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d An unparalleled Brassicaceae phylogeny covering nearly all

349 genera is presented

d Cytonuclear discordance is omnipresent and a likely sign of

rampant hybridization

d The family originated during the late Eocene to late Oligocene

d Results are used to come up with a new family classification
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In brief

The Brassicaceae family contains the

model plant Arabidopsis thaliana and

many important crop species.

Surprisingly, relationships within the

family were poorly known. Hendriks et al.

present an unprecedented family

phylogeny with representatives from

nearly all 349 genera. These results will

boost fundamental and applied plant

biological research.
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Martin A. Lysak,12 Óscar Toro-Núñez,13 Barısx Özüdo�gru,14 Vanessa R. Invernón,15 Nora Walden,3 Olivier Maurin,9

Nikolai M. Hay,16 Philip Shushkov,17 Terezie Mandáková,12 M. Eric Schranz,18 Mats Thulin,19 Michael D. Windham,16

Ivana Re�setnik,20 Stanislav �Spaniel,21 Elfy Ly,2,22,23 J. Chris Pires,24 Alex Harkess,25 Barbara Neuffer,1 Robert Vogt,26

(Author list continued on next page)

1Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany

2Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
3Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
4Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
5Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM 88003, USA
6Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
7Department ofMolecular, Cell andDevelopmental Biology, University of California, 610Charles E. YoungDr. S., Los Angeles, CA 90095, USA
8Australian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, QLD 4870, Australia
9Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
10South-Siberian Botanical Garden, Altai State University, Barnaul, Lesosechnaya Ulitsa, 25, Barnaul, Altai Krai, Russia
11Heidelberg Botanic Garden, Heidelberg University, Im Neuenheimer Feld 361, 69120 Heidelberg, Germany
12CEITEC–Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
13Departamento de Botánica, Universidad de Concepción, Barrio Universitario, Concepción, Chile
14Department of Biology, Hacettepe University, Beytepe, Ankara 06800, Türkiye
15Sorbonne Universit�e, Mus�eumNational d’Histoire Naturelle, Institut de Syst�ematique, Évolution, Biodiversit�e (ISYEB), CP 39, 57 rue Cuvier,
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SUMMARY
Themustard family (Brassicaceae) is a scientifically and economically important family, containing themodel
plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance,
most phylogenetic trees of the family are incompletely sampled and often contain poorly supported
branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Bras-
sicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes)
and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two,
which is likely a result of rampant hybridization among closely and more distantly related lineages. To eval-
uate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different
gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297
genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moder-
ate. Calibration based on the 20most clock-like nuclear genes suggests a late Eocene to late Oligocene origin
of the family. Finally, our results strongly support a recently published new family classification, dividing the
family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five
recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating
Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working
onBrassicaceae and its diversemembers, our newgenus-level family phylogenywill be an indispensable tool
for studies on biodiversity and plant biology.
INTRODUCTION

The mustard family (Brassicaceae) is a globally distributed, me-

dium-sized plant family (�4,000 species) with huge economic
4052 Current Biology 33, 4052–4068, October 9, 2023 ª 2023 The Au
This is an open access article under the CC BY-NC-ND license (http://
and scientific impact, characterized by high morphological di-

versity1–5 (Figure 1). The family contains numerous species

grown for food and biofuel (cabbage, rapeseed) as well as

many model species (Arabidopsis thaliana, Arabis alpina,
thors. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Brassica spp., and Capsella spp.).1,6 Moreover, the over-

whelming availability of genetic tools and resources in these spe-

cies make Brassicaceae an ideal model family in flowering

plants. These tools have facilitated, among other things, plant

developmental studies that (1) disentangle genotype-phenotype

interactions,7,8 (2) investigate impacts of whole-genomeduplica-

tions (WGDs) at different timescales,9,10 and (3) unravel the

evolutionary variation in metabolic pathways, leading to a huge

diversity in natural products.11 In many of these comparative

studies that go beyond model species, a robust evolutionary

framework is required, ideally encompassing the �4,000

currently accepted species of Brassicaceae that are divided

among 349 genera and 50–60 tribes.12 This is also true for

studies on crop wild relatives aiming to introgress desirable traits

(e.g., drought tolerance and disease resistance) into crops using

plant breeding.13–15 Therefore, the evolution of Brassicaceae

has been the subject of study for a long time.2,3,16–23 However,

a robust, densely sampled Brassicaceae Tree of Life (hereafter

named BrassiToL) remains lacking.

Early phylogenetic inferences relying on flower and fruit

morphology25–27 were often misled by rampant convergent evo-

lution.28–30 Subsequently, the use of few molecular markers

generated poorly supported phylogenies,17,31 traditionally attrib-

uted to an early rapid radiation20 and multiple WGD and hybrid-

ization events.1 More recent family-wide phylogenetic studies

based onmultiple molecular markers offered support for three,32

four,1 or five3,22,33–35 main lineages in addition to tribe Aethione-

meae, which is sister to all other Brassicaceae. However, several

evolutionary events in the family keep challenging the re-

construction of the BrassiToL backbone,10,36–40 including

incomplete lineage sorting and introgression,41 and (ancient)
inter-tribal and inter-lineage hybridization, commonly followed

by post-polyploid diploidization.42,43

Here, we present results from the largest global Brassica-

ceae phylogenetic study to date including nearly all genera,

with the following objectives: (1) reconstruct the most complete

and robust family-wide BrassiToL based on nuclear genomic

data and plastome data, (2) investigate the influence of paralo-

gous genes and polyploid species on phylogeny reconstruc-

tion, (3) re-evaluate the temporal origin of the Brassicaceae,

its main lineages (subfamilies and supertribes), and tribes,

and (4) provide an updated taxonomic delimitation of these lin-

eages and tribes. Our improved phylogenetic framework will

further develop Brassicaceae as the prime model family in flow-

ering plants.

RESULTS

Unparalleled family-wide sampling
Our ingroup sampling for the nuclear analyses included 380

samples, covering 375 species, 319 of the 349 currently

accepted genera (91%) and 57 of the 58 accepted tribes

following the latest taxonomic revision of German et al.24

(excluding Hillielleae; Data S1A and S1B). We added 23 out-

group species representing all Brassicales families and 14

former Brassicaceae genera now synonymized with accepted

genera. Three additional genera (Hilliella, Onuris, and Thelypo-

dium) were included in the plastome dataset (Data S1C).

We recovered 1,081 nuclear genes (Data S1D; Methods S1A)

across 397 samples (Data S1E) from target capture sequencing

of 764 Brassicaceae-specific genes3 (hereafter B764) and 353

Angiosperm-wide genes44,45 (hereafter A353), following a ‘‘mixed
Current Biology 33, 4052–4068, October 9, 2023 4053
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Figure 1. Overview of themainmustard family relationships from different phylogenetic reconstruction approaches and gene sampling rou-

tines

Color group is the main core Brassicaceae lineages (I–V) described by Nikolov et al.,3 with recently proposed names for subfamilies and supertribes following

German et al.24 See also Figure S3.

(A) Cladogram of main lineages as recovered from nuclear stricter routines (strict, superstrict, superstrict by tribe, and superstrict excluding hybrids) using either

supermatrixML or coalescent-based approaches (ASTRAL-III), with node support from the supermatrix ML approach on the superstrict excluding hybrids routine

(BS/gCF/sCF; * indicates 100%) and the ASTRAL-III approach on the superstrict routine (pie charts represent quartet scores: dark blue for the first quartet, light

blue for the first alternative, and gray for the second alternative).

(B) Cladogram of main lineages as recovered from nuclear inclusive routine using coalescent-based approach (using both ASTRAL-III and ASTRAL-Pro) with

node support from the ASTRAL-III approach on the inclusive routine (colors as in previous panel).

(legend continued on next page)
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baits’’ methodology.46 For B764, we recovered 91% of the total

target length of 888,392 bp (mean across all samples), and 84%

of the 728 unique genes targeted (36 genes in common with the

A353 kit were first removed). For A353, mean values were 83%

of the total target length of 294,516 bp and 80%of 353 genes tar-

geted. Interestingly, gene recovery hardly decreasedwith sample

age, and we successfully obtained hundreds of nuclear genes

even from pre-1900 samples (Methods S1B).

Unparalleled global nuclear Brassicaceae phylogeny
We used HybPhaser v2.047 to define five ‘‘sampling routines’’

(‘‘inclusive’’: 1,018 genes, ‘‘strict’’: 1,013 genes, ‘‘superstrict’’:

297 genes, ‘‘superstrict by tribe’’: 1,049 genes, and ‘‘superstrict

excluding hybrids’’: 303 genes; Table 1). In the superstrict by

tribe routine, putative paralogous genes were removed by tribe,

meaning that a relatively high number of genes could be kept for

further analyses (see STAR Methods for details and Methods

S1C and S1D). In addition, we used both supermatrix maximum

likelihood (ML) and coalescent-based approaches in ASTRAL-

III48 and ASTRAL-Pro49 to infer the species phylogeny.

Node support was high for most tribes, regardless of the sam-

pling routine or phylogenetic approach (Figure 2; Data S1E and

S2), providing strong support for the monophyly of many (but

not all) of the tribes. For example, from the supermatrix approach

of the superstrict routine (concatenation of 297 target genes; to-

tal length 700,445 bp; 82.7% complete), the median support

values across tribal nodes were 100% for bootstrap (BS), 50%

for gene concordance factor (gCF), and 64% for site concor-

dance factors (sCFs). From the coalescent-based approach

(strict routine), the median local posterior probability (LPP)

across tribal nodes was 100%, and support for the first quartet

(Q1) was 78%. Tribes Camelineae and Iberideae were polyphy-

letic in all nuclear phylogenies (Data S2).

Based on the nuclear dataset, we consistently found tribe Ae-

thionemeae sister to the rest of the Brassicaceae (hereafter

defined as ‘‘core Brassicaceae’’), main lineage III sister to a clade

of lineages I–V, and lineages II + V sharing a common ancestor

(Figures 1A and 1B).

Based on the superstrict routine (361 samples; Table 1), sup-

port for the split between Aethionemeae and the core Brassica-

ceae was high (BS: 100%; gCF: 70%; sCF: 63%; LPP: 100%;

Q1: 70%; Figure 2; Data S2A), whereas support for the five re-

maining main lineages varied. Although main lineage III received

good support (100%, 40%, 58%, 100%, and 91%, respectively),

support for the remaining main lineages was relatively poor in

terms of gCF (ranging from 1% to 5%) and sCF (ranging from

36% to 58%) values (Data S1F). Remarkably, BS and LPP values

for thesemain lineageswere (nearly) always 100%. The generally

low support for the phylogenetic backbone (focusing on gCF,

sCF, and Q1) was reflected in the topological differences among

the family phylogenies based on the different sampling routines
(C) Cladogram of main lineages as recovered from plastome supermatrix ML app

lineage II (supertribe Brassicodae).

(D) Split network of the mustard family tribes computed from uncorrected p-dista

covering 317 genera of 56 tribes. The network highlights the complex reticulate ev

the main lineages. Names in bold highlight rogue taxa described in the main text

contains growth forms such as herbaceous, frutescent, and woody species, the la

Naturalis Biodiversity Center.
(Figures 1A–1C) and was visualized as a large, complex reticu-

late core in our split network analysis (Figure 1D). Our approach

to increase backbone support—and thereby confidence in

the family’s main lineage relationships—with our superstrict

excluding hybrids routine indeed resulted in higher support for

all main lineages (gCF now ranging from 16% to 76%; range of

sCF unchanged, but support for all main lineages the same or

slightly higher; Data S1F). However, this came at the cost

of removing many samples (and therefore species, genera, and

tribes), with now only 138 samples left (Table 1).

Our inclusive routine resulted in placement of main lineage I as

sister to a clade of main lineages II + IV + V (Figure 1A), whereas

the stricter routines of the nuclear dataset showed a consistent

placement of lineage IV as sister to a clade of lineages I + II +

V (Figure 1B) in both the ML and coalescent-based approaches.

This showed that removing a first set of most variable genes

(strict routine) considerably impacts the backbone of the topol-

ogy, whereas an additional removal of less variable genes

(superstrict, superstrict by tribe, and superstrict excluding hy-

brids) has little effect.

We used Townsend’s phylogenetic informativeness50 to

quantify the impact of each of the 1,081 nuclear genes on the

final species tree (Figure S1). Gene informativeness varied mark-

edly, with genes from the B764 bait set on average more infor-

mative than those from the A353 bait set, which likely reflects

the family-specific design of the B764 bait set.

Extended global plastome Brassicaceae phylogeny
Our plastome family ingroup sampling included 502 samples,

covering 438 species, 266 genera (76%), and all 58 tribes

(following German et al.24), with raw input data from newly

sequenced samples (Data S1A) and previously published data

from Nikolov et al.3 (Data S1B) and Walden et al.2 (Data S1G).

Similar to the nuclear phylogeny, tribal support was generally

high, with median nodal sCF of 81% and BS of 100% (Figure 3;

Data S1F). As in the nuclear phylogeny, tribe Aethionemeae

was sister to all remaining Brassicaceae. Tribes within lineage

II were similar to those in the nuclear phylogeny. However, cy-

tonuclear discordance manifested by among others the

following topological differences (Figure 4): (1) in the plastome

phylogeny, lineage I (not III) was sister to all other lineages

(II–V), with lineage III sister to a clade formed by II + IV + V;

(2) lineage II was polyphyletic in the plastome phylogeny, with

several tribes (Aphragmeae, Coluteocarpeae, Conringieae, Ker-

nereae, and Plagiolobeae) recovered within lineage V; (3) tribe

Stevenieae, recovered within lineage IV in the nuclear phylog-

eny, was recovered within lineage I in the plastome phylogeny;

and (4) new tribe Asperuginoideae (see below), assigned to

lineage IV in the nuclear phylogeny, formed a clade with Biscu-

telleae in the plastome phylogeny, and these tribes together

were sister to all other remaining lineages (II + IV + V).
roach with its node support (BS/sCF). The z indicates a major polyphyly in main

nces on a supermatrix of the nuclear genes covered by the superstrict routine,

olution both in the ancestors of extant main lineages, as well as within some of

. Inset drawings show the high morphological diversity within the family, which

tter comprising lianas, shrubs, and cushion plants. Drawings by Esm�eeWinkel,

Current Biology 33, 4052–4068, October 9, 2023 4055



Table 1. Sampling routine definitions

Sampling routine Inclusive Strict Superstrict

Superstrict by

tribe

Superstrict excl.

hybrids

Gene and sample selection criteria

Gene minimum proportion of samples recovered 0.1 0.2 0.2 0.2 0.2

Gene minimum proportion of target length recovered 0.1 0.2 0.2 0.2 0.2

Sample minimum proportion of total target length recovered 0.0 0.4 0.4 0.4 0.4

Sample minimum proportion of genes recovered 0.0 0.2 0.2 0.2 0.2

Gene SNPs proportion threshold for all samples none outliers 0.02 0.02 0.02

Remove outlier genes per sample? yes yes yes yes yes

Remove putative hybrids and rogue taxa? no no no no yesa

Dataset summary

Number of genes that passed HybPhaser criteria

All genes 1,081 (100) 1,057 (97.8) 306 (28.3) 1,076 (99.5) 306 (28.3)

B764 genes 728b (100) 721 (99) 194 (26.6) 728 (100) 194 (26.6)

A353 genes 353 (100) 336 (95.2) 112 (31.7) 348 (98.6) 112 (31.7)

Number of genes that passed de-noising loop and used in phylogenetic analysis

All genes 1,018 (94.2) 1,013 (93.7) 297 (27.5) 1,049 (97) (1,031c) 303 (28)

B764 genes 684 (94) 688 (94.5) 189 (26.0) 709 (97.4) 193 (26.5)

A353 genes 334 (94.6) 325 (92.0) 108 (30.6) 340 (96.3) 110 (31.2)

Number of samples in final dataset 380 361 361 361 138

Number of species 375 356 356 356 138

Number of genera as currently accepted 319 (332) 305 (317) 305 (317) 305 (317) 124

Number of tribesd 57 56 56 56 36

Coalescent-based results from ASTRAL-III

LPP (mean of all nodes) 0.94 0.95 0.92 0.88 –

LPP (median of all nodes) 1 1 1 1 –

First quartile proportion (mean of all nodes) 0.55 0.56 0.57 0.56 –

First quartile proportion (median of all nodes) 0.48 0.50 0.50 0.49 –

Definition of sampling routines and criteria used in HybPhaser to select nuclear genes for downstream analyses, with dataset summary and coales-

cent-based results from ASTRAL-III. Values in parentheses are percentages relative to the total number of genes in each bait set (728 for B764, i.e.,

764 minus 36 overlapping genes; 353 for A353). See also Methods S1.
aPutative hybrids were selected based on locus heterozygosity and allele divergence, with all samples within the upper 50% removed; rogue tribes as

discussed in the main text.
bThis corresponds to the 764 genes from the bait set minus 36 genes overlapping with the A353 bait set.
cMean number across samples, with genes retained differently in different tribes (i.e., tribe-specific). As a result, more genes could be retained in total

as compared with the inclusive routine, but at a lower mean sample occupancy across all genes, thus leading to a relatively sparse matrix.
dTribe definitions following latest taxonomic insights presented in German at al.,24 i.e., 58 tribes in total.
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Topological incongruences within tribes between the nuclear

and plastome phylogenies could be calculated for 23 tribes

for which the number of shared species was >3 (Data S1H).

Results varied from full concordance (tribes Biscutelleae,

Chorisporeae, Cremolobeae, Descurainieae, Eudemeae, Helio-

phileae, Isatideae, and Physarieae; generalized Robinson-

Foulds distance 0) to full discordance (tribe Lepidieae only;

generalized Robinson-Foulds distance 1), with a median gener-

alized Robinson-Foulds distance across all tribes of 0.31.

Allelic variability highlights polyploid origins
We assessed allelic variation using HybPhaser v2.047 by calcu-

lating the proportions of loci with divergent alleles (% locus het-

erozygosity [LH]) and average divergence between alleles (%

allele divergence [AD]), using the 1,013 nuclear genes included

in the strict routine (ignoring 38 samples with coverage too low
4056 Current Biology 33, 4052–4068, October 9, 2023
to calculate LH and AD; Data S1E). Although most samples fell

into the expected range of ‘‘normal’’ diploid species (roughly

LH < 90% and AD < 1), a number of samples showed signs of

polyploidization (Figures 5 and S2). Mean values for both LH

and AD were high at 75.1% and 2.25%, respectively, with no

clear difference between genes from the B764 and A353 bait

sets (Data S1E and S1I).

Based on the list of LH and AD values for all species, we tenta-

tively distinguished four family-specific classes: ‘‘hybrid,’’ ‘‘old

polyploid,’’ ‘‘highly polyploid,’’ and ‘‘old and highly polyploid’’

(Figure 5; see STAR Methods for details and class circumscrip-

tion). Nearly all representatives of tribe Thelypodieae were highly

polyploid, suggesting that the tribe experienced one or more

recent polyploidization events. Similarly, all representatives of

tribe Lepidieae fell within the hybrid or highly polyploid

classes, and also, tribes Alysseae, Brassiceae, Cardamineae,
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Figure 2. Time-calibrated genus-level Brassicaceae Tree of Life (BrassiToL) from a maximum likelihood analysis of a 297 nuclear genes

supermatrix (superstrict routine)

Genus type species are highlighted in bold. All tribes with more than a single representative are listed. Abbreviations of tribes are as follows: Aly., Alyssopsideae;

Ara., Arabidopsideae trib. nov.; Ast., Asteae; Cal., Calepineae; Cam. I, Camelineae I; Coch., Cochlearieae; Cre., Cremolobeae; Cru., Crucihimalayeae; Des.,

Descurainieae; Don., Dontostemoneae; Eud., Eudemeae; Eut., Eutremeae; Fou., Fourraeeae; Hal., Halimolobeae; Hel., Heliophileae; Hem., Hemilophieae; Ibe.,

Iberideae; Ker., Kernereae; Meg., Megacarpaeeae; Ore., Oreophytoneae; Sch., Schizopetaleae; Schr., Schrenkielleae trib. nov.; Sis., Sisymbrieae; Ste., Ste-

venieae; Sub., Subularieae. See also Data S2A for a fully annotated version of this phylogeny (including bootstrap, gCF, sCF and node age 95% HPD intervals)

with outgroups representing all families within the order Brassicales and calibration nodes. See also Data S2A.
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Figure 3. Time-calibrated genus-level Brassicaceae Tree of Life from a maximum likelihood analysis of a 60 plastome genes supermatrix

Genus type species are highlighted in bold. All tribes with more than a single representative are listed. Abbreviations of tribes follow those of Figure 2, with

additionally: Aph., Aphragmeae; Asp., Asperuginoideae trib. nov.; Bun., Buniadeae; Cha., Chamireae; Cho., Chorisporeae; Col., Coluteocarpeae; Con., Con-

ringieae; Don., Dontostemoneae; Ery., Erysimeae; Hes., Hesperideae; Mal., Malcolmieae; Not., Notothlaspideae; Ore., Oreophytoneae; She., Shehbazieae;

Sme., Smelowskieae; Tur., Turritideae; Yin., Yinshanieae. See also Data S2B for a fully annotated version of this phylogeny (including bootstrap, sCF and node

age 95% HPD intervals) with outgroups representing all families within the order Brassicales and calibration nodes. See also Data S1.
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andMicrolepidieae had the bulk of their representatives in one of

the polyploid classes (Figure 5).

Our phylogenetic results highlighted several jumpy or rogue

taxa (mostly tribes) that were recovered in different positions in

the phylogenies from different sampling routines. Most impor-

tantly, in the nuclear supermatrix ML approach and the stricter
4058 Current Biology 33, 4052–4068, October 9, 2023
coalescent-based approaches (Figures S3A and S3D–S3F),

Anastaticeae, Biscutelleae, and Megacarpaeeae formed a clade

sister to lineage V, whereas in the inclusive coalescent-based

approaches (ASTRAL-III and ASTRAL-Pro; Figures S3B and

S3C), Megacarpaeeae was sister to Anastaticeae, with the two

tribes sister to lineage II. The position of tribe Biscutelleae



Figure 4. Cytonuclear discordance at tribe level in newly derived nuclear and plastome Brassicaceae Trees of Life

Curved lines between tip labels from the two phylogenies link the same tribes. Tribes are represented by a randomly chosen sample from each tribe. Rogue tribes

have not yet been assigned to a supertribe due to their changing topological position from different sampling routines and phylogenetic approaches.
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changed depending on the coalescent-based approach used

(ASTRAL-III vs. ASTRAL-Pro). Contrary to our plastome phylog-

eny, we recovered genus Iberis (tribe Iberideae) as sister to tribe

Anastaticeae in our nuclear phylogenies, and not as sister to

Teesdalia, the other genus assigned to tribe Iberideae. Species

that belong to one of the rogue taxa generally also show rela-

tively high LH and AD values (17 of the 29 samples fall within

the ‘‘realm of polyploids,’’ with another 6 samples bordering it;

Figure 5), suggesting a polyploid origin.

Fossil calibration shows anEocene origin of themustard
family
We used the Turonian Dressiantha bicarpellata fossil (93.6–89.3

Ma51) to calibrate the stem node of order Brassicales (Data

S2A and S2B). We validated our dating estimates with nine other

fossils and biogeographical events (Data S1J), as suggested by

Franzke et al.52 In general, results from our nuclear phylogeny

supported the expected dates (based on literature) or were
younger. In the plastome phylogeny, our age estimates were

significantly younger. We found good corroboration with age

estimates for the Miocene Capparidoxylon holleisii fossil (16.3

Ma53,54) in the nuclear phylogeny (poor in the plastome phylog-

eny), the maximum crown age of the Mediterranean genus

Ricotia (11.3–9.2 Ma55) in both phylogenies, the estimated age

of the most recent common ancestor of the Arabis alpina clade

(3.27–2.65 Ma56) in the nuclear phylogeny (poor in the plastome

phylogeny), and the maximum age of the New Zealand alpine

genus Pachycladon (max. 1.9 Ma57,58) in both phylogenies. Sup-

port was medium in the nuclear phylogeny (and poor in the plas-

tome phylogeny) for the Paleocene fossil Akania sp. (�61

Ma59,60) and the early Tertiary Palaeocleome lakensis fossil

(55.8–48.6 Ma61). Support was poor for the vicariance event in

Clausia aprica62 and the maximum age of Hawaiian Lepidium,63

with recovered ages in both the nuclear and plastome phylog-

enies actually older than expected. Corroboration with the

Brassicaceae Thlaspi primaevum fossil (�32 Ma64–66) was poor
Current Biology 33, 4052–4068, October 9, 2023 4059



Figure 5. Scatterplot displaying the locus heterozygosity and allele divergence of all samples included in the strict routine

Colored ovals indicate four classes in the expected realm of polyploids, rough estimates of what could be considered likely hybrids, polyploids, and their ages

(see main text for the rationale behind assigning these different classes). The overlap between these classes highlights the uncertainty. The six largest tribes

(represented by >10 samples) for which (most) of their samples fall within this realm of polyploids are annotated using ellipses showing the 95% confidence level

for a multivariate t-distribution of their data. Samples from rogue taxa are highlighted using different shapes and colors. For more details, see Data S1E and S1I

and Figure S2.
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(node estimated at 10.8 Ma) in both phylogenies, which is unsur-

prising, given the ambiguous taxonomic identity of this fossil.52

Based on our nuclear dataset, we found that the core Brassi-

cales (Brassicaceae + Cleomaceae) and Capparaceae split

around 43.2 Ma (95% highest posterior density, or HPD: 45.0–

41.1) in the middle Eocene (Data S2A). Subsequently, the Bras-

sicaceae split from sister family Cleomaceae around 38.8 Ma

(95% HPD: 40.5–36.9) in the middle to late Eocene (Data S1J).

The core Brassicaceae split from tribe Aethionemeae around

24.5 Ma (95% HPD: 25.7–23.1), in the late Oligocene. All five

main lineages (supertribes) in the core Brassicaceae originated

during rapid radiation in the early to middle Miocene (median

stem ages 21.2–19.8Ma; median crown ages 19.9–14.4Ma; Fig-

ure S4; Data S1F). Meanmedian stem age across tribeswas 12.1

Ma (max. 18.9 Ma, Subularieae; min. 4.0 Ma, Boechereae;
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n = 52), whereas mean median crown age was 8.0 Ma (max.

18.1 Ma, Subularieae; min. 0.2 Ma, Oreophytoneae; n = 37). Re-

sults from our plastome dataset were much younger than those

from our nuclear dataset, with a family crown age of 20.2 Ma

(95% HPD: 29.0–13.0) and a core Brassicaceae crown age of

16.9 Ma (95% HPD: 24.3–10.2; Data S1F).

DISCUSSION

Unprecedented genus-level BrassiToL
We present here the most complete nuclear and plastome-

derived BrassiToL to date, together based on more than 1,000

genes and covering 92% of the 349 genera, representing all 58

tribes (Figures 1, 2, and 3; Data S2). This global genus-level

BrassiToL will be an indispensable tool for family experts



ll
OPEN ACCESSArticle
interested in understanding the evolutionary processes that

shaped current biodiversity patterns. In addition, many scientists

working on Arabidopsis or other Brassicaceae model species or

crops will benefit from this improved phylogenetic framework

when investigating gene regulatory mechanisms across the fam-

ily or exploring specific traits related to stress/disease in crops

and their wild relatives.

The backbone of our nuclear BrassiToL largely agrees with

that of Nikolov et al.3 (based solely on the Brassicaceae-specific

bait set targeting 764 genes), which included 63 species

covering most tribes. Specifically, our nuclear BrassiToL con-

firms (1) the recognition of tribe Aethionemeae as sister to the

rest of the Brassicaceae (i.e., core Brassicaceae) and (2) main

lineage III (supertribe Hesperodae, Figures 1A and 1B) as sister

to the remaining core Brassicaceae.3,33,34 The relationships

among the other main lineages varied depending on the applied

sampling routine and/or phylogenetic approach, although

the sister relationship between main lineages II (Brassicodae)

and V (Heliophilodae) was consistently recovered as well

(Figures 1A and 1B). We are confident that our expanded dataset

and more diverse analyses of putative single-copy markers

within Brassicaceae offer the most trustworthy estimation of

the family relationships to date. We acknowledge, however,

that—even with this massive dataset and careful analyses—we

have not fully resolved the well-known problem of recovering

deeper nodes in the Brassicaceae phylogeny (see below).

When comparing our plastome phylogeny (representing 265

currently accepted genera, all 58 tribes) with the nuclear phylog-

eny (representing 319 currently accepted genera, 57 tribes), we

found strong cytonuclear discordance among the main lineages,

as recently also demonstrated by Nikolov et al.3 and Mabry

et al.33 (Figure 4). At a lower taxonomic level, such cytonuclear

discordance was studied in more detail for Arabidopsis and its

putative close relatives,41 as well as tribe Biscutelleae,43 where

it was hypothesized that complex hybridization and introgres-

sion events caused topological incongruences. For example,

tribe Biscutelleae harbors four genus-specific WGDs resulting

from hybridization between parental genomes belonging to the

same lineages, closely related lineages, and even two different

supertribes43 (Camelinodae and Brassicodae).

Toward resolving the family phylogeny backbone
Relationships at the shallower nodes are generally well-resolved

in our phylogenies, leading to strongly supported relationships

among genera within most of the tribes (e.g., Q1 node support

was >50% in 34 of the 42 tribes for which we could calculate

node support, i.e., tribes represented by >1 species; Figure S4;

Data S1F). Interestingly, most of the deepest nodes (connecting

the Brassicales families) are generally also well supported (Fig-

ure S4). However, the deeper nodes within the Brassicaceae

family—reflecting the relative positions of the five supertribes

in the subfamily Brassicoideae—have been notoriously hard to

recover in the past and remain incompletely resolved even with

more than a thousand genes to study (Figure 1). Importantly,

we show that high BS support (used in the past to claim a solid

family backbone35) can be recovered nonetheless, even for con-

flicting topologies from different sampling routines, thereby chal-

lenging the value of BSs in phylogenomics. Instead, metrics on

node support that take underlying gene variation into account
(gCF; Q1, first quartet from coalescent-based analysis) and sin-

gle-nucleotide polymorphisms (SNPs) (sCF) are more informa-

tive when assessing branch support from genomic datasets.67

Low backbone support in a phylogenetic tree can have several

causes: (1) biological processes within the family, such as gene

duplication and loss, hybridization, incomplete lineage sorting, a

rapid radiation, and gene saturation, (2) one or more artifacts

(e.g., deficient or erroneous data such as paralogs interpreted

as orthologs), or (3) a combination thereof.68 As gene saturation

is a process that increases over time, we believe that it is not

influencing our dataset to a large extent because node support

among Brassicales families is generally higher than support for

main lineages (subfamilies and supertribes) within Brassicaceae

(Figure S4). Our dataset clearly indicates, however, that hybridi-

zation events have occurred frequently throughout Brassicaceae

evolution. We found LH and AD to be very high in many species,

with mean values of 75.1% and 2.25%, respectively (Data S1E

and S1I). In comparison, these values were only 52.3% and

0.21%, respectively, across all non-hybrid natural accessions

of pitcher plants (Nepenthes spp.) and 89.4% and 0.86%,

respectively, in their known and suspected hybrids.47 This high-

lights the abundant presence of hybrids in Brassicaceae, such as

in tribes Alysseae, Brassiceae, Cardamineae, Lepideae,Microle-

pideae, and Thelypodieae, and rogue tribes Anastaticeae, Bis-

cutelleae, Cochlearieae, Iberideae, and Megacarpaeeae (Fig-

ure 5; see next section).

Brassicaceae are notoriously known for their rampant hybrid-

ization (see below), and it is challenging to include all such evolu-

tionary oddballs into a single evolutionary model to recover the

family’s ‘‘true’’ systematic relationships. A network approach

could potentially represent these relationships more faithfully69

(Figure 1D). Aware of the issues with data deficiency and paral-

ogs, we specifically designed our analyses to disentangle some

of the deeper nodes by stepwise removal of putative paralogous

genes and samples of a putative hybrid origin (‘‘inclusive,’’

‘‘strict,’’ ‘‘superstrict,’’ ‘‘superstrict by tribe,’’ and ‘‘superstrict

by tribe excluding hybrids’’ routines; Table 1; see STARMethods

for details). A recent alternative approach to exclude paralogs

using synteny between whole-genome sequences70 showed

similar differences between tree topologies at the deeper nodes

as those among our inclusive and stricter datasets (Figures 1A

and 1B). Specifically, the branching order of clades I–IV based

exclusively on strict syntenic orthologs was identical to the

branching order recovered in our stricter datasets (Figure 1A),

lending independent support for the importance of our substan-

tial paralog filtering routines.

Interestingly, we found that going from the strict routine

(removing only outlier genes and keeping 97.8% of all genes; Ta-

ble 1) toward the superstrict routine (removing all genes with a

mean SNP proportion >0.02, keeping only 28.3% of all genes),

the topology of our BrassiToL from the coalescent-based

approach hardly changed (Figure S3). We therefore believe

that the superstrict routine (Figure 2) provides the best estimate

of the phylogeny, as it includes most samples and at the same

time excludes any ‘‘unnecessary’’ genes.

Rogue taxa share a mesopolyploid origin
Our results corroborate with previous studies that highlighted

several difficult-to-place or rogue taxa,3 including tribes
Current Biology 33, 4052–4068, October 9, 2023 4061
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Anastaticeae, Biscutelleae, Cochlearieae, and Megacarpaeeae,

and the genera Iberis, Idahoa, andSubularia. Contrary to the bulk

of the tribes, which were consistently placed within a main line-

age in our different nuclear phylogenies, these taxa ‘‘jumped’’

positions across the different phylogenies (Figure S3). This has

previously been interpreted as the result of inter-tribal or inter-

lineage hybridizations between distantly related parental species

(genus- or tribe-specificmeso-polyploidizations), as explained in

the next paragraph.

The genus Brassica and the tribe Brassiceae were the first

Brassicaceae taxa reported with a WGD postdating the family-

specific palaeotetraploidization At-ɑ event.71–73 Since this

pioneering work, more than a dozen genus- and tribe-specific

mesopolyploid WGDs have been discovered throughout the

family.9,39,43,74 Because most mesopolyploid taxa have an allo-

polyploid origin arising from hybridization between distantly

related parental species,42,43,75 inferring their phylogenetic posi-

tion within the family tree is often a challenging endeavor. For

all the rogue taxa we identified, a mesopolyploid origin has

indeed been demonstrated or claimed. For instance, for tribe

Cochlearieae, whole-genome triplication has been demon-

strated, whereas Anastaticeae and Iberis have a mesotetraploid

origin.39 Biscutelleae harbor four different WGDs specific to

Biscutella, Heldreichia, Lunaria, and Ricotia.43,76 Both genera

of Megacarpaeeae (Megacarpaea and Pugionium) have been

shown to be formed by independent WGDs.77,78 Teesdalia,

based on available chromosome numbers (2n = 36 in

T. coronopifolia and T. nudicaulis, 2n = 20 in T. conferta), most

likely has a polyploid origin, but (cyto)genomic data are lacking.

Interestingly, based on our results, not all mesopolyploids act as

rogue taxa, including tribe Brassiceae.

Brassicaceae originated during Earth’s icehouse era
Our results suggest a somewhat younger age for the Brassica-

ceae than previously published (Figure 2; Table 2). We recovered

amiddle to late Eocene stemage for themustard family (38.8Ma;

95%HPD: 40.5–36.9), with a late Oligocene crown age (24.5Ma;

95%HPD: 25.7–23.1). Although the family’s crown node age es-

timates ranged from 54.319 to 15.0 Ma18 in the earlier studies, re-

sults from more recent Brassicaceae studies converged to a

crown age of 37.1–32.4 Ma, which appears insensitive to data

type (nuclear/plastome), methods, and fossils used.23

Genomic datasets like ours are notoriously difficult to use in

time calibration due to the sheer amount of data that needs to

be analyzed simultaneously.85 There is no consensus about

the best approach to retrieve reliable dating estimates based

on big genomic datasets, but our experience is that including a

subset of only clock-like genes yields a more reliable time-cali-

brated tree compared with a more inclusive dataset (including,

e.g., all genes), which commonly results in a forward shift in time.

Based on our time-calibrated analyses using the 20 most

clock-like genes, the family’s origin and the onset of its diversifi-

cation coincide with the cooling of the Earth during the

Eocene-Oligocene transition (so-called greenhouse to icehouse

transition86,87). This period was characterized by a worldwide

replacement of tropical forests with temperate forests, open

vegetation, and deserts, which are all typical habitats of extant

Brassicaceae. Tribe Aethionemeae and the five supertribes in

subfamily Brassicoideae originated quickly after in the early
4062 Current Biology 33, 4052–4068, October 9, 2023
Miocene (median stem ages range from 21.2 to 19.8 Ma; median

crown ages range from 19.9 to 14.4 Ma; Data S1F). A combina-

tion of short branch lengths and low support in the BrassiToL

around these events (Figure S4) supports the idea of an early

rapid radiation of the family.

Results from our plastome phylogeny generally show a �5

Ma forward shift in time relative to our nuclear phylogeny,

possibly the result of including all 60 plastome genes in our

study, compared with a subset of 20 clock-like genes in our nu-

clear analysis (Figure 3; Table 2). Median crown age of the fam-

ily was 20.2 Ma (vs. 24.5 Ma in nuclear analysis), and median

crown age of core Brassicaceae 16.9 Ma (vs. 21.1 Ma). Results

from our plastome study are also much younger (nearly 10 Ma)

than previously found by Walden et al.2 based on partly the

same dataset (but a different set of fossils used for calibration;

Table 2).

Improved Brassicaceae phylogeny warrants updated
family classification
Our study provides new systematic insights and consolidates re-

sults from recent phylogenetic studies in Brassicaceae, fully

supporting the new family classification of German et al.24 This

includes the formal definition of two subfamilies (Aethionemoi-

deae, including only Aethionema, and Brassicoideae), five

supertribes (Camelinodae, previously lineage I; Brassicodae,

lineage II; Hesperodae, lineage III; Arabodae, lineage IV; and

Heliophilodae, lineage V), and 58 tribes.

At the tribal level, our results confirm that the scientifically

important genus Arabidopsis is not closely related to any other

genera traditionally placed in tribe Camelineae,3,22 supporting

the movement of Arabidopsis into a new monogeneric tribe,

Arabidopsideae (supertribe Camelinodae24). Our results also

support the following taxonomic changes as recently published

by German et al.24: (1) erecting the monospecific and distinct

genus Asperuginoides to its own new tribe, Asperuginoideae,

(2) combining the genera Dipoma and Hemilophia in the new

tribe Hemilophieae, (3) combining the genera Idahoa and Subu-

laria in the re-established tribe Subularieae (plastome phylogeny

only), and (4) raising the monospecific and distinct genus

Schrenkiella into its own tribe, Schrenkielleae. We found all tribes

to be monophyletic and highly supported in both nuclear and

plastome phylogenies, except for Camelineae (polyphyletic in

both nuclear and plastome phylogenies), Iberideae (polyphyletic

in the nuclear phylogeny), and Subularieae (polyphyletic in the

nuclear phylogeny). These tribes, in addition to the aforemen-

tioned rogue and hybrid tribes, require further systematic studies

to uncover their exact evolutionary history and determine their

taxonomic status.

Conclusions
We provide the first global, calibrated, nuclear, and plastome

BrassiToL, offering an important step forward in untangling

the notoriously difficult phylogenetic relationships across Brassi-

caceae. We applied the latest bioinformatic tools to select the

most reliable genes to construct the species tree, thereby

increasing topological accuracy and highlighting likely polyploid

taxa. Our improved phylogenetic framework supports the rein-

statement of the new family classification by German et al.,24

including two subfamilies (Aethionemoideae andBrassicoideae),



Table 2. Brassicaceae divergence time estimates

Studies

Crown

Brassicaceae

(Ma)

Crown core

Brassicaceaea

(Ma) Method Dataset Calibration

Koch et al.79 – 25.9–23.1 synonymous

substitution

rate

Adh and Chs synonymous substitution rate

Franzke et al.18 35.0–15.0–1.0 28.0–11.0–1.0 BEAST nad4 one secondary calibration

Beilstein et al.19 64.2–54.3–45.2 54.3–46.9–39.4 BEAST ndhF and PHYA four fossils

Couvreur et al.20 49.4–37.6–24.2 43.8–32.3–20.9 BEAST eight genes from nuclei,

chloroplast, and

mitochondria

one fossil

Kagale et al.80 – 26.6 synonymous

substitution

rate

213 nuclear orthologs synonymous substitution rate

Edger et al.11 45.9–31.8–16.8 – BEAST 1,115 single-copy nuclear

genes

two fossils

Hohmann et al.9 38.6–32.4–27.1 27.3–23.4–19.9 BEAST plastomes four fossils

Huang et al.22 37.8–37.1–36.3 30.3–29.7–29.1 r8s 113 low-copy nuclear

orthologs

18 fossilsb

Cardinal-McTeague

et al.54
44.1–37.7–31.4 – BEAST Chloroplast DNA (ndhF, matK, rbcL)

and mitochondrial DNA (matR, rps3)

three fossilsb

Mohammadin et al.81 58.9–48.0–37.5 35.4 BEAST plastomes one secondary calibration

Guo et al.82 41.8–34.9–29.0 29.8–25.1–21.3 MCMCTree plastomes 14 fossilsc

Mandáková et al.39 54.7–40.1–29.4 30.6 BEAST plastomes four fossils

Huang et al.23 33.2–29.9–26.8 22.9–21.3–19.6 BEAST plastomes four fossils

Ramı́rez-Barahona

et al.83
52.7–41.9–30.5 – BEAST rbcL, atpB, matK, ndhF,

18S, 26S, 5.8S

238 fossils, angiosperm-wide

Walden et al.2 35.7–29.9–24.3 29.6–25.1–20.9 BEAST plastomes four fossils

Legalov et al.84 – >36.4 indirect

calibration via

phytophagous

beetles

– Ceutorhynchus beetle fossils

This study

(nuclear dataset)

25.7–24.5–23.1 22.4–21.1–19.9 treePL phylogeny using superstrict

routine; calibration using

subset of 20 most clock-like

genes

one fossil validated by nine

secondary calibration points

This study

(plastome dataset)

29.0–20.2–13.0 24.3–16.9–10.2 treePL plastomes one fossil validated by eight

secondary calibration points

Comparison of estimates from past studies and the current study (taken and updated from Huang et al.23).
aCore Brassicaceae are all Brassicaceae, excluding basal tribe Aethionemeae.
bDating results excluding Thlaspi primaevum.
cOnly results that exclude Brassicales fossils.
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with five supertribes in the latter (Arabodae, Brassicodae, Cam-

elinodae, Heliophilodae, and Hesperodae), and a total of 58

tribes of which five newly described or re-established.

The ultimate goal of our Brassicaceae consortium is to build a

complete Brassicaceae family phylogeny including all �4,000

species. The methods that we applied (including our ‘‘mixed

baits’’ target capture sequencing from—sometimes over 200

years old—herbarium material46) have proven successful and

are becoming more affordable (now roughly V 40 per sample)

and can easily be scaled up. Such a new species-level phylog-

eny will further boost the significance of this model plant fam-

ily—for both fundamental and applied research programs

covering all fields of plant biology.
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REAGENT or RESOURCE SOURCE IDENTIFIER

IQ-TREE2 v2.1.3 Minh et al.101 https://github.com/iqtree/iqtree2

trimAl v1.2 Capella-Guti�errez et al.102 https://github.com/inab/trimal

TAPER v1.0.0 Zhang et al.103 https://github.com/chaoszhang/TAPER

TreeShrink v1.3.9 Mai and Mirarab104 https://github.com/uym2/TreeShrink

ASTRAL-Pro v1.1.6 Zhang et al.49 https://github.com/chaoszhang/A-pro

R package ‘ggtree’ Xu et al.105 https://github.com/YuLab-SMU/ggtree

Rate4Site v3.2 Mayrose et al.106 N/A

R package ‘PhyInformR v1.0’ Dornburg et al.107 https://github.com/carolinafishes/PhyInformR

Perl script ‘catfasta2phyml.pl’ N/A https://github.com/nylander/catfasta2phyml

IQ-TREE v1.6.12 Nguyen et al.108 https://github.com/Cibiv/IQ-TREE

IQ-TREE v2.2.0 Minh et al.101 https://github.com/Cibiv/IQ-TREE

treePL v1.0 Smith and O’Meara109 https://github.com/blackrim/treePL

TreeAnnotator v2.4.7 Bouckaert et al.110 https://beast.community/treeannotator

TreeAnnotator v2.6.7 Bouckaert et al.111 https://beast.community/treeannotator
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Kasper P.

Hendriks (kasper.hendriks@naturalis.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d Target capture data have been deposited to the NCBI Sequence Read Archive (SRA): BioProject PRJNA678873 and

PRJNA806513; all data are publicly available as of the date of publication. Sample accession numbers are listed in Table S1.

d All original code has been deposited to Zenodo and accessible through https://doi.org/10.5281/zenodo.8214354.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study did not use any experimental model or study participants.

METHOD DETAILS

Taxon sampling
To reconstruct the nuclear Brassicaceae phylogeny, we aimed to include at least one species from each of the 349 currently

accepted genera—preferably each genus’ type species—along with one species of every non-Brassicaceae Brassicales families

and all species needed for fossil calibration checks of vicariance and colonisation within lineages of Brassicaceae (Data S1J). We

followed BrassiBase112 for taxonomic delimitation of species, genera, and tribes, added with more recent insights from taxonomic

experts. Where possible, we sampled type specimens to support future taxonomic judgements (Table S1).

We generated new nuclear sequence data for 365 samples (Table S1) and added available sequences from 38 samples from

Nikolov et al.3 (Table S2). All new data were sequenced from dried herbarium specimens or silica dried tissue from 29 different her-

barium collections across the world, with plants collected between 1807 and 2020 (including 35 pre-1900 and 29 samples collected

between 1900 and 1950; Methods S1B). Old samples were included either because we did not have access to younger material, or to

show the possibilities of our methodology with regard to natural history collections. We used the original type material of 24 species

(Table S1).

New plastome data were generated from genome spiking (see below) for 237 samples (Table S1). We used additional data for 196

samples fromWalden et al.,2 60 plastid genomes downloaded fromGenBank and used in the same study (Table S7), and 31 samples

from Nikolov et al.3 (Table S2).
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Library preparation, target capture, and sequencing
Wet lab methods followed Hendriks et al.46 Briefly, we extracted genomic DNA from 25 mg of dried leaf tissue (or less if insufficient

material was available; in case no leaf tissue was available from any herbarium voucher available to us, we used branches and/or

flowers) using the DNeasy PowerPlant Pro Kit (Qiagen, Hilden, Germany), following the manufacturer’s protocol (but with a final

elution time of 1 h). DNA extracts with visible impurities (green or brown colour; �25% of samples) were subsequently purified using

the DNeasy PowerClean Pro Cleanup Kit (Qiagen, Hilden, Germany). Genomic DNA was stored in the DNA bank of Naturalis Biodi-

versity Center, Leiden, the Netherlands (Table S1). Genomic libraries were generated using the NEBNext Ultra II FS kit (New England

Biolabs, Ipswich, Massachusetts, USA) with sonication in an M220 Focused-ultrasonicator (Covaris, Woburn, Massachusetts, USA;

only for libraries with fragment peak length > 400 bp). Indexing was performed with 384 unique combinations from IDT10 primers

(Integrated DNA Technologies, Coralville, Iowa, USA), with protocol adjustments described by Hendriks et al.46 Target sequence

capture was carried out on pools of 10–30 libraries each, using the ‘mixed baits’ approach described by Hendriks et al.46 Thismethod

targets putatively single-copy nuclear genes from two different bait sets in a single capture reaction: a Brassicaceae-specific set tar-

geting 1,827 exons from 764 genes, using 40k probes3 (hereafter B764), and the now widely used Angiosperms353 v1 universal bait

set targeting 353 genes, using 80k probes44,45 (hereafter A353; both kits available from Arbor Biosciences, Ann Arbor, Michigan,

USA). To maintain the ratio of probes among the bait sets during target capture, we used a B764: A353 = 1 : 2 (v/v) mixture. To

aid skimming of chloroplast gene reads during sequencing,113 we used genome spiking of each enriched library with its unenriched

library at a ratio of 1 : 1 (M/M). Sequencing was performed on an Illumina NovaSeq 6000 sequencer (Illumina, San Diego, California,

USA) at BaseClear, the Netherlands, producing 150-bp paired-end reads, at a targeted 100✕ technical coverage. Raw sequence

data files were uploaded to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under

BioProjects PRJNA806513 and PRJNA678873. Target capture and sequencing for a sample were repeated if results from sequence

assembly (described below) were poor (< 500 genes recovered).

New ‘mixed baits’ data for 12 outgroup species were generated by the Plant and Fungal Trees of Life project at the Royal Botanic

Gardens, Kew, UK, following methods described by Baker et al.114 A single sample was processed by the Bailey Lab, New Mexico

State University, USA, and three more at Heidelberg University, Germany. To further increase sampling, we added previously pub-

lished raw sequence data for 37 samples from Nikolov et al.,3 available from NCBI SRA as BioProject PRJNA518905 (target capture

for B764 only; Table S2).

Sequence assembly of target capture data
Raw sequence data (from our study, as well as from other sources; see taxon sampling) were quality controlled and trimmed with

Trimmomatic v0.3888 using parameters from Baker, et al.114 Trimmed reads were mapped against two reference files (i.e., for

B764 and A353 bait sets) using HybPiper v1.3.189 with BWA v0.7.16a90 and SPAdes v3.14.1,91 using GNU Parallel92 to manage par-

allel computing of samples on the XSEDE Stampede2 HPC.115We built a gene reference file for the B764 dataset from the 1,827 exon

reference file of Nikolov et al.3 by concatenation of same-gene exons, resulting in a total target length of 919,712 bp. For the A353

dataset, we used the ‘mega3530 target file with the script ‘filter_megatarget.py’ to create amustard family-specific reference93 with a

total target length of 294,516 bp.We identified a total of 36 genes with overlap among the two bait sets, which was expected because

the two bait sets have been developed independently (Data S1K). To avoid studying the same genetic marker twice, we discarded

these genes from the B764 dataset (generally the shorter targets), leaving a final nuclear dataset of 1,081 (i.e., 764 + 353 - 36) genes

with a total target length of 888,392 bp.

Sequence assembly of plastome
We used off-target reads from genome spiking (samples with new raw data) and genome skimming (raw data from previous studies

listed above) to reconstruct 60 plastid genes for 237 new samples and 31 samples from Nikolov et al.3 New data were integrated into

an already existing plastid dataset containing 231 Brassicaceae species.2

Trimmed sequencing reads were mapped using BWA v0.7.17 using option ‘BWA-MEM116’ and the Arabidopsis thaliana plastid

genome (NCBI GenBank accession number NC_000932) as reference. Prior to mapping, the second copy of the inverted repeat

region was removed, as identical regions lead to secondary alignments which are omitted by tools used in subsequent analysis.

SAMtools v1.3.194 was used to enhance mapping quality and to sort and index the .bam files. Duplicates were removed using Picard

tools (http://broadinstitute.github.io/picard/). Variant calling was performed using the GATK496 function ‘HaplotypeCaller’ setting

ploidy to 1 and pcr-indel-model to none. The GATK395 function ‘FastaAlternateReferenceMaker’ was used to generate sequences

including the detected SNPs and indels. Regions of low coverage (< 5) and low mapping quality (< 30) were detected using GATK3

function ‘CallableLoci’. After having adjusted the positions of the regions to be masked using the inhouse script ‘masker.sh’ (Markus

Kiefer, Heidelberg University; see Key Resources Table), BEDTools97 function ‘maskfasta’ was used tomask regions of badmapping

quality (< 30) and low coverage (< 5). The annotation of genes was transferred by alignment to above mentioned A. thaliana plastid

reference using the inhouse script ‘cpanno.py’ (Markus Kiefer, Heidelberg University; see Key Resources Table). After removal of gap

columns, the final data matrix had a total target length of 29,120 bp and was 96.2% complete.

Taxonomic verification
We performed ‘taxonomic verification’ on a preliminary species phylogeny. To reconstruct this phylogeny, multiple sequence align-

ments were created for each gene using MAFFT v7.273,98 with a quick gene tree inference using FastTree v2.1,99 both within the
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pipeline PASTA v1.8.6.100 Unfiltered gene trees were used as input to ASTRAL-III v5.7.8.48 Data from samples marked as possible or

likely errors (found in highly unlikely positions in the preliminary species tree) were removed, followed by either repetition of library

preparations or resampling of the species. This routine was repeated once more, such that the phylogenetic position of each sample

was verified by taxonomic experts. Subsequently, any data resulting from multiple DNA extractions and/or library preparations from

the same voucher were merged after trimming and again mapped following the same routine.

Allelic variation and paralog detection
We used HybPhaser v2.0,47 an extension to HybPiper, to assess allelic variation and to detect possible paralogs in our nuclear data-

set. In short, HybPhaser performs a re-mapping of raw sequence data, using the contig of each sample (created by HybPiper) as a

new reference. Whereas HybPiper by default constructs the most likely allele for a—supposedly single-copy—gene based on the

relative nucleotide frequency of each heterozygous site, HybPhaser instead takes SNP variation into account using nucleotide am-

biguity codes, and uses these to quantify divergence between gene variants to detect paralogy and hybridisation. Single genes with

high SNP count are considered likely paralogs, while samples with high SNP count across all genes are considered likely hybrids or

polyploids.47 Putative paralogs were removed from the dataset. However, since there is no single criterion to define a paralog, we

used five ‘routines’ to do this (Table 1). In the ‘inclusive’ routine (1,018 genes, 332 genera, 375 species, after running a de-noising

loop; see below), we retained as much data as possible (including all samples, and thus all genera for which we had any data)

and only discarded poorly recovered genes (gene recovered for < 10% of the samples and/or proportion of gene target length recov-

ered < 10% on average across all samples). We discarded putative paralogs in the ‘strict’ routine (1,013 genes, 317 genera, 356 spe-

cies) by removing all ‘outlier’ genes, defined as loci that have more than 1.5*IQR (interquartile range) above the 3rd quartile of mean

SNPs. In a ‘superstrict’ routine (297 genes, 317 genera, 356 species), we removed all genes with a mean proportion of SNPs across

the dataset of > 0.02. After noticing large differences in mean SNP proportions among tribes within the mustard family (Methods

S1C), we added the ‘superstrict by tribe’ routine (mean 1,031 genes, with gene selection varying by tribe, 317 genera, 356 species)

in which we assessed and removed mean SNP proportions by tribe, leading to a very sparse sample-gene matrix (Methods S1D).

Finally, we aimed to improve phylogenetic backbone support further by using a ‘superstrict excluding hybrids’ routine (303 genes,

124 genera, 138 species). This dataset was the same as in the ‘superstrict’ routine, but all samples belonging to rogue taxa and/or

having a locus heterozygosity and/or allelic divergence (see next) in the upper 50% of detected values from all samples were

removed. This led to a highly reduced (in terms of both genes and samples/species/genera/tribes) dataset, but with the anticipated

advantage of having removed as much noise from the dataset as possible, while at the same time including enough representatives

from all main lineages.

We used HybPhaser to detect possible hybrids by calculating each sample’s allele divergence (AD; percentage of SNPs across all

genes) and locus heterozygosity (LH; percentage of genes with SNPs), two metrics that are useful in the detection of hybrids.47

Because hybrids are expected to inherit multiple alleles from their different parent species, they are expected to show relatively

high levels of LH and an AD that corresponds to the divergence of the parental lineages. Very high values for AD are expected in

lineages with multiple polyploidizations.47 With time, polyploid lineages are expected to lose duplicated genes leading to a decrease

in LH. Therefore, high AD combined with intermediate LH can indicate that samples are more ancient polyploids. While there is no

universal circumscription of what values correspond to hybrids or other types of polyploids, these values can give a good indication

on the history of hybridisation in samples. Here we broadly distinguish four classes: hybrid (high LH, medium AD), highly polyploid

(high LH and high AD), old polyploid (medium LH, medium AD), and old and highly polyploid (medium LH, high AD).

Nuclear phylogenomics
We applied four different phylogenomic approaches to analyse our nuclear dataset. We used default settings and parameters for all

tools, unless specified.

First, we applied a network approach to visualise possible evolutionary reticulations, inferring a splits graph (based on uncorrected

p-distances) with SplitsTree4 v4.17.1.69 We used a nuclear supermatrix from the 297 gene alignments from the ‘superstrict’ routine

as input.

Second, we used a ML supermatrix approach with IQ-TREE2 v2.1.3101 with again the nuclear supermatrix approach with the 297

genes from the ‘superstrict’ routine (with outgroup sample S1321, Synsepalum afzelii), and separately with a supermatrix of the 303

genes from the ‘superstrict excluding hybrids’ routine (with outgroup sample MYZV, Tropaeolum peregrinum). We used 1,000 ultra-

fast bootstraps117 (saving bootstrap replicates) with a GTR+F+R model. In this first analysis we specifically kept all outgroup

samples needed for fossil calibration, even if these would have been removed based on our sampling routine criteria. Contrary to

our coalescent-based approach (see below), these analyses generated phylogenies in which branch lengths were representative

of evolutionary change (number of mutations), which was needed for the subsequent divergence time estimation. As an input for fos-

sil calibration (see below) we again used a nuclear supermatrix approach with the 297 genes from the ‘superstrict’ routine. We

repeated the IQ-TREE2 analysis with the resultant species tree and all 297 gene trees (see below) to calculate gene (gCF) and

site concordance factors (sCF; parameter –scf 1,000) for all nodes.67

Third, we applied a coalescent-based approach with ASTRAL-III.48 As input, we took the consensus sequences from the four pa-

ralog detection routines in HybPhaser (see above) to infer gene trees that served as input for a coalescent-based analysis. For each of

the routines, we started by running a de-noising loop: sequences were aligned using MAFFT v7.27398 and trimmed using trimAl

v1.2102 with parameters resoverlap 0.75, seqoverlap 0.90, and gt 0.90. Any remaining likely sequencing errors were masked using
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TAPER v1.0.0103 with default parameters. Gene trees were inferred using IQ-TREE2 v2.1.3101 inferring branch support using ultrafast

bootstrapping,117 with other parameters following Baker, et al.114 We used TreeShrink v1.3.9104 with default parameters on the com-

plete set of gene trees to detect and remove outlier branches and update gene trees and alignments. Discordance among gene trees

was scored using all gene trees associated with each routine and calculated using normalised quartet scores for the main topology,

along with first and second alternatives.

Fourth, we applied another coalescent-based approach with ASTRAL-Pro v1.1.6.49 Contrary to ASTRAL-III, this version allows the

input of multiple alleles (including possible paralogs) for each individual, acknowledging that this may actually be informative in spe-

cies tree inference (e.g., no a priori choice of a definitive homologous gene copy needs to be made). Gene trees were now collected

from mapping done by HybPiper using the script ‘paralog_investigator.py’, which saves all possible alleles.89 Genes were again

aligned with MAFFT v7.273 and trimmed using trimAl v1.2 with parameters resoverlap 0.75, seqoverlap 0.90, and gt 0.90, with sub-

sequent gene tree inference with IQ-TREE2 v2.1.3. All phylogenetic trees from the approaches 2–4 were plotted using the R package

ggtree.105

Phylogenetic informativeness
To study any differences in support from different nuclear genes in inferring the nuclear species tree, we calculated Townsend’s

phylogenetic informativeness50 for all genes included in the ‘strict’ routine (Figure S1). First, we calculated relative evolutionary rates

for all sites in each gene’s multiple sequence alignment, constrained on the ML supermatrix approach species tree, using Rate4Site

v3.2.106 Second, we used the R package PhyInformR v1.0107 to calculate phylogenetic informativeness profiles for each gene, mak-

ing a distinction between genes obtained from either the B764 and A353 bait sets, and genes with a mean SNP proportion of <= 0.02

and > 0.02 (i.e., the threshold applied for paralog detection in HybPhaser).

Plastome phylogenetics
To generate a plastome-based phylogeny, coding sequences and sequences encoding tRNAs and rRNAs were extracted using

BEDTools v2.27.1 function ‘getfasta97’. We used a reduced gene set of 60 loci as previously used by Walden et al.2 New sequences

were aligned, together with the corresponding sequences from Walden et al.,2 using MAFFT v7.45.3.98 In a last step, gap columns

were deleted and alignments were concatenated using the script ‘catfasta2phyml.pl’ (https://github.com/nylander/catfasta2phyml).

Phylogenetic reconstruction was performed using IQ-TREE v1.6.12108 with partition information from the alignment, defining the

outgroup, and running 1,000 ultrafast bootstrap replicates.117 A second phylogenetic reconstruction was performed using IQ-TREE

v2.2.0101 to calculate site concordance factors (sCF) as a measure of support for the splits in the tree,67 with the former species tree

topology and gene alignment as input. Note that in the plastome phylogeny, gene concordance factors (gCF) cannot be calculated as

in the nuclear phylogeny, because the 60 plastome genes studied were considered to be a single heritable unit (supermatrix

approach), and consequently separate gene trees (needed to calculate gCF) were not inferred.

Nuclear versus plastome BrassiToL species tree incongruences were visualised using a cophylogeny plot created in R package

phytools.118 Incongruences within tribs were quantified using the classical Robinson-Foulds metric119 and the generalised

Robinson-Fouldsmetric following Smith120 using R package TreeDist.120 Species trees were first pruned to include only species pre-

sent in both trees, and any duplicates were removed (after random selection per species).

Fossil calibration
For both the nuclear and the plastome dataset, we estimated divergence times within the family using the penalized likelihood

approach121 as implemented in treePL v1.0109 and the Turonian fossil Dressiantha bicarpellata, estimated at 93.6–89.3 Ma51 (which

we took as maximum and minimum ages, respectively), as a single calibration point at the stem node of order Brassicales (cf. Couv-

reur et al.20). For the nuclear dataset, we used the topology from the ML supermatrix approach as input species tree, and reran IQ-

TREE using the gene alignments from the 20most clock-like genes only to infer relative branch lengths, acknowledging that inclusion

of too many genes can easily result in an artificial pushback in time of internal nodes. To do so, we first calculated the clock-likeness

of all genes following Vankan et al.,122 who defined clock-likeness as the coefficient of variation of all root-to-tip distances in the gene

tree. When running the priming analysis in treePL, the value for ‘opt’ was set to 2, and ‘optad’ set to 1. The ‘moredetail’ and ‘mor-

edetailad’ options were in effect and ‘optcvad’ was set to 1. Cross validation analysis indicated 10 as the best smoothing value.

We assessed node age estimates by repeating the treePL (using the above optimised settings) analysis for 1,000 bootstrap trees

generated with IQ-TREE, this time fixing the topology of the species tree (but not branch lengths) and summarising with

TreeAnnotator v2.4.7110 to obtain 95% HPD confidence intervals.

For the plastid dataset, when running the priming analysis and later adjustments, the values for ‘opt’ and ‘optad’ were both set to 3.

The ‘moredetail’ and ‘moredetailad’ optionswere in effect and ‘optcvad’ was set to 4. Cross validation analysis indicated 0.000001 as

best smoothing value. Again, we assessed node age estimates by repeating the treePL analysis (using the above optimised settings)

for the 1,000 bootstrap replicates generated in IQ-TREE. Calibrated gene trees were summarised using TreeAnnotator v2.6.7111 to

obtain 95% HPD confidence intervals.

We performedmulti-evidence validation of our new results against four other fossils and five biogeographical dating events as sug-

gested by Franzke et al.52 by comparing expected and recovered node ages (Data S1J).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Support for nodes in phylogenetic trees was calculated using multiple methods (LPP, bootstrap, quartet score, gCF, and sCF), as

detailed under method details.
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