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Deep-sea lineages are generally thought to arise from shallow-water ances-
tors, but this hypothesis is based on a relatively small number of
taxonomic groups. Anthozoans, which include corals and sea anemones,
are significant contributors to the faunal diversity of the deep sea, but the
timing and mechanisms of their invasion into this biome remain elusive.
Here, we reconstruct a fully resolved, time-calibrated phylogeny of 83
species in the order Antipatharia (black coral) to investigate their bathy-
metric evolutionary history. Our reconstruction indicates that extant black
coral lineages first diversified in continental slope depths (∼250–3000 m)
during the early Silurian (∼437 millions of years ago (Ma)) and subsequently
radiated into, and diversified within, both continental shelf (less than 250 m)
and abyssal (greater than 3000 m) habitats. Ancestral state reconstruction
analysis suggests that the appearance of morphological features that
enhanced the ability of black corals to acquire nutrients coincided with
their invasion of novel depths. Our findings have important conservation
implications for anthozoan lineages, as the loss of ‘source’ slope lineages
could threaten millions of years of evolutionary history and confound
future invasion events, thereby warranting protection.
1. Introduction
Determining how lineages invade novel habitats is fundamental to understand-
ing the evolutionary processes underpinning global patterns of biodiversity.
Colonization of novel habitats across deep time has led to high species diversity,
the radiation of groups across wide bathymetric ranges and evolutionary suc-
cess of lineages across the tree of life [1,2]. However, there is a lack of
knowledge surrounding the mechanisms that facilitate lineage expansion into
novel habitats, such as the evolutionary adaptations that precipitate invasion
and how frequently these events occur, or the ancestral origins of these lineages
[1,3,4]. These knowledge gaps are especially pronounced for groups with lim-
ited fossil records and lineages that occur across a wide range of biomes,
such as shallow waters to the deep sea [5,6].
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The deep sea was once thought to be devoid of life due to
high pressure, near freezing temperatures and perpetual
darkness – articulated by Edward Forbes’ Azoic hypothesis
[7]. However, the Challenger expedition of 1872 to 1876 col-
lected a diverse fauna from the shallows down to depths of
greater than 10 km in the Mariana Trench [8]. Since then,
different mechanisms have been proposed to explain the
origin and evolution of deep-sea biodiversity. For example,
the onshore-to-offshore hypothesis suggests that disturbances
including waves and storms at shelf depths (0–250 m) creates
habitats that are challenging for species to inhabit, which
results in diversification of species to occupy these habitats
[9,10]. Compared with the shelf, the slope (250–3000 m) is
exposed to fewer environmental perturbations, with little-
to-no effect from waves and storms [11]. However, the slope
is generally regarded as exhibiting greater topographic com-
plexity (e.g. canyons, ridges and seamounts) and strong
gradients in environmental conditions along depth gradients,
which the depth-differentiation hypothesis suggests creates
opportunities for species to evolve and occupy these diverse
habitats [12,13].

The increased frequency of disturbances on the shelf and
topographical complexity and strong environmental gradi-
ents with depth on the slope are both thought to drive
divergence and phenotypic novelties (i.e. traits that are not
present in ancestral species) that have facilitated adaptive
radiations across a wide range of taxonomic groups [14–16].
Increasing taxonomic diversity, which is accompanied by an
increase in the diversity of ecological traits, leads to incremen-
tal success forming deeper-occurring populations and species
(the depth-differentiation hypothesis) [9,17–20]. The source-
sink hypothesis describes how bathyal source lineages
invade the abyss in a sink capacity, formed and regulated
by a balance between immigration from the slope and extinc-
tion in the abyss via Allee effects [21]. Available nutrients and
hard substrate generally decrease with depth, necessitating
morphological adaptations and/or strategies to facilitate
species persistence in challenging deep-sea habitats [22–24].
Diversification in the abyss is possible, demonstrated through
discoveries of relict species at these depths [22–24]; however,
catastrophic anoxic events in the abyss through deep time
[25,26] have caused extinctions of abyssal species, leading
to modern abyssal species representing younger lineages
than their shallow-water counterparts [27].

Anthozoans (sea anemones and corals) have a long evol-
utionary history spanning the entire Phanerozoic and have
colonized every marine habitat from the shelf to the abyss
[28,29], and therefore provide an ideal model taxon to under-
stand evolutionary invasion and persistence in novel habitats.
Black corals (Hexacorallia: Antipatharia) are an anthozoan
lineage with origins that can be traced back over 300 Ma
[29] and occur across a wide range of habitats from the tropics
to the poles and from surface waters to depths over 8000 m
[30,31]. They are ecologically important because they provide
habitat for many other species; for example, 2554 invert-
ebrates were found living on a single black coral colony
[32]. Black corals are also threatened in the deep sea via dred-
ging, bottom trawling and extractive activities [33,34], and
due to their slow growth rates, recovery from disturbances
can take considerable time [35].

Despite their ecological and evolutionary importance,
knowledge gaps remain regarding the evolutionary history
of the group. Filling these knowledge gaps can lead to
identification of the processes that drive bathymetric evol-
ution of corals through deep time. Here, we determine the
direction of evolutionary invasion into new depths and
examine the evolutionary mechanisms that drove the diversi-
fication of black corals through deep time. We reconstruct a
time-calibrated phylogeny based on target-capture enrich-
ment of 2380 conserved loci (ultraconserved elements and
exonic loci) [36] from 92 taxa (including outgroups: electronic
supplementary material, table S1) and use a Dispersal-Extinc-
tion-Cladogenesis (DEC) model to estimate ancestral depth
ranges to date the origin and trace the bathymetric evolution
of black coral lineages.
2. Methods
(a) Sample collection
Eighty-three black corals (ranging in depths from 14 to 4744 m, in
all oceans from latitudes 57° N to 68° S) representing all seven
families and 30 out of 45 accepted genera were chosen for this
study because they occur at shelf (less than 250 m), slope (250–
3000 m) and/or abyssal (greater than 3000 m) depths. Nine out-
groups were also included, representing orders Actiniaria,
Zoantharia, Scleractinia and Corallimorpharia, for time calibration
purposes and to root the phylogeny. Seven of the 83 specimens
included were published in Quattrini et al. [29], 24 from Horowitz
et al. [37] and building upon these studies, we include targeted
capture data for 52 new black coral specimens (electronic sup-
plementary material, table S1). Specimens were collected by
SCUBA, trawl, or via remotely operated vehicle and deposited
in museums around the world. Specimen metadata are detailed
in electronic supplementary material, table S1.

(b) DNA extraction, library preparation and targeted
enrichment

DNA was extracted using a Qiagen Puregene Tissue Kit follow-
ing the DNA Purification from Tissue protocol. PCR inhibitors
were removed from DNA using a Qiagen DNeasy PowerClean
Clean Up Kit. A Qubit 2.0 fluorometer was used to measure
the initial concentration of each extracted DNA sample and
then the DNA was precipitated out, dried down and sent to
Arbor Biosciences (Ann Arbor, MI) for library preparation,
hybrid enrichment and sequencing, following details in Quattrini
et al. [38]. The targeted enrichment of ultraconserved elements
(UCE) and exonic loci was carried out using the hexacoral-v2
probe design, which includes 25 514 baits targeting 2499 loci
[36]. Bioinformatic post-sequencing analyses were conducted fol-
lowing the Phyluce online documentation (https://phyluce.
readthedocs.io/en/latest/tutorial-one.html), including raw read
trim and matching of loci to UCE and exon probes. SPAdes
v3.12.0 was used outside of the phyluce pipeline to assemble
trimmed raw reads using the main executable script spades.py
and a coverage cutoff of 2. Individually aligned UCE/exon loci
were filtered to include only those that were present in at least
50% of the samples. All code used in this study are detailed in
electronic supplementary material, Dataset S1.

(c) Phylogenomic reconstruction and time calibration
IQtree v1.7 [39] with 1000 ultrafast bootstrap replicates was used
to create a maximum-likelihood phylogeny. ModelFinder [40]
was used to determine the best model scheme for each UCE/
exon partition to infer the evolutionary relationships within the
order Antipatharia. IQtree was also used to reconstruct 1063
individual bootstrap trees, one for each locus post-filtering 50%
taxon occupancy, and a consensus tree. Newick utilities v1.6

https://phyluce.readthedocs.io/en/latest/tutorial-one.html
https://phyluce.readthedocs.io/en/latest/tutorial-one.html
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[41] was used to remove low support branches (less than 30%
bootstrap support), following the Astral III [42] online tutorial
(https://github.com/smirarab/ASTRAL/blob/master/astral-
tutorial-template.md). TreeShrink was used to remove outlier
long branches from individual gene trees and correspond-
ing gene alignments, following the online documentation
(https://github.com/uym2/TreeShrink) [43]. IQtree was
again used to reconstruct individual bootstrap trees from the
cleaned alignments produced by TreeShrink, and then
ASTRAL-III, a multi-species coalescent method, was used to
estimate the resulting species tree [42] from the individual
gene trees.

SortaDate [44] was used to identify the 25 most ‘clock-like’
loci (i.e. loci with properties of moderate length trees) from the
set of 1042 loci, which were used for this analysis, as per Oliveros
[45]. The maximum-likelihood phylogeny was used as a starting
tree for time-calibration using BEAST v. 2.6.3 with four secondary
calibration points selected from Quattrini et al. [29]; Zoantharia
crown node (436 Ma, 95% highest posterior density (HPD)
336–531), Actiniaria crown node (513 Ma, 95% HPD 424–608),
Scleractinia crown node (386 Ma, 95% HPD 324–447), the black
coral crown node excluding the Leiopathidae (321 Ma, 95%
HPD 249–407) and the root of the phylogeny Zoantharia +
Actiniaria (642 Ma, 95% HPD 542–746) with normal distribution
priors matching these HPDs. A relaxed clock model was used
with a lognormal distribution on the ucld mean and uniform dis-
tribution on the ucld.stdev (initial 0.1, 0–1 bounds), as per
Quattrini et al. [29]. A guide tree was used to ensure non-black
coral nodes were congruent with studies that reconstructed
time-calibrated phylogenies inferred from fossil calibrations
including Quattrini et al. [29]. Two individual BEAST runs
(see BEAST xml file in electronic supplementary material,
Dataset S2) of 250 million generations were completed, with
resulting log and tree files combined in LogCombiner [46] after
the removal of 10% of generations as a burnin period. Tracer
v. 1.7.1 [47] was used to assess convergence of parameter values
and age estimates, and TreeAnnotator [46] was used to produce
a maximum clade credibility tree using mean node heights.

(d) Ancestral state reconstruction
A DEC model was implemented in RevBayes [48] to estimate
ancestral states of depth ranges, following the DEC analysis
online tutorial (https://revbayes.github.io/tutorials/biogeo/
biogeo_simple.html). Expert opinions (Dennis Opresko, Tina
Molodtsova and Marzia Bo) and the current literature were
used to assign each taxon a depth range (shelf 0–249 m, slope
250–3000 m, abyss greater than 3000 m), or a combination
of depth ranges for bathymetrically wide-ranging taxa (e.g.
shelf-slope represents species occurring from 0 to 3000 m
depth and slope-abyss from 250 to depths deeper than
3000 m) (see electronic supplementary material, table S2).
A Markov chain Monte Carlo (MCMC) analysis produced
a maximum clade credibility tree and ancestral states were
plotted using plot_anc_states in R package RevGadgets.
The ggtree package [49] was used to plot ancestral depth
states on the time-calibrated tree, following code provided in
McFadden et al. [50].
3. Results
(a) Black coral evolution
We resolved the relationships among 30 of the 45 valid genera
in the order Antipatharia, representing species that occur from
just below the ocean surface to over 8000 m depth. Both maxi-
mum-likelihood (ML) (electronic supplementary material,
figure S1) and multi-species coalescent (MSC) (electronic
supplementary material, figure S2) analyses recovered con-
gruent topologies with strong node support.

Our time-calibrated phylogeny indicated that the black
coral lineage diverged from the Scleractinia + Corallimor-
pharia approximately 601 Ma (95% HPD 483–719) (figure 1
and electronic supplementary material, figure S3). The phylo-
geny dates the black coral crown node to the Silurian period,
approximately 437 Ma (95% HPD 325–567), at upper and
middle slope depths (250–3000 m) (figure 1). At this time,
the oldest extant family, the Leiopathidae, diverged from
the rest of the order. A genus in the family Aphanipathidae,
Acanthopathes, is the next lineage to diverge from all other
families at 332 Ma (95% HPD 261–404) and occurred at
shelf-slope depths (250–3000 m). The remaining lineages,
which include 95% of extant black corals [51], diverged 295
Ma (95% HPD 222–366 Ma) during the Carboniferous-Per-
mian to form two distinct clades (hereafter ‘Clade A’ and
‘Clade B’). The most recent common ancestor of Clade A
and Clade B is estimated to have diverged 295 Ma (95%
HPD 222–366) at a slope depth (82% pp). Clade A with a
crown node of 242 My (95% HPD 145–310) consists of the
families Antipathidae, Aphanipathidae, Myriopathidae and
Stylopathidae, and Clade B with a crown node of 202 My
(95% HPD 131–283) consists of the families Schizopathidae
and Cladopathidae.
(b) Bathymetric transitions
Clade A consists of two main clades; one of which (hereafter
Clade A1) dated 213 Ma (95% HPD 150–280) likely occurred
on the shelf and slope (proportions of estimated ancestral
depths: 31% posterior probability (pp) on shelf, 29% pp on
slope, and 38% pp on shelf-slope), and a second lineage
(hereafter Clade A2) dated 184 Ma (95% HPD 110–261)
likely occurred on the slope (72% pp). Clade A1 also consists
of two main lineages (hereafter Clade A1a and Clade A1b).
Clade A1a dated 183 Ma (95% HPD 99–202) likely occurred
on the shelf (63% pp), representing an onshore transition
with most subsequent lineages remaining on the shelf.
While most of the taxa in Clade A1a occur in shelf environ-
ments, there were three recent invasions into slope depths
(occurring within the last 20 My) in this clade, although
these three lineages also retained their shelf distributions
and thus occur across a wide depth range. The crown of
Clade A1b was dated 97 My (95% HPD 35–180), and both
crown and subsequent nodes within this clade likely
occurred on the shelf and slope (45% pp shelf-slope, 31%
pp slope and 21% pp shelf ). This represented another
onshore-directed bathymetric expansion from ancestors that
occurred at slope depths. Most Clade A2 lineages remained
on the slope for the past 184 My and have expanded their
bathymetric ranges to also include the shelf. However, one
lineage of Clade A2 invaded the shelf from slope depths
(figure 1). In total, 27 out of 36 species in Clade A transi-
tioned onshore to the shelf, representing at least five
independent onshore transition events. After those onshore
transitions, there were at least three independent bathymetric
expansions to include the shelf and slope. Clade A1 rep-
resents a lineage that did not completely transition onshore
to the shelf but does include species that now occupy both
shelf and slope depths, with one taxon transitioning offshore
to only occur on the slope.

https://github.com/smirarab/ASTRAL/blob/master/astral-tutorial-template.md
https://github.com/smirarab/ASTRAL/blob/master/astral-tutorial-template.md
https://github.com/uym2/TreeShrink
https://revbayes.github.io/tutorials/biogeo/biogeo_simple.html
https://revbayes.github.io/tutorials/biogeo/biogeo_simple.html
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Figure 1. Time-calibrated phylogeny of the Antipatharia with ancestral character states of depth. BEAST2-dated phylogeny constructed from 25 clock-like loci. Depth
ranges for each depth zone are as follows: shelf (0–250 m), slope (250–3000 m) and abyss (greater than 3000 m). Posterior probability values at each node are
greater than 0.95 unless indicated by ‘*’. Tree is scaled to time in millions of years. Mass extinction events are shown (dashed vertical lines). Ancestral state
reconstructions for depth are illustrated with pie diagrams at nodes; (O, Ordovician; S, Silurian; D, Devonian; C, Carboniferous; P, Permian; T, Triassic; J, Jurassic;
K, Cretaceous; P, Palaeogene, N, Neogene).
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Clade B consists of two main lineages hereafter referred to
as Clade B1 and Clade B2. Clade B1, dated 141 Ma (95% HPD
95–198), and Clade B2, dated 37 Ma (95% HPD 14–76), both
originated on the slope (estimated ancestral depths: 96%
slope and 99% slope, respectively), suggesting that at these
times, ancestral black corals occurred at roughly the same
depths as their ancestors. Clade B1 diverged into two
lineages: one lineage consisting of extant slope taxa and abys-
sal taxa representing at least one distinct offshore transition,
and the other lineage consisting of shelf-slope, slope, slope-
abyssal and abyssal taxa, representing a distinct broadening
of bathymetric ranges both onshore and offshore from their
common ancestor in the past 80 My. Clade B2 comprises
extant slope and abyssal taxa, indicating that these lineages
either stayed at slope depths or transitioned offshore to the
abyss. In total, eight ancestral antipatharian lineages from
Clade B remained on the slope and at least one transitioned
to shallower habitats (shelf-slope) over the last 200 My.
Within the last 50 My, at least four independent lineages
have expanded to, or completely transitioned to, the abyss.
4. Discussion
(a) Slope origin of black corals
Our phylogenomic reconstruction traces the origin of black
corals to the Ediacaran Period (601 Ma) and first diversifica-
tion of this group to the early Silurian (437 Ma). The earlier
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origin in this study compared with a recent assessment of
Anthozoa [29], which dated the origin of the Antipatharia
to the Cambrian Period (522 Ma) and first diversification to
the Carboniferous (321 Ma), is due to our inclusion of the
monogeneric family Leiopathidae. Leiopathidae is the first
lineage to branch off from the Antipatharia and is sister to
all other black corals (figure 1). The diversification of
Antipatharia falls just after the Great Ordovician Biodiversifi-
cation Event (485 to 443 Mya), which gave rise to suspension
feeding metazoans that possessed the ability to consume
highly diverse zooplankton in the water column [52,53].
Based on the fossil record, filter-feeding taxa such as black
corals came to dominate benthic marine ecosystems for the
remainder of the Paleozoic Era [53,54].

Our ancestral reconstruction supports black corals’ first
diversification at slope depths. Additionally, most extant
species occupy shelf and slope habitats between 50 and
800 m [55], with less than 20 species occupying the abyss.
Based on our reconstruction, all abyssal lineages originated
within the last 50 My. The habitat heterogeneity and topogra-
phical complexity of the upper slope has been linked to
increased rates of species formation [12,13] in groups includ-
ing octocorals [19], bivalves [12] and brittle stars [56]. Our
results lend support to the depth-differentiation hypothesis,
which could explain increased species diversity of black
corals in slope depths.

Reconstructions of ancestral antipatharians can only be
inferred from lineages of extant species and from the very
limited fossil record of the group [57,58]. Two genera and
three species of shallow water black coral fossils have been
described from shelf depths during the Lower Ordovician
(∼470 Ma) Fenxiang Formation of Hubei Province in southern
China [57,58]. These fossil records were not included in our
phylogenetic and bathymetric reconstructions because of
morphological differences between the fossils and extant
black corals, and uncertainty regarding whether the fossils
represent lineages that share a direct common ancestor with
present-day species [59]. Nevertheless, our divergence
dating results correspond well with these putative black
coral fossils and given that the slope has been a more stable
environment across geological time than the shelf [11], it is
possible that earlier antipatharians occupied shelf depths
before going extinct.
(b) Onshore transitions and morphological innovations
Based on our reconstruction, ancestors of Clade A1 transi-
tioned onshore to the shelf ∼183 Ma, coinciding with the
early Jurassic reef crisis (183 Ma). During this period, reef-
building corals with calcium carbonate skeletons were nega-
tively affected by large-scale volcanism, global warming and
increased atmospheric pCO2 [29,60,61]. This event might
have vacated niches or reduced competition for black corals
and other non-calcifying groups (e.g. octocorals) to invade
the shelf [29,62]. Most black corals in Clade A1 have since
diversified in the more dynamic shelf environment [9,10]
potentially driving a rapid radiation in the group. We do
not explicitly test rates of diversification here due to the lim-
ited sampling of species; however, there is evidence of
elevated diversity on the slope: over 20 extant black coral
genera occur on the slope, including the genus Antipathes
that currently contains 75 of 300 currently accepted species
in the order [51].
Species in both Clade A1 and Clade A2 invaded into, then
diversified at shelf depths; however, shelf invasion occurred
much later for Clade A2 (48 Ma versus 183 Ma). Given that
Clade A1 invaded at a time when competition on the shelf
was potentially lower, they may not have required morpho-
logical adaptations to persist in their new environment. By
contrast, delayed invasion by Clade A2 might have facilitated
the development of morphological adaptations. Unlike species
in Clade A1, species in Clade A2 are pinnulate, increasing their
surface area and enhancing their capacity for heterotrophic
feeding (figure 2a). While pinnulate morphology may present
challenges in environments with high hydrodynamic energy
due to increased surface tension and friction [63], pinnulate
species are potentially better adapted to low-energy, high-tur-
bidity environments where their greater surface area allows
for more efficient nutrition uptake despite low rates of nutri-
tion availability. This apomorphic trait may have facilitated
ecological divergence from non-pinnulate black corals and
enabled the expansion of species ranges to persist in both shel-
tered shelf and slope habitats.
(c) Offshore transition and morphological innovations
The ancestors of Clade B likely occurred at slope depths,
and only one lineage from this clade (Parantipathes spp.)
expanded in an onshore direction to also occupy the lower
shelf (minimum depth of ∼200 m). All other lineages in this
clade have remained on the slope, but in the past 50 My at
least five independent slope lineages in Clade B (containing
about 30 species) invaded the abyss. This suggests that
extant lineages of black corals only invaded into and diversi-
fied at abyssal depths relatively recently, supporting the
source-sink hypothesis of abyssal species. However, the ques-
tion remains: why are there not older lineages currently
occupying the abyss?

Invertebrate lineages have historically and routinely
invaded the abyss and subsequently gone extinct, either
due to minimum viable population sizes in large abyssal
habitats [64] or to repeated anoxic events [12,25,26,65]. The
most recent anoxic event in the abyss occurred during the
earliest Palaeocene 66 Ma, immediately following the K-T
extinction event [17,66]. This global anoxic event, combined
with limited nutrition availability and hard substrate
required for feeding and settlement, could have eradicated
abyssal black coral lineages present in the Cretaceous. The
return of habitable conditions in the abyss in Palaeogene
[17] may have allowed contemporary black coral lineages
to invade abyssal habitats. However, diversification into
a novel depth zone with physiologically challenging con-
ditions requires key morphological and physiological
innovations. Thus, for lineages that persisted on the slope
for millions of years, morphological and/or physiological
adaptations would be necessary to invade and survive in
the abyss [67].

Abyssal black corals are morphologically different
than shelf and slope taxa. Abyssal black corals have
simple branching characteristics, all of which are pinnulate
(figure 2d–e), a feature that increases surface area and
enhances the ability of a coral to filter-feed in a low-nutrient
environment. By contrast, shelf and slope taxa can be either
pinnulate or non-pinnulate and exhibit a wide variety of
branching characteristics including flabellate, bramble, con-
torted and irregularly branched (figure 2a–c). Furthermore,



(a)

(b)

(c)

(e)
5 cm

5 cm

5 cm 5 cm

5 cm

(d)

Figure 2. Morphological features of the Antipatharia. Myriopathes sp. colony showing flabellate and pinnulate characteristics (a), Antipathes sp. colony
showing bramble and non-pinnulate characteristics (b), Antipathes sp. colony showing branched and non-pinnulate characteristics (c), Schizopathes affinis showing
pinnulate branches and a basal hook, enlarged in inset (d ), and Heteropathes americana showing a curved stem and pinnulate branches that form a wind-tunnel
appearance (e).
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all shelf and slope species have basal plates that allow a
colony to attach to hard substrate (figure 2d ) while the strictly
abyssal genus Schizopathes has basal hooks (derived from
ancestral basal plates) that allows settlement on extremely
small pebbles or rocks (figure 2d ), or possibly just sand or
mud. Shelf and upper slope species also generally possess
upward directed stems, while some lower slope and abyssal
species have distinct stems bent at a 90° angle and curved
pinnules that resemble wind tunnels. These features position
the stem parallel to the substrate, pivot in changing current
directions and funnel nutrients through the colony, thereby
maximizing contact of nutrients and the polyps (figure 2e).
Pinnulation, basal hooks and wind-tunnel characteristics
could represent independent abyssal adaptations and/or
exaptations that enabled black corals to invade and survive
in the abyss.
These morphological adaptations also enabled the persist-
ence of abyssal lineages by limiting interspecific competition
and ecological divergence to avoid competitive exclusion
[20,68–70]. Basal hooks enable colonies to settle and grow
in sandy habitats isolated from sister lineages that require
hard substrate for settlement, thereby isolating gene pools
to promote diversification and obtain nutrients in habitats
with limited competition [20]. Species that possess a wind-
tunnel morphology can persist in the lowest-nutrition
environments, providing an advantage over other abyssal
species that require locations with higher nutrient levels.

Ancestral state reconstructions can be influenced by
incomplete taxon sampling [71]. Although additional tran-
sitions could potentially be detected with the inclusion
of more taxa, our major conclusions regarding the origin
and the direction of lineages’ invasions are unlikely
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to change. First, our analysis includes three of the four
deepest-known black coral genera [72], lacking only Abysso-
pathes. If Abyssopathes were included in this analysis, it
would further support a recent invasion from the slope
to the abyss (in Clade B2). In addition, there are 12 slope
genera, three shelf genera and an unknown number
of extinct lineages that were not included in this study.
Inclusion of these lineages would unlikely change the
results of the ancestral reconstruction as most missing
extant genera are found in depths similar to other species
in their respective families.

(d) Evolutionary refugia
Understanding the evolutionary history of a group of species
provides insight into the mechanisms that have enabled their
persistence through deep time. These insights can help us pre-
dict outcomes from threats and identify priority areas for
conservation. Bathymetrically wide-ranging taxa are threa-
tened by a variety of anthropogenic activities, including
increased storm activity, fishing pressure and sea-level
changes in shelf habitats, and resource extraction activities
(oil/gas, fishing and future mining) in deeper waters [73].
The extinction of shallow and deep lineages would likely
have long legacy effects on marine biodiversity because they
are important foundation species in marine ecosystems. Our
results also suggest that it would take millions of years for
these taxa to be replenished, as indicated in ancestral state
reconstructions and divergence dating of the phylogeny
through deep time; therefore, it is critical to preserve these
lineages under looming threats of ocean change and anthro-
pogenic activities. Our results also show that continental
slope lineages have evolved and diversified into a variety of
habitats from shallow waters to the deep abyss and also
serve as ancestral lineages to shallow- and deep-sea species.
Therefore, additional protection for continental slope taxa,
some of which are the oldest animals on the planet (colonies
are slow growing and can live ∼4,000 years, [74]), may be war-
ranted due to their potential role as evolutionarily refugia
in the face of long-term global ocean change. Although
studies of evolutionary history such as this cannot predict
future outcomes, understanding the patterns of evolution
through the deep past can help to pinpoint origins of diversi-
fication and thus lineages in need of protection, which is
particularly important for sentinel, foundation species, such
as corals.
5. Conclusion
Our time-calibrated phylogeny indicates that black corals
diversified at slope depths ∼437 Mya, and radiated bidirec-
tionally, first onto the shelf and much later into the abyss,
rather than in a unidirectional onshore-offshore pattern. Bidir-
ectional radiation of lineages has also been found in other
marine lineages [25,56,75,76]; however, for most cnidarians
this has yet to be formally investigated. Ancestral state recon-
struction suggests that morphological adaptations have
influenced the invasion and persistence of black corals in
different habitats through deep time, a finding consistent
with other marine lineages [77–80]. Our study also indicates
that abyssal lineages are younger than slope and shelf
lineages, therefore supporting the source-sink hypothesis
that abyssal taxa originate from slope habitats [21]. In
addition, our results support the depth-differentiation
hypothesis as lineages were found to originate and diversify
across the continental slope. Therefore, our results underscore
the importance of understanding evolutionary history for
both explaining modern-day patterns of marine biodiversity
across depth and predicting the consequences of ongoing
environmental change. Additionally, our findings emphasize
the role of habitats that have ‘sources’ of anthozoan and
other marine lineages, which further promote diversification.
Loss of this phylogenetic diversity would threaten millions
of years of evolutionary history; and therefore, it is important
to identify and prioritize conservation resources to protect
these habitats, and to limit extinction across the tree of
life [81].
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