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ABSTRACT: This paper elaborates three novel contributions in
the field of chemical process safety. The first contribution is the
identification and classification of chemical system variabilities into
seven broad categories, namely, media, equipment, component,
operator, procedural, management, and external (MECOPME).
The identified variabilities lead to epistemic and aleatory types of
uncertainties in the probabilistic safety analysis. To deal with the
uncertainties caused due to the variabilities, a concept of the
flexible node is proposed, which demands a failure probability in
the flexible range of a lower level to a higher level instead of a fixed
static probability. Since the existing techniques are not robust
enough to handle the probability range, the classical fault tree is
mapped into a statistically more reliable approach of the response
surface method (RSM). The unique idea of using RSM in the failure analysis is demonstrated over the fault tree of an
overtemperature scenario in a semipilot scale setup for the hydrogenation process and successfully evaluated over an industrial
accident of the release prevention barrier scenario. The contour and surface plots of RSM reveal more information than the
traditional approach of minimal cut sets. The statistical markers of RSM are a better substitute for the improvement index for
sensitivity analysis. The proposed approach deals with chemical system variabilities and the lack of knowledge of exact occurrence
probabilities more effectively.

1. INTRODUCTION
Chemical process industries (CPI) deal with severe conditions
like extreme temperature, pressure, corrosive media, toxic
chemicals, flammable materials, and rigorous situations like
huge column sizes, complex piping networks, and operations at
elevated places and inside confined areas. The safety analysis and
modeling of such process facilities are absolutely necessary as
any malfunctioning and mishap may lead to a fatal accident
scenario.1

The fault tree analysis (FTA) is one of the popular techniques
for probabilistic safety analysis (PSA), which is static in nature
and demands sufficiently reliable failure probabilities for basic
events (BEs), which is sometimes not available or difficult to
obtain. Because of this, FTA is continuously upgraded by
converting it into a dynamic system and mapping into more
efficient methods.2

The dynamic characteristic of FTA was explained by Čepin
and Mavko3 and later by Durga Rao et al.4 using Monte Carlo
simulations. The mapping of FTA into Bayesian network
analysis (BNA) for dependable systems was proposed by Bobbio
et al.,5 and the capability of BNA over FTA was compared by
Khakzad et al.1 Recently, the mapping of FTA into artificial
neural networks (ANN) was conceptualized by Sarbayev et al.6

to relax the primary assumption of FTA and BNA. Both the

techniques assume that the states of each node are independent,
which is partly correct for the intermediate events (IEs) (nodes).
The dynamic FTA and mapping of FTA into BNA are

efficient techniques for analyzing time-dependent failures and
updating the failure probabilities based on available prior beliefs.
However, these techniques are not robust enough while
handling unavoidable uncertainty inherently present with failure
probabilities. The uncertainties being epistemic (lack of
knowledge) and aleatory (intrinsic randomness) in nature
require some special attention.7,8

To counter the uncertainties, researchers have employed
various approaches. Vaezi et al.9 demonstrated a two-stage
stochastic model for HazMat shipments under uncertainties.
Yu10 proposed a two-stage predisaster location and storage
model to protect against disaster under uncertain conditions.
Hasani and Mokhtari11 used multiobjective mixed integer linear
programming for designing a relief network under uncertainty.
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Poortvliet et al.12 employed statistical information to deal with
uncertainty in flood risk management. Misuri et al.13 presented
the evidential network and Credal network to deal with
uncertainty. Zhang and Thai14 highlighted the limitation of
traditional BNA while addressing uncertainties in maritime
accident modeling and proposed improvement by adopting
interval probabilities. Stroeve et al.15 illustrated a Monte Carlo
simulation-based approach to address the uncertainty in risk
assessment of air traffic management. Zubair et al.16 utilized a
Monte Carlo N-particle transport-based approach to address the
operators safety under different glass materials.
Zhou et al.17 incorporated the cognitive reliability error

analysis method and Monte Carlo simulations into FTA for
LNG transportation. Zubair and Zhang18 proposed a method-
ology and program to estimate parameters like temperature and
pressure with utmost reliability while updating them. Khalil Ur
et al.19 mapped the reliability block diagram with general gates
into BNA for safety and reliability analysis of instrumentation
and control components. Zubair and Ishag20 employed a
methodology to map a reactor protection system into a digital
plant protection system and control element drive mechanism.
The abovementioned approaches are case-specific and poorly
demonstrated over chemical systems under uncertainties.
The alternative approach adopted by researchers is the use of

a fuzzy crisp set to handle the uncertainties by fuzzing the inputs.
This was first demonstrated by Noma and Tanaka21 using fuzzy
failure possibilities instead of failure probabilities. Afterward, the
fuzzy approach is popularly used by various researchers to
address the uncertainties.22−27 The fuzzy set approach being
capable enough to handle vague and imprecise information faces
criticism for the tedious task of framing fuzzy rules, conversion of
the linguistic term to a corresponding fuzzy number, and heavy
dependence on the expert’s rich experience in assigning

probabilities and selection of membership function. In addition,
the fuzzy outputs can be interpreted in many ways, making this
analysis less practical for field applications.28

Since the above-discussed approaches are domain-specific
and fuzzy crisp set-based approaches over-rely on an expert for
interpretation, an alternative approach is required to be explored
in PSA. We believe that FTA can be mapped into a suitable
technique that can be more appropriate for field issues of
chemical process industries, simple in use, less laborious in
processing, and efficient in interpreting results.
This paper is structured as follows. The background and novel

contributions are discussed in Section 2, in which chemical
system variabilities are classified into seven broad categories, a
concept of the flexible node is proposed, and the possibility of
the use of the response surface method (RSM) in PSA is
explored. Section 3 discusses the causes of component variability
and efficient RSM designs. The mapping of FTA into RSM and
uncertainty modeling is presented in Section 4. In Section 5, the
capability of RSM over an industrial problem is demonstrated.
Finally, Section 6 summarizesmajor findings, draws conclusions,
and shows directions for future work.

2. BACKGROUND AND NOVEL CONTRIBUTIONS
Chemical systems have numerous variabilities, which lead to
uncertainties in probabilistic safety analysis. These variabilities
are caused due to several reasons, and they must be duly
identified and addressed at the design stage along with a detailed
safety analysis.
While revamping an old semipilot scale setup designed for

vapor-phase reactions and later modified to study the technical
feasibility and scale-up of the liquid-phase hydrogenation of
heavy base oils, several system variabilities were observed and
noted down, which were leading to uncertainty in PSA. On the

Figure 1. Proposed seven system variabilities related to chemical process industries.
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basis of the experience associated with revamping of an old setup
and scaling-up of the hydrogenation of the heavy base oil process
from semibatch mode to continuous mode, the system
variabilities are proposed and classified into seven broad
categories. These variabilities are media, equipment, compo-
nent, operator, procedural, management, and external, shortly
memorized as MECOPME.
The proposed variabilities and their typical characteristics are

illustrated in Figure 1. The MECOPME variabilities are further
correlated with the Flixborough accident (1974) for compar-
ison, which suggests that these variabilities can well explain the
Flixborough accident, as shown in Table 1. We do not claim that

only these seven chemical system variabilities exist in nature.
However, these seven MECOPME variabilities are necessary
and sufficient to explain major deviations leading to faults and
subsequent safety issues in CPI. The background information
and some preliminary work on the hydrogenation of heavy base
oils can be accessed through our past work.29−31

The media variability is caused by replacing the fluid with
another having completely different fluid properties like a
difference in viscosity, density, dirtiness, volatility, acidity, or
alkalinity. The equipment variability is caused due to
modifications done in the original design or bypassing the
major types of equipment. The component variability is
observed due to the use of a vast range of measuring devices
(a variety of sensors with different failure probabilities) in the

industry. The operator variability is because of human attitude
and the difference in experience and skills. The procedural
variability is observed when any major change or modification in
the operating procedure or with the work permit system is
executed. The management variability is the result of changes in
decisions like increasing or decreasing the production,
preponing or postponing maintenance, or a sudden priority
change leading to the execution of an unplanned activity. The
external variability is the outcome of external disturbances,
fluctuations, or unpredictables associated with the system.
Since the identified variabilities lead to uncertainties in the

probabilistic safety analysis, some relevant mechanism is
required to address it. To counter the uncertainty caused due
to variabilities, we put forward the concept of a “flexible node” in
the PSA. The flexible node is the basic event (node) demanding
the range of probability between the lower level and higher level.
Thus, the requirement of a fixed static probability value can be
avoided. One can assign all possible probabilities in the range of
a lower level to higher level sufficiently broad (i.e., in between
±10 and ±50% of occurrence probabilities) such that the
probabilities of the uncertain event fall within it.
In this work, we focus on the component variability caused

due to the provision for more number of replaceable sensors in
chemical systems. The system with the flexibility of multiple
interchangeable sensors in a particular basic event (node) is
primarily conceptualized as the flexible node in this work. The
counterpart of the flexible node can be considered as a fixed
node that cannot handle uncertainties caused due to any of the
chemical system variabilities.
To overcome the limitations of existing techniques to address

the uncertainties, as discussed in Section 1, we present the
mapping of FTA into RSM. The RSM is a statistical
optimization technique used in chemical engineering problems.
Since RSM also demands a range for inputs, the FTA with a
range of probability can be well expressed using RSM. Further,
the RSM has some merits over other competing techniques, i.e.,
well-designed simulation runs, better graphical representation,
clarity in the analysis of results supported by a wide statistical
base, and an efficient regression equation for mathematical
modeling.

3. COMPONENT VARIABILITY, FLEXIBLE NODE, AND
RSM DESIGNS

3.1. Component Variability and the Flexible Node.Due
to their requirement of uninterrupted continuous operations,

Table 1. Analysis of the Flixborough Accident Based on
MECOPME Variabilities

system
variabilities Flixborough accident (1st June, 1974; Saturday)

media the cooling media were contaminated at the time of the
accident

equipment reactor 5 was bypassed (due to severe vertical cracks) from the
series of six reactors

component 28 in. pipe was replaced with a 20 in. pipe as the appropriate
pipe was not available in the inventory

operator the plant technicians executed substandard bypass
modification using flexible bellow (dog-leg) without
referring to British standards

procedural the cooling procedure was changed prior to an accident
management management decision of running a plant and postponing the

maintenance when reactor 5 was removed from the series
due to severe cracks

external the plant was running with lesser skilled manpower on the day
of the accident due to weekend (Saturday)

Table 2. Component Variability in Chemical Systems Conceptualized as the Flexible Node

purpose interchangeable/replaceable instruments requirement/caution

temperature
measurement

expansion type; resistance type; thermoelectric
type

resistance type Pt-100 and k-type thermocouples are interchangeable; either a universal port or
R/I converter is required

pressure
measurement

capacitance type; inductive type; dial gauge; strain
gauge; piezoelectric type; magnetic coupling;
spinning rotor

the pressure range must be matched; capacitive type sensors are nonlinear in response

flow
measurement

orifice meter; venturi meter; rotameter;
differential pressure cell

orifice, venturi, and rotameter are interchangeable; coefficient of discharge value must be
matched; flow orientation must be adjusted (orifice and venturi are horizontal; however, the
rotameter is vertical in orientation)

flow control manually operated and automatic control valves
(electric, hydraulic, and pneumatic actuator-
based)

discharge coefficient must be matched; 4−20 mA DC current and I/P converter for the
pneumatic type; microprocessor and I/P converter for an electric type

fluid transfer centrifugal pump; rotary pump; peristaltic pump;
high-performance liquid chromatography
(HPLC) pump

the rotary pump can substitute for a centrifugal pump; high-pressure and peristaltic pumps are
interchangeably used for bench scale and semipilot scale operations

pressure relief
devices

spring operated; rupture disc such interchanging is not advisable; practiced in case of an emergency situation
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the process industries may experience the use of interchangeable
devices and sensors, leading to component variability. It should
be noted that the absence of the same component in the
inventory and, at the same time, the priority of production over
maintenance may lead to interchangeable devices in chemical
process industries. Table 2 lists a few of the applications where
interchangeable devices are used in the chemical process leading
to the component variability. The nodes or events having such
variabilities can be hypothesized as the flexible node.
The traditional PSA using the fault tree approach assumes a

single static node (fixed node) without any variability for all of
the basic events, whereas the flexible node assumes variability
(mainly component variability in the present work) for one or
more basic events or nodes. Under such circumstances, the
traditional FTA requires mapping into a suitable technique that
can model the whole fault tree covering all possible failure
probabilities. All possible failure probabilities must fall between
a range of lower-level (lower bound) and higher-level (upper
bound) failure probabilities, and the same concept is used in
RSM.

3.2. RSM Designs. The RSM is the statistical technique of
the design of experiments (DOE). The RSM has mainly four
useful designs, namely, central composite design (CCD), Box−
Behnken design (BBD), Doehlert matrix design, and three-level
factorial design. The efficacy of the design can be judged by
various statistical markers like p-value, analysis of variance
(ANOVA), Pearson matrix, R2 (goodness of fit), R2 predicted,
and R2 adjusted.32−34

Among the four RSM designs, the CCD and BBD are widely
used techniques and considered in this work. The CCD design
consists of corner points of the cube for linear estimation, a
center point of the cube, and star points to estimate the
curvature. The BBD design consists of midpoints of the edges of
the cube and a center point. The BBD design requires a
minimum of three factors, whereas the CCD design can be used
with a minimum of two factors. The number of runs vs the
number of factors for CCD and BBD designs is compared in
Table 3.

The BBD design is an efficient one, as seen in Table 3;
however, it cannot estimate beyond its design points. The CCD
design is less efficient, but it allows the estimation beyond the
design point due to star points embedded in the design. The
detailed criteria for the selection of an appropriate design is
discussed by Montgomery.35

4. GRAPHICAL MAPPING AND UNCERTAINTY
MODELING

4.1. Mapping of FTA into RSM. A mapping algorithm
should consist of graphical, numerical, and analysis tasks, as
demonstrated in Figure 2. The basic events (BEs) of the fault
tree have equivalence to factors defined in RSM. The top event
(TE) of the fault tree has equivalence with the response in RSM.
The intermediate events (IEs) of FTA can be mapped by
assigning relevant weights. The typical weights range between
0.1 and 10. The lower weight of 0.1 gives less importance to the
response, whereas the upper weight of 10 gives more importance
to the response. Our past experience suggests that the default
weight of 1 works well when the response is not overweighted or
underweighted.36,37

The Boolean gates can be mapped through the selection of
appropriate regression models and transformations available in
RSM. Each basic event has a fixed failure probability in FTA,
whereas the same is mapped through the lower level and higher
level in RSM. The minimal cut sets (MCS) of FTA can be
presented as two-dimensional (2D) contour and three-dimen-
sional (2D) surface plots in RSM. The traditional FTA depends
on an improvement index to perform the sensitivity analysis
(SA), whereas the RSM relies on the statistical parameters of
ANOVA, p-value, and Pearson’s product moment correlation
coefficient (PPMCC).

4.2. Chemical System with Flexible Nodes Due to
Component Variability. In the present work, a simplified
version of the fault tree for an overtemperature scenario (OTS)
from the hydrogenation of heavy base oil is considered for
demonstration. The details of the process flow diagram,
equipment list, specifications, and safety analysis using
HAZOP and the Bayesian network for hydrogenation of heavy
base oil can be accessed through the literature.29−31 Figure 3 is
the fault tree of a chemical system having two flexible nodes due
to the presence of component variability. The basic events (*X5)
and (*X8) are two flexible nodes as they have the provision for
interchangeable temperature sensors leading to multiple failure
possibilities. The flexible node-1 has the provision to use any one
sensor out of three sensors (expansion type, resistance type, and
thermocouple type). The flexible node-2 is compatible to use
any one sensor out of the two sensors (resistance type and
thermocouple type) at a time. It should be noted that the safety
evaluator is not aware of which sensor will be in service (in *X5
and at the same time in *X8) the moment an undesirable top
event occurs.
The occurrence probabilities for all basic events are

mentioned in Table 4, which were obtained from Crowl and
Louvar38 and Lees.39 The lower level and higher level are
considered sufficiently broad by assigning a moderate deviation
of ±15% from the reported occurrence probabilities. Thus, all
nodes have some flexibility in terms of assigning probabilities
with additional provision for more flexibility to the flexible nodes
(nodes *X5 and *X8) as the lower level and higher levels are
±15% from the least occurrence and the highest occurrence
probabilities (Table 4).
The traditional FTA approach to evaluating TE is to assess all

possible combinations and each combination will have a
different failure probability. The six possible combinations are
as follows: (1) resistance type in *X8 and expansion type in *X5,
(2) resistance type in *X8 and resistance type in *X5, (3)
resistance type in *X8 and thermocouple in *X5, (4)
thermocouple in *X8 and expansion type in *X5, (5)

Table 3. Runs vs Factors for Competent Designs

factors (Xi) runs (BBD) runs (CCD)

2 - 13
3 15 20
4 27 31
5 46 52
6 54 90
7 62 152
8 120 282
9 130 540
10 170 542a

21 348 564b

50 - 1382c

a1/2 fraction. b1/4096 fraction. cMinimum runs.
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thermocouple in *X8 and resistance type in *X5, and (6)
thermocouple in *X8 and thermocouple in *X5. Thus, the
traditional FTA approach is very lengthy, laborious, and tedious.
The practical approach is to evaluate TE twice by considering

the best case using the lowest occurrence probabilities in *X5

and *X8 and by calculating the worst case using the highest
occurrence probabilities in *X5 and *X8. This will reduce the
tedious task of repeated calculations but does not provide a

complete idea for various scenarios. To understand this, we
evaluated the best case, worst case, and in-between scenarios by
calculating all possible combinations. The TE values for the six
combinations in the respective order are as follows: (1) 0.1773
(best case), (2) 0.3017, (3) 0.3295, (4) 0.1914, (5) 0.3256, and
(6) 0.3556 (worst case). This suggests that there are six failure
possibilities, each top event has a different minimal cut sets in

Figure 2. Graphical mapping of FTA into RSM.

Figure 3. Fault tree with flexible nodes due to component variability.
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terms of the “importance index” and different sensitivities using
the “improvement index”.
A total of 12MCS (XiXl, XjXl and XkXl where i = 7, j = 8, k = 9,

and l = 1, 2, 4, 5) can be obtained for each combination having
different cut-set importance. For illustration purpose, 6
important cut sets out of 12 with a higher significance for the
best case and worst case are compared in Figure 4a. The cut-set
X8X1 is the shortest path leading to OTS for the best-case
scenario. The cut-set X8X5 is the shortest path leading to an
undesirable top event for a worst-case scenario. Thus, it is clear
that two different shortest paths (X8X1 and X8X5) are obtained
for the accident causation in the same fault tree having
component variability.
The contribution of each BE leading toward TE is evaluated

using sensitivity analysis, as seen in Figure 4b. The BE1 (X1)
shows a maximum improvement index for the best-case
scenario, whereas a BE4 (*X5) indicates a maximum improve-
ment index for the worst-case scenario. Thus, the fault tree with
component variability exhibits the characteristics of the same
MCS with a different significance and different BEs responsible
for the same top event. This suggests the requirement of
uncertainty modeling in probabilistic safety analysis, which

covers all possibilities in BEs using a probable range if a fault tree
has any of the variability proposed in Section 2.

4.3. Uncertainty Modeling for Fault Tree with Flexible
Nodes. The uncertainties are classified as epistemic and
aleatory in nature. The epistemic uncertainty arises due to a
lack of knowledge, small sample size, and an incomplete
understanding of the system. This kind of uncertainty is
reducible in nature by increasing the knowledge domain of the
system and is addressed by classical probability theory, fuzzy set
theory, and Dempster−Shafer theory.40−43 The aleatory type of
uncertainty is observed because of the inherent variability of the
system and heterogeneity among the components. Such
uncertainty is irreducible and tackled only by probability
theory.40−42 In this Section 4, the epistemic type of uncertainty
is handled for the OTS scenario caused due to component
variability.
4.3.1. Modeling Epistemic Type of Uncertainty. The

categorization of uncertainties as either epistemic or aleatory
is purely based on the model builder and depends on the context
and its application.40−42 The fault tree of OTS, as shown in
Figure 3, can be considered as epistemic in nature since it
involves parameter uncertainty in which any type of suitable
sensor can be used in flexible nodes *X5 and *X8 during the
continuous operation. In addition to this, the risk evaluator is
not aware of which type of sensor is in the service the moment
failure occurs.
To model this by mapping FTA into RSM, the first step is the

selection of design. The BBD design requires 62 runs, whereas
the CCDdesign needs 152 runs to evaluate 7 factors, as reported
in Table 3. We have evaluated both BBD and CCD designs by
following the mapping process described in Figure 2. The nodes
*X5 and *X8 are considered as flexible nodes by providing a vast
probability range in which all probable possibilities are covered.
The BBD andCCDdesign runs were generated and simulated in
Design Expert version 12 and the same was validated using
Minitab version 19. (The combination of runs for OTS using
BBD and CCD can be accessed through Tables S1 and S2,
respectively.)
The model fitting summary for BBD and CCD is given in

Table 5. A total of four models were checked, namely, linear, 2
factor interaction (2FI), quadratic, and cubic. The BBD design
shows a relatively minimal value of the standard deviation (SD)
and relatively higher values of R2, adj. R2, and pred. R2 compared
to the CCD design. The 2FI model using BBD was selected to
generate the regression equation, ANOVA, and contour and
surface plots for MCS analysis. The cubic model shows zero SD
with anR2 value of 1 for both BBD andCCDdesigns; however, it
adds more square and cubic terms in the regression equation
leading to more complexities in analysis.

Table 4. Occurrence Probabilities of Various Basic Events for
OTSa

symbol
event
type description

lower
level

(−15%)
occurrence

probability38,39

higher
level

(+15%)

X1 BE1 operator error 0.2292 0.2696 0.3100
X2 BE2 inexperienced operator 0.0094 0.011 0.0127
X3 IE1 ineffective operator

action
NA OR gate NA

X4 BE3 temperature alarm
failure

0.0184 0.0217 0.0250

*X5 BE4 local temperature
sensor failure
(flexible node-1)

0.0226 0.0266b 0.4663
0.3363c

0.4055d

X6 IE2 manual operation
failure

NA OR gate NA

X7 BE5 temp. controller hard
failure

0.2139 0.2517 0.2895

*X8 BE6 remote temperature
transmitter failure
(flexible node-2)

0.2859 0.3363c 0.4663
0.4055d

X9 BE7 temp. controller soft
failure

0.1110 0.1306 0.1502

X10 IE3 auto operation failure NA OR gate NA
Y TE overtemperature

scenario (OTS)
NA AND gate NA

awhere *X5 and *X8 are flexible nodes.
bExpansion type. cResistance

type. dThermoelectric type.

Figure 4. (a) Importance index and (b) sensitivity analysis for the fault tree with flexible nodes.
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(1)

The uncoded regression equation for BBD using the 2FI
model is reported as eq 1. Various combinations of factors
between the lower level and higher level can be given as an input
to eq 1, and the respective top event response can be obtained
using this equation.

The traditional FTA analysis for OTS yields a total of 12MCS
out of which X8X1 is the shortest path for the best-case scenario,
whereas X8X5 is the shortest for the worst-case scenario. In
contrast to this, the RSM approach using a 2FI model yields a
total of 21 interaction terms equivalent to MCS in the whole

Table 5. Summary of the Model Fit for OTS with Flexible Nodes Using BBD and CCD

model fit SD (BBD) SD (CCD) R2 (BBD) R2 (CCD) adjusted R2 (BBD) predicted R2 (BBD) adjusted R2 (CCD) predicted R2 (CCD)

linear 0.0044 0.0108 0.9956 0.9875 0.9951 0.9941 0.9869 0.9858
2FI 0.0002 0.0008 1.0000 0.9999 1.0000 1.0000 0.9999 0.9999
quadratic 0.0003 0.0008 1.0000 0.9999 1.0000 0.9999 0.9999 0.9999
cubic 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6. Significance of Linear and Interaction Terms in the 2FI Model (BBD)

linear terms
(7)

p-value (linear)
(7)

interaction terms
(1−7) p-value (1−7)

Interaction terms
(8−14) p-value (8−14)

Interaction terms
(15−21)

p-value
(15−21)

X1 <0.0001 (S) X1*X2 0.7208 (NS) X2*X5 0.0644 (NS) X4*X9 0.8404 (NS)
X2 <0.0001 (S) X1*X4 0.4712 (NS) X2*X7 0.8234 (NS) X5*X7 <0.0001 (S)
X4 <0.0001 (S) X1*X5 <0.0001 (S) X2*X8 0.5242 (NS) X5*X8 <0.0001 (S)
X5 <0.0001 (S) X1*X7 <0.0001 (S) X2*X9 0.9206 (NS) X5*X9 <0.0001 (S)
X7 <0.0001 (S) X1*X8 <0.0001 (S) X4*X5 0.0005 (S) X7*X8 <0.0001 (S)
X8 <0.0001 (S) X1*X9 0.0022 (S) X4*X7 0.6523 (NS) X7*X9 0.0122 (NS)
X9 <0.0001 (S) X2*X4 0.9826 (NS) X4*X8 0.2021 (NS) X8*X9 <0.0001 (S)

Figure 5. Contour plots equivalent to MCS using BBD (group 1).
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range of lower level to higher level. The significance of the
interaction terms (based on p-value <0.005) is presented in
Table 6, in which 10 significant (S) terms and 11 nonsignificant
(NS) terms are obtained.
A new finding observed using the RSM approach is the

existence of significant interactions between X1X5, X4X5, X7X8,
and X8X9, which is completely missing and not considered in the
classical FTA approach. The p-values of these four interaction
terms are much lesser than the traditional cut-set X1X9,
indicating that these four cut sets are more significant and
important than X1X9. The traditional FTA does not acknowl-
edge this, which suggests looking beyond the traditional
approach.
The interaction terms can be graphically represented as

contour and surface plots. For better representation, the contour
plots are grouped into two parts, as depicted in Figure 5 (group

1) and Figure 6 (group 2). The least significant cut sets have a
more light green color and the significant cut sets have a more
dark green color. The significance of cut-sets X1X5, X1X8, X2X5,
X4X5, X8X4, X8X5, and X7X8 having a more dark green color with
a response scale above 0.36 is presented in contour plots shown
in Figures 5 and 6.
The maximum interaction and maxima of response are

observed for the interactionX8X5 with a typical interaction range
between 0.1583 and 0.4175 as visible in a 3D surface plot in
Figure 7a. Further, the parity plot for predicted vs actual using
the BBD design is shown in Figure 7b, indicating the perfect fit
for the 2FI model.
The physical significance of cut-set X5X8 is that we are

interested in quantifying the overtemperature scenario and the
cut-set X5X8 is the combination of failure for *X5 (local
temperature transmitter failure) and *X8 (remote temperature

Figure 6. Contour plots equivalent to MCS using BBD (group 2).

Figure 7. (a) Surface plot for the maximum interaction for X8X5. (b) Predicted vs actual (OTS).
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transmitter failure). If both the temperature transmitters fail,
then auto mode and manual mode fail simultaneously leading to
an overtemperature scenario.
The effect of various factors (seven factors for over-

temperature scenario) on the top event is shown in Figure 8.
This represents the span of the individual factor and its
respective effect on TE. This can be further validated using

sensitivity analysis. The sensitivity analysis in RSM can be
performed using the PPMCC matrix shown in Figure 9a, which
can be further plotted as a pie chart, as shown in Figure 9b, to
understand the order of sensitivity. The overall order of
sensitivity can be further arranged as *X5 > *X8 > X1 > X7 >
X9 > X4 > X2, which represents the whole range between the
best-case and the worst-case scenario.

Figure 8. Response of Y (top event) against the factors Xi (basic events).

Figure 9. (a) PPMCC matrix for OTS. (b) SA using PPMCC for OTS.

Figure 10. Fault tree of the RPB scenario.
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*X5 is the most sensitive because of two main reasons. The

first is because *X5 is the local temperature measurement and

failure of this has a direct impact on the overtemperature as the

operator cannot take any preventive or mitigating actions in case

of emergency due to unavailability of temperature readings. The

second is the broad range of P(*X5) = 0.0266−0.4055, which
impacts the maximum on the top event. In contrast to this, the

node X2 is the least significant as the operator inexperience can

be tackled by auto mode operation, and the low value of P(X2) =

0.011 will have a less impact on the top event. The same is

reflected in Figures 8 and 9.

5. ANALYSIS OF THE BENCHMARKING PROBLEM
USING THE RSM APPROACH

5.1. Fault Tree of the Release Prevention Barrier (RPB).
This section will evaluate the modeling capability of the RSM
approach to the benchmarking problem and summarize critical
observations and comments. To assess the capability of the RSM
approach, we have selected a fault tree of the release prevention
barrier (RPB) having 21 BEs, 10 IEs, and associated TE. The
fault tree of RPBwas proposed by Adedigba et al.,44 based on the
findings from the Tesoro Anacortes Refinery accident (2010).
The heat exchanger (E-6600E) was ruptured due to a high-
temperature hydrogen attack igniting hydrogen and naphtha
leading to severe explosion causing seven fatalities and damage
to the plant. The fault tree of the RPB scenario is reconstructed
and shown in Figure 10.

Table 7. Occurrence Probabilities of Various Basic Events for the RPB Scenario

event
no.

possible variabilities (six out of
seven) description of BEs

lower level
(−15%)

occurrence
probability44

higher level
(+15%)

BE1 media high temp. hydrogen crack 0.02125 0.025 0.02875
BE2 component difficulty with valve operation during startup 0.01275 0.015 0.01725
BE3 procedural no report on leaks for heat exchanger startup 0.0425 0.05 0.0575
BE4 media hydrogen induced cold cracking 0.00085 0.001 0.00115
BE5 operator inexperience 0.0085 0.01 0.0115
BE6 procedural no work permit for job execution 0.0085 0.01 0.0115
BE7 management failure of external supervision 0.07055 0.083 0.09545
BE8 procedural wrong procedure 0.00425 0.005 0.00575
BE9 media poor construction material for NHT heat exchanger 0.0085 0.01 0.0115
BE10 equipment high mechanical stress 0.0085 0.01 0.0115
BE11 component insufficient instrumentation to measure process condition 0.00085 0.001 0.00115
BE12 procedural long delay in the inspection schedule 0.0425 0.05 0.0575
BE13 procedural inadequate methods for detecting HTHA 0.0765 0.09 0.1035
BE14 operator inadequate training of the inspectors to detect HTHA

easily
0.02125 0.025 0.02875

BE15 procedural failure of HTHA inspection of the heat exchanger 0.04675 0.055 0.06325
BE16 procedural failure of detection of leaks from heat exchanger flanges 0.0425 0.05 0.0575
BE17 procedural failure of minor release detection 0.0425 0.05 0.0575
BE18 procedural wrong maintenance procedure (Nelson curve

methodology)
0.00425 0.005 0.00575

BE19 procedural delay in maintenance operations 0.0425 0.05 0.0575
BE20 procedural HTHA degradation monitoring performed but failed to

detect
0.0561 0.066 0.0759

BE21 procedural HTHA degradation monitoring specified but failed to
detect

0.0425 0.05 0.0575

Figure 11. (a) 3D surface plot for BE9BE12. (b) Parity of the improvement index with PPMCC for SA.
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The failure modeling for RPB is performed in two parts. In the
first part, the RSM approach is compared with the traditional
FTA approach. The second part models the aleatory type of
uncertainty in RPB by assuming that all BEs of the RPB scenario
have some system variabilities. The failure occurrence
probabilities, lower and higher levels (±15% deviation), are
reported in Table 7.
5.1.1. Evaluating RPB Using FTA and RSM.To evaluate RPB

using the RSM approach and subsequently, its comparison with
FTA, the lower level and higher level were considered with
±15% deviation from occurrence probabilities reported by
Adedigha et al.44 The combination of 348 runs and respective
responses for RPB using BBDwas generated (refer to Table S3).
The first part of the analysis suggests that all available models

are significant with R2 values of 0.999 and more. The ANOVA
suggests that BE4, BE8, BE13, BE14, BE15, BE18, BE19, and their
interactions are nonsignificant. The interactions between BE12,
BE9, BE10, and BE7 were more significant compared to others.
The most significant interaction was obtained between BE9BE12
and BE10BE12.
The 3D surface plot of BE9BE12 is presented in Figure 11a.

The spread of TE is in the range of 0.07459−0.09393 with a TE
probability of 0.0842 (based on Adedigba’s data) lying
somewhere in the middle of the plot. The regression equation
generated using the 2FImodel has a total of 232 terms bifurcated
as 21 linear terns, 210 interaction terms, and 1 constant term.
The sensitivity analysis using an improvement index for the FTA
approach and PPMCC for the RSM approach is plotted in
Figure 11b, and both the approaches are comparable. This
suggests that PPMCC can be adopted for sensitivity analysis
while using the RSM approach.
5.1.2. Modeling Aleatory Type of Uncertainty. Out of the

seven proposed variabilities, six variabilities (except external
variability) are quite possible in the RPB scenario (refer column
2 in Table 7). Since the evaluators are not aware of the probable
possibilities for each variability, the RPB scenario is modeled for
an aleatory type of uncertainty by assuming all nodes as flexible
nodes. To model this, a vast range must be provided for lower
and higher levels, in which we have assigned the lower level to 0
and higher level to 1. This is more of a black-boxmodel approach
in which all BEs are on the same level, and the importance of
each basic event (factors) purely depends upon its Boolean
relation toward the top event (response). The combination of
348 runs using BBD for RPB with an aleatory approach was
generated (refer to Table S4).
The spread of TE for RPB with aleatory is obtained in the

range of 0.9765−1 for BBD, indicating skewness in the TE
probability distribution. The TE distribution shift toward 1
indicates more occurrence chances for the RPB scenario as all
intermediate events are connected with the top event using the
OR gate relation.
Themodel fitting for the aleatory type of uncertainty in RPB is

summarized in Table 8. The linear model is very poor and the

cubic model is perfect in fitting. The 2FI and quadratic models
are almost similar though the 2FI model is slightly better than
the quadratic model. The cubic model can be selected for more
detailed and rigorous analysis; however, a simple and practical
2FI model was selected to produce regression equation,
ANOVA, and contour and surface plots for demonstration
purposes.
The interaction of BE12 with BE11, BE9, and BE10 are

significant in the whole tree network. The interaction of
BE11BE12 is demonstrated using a contour plot and surface plot
presented in Figure 12a,b. The red color used in the same figure
indicates a much higher value of TE shifting toward 1. The green
color indicates a lesser effect on TE, whereas the yellow color
indicates a moderate effect on TE.

(2)

Regression eq 2, is generated using the 2FImodel has a total of
232 terms bifurcated as 21 linear terms, 210 interaction terms,
and 1 constant term. Out of the 231 terms (excluding the
constant term from 232 terms), 81 terms are highly significant
(p-value less than 0.0001), 68 terms are significant (p-value in
between 0.0001 and 0.05), 69 terms are nonsignificant (p-value
in the range of 0.05−0.5), and 13 terms are highly insignificant
or have almost no effect on the top event as their p-values are
much higher.
The sensitivity analysis reveals that only BE13 is a non-

significant basic event due to a very high p-value (0.2069). The
basic events BE14 and BE15 are significant, but the p-values are
much closer to a reference value of 0.05. It suggests that BE13,
BE14, and BE15 have a minimal impact on RPB. This can be
explained by the structure of the fault tree in which BE13, BE14,
and BE15 are at the bottom connected with the AND gate and
the chances of a simultaneous failure of these three basic events
are very less. The same sensitivity trend is reflected in Figure 13.
The sensitivity analysis also identifies basic events BE11, BE9,

BE12, and BE10 as significantly affecting the top event in a given
order. The basic events BE9 to BE12 are the most sensitive events
because they are much closer to the top event with the OR gate
operation. The remaining basic events have intermediate events
in between the top events, and hence the sensitivity of these
events is quite less.
Thus, the aleatory approach of assigning the lower level as 0

and the higher level as 1 draws an interesting finding that BE11
was relatively very less dominating in the FTA approach (refer
Figure 11b) due to the lower occurrence probability assigned in
the analysis, but it is the most sensitive event (refer Figure 13)
leading to the shortest path in the accident causation if the actual
probability is much higher than reported by Adedigba et al.44

5.2. Comparison, Observations, and Comments. The
RPB scenario, evaluated in the previous Section 5.1, is also

Table 8. Summary of the Model Fit for the Aleatory Type of
Uncertainty in the RPB Scenario

model fit
SD

(BBD)
R2

(BBD)
adjusted R2

(BBD)
predicted R2

(BBD)

linear 0.0030 0.5797 0.5526 0.5188
2FI 0.0009 0.9864 0.9579 0.8532
quadratic 0.0010 0.9859 0.9503 0.7824
cubic 0.0000 1.0000 1.0000 1.0000
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studied by Yazdi and Kabir7 using a combination of the fuzzy-
BNA approach and by Sarbayev et al.,6 using the ANN approach.
So it would be interesting to compare the RSM approach with
fuzzy and ANN approaches.
Yazdi and Kabir7 have relied on three independent experts’

knowledge and assigned weighing scores based on decided
criteria. The sensitivity analysis in the fuzzy-BNA approach is
performed using two different tools, Birnbaum importance
measure (BIM) and ratio of variation (RoV) as elaborated by
Yazdi and Kabir.7 Against this, Sarbayev et al.6 have randomly
generated 500 runs, trained the network using 450 runs, and
validated using the remaining runs. The sensitivity analysis in the
ANN approach was done using criticality importance (CRIT),
as discussed by Sarbayev et al.6

The following observations and comments can be drawn from
Table 9, which also highlight the strength of the RSM approach
over other techniques.

• The FTA and RSM (with ±15% deviation in level) yield
the same results for SA though it is performed by two
different tools, namely, improvement index and PPMCC.

• The BIM and RoV produce similar results for the fuzzy-
BNA approach but they are not in agreement with
PPMCC for RSM-aleatory and CRIT analysis for ANN.

• The order of sensitivity of the first three BEs (BE12, BE9,
and BE10 in thementioned order) are in agreement except

for modeling the aleatory type of uncertainty using the
RSM.

• BE11 is identified as highly sensitive toward TE based on
statistical evidence by assigning occurrence probability in
the range of 0−1. The other approaches consider its
significance but do not give the desired level of
importance.

• The common least significant events in most of the
approaches are BE13, BE14, and BE15 in which ANN fails to
identify BE13 and BE15.

• The least significant events identified by RSM and fuzzy-
BNA are in close agreement because both the approaches
can handle uncertainty, whereas the ANN approach
heavily depends on its quality and quantity of the training
set.

• Fuzzy-BNA by BIM and RoV evaluate the same ranking
for more than one event and thus the exact order for SA is
difficult to obtain using the fuzzy approach compared to
RSM and ANN approaches, as seen in Table 9 (refer to
the last two columns).

6. CONCLUSIONS AND FURTHER WORK
To address any of the variability, the concept of flexible node is
proposed, which demands the probability range between the
lower level and higher level. The BEs can be converted into
flexible nodes by assigning a probability range sufficiently broad
such that all probable possibilities are covered in it. This is
demonstrated by mapping FTA into RSM, which is a statistically
sound technique with the best graphical representation of results
and an efficient mathematical model. The OTS scenario
demonstrated in this work had two flexible nodes because of
the provision for interchangeable sensors. The traditional FTA
requires exploring all possible combinations against which the
RSM requires to evaluate once covering a whole range of
possibilities. The RSM generates more number of cut sets
supported by the p-value, suggesting looking beyond the
traditional approaches.
The BBD design is observed to be more efficient than the

CCD design, as demonstrated over the OTS scenario. The
aleatory type of uncertainty is possible if more number of nodes

Figure 12. (a) 2D Contour plot. (b) 3D Surface plot for RPB with the aleatory uncertainty.

Figure 13. SA using PPMCC for RPB with aleatory type uncertainty.
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are flexible. This can be handled by assigning a sufficiently broad
range of probability to almost all nodes. This also helps to
identify the most sensitive BE having the highest impact on TE
purely based on its Boolean relation toward TE as demonstrated
over the RPB scenario.
Further work will be devoted to model more complex

industrial fault scenarios having all seven variabilities. Addition-
ally, it would be interesting to evaluate the complex system using
the RSM-BNA approach and further mapping the multivariate
regression into the supervised algorithm for machine learning.
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■ ABBREVIATIONS
RSM response surface method
CPI chemical process industries
FTA fault tree analysis
PSA probabilistic safety analysis
BNA Bayesian network analysis
ANN artificial neural network
DOE design of experiments
CCD central composite design
BBD Box−Behnken design
2FI 2 factor interaction
BEs basic events
IEs intermediate events

Table 9. SA for RPB Using Various Approaches (FTA, ANN, Fuzzy-BNA, and RSM)

ranking of events
(SA)

FTA (improvement
index)

RSM_15% deviation
(PPMCC)

RSM_aleatory
(PPMCC)

ANN
(CRIT) fuzzy-BNA (RoV) fuzzy-BNA (BIM)

1 BE12 BE12 BE11 BE12 BE12 BE12
2 BE9 BE9 BE9 BE9 BE9 BE9
3 BE10 BE10 BE12 BE10 BE10 BE10, BE11
4 BE7 BE7 BE10 BE11 BE11 BE18
5 BE3 BE3 BE7 BE7 BE18 BE19
6 BE20 BE20 BE3 BE3 BE19 BE21
7 BE21 BE21 BE1 BE20 BE21 BE1,BE2, BE3,BE4
8 BE17 BE17 BE6 BE17 BE4 BE5,BE6, BE7,BE8
9 BE16 BE16 BE5 BE1 BE3 BE17
10 BE1 BE1 BE4 BE2 BE1 BE16
11 BE2 BE2 BE2 BE4 BE2 BE13,BE14,

BE15,BE20
12 BE11 BE11 BE20 BE18 BE6
13 BE6 BE6 BE8 BE13 BE7
14 BE5 BE5 BE18 BE15 BE5
15 BE8 BE8 BE17 BE16 BE8
16 BE18 BE18 BE16 BE19 BE17
17 BE19 BE19 BE19 BE21 BE16
18 BE15 BE15 BE21 BE6 BE13,BE14,

BE15,BE20
19 BE14 BE14 BE15 BE8
20 BE13 BE13 BE14 BE5
21 BE4 BE4 BE13 BE14
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TE top event
MCS minimal cut sets
SA sensitivity analysis
ANOVA analysis of variance
PPMCC Pearson product moment correlation coefficient
OTS overtemperature scenario
SD standard deviation
(S) significant terms
(NS) nonsignificant terms
RPB release prevention barrier
BIM Birnbaum importance measure
RoV ratio of variation
CRIT criticality importance
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