent can and should convey to us for what pur-
pose and in what context. We should not wait until the next scandal with an AI
agent, as the next onemight occur because of an irresponsible application of ex-
planation generating methods. That such an error might occur out of ignorance
is no excuse to those affected. Instead, we should directly involve companies
and governments and help them to apply XAI research results responsibly in
their human–AI collaboration.
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In this thesis, we aimed to design and develop explanations to support a re-
sponsible and effective collaboration between humans and AI agents. In this
chapter we reflect on our main research question and provide an answer. We
list our main conclusions for each part and end with a final conclusion. This
conclusion summarizes the explanations we worked on, for what purpose they
can be used given our results and how explanations can be incorporated in the
design of human–AI collaborations.

We then discuss four main research challenges that we came across during
our research; 1) perform more user studies, including studies grounded in real-
istic applications of AI agents, 2) base explanation generating methods more on
fundamental mathematical theory to ensure their correctness, 3) incorporate a
socio-technical system perspective in XAI research to identify and researchmore
purposes of explanations, and 4) develop and propose concrete designmethods
and advice towards companies and governments on how XAI research results
should be interpreted and applied in a responsible manner.
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10.1 Main conclusions

Within this thesis we contributed to the following research question:
What should an AI agent explain to humans,
and how can it generate such explanations?

This question recognizes that an AI agent’s explanation serves the humans
who collaborate with it following the human-centred perspective on explain-
able AI (XAI) [236, 356]. Furthermore, the above question recognizes that this
explanation should be feasible for the AI agent to generate, incorporating the
technology-centred perspective on XAI. The two perspectives were combined in
this thesis, and many of our insights relate to this combined perspective. We
believe that our results show the merit of a combined perspective, where one
accounts both for what is required and what is feasible.

An unequivocal definitive answer on the above research question is out of
scope of a single thesis. The question describes the entire aim of the research
field of XAI following a combined human- and technology-centred perspective.
This thesis only contributed to this question within a specific scope defined by
our research aim formulated as follows:

To design and develop explanations that support a responsible
and effective collaboration between humans and AI agents.

This scoped our research to the exploration of explanations offering value to
the human–AI collaboration, in particular explanations that support a collabor-
ation that leads to an effective and responsible completion of the joint task the
human and AI agent face together. Within this scope a generic answer is best
formulated as:

An AI agent should provide contrastive, confidence and actionable
explanations tailored to induce desirable effects in the humans
that collaborate with that agent, where potential negative effects
are either of limited consequence or mitigated in some way. Such
explanations will vary widely given the needs posed by the role and
background of the human and the shared context of both humans
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and AI agent. Only through rigorous evaluations do we come to
know what explanations are suited for what context. In turn, only
through responsible design methods, such as the use of design
patterns, can we incorporate those results in applied explainable
AI agents.
Currently, explanations can be generated by approximating the AI
agent’s functioningwith an accessible and interpretablemodel that
can be used to base an explanation on. This approach is both ef-
ficient and sufficient, as humans rarely need to understand all as-
pects of an AI agent’s functioning. Furthermore, such an approach
is agnostic and future-proof due to being independent on techno-
logies used to develop AI agents.

This is a generic answer that is not specific for a certain explanation. Instead,
below we provide more detailed answers given the research questions and ex-
planations addressed in each.

In Part I, we studied the effects of contrastive explanations, i.e., when an
AI agent explains its reasons for arriving at a decision instead of another. Fur-
thermore, we proposed methods how such explanations could be generated by
an AI agent. One of our studies showed that a rule-based contrastive explana-
tions support a human’s understanding in why an AI agent made a certain de-
cision. Furthermore, with several benchmark tests, we showed that rule-based
contrastive explanations can be generated faithfully and efficiently independent
from the internal functioning of the AI agent offering decision support. For AI
agents that devise a plan of multiple actions over time, a pilot study showed that
humans prefer an explanation that contrasts a proposed plan with an alternat-
ive one in terms of the difference in expected consequences and outcomes. We
presented a method how such explanations could be generated by making use
of the AI agent’s model of the world combined with human expert knowledge to
translate abstract and mathematical concepts into more human-readable con-
cepts.

In Part II, we introduced confidence explanations, i.e., explanations that en-
able humans to determine whether the AI agent’s decision can be trusted. In
two studies we showed that human confidence in decisions can be interpreted
as the likelihood of a decision being correct given past similar situations and
the decisions made in those cases. We defined confidence explanations based
on case-based reasoning to follow this interpretation. Not only did our bench-
mark tests show this approach to be an accurate estimate of the likelihood that
242



10

Conclusions

a decision will be correct, but that this approach is also robust and predictable
even under concept drift. Finally, we showed how case-based reasoning readily
support human-interpretable textual explanations of the computed likelihood
serving as a confidence estimate that was preferred by participants in our stud-
ies over others.

Aside from confidence explanations, in Part II we also defined the class of
actionable explanations, i.e., explanations that explain how a human can con-
test an AI agent’s decision by supporting them in taking the right action to alter
this decision into a more favourable one. Six distinct properties were formally
defined divided in three increasingly complex levels, based on a formal frame-
work of contestability situated in a socio-technical systemperspective. We stated
that for an explanation to be deemed actionable – opposed to only offering epi-
stemic value – it should not only be faithful to the AI agent’s functioning and
interpretable by the human, but also propose alternative situations in which the
AI agent would make a more favourable decision. Furthermore, the explanation
should disclose the actions needed to achieve those alternative situations. These
should be actions that are feasible for the human to perform. With the help of
a literature review, we concluded that the main future challenges to achieving
actionable explanations are to address how to personalize the explanation to
what decisions a human favours and what actions it can perform. Finally, we
identified there is still relatively little research on how explanations should be
communicated to be interpretable to humans.

Finally, in Part III, we investigated how explanations contribute to human–AI
collaboration in morally sensitive tasks. We extended a design method for such
collaboration forms based on the notion of design patterns to include the role
and purpose of explanations in a morally sensitive context. Four of such forms
were proposed, including the potential role of explanations in each. These forms
varied the allocation of (morally sensitive) tasks between human and AI agent
and how explanations can be used to support the handover of tasks as well as
the human awareness on what the AI agent is doing. Three of these proposed
collaboration forms, described as prototypical design patterns, were evaluated
in a qualitative studywith healthcare professionals and themorally sensitive task
of medical triage. This evaluation substantiated our claim that explanations can
have a multitude of effects on the human–AI collaboration, where the use-case
determines if these effects are beneficial or detrimental to the collaboration. We
showed that explanations should be carefully designed for and embedded in the
human–AI collaboration. Otherwise, we risk that the use of explanations might
introduce more negative effects (i.e., increased mental load) then positive ones
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(i.e., better task performance).
To conclude, our contribution to the posed research can be summarized that

contrastive explanations can offer understanding in an AI agent’s functioning,
confidence explanations can assist in trust-calibration, and actionable explana-
tions might improve human ability to contest AI agents. However, these explan-
ations might also induce other effects. The ones were encountered include the
creation of amore persuasive AI agent, an induced false sense of understanding,
an increased human mental load, and an increased time to a decision. Whether
such effects are detrimental to the human–AI collaboration and subsequently to
the use-case, should be determined in the design process of the explainable AI
agent. This design can be supported by creating design patterns that offer a list
of evaluated effects, that can be used to make a responsible decision whether
some explanation should be used by the AI agent in that envisioned application.

10.2 Future research

This thesis is amere step towards new insights and technologies. As it closes, we
contemplate the future of explainable AI research and report on challenges left
open. We review what must be done to be able to design and develop explan-
ations that support a responsible and effective collaboration between humans
and AI agents.

We are strong believers that explanations should be evaluated rigorously in
human studies. This is due to the first challenge we wish to raise, that is that we
still know little about the multitude of effects causes by an explanation about an
AI agent’s functioning. In our studieswe found that explanations have a variety of
effects, including effects that were unintended. We argue that the research com-
munity has much to gain from conducting more human studies, both in approx-
imations and realistic applications of AI agents. Such studies would enable the
development of theoretical models on how explanations and effects are linked
given contextual aspects such as the task, human expertise, and the roles of the
human and AI agent. These models are requested for to help structure the re-
search on explainable AI agents [61, 32]. To enable to community to conduct
more human studies we need to create and validate metrics that measure the
effects of explanations. Furthermore, we call for the experimentation and de-
velopment of study designs to evaluate explanations. It has been raised that
the research community, due to its highly multi-disciplinary nature, has trouble
designing and understanding human studies from which reliable conclusions
can be drawn [59]. Furthermore, studying the effects of explanations on un-
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derstanding brings a profound learning effect in studies and might even require
long-term studies. Both adds to the difficulty of designing an appropriate study.
We should look upon other fields experienced in conducting human studies and
apply or adapt their practices to the field of XAI research.

The second research challenge we identify is to research more fundamental
theories on how we can develop methods that can generate explanations about
AI agents so complex that they cannot be readily understood by any human. Cur-
rently, such explanations are generated using the approach of surrogate mod-
els, that is, models that are more interpretable and accessible that are used to
approximate the much more complex AI agent [140]. Within this thesis we de-
veloped several methods based on surrogate models, and as others, we evalu-
ated their correctness with the help of benchmarks to measure their efficiency
and faithfulness. However, such benchmarks do not guarantee that the method
will work for every AI agent and its application. Although surrogate model meth-
ods allow an AI agent to explain itself independent of its own complexity, the
fundamental issue with these methods is that we cannot determine when this
necessarily simplified explanation correctly describes this AI agent that is too
complex for us to understand as is. There is little to no attention within the field
of XAI research to this fundamental issue. We call for the development of more
fundamental theories, relying onmathematics and philosophy, how to generate
sufficient descriptions that act as correct explanations of the much more com-
plex system they explain.

The third research challenge relates to widen the scope of XAI research. Cur-
rently, an explainable AI agent is mostly seen to provide a necessary under-
standing to make it trustworthy. However, explanations can serve many more
purposes in the human–AI collaboration. With a more socio-technical system
perspective, where human and AI agent are viewed as two collaborating and in-
teracting agents within a certain context [77, 356], the field can explore a wider
variety of uses of explanations. In particular, how explanations from an AI agent
can add to the functionalities of the AI agent. For instance, explanations might
educate the human in a domain, help discover new (causal) relations, or improve
their creative thinking and problem solving. Not only can this socio-technical sys-
tem perspective lead to new uses of explanations, but it will also underline the
necessity for research to focus on how explanations are communicated. There is
little attention to the development of interface and interaction designs that com-
municate explanations in an interpretable way [35]. The research in this thesis
had similar limitations, although our final pilot study indicated that the mod-
ality of explanations is pivotal in whether these explanations add value to the
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human–AI collaboration. Thus, if we want to achieve an effective and respons-
ible human–AI collaborationwith the help of explanations,more research should
be conducted to include more purposes of explanations and how explanations
should be communicated.

Finally, the fourth research challenge is the development of best practices
and policies that dictate how to design, implement, validate and maintain ex-
plainable AI agents. Our conversations with companies and government insti-
tutes made us realize that their biggest question is how to utilize all the progress
that is made within the field of XAI. They wonder how this should be incorpor-
ated in their decision-making when and where to apply AI agents, especially with
respect to upcoming regulations and the current mixed societal view towards AI
agents. If they decide to apply an AI agent or already do so, they wonder how to
add explanations to it. They are uncertain about the design choices that need to
bemade and, whenmade, how they should be incorporated in the AI agent such
that the explanations have a positive effect. The above research challenges all
contribute to this need. Through explanations validated with user studies and
generated through methods that are fundamentally sound, we can develop de-
sign methods when and where to apply which explanations and what methods
that can generate them. With a widened scope of XAI research, we can further-
more expand the functionalities of AI agents so that, when applied, they bring
more value to our society. However, to do so we must keep reflecting on our
research progress with the need of companies and governments in mind. Given
our experience, their current and greatest need is to have tools and methods
available that help them understand and incorporate the progress of XAI re-
search into their applications in a responsible manner.

For certain, plenty remains before we can truly speak of a self-explaining AI
agent whose explanations contribute and enable an effective and responsible
collaboration with humans. Thankfully, the research community is maturing, as
methods are being developed, experiments are conducted, and different com-
munities are increasingly involved. Rapid progress is being made towards the
common goal of AI agents that can explain themselves.
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