JCU ePrints

This file is part of the following reference:

van Hennekeler, Kirsty (2007) Aspects of the ecology of tabanid flies (Family Tabinidae) in North Queensland and their potential to transmit Trypanosoma evansi. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/4826

ASPECTS OF THE ECOLOGY OF TABANID FLIES (FAMILY: TABANIDAE) IN NORTH QUEENSLAND AND THEIR POTENTIAL TO TRANSMIT TRYPANOSOMA EVANSI

A thesis submitted by Kirsty VAN HENNEKELER BVSc, MTVSc in August 2007

For the degree of Doctor of Philosophy in the discipline of Microbiology and Immunology, School of Veterinary and Biomedical Sciences, James Cook University, Townsville, QLD.

STATEMENT ON ACCESS OF THESIS

I, the undersigned, the author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses Network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

Kirsty van Hennekeler August 2007

STATEMENT OF SOURCES

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references given.

Kirsty van Hennekeler August 2007

STATEMENT ON THE CONTRIBUTION OF OTHERS

Financial support for this project in the form of scholarships was provided by The School of Veterinary and Biomedical Sciences (Gluyas Fellowship), Biosecurity CRC and Graduate Research School (James Cook University Doctoral Completion Award). Project funding was obtained from the AB-CRC. The work was completed under the supervision of Dr Lee Skerratt, A/Prof Lee Fitzpatrick and Prof Rhondda Jones. The AB-CRC project was in collaboration with researchers at Murdoch University, Queensland Health (Brisbane), Department of Agriculture Fisheries and Forestry and School of Tropical Environmental Sciences and Geography, James Cook University.

Statistical support was provided by the School of Maths and Physics, James Cook University, Rhondda Jones and Reinhold Muller (School of Public Health and Tropical Medicine).

I acknowledge the assistance of Glenn Bellis (AQIS, Darwin) and Dave Spratt (CSIRO, Canberra) with tabanid identification and access to the National Insect Collection in Canberra for comparison with their reference specimens.

I acknowledge the assistance of National Parks and Wildlife (Environmental Protection Agency), Queensland Department of Primary Industries and Fisheries and Australian Quarantine and Inspection Agency (Department of Agriculture, Fisheries and Forestry) and the members of the public listed in the acknowledgements for their research assistance with tabanid collections in Cape York Peninsula.

Assistance with use of Geographical Information Systems analysis was provided by the School of Tropical Environmental Science and Geography, with thanks to James Moloney. I also acknowledge the technical assistance of Odwell Muzari with tabanid feeding behaviour and daily activity studies and taking wing length measurements on the Cape York data. I acknowledge the support of Andrew van den Hurk and "Clara" Wai Yuen Cheah at Queensland University for their assistance in training me in blood-meal analysis techniques. Kathleen Buick assisted with proof reading.

Kirsty van Hennekeler August 2007

DECLARATION OF ETHICS

Relevant research reported in this thesis received approval from the James Cook University Ethics Review Committee (approval numbers A991, A1059 and A1060) and National Parks and Wildlife (Scientific Purposes Permit: WISP03550006).

Kirsty van Hennekeler August 2007

ACKNOWLEDGEMENTS

The reason I became involved in this project was that it posed a great challenge: a crossdisciplinary project that was heavily oriented towards being a useful tool for key stakeholders. Being a "big picture" person, the only reason I managed to sustain interest in this PhD was that for me it fulfilled several criteria: it was original, I had a significant role in the process of defining its direction and scope and I would learn new skills and synthesise information in a way that would help me pursue an abiding interest in biosecurity issues. But great ideas cannot reach fruition without a lot of hard work and a good team. I was lucky that some wonderful, kind and knowledgeable people believed in the project and were patient enough to teach me aspects I was largely ignorant of. The inspiration for this project came from Bruce Copeman, who suggested the topic and told me that very little was known about possible tabanid vectors of surra in Australia. He also warned me that it would be difficult- very prophetic! In addition, Simon Reid offered his ideas and expertise during early discussions about which aspects I would explore and would have played a much larger role, except for the tyranny of distance. I am also grateful to Dick Copland for his encouragement and early involvement.

This thesis would not have been possible without the generosity and assistance of a large number of people, who offered all kinds of help ranging from being a shoulder to cry on when things weren't going well, to very hands-on, practical aid. I am very appreciative of all of you.

I would like to gratefully acknowledge the contribution of a number of people who facilitated the collection of tabanid data in remote locations throughout Cape York. Sincere thanks to several organisations including the Environmental Protection Agency, in particular Mark Peacock, Andrew and Lia Hartwig, Lenny Banjo, Carl and Andrea Goetze, Lance and Karin Spain; the Queensland Department of Primary Industries and Fisheries especially Robert Hedlefs, Jason Bode, Scott Templeton and Sara Wales; Northern Australia Quarantine Strategy, especially James Walker, Jackson Sailor, James Bond, James Matthews, Anita Barz, Lucy Picco, Bruce Lansdowne; and a number of the general public who were willing to be involved, despite the long-term commitment and low pay (well, no pay) including Mark and Isla Upham, Bill Rutherford, Judy Irwin, Jenny and Greg Ford, John Hardacre, Peter and Dee Friel and John Pritchard.

Chris Coleman played a very significant role in designing the trap shelter, which needed to be strong enough to withstand cyclones and light enough to be transported by light plane to these remote locations. The end result surpassed expectations, and was a tribute to Chris' ingenuity. Chris was also extremely helpful with other logistical support throughout the project- thanks Chris.

Tabanid identification is quite difficult and as I discovered, there are few people in Australia who have the skills to do it. I am indebted to Glenn Bellis, Bill Doherty and Dave Spratt for much assistance with tabanid identifications. Also, many thanks to Odwell Muzari for his technical assistance. Much to my frustration, the blood-meal analysis work could not be completed in time to be part of this thesis, but nevertheless, I thank Andrew van den Hurk and "Clara" Wai Yuen Cheah for their help with learning some analysis techniques. Thanks also to Kathleen Buick for editorial assistance. Many thanks to Reinhold Muller, who conducted the CART analysis in Chapter Ten. James Moloney (TESAG) has been a wonderful teacher of all things GIS- many thanks to you James, I still owe you a few beers. Many thanks also to the staff at the Graduate Research School, especially Helene Marsh, for their kindness and support.

I also need to acknowledge the great support and camaraderie from the staff and fellow post-grads at Vet and Biomedical Sciences. I feel very fortunate to have gotten to know so many incredible, witty, lovely people and I will remember the often tangential morning tea and lunch-time conversations with great fondness and a few giggles.

I am very grateful for the financial support I received in the form of scholarships from the Gluyas Fellowship (School of Veterinary and Biomedical Sciences), Australian Biosecurity CRC and the Graduate Research School. In addition, I thank the AB-CRC for project funding. Thanks also to our project collaborators, including Robert Dobson and Simon Reid.

Many thanks to my supervisors: Lee Fitzpatrick, who safely flew us both around the Cape on many occasions in somewhat stressful circumstances and for supporting the project (and me) throughout its travails; Lee Skerratt for advice and editorial assistance; and of course, to Rhondda Jones- my mentor, stats guru and personal motivator. Rhondda, you have been so much more than a supervisor- your enthusiasm, intelligence, warmth, humour, perseverance and caring have made all the difference to my being able to complete this project. Words don't do justice to the influence you have had on my life, during the most difficult times I have ever experienced.

I am blessed with a number of wonderful friends who have been there for me, through thick and thin, who have listened, counselled, commiserated and celebrated with me. People who deserve special mention are Deon Barritt, Marg Ludlow, Nime Kapo, Tony Croke, Elsa Germain, Kim Nagle, Jane Day, Andrew Wright, Lisa Elliot, Ray Layton, Ruth Campbell, Donna Martin, Pam Megaw, Phil Summers, Leigh Owens, Ketheesan, Andrew Greenhill, Marshall Feterl, Rhonda Chesser and the Aquapella gang. I'm sure there are people I've forgotten to mention, so to all of you, thankyou from the bottom of my heart.

And of course, very special thanks to my wonderful family for all their love and support. Without you, so many things would not have been possible. To my Mum and Dadthankyou for always believing in me, for never giving up, for all the financial and emotional support you have given me over the years. To my brother Erik, his partner Kate and my niece Ella- thankyou for being such awesome people, for being there for me throughout it all and for caring so much. To Yvette and Nikolaas also, thanks and much love to you both. Lastly, I'd like to dedicate this thesis to my brother Dirk, who passed away tragically on the 19th March 2007 after a titanic battle with severe depression. Dirk- you are one of the most amazing, talented, loving, giving people I've ever met and I'm grateful that you were part of my life for 35 years. There isn't a day that goes by that I don't think of you and wish you were healthy, happy and here sharing this life with us. But I still feel your presence around and I'm glad you are finally at peace. Love always.

ABSTRACT

Surra, the disease caused by the protozoal parasite, *Trypanosoma evansi*, is characterised by weight loss, anaemia, dependent oedema and death in susceptible animals. It affects all mammalian species tested, and is known to cause acute disease with high mortalities in wallabies and kangaroos (Reid *et al.*, 2001). There is no evidence of presence of *T. evansi* in Australia, however it is considered a high biosecurity risk as it has the potential to cause significant economic loss due to livestock death and weight loss, as well as a possibly devastating effect on native wildlife (Reid, 2002; AFFA, 2003).

Tabanid flies (also called march flies or horse flies), especially the genus *Tabanus*, are considered the primary vectors of surra (Nieshulz, reviewed by Krinsky 1979). The distribution, abundance and population dynamics of insect vectors all influence the risk of *T. evansi* transmission. The risk of incursion is considered to be greatest in the northern-most parts of Queensland, Australia (Reid, 2002; Thompson *et al.*, 2003a). Disease surveillance is expensive and logistically difficult in this region due to the low population density and remote location. Little historical information was available on the ecology of tabanid flies in Australia, so the main aim of this study was to seek ecological data on tabanids that would promote understanding of the times and places that tabanid abundance occurred in northern Australian region and used in the production of risk maps for surra in Australia.

In this study, data on tabanid flies was collected in north Queensland over 21 months, and the weather and other environmental factors that were significantly related to their abundance was determined. This information was then applied to a GIS and the annual and spatial abundance of likely vector species was mapped. These maps will be used in conjunction with additional data on host animal density and distribution and disease spread between animals to provide risk maps that will help focus disease surveillance activities in areas of highest risk.

The yearly abundance of *Tabanus spp*. was greatest in the most northern part of Cape York Peninsula, and was related to average annual minimum temperature and solar radiation values. This area of northern Queensland corresponds to a high geographical risk of surra incursion associated with the proximity to West Irian (Indonesia) and Papua New Guinea, which is thought to be the likely route of entry for surra into Australia. In addition, species of *Tabanus* are present for an average of 11 months of the year in this region, as a result of a wide variety of species present in this area, including the presence of *T. ceylonicus*, which is active during the dry season. This indicates that there is a confluence of risk factors in the most northern part of Cape York, which increases the risk of incursion and establishment of surra in this region.

Other aspects of tabanid behaviour and ecology were also studied. It was established that the Nzi trap was the most efficient means of trapping tabanids in Australia, and that attractants greatly improved capture rates. Also the times of greatest daily activity, and activity between days, differed among various tabanid species and this was related to variation in response to meteorological variables.

This study has established relationships among tabanid numbers and weather and environmental factors. This has elucidated the annual temporal and spatial abundance patterns of tabanids in the north Queensland region. This information will provide the basis for further studies that further establish the links between vector intensity and disease incidence in surra endemic countries, which will in turn allow a greater understanding of the epidemiology of this disease.

TABLE OF CONTENTS

STATE	MENT ON ACCESS OF THESIS	ii
STATE	MENT OF SOURCES	ii
STATE	MENT ON THE CONTRIBUTION OF OTHERS	iii
DECLA	RATION OF ETHICS	iii
ACKNO	OWLEDGEMENTS	iv
ABSTR	ACT	vii
LIST O	F TABLES	xvii
LIST O	F FIGURES	xix
COMM	ONLY USED ABBREVIATIONS	xxiii
СНАРТ	ER ONE	1
GENER	AL INTRODUCTION	1
1.1	Background	1
1.2	The purpose of the study	2
1.3	The study	3
СНАРТ	ER TWO	6
AUSTR	ALIAN TABANIDS AS POTENTIAL VECTORS OF SURRA:	6
AN OV	ERVIEW OF THE SCENARIO	6
2.1	Introduction	6
2.2	Surra: The Disease	8
2.2.1	Clinical signs	8
2.2.2	Vectors of Surra	9
2.3	Surra: Biosecurity threat to Australia	11
2.3.1	Current world distribution of T. evansi	12
2.3.2	Potential route of entry into Australia	14
2.4	General Overview of Tabanidae of Australia	17
2.4.1	Classification of Tabanidae	17
2.5	Biology of Tabanids	
2.5.1	Life cycle of Tabanidae	18
2.5.2	Morphology of tabanids	19
2.5.3	Adult mating and feeding	20

2.5.4	Adult dispersal		22
2.5.5	Seasonal Distri	bution	22
2.6	Evaluating the	Risk Australian Tabanids Pose to T. evansi Transmission	24
2.6.1	Mechanical tran	nsmission	25
	2.6.1.1	Role of tabanids as vectors of disease	25
	2.6.1.2	Specific aspects of mechanical transmission	25
	2.6.1.3	Vector feeding behaviour	27
	2.6.1.4	Factors influencing transmission probability	27
2.6.2	Epidemiology of	of vector-borne disease	32
	2.6.2.1	Vectorial capacity	32
	2.6.2.2	Host preference and host-feeding patterns	35
	2.6.2.3	Vector incrimination and vector competence	36
	2.6.2.4	Density of vectors in relation to density of hosts	37
2.7	Surveillance for	r Arthropod-borne Diseases	37
2.8	Conclusion		40
CHAPTI	ER THREE		41
TRAP A	ND ATTRACTA	ANT COMPARISON	41
3.1	Introduction		41
3.2	Materials and M	Aethods	44
3.2.1	Traps		44
3.2.2	Attractants		46
3.2.3	Study site		46
3.2.4	Study design.		48
3.2.5	Statistical analy	/sis	50
3.3	Results		51
3.3.1	Trap and attract	tant efficiency	51
	3.3.1.1	Effects of trap type on capture rates	52
	3.3.1.2	Effects of attractant treatment on capture rates	53
3.3.2	Effects of trap t	type and attractant on the species richness of the catch	55
3.3.3	Site and week e	effects	57
	3.3.3.1	Fluctuations in trap catch over time	57

	3.3.3.2	Effect of local vegetation on trap site	58
3.4 1	Discussion		59
CHAPTI	ER FOUR		64
DAILY	ACTIVITY PAT	TERNS OF TABANIDS IN TOWNSVILLE	64
4.1	Introduction		64
4.2	Materials and M	lethods	67
4.2.1	Traps		67
4.2.2	Attractants		67
4.2.3	Study sites		67
4.2.4	Study design		68
4.2.5	Wing length me	asurements	68
4.2.6	Ovarian dissect	on	68
4.2.7	Weather data		70
4.2.8	Statistical analy	sis	70
4.3	Results		71
4.3.1	Species variatio	n in overall patterns of daily activity	72
4.3.2	Species variatio	n in daily activity patterns between days	74
	4.3.2.1	Tabanus townsvilli activity pattern variation among days	s74
	4.3.2.2	Tabanus pallipennis activity pattern variation among da	ys.75
	4.3.2.3	Pseudotabanus silvester activity pattern variation among	3
days			76
4.3.3	Variation in dai	ly activity patterns with catch size	78
	4.3.3.1 V	ariation in daily activity patterns with T. townsvilli catch s	ize78
4.3.4	Variation in size	e	80
4.3.5	Ovarian status		83
4.3.6	Effect of weather	er variables on total daily catch	85
	4.3.6.1	Tabanus pallipennis	87
	4.3.6.2	Tabanus townsvilli	88
	4.3.6.3	Pseudotabanus silvester	90
4.3.7	Weather variable	es and activity during each collection period	91
	4.3.7.1	Tabanus pallipennis	91

	4.3.7.2	Tabanus townsvilli	92
	4.3.7.3	Pseudotabanus silvester	96
4.4	Discussion		97
CHAPTE	ER FIVE		105
TABANI	D FEEDING BE	EHAVIOUR IN TOWNSVILLE	105
5.1	Introduction		105
5.2	Materials and M	1ethods	109
5.2.1	Study design		109
5.2.2	Observations re	corded	111
5.3	Results		112
5.3.1	Overall results .		112
		5.3.1.1 Feeding and landing times for tabanid species	113
		5.3.1.2 Feeding and landing times on different host spe	cies
			114
		5.3.1.3 Preferred landing position by host	115
		5.3.1.4 Preferred landing position by tabanid species	116
5.3.2	Notes on feedin	g behaviour on different host species	117
	5.3.2.1	Pig	117
	5.3.2.2	Sheep	118
	5.3.2.3	Heifer	118
	5.3.2.4	Wallaby	118
5.4	Discussion		120
CHAPTE	ER SIX		123
SEASON	AL AND SPAT	TAL VARIATION IN TABANIDS IN CAPE YORK AN	٧D
TOWNS	VILLE		123
6.1	Introduction		123
6.2	Materials and M	1ethods	127
6.2.1	Sample sites		127
6.2.2	Traps		127
6.2.3	Tabanid species	dentification	128
6.2.4	Analysis of long	g-term weather and species richness and abundance	128

6.2.5	Ultra-violet radiation transmission through Laserlite® roofing	128
6.3	Results	131
6.3.1	Abundance and species richness over time	131
6.3.2	Abundance and species richness by site	132
6.3.3	Species partitioning	136
6.3.4	Abundance and species richness: correlation with long-term weather	138
6.3.5	UV radiation transmission through Laserlite® roofing	138
CHAPTI	ER SEVEN	143
VARIAT	TIONS IN TABANID BODY SIZE AMONG SITE AND FLIGHT SEA	SON
		143
7.1	Introduction	143
7.2	Materials and Methods	146
7.2.1	Statistical methods	146
7.3	Results	147
7.3.1	Tabanus spp. body size variation among sites	147
7.3.2	Tabanus spp. body size variation among flight seasons	147
7.4	Discussion	155
PHENO	LOGY OF TABANUS IN CAPE YORK PENINSULA AND TOWNSVI	LLE
		157
8.1	Introduction	157
8.2	Materials and Methods	159
8.2.1	Trapping method and experimental design	159
8.2.2	Graphing methods	159
8.3	Results	160
8.3.1	Species composition of <i>Tabanus</i> at each site	161
8.3.2	Dominant species at each site	162
8.3.3	Species succession at each site	165
	8.3.3.1 Species succession at Bamaga	165
	8.3.3.2 Species succession at Coen	166
8.3.4	Species phenology - comparison of sites and years	167
	8.3.4.1 Tabanus notatus	167

	8.3.4.2	Tabanus ceylonicus	169
	8.3.4.3	Tabanus strangmannii	170
	8.3.4.4	Tabanus dorsobimaculatus	171
	8.3.4.5	Tabanus pallipennis	171
	8.3.4.6	Tabanus innotabilis	172
8.4	Discussion		
CHAP	FER NINE		177
ANNU	AL TABANID AI	BUNDANCE AND GIS MAPPING	177
9.1	Introduction		177
9.1.1	GIS application	s to vector-borne disease epidemiology	177
9.1.2	Use of environ	nental proxies	179
9.1.3	Disease modell	ing: Statistical versus biological models	180
	9.1.3.1	Statistical approach	
	9.1.3.2	Biological approach	
9.1.4	Future uses for	GIS in epidemiology	
9.2	Materials and M	Aethods	184
9.2.1	Tabanid data		
9.2.2	Meteorological	and remotely sensed data	184
	9.2.2.1	NDVI values	185
	9.2.2.2	Generating nine-monthly average grids for NDVI	185
	9.2.2.3	Explanation of weather variables	186
	9.2.2.4	Long-term weather data and GIS mapping of species	
	ric	hness	187
	9.2.3 Statistical an	nalysis	187
	9.2.4 GIS mappin	g	187
9.3	Results		189
	9.3.1 GIS mappin	g of total species richness	189
	9.3.2 Effects of w	eather on total annual abundance of tabanids	191
	9.3.3 Plots of line	ar regression equations	
	9.3.3.1	Plots of linear regression of <i>Tabanus</i>	193
	9.3.3.2	Plot of linear regression of <i>T. notatus</i>	194

	9.3.4 GIS maps of	annual and spatial abundance patterns	195
	9.3.4.1	Tabanus annual abundance GIS maps	195
	9.3.4.2	Tabanus innotabilis annual abundance GIS maps	196
	9.3.4.3	Tabanus notatus annual abundance GIS maps	197
	2.3.4.4	Tabanus strangmannii annual abundance GIS maps	198
	2.3.4.5	Tabanus ceylonicus annual abundance GIS maps	199
	2.3.4.6	Tabanus pallipennis annual abundance GIS maps	200
9.4	Discussion		201
CHAF	TER TEN		203
CLAS	SIFICATION AND	REGRESSION TREE ANALYSIS: ENVIRONMENT	AL
AND	SPATIAL ASSOCI	ATIONS WITH TABANUS PREVALENCE	203
10.1	Introduction		203
10.2	Materials and M	lethods	205
10.3	Results		206
10.4	Discussion		218
CHAF	TER ELEVEN		220
GENE	ERAL DISCUSSION	۸	220
11.1	Overall patterns	of variation in tabanid activity	220
11.2	Components of	the study	221
	11.2.1 Me	easuring activity via trapping	221
	11.2.2 Te	mporal variation: daily and three-hourly variation in tab	anid
	activity		222
	11.2.3 Sp	patial and temporal variation tabanid activity across Nor	th
	Queensla	nd	224
	11.2.4 Va	ariation in tabanid size	225
11.3	Variation in the	risk of disease transmission	226
11.4	Limitations of the	study	227
11.5	Future direction	s	227
REFE	RENCES		231
APPE	NDIX ONE: SPECI	ES CAUGHT IN TRAP AND ATTRACTANT	
COM	PARISON STUDY		238

APPENDIX TWO: DAILY ACTIVITY STUDY ANALYSES	239
APPENDIX THREE: FEEDING BEHAVIOUR STUDY ANALYSES	246
APPENDIX FOUR: SEASONAL AND SPATIAL VARIATION ANALYSES	249
APPENDIX FIVE: TABANUS PHENOLOGY ANALYSES	251
APPENDIX SEVEN: VARIATION IN TABANID BODY SIZE AMONG SITES .	AND
FLIGHT SEASON ANALYSES	262
APPENDIX SIX: ANNUAL ABUNDANCE AND GIS PREDICTIVE MAPPING	
ANALYSES	257
APPENDIX EIGHT: CART ANALYSES	278

LIST OF TABLES

Table 3.01: Sequence of attractant rotations at each site 50
Table 3.02: Average capture rates of the two trap types per four day trapping period for
each of the most common species trapped
Table 3.03: Average capture rates of each of the 11 most common species for each
attractant treatment (standard deviations in brackets)
Table 4.01: Mean wing lengths (mm) per collection period (+/- S.D.)80
Table 4.02: Ovarian status of P. silvester in each collection period
Table 4.03: Correlation coefficients between log (catch+1) of each of the three common
species: T. pallipennis, T. townsvilli, and P. silvester
Table 4.04: Meteorological variables affecting the total daily catch
Table 4.05: Weather variables and activity during collection periods indicating factor,
direction and significance91
Table 5.01: Summary of tabanid feeding behaviour studies
Table 5.02: Descriptive statistics of feeding times (s) for different tabanid species114
Table 5.03: Descriptive statistics of landing times (s) for different tabanid species114
Table 5.04: Feeding times by host species (all tabanid species combined) (seconds)115
Table 5.05: Landing times by host species (all tabanid species combined) (seconds)115
Table 5.06: Preferred landing positions by host
Table 5.07: Preferred landing position by tabanid species 116
Table 5.08: Reasons for tabanids leaving (landed but did not feed)117
Table 6.01: Co-ordinates of trapping sites 127
Table 6.02: Complete list of species and total numbers of each caught
Table 6.03: Total number of non-Tabanus species caught at each site
Table 6.04: Total number of <i>Tabanus</i> species caught at each site
Table 6.05: Correlations between total abundance and species richness of tabanids (at
each trap site) with long-term averages of weather data
Table 8.01: Dominant species at each site. 164
Table 9.01: Prediction equations of annual abundance obtained from linear regression

Table 9.02: Explanation of abbreviations	192
Table 10.01: Dichotomous associations for individual species.	

LIST OF FIGURES

Figure 2.01: Map indicating world-wide surra cases for period July-December (And	on.,
2006)	13
Figure 2.02: Map indicating surra cases in Australasian region for period July-Dece	ember
2005 (Anon., 2006)	15
Figure 2.03: Torres Strait quarantine zones (Anon., 2007b)	16
Figure 2.04: T. townsvilli indicating characteristic wing venation (Photo O. Muzari)20
Figure 2.05: Seasonal distribution of Tabanus spp. north and south of the Tropic of	2
Capricorn (Mackerras, 1970)	23
Figure 2.06: Distribution of the genus <i>Tabanus</i> in Australia	24
Figure 3.01: Photo of Nzi trap	45
Figure 3.02: Photo of canopy trap	45
Figure 3.03: Layout of traps in relation to prevailing wind (not drawn to scale)	48
Figure 3.04: Total Tabanidae capture rates for each trap and attractant combination	per
4-day trapping period.	52
Figure 3.05: Total species richness for each trap and attractant combination	55
Figure 3.06: Total number of species caught with each trap and attractant combinat	tion
per four-day trapping period.	56
Figure 3.07: Fluctuations in numbers of total Tabanidae and Tabanus spp. collected	d over
the course of the study	58
Figure 4.01: T. pallipennis -visible developing eggs	69
Figure 4.02: T. pallipennis -no visible developing eggs	69
Figure 4.03: Total number of each species collected	71
Figure 4.04: Overall activity patterns of the four most numerous species as a percent	ntage
of the total species catch.	73
Figure 4.05: Samples of days on which the activity of <i>T. townsvilli</i> in different college	ection
periods varied	75
Figure 4.06: Samples of days on which the activity of <i>T. pallipennis</i> in different	
collection periods varied.	76

Figure 4.07: Samples of days on which the activity of <i>P. silvester</i> in different collection
periods varied77
Figure 4.08: Differences in daily activity patterns of <i>T. townsvilli</i> with different catch
sizes
Figure 4.09: Mean wing lengths (and standard deviations) of the five most numerous
species
Figure 4.10: Variation in daily mean wing length (mm) over time
Figure 4.11: Species differences in percentage with visible developing eggs
Figure 4.12: Fluctuations in daily catch (number of tabanids) over time
Figure 4.13: Effect of temperature on <i>T. pallipennis</i> daily catch87
Figure 4.14: Relationship of wind speed and relative humidity with <i>T. townsvilli</i> catch at
each site
Figure 4.15: Effects of barometric pressure on <i>P. silvester</i> catch at high and low
humidities
Figure 4.16: Effects of temperature on <i>T. pallipennis</i> catch rates in different collection
periods
Figure 4.17: Effects of humidity on <i>T. townsvilli</i> catch rates at different temperatures and
collection periods
Figure 4.18: Effects of wind speed on <i>T. townsvilli</i> catch rates during different collection
periods
Figure 4.19: Effects of barometric pressure on <i>P. silvester</i> catch rates at different levels
of relative humidity and in different collection periods
Figure 5.01: Heifer in screened pen
Figure 5.02: Releasing tabanids into mesh crate, covered with mosquito net110
Figure 5.03: Areas on cattle for landing/feeding data recording
Figure 6.01: Map showing trap sites and rainfall zones
Figure 6.02: Trap with Laserlite® roof at Lakefield National Park
Figure 6.03: Total abundance over time (all sites combined) for <i>Tabanus</i> and non-
<i>Tabanus</i> species of tabanid
Figure 6.04: Species richness over time (all sites combined) for <i>Tabanus</i> and non-
<i>Tabanus</i> species of tabanid132

Figure 6.05: Total abundance by site (all collection data combined) for Tabanus and	d
non-Tabanus species of tabanid.	133
Figure 6.06: Species richness by site (all collection data combined) for Tabanus and	b
non-Tabanus species of tabanid.	133
Figure 6.07: Abundance of six most numerous Tabanus species over time (all sites	
combined)	137
Figure 6.08: Abundance of the six most numerous non-Tabanus species over time (all
sites combined)	137
Figure 7.01: Scatter plots of wing lengths (mm) between sites for <i>T. pallipennis</i> ,	
T. notatus, T. strangmannii, T. dorsobimaculatus and T. innotabilis (sites are in ord	er of
decreasing average annual rainfall)	149
Figure 7.02: Scatter plots of wing lengths (mm) of Tabanus spp. among flight	
seasons	150
Figure 7.03: Scatter plots of wing lengths (mm) of non- Tabanus spp. among sites.	152
Figure 7.04: Scatter plots of body size differences among flight seasons for non-Tak	banus
<i>spp</i>	154
Figure 8.01: Months of the year during which <i>Tabanus</i> was captured at each of the	
collection sites (mean catch per day in each month for both years of the study)	160
Figure 8.02: Species composition of six most numerous Tabanus species at each sit	e.162
Figure 8.03: Species succession at Bamaga	166
Figure 8.04: Species succession at Coen	166
Figure 8.05: Activity of <i>T. notatus</i> at different sites	169
Figure 8.06: Activity of <i>T. ceylonicus</i> at different sites	170
Figure 8.07: Months of the year T. pallipennis was present at different sites (mean of	catch
per day in each month for both years of the study)	172
Figure 9.01: GIS map of predicted species richness in northern Queensland	190
Figure 9.02: Plots of the relationship between Tabanus abundance and average sola	ır
radiation and average minimum temperature	193
Figure 9.03: Plot of relationship between T. notatus abundance and average radiation	on
Figure 9.04: GIS maps of <i>Tabanus</i> annual abundance	195
Figure 9.05: GIS maps of <i>T. innotabilis</i> annual abundance	196

Figure 9.06: GIS maps of T. notatus	197
Figure 9.07: GIS maps of T. strangmannii	198
Figure 9.08: GIS maps of <i>T. ceylonicus</i>	199
Figure 9.09: GIS maps of <i>T. pallipennis</i>	200
Figure 10.01: CART analysis for <i>Tabanus</i>	208
Figure 10.02: Boxplots of vapour pressure during calendar months of the study, for	or sites
north of Weipa (reference line at 22.6 hPa)	209
Figure 10.03: Boxplots of vapour pressure during calendar months of the study, for	or sites
south of Mapoon (reference line at 29.9 hPa)	210
Figure 10.04: CART analysis for <i>T. ceylonicus</i>	211
Figure 10.05: CART analysis for T. dorsobimaculatus	212
Figure 10.06: CART analysis for <i>T. innotabilis</i>	214
Figure 10.07: CART analysis for <i>T. notatus</i>	215
Figure 10.08: CART analysis for <i>T. pallipennis</i>	216
Figure 10.09: CART analysis for T. strangmannii	217

COMMONLY USED ABBREVIATIONS

AGID	Agar Gel Immuno-diffusion Assay
ANOVA	Analysis of Variance
AQIS	Australian Quarantine and Inspection Service
AVHRR	Advanced Very High Resolution Radiometer
BOM	Bureau of Meteorology
CART	Classification and Regression Tree Analysis
CCD	Cold Cloud Duration
CO_2	Carbon Dioxide
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DAFF	Department of Agriculture Fisheries and Forestry
ELISA	Enzyme-Linked Immuno-Sorbent Assay
EIAV	Equine Infectious Anaemia Virus
EPA	Environmental Protection Agency
GIS	Geographic Information Systems
JCU	James Cook University
LST	Land Surface Temperature
NAQS	Northern Australian Quarantine Strategy
NASA	National Aeronautics and Space Administration (USA)
NDVI	Normalised Difference Vegetation Index
NOAA	National Oceanic and Atmospheric Agency
Meteosat	Meteorological Satellite
OIE	Office International des Epizooties
PCR	Polymerase Chain Reaction
S	Seconds