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Abstract. Leaf chemical and spectral properties of 162 canopy species were measured at
11 tropical forest sites along a 6024 mm precipitation/yr and 8.78C climate gradient in
Queensland, Australia. We found that variations in foliar nitrogen, phosphorus, chlorophyll a
and b, and carotenoid concentrations, as well as specific leaf area (SLA), were expressed more
strongly among species within a site than along the entire climate gradient. Integrated
chemical signatures consisting of all leaf properties did not aggregate well at the genus or
family levels. Leaf chemical diversity was maximal in the lowland tropical forest sites with the
highest temperatures and moderate precipitation levels. Cooler and wetter montane tropical
forests contained species with measurably lower variation in their chemical signatures. Foliar
optical properties measured from 400 to 2500 nm were also highly diverse at the species level,
and were well correlated with an ensemble of leaf chemical properties and SLA (r2 ¼ 0.54–
0.83).

A probabilistic diversity model amplified the leaf chemical differences among species,
revealing that lowland tropical forests maintain a chemical diversity per unit richness far
greater than that of higher elevation forests in Australia. Modeled patterns in spectral
diversity and species richness paralleled those of chemical diversity, demonstrating a linkage
between the taxonomic and remotely sensed properties of tropical forest canopies. We
conclude that species are the taxonomic unit causing chemical variance in Australian tropical
forest canopies, and thus ecological and remote sensing studies should consider the role that
species play in defining the functional properties of these forests.

Key words: biological diversity; chemical diversity; imaging spectroscopy; leaf chemistry; leaf optical
properties; lowland tropics; Queensland, Australia; rain forest.

INTRODUCTION

Leaf chemical properties are key determinants of

plant physiology and biogeochemical cycling in ecosys-

tems (Vitousek and Sanford 1986, Reich et al. 1997), yet

these properties remain poorly understood in the

tropics. Canopy chemistry is of particular interest in

tropical forests because (1) canopy species often

dominate carbon storage as well as energy balance and

water use (Phillips et al. 1998, Clark et al. 2004); (2) the

diversity of canopy species is often proportional to total

plant diversity (Orians et al. 1996, Lawton et al. 1998);

and (3) the diversity of insect and animal life is causally

linked to tree diversity (Janzen 1970, Wilson 1992).

Given that canopy chemistry is intimately tied to all of

these processes, it is surprising that so little is known

about the chemical diversity of tropical forests. Our

deficient knowledge probably results from a combina-

tion of factors including high species diversity, tall,

inaccessible trees, and difficult study conditions.

A recent compilation by Townsend et al. (2007)

showed that foliar nitrogen (N) and phosphorus (P)

variability may be as high locally in tropical forests as it

is globally across biomes. Leaf N and P are critical

unknowns in predicting ecological processes, but so are

many other properties of foliage. Although N and P are

good predictors of basic biogeochemical cycling in

forests, multiple pigments are important determinants

of light capture, protection from high radiation, and

regulation of photosynthetic functions (Björkman and

Demmig-Adams 1995, Evans et al. 2004). Leaf water is

an important indicator of canopy thermal regulation

and moisture stress, which can be particularly acute in

tropical systems (Williamson et al. 2000, Nepstad et al.

2002). Specific leaf area (SLA; cm2/g) is a leaf structural

property linked to the entire constellation of leaf

chemicals, and leaf photosynthetic processes scale with

SLA (Evans and Poorter 2001, Wright et al. 2004,

Niinemets and Sack 2006). The combination of foliar

N, P, pigments, water, and SLA makes an important

contribution to plant canopy and whole-system func-

tion (Field and Mooney 1986, Evans 1989, Reich et al.

1997), and yet we know little about these combinations

among the myriad tropical forest species throughout the

world.
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A portfolio of leaf chemicals will not only allow the

prediction of the functional attributes of a species within

the forest, but also is likely to determine the role that

each species plays in ecosystem-level responses to land

use and climate change. It seems probable that species

maintain unique chemical ‘‘signatures’’ that would leave

a canopy imprint on the soil and other biogeochemical

compartments, or vice versa (John et al. 2007, Townsend

et al. 2007). However, we currently do not know enough

about the taxonomic variability in chemical signatures

to forecast ecosystem-level responses to environmental

change, or to incorporate the detailed chemistry of

plants into biogeochemical models. Our knowledge, and

thus our models, require additional observations of leaf

and canopy chemistry at landscape to regional scales,

but few are available for tropical forests.

Past work suggests that the chemical properties of

plant foliage can be assessed using airborne imaging

spectroscopy, also known as hyperspectral imaging

(Wessman et al. 1988, Martin and Aber 1997, Smith et

al. 2003). While linkages between spectroscopic mea-

surements and foliar chemicals continue to expand and

improve (Horler et al. 1983, Lee et al. 1990, Curran et al.

1992, Ceccato et al. 2001, Kokaly 2001), only very recent

work suggests that the chemical variance across a

landscape, derived from airborne imaging spectroscopy,

may allow for mapping of taxonomic diversity among

canopy species. Early steps in this effort show that just a

handful of key chemicals can express the presence of

species and/or plant functional types (Asner and

Vitousek 2005, Asner et al. 2008), and even the number

of species per area (richness) in tropical forests (Carlson

et al. 2007). Despite these early steps, we do not know

how chemical signatures are expressed taxonomically:

whether species, genera, or families are unique. Past

studies of leaf chemical and spectral variations have

included a number of tropical species (Lee et al. 1990,

Roberts et al. 1998, Castro-Esau et al. 2004, Zhang et al.

2006), but systematic analyses across plant genera and

families are very rare (Castro-Esau et al. 2006). No

studies have considered taxonomic variation in leaf

optical properties in the context of multi-chemical

signatures among species.

Here we report on a study to quantify taxonomic

variation of leaf chemical signatures among canopy

species found across an elevation and substrate gradient

in humid tropical forests of Queensland, Australia. In

step with the chemical assays, we also quantified leaf

spectral properties of the tropical forest taxa, and

explored the causal linkages between the biochemical

and spectroscopic properties of species. We ask: (1) Do

tropical forest canopy species have unique foliar

chemical signatures, and if so, at what taxonomic level

of aggregation do plants express these signatures? (2) Do

foliar spectral properties of species track their multi-

chemical signatures? (3) How variable are chemical and

spectral signatures at the site level, and do these

signatures track species richness?

MATERIALS AND METHODS

Study sites and sampling design

Our study was conducted at 11 tropical forest sites

located across Queensland, Australia (Table 1). The sites

range in elevation from 18 m to 1556 m above sea level,

with a concomitant range in mean annual temperature

of 15.8–24.58C. Annual precipitation ranges from 1313

to 7337 mm/yr across the sites, and substrates vary from

basalts to granites and meta-sediments. For our

purposes, we partitioned the sites into lowland (,100

m), submontane (700–1000 m), and montane (.1000 m)

groups. This partitioning is somewhat arbitrary, but it

conforms to typical classifications of Australian tropical

forests throughout the region (Webb and Tracey 1981,

Nightingale et al. 2008).

This study focused on quantifying interspecific and

site-level variation in the foliar chemical and spectral

properties of forest canopy species. We therefore not

only designed our sampling strategy to span a large

range of site conditions shown in Table 1, but also

compiled a taxonomically diverse data set spanning the

sites that included 51 families, 121 genera, and 162

species (Appendix B). A broad sampling across families

and genera was an important axis of taxonomic

variability, but we also collected multiple species from

nine families: Cunoniaceae (n¼ 8), Elaeocarpaceae (n¼
8), Lauraceae (n¼ 9), Meliaceae (n¼ 8), Myrtaceae (n¼
17), Proteaceae (n¼ 12), Rutaceae (n ¼ 7), Sapindaceae

(n¼7), and Sapotaceae (n¼4). This provided a means to

quantify chemical and spectral variation at different

levels of taxonomic aggregation.

At each of the 11 field sites, we identified all common

canopy tree species, verifying identities when necessary

at the herbarium at the CSIRO Tropical Research

Centre, Atherton, Queensland, Australia (herbarium

code QRS). Although we probably missed very rare

species, each collection was designed to obtain all

common canopy species, genera, and families at a site

representing ;1 ha of tropical forest. The species

selected for collection were found in closed-canopy

conditions, and only fully sunlit portions of the

uppermost tree crowns were selected for foliage collec-

tion. A shotgun or slingshot/line was used to remove 3–5

branches and twigs containing sunlit foliage.

Biochemistry.—Our leaf assays were designed to

encompass the major chemical properties known to

control or contribute to the physiology of species and

biogeochemical cycles at the ecosystem level. We

selected chlorophyll a and b (Chl a, Chl b), total

carotenoids (Car) anthocyanins (Anth), leaf water

concentration, total N and P, and SLA as the ensemble

of parameters to measure. Each of these leaf parameters

also has a demonstrated contribution to the spectrosco-

py and thus optical remote sensing of canopies (Curran

1989, Ustin et al. 2004), the second focus of analysis in

our study. Adding other chemicals would further

diversify the chemical portfolio of each species, but

January 2009 237CHEMICAL DIVERSITY OF TROPICAL FORESTS



doing so might create a chemical combination that does

not aid in determining the spectroscopic signatures of

the plants, and thus would not be remotely sensible.

For each species identified in the field, leaf discs (six

per leaf) were immediately taken from 10 randomly

selected leaves and frozen on dry ice in the field. They

were later transferred to a �808C freezer until pigment

analyses were performed in a laboratory. Frozen leaf

discs (1.1 cm2 area) were ground in a chilled mortar with

100% acetone, a small amount of quartz sand, and

MgCO3 to prevent acidification. Following centrifuga-

tion for three min at 3000 rpm, the absorbance of the

supernatant was measured using a dual-beam scanning

UV-VIS spectrophotometer (Lambda 25, Perkin Elmer,

Beaconsfield, UK). Chl a, Chl b, and Car were

determined using multiwavelength analysis at 470, 645,

662, and 710 nm (Lichtenthaler and Buschmann 2001).

Anthocyanins were measured in a similar manner, but

an acidified methanol solution (MeOH:HCl:H2O 90:1:1

by volume) was substituted for acetone, and anthocya-

nin concentration was determined from the absorbance

at 529 nm (Sims and Gamon 2002).

At each field site, an additional subsample of 25–50

leaves was placed in a polyethylene bag and kept cool

for up to 6 h until the leaves were processed for fresh

mass and scanned for leaf area based on Martin et al.

(2007). Leaf subsamples were selected to represent the

range of colors and conditions found among all leaves

collected. Occasionally, epiphylls were encountered, but

never in high abundance, and those found were removed

prior to analyses. Leaf samples were then dried at 708C

for at least 72 h, and weighed to determine leaf H2O

concentration [(fresh mass – dry mass)/dry mass] and

SLA. Dried leaves were ground in a 20-mesh Wiley mill,

and subsets were analyzed for N and P concentration

using a Kjeldahl sulfuric acid/cupric sulfate digest (Jones

1987). Digests were analyzed using an Alpkem colori-

metric autoanalyzer (O-I Analytical, College Station,

Texas, USA).

Spectroscopy.—Hemispherical reflectance and trans-

mittance from 400–2500 nm was measured on each leaf

taken for pigment analysis. The measurements were

made immediately after detaching the leaf from each

branch at the field site. The measurements were collected

with a field spectrometer using 1.4-nm sampling (FR-

Pro with Select Test custom detectors; Analytical

Spectra Devices, Boulder, Colorado, USA), an integrat-

ing sphere modified for high-resolution spectroscopic

assays (Labsphere, Durham, New Hampshire, USA),

and a custom illumination collimator that we built. The

spectra were then calibrated for stray light, and

referenced to a calibration block in the integrating

sphere (Asner 1998).

Statistical analyses.—We carried out five types of

analyses on the chemical and spectral data to (1)

quantify site- and species-specific differences in foliar

chemistry; (2) quantify the covariances between foliar

properties; (3) determine whether tropical forest canopy

species have unique foliar chemical signatures, and if so,

whether the chemical signatures are aggregated by

genus, family, or site; (4) quantify the absolute and

relative contributions of each chemical constituent to the

spectral properties of the foliage; (5) explore the

potential use of hyperspectral data to classify species

by spectral properties; and (6) test our ability to simulate

taxonomic diversity using chemical and spectral data.

First, we explored the basic statistical differences

among chemicals and spectral properties by site and by

plant family. All groups were compared using ANOVA

with Tukey multiple comparisons on the log-trans-

formed values, to satisfy assumptions of data normality.

Second, we defined and then compared the combined

chemical signature (a) among species using a standard-

ization approach by which each chemical (xij) was

normalized using the minimum (MIN) chemical value of

TABLE 1. Description of the 11 rain forest research sites visited for foliar spectroscopy and chemistry.

Site Latitude (S)
Longitude

(E)
Elevation
(m m.s.l.)

Substrate
category

MAP
(mm)

PDQ
(mm)

MAT
(8C) n

Lowland

Oliver Creek 168801600 14582602700 18 meta-sediments 3551 226 24.5 22
Daintree 168601200 14582704800 51 meta-sediments 3961 273 24.3 16
Mt. Bellenden Ker, base 1781601500 1458510100 80 granite 4032 313 23.5 6

Submontane

Topaz 1782504300 1458420800 722 basalt 3035 262 20.1 18
CSIRO 1781603200 1458290500 782 basalt 1313 69 19.8 19
Windsor Tablelands 1681601900 1458404900 870 granite 1892 120 19.3 12
Mt. Lewis 1683305500 14581703900 999 granite 2323 168 18.4 12

Montane

Windsor Tablelands 168150900 1458202200 1092 granite 2172 153 18.4 13
Tully Falls National Park 1784105200 1458320800 1104 basalt 2230 175 18.3 12
Mt. Lewis 1683103900 14581601000 1248 granite 2323 168 18.4 15
Mt. Bell. Ker, summit 1781605000 14585101500 1556 granite 7337 729 15.8 10

Note: Unit abbreviations are m.s.l., height above mean sea level; MAP, mean annual precipitation; PDQ, precipitation of the
driest quarter; MAT, mean annual temperature; n, number of tree species sampled per site.
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the sample population divided by the minimum value of

the population:

a ¼
X

Xij ¼
X xij �MINðxiJÞ

MINðxiJÞ
ð1Þ

where Xij is the standardized leaf property for each leaf

constituent i and species j, and J is the total population

of species. The standardization step ensures that each

chemical will have a comparable statistical distribution.

Hierarchical cluster analysis was next used to examine

the chemical as well as the spectral relationships among

the 162 canopy species taken from the lowland,

submontane, and montane forest sites. Cluster analysis

provides a means to simultaneously use multiple plant

chemical or spectral characteristics to quantitatively sort

species into groups based on their degree of association

(Hartigan 1975). Using this method, species cluster more

closely if their chemical or spectral signatures are

similar. Here, we used Ward’s method of clustering

(Ward 1963), where the distance between two clusters is

the analysis of variance sum of squares summed over all

of the variables:

DKL ¼
jj x̄K � x̄Ljj2

1
NK
þ 1

NL

ð2Þ

where D is the statistical distance between each cluster

pair K and L, xK and xL are the mean vectors for the

clusters, and NK and NL are the number of observations

per cluster. All data were standardized by the parameter

mean and standard deviation prior to analysis. This

analysis produced a statistical clustering or dendrogram

depicting the organization of species based on either

their chemical or spectral signatures.

Following the chemical and spectral cluster analyses,

we used partial least squares (PLS) regression to

determine the relative contribution of each chemical

constituent to the spectral signatures of the species

(Smith et al. 2003). Candidate chemicals included Chl a,

Chl b, Car, Anth, N, P, and H2O, as well as SLA. The

PLS approach utilizes the continuous, full-range spec-

trum rather than a band-by-band analysis. Spectral

weightings generated by the PLS calculation directly

relate the features in the spectra to the chemical

constituents analyzed (Haaland and Thomas 1988). To

avoid overfitting, the number of factors used in the PLS

analysis was determined by minimizing the Prediction

Residual Error Sum of Squares (PRESS) statistic (Chen

et al. 2004). The PRESS statistic was calculated through

an iterative cross-validation prediction for each model.

This cross-validation procedure iteratively generates

regression models (n ¼ up to 15 iterations) while

reserving one sample from the input data set until the

root mean square error (RMSE) of the PRESS statistic

is minimized. The PLS-PRESS models were then used to

estimate each leaf chemical and SLA from the original

spectral data. This provided a means to determine the

relative importance of each foliar property in predicting

the spectra. Both the cluster and PLS-PRESS analyses

were carried out using SAS JMP 7.0 statistical software
package (SAS Institute 2003).

Finally, we used a probabilistic diversity model to
explore the role that leaf properties play in expressing

the plant diversity in the lowland, submontane, and
montane tropical forest sites. The model populates a

virtual forest with species and their measured chemical
and spectral signatures (Asner 2008). First, a single
species is randomly selected from the total community of

n species collected in the field. The mean leaf chemical
and spectral information for this species is taken from

the database, along with the field-measured variance to
accommodate natural intraspecific variability. Other

species are then randomly selected and added to the
virtual landscape in the same way. As the species

richness of the virtual forest increases, we track the
change in the total range (maximum – minimum) of

chemical or spectral values until the entire community is
populated, or until a prescribed richness level is

obtained. The model uses a Monte Carlo simulation to
calculate an average change in the chemical and spectral

variability of 1000 virtual forests as taxonomic diversity
is randomly increased (mean and SD of 1000 forests

with one species and its chemical variability; then 1000
forests with two species, each with its chemical
variability; and so on, up to 1000 forests with all species,

each with its chemical variability). The model can be run
for a single chemical (e.g., N), or for a chemical

signature index (a; Eq. 1) that combines any number
of leaf properties per species. For this study, we

simulated the forest canopies using an eight-parameter
chemical signature incorporating leaf pigments, nutri-

ents, water, and SLA from Fig. 4 applied to Eq. 1. We
then repeated the analysis using the standardized

spectral reflectance data to provide an optical equivalent
(K) for analyzing taxonomic variation. We use the

standardized reflectance here because it is equivalent to
the standardization of the chemical index used in Eq. 1.

It is important to note that the point of this modeling
step was not to simulate whole canopies, as might be

viewed by an airborne or satellite remote sensing
instrument, but rather to compare chemical and spectral
diversity relationships among canopy trees as would be

encountered throughout a forest. True canopy-level
simulations require radiative transfer, ray tracing, or

radiosity modeling approaches (Gerstl and Borel 1992,
Govaerts et al. 1995, Jacquemoud et al. 2000) that are

beyond the scope of this study.

RESULTS AND DISCUSSION

Leaf chemistry

Our foliar chemical data spanned a globally signifi-

cant range of values, which is important to the overall
focus of the study on chemical signature variance and
chemical–spectral linkages in tropical forests. For

example, our leaf N and P data ranged from 0.75% to
3.5% and 0.05% to 0.34%, respectively, which nearly
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matched the global tropical forest compilation of

Townsend et al. (2007). Similarly, our N:P ratios ranged

from 5.6 to 31.6, which nearly encompasses most reports

for tropical forests. The SLA data spanned a range of

37–274 cm2/g, and total chlorophyll concentrations

covered an unusually broad 16-fold range of values.

As an ensemble of chemical properties, this Australian

tropical forest data set is enormously variable from

nutrient chemistry, physiological ecology, and remote-

sensing perspectives (Asner 1998, McGroddy et al. 2004,

Wright et al. 2004).

On a site basis, foliar N and P concentrations each

varied more than twofold, and N:P ratios ranged from

11.7 6 2.4 to 17.6 6 4.4, mean 6 SE (Fig. 1). N:P values

,14 may suggest sites where N limitation is more

pronounced, whereas N:P . 16 indicate possible P

limitation (Hedin 2004, Reich and Oleskyn 2004).

Substrate-related differences among sites were inconclu-

sive due to high variability in leaf N and P among

species within each site (Fig. 1), but a few basic

differences were observed. Among lowland forests, trees

in the Oliver Creek site on meta-sediment substrates had

the lowest foliar N and P, whereas the granite substrate

site (Mt. Bellenden Ker-base) supported the highest

values. The submontane Topaz and CSIRO sites had

lower N:P ratios than did the other sites in that elevation

category. Foliar N and P concentrations decreased

slightly, but inconsistently, with increasing elevation

from about 722 to 1556 m. Overall, the imprint of

different substrates and elevations was only weakly and

variably expressed in the leaf N and P data.

The effects of substrate and elevation (climate) on leaf

water, pigments, and SLA were also weak and

inconsistent at the site level. There was a slight decrease

in SLA at higher elevations, and total chlorophyll and

carotenoids roughly followed this pattern (Fig. 2). SLA,

water, total chlorophyll, and carotenoids peaked in the

lowland forest sites at Daintree and Mt. Bellenden Ker,

base. However, most patterns were not significant, and

leaf water and anthocyanin pigments were even more

decoupled from the SLA patterns.

Regrouping the chemical and SLA data among nine

plant families found at multiple (or all) forest sites, we

found that N varied more between families than it did

across all sites combined (Appendix A: Fig. A1,

compared to Fig. 1). Similarly, P variability among

families nearly matched that of the variation among the

11 forest sites; however, variations in N:P ratios were

more conservative at the family level. Species in the

Meliaceae had particularly high N and P concentrations

in their leaves, whereas the Rutaceae displayed a high

N:P ratio (Appendix A: Fig. A1). Plants in both the

Meliaceae and Rutaceae had high values for nearly all

pigment concentrations and SLA (Appendix A: Fig.

A2). In contrast, species in the Proteaceae had the

highest concentrations of anthocyanins. Together, these

data demonstrate that basic chemical variability at the

family level can be as high as or higher than it is across

extremely broad environmental gradients of more than

6000 mm rainfall and nearly 98C in mean annual

temperature. This conclusion supports the study by

Townsend et al. (2007), showing that variation in N:P

ratio is as high taxonomically as it is geographically in

Brazil and Costa Rica. Our measurements extend such

findings to include a portfolio of pigments, water, and

SLA, all of which are key to understanding controls over

functional and spectral properties of tropical forest

species.

Linear regression analyses showed relatively poor to

moderate correlations among most of the leaf chemicals

and SLA (Fig. 3). The obvious exception was the tight

relationship between Chl a and Chl b (r2¼ 0.96), which

was expected given the functional link between these two

pigments (Anderson et al. 1995). In addition, carotenoid

concentrations were correlated with Chl a and Chl b (r2

¼ 0.77, 0.82) and N (r2¼ 0.61) concentrations, although

it is notable that a number of outliers could readily be

identified, even in these highly correlated relationships.

FIG. 1. Mean (þSE) leaf nitrogen (N) and phosphorus (P)
concentrations, and N:P ratio, for canopy species collected
across an elevation gradient from lowland to montane tropical
forests throughout Queensland, Australia. Different lowercase
letters denote statistical differences among groups using
ANOVA with Tukey multiple-comparison tests (P , 0.05).
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Although N and P are often considered to be linked in

temperate ecosystems (Reich and Oleskyn 2004), they

were only moderately correlated in the tropical forest

trees in our study (r2 ¼ 0.54; Fig. 3).

The standardized leaf chemical signatures revealed

enormous variation among species at site and regional

scales (Fig. 4). The color codes show the relative levels of

leaf constituent concentrations and SLA for each

species, here again indicating no obvious covariances

among leaf parameters other than for Chl a and b. The

lowland forests showed the greatest degree of variability,

with, for example, SLA spanning a nearly fivefold range

of relative values among canopy species. Moreover, leaf

pigment concentrations were up to three times more

variable than either N or P, indicating their contribution

to the uniqueness of the chemical signatures among

canopy species.

The chemical index (a) provided a convenient marker

to further compare species within and across sites (Fig.

4). Variance in a values increased from 6.0 to 8.6 and to

17.9 for montane, submontane, and lowland forests,

respectively. In fact, the largest chemical variation was

evident just within the lowland forest site at Daintree:

from the lowest, a¼ 5.0 in Argyrodendron peralatum, to

the highest, a ¼ 27.6 in Dysoxylum papuanum. These

results suggest that chemical diversity increases in

warmer environments, probably reflecting a wider

variety of chemical and physiological strategies among

species.

Within families collected from multiple sites, the

Sapindaceae and Sapotaceae showed relatively low

chemical variance among 10 species (Appendix A: Fig.

A3). However, two plant families spanning all 11 forest

sites (Elaeocarpaceae and Myrtaceae) displayed high

variability among chemical signatures of 25 species. At

times, chemical diversity was extremely high among

congeners, such as Dysoxylum in the Meliaceae, which

expressed a range in a of nearly 300% among just six

species. In sum, the chemical diversity of lowland forests

far exceeds that of cooler montane systems, but the

chemical diversity at any given site can be dominated by

a single family or even a single genus.

Leaf spectroscopy.—Summary spectral reflectance and

transmittance properties of the species are shown by site

in Fig. 5 and are regrouped in the nine common plant

families found among sites (Appendix A: Fig. A4). At

species, family, and site levels, reflectance variation was

highest in the near-infrared (NIR; 700–1300 nm),

whereas transmittance was most variable in the short-

wave-IR (SWIR; 1500–2500 nm). The NIR spectral

range is dominated by variation in leaf water content

and leaf thickness, related to SLA (Jacquemoud and

Baret 1990, Ceccato et al. 2001). Transmittance varia-

tion in the SWIR is caused by leaf water concentration,

with important contributions from protein N, cellulose,

and lignin concentrations (Curran 1989). First deriva-

tives of the spectra in the visible region (400–700 nm)

associated with chlorophyll, carotenoid, and anthocya-

nin pigments were also highly variable (data not shown).

Similar to the individual chemical results, there were no

obvious trends in the spectra taken from lowland,

submontane, or montane forest sites, although the

FIG. 2. Mean (þSE) specific leaf area (SLA) and water
content, and total chlorophyll (Chl aþb), carotenoid (Car), and
anthocynanin (Anth) concentrations for canopy species collect-
ed across an elevation gradient from lowland to montane
tropical forests throughout Queensland, Australia. Different
lowercase letters denote statistical differences among groups
using ANOVA with Tukey multiple-comparison tests (P ,

0.05).
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Daintree (lowland) site showed particularly high vari-

ability in both reflectance and transmittance compared

to all other sites.

PLS regression analyses revealed wavelength-specific

spectral regions predicting the foliar properties among

tree species (Fig. 6). Spectral reflectance weightings

greater than or less than about 25 in the visible range

indicate strong, but variable, contributions by Chl a, Chl

b, Car, N, and P. Anthocyanins were poorly represented

in the visible range, probably due to the overall low

values for this pigment in the leaf material (Fig. 2). SLA

was heavily weighted at very short wavelengths (,500

nm), and again in the NIR, but the most important

spectral region for predicting SLA was the SWIR

(.1500 nm). In this range, small changes in leaf

thickness, and thus path length of light travel through

the leaf material, cause important variations in leaf

reflectance (Jacquemoud and Baret 1990). N, P, and

most pigments followed SLA in predicting the SWIR

reflectance among species. Similarity in the SWIR

spectral weightings for these chemicals results from a

combination of direct chemical expression in the

spectrum (Curran 1989) and broad stoichiometric

covariance with SLA (Asner 2008). Nonetheless, the

magnitude of the PLS reflectance weightings in the

SWIR indicated that N and pigments were the most

important contributors, with P, water, and anthocyanin

less so.

Equations developed from PLS and cross-validation

procedures demonstrated that the reflectance spectra

FIG. 3. Scatterplots (with regression coefficients, r2, in upper right corner) showing relationships between leaf properties
measured in Figs. 1 and 2. Gray lines represent bivariate density ellipses that enclose ;95% of the data. More closely correlated
variables are contained in narrower ellipses with a stronger orientation along the diagonal.
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FIG. 4. Standardized chemical signatures (Eq. 1) for all canopy tree species. Data are organized by site, and then by family-
genus-species with each site. See Appendix B for full species names. Sites are grouped by lowland, submontane, and montane classes,
and substrate origin is denoted in letters following the site name (b, basalt; g, granite; ms, meta-sediments; mb, meta-basalts). Color
bars quantitatively show differences among leaf properties. The black line and dots show a chemical index a, as shown in Eq. 1.
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could be used to provide parameters that were strong

predictors of an ensemble of leaf properties (Fig. 7).

Comparison of regression results for each leaf constit-

uent indicated their relative contribution to the spectral

data: (1) SLA, Chl a, Chl b, and Car were very strongly

expressed in the spectral data (r2¼ 0.81–0.83); (2) N and

water concentrations were also well predicted (r2¼ 0.71–

0.72); and (3) P concentration was relatively well

represented in the reflectance data (r2 ¼ 0.54). Antho-

cyanins were poorly expressed in the spectra.

Analogous tests with leaf transmittance and absor-

bance spectra showed similar results, although the

regressions against P concentration were weaker than

with the reflectance data (Appendix A: Figs. A5 and

A6). In addition, transmittance- and absorbance-based

spectral weightings in the PLS results showed that the

FIG. 5. Mean (6SE), minimum, and maximum values of leaf hemispherical reflectance and transmittance of canopy species.
Data are arranged by sites in lowland, submontane, and montane tropical forests.
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visible and SWIR spectral regions were differentially

sensitive to leaf properties in a way consistent with our

understanding of leaf optics and chemical spectroscopy

(Appendix A: Fig. A7).

Interpreted together, the results indicate that a

constellation of leaf properties is quantitatively repre-

sented by the reflectance and transmittance spectra.

Previous studies have often focused on the estimation of

one leaf chemical from reflectance spectra or from a few

bands taken from the spectra (Gitelson et al. 2001, 2002,

Kokaly 2001, Sims and Gamon 2002, Smith et al. 2003).

Here we show that PLS statistics can provide estimates

of multiple chemicals at the leaf level, without statistical

overfitting (Haaland and Thomas 1988). Our findings

also suggest that, to quantify the contribution of a

specific chemical to the spectral properties of a species, it

may be useful to apportion the contributions of several

chemicals to the spectrum, thereby indicating the

relative importance of each chemical in driving the

spectral variation among species.

Spectral signatures of species.—Given the chemical

diversity of tropical forest canopy species (Fig. 4), along

with the demonstrable linkages between multiple leaf

properties and their spectroscopy (Figs. 6 and 7), it

should be possible to cluster the species based on their

spectral signatures. We attempted to cluster them by site

and elevation as shown in Figs. 8–10 for lowland,

submontane, and montane forests. The graphic colors

show absolute differences in reflectance by wavelength,

and the dendrogram to the far right is color-coded to

match the site from which each species was collected.

The most prominent feature among these cluster

diagrams is the unique nature of most spectral

signatures. Here, even small variations in color indicate

quantitative differences among spectral features, so

there are very few species that have the same spectral

signature. The uniqueness of each signature, in turn,

results in a generally weak overall clustering solution in

the dendrograms. Nonetheless, some notable trends are

apparent in the data; for instance, there are two groups

of species with similar spectral properties at the Oliver

Creek site (names in red; Fig. 8). There are also a few

groups with spectral similarity at the montane Tully

(names in green) and Mt Lewis (blue) sites (Fig. 10).

More interesting is the number of unique clusters

generated by the hierarchical analysis: the lowland,

submontane, and montane groups required 19, 19, and

13 clustering levels, respectively. The lowland group

required the same number of clustering levels as that of

the submontane forests, despite the fact that our

lowland data set contained 30% fewer species. In fact,

the ratio of the sample size to the number of spectral

clustering levels was 2.2, 3.1, and 4.2 for lowland,

submontane, and montane forests, respectively. Because

this ratio goes up with decreasing cluster complexity in

the dendrogram, these results suggest that the montane

sites contain the fewest number of unique spectral

clusters per unit of species richness, which may be due to

tighter environmental constraints over leaf and canopy

FIG. 6. Partial least squares (PLS) reflectance weighting factors for each leaf chemical property and specific leaf area (SLA).
Wavelengths of maximum importance in determining leaf properties are those with spectral weightings that diverge from zero.
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optical properties among species at higher elevation, just

as we found in the chemical properties of the montane

forest foliage (Figs. 1 and 2). In contrast, the lowland

sites contained the largest number of clusters per sample

size, indicating fewer spectral similarities among species

that matched the increased diversity of foliar chemistry

in these warmer environments (Fig. 4).

In sum, these clustering results demonstrate the

uniqueness of leaf spectral signatures among tropical

forest canopy species in Australia, a result that echoes

work presented from tropical forests in Central and

South America (Roberts et al. 1998, Castro-Esau et al.

2004). Our results are the first to show that the diversity

of leaf spectral properties parallels the chemical vari-

ability among species, which was especially apparent

when comparing lowland and montane tropical forests

(Fig. 4). We therefore contend that spectral diversity can

serve as a fundamental surrogate for chemical diversity,

opening new doors for spectral remote sensing of

canopy chemical variation in rain forest ecosystems.

Does chemical and/or spectral variation track taxonom-

ic diversity? We used the diversity modeling approach to

explore this possibility.

Canopy diversity modeling.—Our model demonstrated

a nonlinear increase in both the chemical and spectral

variability of tropical forest communities with increasing

taxonomic diversity (Fig. 11). This is not surprising, but

for our purposes, we focus on the rate of change,

saturation point, and differences among tropical forest

types. At high levels of species richness, the chemical

diversity of the lowland systems was up to twofold

greater than that of the other sites sampled (Fig. 11A).

Although the initial rate of change in chemical variation

in a forest type was only slightly different at low species

counts, it was nearly an order of magnitude higher in the

lowland forests when 25 or more species were considered

(Fig. 11B). Saturation of the chemical variance among

species was never achieved in any of the forests (Fig.

11B). The uncertainty around these estimates was

greatest in the lowland forests, and very small in

submontane and montane systems (Fig. 11A).

Spectral variation also increased as species richness

increased (Fig. 11C). As observed with the chemical

results, the spectral variability among the species was up

to twofold higher in lowland than in montane forests.

Absolute uncertainties in the spectral variance simula-

tions were highest in the lowland forest sites and

smallest in the submontane (Fig. 11C), results similar

to those derived from the chemical diversity simulations

(Fig. 11A).

Initial changes in spectral variance (at low richness

levels) were also a magnitude greater in the lowland

forest simulations than in the montane systems (Fig.

11D). However, once canopy richness exceeded about

five species in the montane sites, further increases in

plant diversity were almost linearly tracked by spectral

diversity. Although the rate of change in spectral

variance was nonlinear in the lowland sites, it remained

positive up to 40 species. Similar analyses with up to 150

species from the central Brazilian Amazon also showed

non-saturating patterns in chemical and spectral diver-

sity (Asner 2008). We also observed a crossover in the

rate of change in both chemical and spectral diversity at

richness values of 12–14 species in the submontane and

montane systems (Fig. 11B vs. D). This result suggests

that localized spatial variation in canopy richness is

expressed more strongly in submontane than in montane

forests. In contrast, the montane systems undergo a

more consistent change in spectral variance as richness

increases (up to 40 species modeled in this case).

In combination, these simulations serve as predictions

on how chemical and spectral diversity might change

spatially with increasing species richness in Australian

FIG. 7. PLS scatterplots showing absolute prediction
strength of the spectral reflectance data for multiple leaf
chemicals and specific leaf area (SLA). Measured values are
on the y-axes; predicted values on the x-axes. A comparison of
r2 values among plots provides a relative measure of the
importance of each leaf constituent in determining the spectral
reflectance of all species (the relationship was not significant for
anthocyanin).
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FIG. 8. Hierarchical clustering of canopy species in lowland tropical forests based on their spectral reflectance signatures in the
400–2500 nm range. The colors within the cluster diagram quantitatively depict properties within the reflectance signature that are
similar (same colors, hues) or different among species. The dendrogram at the top shows the statistical similarity among species.
Color codes in the species names relate them to their collection site (in the key); see Appendix B for full species names.
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FIG. 9. Hierarchical clustering of canopy species in submontane tropical forests based on their spectral reflectance signatures in
the 400–2500 nm range. Descriptions are as in Fig. 8.
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FIG. 10. Hierarchical clustering of canopy species in montane tropical forests based on their spectral reflectance signatures in
the 400–2500 nm range. Descriptions are as in Fig. 8.
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tropical forests. Chemical and spectral variability are

highest at all richness levels in lowland forests, and they

increase rapidly at a local scale (10–15 species), then

taper off but continue to increase even at a high richness

levels. Submontane and montane forests follow similar,

but more subtle, patterns of increasing chemical and

spectral diversity. Similar predictions were recently

tested and applied in lowland rain forests on Hawaii

Island (Carlson et al. 2007), showing that the spectral

diversity of canopies, derived from actual airborne

imaging spectroscopy, tracked taxonomic diversity.

Our current study provides detail on the chemical

sources of this spectral diversity as well as the

interconnections among a large number of species.

It is important to note that our simulations were not

designed to represent whole canopies. Nonetheless, leaf-

level chemical and spectral variation among species does

represent basic differences at the canopy scale. For

example, the composition and architecture of highly

foliated canopies (e.g., tropical forest trees) amplify the

expression of leaf optical properties when measured

from overhead by an airborne or satellite sensor (Baret

et al. 1994, Asner 1998). We included some degree of

intraspecific variation in leaf optical and chemical

properties, but additional variation occurs along vertical

gradients from fully sunlit to full shade conditions (Lee

et al. 1990). Our simulations do not capture this source

of variation among leaves within a canopy. However,

our study used top-of-canopy, full-sunlight leaves: this is

useful because optical remote sensing systems are far

more sensitive to upper-canopy foliage in the spectral

regions dominated by contributions from pigments,

nutrients, and SLA (reviewed by Ustin et al. 2004). We

also recognize that new foliar growth (flush), coordinat-

ed senescence, and epiphyll growth would confer

different spectral and chemical signatures on the foliage

of tropical canopy species. These effects remain unmea-

sured here, and thus should be quantified and included

in future simulations. Despite these recognized limita-

tions, we suggest that leaf-level chemical and spectral

properties (and the relationships among them) are basic

proxies for the taxonomic variability encountered in a

tropical forest setting.

FIG. 11. Modeling results showing the sensitivity of species richness to chemical and spectral diversity. Panels A and B quantify
the rate of increase and total dynamic range of the chemical index a (Eq. 1) as species richness is increased for lowland,
submontane, and montane tropical forests. Panels C and D are similar to A and B but use the standardized spectral reflectance data
(K) for each species. Note the y-axis log scale in panels B and D.
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CONCLUSIONS

The chemical and taxonomic diversity of tropical
forest canopies remains difficult to assess at any

ecological or geographic scale. We need to increase
our understanding of how chemical signatures vary

taxonomically and spatially among species, because
their variability affects physiological function and

biogeochemical processes, and the response of forests
to land-use and climate change. Our results indicate

that, although climate exerts a measurable impact on
foliar chlorophyll, N and P concentrations, and SLA,

these effects are modest in comparison to taxonomic
sources of variation in leaf properties. In most cases, the

integrated chemical signatures, or any single leaf
constituent contributing to them, did not aggregate well

even at the genus or family levels. We also found that the
chemical diversity of species within certain plant families

can nearly match that of a forest site or a group of sites.
We conclude that species are the taxonomic unit causing
chemical variance in Australian tropical forests.

We also considered leaf chemical variability across a

pronounced gradient of climate conditions in Australian
tropical forests. The more than 6024 mm annual
precipitation and 8.78C temperature range approaches

the full range of tropical forest conditions worldwide
(Holdridge 1947). Using this gradient, we showed that

leaf chemical diversity is maximal in the lowland tropical
forest sites with the highest temperatures and moderate

precipitation levels. Cooler and wetter montane tropical
forests contained species with measurably lower varia-

tion in their chemical signatures. The diversity model
highlighted quasi-spatial patterns in leaf chemical

signatures between species, revealing that lowland
forests maintain a far more diverse chemical canopy

per unit richness than other forest sites in Australia.
We showed that the leaf optical properties of

Australian tropical forest species were also highly
diverse, and were well correlated with the ensemble of

leaf properties contributing to their chemical signatures.
With the exception of anthocyanins, the spectral

reflectance and transmittance of the species quantita-
tively determined all chemicals and SLA at high
precision (r2 ¼ 0.54–0.83). These results indicate that

the portfolio of leaf properties comprising the chemical
signatures is retrievable from the leaf spectral data, and

that the spectral variability of tropical forest canopies is
driven at the species level more so than at genus or

family levels.
Our foliar chemical findings suggest that tropical

forest canopies are composed of spatially explicit,
crown-scale mosaics of nutrient demand and turnover,

as well as photosynthesis and primary production. Such
extraordinary chemical variation is difficult to explain

ecologically, as it is for taxonomic variation in most
humid tropical forests (Wiegand et al. 2007). Indepen-

dent of the cause for high taxonomic diversity, we show
that chemical and spectral diversity follows a similar

pattern, at least in humid tropical forests of Australia.

Field studies should thus consider the importance of

local-scale chemical variation in relation to taxonomic

composition. In addition, landscape-scale modeling

studies might be improved by incorporating knowledge

of chemical variability into statistical analyses and

model simulations. Moreover, landscape extrapolations

and predictions of ecophysiological and biogeochemical

processes might improve by treating the functional

properties of canopies as distributions based on

chemical and optical properties resulting from taxo-

nomic diversity.

From the remote sensing perspective, high chemical

and spectral diversity presents both challenges and

opportunities in the context of a new generation of

airborne and space-based technologies. Our leaf chem-

ical and spectral data make a robust linkage to the

taxonomic variability of humid tropical forests. The

interrelationships between the foliar chemical and

spectral properties help to explain the successful results

reported in developing species-level classifications from

leaf and canopy spectral data (Cochrane 2000, Castro-

Esau et al. 2004, Clark et al. 2005, Zhang et al. 2006).

Foliar data also help to interpret recent canopy richness

mapping results from airborne systems that combine

imaging spectroscopy with other technologies, such as

lidar, for crown-by-crown spectral analysis of tropical

forest canopies (Carlson et al. 2007, Asner and Martin

2009). These early developments are promising, but

additional studies are needed to scale from leaf and

canopy to larger (e.g., satellite) pixel levels in order to

understand the relationships among the chemical,

spectroscopic, and taxonomic properties of tropical

forests.
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APPENDIX A

Eight figures, providing complementary data rearranged by species or measurement technique, referenced in the main text as key
additional illustrations pertinent to the interpretation of the role that species play in determining the chemical and spectral diversity
of Australian tropical forests (Ecological Archives A019-010-A1).

APPENDIX B

A list of species measured in the study (Ecological Archives A019-010-A2).
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