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Abstract 

Because of their recent terrestrial ancestry, secondary marine organisms usually differ from 

primary marine organisms in life history and physiological traits. Intuitively, the traits of 

secondary marine organisms constrain distribution, thus making these organisms interesting 

subjects for comparative investigation on ecological and biogeographical theory. A primary 

objective of the studies presented here was to improve our current knowledge and 

understanding of the generally poorly known secondary marine arthropods (e.g. mites and 

insects). An additional objective was to outline relationships between ancestry, ecology, and 

biogeography of small-bodied, benthic marine arthropods. 

In establishing a context for the global biogeographical study, the distribution patterns 

of secondary marine plants and animals were determined by means of a literature survey. 

These organisms, including mangrove trees and marine tetrapods, form three distinct 

groupings which relate to northern, tropical and southern latitudinal bands, and, exhibit 

bimodal species richness in each hemisphere. The exact same patterns were resolved for non

halacarid marine mites and are thought to have arisen from the effects of elevated tropical 

speciation and high latitude glaciation. Whereas the typically marine Halacaridae show a high 

degree of radiation in sub-tidal habitats, global distribution patterns and species to genus 

ratios indicate that the intertidally-restricted Ameronothroidea (Oribatida) and Hyadesiidae 

(Astigmata), have had long marine associations relative to other non-ha1carid mites 

(Mestostigmata and Prostigmata). The mari~e mite fauna of southern Africa clusters into three 

geographical provinces, and the species richness of rocky shore mites peaks in the southern, 

warm temperate province. In being consistent with the trend for the region'S marine fauna in 
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general, the mite biogeography highlights the generality of this faunistic trend, with respect to 

taxonomic resolution and taxonomic diversity. 

Ecological studies focussing on mangrove pneumatophores show that they support a 

characteristic suite of arthropods (mites, copepods, tanaids, insect larvae), which differs from 

that of the benthic sediment. Pneumatophore assemblages comprise similar numbers of 

primary and secondary marine species, although the former group is more abundant by one 

order of magnitude. Pneumatophore assemblage composition varies between mangrove 

forests, predominantly in relation to salinity variation. Within mangrove forests differences 

arise through differential wetting frequency and variable sunlight intensity. Desiccation

limited algal growth and sediment deposition determine the vertical zonation of arthropods 

along the pneumatophore length, with secondary marine species typically occurring at lower 

elevations, and primary marine species at higher elevations. The levels of similarity in the 

composition of arthropod assemblages decreases with spatial scale, the largest differences 

occurring between estuarine systems. 

Despite their recent terrestrial ongms, secondary marine arthropods show a high 

degree of integration into marine ecosystems, and should be consistently considered in marine 

ecological and biogeographical studies. 

Key Terms: Acari, ecological transitions, intertidal, mangroves, mites, southern Africa 
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Chapter I 

Introduction 

Primary and secondary marine organisms 

The two realms making up the Earth's biosphere, terrestrial and marine, are so different that in 

many ways meaningful ecological comparisons between them are not yet possible. Rough 

quantitative comparisons of productivity, species richness, and other simple ecological 

indicators are available, however, integrating the information about the underlying processes 

often proves difficult (May, 1992, 1994; Angel, 1994; Briggs, 1994; Gray 1997). Despite 

these differences, animals and plants have crossed the land/sea barrier repeatedly. While the 

entire variety of terrestrial life, as seen today, originated, at some point, in the sea (for 

reviews, see Little, 1983; 1990), few marine organisms have a terrestrial ancestry (Vermeij & 

Dudley, 2000). The organisms arising from land-to-sea transitions, are the focus of this thesis, 

and will further be referred to as secondary marine (as opposed to primary marine organisms 

which have spent their entire evolutionary history in the marine environment). The diversity 

of secondary marine life is briefly reviewed below. 

Among the angiosperms, there are two distinct growth forms associated with marine 

habitats: the mangrove trees and sea grasses. Tree species from at least fifteen families are 

strictly limited to coastal waters, and are described under the common name of mangroves 

(Tomlinson 1987). Although extremely heterogeneous, these trees are characterized by three 

common adaptations, attained to various degrees in different taxonomic groups: viviparity, 

breathing roots, and resistance to high salinity. Sea grasses, resembling algae in many 

superficial ways, represent at least three different invasions of the sea by basal monocots (Les 

& Cleland, 1997). 

No recent species of moss, fern, or gymnosperm can be considered truly marine. 

Defining secondary marine groups in higher algae and unicellular organisms is rather 

problematic, because little is known about their transitions between terrestrial, freshwater and 

marine environments. Among the fungi, at least two secondary invasions of the sea have been 

documented for the Ascomycota (see Spatafora et aI., 1998), and numerous other groups, 

including lichens, are generally accepted to be only secondarily marine. 

Among the vertebrates, the reptiles have had a long history of past associations with 

the sea. When considering recent taxa, however, marine reptiles are scarce. There is only one, 

1 



apparently monophyletic group of marine chelonians (Schaffer et aI., 1997), one species of 

sea crocodile, two distinct groups of sea snakes (Keogh, 1998), and one species of truly 

marine lizard (see Rassman, 1997). Best known among secondary marine organisms are the 

seabirds, where adaptations to marine life appeared on numerous occasions (at least once each 

in Sphenisciformes, Procellariiformes, Pelecaniformes and Lariformes; see Cracraft, 1981), 

and the mammals, with four distinct recent marine groups (Sirenia, Cetacea, Pinnipedia, and 

the genus Enhydra in Fissipedia; see Reeves et aI., 1992). 

Secondary marine arthropods 

Arthropods, like all animal phyla, originated in the sea. One of the major arthropod groups, 

the Crustacea, has been predominantly marine throughout its evolutionary history. Two other 

groups, which are largely terrestrial, re-colonized the marine environment to various extents, 

in multiple invasions: these are the Acari (mites) and the Hexapoda (springtails and insects). 

Numerous families of mesostigrnatid, prostigrnatid, oribatid and astigrnatid mites have 

marine representation. However, most of the marine mites are strictly intertidal, with only one 

family, the Halacaridae (pro stigmata), extending into subtidal habitats. Halacarid mites 

represent more than half the total diversity of marine mites worldwide. Bartsch (1989) 

indicates a total of 700 species described to date, while Otto (2000a; that is, only eleven years 

later) suggests this figure might have already reached 1000. Two weeks of collections in tiny 

Rottnest Island off the coast of Western Australia yielded 80 species (Otto, 1999), while 

extensive collections in the Great Barrier Reef returned almost 300 (Otto, personal 

communication). Habitat specialization in halacarid mites is obvious at genus level. Some 

genera, such as Acarochelopodia and Actacarus are interstitial, inhabiting sandy deposits 

(Otto 2000b), while others, like Agauopsis (Bartsch, 1986) are characteristic for rocky shores. 

Still others, like Bathyhalacarus, inhabit the ocean floor thousands of meters below sea level 

(Bartsch, 1982), making the Halacaridae the only secondary marine organisms that complete 

their life cycle on the ocean floor. This makes halacarid mites ecologically closer to primary 

marine organisms, and it can be explained only by considering their long evolutionary history 

in the marine environment (see Bartsch 1996). 

The degree of adaptation to the marine environment varies less amongst hexapods, 

with most species being intertidal, and this applies to both collembolans and insects. Only one 

group of insects, the water-skaters, has adapted to an entirely marine existence on ocean 

surfaces, and certain parasitic insects can be found in the open sea, together with their hosts. 
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All marine Colembola are intertidal air-breathers. Invasions of the marine environment 

happened independently in five families from two orders: Isotomidae, Entomobryidae 

(Entomobryomorpha) Hyp0 gastruridae, Onychiuridae and Neanuridae (Poduromorpha) (see 

Greenslade, 1986; Christiansen & Bellinger, 1988; Greenslade & van Klinken, 1994). 

Numerous insects (Diptera: Canacidae, Ceratopogonidae, Chironomidae, Coelopidae, 

Culicidae, Dolichopodidae, Ephydridae, Tipulidae, Trichoptera: Chathamiidae) live in 

intertidal environments as aquatic larvae, but lead a supralittoral, air-breathing existence as 

adults. The Canacidae, Coelopidae and Chathamiidae are predominantly marine, as are a few 

genera in Ceratopogonidae and Chironomidae (midges) (Morley & Ring 1972; Cheng, 1976; 

Neumann, 1976; Kronberg, 1988; Cheng & Frank, 1993). Midge larval and pupal 

development is well correlated with tidal rhythms (Neumann, 1976; Robles, 1984; Saigusa & 

Akiyama, 1995). Two weevil genera, Bothrometopus and Palirhoeus (Coleoptera: 

Curculionidae), live (both as adults and larvae) in the supralittoral and intertidal zones of sub

Antarctic islands, heavily exposed to salt spray (Chown & van Drimmelen, 1992). Other 

groups of insects (Coleoptera: Dytiscidae, Gyrinidae, Dryopidae, and Heteroptera: Corixidae) 

are known to tolerate brackish and even salt water, but typically live in freshwater. 

In water-skaters (Heteroptera: Gerridae, Veliidae, Hermatobatidae), all life stages live 

on the sea surface (mostly in sheltered mangrove habitats, but in some cases on coral reefs, 

and even in the open ocean; see Cheng, 1985). This group has radiated extensively in marine 

habitats; around 170 species are known, most of them in the Indo-Pacific region (Andersen, 

1999). However, no known insect spends its entire existence submerged in seawater, 

reproduction happening most often above the water surface. Even seal lice (from the orders 

Mallophaga and Anoplura), although staying submerged for entire seasons, only reproduce 

when their mammalian hosts are on land (Cheng & Frank, 1993). 

Present state of knowledge for southern Africa 

Our knowledge of the southern African secondary marine arthropods is largely based on 

taxonomic descriptions and species lists. Recently, numerous mite species have been 

described, a few of them in papers included in this thesis. Four species of marine spider are 

known from the region (Lamoral, 1968). Although a single species of collembolan (Anurida 

maritima) is mentioned from the rocky shores of southern Africa (Branch & Branch, 1981), 

numerous other species have been observed and collected. 

Numerous insect families have been reported from sandy beaches (Dermaptera: 

Labiduridae, Orthoptera: Stenopelmatidae, Coleoptera: Cicindelidae), stranded kelp 
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(Coleoptera: Carabidae, Cicindellidae, Tenebrionidae, Diptera: Chironomidae, 

Anthomyiidae), and brackish estuarine waters (Heteroptera: Saldidae, Corixidae, Coleoptera: 

Dytiscidae, Hydraenidae, Staphilinidae, Heterroceridae, Trichoptera: Ecnomidae, Diptera: 

Ephydridae) (Hesse, 1934; Branch & Grindley, 1979; Stenton-Dozey & Griffiths, 1980; 

Branch & Branch, 1981; Scholtz & Holm, 1985; Rebelo, 1987). On rocky shores, several taxa 

(Coleoptera: Staphilinidae, Diptera: Chironomidae) have been found living in conditions of 

temporary or permanent submersion (Hesse, 1934; Scholtz & Holm, 1985). One species of 

water strider (Halobates micans) has been recorded along the eastern coast of southern Africa 

(Scholtz & Holm, 1985). It is however worth noting, that many of the taxa listed above are not 

normally considered as marine (Cheng, 1976). 

Previous to the current series of investigations, there has been a dearth of information 

concerning the ecology and biogeography of secondary marine arthropods in general. The 

objectives of this thesis were to 1) describe distribution patterns of secondary marine 

arthropods at global, regional (southern Africa) and local scale, and 2) conduct ecological 

investigations comparing primary and secondary marine organisms in terms of abundance, 

species richness, temporal dynamics, and interactions with biotic and abiotic factors. 

Thesis outline 

While the studies presented here address the biogeography and ecology of secondary marine 

organisms, with a focus on arthropods and on southern Africa, the scope extends to global 

geographical patterns of secondary marine organisms in general. The thesis contains two 

sections. The first section (chapters II - IV) concerns the biogeography of secondary marine 

organisms, while the second section (chapters V-IX) concentrates on community and spatial 

ecology of mangrove pneumatophore arthropods. 

Chapter II refers to secondary marine organisms in general, excluding arthropods. 

However its inclusion in the thesis was considered to be beneficial in 1) supplementing the 

introduction with information about secondary marine life forms; and 2) offering global 

distribution patterns from groups of secondary marine organisms that, unlike arthropods, have 

been extensively studied. Chapter III considers the global distribution patterns of non

halacarid intertidal mites. Taxonomic and geographical patterns are reviewed, in order to 

assess the evolutionary age in the marine environment for various groups. The diversity and 

distribution patterns of marine intertidal Acari in southern Africa are described in Chapter IV, 

and compared to global patterns (as presented in chapter III), and to other animal groups. 
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Chapter V analyses previously undescribed communities of mesoarthropods from 

mangrove pneumatophores, in order to assess the comparative representation of primary and 

secondary marine species. Chapter VI compares the vertical distribution of these two groups, 

and considers the associations existing within and between them, to decide whether the 

evolutionary history of species has any effect on resistance to physical stress (e.g. 

desiccation), or on the strength of biotic interactions. Chapter VII considers small-scale 

distribution and abundance patterns of pneumatophore arthropods in relation to the algal 

covering of the pneumatophores and the sediment trapped within it, and monitors temporal 

changes on defaunated pneumatophores. In Chapter VIII, a nested sampling design is used to 

assess variation in ecological parameters (assemblage composition, species richness and 

abundance) of pneumatophore arthropods, across a variety of scales (between 10 cm and 100 

km). 

All chapters (except for I, VIII and IX) have been structured and prepared 

independently for journal publication. Some are published, others in press, and others still, are 

submitted. Given this structure, there is inevitable repetition of information, and this applies 

especially to the Introduction and Methods sections of the chapters. Furthermore, the study 

was not undertaken in the same order as that given for the thesis chapters. This means that 

some chapters occurring later in the thesis may not always refer to earlier stated information. 

Finally, as the papers for pUblication were not altered when compiling the thesis, there is no 

cross-referencing between chapters. For purpose of cross-referencing, and to place the study 

in the context of the sequence in which it was undertaken, this sequence is given below: 1) 

Chapter III (Global distribution patterns of non-halacarid marine intertidal mites: implications 

for their origins in marine habitats), 2) Chapter V (Mangrove pneumatophore arthropod 

assemblages and seasonality patterns), 3) Chapter II (Back to the sea: secondary marine 

organisms from a biogeographical perspective.), 4) Chapter VI (Patterns of distribution, 

abundance and interactions among primary and secondary marine arthropods cohabiting 

mangrove pneumatophores), 5) Chapter VII (Algal growth and sediment deposition as 

determinants of distribution and abundance in mangrove pneumatophore arthropods). 

Two further papers, written earlier than the rest of the thesis, were included as an 

appendix, and represent the descriptions of four new species of halacarid mite from the 

southern African coast. Among these, Halacaropsis praecognita (Appendix: Part I) is a rocky 

shore species, and appears in the biogeographical analyses in Chapter IV, while Acarothrix 

umgenica and Copidognathus caloglossae (Appendix: Part II) are mangrove species, and their 

ecology is investigated in Chapters V -VIII. 
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Section I 

Biogeography 



Chapter II 

Back to the sea: secondary marine organisms from a 

biogeographical perspective 

Abstract 

Secondary marine organisms belong to groups of terrestrial ancestry which have recolonized 

marine habitats. Some of them are, to various degrees, still dependent on the terrestrial habitat 

where they originated, which imposes certain limits in the expansion of their distribution 

range. This makes them an ideal subject for historical reconstruction. Here I perform 

biogeographical analyses on the global distribution of twelve groups of land-dependent 

secondary marine plants and animals (mangrove trees, sea turtles, sea snakes, seabirds and 

seals). When all groups are taken together, species diversity shows a unique bimodal pattern 

for each hemisphere, with high values in cold-temperate and tropical regions, but low values 

in mid-latitude regions. None of the individual groups considered reaches its highest species 

concentration in mid-latitude regions. This is shown to be due to the existence of three 

different species assemblages, inhabiting the three species-rich latitudinal bands (northern 

cold-temperate, tropical, and southern cold-temperate), and intermixing to a limited degree in 

the species-poor mid-latitude bands. This is evidence that secondary marine organisms 

diversified independently in cold-temperate and tropical regions, and strongly suggests that 

colonization from terrestrial habitats took place independently in the three species-rich 

latitudinal bands. Different constraints in the terrestrial habitat of origin are put forward as 

evolutionary incentives for colonizing the sea: glaciation processes in cold regions and 

competition in tropical regions. 

Introduction 

The distinction between terrestrial and marine ecosystems is the most prominent dichotomy in 

the living world. Essentially, each of these types of ecosystems represents a no-go area for the 

vast majority of the other one's inhabitants (Little, 1983; 1990). There are, however, 

numerous groups of organisms originating in terrestrial habitats, which have recolonized the 

marine environment (for a review, see Vermeij & Dudley, 2000). These are known as 

secondary (or secondarily) marine organisms. The degree to which they became independent 
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of terrestrial habitats varies. Some (such as mangrove trees, and most marine mite and insect 

species) are restricted to the littoral fringe. Others (sea turtles, seabirds and seals) are mainly 

marine, but need to come to the shore during the reproductive season. Finally, others (sea 

grasses, true sea snakes, dolphins and whales) became completely land-independent, and live 

in either shallow coastal waters or even deep oceanic waters. 

In explaining why such transitions took place, it is worth noting that the oceans 

represent an enormous potential of space, matter and energy. Transfer of matter and energy 

from marine to terrestrial ecosystems has been documented (e.g. Polis & Hurd, 1996), and 

entire sea-dependent terrestrial communities are known (see Heatwole, 1971). However 

marine resources are normally inaccessible to terrestrial organisms, which cannot withstand 

long submersion periods, and can also be affected by high salinity values. To withstand these, 

dramatic anatomical and physiological changes are necessary, and the incentive of copious 

food resources may not provide sufficient selective pressure to this effect. More likely, 

restrictive conditions in the environment of origin are responsible for these changes. 

There is little information on the ecological factors that originally caused marine 

organisms to invade land. It is known however that present-day marine organisms inhabiting 

the upper littoral level of rocky shores are forced into this harsh habitat by competition 

(Connell, 1961) and! or predators (Seed, 1969). What caused terrestrial life forms to go back 

to the sea should be easier to understand, given the fact that some major invasions of the sea 

by terrestrial biota happened relatively recently, and in taxonomic groups we are more 

familiar with. 

Historical factors are essential in explaining distribution patterns in manne 

environments (Crame, 1993, 2000). One may therefore assume that, in certain groups of 

secondary marine organisms, present-day biogeographical patterns can be meaningful in 

indicating the habitat where the land-to-sea transition originally took place. The most obvious 

candidates were those organisms, which are linked to terrestrial habitats by particUlar stages 

in their life history, as they are constrained in expanding their distribution range by both 

terrestrial (reproduction- and attachment-related), and marine (mainly feeding- and dispersal

related) factors. The present investigation into the biogeography of these organisms will 

hopefully provide useful insights into the ecological background accounting for 

recolonization of the marine environment, as well as into subsequent taxonomic 

diversification within secondary marine groups. 
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Material and Methods 

Twelve groups which are assumed to have independently colonized the marine environment 

and subsequently diversified within it were considered (see Table 1); biogeographical 

information for other groups is rather incomplete. The marine representatives in each of these 

groups are currently thought to have resulted from the diversification of one single land-to-sea 

transition, with the possible exception of the Combretaceae (Tomlinson, 1983) and Laridae 

(which apparently are relatively recent colonizers from freshwater habitats - see Warheit, 

1992). 

To assess the species richness of each group, and for all considered groups taken 

together, in various parts of the world, the world map was divided into 15 X 15 degrees of 

latitude/longitude squares (288 squares in all - see Fig. 1). The area north of 30° N was 

defined as northern; that between 30° N-30° S as tropical, and that south of 30° S, as southern. 

A special attention was paid to the bands comprised between 30°-45° in each hemisphere, 

further referred to as mid-latitude regions. The species from each group, currently breeding in 

each square were counted, following a literature survey (see references in Table 1). 

This resulted in a square-group matrix. To define world centres of secondary marine 

diversity, the squares were arranged in decreasing order of total species number, and the one 

hundred most speciose squares were mapped. To define any differences among faunas of 

various world regions, this matrix (untransformed data) was used to calculate Euclidian 

distances between the squares, and the results were plotted as an MDS (see Legendre, 1990; 

Clarke, 1993). Only the 100 most speciose squares were used in this analysis, in order to point 

out the richest species assemblages, and also to avoid overcrowding the plot. For this, I used 

the SPSS (ver. 9.0) package for Windows. 

To see where (in terms of latitude) each group reaches highe~/ lower concentrations, 

the mean number of species per square was calculated for each of the twelve latitudinal belts. 
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Table 1. Groups of secondary marine organisms. All genera considered in the study include at least one sea-dependent species. Asterisks 

mark: *genera with a few localized species living in terrestrial or freshwater habitats; ** genera with widespread species living in 

terrestrial or fi:eshwater habitats. Sources: Tomlinson, 1986; Woodroffe & Grindrod, 1991; Ricklefs & Latham, 1993 (mangrove trees), 

Cogger, 1975; Halliday & Adler, 1986; Dauner, 1988; Matz & Weber, 1988; Capula 1990; Castroviejo et aI., 1994; Keogh, 1998 (marine 

reptiles), Tuck & Heinzel, 1979; Harrison, 1987; Howard & Moore, 1994 (seabirds), King, 1983; Reeves et aI., 1992; Novak, 1994 

(seals). 

Groups 

Mangrove trees 
Combretaceae 
Sonneratiaceae 
Rhizophoraceae 
A vicenniaceae 

Marine reptiles 
Chelonia 
Laticaudinae 

Seabirds 
Sphenisciformes 
Procellariiformes 

Pelecaniformes 

Marine 
species 

3 
5 
17 
8 

7 
4 

18 
108 

47 

Laguncularia, Lumnitzera 
Sonneratia 

Genera considered in the study 

Bruguiera, Ceriops, Kandelia, Rhizophora 
Avicennia 

Caretta, Chelonia, Dermochelys, Eretmochelys, Natator 
Laticauda* 

Aptenodytes, Eudyptes, Eudyptula" Megadyptes, Pygoscelis, Spheniscus 
Bulweria, Calonectris, Daption, Diomedea, Fregetta, Fulmarus, Garrodia, Halobaena, Halocyptena, 
Hydrobates, Loomelania, Macronectes, Nesofregetta, Oceanites, Oceanodroma, Pachyptila, 
Pagodroma, Pelagodroma, Pelecanoides, Phoebetria, Procellaria, Pseudobulweria, Pterodroma, 
Puffin us, Thalassoica 
Fregatta, Morus, Nannopterum, Papasula, Pelecanus**, Phaeton Phalacrocorax**, Sula. 
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Table 1. (continued). 

Laridae 

Alcidae 

Seals 
Pinnipedia 

58 

22 

32 

Anous, Catharacta, Creagrus, Gabianus, Gygis, Larosterna, Larus * *, Pagophila, Procelsterna, 
Rhodostethia, Rissa, Sterna * *, Stercorarius, Thalasseus, Xema 
Aethia, Alca, Aile, Brachyramphus, Cepphus, Cerorhinca, Cyclorrhynchus, Fratercula, Lunda, 
Ptychoramphus, Synthliboramphus 

Arctocephalus, Callorhinus, Cystophora, Erignathus, Eumetopias, Halichoerus, Hydnlrga, 
Leptonychotes, Lobodon, Mirounga, Monachus, Neophoca, Odobenus, Ommatophoca, Otaria, Phoca *, 
Phocarctos, Zalophus 



Results 

Regional and latitudinal patterns of distribution for secondary marine organisms in general 

Higher levels of diversity in secondary marine organisms were found to occur in the tropical 

and southern regions, with a lower diversity in the northern regions (Figure 1). In the tropics, 

there were two major diversity centers: a very extensive one in the Indo-West Pacific, and a 

smaller one in tropical America. The southern regions showed no clear pattern of high 

diversity centers, rather, all sub-Antarctic locations had a relatively high diversity (Figure 1). 

Largely glaciated latitudes (75°-900N and 600-900S) had impoverished faunas. The 

other latitudinal bands, showed a clear tendency towards a bimodal distribution of the high 

diversity squares for each hemisphere. Species richness was high in northern (45°-75°), 

tropical (30°-30°) and southern regions (45°-60°), but low the mid-latitude regions (30°-45° in 

each hemisphere). Only three squares in the northern mid-latitude band were counted among 

the top one hundred most diverse, despite the fact that neighbouring bands, both to the north 

and to the south had higher values. In a similar way, eight squares in the southern mid-latitude 

band had top diversity values, with more squares in both neighbouring bands (Figure 1). 

Northern, southern and tropical bands had markedly different faunas, which clustered 

on the MDS as three different directions. The most distinct regions from the three categories 

were the Behring Sea (northern), Indo-Malesia (tropical), and New Zealand and the sub

Antarctic islands (southern), corresponding to the largest agglomerations of high diversity 

squares. The faunas locally intermixed, especially in mid-latitude areas, these having the least 

differentiated faunas, and were grouped in the central part of the MDS (Figure 2). 

Latitudinal patterns of individual secondary marine groups 

Out of the twelve groups examined, six (Combretaceae, Rhizophoraceae, Sonneratiaceae, 

Avicenniaceae, Chelonia and Laticaudidae) were typically tropical, one (Alcidae) typically 

northern, one (Sphenisciformes) typically southern, and four (Procellariiformes, 

Pelecaniformes, Laridae and Pinnipedia) cosmopolitan. Among the cosmopolitan groups, two 

(pelecaniformes and Laridae) reached top species diversity in tropical regions, one 

(procellariiformes) in southern regions and one (Pinnipedia) in both northern and southern 

regions. No group of secondary marine organisms is best represented in mid-latitude regions 

of each hemisphere (30°-45°) (Figure 3). 
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Figure 1. Areas of high diversity for selected groups (see Table 1) of secondary marine organisms_ Symbols: squares, northern; circles, 

tropical; triangles, southern. Open symbols mark mid-latitude regions. The size of the symbols is roughly proportional to the number of 

species within the squares (large symbols, more than 30; medium symbols, 20-29; small symbols, 12-19 species). 
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Discussion 

Two major patterns emerged from this study: the existence of different assemblages of 

secondary marine organisms in northern, tropical and southern regions, and bimodal 

distributions of species richness values in each hemisphere. The existence of distinct northern, 

tropical and southern species assemblages is by no means unique to secondary marine 

organisms; in fact this is the most obvious biogeographical pattern in the marine realm 

(Briggs, 1974, 1995). On the other hand, the existence of three high-diversity latitudinal bands 

in secondary marine organisms can be considered a major anomaly, and has not been 

previously reported. Typically, both marine and terrestrial groups show a gradiental decrease 

in species richness from the equator towards the poles (see Rohde, 1992 and references 

therein). Although some observations relating to higher marine biodiversity in the southern, as 

compared to northern, hemisphere have been made (Gray, 1996), and even substantiated for a 

secondary marine group (Chown et aI., 1998; Chown & Gaston, 1999 for Procellariiformes), a 

decrease in species richness in mid-latitudes has never been reported in any group, whether 

defmed on taxonomic or ecological grounds. 

Before trying to explain these patterns III relation to origination III the manne 

environment, it is important to consider two aspects potentially limiting further interpretation. 

Firstly, as these patterns were derived from analyses on a limited number of secondary 

marine groups, it is questionable to what extent these are representative for the distributions of 

secondary marine groups in general. The selection of the groups was dictated by both 

availability and reliability of distribution information, which is only pertinent to organisms 

with large body sizes, and these may show different patterns to smaller organisms (Gaston & 

Blackburn, 1996). However, another study (Proche~ & Marshall, 2001) shows that the marine 

ameronothroid mites (Acari: Oribatida) have similarly globally separated faunas and 

bimodally distributed species numbers in each hemisphere, which indicates that these patterns 

may be widespread among secondary marine organisms. 

Secondly, as the present study included 329 species resulting from twelve land-to-sea 

transitions, it is worth considering to what extent diversification following a transition leaves 

room for interpreting present day biogeographical patterns as results of the conditions in 

which the transition took place. For appreciating this, one needs to have a closer look at the 

distribution patterns of individual groups (Figure 3). Only four of the twelve groups have a 

cosmopolitan distribution, indicating range expansions from one latitudinal band to another; 
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the other groups are clearly centred in one of the bands with high species richness (northern, 

tropical or southern). While strictly tropical distributions can be interpreted as the result of 

climatic barriers, the distribution of the auks (Alcidae), limited to the northern hemisphere, 

and that of the penguins (Sphenisciformes), to the southern hemisphere (although the two 

groups almost meet on the western American coast), suggest that these are relatively new 

groups with limited possibilities of expanding their distribution . .In a similar way, among 

tropical groups, the sea snakes (Laticaudinae) and some groups of mangroves do not span 

over the entire tropical band, but are limited to parts of it - presumably, those parts where they 

originated (Figure 3, and references in Table 1). 
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Figure 3. Average species richness for twelve groups of secondary marine organisms III 

twelve latitudinal bands (see Material and Methods). A, mangrove trees; B, marine reptiles; C, 

seabirds; D, marine mammals. 
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Therefore, my original assumption that possibilities of range expansion will be limited in 

groups of secondary marine organisms with a degree of land dependency is largely supported, 

and grants further interpretation of the observed patterns. 

The high species richness in the tropical band can be explained either according to the 

theory stipUlating higher speciation/lower extinction rates for tropical regions (see Chown & 

Gaston, 2000), or by assuming higher rates of origination in the marine environment. The 

latter would mean that, for some reason, the tropical environment is conducive for land-to-sea 

transitions. It is generally accepted that biotic factors are essential in structuring complex 

communities, such as those in the tropics (Grime, 1976, Wilson & Lee, 2000). It would be 

therefore likely that biotic interactions are responsible for land-to-sea transitions in the 

tropics. One example supporting this idea is the fact that mangrove trees can occur in 

freshwater habitats (W oodroffe & Grindrod, 1991), but are generally displaced there by more 

competitive species. 

Explanations for the high diversity bands in the cold-temperate regIOns of each 

hemisphere must be based on the assumption that these bands also have high origination rates. 

According to Grime (1976), communities in extreme environments are mainly structured by 

physical factors. Glaciation processes have been suggested to represent the most powerful 

physical factor influencing the natural history of polar regions, both directly, by eliminating 

species physiologically unable to cope with climatic change, and indirectly, by reducing 

terrestrial food supply (Crame, 1992, 1993). Climatic changes have been shown to have 

obvious effects in marine, as compared to terrestrial, environments. For example, it is known 

that Antarctic terrestrial biota were almost completely eliminated as a result of glaciation 

processes (but see Marshall & Coetzee, 2000), while marine littoral ecosystems remained 

fairly species-rich all through the Cenozoic (Clarke & Crame, 1992). Numerous studies 

suggest that the high species richness of secondary marine invertebrates in intertidal and 

supralittoral zones of sub-Antarctic islands relates to glaciation processes (Chown, 1990, 

1994; Marshall et al., 1999; Mercer et al., 2000) . 

In summary, I present evidence in support of the independent origination of secondary 

marine organisms in three latitudinal bands, and suggest that land-to-sea transitions within 

these bands have been promoted by different factors: biotic interactions, such as competition, 

in the tropical belt, and physical stress (represented in partiCUlar by glaciation processes) in 

the cold regions. 
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Chapter III 

Global distribution patterns of non-halacarid marine intertidal 

mites: implications for their origins in marine habitats 

Abstract 

Aim We investigated the taxonomic, ecological and global biogeographical trends on non-

halacarid marine mites with a view to understanding their origins in the marine environment. 

While halacarid mites are typicaly marine, numerous other mite taxa occupy littoral habitats, 

including rocky-shores, boulder beaches, slat marshes and mangrove forest floors, and occur 

in most geographical regions. 

Location This study concerns the extant taxa of non-halacarid marine mite from intertidal 

zones, worldwide. 

Methods A literature survey was undertaken to compile the records for localities and habitats 

of all the known species of non-halacarid intertidal mite. Simple analyses were used to 

determine their taxonomic and geographical trends. A multivariate analysis was used to 

compare how closely the biogeography of selected faunas conformed with the generally 

accepted marine biogeographical zones. 

Results Although the species records are incomplete because of variable sampling intensities 

among regions, there is clear indication that these faunas are species-poor (only 162 species 

were recorded in the literature). The records for some groups (ameronothroid and hyadesiid 

mites), some habitats (rocky-shores) and some world regions (Eastern Atlantic-Boreal, Sub

Antarctic and Southern New Zealand) are apparently representative of the actual faunas, 

whereas those for the mesostigmatid and non-halacarid prostigmatid mites, and mangrove and 

salt marsh habitats, are clearly incomplete. The faunas comprise mites from four suborders; 

mesostigmatid and prostigmatid mites comprise species to genus and species to family ratios, 

relative to oribatid and astigmatid mites. These mite groups also differ with respect to 

ecological and geographical attributes; ameronothroid (oribatid) and hyadesiid (astigmatid) 

mites exibit wider generic geographical distributions and stronger marine trophic links. 

Conclusions The emerging trends suggest different geological time-scales for the 

evolutionary incursions into the marine environment by the mesostigmatid and prostigmatid 

mite group and the oribatid and hyadesiid mite group. They suggest that members of the latter 
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have had longer associations with marine intertidal ecosystems. The origins of both groups are 

also likely to differ of typically marine halacarid mites. 

Introduction 

Mites have successfully colonized most terrestrial and freshwater habitats on earth, including 

the deserts and polar regions, but their colonization and radiation in the marine environment 

has been markedly limited. With the exception of a single family, the Halacaridae 

(Prostigmata), which shows a high degree of radiation within the marine environment (around 

900 known species) and extends subtidally to the ocean depths (Bartsch, 1989; Abe, 1998; for 

recent biogeographical syntheses), all other mite groups show limited radiation and are 

restricted to littoral fringes (intertidal and supralittoral zones). This investigation undertakes to 

characterize these limitations of non-halacarid mites in marine environments by considering 

taxonomic, biogeographical and ecological patterns. 

The restriction of non-hal acarid mites to fringe marine habitats suggests that they have 

not completely transcended the stark ecological barrier between the marine and terrestrial 

environments. As such they are extremely useful candidates for investigation, offering 

numerous opportunities into understanding the evolutionary constraints and processes 

involved in the transition from a terrestrial to a marine existence. However, only a single 

study considers this subject and its scope is limited to a single mite taxon, the oribatid super

family Ameronothroidea (Weigmann & Schulte, 1977). Numerous investigations have 

considered other aspects of the ecology of marine mites, specifically concerning community 

structure, local distribution patterns and feeding behaviour patterns (Luxton, 1964, 1966, 

1967a,b; Ganning, 1970; Schulte, Schuster & Schubart, 1975; Schulte 1975, 1976a,b; 

Schuster, 1979; S0mme & Block, 1984; Pugh & King, 1985a,b, 1988; Buckling, Ernst & 

Siemer, 1998; Mercer, Chown & Marshall, 2000). Most studies on marine mites, however, 

deal with their taxonomy. 

This study presents a compilation of all known records of non-halacarid marine mite, 

as accessed from the primary taxonomic literature. In addition to taxonomic data, 

geographical and ecological data were collated for each record. The emergent taxonomic, 

geographical and ecological patterns are interpreted within the context of the origination and 

antiquity of the acarine sub-orders. Our interpretation firstly and most importantly considers 

the extent to which the records represent actual species numbers and actual faunas. 
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Materials and Methods 

A list of records of non-halacarid mite species was compiled from a literature survey (see 

Appendix). The habitat (e.g. rocky-shore, mangrove) and geographical region of each record 

were noted. With respect to vertical position on the shore, we considered only the intertidal 

species. Species found in the supralittoral zones only were not included in the list as these 

zones are poorly defined and highly likely to contain numerous "tourists" (see Gaston et al., 

1993) from adjacent terrestrial habitats. Species that occur in both the supralittoral and 

intertidal zones were however included. Where the distinction between these two levels was 

not made clear in the primary literature, the records were omitted, as were parasitic species 

(e.g. Halarachnidae). Intermediate taxonomic levels (sub-species, sub-genus) were not taken 

into account. All reference to marine mites, except where otherwise stated, refers to taxa other 

than the Halacaridae. Whereas the global biogeographical regions are widely accepted for 

terrestrial biota, few attempts have been made to derive a similar synthesis for the marine 

biota. Most marine biogeographical studies focus on regional distributions; the Indo-West 

Pacific and Antarctic regions in particular have been well studied (for recent examples see 

Briggs, 1999; Glasby & Alvarez, 1999). Probably the most recognized world biogeography 

for the littoral and shelf biota is that proposed by Briggs (1974). We used Briggs's scheme in 

our analyses, but modified this in order to 1) simplify the terminology, 2) remove the sub

regions identified as provinces, and 3) include only the regions from which mites have been 

recorded. Hong Kong, which falls on the limit between the Indo-West Pacific and Japan 

regions, was considered part of the Indo-West Pacific. Briggs distinguishes five broad 

latitudinal, "climatic" zones: northern cold-temperate, northern warm-temperate, tropical, 

southern warm-temperate and southern cold-temperate. Seventeen regions nested within these 

zones were found to contain non-halacarid marine mites (see Figure 1). 

To assess the degree of conformity of the mite faunas to the global manne 

biogeographical reglOns, a multivariate analysis was performed, specifically a 

multidimensional scaling procedure (MDS). A matrix was established to assess the number of 

species in each hyadesiid and ameronothroid genus for each biogeographical region. Genera 

which were recorded from only one region, as well as regions containing a single genus, were 

excluded from the data set. Euclidean distances among the regions were calculated from 

untransformed data. The results were plotted in a two-dimension ordination, which included 

the zero coordinate lines. The data sets closest to the intersection of the coordinates were 
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considered to have the least individualized (common) fauna, while those furthest apart, the 

most individualized (disparate) fauna. The analysis was performed using SPSS Ver. 9.0 

(1999) for Windows. 

Sub-Antarctic 
Southern 

New Zealand 

Figure 1. Littoral biogeographical regions of the world (thin line) and climatic zones (thick 

line) based on those of Briggs (1975). Only the regions in which non-halacarid mites occur 

are named. 

Results 

Taxonomic patterns 

The species richness of mites living in intertidal habitats worldwide is notably low; only 162 

species have been recorded from these habitats. These species are taxonomically partitioned 

among four mite sub-orders (Meso stigmata, Pro stigmata, Oribatida and Astigmata), 21 

families and 44 genera. The partitioning of the families and genera within the sub-orders is 

remarkably skewed. Despite notably more species belonging to the Oribatida and Astigmata 

than to the Mesostigmata and Prostigmata, the latter two orders comprise more than three 

times as many families (Table 1, Appendix). More than half of the known marine mite species 

(57%) belong to two higher taxonomic groups, the Ameronothroidea (Oribatida) (27%) and 
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the Hyadesiidae (Astigmata) (30%). The Arneronothroidea, which contains the families 

Arneronothridae, Fortuyniidae and Selenoribatidae, comprises 93% of the marine oribatid 

mite species. The Arneronothridae comprises only two marine genera, with the other thirteen 

belonging to the latter two families. All of the marine astigmatid mite genera and species 

belong to the single family, Hyadesiidae (see Appendix). 

Ecological patterns 

Non-halacarid mites have been collected from intertidal zones of rocky-shores, boulder 

beaches, salt marshes and mangroves, but not from the intertidal zone of sandy shores. By far 

the majority of species are found on rocky-shores (and boulder beaches) (91 %). In most cases 

they are specific to rocky-shore habitats, and do not extend distributions to the other intertidal 

habitats. The Astigmata are only found on rocky-shores and boulder beaches, unlike the other 

sub-orders, which are represented in all of the above intertidal habitats. 

Table 1. Number of species, genera and families for each of the four sub-orders of marine 

mites and for all marine mites (halacarid mites excluded). 

Sub-orders Lower taxa 
Species Genera Families 

Mesostigmata 32 16 9 
Pro stigmata 37 14 8 
Oribatida 45 13 4 
Astigmata 48 2 1 

All intertidal non-halacarid mites 162 44 21 

Geographical patterns 

Most non-halacarid intertidal mite species (73%) are contained within only four geographical 

regions, Indo-West Pacific, East Atlantic-Boreal, Southern New Zealand and Sub-Antarctic. 

The remaining species (27%) are distributed among fourteen other regions (Table 2). Whereas 

the cold-temperate and tropical regions are relatively species rich, the warm-temperate regions 

of both hemispheres are conspicuously species poor (Table 2). Most mesostigmatid and 
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prostigmatid mite genera are restricted to a single geographical region; a few genera, however, 

are more widely distributed (Leioseius, Hydrogamasus, Nanorchestes, Microtrombidium; see 

Figure 2). In contrast, the major oribatid and astigmatid mite genera are globally widespread 

(Figures 3 and 4). 

The Ameronothroidea is represented in most of the manne littoral geographical 

regions (Figure 3). The genera of the Ameronothridae are bipolar and to a greater extent are 

contained within the limits of the cold-temperate zones, whereas the other two families, 

Fortuyniidae and Selenoribatidae, have mainly tropical to warm-temperate distributions 

(Figures 1 and 3). The two major marine ameronothrid genera are either strictly Holarctic, as 

in the case of Ameronothrus (assuming that A. bilineatus Michael, 1888 recorded from 

southern Africa, and A. schneideri Oudemans, 1903 from Curayao in the Caribbean are 

introduced), or largely confined to the Antarctic and Sub-Antarctic regions, as in the case of 

Halozetes (Figure 3). 

The astigmatid mite family Hyadesiidae shows a similarly wide distribution to that of 

the Ameronothroidea (Figure 4). Although there is slight overlap in the latitudinal distribution 

of the two hyadesiid genera, Hyadesia and Amhyadesia, there is a tendency for the prevalence 

of the former in cold-temperate regions, and the latter in the warm-temperate to tropical 

regions (Figure 4). At the species level, Amhyadesia heterophalius Fain & Schuster, 1984 and 

Fortuynia elamellata Luxton, 1967, are particularly widely distributed, extending over most 

of the Indo-West Pacific region. Extensive specific distributions are also seen in the Northern 

Hemisphere species, Ameronothrus nigrofemoratus Koch, 1879 and A. lineatus Thorell, 1871, 

and in the Antarctic Halozetes belgicae (Michael, 1903) and H marinus (Lohmann, 1907) 

(Table. 3). Levels of generic and specific endemism are difficult to assess given the 

uncertainty regarding the completeness of the records. However, there is a higher degree of 

local distribution of species and genera among the Mesostigmata and Prostigmata than among 

the Oribatida and Astigmata. The ordination of the ameronothroid and hyadesiid mite genera 

shows three distinct clusters, which approximately coincide with the northern temperate, 

tropical and southern temperate zones of Briggs (1974; Figure 5). The first cluster comprises 

the Arctic, Eastern Pacific-Boreal, Western and Eastern Atlantic-Boreal, California and 

Mediterranean-Atlantic. The second cluster groups the Tropical Eastern Pacific, Tropical 

Western Atlantic and Indo-West Pacific together with Northern New Zealand, and the third 
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Table 2. The representation of mite species in the marine biogeographical regions ofthe world (based on Briggs 1974). 

Regions Sub-orders Total number of species 

Mesostigmata Prostigmata Oribatida Astigmata 

Arctic 3 3 
Eastern Pacific-Boreal 1 2 3 
Eastern Atlantic-Boreal 16 13 6 2 37 
Western Atlantic-Boreal 2 2 
California 1 2 3 
Mediterranean-Atlantic 6 3 9 
Japan 1 1 2 
Tropical Eastern Pacific 1 5 1 7 
Tropical Western Atlantic 2 1 1 3 7 
Indo-West Pacific 6 9 17 9 41 

w Eastern South America 2 1 3 
........ Southern Africa 3 1 1 6 11 

Northern New Zealand 5 2 2 4 13 
Southern South America 2 1 3 
Southern Australia 2 1 3 
Southern New Zealand 9 5 1 5 20 
Su b-Antarctic 2 4 6 4 16 
Antarctic 4 4 2 3 13 



cluster comprises Southern Africa, Southern South America, Southern New Zealand, Sub

Antarctic and Antarctic. The most disparate regions for each of the three climatic zones are 

East Atlantic-Boreal, Indo-West Pacific and Sub-Antarctic, while the least disparate are 

Western Atlantic-Boreal, Tropical Western Atlantic and Southern Africa, respectively. The 

clusters conform with the patterns for the ameronothroid genera, in particular (Ameronothrus 

- northern, Fortuyniidae and Selenoribatidae - tropical, Halozetes - southern; Figure 3). 

gjCGLO 

Figure 2. Global distributions of mesostigmatid (lower case) and prostigmatid (upper case) 

mite genera . Different letters represent different genera, as follows: a, Arctoseiodes; b, 

Leioseius; c, Pontiolaelaps; d, Ha lola elaps; e, Macrocheles; f, Parasitus; g, Hydrogamasus; 

h, Litogamasus; j, Parasitiphis; k, Tangaroellus; 1, Vulgarogamasus; m, Thinozercon; n, 

Deraiophorus; 0, Phaulodinychus; p, Uroobovella; r, Cyrthydrolaelaps; A, Bdella; B, 

Neomolgus; C, Ereynetes; E, Abrolophus; F, Balaustium; G, Eupodes; H, Halotydeus; L, 

Nanorchestes; M, Foveacheles; N, Robustocheles; 0, Microtrombidium; P, Platytrombidium 

and R, Lasiotydeus. 
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Discussion 

Species richness versus species records 

Although mites are among the most species-rich taxa, much of their diversification and 

radiation is restricted to certain habitats, environments, and regions. Whereas soil habitats and 

tropical rainforests are typically rich in species (see Walter & Behan-Pelletier, 1999), species 

richness declines considerable in the desert, alpine and polar regions. Speciation and radiation 

of mites in marine intertidal habitats is markedly constrained, and this is indicated by the 

relatively few species recorded worldwide (162). Halacarid mites (Prostigmata: Halacaridae) 

are however the exception. The group comprises relatively many species (around 900) and is 

ecologically diverse, extending distributions to the ocean depths (for a review of the 

biogeography of the halacarid mites see Bartsch, 1989). 

Ha/ozetes 
• Ameronothru 

I Forluynia 
.Schusteria 
+other genera 00 

o 0 

o 

o 
o 

o 

Figure 3. Global distributions of the ameronothroid mite genera. 

33 



While the recorded number of species of marine mite is certainly an underestimate of the 

actual number, the records are seemingly representative of some regions and for some 

taxonomic groups. For example, the records from the Eastern Atlantic-Boreal, the Sub

Antarctic and Southern New Zealand, which have been extensively studied, probably closely 

match the actual species number in these regions (Schulte, 1975; Schulte et aI., 1975; Pugh & 

King, 1985; Luxton 1986b, 1992a,b, and also note the number of collection localities in Figs. 

2, 3, and 4). Conversely, those records from the northern and southern warm-temperate 

regions may be an underestimate of the actual species number. These regions may be expected 

to contain more species than the cold-temperate regions, given the generally accepted inverse 

relationship between species richness and latitude (Table 2; see Rosenzweig, 1997). However, 

the observed bimodal relationship of species number against latitude in the southern and 

I Hyadesia 

eAmhyadesia 

I I II 

Figure 4. Global distributions of the hyadesiid mite genera. 

34 

e' " 

~ 
III 



northern hemispheres may be a natural phenomenon. An increase in species richness in littoral 

and supralittoral habitats at higher latitudes has been ascribed to an effect relating to the 

obliteration of adjacent terrestrial habitats by way of ice capping during glaciation events (see 

Marshall et al., 1999). 
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Figure 5. MDS ordination showing the relationships of mite faunas of the world littoral 

regions. Similar symbols indicate geographical regions belonging to the same latitudinal 

zones, as follows: northern (squares); tropical (diamonds) and southern (circles). Stress: 

0.089. 

From a taxonomic perspective, the records more closely reflect species number in the 

case of the Oribatida and Astigmata, than in the case of the Mesostigmata and Prostigmata. 

This is suggested by, in particular, few species of the latter two sub-orders in some regions 

(the warm-temperate and tropical regions) relative to other regions (cold-temperate regions; 

Fig. 2). The unreliability of the current records regionally and globally is further highlighted 

by the large number of species known for a single tropical locality (11 species from Hong 

Kong, Luxton, 1986b, 1992a,b) with no similar records from other localities. With respect to 

habitat, given that rocky-shores are physically more extreme (greater wave action and 

potential for desiccation) and further removed from ancestral edaphic habitats than sediment-
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based mangrove and salt marsh habitats, the latter may be expected to contain more species. 

The relatively few species known from these habitats (see Appendix) suggests an 

incompleteness of the records. 

Origin and speciation in marine environments 

Despite inconsistencies in the reflection of the records of marine mites with the supposed 

number of species, distinctive patterns emerge from the records, which warrant further 

interpretation. Taxonomic, ecological and geographical patterns all suggest that the current 

faunas of the Astigmata and Oribatida have had a long association (in geological time) with 

the marine environment. In contrast, the faunas of mesostigmatid and prostigmatid mites are 

relatively recent in marine habitats, in evolutionary terms. The first line of support of this 

antiquity assumption for the ameronothroid (Oribatida) and hyadesiid (Astigmata) mites arises 

from the broad generic (Figures 3 and 4) and specific geographical distribution, in the light of 

dispersal constraining life history characteristics. Unlike most marine invertebrates, which 

may produce vast numbers of swimming pelagic larvae, these mites produce relatively few 

crawling larvae, a regression from their ancestral terrestrial lifestyles, which theoretically 

constrains their capacity to disperse in the marine environment. An increase in species range 

is, however, not limited to vicariant events, but may also take place by means of incidental 

dispersal, eventually leading to a greater regional distribution through a stepping-stone effect 

(Kensler & Crisp, 1965; and see Myers & Giller, 1988). 

Additionally, the long association of ameronothroid and hyadesiid mites with marine 

environments is suggested by the closeness with which the biogeographical trends of the 

fauna matches those of typically marine faunas, rather than complying with terrestrial trends 

(see Figure 5; Briggs, 1974). Furthermore, ameronothroid and hyadesiid mites have strong 

trophic links within marine systems, indicated by their prevalence for feeding on marine plant 

taxa (Buckling et aI., 1998). Characters underpinning their capacity for an evolutionary long 

existence in marine environments must relate to low rates of speciation and extinction. Both 

mite groups are characterized by relatively low reproductive rates, which will lower the rate of 

loss of those genetic attributes most suitable for a marine existence, but potentially also lower 

rates of speciation (Norton, 1994; OConnor, 1994). Speciation influenced by physiological 

adaptations will be limited in cases where the physiological capacity is wide, and enables 

greater survival of extreme environmental conditions. A wide physiological capacity is 
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suggested by the tropical and polar distributions of Hyadesia, and has also been proposed as 

characteristic of some ameronothroids (see Block & Convey, 1995). Indeed, the ability to 

survive extremely variable environmental conditions may be key to the long-term persistence 

of these mites in the physically variable intertidal zones. 

The geographical distributions, species to genus partitioning, and the predacious 

lifestyle of many species of mesostigmatid and prostigmatid mite suggest that they have 

relatively recently colonized intertidal habitats. Even though the available records are limited 

in this case, the generally restricted geographical distributions of the genera and species 

indicate a relatively short time frame for dispersal. The relatively high ratios for number of 

species to number of genera, and species and genera to families (Table 1), suggests a greater 

rate of speciation (and possibly extinction) of these mites compared to the ameronothroid and 

hyadesiid mites. In some respects these ratios agree with their relatively more rapid 

reproductive rates compared to those of ameronothroid and hyadesiid mites. Loose trophic 

links within the marine environment of mesostigmatid and prostigmatid mites are indicated 

particularly in the predacious species which are known to feed on secondary marine taxa such 

as mites, tardigrades and collembolans (Schuster, 1979). Limitations on a high quality food 

supply coupled with the likelihood of high metabolic requirements are possible factors 

constraining water-borne dispersal of these mites in marine environments. 

In sum, although the records are clearly incomplete for some taxonomic groups, some 

geographical regions and some habitat types, the patterns that emerge for the taxonomy, 

geography and ecology of non-halacarid marine mites strongly suggest different underlying 

processes for the present day taxa of the four sub-orders. During the course of their evolution, 

predacious mesostigmatid and prostigmatid mites have presumably undergone numerous 

independent incursions into intertidal habitats from adjacent, local supralittoral and terrestrial 

habitats, rather than having diversified to any degree within the marine environment. In 

contrast, the present day oribatid and astigmatid mite taxa have apparently been associated 

with the marine environment for a long geological time. 
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Appendix. List of non-halacarid intertidal mites of the world. Numbers in parantheses after 

species names refer to publications used in compiling this table, as follows: 1, Pugh & King 

1985; 2, Luxton 1990; 3, Marshall & Proche~, unpublished data; 4, Pugh, 1993; 5, Pugh & 

King 1988; 6, Luxton 1986b; 7, van der Hammen 1963; 8, van der Hammen 1960; 9, Schulte 

et al. 1975; 10, Fain & Ganning 1989; 11, Luxton 1992a, 12, Luxton 1986a; 13, Schatz 1998; 

14, Grandjean 1968; 15, Marshall & Pugh 2000; 16, Grandjean 1966; 17, Marshall & 

Nunkumar 1999; 18, Luxton 1992b; 19, Fain & Schuster 1984b; 20, Fain & Schuster 1984a; 

21, Fain & Schuster 1986; 22, Marshall & Ugrasen 2000; 23, Luxton 1989; 24, Fain 1981; 25, 

Fain & Schuster 1985; 26, Fain & Synnot 1981; 27, Schuster & Bartsch 1986, 28, Marshall & 

Pugh, 2001. Shore habitats: M, mangroves; R, rocky-shores and boulder beaches; S, 

saltmarshes. Information on distribution is based on the geographic regions of Briggs (1974) -

see methods and Figure 1 for details . Localities are given in parentheses in the case of large 

and heterogeneous regions. 

Taxa 

MESOSTIGMATA 

Ascidae Voigts & Oudemans, 1905 
Arctoseiodes ibericus Willmann, 1949 (1) 
Leioseius australis Luxton, 1984 (2) 

Leioseius vallaensis Luxton, 1989 (23) 
Leioseius sp. 1 (3) 
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Shore 
habitat 

Geographical distribution 

R Eastern Atlantic-Boreal 
R Northern New Zealand; 

Southern New Zealand: 
Nelson 

R Southern Australia 
R, Indo-West Pacific: 
M KwaZulu-Natal; Southern 

Africa 



Appendix. (continued) 

Leioseius sp. 2 (3) 

Digamasellidae Evans, 1957 
Pontiolaelaps salinus Luxton, 1989 (2) 
Pontiolaelaps crenatus Luxton, 1984 (2) 
Pontiolaelaps terebratus Luxton, 1984 (2) 

Halolaelapidae Karg, 1965 
Halolaelaps celticus Halbert, 1915(1) 
Halolaelaps marinus Brady, 1875 (1) 

Macrochelidae Vitzthum, 1930 
Macrocheles glaber (Muller, 1860) (1) 
Macrocheles superbus (Hull, 1918) (1) 

Parasitidae Oudemans, 1901 
Parasitus kempersi Oudemans, 1902 (1) 

Rhodacaridae Oudemans, 1902 
Hydrogamasus giardi (Berlese & Trouessart, 1889) 
(1) 
Hydrogamasus kensleri Luxton, 1967 (2) 

Hydrogamasus salinus (Laboulbene, 1851) (1) 
Hydrogamasus sp. (27) 

Litogamasusfalcipes Lee & Hunter, 1974 (2) 
Litogamasus setosus (Kramer, 1898) (2) 
Litogamasus sp. (4) 
Parasitiphis brunneus (Kramer, 1898) (4) 
Parasitiphis jeannelli (Andre, 1947) (2) 

Parasitiphis aurora Lee, 1970 (2) 

Tangaroellus porosus Luxton, 1968 (2) 

Vulgarogamasus trouessarti (Berlese) (1) 

Thinozerconidae Halbert, 1915 
Thinozercon michaeli Halbert, 1915 (5) 
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M 

R 
R 
R 

R 
R 

R 
R 

R 

R 

R 

R,S 
R 

R 
R 
R 
R 
R 

R 

R 

R 

R 

Indo-West Pacific : 
KwaZulu-Natal 

Southern New Zealand 
Northern New Zealand 
Northern New Zealand 

Eastern Atlantic-Boreal 
Eastern Atlantic-Boreal 

Eastern Atlantic-Boreal 
Eastern Atlantic-Boreal 

Eastern Atlantic-Boreal 

Eastern Atlantic - Boreal 

Northern New Zealand; 
Southern New Zealand; 
Sub-Antarctic 
Eastern Atlantic-Boreal 
Tropical western Atlantic: 
Bennuda 
Southern New Zealand 
Southern New Zealand 
Antarctic 
Antarctic 
Southern New Zealand; 
Sub-Antarctic; Antarctic 
Southern New Zealand; 
Sub-Antarctic; Antarctic 
Northern New Zealand; 
Southern New Zealand 
Eastern Atlantic-Boreal 

Eastern Atlantic-Boreal 



Appendix. (continued) 

Uropodidae Berlese, 1900 
Deraiophorus sp. (27) R Tropical western Atlantic: 

Bermuda 

Phaulodinychus orchestiidarum Barrois (5) R,S Eastern Atlantic-Boreal 

Uroobovella magna Hiramatsu & Hirschmann, 1977 M Japan; Indo-West Pacific : 

(6) Hong Kong 

Uroobovella sp. (3) M Indo-West Pacific: 
KwaZulu-Natal 

Veigaiidae Oudemans, 1939 
Cyrthydrolaelaps hirtus Berlese, 1905 (1) R Eastern Atlantic-Boreal 

Cyrthydrolaelaps incisus Evans (1) Eastern Atlantic-Boreal 

PRO STIGMATA 

Bdellidae Duges, 1834 
Bdella decipiens Thorell, 1872 (1) R Eastern Atlantic-Boreal 

Bdella interrupta Evans, 1954 (1) R Eastern Atlantic-Boreal 

Neomolgus littoralis (Linnaeus, 1758) (1) R Eastern Atlantic-Boreal 

Bdellidae gen sp. 1 (3) R Southern Africa 

Bdellidae gen sp. 2 (3) R Southern Africa 

Ereynetidae Oudemans, 1931 
Ereynetes arcuatus (1) R Eastern Atlantic-Boreal 
Ereynetes macquariensis Fain, 1962 (2) R Sub-Antarctic; Antarctic 

Erythreidae Robineau-Desvoidy, 1828 
Abrolophus zelandicus Luxton, 1989 (2) R Northern New Zealand; 

Southern New Zealand 
Abrolophus sp. (27) R Tropical western Atlantic: 

Bermuda 
Balaustium araneoides Berlese, 1910 (1) R Eastern Atlantic-Boreal 
Balaustium halberti (Cooremann, 1936) (1) R Eastern Atlantic-Boreal 
Balaustium harrisoni Hull, 1918 (1) R Eastern Atlantic-Boreal 
Balaustium rubripes (Trouessart, 1889) (1) R Eastern Atlantic-Boreal 
Balaustium tardum (Halbert, 1915) (1) R Eastern Atlantic-Boreal 

Eupodidae C. L. Koch, 1835 
Eupodes minutus (Strandtmann, 1967) (2) R Southern New Zealand; 

Sub-Antarctic 
Eupodes sp. (4) R Antarctic 
Halotydeus hydrodromus Berlese & Trouessart, 1891 R Eastern Atlantic-Boreal 
(1) 
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Appendix. (continued) 

Halotydeus mollis Luxton 1986 (6) M 

Halotydeus signiensis Strandtmann & Tilbrook, 1968 R 
(4) 
Halotydeus sp. (6) 

Nanorchestidae Grandjean, 1937 
Nanorchestes amphibius (Top sent & Trouessart, R 
1890) (1) 
Nanorchestes dicrosetus Luxton, 1984 (2) R 
Nanorchestes hutchinsoni Luxton 1989 (23) R 
Nanorchestes macquariensis Strandtmann, 1982 (2) R 
Nanorchestes sp. 1 (3) R 
Nanorchestes sp. 2 (3) M 

Rbagidiidae Oudemans, 1902 
Foveacheles canestrinii (Berlese & Trouessart, 1889) R 
(1) 
Robustocheles mucronata (Willmann, 1936) (1) R 

Trombidiidae Leach, 1814 
Microtrombidium aucklandicum Luxton, 1989 (2) R 
Microtrombidium karriensis Wormesley, 1934 (2) R 

Microtrombidium littorale Michener, 1946 (7) M 

Microtrombidium malindiensis Luxton, 1989 (23) R 
Microtrombidium otagoensis Luxton, 1989 (2) R 
Platytrombidium sp. (8) R 

Tydeidae Kramer, 1877 
Lasiotydeus brevistylus Halbert (5) 
Tydeidae gen sp. (3) 

ORIBATIDA 

R 
M 

Indo-West Pacific: Hong 
Kong 
Antarctic 

Indo-West Pacific: 
Philippines 

Eastern Atlantic-Boreal 

Southern New Zealand 
Southern Australia 
Sub-Antarctic; Antarctic 
Southern Africa 
Indo-West Pacific: 
KwaZulu-Natal 

Eastern Atlantic-Boreal 

Eastern Atlantic-Boreal 

Northern New Zealand 
Sub-Antarctic, Southern 
New Zealand 
Tropical eastern Pacific: 
Panama 
Indo-West Pacific: Kenya 
Southern New Zealand 
Indo-West Pacific: New 
Guinea 

Eastern Atlantic-Boreal 
Indo-West Pacific: 
KwaZulu-Natal 

Ameronothridae Willman, 1931 
Ameronothrus bilineatus Michael 1888 (9) 

Ameronothrus lineatus Thorell, 1871 (9) 

R,S Eastern Atlantic-Boreal; 
Mediterranean-Atlantic; 
South Africa (introduced ?) 
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Appendix. (continued) 

Ameronothrus maculatus Michael, 1882 (9) R Arctic; Eastern Atlantic-
Boreal; Mediterranean-
Atlantic 

Ameronothrus marinus Banks, 1896 (9) R Eastern Atlantic-Boreal; 
Mediterranean-Atlantic 

Ameronothrus nigrofemoratus Koch, 1879 (9) R,S Arctic; Eastern Atlantic-
Boreal; Eastern Pacific-
Boreal 

Ameronothrus schneideri Oudemans, 1903 (9) R Eastern Atlantic-Boreal; 
Mediterranean-Atlantic; 
Tropical Western Atlantic: 
Curac;:ao (introduced 7) 

Ameronothrus schubarti Weigmann & Schulte, 1970 R California 
(9) 
Ameronothrus schusteri Schubart, 1970 (9) R Mediterranean-Atlantic 
Halozetes bathamae Luxton, 1984 (2) R Southern New Zealand 
Halozetes belgicae (Michael, 1903) (4) R Sub-Antarctic; Antarctic 
Halozetes intermedius Wallwork, 1963 (4) R Sub-Antarctic 
Halozetes littoralis Wallwork 1970 (4) R Antarctic 
Halozetes marinus (Lohmann, 1907) (4) R Southern Africa: St Paul & 

Amsterdam; Southern South 
America: Falkland; 
Southern New Zealand; 
Sub-Antarctic; Antarctic 

Halozetes marion ens is Engelbrecht, 1974 (4) R Southern South America: 
Gough Island; Sub-
Antarctic 

Halozetes plumosus Wallwork, 1966 (2) R Southern New Zealand 
Halozetes sp.1 (4) R Sub-Antarctic 
Halozetes sp.2 (4) R S ub-Antarctic 

Fortuyniidae van der Hammen, 1960 
Alismobates reticulatus Luxton, 1992 (11) Indo-West Pacific: Hong 

Kong 
Alismobates rotundus Luxton, 1992 (11) R Indo-West Pacific: Hong 

Kong 
Circellobates venustus Luxton, 1992 (11) R Indo-West Pacific: Hong 

Kong 
Fortuynia elamellata Luxton, 1967 (3, 12) R Japan; Indo-West Pacific: 

East coast of Africa; 
Northern New Zealand 

Fortuynia maculata Luxton, 1986 (12) R Indo-West Pacific: Kenya 
Fortuynia marina van der Hammen, 1960 (12) R Indo-West Pacific: New 

Guinea 
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Appendix. (continued) 

Fortuynia sinensis Luxton, 1992 (11) R Indo-West Pacific: Hong 
Kong 

Fortuynia yunkeri van der Hammen, 1963 (12) R Tropical eastern Pacific: 
Panama 

Fortuynia inhambanensis Marshall & Pugh, 2001 (28) R Indo-West Pacific: 
Mozambique 

Fortuynia rotunda Marshall & Pugh, 2001 (28) M Indo-West Pacific: 
Mozambique 

Fortuynia sp. (27) R Tropical western Atlantic: 
Bermuda 

Fortuyniidae gen sp. 1 (13) 7 Tropical eastern Pacific: 
Galapagos Islands 

Fortuyniidae gen sp. 2 (13) 7 Tropical eastern Pacific: 
Galapagos Islands 

Oribatulidae Thor, 1929 
Pontiobates denigratus Luxton, 1989 (2) R Northern New Zealand 

Pontiobates sp (3) M Indo-West Pacific: 
KwaZulu-Natal 

Oribatulidae gen sp (3) M Indo-West Pacific: 
KwaZulu-Natal 

Selenoribatidae Schuster, 1963 
Arotrobates granulatus Luxton, 1992 (13) R Indo-West Pacific: Hong 

Kong 
Arotrobates lanceolatus Luxton, 1992 (13) M Indo-West Pacific: Hong 

Kong 
Psednobates uncunguis Luxton, 1992 (13) S Indo-West Pacific: Hong 

Kong 
Schusteria littorea Grandjean, 1968 (14) R Tropical eastern Pacific: 

Galapagos Islands (7); 
Eastern South America 

Schusteria sp 1 (14) R Eastern South America: Sao 
Paolo 

Schusteria sp 2 (14) M Tropical eastern Pacific: El 
Salvador 

Schusteria sp 3 (15) R Indo-West Pacific: 
KwaZulu-Natal 

Schusteria sp 4 (15) M Indo-West Pacific: 
Mozambique 

Selenoribates mediterraneus Grandj ean, 1966 (16) R Mediterranean-Atlantic 
Selenoribates foveiventris Strenzke, 1961 (16) R7 Indo-West Pacific: Red Sea 
Thalassozetes riparius Schuster, 1963 (16) R7 Mediterranean-Atlantic 
Selenoribatidae gen sp. (16) M Indo-West Pacific: 

Maldives 
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Appendix. (continued) 

ASTIGMATA 

Hyadesiidae Halbert, 1915 
Amhyadesia atlantica Fain & Schuster, 1984 (10) R 

Amhyadesia austafricana Marshall &Nunkurnar, 1999 R, 
(17) M 
Amhyadesia bartschae Luxton, 1992 (18) R 

Amhyadesia bermudana Fain & Schuster, 1984 (10) R 

Amhyadesia brasiliensis Fain & Schuster, 1984 (19) R 

Amhyadesia bursaria Fain & Schuster, 1979 (20) R 

Amhyadesia cali/ornica Fain & Ganning, 1979 (10) R 
Amhyadesia costaricensis Fain & Schuster, 1984 (19) R 

Amhyadesia elizabethensis Marshall &Nunkurnar, R 
1999 (17) 
Amhyadesia glynni (Manson, 1963) (10) R 
Amhyadesia heteromorpha Luxton, 1992 (18) R 

Amhyadesia heterophallus Fain & Schuster, 1984 (20) R 

Amhyadesia longipilis Fain & Schuster, 1984 (20) 

Amhyadesia madeirensis Fain & Schuster, 1986 (21) 
Amhyadesia pacifica Fain & Schuster, 1984 (20) 

Amhyadesia punctulata Luxton, 1989 (2) 
Hyadesia agulhensis Marshall & U grasen, 2000 (22) 

Hyadesia algivorans (Michael, 1893) (24) 
Hyadesia arabica Fain & Schuster, 1985 (25) 

Hyadesia australiana Fain & Synnot, 1981 (26) 
Hyadesia benguelensis Marshall & U grasen, 2000 
(22) 
Hyadesia chelopus (Trouessart ) Andre, 1931 (24) 
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R 
R 

R 
R 

R 
R 

R 
R 

R 

Tropical western Atlantic: 
Bermuda 
Southern Africa 

Indo-West Pacific: Hong 
Kong 
Tropical western Atlantic: 
Bermuda 
Tropical Atlantic: Sao 
Paolo, Brazil 
Indo-West Pacific: New 
Caledonia 
Eastern Pacific-Boreal 
Tropical eastern Pacific: 
Costa Rica 
Southern Africa 

Eastern Pacific-Boreal 
Indo-West Pacific: Hong 
Kong 
Indo-West Pacific: 
Maldives; Philippines; 
Mozambique; KwaZulu
Natal 
Indo-West Pacific: 
Philippines 
Mediterranean-Atlantic 
Indo-West Pacific: 
Philippines 
Northern New Zealand 
Indo-West Pacific: South 
Africa: Eastern Cape 
Eastern Atlantic-Boreal 
Indo-West Pacific: Red Sea 
(Egypt) 
Southern Australia 
Southern Africa 

Indo-West Pacific: Indian 
Ocean 



Appendix. (continued) 

Hyadesia curassaviensis Viets, 1936 (24) 

Hyadesiafusca (Lohman, 1896) (10) 

Hyadesia glynni Manson, 1963 (10) 
Hyadesia halophila Fain, 1974 (24) 
Hyadesia heteromorpha Marshall & U grasen, 2000 
(22) 
Hyadesia kerguelensis (Lohman, 1907) (24) 
Hyadesia maxima Fain, S0mme & Block, 1983 (24) 
Hyadesia microseta Luxton, 1989 (2) 
Hyadesia mollis Luxton, 1989 (2) 
Hyadesia nearctica Fain & Ganning, 1978 (10) 
Hyadesia pakistanensis Fain & Schuster, 1985 (25) 
Hyadesia paulensis Fain, 1975 (24) 

Hyadesia plicata Luxton, 1989 (2) 
Hyadesia reticulata Luxton, 1989 (2) 
Hyadesia sanjuanensis Fain & Ganning, 1989 (10) 

Hyadesia sellai Viets, 1937 (24) 
Hyadesia subantarctica Fain, 1974 (24) 
Hyadesia tesselata Luxton, 1989 (2) 
Hyadesia travei Fain, 1975 (2) 

Hyadesia tumida Benard, 1961 (24) 

Hyadesia uncifer Megnin, 1891 (24) 
Hyadesia verrucosa Fain & Schuster, 1985 (25) 
Hyadesia vietsii Wonnesley, 1961 (24) 

Hyadesia wormesleyi Luxton, 1989 (23) 
Hyadesia zelandica Luxton, 1989 (2) 

Hyadesia sp. (4) 
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R 
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R 
R 
R 
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R 
R 
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R 
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Tropical eastern Atlantic: 
Curayao 

~ 

Western Atlantic-Boreal; 
Eastern Atlantic-Boreal 
Eastern Pacific-Boreal 
Sub-Antarctic; Antarctic 
Southern Africa 

Sub-Antarctic 
Antarctic 
Northern New Zealand 
Northern New Zealand 
Western Atlantic-Boreal 
Indo-West Pacific: Karachi 
Southern Africa: S1. Paul & 
Amsterdam 
Southern New Zealand 
Southern New Zealand 
Tropical eastern Pacific: 
Central America 
Mediterranean-Atlantic 
Sub-Antarctic; Antarctic 
Southern New Zealand 
Southern Africa: S1. Paul & 
Amsterdam 
Mediterranean-Atlantic: 
Brittany 
Magellan: Tierra del Fuego 
Mediterranean-Atlantic 
Indo-West Pacific: New 
Guinea 
Sub-Antarctic 
Northern New Zealand; 
Southern New Zealand 

Antarctic 



Chapter IV 

Diversity and biogeography of southern African intertidal Acari 

Abstract 

Aim The aims were 1) to describe the diversity and geographical distribution of the intertidal 

mite fauna of southern Africa, and 2) to show how species richness, endemism and 

geographical patterns of this fauna (comprising taxa of variable terrestrial ancestry) compare 

with typically marine faunas. 

Location and methods To assess intertidal mite diversity and endemism, records (published 

and unpublished) were complied for a variety of habitats (mainly rocky shores and 

mangroves), between Swakopmund (Namibia) and Inhambane (Mozambique). The 

geographical study was based on a dedicated sampling programme from the rocky shore, at 

nine localities between Elandsbaai (on the west coast) and St Lucia (on the east coast). 

Results Eighty two species of marine mite, from thirty three genera, are currently known from 

southern Africa. The majority belong to the earlier marine ancestral Halacaridae (forty eight 

species), with the Ameronothroidea and Hyadesiidae collectively comprising seventeen 

species. In constituting three faunistic provinces, corresponding with the west (Atlantic), 

south, and east coast (Indian) regions, the mite fauna conforms with trends for the southern 

African marine fauna in general. Species richness was greatest in the southern province, which 

deviates from the general pattern of increase from west to east, but is similar to that of some 

invertebrate taxonomic groups. 

Conclusions Despite their relatively recent marine connections, marine mites show typical 

geographical distributions, comparable to those of other rocky shore biota in southern Africa. 

The marine faunistic provinces are "insular" and apparently remain largely intact, across 

taxonomic groups and with increased taxonomic resolution. 

Introduction 

High levels of taxonomic diversity and endemism are distinct features of the southern African 

biota, and this is as much applicable to marine systems as to terrestrial systems. While notable 

efforts have been (and continue to be) made to document the region's taxonomic richness in as 
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meaningful a way as possible, our knowledge of the marine biota is largely incomplete 

(Gibbons et al. 2000). Whereas some taxonomic groups, such as the molluscs and fishes, have 

understandably received considerable attention (Gosliner, 1987; Prochazka,1994; Turpie, 

2000), others, comprising rare and cryptic faunas, remain poorly known. It is within this 

context that studies on the diversity and geography of marine mites (Acari) in southern Africa 

seem particularly relevant. 

The Acari comprises predominantly terrestrial speCIes, with few groups having 

colonized the marine environment. One family, the Halacaridae (Prostigmata), has been 

especially successful in this regard; members of this family occur from the ocean depths to the 

intertidal zones, and radiation is demonstrated by the group comprising over one thousand 

known species (Barstch, 1989; Otto, 2000). Among the mite groups restricted to intertidal 

zones, the Ameronothroidea (Oribatida) and Hyadesiidae (Astigmata) have strong ecological 

and long historical links with marine systems, whereas the Mesostigmata and non-halacarid 

Prostigmata have tenuous marine associations (proche~ & Marshall, 2001a). Given these 

different evolutionary backgrounds, marine mites are ideal for investigating evolutionary 

effects on ecological and biogeographical patterns (see Proche~ & Marshall, 2001 a, for 

biogeography; Proch~ & Marshall, 2001b, for ecological relationships). For example it is 

likely that these patterns will be influenced by the retention, in more recently originated taxa, 

of traits for a terrestrial existence, such as low fecundity, crawling (as opposed to swimming) 

larval stages, and the inability for aquatic respiration. As these traits intuitively constrain 

dispersal in marine environments, geographical studies on marine mites are fertile grounds for 

investigating vicariance versus dispersal models of distribution. 

Geographical variation in southern African marine faunas is thought to be 

predominantly affected by two processes. In the first instance this arises from variations in 

seawater temperature along the coast, deriving from prominent adjacent current systems 

(Branch & Branch, 1981; Field and Griffiths, 1991). Secondly, this arises through the 

incursion of Indo-Pacific species into the warmer coastal regions (Brown & Jarman, 1978). 

The extent of this variation is seen by three generally recognised biogeographical provinces 

falling within the political boundaries of South Africa: a cool temperate province extending 

along the west coast from Cape Point northwards, a warm temperate province along the south 

coast, and a sub-tropical province along the east coast (Brown & Jarman, 1978; Branch & 
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Branch, 1981; Field & Griffiths, 1991). However, less consensus exists as to the actual limits 

of these provinces (Day, 1967; Stephenson & Stephenson, 1972; Siegfried, 1984; Emanuel et 

al., 1992; Prochazka, 1994; Briggs 1995; Bolton & Anderson, 1997; Turpie et al., 2000). 

Furthermore, the limits seemingly vary from one taxonomic group to the next (Day, 1967; 

Griffiths, 1976; Siegfried, 1981; Gosliner, 1987; Thandar, 1989; Williams, 1992; Whitfield, 

1994; Bolton & Anderson, 1997; Turpie et al., 2000; Awad et al., 2001). 

The current investigation documents the diversity and geography of the southern 

African marine mites. As these comprise an evolutionary and taxonomically poorly-associated 

marine invertebrate fauna, they were also used to test the generality, across taxonomic groups 

and hierarchies, of commonly observed diversity and geographical patterns for the southern 

African marine fauna as a whole. This fauna can be described as 1) being highly diverse and 

endemic (relative to other world faunas) , 2) forming three distinct geographical regions and 3) 

increasing in species richness from west to east. As a key outcome, the investigation 

highlights the remarkable degree of conformity that exists in southern Africa between the 

biogeography of marine mites and that of typically marine groups, despite the historical 

discrepancies between primary and secondary marine organisms. 

Material and methods 

Records of southern African marine mites were complied from 1) all known publications and 

unpublished observations as well as 2) collections made towards a dedicated study from nine 

localities along the coastline (see below). Mite records from coastal habitats below the spring 

highwater mark were considered, however, collections were concentrated on rocky shore and 

mangrove communities, with less consideration being given to sandy beaches, saltmarshes and 

other estuarine communities. The southern African (s-A) region was delimited here on the 

west coast, at Swakopmund (Namibia), and on the east coast, at Inhambane (Mozambique). 

For each species, southern African distributions were recorded, as was taxonomic information 

and distributions outside the region (where applicable) . On the basis of known geographical 

distribution, and with reference to patterns of endemism for other taxonomic groups (Griffiths, 

1974; Brown & Jarman, 1978; Turpie et aI, 2000), each species was categorized as 1) endemic 

(only between Orange River and East London), 2) possible endemic (as in 1 and extending 

north of East London, but never outside the s-A region), 3) possible Indo-Pacific (not south of 

East London and not outside the s-A region), 4) Indo-Pacific (not south of East London but 
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also outside the s-A, and in the Indo-Pacific region; see Briggs, 1995), 5) Cosmopolitan 

(outside s-A, but not only in the Indo-Pacific region), 6) Southern (shared with other southern 

temperate regions). 

The biogeographical study concerned nme localities along the coast between 

Elandsbaai and St Lucia, inclusive (Figure 1). Climatic conditions (sea surface and air 

temperatures) vary markedly across this geographical range, as indicated in Table l. 

Collecting was undertaken between November 2000 and May 2001. At each locality, three 

sites were selected, and nine samples taken from each site (three in each of the supralittoral 

fringe, upper mid-littoral, and lower mid-littoral (see Brown & Jarman, 1978; Field & 

Griffiths, 1991), giving a total of twenty-seven samples per locality. The sites were located 

tens or hundreds of meters apart, depending on the extent of rocky shore sampled. Each 

sample comprised the algae, sessile animals and sand covering the rock in a 15 X 15 cm 

quadrat. The contents of a sample were washed over two sieves in order to retain organisms 

larger than 0.12 mm but smaller than 5 mm. These were preserved in 70% ethanol (25 ml 

plastic sample bottles). 

In the laboratory, the mites were extracted from each sample (under dissecting 

microscope at X 100 magnification), cleared in lactic acid, and slide-mounted in Hoyer's 

medium. Specimens were identified and counted. Only three taxonomic groups, Halacaridae, 

Ameronothroidea and Hyadesiidae, accounting for 98.9% of all collected mites, were included 

in further analyses. Brief taxonomic descriptions were undertaken for species previously 

unknown from the region (see Appendix). While these descriptions were useful in 

distinguishing the southern African Halacaridae in particular, more detailed investigation 

referring to the known global taxa is required to confirm new species. 

To assess how mite abundance varies across the southern African region, mean 

abundance was determined for each of the two evolutionary distinct groups (Halacaridae and 

AmeronothroidealHyadesiidae) in relation to position on the shore. Bray-Curtis similarity 

analysis of presence! absence data was used to determine the relationship of the faunas of each 

locality. Additional analyses were performed using species ranges and assuming the 

occurrence of a species at all localities within the range. Statistical procedures were carried out 

using PRIMER (Plymouth Routines in Multivariate Ecological Research; Clarke & Warwick, 

1994) and SPSS ver. 7 . . 
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Figure 1. Collection localities for southern African marine mites. Data from localities 

indicated by capital letters were used in the analyses of the present study. Earlier collections 

were made from the other localities (see Table 2). 

Table 1. Average annual minimum and maximum (±SE; n=10; 1990-1999), for nine localities 

on the southern African coast caC; based on monthly minimum and maximum temperature 

data). 

Air temperature Seawater temperature 
Minimum Maximum Minimum Maximum 

Doringbaai (55 km N of Elandsbaai) 11.2±0.3 13.2±0.1 
Y zerfontein 11.3±1.2 12.2±1.3 
Kommetjie 7.4±0.9 27.1±1.1 11.5±1.2 12.4±1.2 
Gansbaai 15 .5±0.2 16.7±0.2 
Tsitsikamma 10.l±1.5 24.5±1.1 15.8±0.2 18.l±0.3 
Port Elizabeth (125 km W of Port Alfred) 7.7±1.1 26.0±0.5 16.7±O.l 19.4±0.2 
East London (90 km SW of Mazeppa Bay) 10.2±1.1 26.2±0.7 17.4±O.l 18.7±0.1 
Port Edward 13 .0±O.8 26.7±0.5 20.6±O.2 21.3±O.1 
St Lucia 14.3±1.3 28 .0±1.1 

54 



Results 

Mite diversity and endemism 

The currently known southern African marine mite fauna comprises 82 species, representing 

four major groups (Mesostigmata, Prostigmata, Oribatida and Astigmata), 14 families, and 33 

genera (see Tables 2 and 3). The majority of species (68%) are contained within three 

super/families, the Halacaridae (Prostigmata), Ameronothroidea (Oribatida) and Hyadesiidae 

(Astigmata). The Mesostigmata and non-halacarid Prostimata are poorly represented; because 

of their low abundance it is difficult to acquire representative collections. Thirty one new 

species and seven new genera (Isobactrus, Ralacarus, Thalassarachna, Bradyagaue, 

Actacarus, Halozetes, and an undescribed fortuyniid genus) are reported in the present study. 

The most speciose genus is the halacarid, Copidognathus (20 species), followed by 

Rhombognathus (seven species) and Agauopsis (six species). Although no generic endemism 

was observed for the region, the fauna comprises close to 60% specific endemics (but many of 

these remain unconfirmed (24%)). Around 34% of the species derive from an IndoPacific 

component (including unconfirmed records), and the remaining 6% are Cosmopolitan, or from 

the other southern hemisphere regions. Three halacarid mite species (Ralacarus actenos, 

Copidognathus gibbus and Copidognathus bairdii) have particularly wide distributions and 

are known from various tropical and temperate locations in the Atlantic and Indian oceans, 

while Simognathus glareus is also known from New Zealand. Fortuynia elamellata 

(Ameronothroidea) and Amhyadesia heterophallus (Hyadesiidae) are widely distributed in the 

Indo-Pacific. 

Faunistic patterns 

Thirty six mite species were collected during the biogeographical investigation (see Figure 2 

for species list and their distributions). There was no indication of greater abundance at any 

particular level on the shore or for any particular locality for either evolutionary group, when 

species were grouped into Halacaridae or AmeronothroidealHyadesiidae (see Table 4). 

However, more detailed ecological investigation taking into account habitat variability 

within and between localities may yield a different result. Bray-Curtis analyses using 4th root 

transformed abundances, and presence/absence data for collection records, showed three 

distinct faunistic groupings, representing west, south, and east coast faunas (Figure 3). 
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Table 2. Intertidal mite species of southern Africa. 

MESOSTIGMATA 
ASCIDAE 

UROPODIDAE 

PRO STIGMATA 
BDELLIDAE 

NANORCHESTIDAE 

HALACARIDAE 

Genera/Species 

Leioseius sp 1. 
Leioseius sp 2. 
Leioseius sp 3. 
Uroobovella sp. 

Bdella sp. 
Spinibdella sp. 
Nanorchestes sp 1 
Nanorchestes sp 2 
Isobactrus sp 1. 
Isobactrus sp 2. 
Rhombognathus sp 1. 
Rhombognathus litoralis Bartsch. 
Rhombognathus sp 3. 
Rhombognathus sp 4. 
Rhombognathus sp 5. 
Rhombognathus sp 6. 
Rhombognathus sp 7. 
Halacarus actenos Trouessart. 

Thalassarachna sp. 
Actacarus sp. 
Bradyagaue sp. 
Agaue sp. 
Agaue debilis Lohmann. 
Agaue hypertrophica Lohmann. 
Agaue papillifera Gimbel. 
Agauopsis crassipes Gimbel. 

Agauopsis sp 2. 
Agauopsis sp 3. 

Agauopsis papillata Bartsch. 

Agauopsis sp 5. 
Agauopsis chelipes, Bartsch. 
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Distribution 

Endemic (21) 
Endemic (P) (24) 
Indo-Pacific (P) (21) 
Indo-Pacific (P) (21) 

Endemic (P) (21) 
Endemic (P) (21) 
Endemic (P) (21) 
Indo-Pacific (P) (21) 
Endemic (25) 
Indo-Pacific (P) (25) 
Endemic (23,24,25) 
Endemic (3,24,25) 
Endemic (25) 
Indo-Pacific (P) (25) 
Indo-Pacific (P) (25) 
Indo-Pacific (P) (25) 
Endemic (23) 
Cosmopolitan. 

(12,25). 
Endemic (24,25) 
Endemic (P) (24) 
Endemic (P) (24) 
Endemic (1) 
Endemic (1) 
Endemic (1) 
Endemic (2) 
Endemic (P) 

(2,23,25) 
Endemic (P) (25) 
Endemic (P) 

(24,24,25) 
Endemic (P) 

(3,24,25) 
Endemic (23,25) 
Endemic (3) 



Table 2. (continued) 

Halacaropsis praecognita Proche§. 

Arhodeoporus kunzi Bartsch. 
Acarothrix umgenica Proche~. 
Copidognathus sp. 1. 
Copidognathus sp. 2. 
Copidognathus gibbus Trouessart. 

Copidognathus sp. 4. 
Copidognathus sp. 5. 
Copidognathus bairdi Newell. 

Copidognathus sp. 7. 
Copidognathus sp. 8. (17) 
Copidognathus sp. 9. 
Copidognathus sp. 10. 
Copidognathus sp. 11. 
Copidognathus sp. 12. 
Copidognathus sp. 13. 
Copidognathus sp. 14. 
Copidognathus pulcher Lohmann. 
Copidognathus simonis Lohmann. 
Copidognathus hartmanni Bartsch. 
Copidognathus isopunctatus Bartsch. 
Copidognathus caloglossae Proche~. 
Copidognathus xaixaiensis Proche~. 
Simognathus glareus Bartsch. 
Simognathus latitarsus Proche~. 
Lohmannella africana Bartsch. 

PONTARACHNIDAE Pontarachna capensis Lohmann. 
Pontarachna sp. 
Litarachna sp 1. 
Litarachna sp 2. 

TROMBIDIIDAE Microtrombidium sp. 
TYDEIDAE Tydeus sp. 

ORIBATIDA 
AMERONOTHRIDAE Ameronothrus bilineatus Michael. 

Halozetes sp. 
FORTUYNIIDAE Fortuynia elamellata Luxton. 

Fortuynia inhambanensis Marshall & 
Pugh. 

Fortuynia rotunda Marshall & Pugh. 
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Indo-Pacific (P) 
(18,24,25) 

Endemic (P) (11) 
Indo-Pacific (P) (19) 
Endemic (3,25) 
Endemic (25) 
Cosmopolitan. 

(1,12,25). 
Endemic (25) 
Endemic (25) 
Cosmopolitan 

(3,8,24,25). 
Endemic (25) 
Endemic (P) (25) 
Indo-Pacific (P) (25) 
Endemic (P) (24) 
Indo-Pacific (P) (24) 
Endemic (P) (24) 
Endemic (P) (24) 
Endemic (P) (24) 
Endemic (1) 
Endemic (1) 
Endemic (3) 
Endemic (3) 
Indo-Pacific (P) (19) 
Indo-Pacific (P) (19) 
Southern (10,25). 
Indo-Pacific (P) (25) 
Endemic (P) (13) 
Indo-Pacific (1,8,24) 
Endemic (24) 
Endemic (24) 
Endemic (24) 
Indo-Pacific (P) (21) 
Indo-Pacific (P) (21) 

Introduced? Northern 
Atlantic (6,7). 

Endemic (25) 
Indo-Pacific. (4,5,17) 
Indo-Pacific (P) (17) 

Indo-Pacific (P) (17) 



Table 2. (continued) 

SELENORIBATIDAE 

ORIBATULIDAE 

ASTIGMATA 
HY ADESIIDAE 

ACARIDAE 

N. g., n. sp. 
Schusteria ugraseni Marshall & Pugh. 
Schusteria sp 2. 
Schusteria sp 3. 
Schusteria melanomerus Marshall & Pugh. 
Pontiobates sp. 
N. g., n. sp. 

Amhyadesia austafricana Marshall & 
Nunkumar 

Amhyadesia elizabethensis Marshall & 
Nunkumar. 

Amhyadesia sp 3. 
Amhyadesia heterophallus Fain & 

Schuster. 
Hyadesia benguelensis Marshall & 

Ugrasen. 
Hyadesia agulhensis Marshall & U grasen. 
Hyadesia heteromorpha Marshall & 

Ugrasen. 
Tyrophagus putrescentiae Schrank 

Indo-Pacific (P) (24) 

Endemic (P) (16,25) 
Indo-Pacific (P) (25) 
Indo-Pacific (P) (24) 
Indo-Pacific (P) (16) 
Indo-Pacific (P) (21) 
Indo-Pacific (P) (21) 

Endemic (14,25) 

Endemic (14,25) 

Endemic (25) 
Indo-Pacific. 

(9,14,25) 
Endemic (P) (15,25) 

Indo-Pacific (P) (15) 
Endemic (P) (15) 

Cosmopolitan (22) 

Distribution information from: Lohmann 1898; 1907a; 1907b (1); Gimbel 1919; 1920 (2); 

Bartsch, 1972 (3); Luxton, 1967 (4); Aoki, 1974 (5); Schulte et al., 1975 (6); Weigmann, 1975 

(7); Konnerth-Ionescu, 1977 (8); Fain & Schuster, 1984 (9); Bartsch, 1985 (10); Bartsch, 1987 

(11); Green & Macquitty, 1987 (12); Bartsch, 1992 (13); Marshall & Nunkumar, 1999 (14); 

Marshall & Ugrasen, 2000 (15); Marshall & Pugh, 2001a (16); Marshall & Pugh, 2001b (17); 

Proche§, 2001b (18); Proche§, 2001c (19); Proche§ & Marshall, 2001 (21); Marshall et al., 

2001 (22); Bartsch & Marshall, unpublished data (23); Proche§ & Marshall, unpublished data 

(24), present study (25). Endemic (P) and Indo-Pacific (P) refer to possible endemics and 

possible (unconfirmed) Indo-Pacific distributions, respectively (see Material and Methods). 

Separation of the three faunas is seen at c. 30 % similarity in the 4th root analysis and 37 % 

similarity in the presence/absence analysis (Figure 3). However, local faunas were differently 

grouped in each analysis. In the 4th root analysis, Kommetjie grouped with the west and not 
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the south coast, and Mazeppa Bay with the south and not the east coast. Given that numerous 

ecological factors known to influence local abundance were not taken into account, the 

presence/absence pattern is probably of greater biogeographical relevance (Figure 3B). 

Although the pattern of three sub-provincial faunas is obscured by Gansbaai being associated 

with the west coast, and Kommetjie with the south coast in the presence/absence analysis, 

distinctness is indicated by the high similarity between adjacent localities within each 

province in the case of Elandsbaai and Yzerfontein (c. 58% similarity), Nature's Valley and 

Port Alfred (c. 87% similarity), and Port Edward and St Lucia (c. 56% similarity; Figure 3). 

The distinctness of the east coast fauna (Mazeppa Bay, Port Edward and St Lucia) from the 

rest of the southern African fauna (at 23% similarity) is accountable to the introduction of an 

Indo-Pacific element into this fauna (see Figure 2 and Table 2). 

Because our sampling procedure may have overlooked some species which occur at 

particular localities, another similarity analysis was derived using distribution ranges and 

assuming presence at all localities within the known geographical range of a species. This had 

a minor effect on the faunistic scheme, other than improving similarity among localities and 

grouping both Gansbaai and Kommetjie into the south coast province (Figure 3C). 

Geographical pattern of species richness 

Species richness of both the Halacaridae and AmeronothroidealHyadesiidae was depressed 

almost twofold for the west coast localities, as compared to the south and east coast localities 

(which were similar) when actual collections were analysed (Figure 4A). However the pattern 

changed somewhat when species ranges were taken into account (recording presence at all 

localities with the range). This shows a distinct peak for the south coast with richness 

declining towards the cool temperate west coast and the SUbtropical east coast (Figure 4B). 

Discussion 

Diversity and endemism 

Biodiversity and endemism studies are becoming an increasingly important basis for the 

management and preservation of faunas, which is receiving increased attention in the light of 

the threat of global wanning and man' s ongoing destruction of the environment. Both the 
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Table 3 Intertidal mite species richness for southern Africa, according to taxonomic group and biogeographical affinity. Endemic (P) and 

Indo-Pacific (P) refer to possible endemics and possible (unconfirmed) Indo-Pacific distributions, respectively (see Material and Methods). 

Total Mesostigmata Prostigmata Oribatida Astigmata Halacaridae Ameronothroidea+ Other 
H yadesiidae 

Fanlilies 14 2 6 4 2 1 4 9 
Genera 33 2 2 7 3 14 7 12 
Species 82 4 58 12 8 48 17 17 

Cosmopolitan 4 0 3 0 1 3 0 1 
Indo-Pacific 3 0 1 1 1 0 2 1 
Indo-Pacific (P) 25 2 14 8 1 11 7 7 
Endemic 29 1 24 1 3 21 4 4 
Endemic (P) 20 1 16 1 2 13 3 4 
Southern 1 0 1 0 0 1 0 0 
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Figure 2. Distributions of southern African intertidal mite species. Actual records are given in 

black, while gray indicates localities within the distribution range where the species was not 

collected. 
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terrestrial and marine environment of southern Africa are centres of high biodiversity, and are 

thus relevant and important for investigation. Gibbons et al. (1999) review the current status 

of our knowledge of marine biodiversity in the region. Comprehensive diversity studies on 

marine mites are known from only few regions, including the British Isles, New Zealand, and 

some sub-Antarctic islands (Pugh & King, 1985; 1988; Green & McQuitty, 1987; Luxton, 

1990; Pugh & Bartsch, 1993; Pugh, 1995). However, attempts have been made to describe 

their global distribution patterns (Proche~ & Marshall, 2001a). 
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Figure 3. Dendrograms based on Bray-Curtis similarity for southern African marine mite 

faunas of nine localities. Figures next to each locality indicate the order of the localities on the 

coast, from west to east. A, 4th root-transformed abundance data; B, presence/absence for 

actual records; C, presence/absence for species ranges (see Figure 2). 
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Table 4. Mite abtmdance (mean ±SE; N=9 for S, U, L; N=27 for T; for 15 x 15 cm quadrats) 

in three tidal levels (S, supralittoral fringe; U, upper mid-littoral; L, lower mid-littora; T, 

total), at nine localities along the southern African shore. Data are given separately for the two 

evolutionary distinct marine mite groups. 

Halacaridae 

Elandsbaai 
Y zerfontein 
Kommetjie 
Gansbaai 
Nature's Valley 
Port Alfred 
Mazeppa Bay 
Port Edward 
St Lucia 

Ameronothroidea 
and Hyadesiidae 

Elandsbaai 
Y zerfontein 
Kommetjie 
Gansbaai 
Nature's Valley 
Port Alfred 
Mazeppa Bay 
Port Edward 
St Lucia 

S 

1.22±0.55 
1.78± 1.09 
0.11±0.11 
1.56±0.77 
0.56±0.44 
8.33±3.12 
10.11±6.21 
0.67±0.37 
0.S6±0.36 

S 

1.44± 1.44 

0.22±0.22 

8.78±3.81 
1.44±0.44 
3.33± 1.07 
1.22±0.70 
1.11±0.48 

U L T 

3.67 ± 1.46 2.89±0.87 2.59±0.60 
5.56±2.60 0.67±0.29 2.67± 1.00 
3.11± 1.07 0.44±0.24 1.22±0.44 

23.00±9.48 9.56±2.80 11.37±3.62 
2.S6±0.69 S.89± 1.76 3.00±0.76 
3.33±0.82 2.44±0.93 4.70± 1.19 
3.56± 1.76 3.67± 1.39 5.78±2.20 
6.67±2.44 2.89± 1.16 3.41 ± 1.00 
1.11 ±0.31 15.44±3.47 5.70± 1.76 

u L T 

14.11±14.11 5.19±4.71 

76.00±9.45 0.33±0.33 25.52± 7.63 
0.22±O.lS 0.07±0.OS 
2.44± 1.28 0.S6±0.38 3.93± 1.47 
S.S6±3.49 2.33± 1.22 

58.00±30.60 0.22±0.IS 20.S2± 11.10 
S.l1 ± 1.44 1.33±0.83 2.56±O.68 
0.44±0.34 O.l1±O.l1 0.56±0.21 

The present study reports eighty two species of intertidal mite from the southern 

African region. While this number is likely to be accurate in the case of some taxa (for 

example the ameronothroid and hyadesiid group), it apparently underestimates the actual 

number of species in the case of others. The high rate at which new halacarid mites were 

collected in the present study, and their known high global diversity (Bartsch, 1989; Abe, 

1998; Otto, 2000), suggest that the number of southern African species may be more than 
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double the forty eight recorded here. Likewise, the records probably underestimate the 

mesostigmatid and prostigmatid mite diversity, given the rarity of these mites. Nevertheless, 

the recorded species richness for the non-halacarid mites compares favourably with that for 

New Zealand (which IS 11 ameronothroidlhyadesiid mite speCIes and 15 

mesostigmatidiprostigmatid mite species). Additionally, the species richness of the 

ameronothroidihyadessid group, represents 10% of the world's species known in this group, 

though this figure may be an artefact of elevated collecting effort in southern Africa (see 

Proche§ & Marshall, 2001). 
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Figure 4. Total species richness of marine Acari for nine localities along the southern African 

coast. A, actual records; B, species ranges (see Figure 2). White, Halacaridae; black, 

Ameronothroidea and Hyadesiidae. 
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The southern African marine mites show a high level of endemism, characteristic of 

many other marine taxonomic groups in the region. The inferred endemism of 50% is 

comparable to that for amphipods (40%), bivalves (45%) and opisthobranch molluscs (48%), 

(Awad et aI., 2001), though lower and higher values are known for other groups (e.g. 9% for 

fishes, Turpie et aI, 2000; 21 % for polychaetes, 84% for isopods, Awad et aI., 2001). This 

generally high level of endemism can be largely attributed to the geographical isolation of 

southern Africa, as well as to effects of current systems precluding dispersal from the south 

and west. The low temperatures and current directions of the Benguela and Southern Ocean 

systems are of particular importance in this respect. An obvious route of dispersal to the 

region exists via the Indo-Pacific (Agulhas current system), however, southern distributions 

are limited by cooler temperatures. Some endemic fish taxa have close relatives in South 

America and Australia (Smith 1965), but the extent to which such connections are historically 

based (i.e., Gondwanan associations) has not been well explored for southern African marine 

taxa, in general. 

Faunistic provinces 

Three biogeographical provinces are now well recognised for southern African marine animals 

(delimited here by the political borders of South Africa, extending from Namibia to 

Mozambique; see Brown & Jarman, 1978, and Field & Griffiths, 1991). A cool temperate 

West Coast province, a wann temperate South Coast province and a SUbtropical East Coast 

province have been established for a variety of taxonomic groups (phyla or groups of phyla) of 

intertidal invertebrates and fishes (Stephenson & Stephenson, 1972; Brown & Jarman, 1978; 

Emanuel et aI., 1992; Field & Griffiths, 1991; Bustamante & Branch, 1996; Turpie, 2000; 

Awad, 2001). The present study shows that this pattern remains intact for the marine mite 

fauna, even though this comprises a poorly taxonomically associated group of families 

(Halacaridae, Ameronothroidea and Hyadesiidae). The only deviation from the typical 

regional pattern was seen in the case of Kommetjie, which consistently clustered with the 

south coast fauna. However, with respect to the general faunistic pattern, less consensus exists 

as to the limits of the provinces, and some authors suggest transitional zones between 

Kommetjie and Cape Columbine and between East London and Port Edward (see Brown & 
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Jannan, 1978; Turpie et aI., 2000). The fonner transition zone would account for the 

Kommetjie anomaly in our observations. 

The basis for the origin of the three provinces is not always clear at the super/family 

level, but is distinctive in the case of ameronothroid mites. In the southern hemisphere, this 

mite group comprises a typically tropical element of low latitudinal genera, such as Fortuynia 

and Schusteria (largely limited to between 300 N and 300 S), and a typically high latitudinal 

sub-polar element, the genus Halozetes (between 30° and 700 S) (Luxton, 1967; Proche~ and 

Marsha1l2001a; also Proche~ 2001a). In the southern African region, the southerly limit of the 

tropical genera is at 33°S, whereas Halozetes is only found south of this latitude. Furthennore, 

this first recording of Halozetes in southern African represents a new northerly limit for this 

widespread and speciose peri-Antarctic genus. 

Geographical pattern of species richness 

When marine animals are considered as a group, species richness along the southern African 

coastline shows a distinctive trend of increase from west to east (West Coast province to East 

Coast province). As previously implied, this is largely accountable to the incursion of a 

species rich Indo-Pacific element into the southern African fauna on the east coast (see Turpie 

et aI., 2000). When taxonomic resolution increases, however, this pattern either persists as in 

the case of the fishes and echinodenns, or it breaks down, as in the case of isopods, 

polychaetes and ascidians (see Figure 5). In common with some of these latter invertebrate 

groups, the marine mites are best represented on the south, and not the east coast. One 

explanation for these differences may derive from the inclusion both subtidal reef and 

intertidal habitats in surveys of the fish and echinodenns including both sub-tidal reef and 

intertidal habitats, whereas other studies including the present one, consider only the intertidal 

habitats. Eastwards along the coastline towards the equator, intertidal rocky habitat availability 

and diversity decline, whereas the converse applies in the case of sub-tidal reef systems which 

become more diverse with the introduction of coral reefs. The species richness of marine 

mites would, however, be expected to increase markedly along the SUbtropical east coast if 

other habitats in addition to rocky shores were also considered. For example, mangroves in 

particular are known to support an array of habitat specific mites (Marshall & Pugh, 2001a; 

2001 b; Proche~, 2001c; Proche~ et aI., 2001). 
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Figure 5. Trends in relative species richness along the southern African coast for various 

marine animal groups. A, groups with highest richness on the south coast (data from Awad et 

aI., 2001): diamonds = octocorallians, triangles = polychaetes, stars = isopods, x-signs = 

amphipods, circles = ascidians; B, groups with highest richness on east coast (data from 

Turpie et aI., 2000; Awad et aI., 2001): squares = echinoderms, triangles = brachyurans, stars 

= bivalves, x-signs = gastropods, diamonds = fish; C, Acari: triangles = halacarids, circles = 

ameronothrids + hyadesiids, squares = total. The data were scaled from zero to one (no species 

present, to greatest number present of at any locality) . 
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Concluding remarks 

This study confinns well-established geographical patterns for southern Africa marine biota. It 

suggests that these patterns persist for most animal taxonomic groups, including evolutionary 

divergent marine mite groups (which may maintain physiological, life-history and ecological 

features similar to terrestrial arthropods). It also shows that the patterns are generally 

applicable over a broad range of taxonomic hierarchies (considering that the mites were 

examined down to family). Although geographical trends are clearly discernible, the factors 

governing these have received limited consideration. In this respect, studies have been 

conducted to assess geographical variation of some community attributes (e.g. biomass, see 

Bustamante & Branch, 1996) and some physical effects (such as habitat diversity, geology, 

and wave action; Emanuel et al., 1992; Bustamante & Branch, 1996). However there scope for 

investigation into habitat variability within and among the geographical provinces, as well as 

into patterns of genetic variation across geographical scale. Even though present day 

temperature seems to be the overriding detenninant of geographical patterns of the southern 

African marine biota, studies adding a historical perspective would be of interest. 
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Appendix. Diagnoses for halacarid mites. Abbreviations: AD, anterior dorsal plate; AE, 

anterior epimeral plate; AG, ano-genital plate; OC, ocular plate; PD, posterior dorsal plate; 

PE, posterior epimeral plate; pgs, perigenital setae. Legs numbered I to N . 

RHOMBOGNATHINAE Palpi short, in contact with the rostrum all along their length, none 

of the segments more than twice longer than wide. Flexible portion between end of tarsus and 

claws with a small sclerite. 

Isobactrus Newell. OC without setae. Opening in AD for insertion of gnathosoma ventral. 

Sclerite between tarsus and claw moniliform. 

Isobactrus sp 1. Dorsal plates (AD, PD, ~C) separate, with strong reticulation. Male with 

more than 70 pgs. Gnathosoma completely covered by AD. Tibiae I and II with one strong, 

slightly barbed seta. Claws smooth. 

Isobactrus sp 2. Dorsal plates (AD, PD, OC) separate, smooth. Male with 50-60 pgs. 

Gnathosoma half covered by AD. Tibiae I and II with one feather seta. Claws smooth. 
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Appendix. (continued) 

Rhombognathus Trouessart. OC with two setae. Opening in AD for insertion of gnathosoma 

antero-ventral. Sclerite between tarsus and claw elongated. 

Rhombognathus sp 1. Dorsal plates (AD, PD, ~C) separate, with slight reticulation, generally 

only visible at the posterior end of PD. Male with 14-16 pgs, all branched towards the end. 

Feather setae on tibiae 2-1-1-2, rarely 3-1-1-2. Claw comb present, with 8-12 teeth. 

R. !itoralis Bartsch. Dorsal plates (AD, PD, OC) separate, with slight reticulation. Male with 

20 pgs, all branched towards the end, one pair on a separate, inner circle. Feather setae on 

tibiae 2-1-1-0 or 2-1-0-0. Claw comb present, with 18-21 teeth. 

Rhombognathus sp 3. Dorsal plates (AD, PD, OC) separate, smooth, OC, twice longer than 

wide. Male with 26-30 branched pgs, branches few and scattered all along the length of the 

setae. Feather setae on tibiae 2-2-2-2, barbs on the two posterior pairs of legs less prominent 

than on the anterior pairs. Claw comb absent. 

Rhombognathus sp 4. Dorsal plates (AD, PD, OC) separate, smooth, OC round. Male with 24 

branched pgs, branches dense, scattered all along the length of the setae. Feather setae on 

tibiae 2-2-2-2. Claw comb absent. 

Rhombognathus sp 5. Dorsal plates (AD, PD, OC) separate. Male with 16-18 pgs, some bi- or 

tri-furcated from the base. Feather setae on tibiae 2-1-2-2, 2-1-1-2 or 2-2-1-2. Claws comb 

present, with 6 teeth at all legs. 

Rhombognathus sp 6. Dorsal plates fused, or at least margins adjacent, with clear reticulation, 

more obvious along three longitudinal bands. Male with 14-18 short, not branched pgs. 

Feather setae on tibiae 2-1-1-2. Claws comb present, with 15-18 teeth. 

HALACARINAE. Palpi long, laterally inserted on the rostrum, of 3-4 segments, at least the 

2nd more than twice longer than wide, 3rd with a seta. 

Halacarus Gosse. Patella I comparable in length with telofemur I and tibia I. Tibia I with 

more than 10 setae. 

H. actenos Trouessart. PD and OC absent, AD with pointed tip, five pairs of large dorsal 

pores. Telofemur and patella I with a pair of strong spiniform setae each, tibia I with two 

pairs. 
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Appendix. (continued) 

Talassarachna Packard. Patella I much shorter than telofemur I and tibia I. Tibia I with more 

than 10 setae. 

Talassarachna sp. AD with two reticulated areas, one large, posterior, one small, anterior, and 

a series of 12-15 pores along the posterior margin. OC kidney shaped, with a reticulated area 

along the convex, internal side. PD small, covering the posterior third of the body, with three 

longitudinal reticulated bands, the median one broad. Legs slender. This species is similar to 

T. lubrica (Bartsch), known from Australia and New Zealand, and noted for its variability (see 

Bartsch, 1985, Otto, 1994). However, the African populations probably deserve specific 

status. 

Agaue Lohmann. Body and legs generally adorned with lamellae. Mouthparts long, the 

distance between basirostral and tritorostral setae similar or greater than between left and right 

basirostrals. Patella I much shorter than telofemur I and tibia I. Tibia I with 10 or more setae. 

Agaue sp. Dorsal plates with thickened areas where punctuation and pigmentation are easily 

visible: one V-shaped on AD, one round, anterior on OC, two band-shaped on PD. Legs 

flattened, lamellae most obvious on telofemur I. This species is similar, but probably not 

identical, with A. chevreuxi Trouessart. 

Agauopsis Viets. Legs, especially the first pair, with numerous peg-like setae. Patella I much 

shorter than telofemur I and tibia I. Tibia I with less than 10 setae. 

A. crassipes Gimbel. Dorsal plates tightly juxtaposed, punctuation vague, more obvious on 

two longitudinal bands on AD and PD. Mouthparts shorter than gnathosomal base. Peg-like 

setae on the segments of leg I: 0-0-3-2-3-1, thick and flattened. Claw I with accessory tooth, 

but no obvious comb, claws II-IV with fine-toothed combs. 

Agauopsis sp 2. Dorsal plates loosely juxtaposed, punctuation clear, especially on an H

shaped area of AD and four costae on PD, clear reticualtion in the intervals. Mouthparts 

longer than gnathosomal base. Peg-like setae on the segments ofleg I short, 0-0-4-2-3-1. Claw 

I with accessory tooth, but no obvious comb, claws II-IV with very fine-toothed combs. 

Agauopsis sp 3. Dorsal plates loosely juxtaposed, with uniform reticulation. Mouthparts 

shorter than gnathosomal base. Peg-like setae on the segments of leg I short, 0-0-2-2-3-1. 

Claw I with accessory tooth, but no obvious comb, claws II-IV with barely visible teeth. 
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Appendix. (continued) 

Agauopsis sp 4. Dorsal plates with clear punctuation, especially on two longitudinal bands on 

AD and PD. AE very large, spanning over two thirds the length of the idiosoma. Gnathosomal 

base once and a half longer than wide, mouthparts very short. Peg-like setae on the segments 

of leg I short, 0-0-3-2-4-1. The two internal peg-like setae on tibia I starting from the same 

base. Claws smooth. 

A. pap illata Bartsch. Dorsal plates tightly juxtaposed, punctuation clear, especially on two 

longitudinal bands on AD and PD, with clear reticulation in between. Mouthparts as long as 

the base of gnathosoma. Peg-like setae on the segments ofleg I relatively small, 0-0-1-1-3-1. 

Claw I with accessory tooth, but no obvious comb, claws IT-IV with fine-toothed combs. 

Halacaropsis Bartsch. Patella I much shorter than telofemur I and tibia 1. Tibia I with more 

than 10 setae. 

H. praecognita Proche~. Anterior tip of AD with lateral lobes. Rostrum slightly longer than 

gnathosomal base. Seta on third article of palpus with terminal spines. Postero-ventral seta on 

tibia I denticulate, lateral claws smooth, no accessory tooth on middle claws. 

COPID0 GNATHINAE. AE with a pair of gland pores. Palpi laterally inserted on rostrum, of 

4 segments, at least the second clearly longer than wide, third without a seta. 

Copidognathus Trouessart. Diagnosis as for the subfamily. 

Copidognathus sp. 1 (similar to the unnamed species in Bartsch, 1972). Dorsal plates with 

small pores, more obvious on two longitudinal bands on the AD and PD. Mouthparts more 

than three times longer than gnathosomal base. Tibia I with one anterior pectinate seta, one 

short posterior branched seta, and seven normal setae. 

Copidognathus sp. 2. AD with punctuation more visible on a H-shaped area. OC sickle

shaped, five times longer than wide. All leg segment flattened, with strongly punctuated 

lamellae, most obvious on telofemur 1. Two anterior spiniform setae and one posterior 

pectinate seta on tibia 1. Trochanter ITI with long thorn-like expansion. 

C. gibbus Trouessart. Dorsal plates strongly convex, margins of AD and PD adjacent to each 

other. OC narrow, lateral. AD with a strong prominence covering the gnathosoma, and two 

lateral expansions towards the base of legs I on either side. Legs flattened, with wing-like 

expansions with strong punctuation. 
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Appendix. (continued) 

Copidognathus sp. 4. Body flattened, egg-shaped in dorsal view. AD divided in one anterior 

and one posterior half. Posterior AD and PD with strongly punctuated costae, and reticulated 

intervals. OC as long as wide. Tarsus I minute, less than half the length of tibia I. Tibia I with 

one strong thorn and seven setae. Claws I more than twice smaller, as compared to claws II. 

Copidognathus sp. 5. AD and PD with vague, uniform reticulation. OC sickle-shaped, twice 

longer than wide. Tibia I with one posterior pectinate seta, two anterior spiniform setae, and 

four normal setae. Claws with strong accessory process, as long as the main tip, and strong 

comb teeth. 

e. bairdi ssp. africanus Bartsch. AD with four elevated areas, one anterior, elongated, two 

medial, round, and one posterior, transversal, all with clear punctuation; and one anterior 

prominence. OC with clear punctuation in the anterior half, and pointed posterior tip. PD with 

four costae, the medial ones strongly elevated. Ventral plates fused, sometimes PE separate. 

Copidognathus sp. 7. AD with punctuation more visible on a H-shaped area. OC sickle

shaped, four times longer than wide. All leg segments flattened, but without wing-like 

expansions. Two short anterior spiniform setae and one posterior pectinate seta on tibia I. 

Trochanter III without thorn-like expansion. Anterior middle claws with rounded tooth. 

Copidognathus sp. 8. Palpi twice longer than gnathosomal base. Tibia I with two slightly 

thicker setae, but no pectinate setae. Tarsi with square claw fossae, claws with around 12 long, 

fine teeth. 

Copidognathus sp. 9. AD with three round elevated areas, one anterior and two posterior. PD 

with four costae, the medial ones strongly elevated. Ventral plates (AE, PE, AG) separate. 

SIMOGNATHINAE. OC small or absent. Palpi short, of 2-3 segments, dorsally inserted on 

the triangular rostrum. Tarsus I forms a chela together with a spine on tibia I. 

Simognathus Trouessart. Leg I with one strong median claw and two setiform lateral claws. 

Palpi of three segments. 

S. glareus Bartsch. OC reduced, AE large, with uniformly distributed pores, posterior half 

strongly pigmented. PD small. Chela robust, with setal digit blunt. 

Simognathus sp. 2. OC reduced, AE large, without pigmented areas, central area lacking 

pores. PD small. Chela weak, with setal digit pointed. 
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Section II 

Ecology 



Chapter V 

Mangrove pneumatophore arthropod assemblages and temporal 

patterns 

Abstract 

Arthropod assemblages comprising mites, crustaceans and hexapods are characterized here for 

mangrove pneumatophores in southeastern Africa. Initial sampling showed that 

pneumatophore assemblages differed markedly from benthic sediment assemblages, not only 

in being more species rich, but also in having lower abundances. Differences among 

pneumatophore arthropod assemblages were observed in comparisons of two mangrove stands 

(in the Durban region) and habitats within each stand. Strikingly higher arthropod abundances 

were found in assemblages associated with pneumatophores on the seaward fringes of the 

mangrove stands, as compared to those situated inside the mangrove stands or along minor 

waterways. These differences in abundance are ascribed to differences in physical conditions 

among habitat types, relating to wetting frequency and sunlight exposure. The assemblages 

associated with minor waterways varied among themselves according to variations in salinity. 

Temporal variation in abundance showed that some species peaked in summer and others in 

winter, indicating effects more closely related to terrestrial seasonal patterns, than to seawater 

temperature. This study highlights the uniqueness of the mangrove pneumatophore arthropod 

assemblages, and the need for further investigation into these in order to better understand 

mangrove meiofaunal ecology. 

Introduction 

Mangroves are thought to playa major role in supporting tropical estuarine and coastal marine 

systems by providing an important source of organic material and acting as nursery grounds 

and habitats for fishes. The benthic meiofauna, in particular, is postulated to function in litter 

degradation in high detritus areas, and to provide prey for fishes (Alongi, 1987; Gee, 1989). 

Numerous investigations have documented the composition and abundance of meiofaunal 

species for a variety of mangrove systems around the world (see Alongi & Sasekumar 1992 

for a review). These highlight the taxonomic complexity and variability of meiofaunas from 
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one region to the next. The current investigation focuses on the meiofauna of the southeastern 

African mangroves, the subject of a few previous investigations (Dye, 1983a; 1983b; 

Olafsson, 1995; Ndaro & Olafson, 1999; Olafson et aI., 2000). 

Most mangrove meiofaunal studies consider the assemblages associated with benthic 

sediments, with considerably less attention being given to other habitats, such as decaying 

mangrove litter layers (Gee & Somerfield, 1997) or stems and pneumatophores of mangrove 

trees. Pneumatophores of the mangrove tree, Avicennia marina (Forssk.) Vierh., in particular, 

not only provide large surfaces for the attachment of epiphytic plants and animals, but 

accumulate sediment that supports a suite of unattached biota. Additionally, pneumatophores 

experience considerably more variable physical conditions than benthic sediments. These 

arise from variable exposure to tidal and sunlight conditions along pneumatophore lengths and 

between pneumatophores, in relation to their position in a mangrove stand, and are likely to 

increase microhabitat diversity and hence species richness. 

While some investigations on pneumatophores have considered algal communities 

(Wilkinson et aI., 1981; Aikanathan & Sasekumar, 1994; Phillips et aI., 1994; 1996), 

cyanobacteria (potts, 1980), fungi (Hyde, 1990), barnacles and other sessile animals 

(Farnsworth & Ellison, 1996; Saturmanatpan et aI., 1999) associated with pneumatophores, 

virtually nothing is known about the meiofaunas inhabiting these structures. Estuarine 

meiofaunal studies classically consider nematodes and harpacticoid copepods, with relatively 

less attention given to groups such as mites and hexapods (collembolans and dipterans), even 

though these are common components of marine intertidal systems (Cheng, 1976; Pugh & 

King, 1985; Thibaud & Christian, 1997). The only known ecological studies considering 

estuarine mites concern temperate saltmarsh systems (Luxton, 1966; 1967a; 1967b). 

The objectives of the current study were therefore as follows: 1) to characterize the 

marine arthropod assemblages associated with mangrove pneumatophores; 2) to determine 

whether these differ from benthic sediment assemblages; and 3) to examine spatial and 

temporal variability in assemblage structure within and between mangrove stands. 

Materials and Methods 

Study area 

Sampling was undertaken at two localities (Beachwood and Bayhead Lagoon) near Durban, 

KwaZulu-Natal, South Africa, between June 1999 and June 2000. The mangrove stand at 
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Beachwood (~44 ha) is located at the mouth of the Umgeni River, while the one at Bayhead 

(~15 ha) is located in the Durban harbour, approximately 10 km south of Beachwood (Figure 

1; Ward & Steinke, 1982). Nine sites were established at each locality (see Figure 1). Site 

selection took account of three apparently different sets of environmental conditions that the 

pneumatophores are likely to experience: the pneumatophores growing at the seaward edge of 

a mangrove stand (fringe, sensu Woodroffe, 1992) experience typical tidal conditions and 

fairly normal salinities (25 - 35); those associated with minor waterways such as creeks 

(riverine) are exposed to reduced salinities (below 15) arising from freshwater inflow (Phillips 

et aI., 1994, 1996), and those located deep inside mangrove stands (basin), experience limited 

sunlight exposure, infrequent wetting and variable salinities. No fringe sites were available at 

Beachwood, dictating the selection of six riverine and three basin sites there, whereas at 

Bayhead, three of each habitat type was selected (see Fig. 1 for site locations and numbering 

details). 

Beachwood 

I I I I 

o 1 2 3 km 

Figure 1. Map of Durban with the position of the collecting sites. The distance between 

adjacent sites is roughly 50 m. 
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Sample collection and abundance determination 

In the initial study to assess how pneumatophore and benthic sediment meiofaunas compare, 

samples were collected from the Bayhead fringe and riverine sites (sites 10 - 15), as they 

contained the most abundant faunas. The spatial studies included sampling from all eighteen 

sites of the two localities, on three separate occasions (August, October and December 1999). 

For the assessment of temporal abundance patterns, additional sampling was undertaken at 

Bayhead (sites 10 - 15), in February, April and June 2000. On each sampling occasion, five 

randomly selected replicate samples were collected, comprising the Avicennia 

pneumatophores within a 15 x 15 cm area, or in the case of benthic sediments, the upper 1 cm 

of sediment within a disc area of 22.5 cm2
• Pneumatophores were cut at ground level and 

placed in plastic bags. In the laboratory they were washed over two sieves (5 mm and 0.1 

mm), to retain all the mites, copepods, collembolans, tanaidaceans, isopods, amphipods and 

dipteran larvae. These arthropods were preserved in 70% ethanol for later identification, 

sorting and counting. 

The extraction procedure followed two steps. Firstly, the mites, tanaidaceans and some 

insect larvae were extracted from each ethanol sample by hypersaline flotation (Fain & Hart, 

1986). The remainder of the sample, which contained mainly copepods and insect larvae, was 

then brought to a homogeneous aqueous solution of standard volume (50 ml). This was then 

sub-sampled to give three 5 ml volumes. The number of arthropods in each sub-sample was 

determined, averaged, and multiplied by ten to obtain an estimate for the entire 50 ml sample. 

The total number of individuals of the various taxa for the sample was obtained by addition of 

the numbers in each fraction (hypersaline and aqueous). Benthic samples were treated as 

above; at the end of the procedure both pneumatophore and sediment values were normalized 

to 0.1 m
2

• Attempts were made to resolve taxa down to species, but in the cases of 

taxonomically complex groups, more than one species was counted together. Samples were 

counted under Xl 00 magnification using a dissecting microscope. 

Statistical procedures and data presentation 

Using the data for August, October and December 1999, mean abundances (individuals in 

0.lm
2

; N = 45) were determined for each group of three sites (1 - 3, 4 - 6, 7 - 9, 10 -12,13-

15, 16 - 18; see Figure 1). Because numbers and lengths of the pneumatophores varied among 

quadrats, total pneumatophore length was also determined. Paired t-tests were used to assess 
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significant differences in abundance of taxa in pneumatophore and benthic sediments. To see 

how closely the sites were associated with one another in tenns of species composition and 

abundance, a non-metric multidimensional scaling ordination (MDS) was perfonned from a 

Bray-Curtis dissimilarity model, using 4th root transfonned abundance values to account for 

rare taxa (Clarke & Warwick, 1994). Plots are given for temporal variations in abundance, as 

well as for abundances of some Beachwood riverine taxa along a salinity gradient. All 

statistical procedures were undertaken using SPSS ver. 9.0 for Windows (1999). 

Results 

Species composition and abundance 

The mesoarthropod fauna of southern African mangroves comprises three similarly species 

diverse, taxonomic groups: mites (Acari - mesotigmatids, pro stigmatids , and oribatids), 

crustaceans (copepods, tanaidaceans, isopods and amphipods) and hexapods (collembolans 

and dipterans) (Table 1). Thirty taxa in total were identified, however, this excludes some 

copepod taxa that were not readily discernible. Of the twenty-two easily identifiable taxa, 

twelve were found at both Bayhead and Beachwood, while four and six were exclusive to 

Beachwood and Bayhead, respectively (Table 1). 

Arthropod faunas of the benthic sediment below pneumatophores differed markedly 

from those associated with the pneumatophores themselves. Of ten taxa, four were more 

abundant on the pneumatophores, two were more abundant in the sediment, and four showed 

no significant differences between the two habitat types (Figure 2). The most abundant taxon 

in the sediment (Harpacticoidea, 1900 individuals for 0.1 m2
) differed by one order of 

magnitude from the most abundant taxon on the pneumatophores (Tanais, 190 individuals for 

0.1 m2
). The mites (Acari) were restricted to pneumatophore habitats. Different groups of 

crustaceans dominated on the pneumatophores (tanaids), and in the sediment (harpacticoids). 

Generally, dipteran larvae showed similar abundances, both in the sediment and on the 

pneumatophores, but the Empidoidea were more abundant in the sediment (Figure 2). 

The crustaceans were the most abundant pneumatophore meso arthropods (-100 

individuals for 0.1 m2
), followed by the mites (-60 individuals) and then the hexapods (-30 

individuals). Crustacean abundance was dominated by the abundance oftanaidaceans, though 

this varied among sites (0 to -430 individuals for 0.1 m\ Occupancy was higher than 10% in 

most species from the three taxonomic groups, but highest in Leioseius, a mite present in 
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relativey low abundances. The greatest arthropod abundance was found at the Bayhead fringe 

sites (~900 individuals for 0.1 m2
) (Table 2). Overall abundances were overwhelmingly 

influenced by the fringe arthropods and particularly the dominant species of each major 

taxonomic group, Copidognathus (Acari), Tanais (Crustacea) and Culicoides (Hexapoda) 

(Table 2). Although total pneumatophore lengths were variable among groups of sites, there 

was apparently no relationship between total mesoarthropod abundance and total 

pneumatophore length (Table 2). 

Table 1. Mesoarthropod taxa occuring in mangrove pneumatophores and benthic sediment. 

(Asterisks indicate putative complexes of species.) 

Acari 

Crustacea 

Hexapoda 

Mesostigmata 

Pro stigmata 

Oribatida 
Copepoda 

Tanaidacea 
Isopoda 
Amphipoda 

Poduromorpha 
Diptera 

TAXA 

Ascidae: Leioseius sp. nov. 
Uropodidae: Uroobovella sp. 
Nanorchestidae Nanorchestes sp. 
Halacaridae: Copidognathus caloglossae 

Acarothrix umgenica 
Agauopsis sp. nov. 

Tydaeidae indet. 
Tarsonemidae indet. 
Oribatulidae indet. 
Harpacticoidea: 
Canthocamptidae: Amphibiperita sp., 
Diosaccidae: Robertsonia robusta, etc. 

Metidae: Metis sp. nov. 
Tanaididae Tanais philetaerus 
Sphaeromatidae indet. 
Hyalidae Hyale grandicornis 
Melitidae Melita zeylanica 
Podoceridae indet. 
Corophiidae: Corophium triaenonyx 
Neanuridae: Anurida maritima 
Tipulidae indet. 
Cecidomyiidae: Lestremyiinae indet. 
Empidoidea indet. 
Ceratopogonidae: Culicoides sp. nov. 
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Further referred 
to as: 

Leioseius 
Uroobovella 
Nanorchestes 
Copidognathus 
Acarothrix 
Agauopsis 
Tydaeidae 
Tarsonemidae 
Oribatulidae* 

Non-metid 
Harpacticoidea * 
Metis 
Tanais 
Sphaeromatidae 
Hyale 
Melita 
Podoceridae 
Corophium 
Anurida 
Tipulidae 
Cecidomyiidae 
Empidoidea* 
Culicoides 



Table 2. Abundance of mangrove pneumatophore arthropods (mean ±SE for 0.1 m2
; N=45 for groups of three sites, n=270 for the grand mean). Total 

pneumatophore length (cm) is also given. 

Beachwood Bayhead 

Riverine Riverine Basin Fringe Riverine Basin Grand mean Occupancy 
Taxa sites 1- 3 Sites 4-6 Sites 7-9 Sites 10-12 Sites 13-15 Sites 16-18 sites 1-18 (%) 

Leioseius 8.12 ±1.84 4.58 ±0.82 4.56 ±1.06 10.00 ±1.53 6.88 ±1.37 3.51 ±0.85 6.31 ±0.54 50.00 
Uroobovella 0.29±0.29 0.30 ±0.22 43.03 ±5.89 3.10±1.11 0.61 ±0.34 7.77 ±1.37 21.85 
Nanorchestes 0.77 ±0.32 2.33 ±0.59 2.14 ±0.60 2.32 ±1.16 0.03 ±0.03 1.26 ±0.25 14.44 

00 Copidognathus 223.61 ±37.96 16.26 ±6.03 3.92 ±1.33 40.06±8.06 29.63 
VI Acarothrix 0.77 ±0.40 13.92 ±2.29 3.62 ±1.24 3.10 ±0.54 18.89 

Tydaeidae 0.77 ±0.32 0.88 ±0.43 5.52 ±1.68 0.10 ±0.10 1.23 ±0.32 10.74 
Tarsonemidae 1.06 ±0.35 0.97 ±0.48 0.11 ±0.1O 0.36±0.1O 5.56 
OribatuIidae 1.16 ±0.57 0.98 ±0.28 1.46 ±0.68 0.61 ±0.23 1.07 ±0.35 0.68 ±0.24 1.00 ±0.18 16.67 

Total Acari 11.94 ±2.21 24.39±2.99 17.97 ±3.46 276.81 ±42.65 27.84±7.74 8.00 ±1.70 61.10 ±9.30 

Non-metid 
Harpacticoidea 3.28 ±1.02 0.12 ±0.1O 26.77 ±5.26 10.35 ±3.07 1.27 ±0.48 7.05 ±1.19 29.26 

Metis 21.80 ±9.09 15.01 ±6.14 3.39 ±1.64 6.63 ±1.92 12.96 
Tanais 38.55 ±8.02 1.72 ±0.94 0.12±0.10 432.48 ±50.80 15.52 ±4.05 14.82 ±3.07 85.50 ±12.93 49.26 
Sphaeroma tidae 1.41 ±0.56 0.77 ±0.35 0.01 ±0.01 0.36 ±0.11 5.56 
Hyale 1.45 ±1.00 1.37 ±0.48 2.43 ±1.25 0.89 ±0.28 7.78 
Melita 6.57 ±2.12 1.21 ±0.72 1.08 ±0.47 0.40 ±0.31 0.50 ±0.21 1.07 ±0.70 1.82 ±0.42 15.19 



Table 2. (continued). 

Beachwood Bayhead 

Riverine Riverine Basin Fringe Riverine Basin Grand mean Occupancy 
Taxa sites 1- 3 Sites 4-6 Sites 7- 9 sites 10-12 Sites 13- 15 Sites 16-18 sites 1-18 (%) 

Podoceridae 0.10 ±O.1O 0.10 ±0.10 0.03 ±0.02 0.74 
Corophium 0.39 ±0.39 0.01 ±0.01 0.10 ±0.10 0.08 ±0.07 0.74 

Total Crustacea 51.35 ±10.15 4.25 ±1.72 3.85 ±1.55 494.36 ±53.41 43.00 ±9.16 19.56 ±4.21 102.37 ±14.08 

Anurida 23.84 ±6.01 11.23 ±2.76 1.77 ±1.28 6.33 ±1.25 22.22 
~ Cecidomyiidae 0.10 ±O.1O 1.64 ±1.32 0.03 ±0.03 7.98 ±3.47 0.39 ±0.19 0.17 ±0.12 1.71 ±0.64 5.93 

Empidoidea 0.29 ±0.17 0.68 ±0.28 2.13 ±2.05 5.05 ±1.49 0.89 ±0.27 1.87 ±1.06 1.82 ±0.47 15.16 
Culicoides 0.10 ±0.10 0.58 ±0.30 0.30 ±0.17 120.39 ±23.19 2.68 ±1.21 15.86 ±3.41 23.14±4.71 28.89 

Total Hexapoda 0.49 ±0.21 2.96 ±1.35 2.47 ±2.08 158.01 ±28.67 15.41 ±3.03 19.35 ±4.07 32.99 ±5 .91 

Total 63.80 ±10.40 31.60±4.19 24.29 ±5.57 929.18 ±112.67 86.26 ±11.83 46.91 ±7.97 196.46 ±27.45 
mesoarthropods 

Total 222.11 ±33.11 285.39 ±42.54 241.35 ±35.98 285.93 ±42.62 224.42 ±33.45 114.03 ±17.00 272.60 ±16.59 
pneumatophore 

length 



Comparisons of assemblages within and between localities 

The multidimensional scaling ordination showed a clear distinction between the Beachwood 

and Bayhead assemblages (Figure 3). This was largely due to differences in species 

composition at each locality (see Table 2; only twelve of the twenty taxa were common to the 

two localities). The riverine and basin assemblages were separated at both localities, and 

showed similar patterns of association for each locality (Figure 3). 
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Figure 2. Abundances (mean ±SE for 0.1 m2
; N=30) for arthropod taxa on the 

pneumatophores (P) and in the benthic sediment (S). Pairs of asterisks indicate significant 

differences between the pneumatophores and the sediment (paired t-test, P<O.05). 
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At Bayhead, the fringe assemblages were, however, closely associated, and broadly separated 

from both the basin and riverine assemblages, an effect attributable to the greater species 

abundances in the fringe assemblages. Separation of the assemblages at riverine sites in 

Beachwood, seemed to be influenced by a salinity gradient along the Beachwood Creek. The 

ordination showed that the assemblages were separated almost linearly from site 1 to site 6 

(Figure 3), which respectively represented the highest and lowest salinities of the gradient. 

Assemblage differences were apparently linked to changing abundances of the dominant taxa 

along this gradient; abundances of the two dominant crustacean taxa decreased (Figure 4), 

while those of the hal acarid mite Acarothrix, increased along the gradient of decreasing 

salinity. Abundances of the predatory mesostigmatid mite, Leioseius, were seemingly 

independent of salinity (Figure 4). 

low 
salinity 

Beachwood 
riverine 

sites 

Bayhead 

(0 
fringe 

12 10 sites 
11 

Figure 3. MDS plot for the arthropod assemblages in the 18 sample sites (stress = 0.13). 

Temporal variation 

The abundance values for all the mesoarthropods combined showed a prominent summer and 

a less prominent winter peak (Figure 5). These patterns were to a large extent influenced by 

the three most dominant species (Copidognathus (Acari), Tanais (Crustacea) and Culicoides 

(Hexapoda) (Table 1)). Some of the less abundant species showed slightly different trends 

(e.g. Empidoidea and Harpacticoidea; Figure 5). 
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Discussion 

Comparisons between pneumatophores and the benthic sediment 

We show here that the mesoarthropod assemblages associated with mangrove 

pneumatophores differ considerably from those of benthic sediments. A new suite of 

arthropods, containing tanaidaceans and mites, was found exclusively on the pneumatophores 

investigated, and abundances of other species varied greatly between pneumatophores and 

benthic sediments. The single known study concerning pneumatophore meiofaunas, shows 

abundances to be lower on pneumatophores relative to benthic sediments (see Alongi & 

Sasekumar, 1992), but this excludes mites and tanaidaceans. Even though mites are known to 

colonize mangrove benthic sediments (Bartsch, 1990; Gee & Warwick, 1996; Chapman, 

1998), they were absent from these in the present investigation. Tanaidaceans have been 

reported in relatively few mangrove meiofaunal studies (Branch & Grindley, 1979; Gee & 

Warwick, 1996; Chapman, 1998), and the extent to which they colonize benthic sediments 

remains unclear. 
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Figure 4. Abundance values (mean ±SE for 0.1 m2
; N=15) for four arthropod taxa at sites 1- 6. 

Salinity decreases from site 1 to site 6. 

Spatial and temporal variability in marine meiofaunal assemblages has been attributed 

to a variety of biotic factors (including food availability) and habitat conditions. For example, 

in lotic systems, biotic interactions include large scale effects resulting from fish predation 
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and small scale effects resulting from meiofaunal predation (Swan & Palmer, 2000). Another 

example for deep-sea sediments, ascribes variability to worm-related disturbance (Gage, 

1997). Habitat conditions of relevance include sediment particle size, habitat salinity and the 
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Figure 5. Mean abundance values (for 0.1 m2
; N=5) for arthropods in sites 10-16 at six 

moments (August, October, December 1999, February, April, June 2000). White bars, fringe 

sites (10-12); grey bars, creek sites (13-15). 
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potential for dehydration (Alongi & Sasekumar, 1992; Olafsson et al., 2000). Salinity is 

known to vary considerably in relation to position on the shore, and depressions in the 

sediment (Phillips et al., 1996; Chapman, 1998; Olafsson et al., 2000). Probably the greatest 

cause of the observed increase in species richness on pneumatophores relative to benthic 

sediments, derives from the physical and structural attributes of the pneumatophores. 

Pneumatophores introduce a unique structural feature to the physical environment of 

mudflats, which significantly increases habitat complexity (Beck, 2000). Additionally, they 

provide surfaces for the attachment of sessile biota (for example, algae, barnacles), which 

form a habitat for other smaller biota (for example, mites). Furthermore, pneumatophores 

experience differential dehydration along their lengths during air exposure (following tidal 

recession). The exclusive occurrence of some taxa on pneumatophores may well relate to their 

enhanced capacities to withstand dehydration. 

Comparisons of assemblages between and within mangrove stands 

A second definitive result is that the meiofaunal arthropod assemblages of pneumatophores 

vary remarkably among mangrove stands, and within stands depending on the position 

relative to the edge, and to minor waterways.:. The way in which assemblages change in 

tandem with changes in salinity between Bayhead and Beachwood, and between sites at the 

latter, suggests the predominant role of salinity in structuring these assemblages. Numerous 

other studies have suggested how salinity influences mangrove meiofaunal assemblages 

(Olafsson, 1995; Somerfield et al., 1998; Ndaro & Olafsson, 1999, Olafsson et. al., 2000). 

Differences between the fringe and basin pneumatophore assemblages apparently also relate 

to differences in habitat conditions; fringe pneumatophores experience a higher frequency of 

wetting and are often exposed to direct sunlight. At least the latter condition is likely to yield 

greater algal productivity, and thus support larger meiofaunal colonies. This would explain the 

considerably greater arthropod abundances associated with fringe pneumatophores relative to 

basin pneumatophores. The lower species richness of fringe assemblages is probably 

explained by the loss from these assemblages of dehydration intolerant species, as exposure to 

direct sunlight causes rapid dehydration of these pneumatophores, compared to basin 

pneumatophores which are shaded by the tree canopy. 
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Temporal patterns 

The temporal patterns of the mangrove pneumatophore arthopods are open to interpretation in 

terms of terrestrial or marine variations in climatic conditions. Because there is very little 

variation in the seawater temperature conditions during the year (the warm Agulhas current in 

the region keeps this parameter between 20 and 25°C year round; Bolton & Anderson, 1997), 

it is unlikely that the arthropods are at any moment limited by either low, or high seawater 

temperatures, as compared to the rest of the year. More likely, the observed patterns relate to 

terrestrial conditions. Summers in Durban are considerably hotter and wetter than winters 

(when temperatures often fall below 15°C; Cockcroft & Forbes, 1981). The observed 

differences among taxa in seasonal abundances may relate to their different preferences of air 

temperatures prevailing at different times of the year. Besides temperature, the decrease in 

salinity caused by summer rainfall can be taken into consideration. However, the occurrence 

of summer peaks in taxa which apparently prefer relatively low salinity conditions as well as 

those which prefer relatively high salinity conditions, suggest that salinity variation caused by 

summer rains can be discounted as a factor influencing abundance variation among taxa. 

Concluding remarks 

In summary, we show that mangrove pneumatophores provide an additional dimension of 

habitat to the mud surface below them, and that the physical characteristics of this habitat 

explain differences between pneumatophore and sediment assemblages. While we show that 

pneumatophore arthropod assemblages differ at two different spatial scales: between and 

within mangrove stands, it is obvious that complex gradients of habitat conditions must exist 

over a variety of spatial scales. There is certainly scope to investigate much finer scales than 

those considered here. For instance, it would be interesting to know whether vertical gradients 

of assemblages exist along the pneumatophore length, considering the potential for 

differential dehydration along pneumatophores. Even more challenging would be to consider 

the scale of the sediment particle, which presumably represents the actual habitat space of 

some ofthe smaller meiofauna, like nematodes and copepods. 
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Chapter VI 

Assemblage structure of two phylogenetically distinct arthropod 

groups inhabiting mangrove pneumatophores 

Abstract 

Intertidal marine habitats support two groups of evolutionary widely-separated arthropods; 

one having had a long marine evolutionary history (e.g. crustaceans) and the other, comprising 

relatively recent colonizers (e.g. insects). Secondary marine (,terrestrial') taxa generally differ 

from their typically 'marine' counterparts with respect to physiological and life history traits, 

and biological interactions. For example, many taxa have enhanced capacities to tolerate 

desiccation, and exhibit weak interspecific interactions. These propositions are examined here 

by considering the ecological patterns of coexisting 'terrestrial' and 'marine' arthropods on 

mangrove pneumatophores. Species abundances of nine taxa (five 'terrestrial' including 

acarine and dipteran species, and four 'marine' including halacarid mite and copepod species) 

were compared along an ecological stress gradient, by considering three pneumatophore 

elevations for pneumatophores exposed to direct sunlight or in the shade. No clear distribution 

pattern emerged to suggest that the 'terrestrial' arthropods were more tolerant of desiccation 

stress than the 'marine' arthropods. The 'terrestrial' arthropods, which occurred in lower 

abundance, showed greatest abundance at the lowest pneumatophore elevation, whereas the 

'marine' arthropods were more abundant on the middle and upper pneumatophore segments. 

These patterns however closely mirrored those of the most dominant species for each group. 

Marked reductions in abundance of both groups of arthropod in the sun, as compared to the 

shade, are interpreted as relating to limited food resources on sunned pneumatophores. 

Abundance covariations for both groups of species and all species combined indicated highly 

significant positive interactions for pneumatophores in the sun, but not those in the shade. 

This is interpreted as an increase in competition among species (regardless of evolutionary 

background) arising from synchronized fluctuations in populations tracking a limited resource, 

under conditions of environmental stress. The similarity of this response in both evolutionary 

groups suggests that they may not be as ecologically disparate as previously thought. There 

are marked differences in ecological patterns among primary and secondary marine arthropods 
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for some taxa and some intertidal habitats, but this investigation highlights the limitations of 

generalizing among taxa and habitats for either group. 

Introduction 

The need to include historical perspectives into community ecological investigations has been 

realized for some time (Brooks, 1985; Waring, 1989; Wanntorp et al., 1990), but there are 

numerous and seemingly insurmountable difficulties in achieving this (Holt, 1995). A simple 

approach would require examining an ecological situation comprising evolutionary distinctive 

taxonomic groups. While most ecological systems support taxa having diverse historical 

backgrounds, in only a few are the differences in evolutionary history as clear as those found 

in some marine intertidal systems. These usually support invertebrate taxa of marine origin, 

e.g. cnidarians, annelids, molluscs, crustaceans, echinoderms (hereafter primary marine or 

'marine') as well as taxa of recent terrestrial descent, e.g. insects and mites (hereafter 

secondary marine or 'terrestrial') (Glynne-Williams & Hobart, 1952; Morton, 1954; 

Chapman, 1998). 

Differences in the evolutionary origin of the two groups appear to have different 

consequences in respect of their ecological and biogeographical distributions (Proche~ & 

Marshall, 2001a). For example, the restricted distribution of most 'terrestrial' arthropods to 

intertidal habitats (as opposed to sub-tidal habitats), relates to phylogenetic ally constrained 

physiological, life history and dispersal traits associated with their earlier terrestrial 

backgrounds (Little, 1990; Vermeij & Dudley, 2000). More specifically, their life history 

traits include, low fecundity (egg production), long generation times, and complex life-cycles 

(cf. dipteran larval stages), and no 'terrestrial' arthropods produce pelagic larvae nor have the 

capacity for aquatic respiration. Even though the evolutionary constraints of many 'terrestrial' 

arthropods present fertile ground for investigation, their ecology remains poorly known. The 

few ecological studies concerning rocky-shore, salt marsh and estuarine mites, are mostly not 

quantitative (Luxton, 1967a; 1967b; Pugh & King, 1985a; 1985b; 1988; but see Kronberg, 

1988; Mercer et al., 2000; Proche~ et a1., 2001), and none concern both primary and secondary 

marine taxa, nor integrate evolutionary aspects into ecological interpretations. 

Identifying the patterns and understanding the underlying processes which influence 

variations in assemblage structure across vertical gradients, is an integral facet of intertidal 

ecology (Underwood & Denley, 1984; Menge et a1., 1994; Roughgarden et al., 1994; 
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Underwood & Chapman, 1996; Connolly & Roughgarden, 1999). In general, intrinsic 

physiological capacities of species for tolerance of physical stress determine upper shore 

distribution limits, whereas low shore limits are largely influenced by biological interactions 

(Menge, 2000). While this applies to most typically marine intertidal invertebrates and 

especially to rocky shore situations, there is evidence to suggest that the opposite is applicable 

in the case of secondary marine arthropods. They are intolerant of both submersion and wave 

action, but are relatively more tolerant than 'marine' arthropods of air exposure and 

desiccation (Neumann, 1976; Schulte, 1976a; 1976b; Witteveen & Joosse 1987; 1988; King et 

aI., 1990; Pugh et aI., 1990; Chown & van Drimmelen, 1992; Mercer et aI., 2001). While 

biological interactions probably largely influence the structuring of their upper-shore 

assemblages, some evidence suggests that interactions between 'terrestrial' and 'marine' taxa 

are weak or non-existent (for example, some predatory mites feed only on other 'terrestrial' 

species) (see Proche~ & Marshall, 2001a). 

This investigation, undertaken to compare the ecological patterns of arthropods from 

different evolutionary backgrounds, considered intertidal mangrove pneumatophore taxa. 

Pneumatophores are particularly suitable for a study of this nature, in that 1) they support a 

variety of arthropods from the two evolutionary-distinct backgrounds, 2) the arthropods can be 

readily collected and quantified, without loss of specimens, by cutting and bagging 

pneumatophore segments, 3) vertical intertidal zonation patterns can be assessed by 

considering different pneumatophore lengths (Phillips et aI. 1994, 1996), and 4) their habitat 

structure is easily definable (Beck, 1998; 2000). Although numerous studies have considered 

mangrove meiofauna (usually excluding 'terrestrial' taxa), these concern mainly benthic 

sediments rather than the pneumatophores themselves (see Proche~ et aI., 2001). The present 

investigation intended to determine whether the evolutionary-distinct groups respond in 

different ways to physical environmental conditions and with respect to their biological 

interactions. More specifically, it considered whether 1) intertidal vertical distributions and 

abundances of species differed between the two evolutionary groups, 2) species interactions 

were stronger within than between the groups of different origin, and 3) interactions between 

and within these groups vary with varying degrees of physical stress. 
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Material and methods 

Sampling locality 

Mangroves are found in isolated stands in estuaries and bays along the eastern seaboard of 

southern Africa, and typically comprise three widespread tree species, Avicennia marina 

Forsk. (Vierh.), Bruguiera gymnorrhiza (L.) and Rhizophora mucronata Lam. (Macnae, 

1963). We sampled Avicennia marina pneumatophores from the Bayhead mangrove forest in 

the Durban Harbour, South Africa, (approximately 15 ha; 29° 53' S, 30° 61' E, Ward & 

Steinke, 1982). An earlier study describing pneumatophore arthropod assemblages identified 

the seaward fringe pneumatophores at Bayhead as being the most abundant and diverse 

(Proche~ et al., 2001). These became the focus of the present study, which was undertaken in 

March 2000. 

Mangrove pneumatophore arthropod taxa 

Only the most abundant arthropod species (taxa) were considered here, including mites 

(Acari), dipterans, copepods and tanaids, giving four primary marine and five secondary 

marine taxa (see Table 1 for taxonomic details). The secondary marine ('terrestrial') taxa 

included insects and mites, but excluded the typically marine mite family, Halacaridae (see 

Bartsch, 1989; 1996; Abe, 1996). The taxa are usually referred throughout by family (or 

superfamily) name, as indicated in the table. In all but two cases, the taxa represent single 

species; the Empidoidea contains three species from two families, while the Harpacticoidea 

comprise two species from two families (see Table 1). Species of these taxa could not be 

distinguished under the dissecting microscope. 

Sample collection and processing 

Twenty by one meter long line transects were established; ten in a shaded area (approximately 

3m X 3m) and ten in an area exposed to direct sunlight for most of the day (approximately 3m 

X 3m, and 5 m from the shaded area). The areas were otherwise similar with respect to tidal 

position (110 - 120 cm above low spring tide level), and density and length of 

pneumatophores (400 - 500 pneumatophoresl m2
, 10 - 25 cm long). Considering that habitat 

usage in most of the meiofaunal arthropods is not much greater than the size of a thumbnail, 

and that colonization and recruitment is limited (Proche~ & Marshall, 2001 b), it was assumed 

that each transect represented an independent site. 

99 



Table 1. Taxonomic information for the 'terrestrial' and 'marine' arthropods investigated. 

'Terrestrial' 

'Marine' 

Class, Order, Suborder Family (sub/super) 

Acari: Mesostigmata 
Acari: Mesostigmata 
Insecta: l)iptera 
Insecta: l)iptera 
Insecta: l)iptera 

Acari: Prostigmata 
Crustacea: Copepoda 
Crustacea: Copepoda 
Crustacea: Tanaidaea 

Ascidae 
Uropodidae 
Cecidomyiidae: Lestremyiinae 
Empidoidea 
Ceratopogonidae 

Halacaridae: Copidognathinae 
Harpacticoidea 
Harpacticoidea: Metidae 
Tanaididae 

Genus/ species 

Leioseius sp. 
Uroobovella sp. 
Lestremyinae sp. 
Empidoidea sp. 1 

Culicoides sp. 

Copidognathus sp. 
Harpacticoidea sp. 2 

Metis sp. nov. 
Tanais philetaerus 
Stebbing 

1 A complex of three species from two families. 2 Harpacticoidea other than Metidae; complex 

of two species: Amphibiperita sp. (Canthocamptidae) and Robertsonia robusta Wells & Rao 

(Diosaccidae) . 

Ten pneumatophores longer than 15 cm were randomly selected from each transect and 

cut at ground level. They were then cut into 5 cm long segments, to give three segments 

representing vertical heights from the substratum of 0-5 cm, 5-10 cm and 10 - 15 cm. The ten 

segments for each vertical height were bagged together, to give three height-based sampling 

units for each transect. The pneumatophore tips above 15 cm were discarded, and recumbent 

or branched pneumatophores were avoided. The pneumatophore samples were returned to the 

laboratory and washed over a sieve to retain organisms larger than 0.12 mm. These were 

preserved in 70% ethanol (25 ml plastic sample bottles) for later extraction, identification, and 

counting. 

By considering both vertical height, and sun and shade conditions, the sampling 

procedure included a range of desiccation effects. Evaporative water loss from pneumatophore 

surfaces occurs more rapidly in the sun than the shade and increases with increasing vertical 

height. Furthermore, the lower parts of pneumatophores are wetted more frequently and for 

longer periods with changing tidal conditions (see Phillips et a1., 1994; 1996). 
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In order to extract the mites, tanaids, and some insect larvae, the contents of the bottles 

were first treated with hypersaline solution (see Fain and Hart, 1986). All floating specimens 

were removed from the sample bottles, identified and counted under a dissecting microscope 

(X 100 magnification). The remaining fraction was then brought to a 50 ml volume 

homogeneous aqueous solution. Three by 5 ml sub-samples were taken from this solution and 

the arthropods contained (mainly copepods and insect larvae) were determined and counted. 

The average number of individuals per 50 ml volume was derived by mUltiplication. The total 

number of individuals for each sample was determined by addition of each fraction. From the 

ten replicate transects, mean abundances of each arthropod species, and that of total 

'terrestrial' or 'marine' arthropods (number of individuals per 10 pneumatophores) were 

determined for each vertical level, for pneumatophores in the shade and sun. 

Statistical analysis 

Two-way ANOVA's (applied on log-transfonned data) were used to assess significant levels 

of the effects of sunlight and elevation on abundance, for the species (species against sunlight 

and species against elevation), and evolutionary groups (groups against sunlight and groups 

against elevation). As a first measure of species interactions, Pearson's correlation coefficients 

were determined for abundances of species pairs, without considering elevation or sunlight 

condition. Both within ('terrestrial' or 'marine' species) and between ('marine' versus 

'terrestrial' species) evolutionary group relationships were determined. 

A second analysis considered species abundance covariation (according to Schluter, 

1984). This analysis determined the ratio of the variance (V) for total abundance of the group 

to the sum of the variances for abundance of each component of a group. Ratios of greater 

than one (V> 1) indicate positive interactions while those of less than one (V<1), negative 

interactions (see Schluter, 1984; Gabriel et aI., 2001). Levels of significance were determined 

using an associated statistic CW), which equals nVand has a chi-squared distribution (Schluter, 

1984). We undertook analyses to assess the abundance covariation for three groups of 

arthropods for the six combination of sunlight and elevation conditions, and overall. The 

groups comprised 'terrestrial' species only, 'marine' species only, and all species irrespective 

of evolutionary background. 
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Results 

Abundances in relation to sunlight and elevation 

All nine arthropod species were distributed along the entire length of pneumatophores, for 

both pneumatophores in the direct sun and those in the shade. However, abundances differed 

significantly among species and between the two evolutionary groups; the 'marine' arthropods 

were more abundant than the 'terrestrial' arthropods by nearly an order of magnitude (Figures 

1 and 2; Tables 1 and 2). At both the level of species and evolutionary group, abundances 

varied significantly with elevation and between pneumatophores in the sun and shade (Figures 

1 and 2; Tables 1 and 2). Total abundance of each evolutionary group, however, reflected that 

of the dominant species. In the 'marine' group, the Tanaididae was dominant, occurring at an 

average of 408.1 individuals/ 10 pneumatophores. In the 'terrestrial' group, the 

Ceratopogonidae was dominant, occurring at 52.1 individuals/ 10 pneumatophores. The least 

abundant 'marine' and 'terrestrial' species were, respectively, the Metidae and Ascidae, 

occurring at 34.1 and 5.75 individuals/ 10 pneumatophores (Figure 1). Pneumatophore density 

in the area sampled was approximately 450 per m2
. 

Direct sunlight significantly reduced abundances of both 'marine' and 'terrestrial' 

arthropods (Figure 2; Table 3). However, the effect of sun exposure on abundance varied 

among species. For example, abundances on sun-exposed pneumatophores compared to 

shaded pneumatophores were significantly lower for the Halacaridae, Tanaididae, and 

Ceratopogonidae and significantly greater for the Harpacticoidea (Figure 1). Although 

elevation had a significant effect on arthropod abundance in general (Tables 2 and 3), this 

differed among the evolutionary groups. Abundance decreased almost linearly with increasing 

elevation for the 'terrestrial' arthropods, but was maximal at the intermediate level of 

elevation (though not significantly different from the uppermost level) for 'marine' arthropods 

(Figure 2). These trends for abundance in relation to elevation were mirrored for conditions of 

sunlight and shade (Figure 2). As a whole, the patterns largely mirrored those of the most 

abundant species of each group (see above; Figures 1 and 2). 
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Table 2. Two-way analysis of variance showing the effects of exposure to sunlight and 

elevation on the abundance of pneumatophore arthropod species. 

Source of Variation SS dj MS F P-value F cril 

Sunlight 6.63 1 6.63 26.41 0.000 3.86 
Species 107.43 8 13.43 53.45 0.000 1.96 
Interaction 18.13 8 2.27 9.03 0.000 1.96 

Elevation 0.27 2 0.134 0.51 0.599 3.01 
Species 107.43 8 13.43 50.80 0.000 1.96 
Interaction 19.91 16 1.24 4.7l 0.000 1.66 

Table 3. Two-way analysis of variance showing the effects of exposure to sunlight and 

elevation on the abundance of pneumatophore arthropods from two different backgrounds 

(terrestrial and marine). 

Source of Variation SS df MS F P-value F crit 

Sunlight 0.33 1 0.33 29.34 0.000 3.92 
'Terrestrial' / 'marine' 0.72 1 0.72 63.53 0.000 3.92 
Interaction 0.04 1 0.04 3.17 0.078 3.92 

Elevation 0.36 2 0.18 0.98 0.379 3.08 
'Terrestrial' / 'marine' 19.25 1 19.25 105.28 0.000 3.92 
Interaction 2.46 2 1.23 6.73 0.002 3.08 
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Figure 1. Abundance values (mean and SE for n=10 sets of ten pneumatophore segments 

each) for individual arthropod taxon in the shade and in the sun, at three levels of elevation. 

Grey bars indicate pneumatophores in the shade, and white bars, pneumatophores in the sun. 

The elevation levels indicated represent: 1: 0-5 cm; 2: 5-10 cm; 3: 10-15 cm above ground. A, 

'terrestrial' arthropods; B, 'marine' arthropods. One-way ANOV A's were used to check for 

differences between the different environmental conditions (P<0.05): * significant differences 

between shade and sun; ** significant differences between elevation levels. 
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Figure lB. 
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Figure 2. Total abundance values for 'terrestrial', 'marine', and 'all' arthropods. Shading of 

bars and asterisks have the same meaning as in Figure 1. 
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Abundance relationships among species 

Pearson's correlation coefficients for abundance relationships are shown in Table 4. These 

were all positive within the 'terrestrial' group with the exception of one relationship, but only 

half of the relationships were significant. Within the 'marine' group, half the relationships 

were negative with a single relationship being significant. Abundance relationships between 

the 'terrestrial ' and the 'marine' species gave three significantly negative and three 

significantly positive correlations. The strongest positive relationship was noted between two 

'marine' species (the Halacaridae and Tanaididae), while the strongest negative relationship 

occurred between a 'terrestrial' and a 'marine' species (the Ceratopogonidae and Halacaridae) 

(Table 4). 

Table 4. Pearson's correlation coefficient for abundance relationships among nine arthropod 

taxa (ASCI, Ascidae; UROP, Uropodidae; EMPI, Empidoidea; CECI, Cecidomyiidae; CERA, 

Ceratopogonidae; HALA, Halacaridae; HARP, Harpacticoidea; METI, Metidae; TANA, 

Tanaididae). Bold indicates significant relationships (P < 0.05). 

'Terrestrial' - ASCI-UROP +0.291 'Terrestrial' - ASCI-HALA +0.306 
'terrestrial' ASCI-EMPI +0.094 'marine' ASCI-HARP -0.044 

ASCI-CECI +0.254 ASCI-METI -0.068 
ASCI-CERA -0.067 ASCI-TANA +0.299 
UROP-EMPI +0.323 UROP-HALA -0.082 
UROP-CECI +0.105 DROP-HARP -0.145 
UROP-CERA +0.264 UROP-METI +0.140 
CECI-CERA +0.020 UROP-TANA +0.110 
CECI-EMPI +0.122 CECI-HALA +0.032 
EMPI-CERA +0.377 CECI-HARP -0.061 

CECI-METI +0.266 
CECI-TANA -0.097 
EMPI-HALA +0.072 
EMPI-HARP -0.262 

HALA-HARP +0.062 EMPI-METI +0.028 
HALA-METI -0.187 EMPI-TANA +0.126 

'Marine'- HALA-TANA +0.543 CERA-HALA -0.275 
'marine' HARP-METI +0.014 CERA-HARP -0.273 

HARP-TANA -0.113 CERA-METI +0.232 
METI-TANA -0.219 CERA-TANA -0.010 
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Effects of sunlight and elevation on abundance covariation 

The variance ratios (V) indicating abundance covariation were low, and significant, for 

'marine'arthropods at low elevations on the pneumatophores (both in the shade and in the 

sun) (Table 5), indicating strong negative interactions. On the contrary, 'terrestrial species' 

did not yield significant results for any of the specific habitat types, but only when all samples 

were considered together, in this case suggesting mildly positive interactions. However, when 

all arthropod species were considered together, the values were remarkably high, especially in 

the sun and at higher elevations (Table 5), indicating strong positive interactions. 

Table 5. Variance ratios (V) of abundance covariation for three groups of arthropod species on 

shaded and sunlit mangrove pneumatophores, at three elevation levels (1: 0-5 cm; 2: 5-10 cm; 

3: 10-15 cm); n= 1 0 for each combination of elevatiOn/sunlight, n=60 for the total. Asterisks 

mark significant values, as indicated by the associated test statistic W, with a chi-squared 

distribution (Schluter, 1984): * P<0.05; ** P<0.005. 

'Terrestrial' species 'Marine' species All species 

Shade, low elevation 0.99 0.03** 0.46 
Shade, middle elevation 0.70 0.11 ** 1.04 
Shade, upper elevation 1.19 0.48 2.27* 
Sun, low elevation 1.54 0.03** 1.93* 
Sun, middle elevation 1.26 0.23* 1.24 
Sun, upper elevation 1.59 0.51 3.09** 
Total 1.36* 1.21 1.21 

Discussion 

Mangrove meiofaunas have been examined mainly with respect to understanding their 

diversity and assemblage structure (Dye, 1983a; Gee, 1989; Olafsson, 1995; Gee & 

Somerfield, 1999; Ndaro & Olafsson, 1999; Olafsson et aI., 2000). The majority of studies 

concentrate on the benthic sediment meiofauna with considerably less known about the 

pneumatophore meiofaunal assemblages. These have been shown to differ from benthic 

sediment assemblages in their species composition and abundance (Proche~ et aI., 2001), and 

such differences are thought to relate to greater habitat variability along the vertical lengths of 
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pneumatophores (Proche~ & Marshall, 2001b). Even though mangrove pneumatophores can 

be readily sampled and their meiofaunal assemblages accurately determined, and thus they 

offer unique ,possibilities for exploring ecological theory (regarding distribution, abundance, 

recruitment, and colonization) over very small spatial scales, surprisingly few studies have 

taken advantage of this (Alongi, 1987; Bingham & Young, 1992; Farnsworth & Ellison, 

1996), The disparate evolutionary backgrounds of the taxa comprising pneumatophore 

meiofaunal assemblages (typically marine, or of recent terrestrial decent), make these 

assemblages particularly suitable for investigating the effects of evolutionary history on 

ecological patterns, as was the objective of the present investigation. 

We show here that distributions and abundances of arthropods on pneumatophores are 

distinctly variable 1) among the evolutionary disparate groups, and 2) in relation to elevation 

and conditions of sun exposure. The total abundance of 'marine' arthropods was almost an 

order of magnitude greater than that of the 'terrestrial' arthropods. With respect to relative 

abundance of each group in relation to elevation, the 'marine' arthropods predominated at the 

middle and upper levels and the 'terrestrial' species at the lower level, patterns corresponding 

with those of the dominant species of each group (see Ceratopogonidae and Tanaididae; Figs. 

1 and 2). Although increased activity/inactivity and vertical migrations in relation to tidal 

cycles characterize the behaviour of many intertidal invertebrates, this is unknown for 

meiofaunal arthropods. Therefore, other than the potentially active predatory mite, Ascidae 

(see Krantz, 1978), the abundance distributions observed here are likely to persist temporally 

during the tidal cycle. 

While the foregoing account highlights discrepancies in abundance in relation to 

pneumatophore elevation, a more striking effect was observed in comparisons between 

pneumatophores in the sun and those in the shade. The low abundance of arthropods on sun

exposed pneumatophores throughout, may relate to their intolerance of dehydration. But, 

given that no taxonomic patterns were apparent to suggest species differences in stress 

tolerance, these abundances more likely relate to changes in habitat and food availability 

deriving from reduced algal or detrital development on dehydrated pneumatophores. 

Irrespective of taxonomic resolution, be it species, evolutionary group, or the arthropods as 

a whole, lowest abundances consistently occurred on the uppermost pneumatophore level, for 

pneumatophores in the sun (the most extreme physical condition), Species distributional limits 

are probably realized on these pneumatophore segments, and this is particularly apparent in 
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the case of two taxa (Ceratopogonidae - 'terrestrial' and Metidae - 'marine'; Figure 1). 

Studies on intertidal benthic communities are at the forefront of testing ecological 

theory concerning biological interactions (e.g. Underwood & Denley, 1984; Menge et al., 

1994; Underwood & Chapman, 1996; Berlow, 1997; 1999; Berlow et al., 1999; Leonard, 

2000; Menge, 2000). These have considered the implications, for community structuring, of 

directions and strengths of interactions in relation to environmental stress. Although it is 

frequently argued that definitive conclusions concerning species interactions require field 

experimental manipulations, and often the removal of one or more components of the 

community (see Menge et al., 1994; Menge 2000), in many circumstances this is practically 

impossible. The only alternative to achieving insights into species interactions of 

meioarthropods is through derivations of correlation or covariation in species abundance (see 

Gabriel et al., 2001). Species abundance correlations of the pneumatophore arthropods where 

largely not statistically significant, and therefore limited in interpretation, but they could 

suggest weak interactions. There were no clear patterns within or between evolutionary groups 

to distinguish one group from the other. The strongest association was seen between the 

Halacaridae and the Tanaididae, which were the most abundant taxa on the middle and upper 

pneumatophore segments in the shade. This may represent a real interaction, even when 

habitat circumstances (elevation and sunlight) are not taken into account. 

Distinct abundance covariation patterns were observed with respect to both elevation 

and the sunlight conditions, although these affected differently the different groups of 

arthropods, and were not observed in 'terrestrial' species. The covariations for the uppermost 

elevation (suggesting weak non-significant positive or negative interactions for 'terrestrial' 

and 'marine' arthropods respectively, but significant positive interactions when all species 

were considered together), is probably accountable to the low abundances and differential 

species limits at this elevation (Table 5). As previously mentioned, reduced abundances on 

pneumatophores is best explained as relating to a limitation on food resources. In competing 

for this limited resource, species popUlations will fluctuate in unison, and be observable as 

positive associations (see Schluter, 1984). The amelioration of potential food resources as 

occurs on the lower levels of the pneumatophores, is likely to increase interspecific 

competition and be observed as stronger negative interactions. However, the findings here 

presented suggest that these interactions differ between 'terrestrial' and 'marine' arthropods in 

relation to physical conditions. 
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Our ecological distribution findings suggest that mangrove pneumatophores contain 

arthropod species having an array of possible physiological tolerances, which are not 

necessarily group-specific for any particular evolutionary group. Furthermore, there is little 

evidence to suggest that interactions among the 'marine' arthropods are stronger and better 

developed than those among the 'terrestrial' arthropods. However, physical aspects on 

mangrove pneumatophores play an important role in increasing the degree of interaction 

among the arthropods. A more in-depth understanding of what influences distributions and 

abundances of these arthropods, requires investigations into the availability of primary food 

resources and habitat. The similarity of responses for both evolutionary groups suggests that 

they may not be as ecologically disparate as previously thought. There are marked differences 

in ecological patterns among primary and secondary marine arthropods for some taxa and 

some intertidal habitats (see Schulte, 1976a; 1976b; Kronberg, 1988; Cheng & Frank, 1993), 

but this investigation highlights the limitations on generalizing among taxa and habitats for 

either group. 
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Chapter VII 

Epiphytic algal cover and sediment deposition as determinants of 

arthropod distribution and abundance on mangrove 

pneumatophores 

Abstract 

Intertidal mangrove pneumatophores often support a variety of epiphytes (of both animal and 

plant taxa). These may facilitate sediment deposition on pneumatophores, especially in the cases 

of finely structured algae, and in estuarine systems where fine sediments are characteristic. The 

sediment covering on pneumatophores shelters complex arthropod communities, comprising 

mites, crustaceans and insects. We report here an investigation on mangrove pneumatophores 

examining the relationships between arthropod abundance (for nine meiofaunal taxa), algal 

growth and sediment cover. There was a strong correlation between mass of the sediment and 

mass of the macroalgae, supporting the assumption that pneumatophore sediment cover depends 

on algal growth. These two components of pneumatophore cover were negatively related to 

elevation, an effect probably relating to desiccation-limited algal growth towards the 

pneumatophore tips. Total arthropod abundance and that of some taxa (particularly, Uropodidae 

(Acari), Metidae (Crustacea), Ceratopogonidae (Insecta) and Empidoidea (Insecta)), was 

negatively correlated with elevation and positively correlated with sediment and algal cover, 

suggesting a good relationship between abundance and habitat availability. Other arthropod taxa 

(particularly, Halacaridae (Acari)), however, showed the opposite pattern of relationships. Their 

distributions and abundances on pneumatophores must therefore depend to a greater extent on 

other factors (habitat conditions and biotic interactions for example) than on available habitat. 

When pneumatophore cover was physically removed, in an experiment to assess assemblage 

recovery rates, some arthropod taxa (Halacaridae (Acari), Harpacticoidea (Crustacea) and 

Ceratopogonidae (Insecta)) had completely recovered by twenty five weeks. Their recovery is 

therefore only partially dependent on the recovery ofthe pneumatophore cover. Those taxa which 

showed incomplete recovery (Tanaididae (Crustacea) and Empidoidea (Insecta)) are likely to be 

constrained by life history characteristics and/or habitat availability. In conclusion, epiphytic 
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growth (and its associated sediment) has a key role in determining the assemblage composition 

and structure of pneumatophore meiofaunal arthropods. Given the considerable taxonomic 

variability of pneuma to ph ore epiphytes among systems and geographically, there is much scope 

for comparison, through similar investigations from other regions. 

Introduction 

The habitat structure of mangrove systems is extremely complex and variable between and within 

systems. Mangrove habitats comprise hard substrata (pneumatophores and tree trunks) 

interspersed in a soft substratum matrix (benthic sediment). These elements of habitat support 

vastly differing suits of biota: sediments typically can support burrowing organisms, whereas 

sedentary organisms can attach to pneumatophores. Habitat variety appears even more remarkable 

when considering spatial scale. For example, pneumatophore structure is variable over small 

scales (Beck, 2000) and depressions in the otherwise near homogeneous benthic sediment may 

vary considerably in physicochemical conditions (Olafsson et aI., 2000). Superimposed on entire 

mangrove systems are effects deriving from tidal cycles in the intertidal zone (variable wetting, 

see Dye, 1983b), and those deriving from exposure to direct sunlight (as opposed to shading under 

tree canopies, see Proche~ & Marshall, 2001). 

Although a bulk of information is available for mangrove communities, this appears to be 

skewed towards studies examining the benthic component of these communities (Alongi & 

Sasekumar, 1992; Kathiresan & Bingham, 2001). Much less known about the pneumatophore 

component, which can contribute an extensive surface area to mangrove systems. Most studies 

on pneumatophores concern epiphytic ecology, particularly that of algae (de Oliveira, 1984; 

Davey & Woelkerling, 1985; Tanaka & Chihara, 1987; Mann & Steinke, 1988; Coppejans & 

Gallin, 1989; Phillips et aI., 1994; 1996), though a few do consider the sessile fauna (Bingham, 

1992; Bingham & Young, 1994; Satumanatpan et aI., 1999; Satumanatpan & Keough, 2000). 

With respect to meiofaunal assemblages of mangrove systems (especially nematode and copepod 

assemblages), those of the benthic sediments have received significant attention (Olafsson, 1995; 

Schrijvers et aI., 1995; Somerfield et aI, 1998; Gee & Somerfield, 1999; Ndaro & Olafsson, 

1999; Olafsson et aI., 2000), with relatively little known about the assemblages associated with 

pneumatophores. 
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A recent study has however shown that pneumatophore arthropod assemblages differ markedly 

from those of benthic sediments (proche~ et al., 2001). Differences are suggested to arise from 

the steep gradient of drying along the vertical length of pneumatophores (Proche~ & Marshall 

2001; Proche~ et al., 2001), but there is much scope for further investigation here. 

Mangrove pneumatophore arthropod faunas are of special interest in that they comprise 

proportionally more secondary marine taxa than faunas of most other intertidal systems, and thus 

offer unique opportunities for examining evolutionary constraints on ecological patterns (proche~ 

& Marshall 2001). In addition, they provide opportunities for testing ecological theory over 

small scales and across extremely narrow physical gradients. However, this task is not easily 

attained, given that arthropod abundance and species richness could be directly affected by the 

environmental conditions (microclimate) on the pneumatophore, indirectly, as these conditions 

affect algal biomass and sediment deposition, or in both ways. Separating these effects is only 

possible by combining mass/abundance measurements with experimental work. Therefore, this 

study examined the relationships of arthropod abundances (including mites, insects, copepods 

and tanaids) with pneumatophore algal growth and sediment cover (the primary elements of 

microhabitat of these arthropods), and related these with the rates of arthropod recolonization 

after the algal and sediment cover is removed from pneumatophores. 

Material and methods 

Locality and arthropod taxa 

Sampling was undertaken in the Bayhead mangrove forest, Durban, South Africa (290 53' S, 300 

61' E), between March and December 2000. This forest covers an area of approximately 15 ha 

(Ward and Steinke, 1982) and experiences a regular tidal cycle with salinity fluctuating between 

27 and 35 (Begg, 1976). Previous studies identified the seaward fringe pneumatophores at 

Bayhead as comprising the most complex and abundant arthropod assemblages (proche~ & 

Marshall, 2001; Proche~ et al., 2001). These pneumatophores therefore became the focus of the 

present study. The ten most abundant arthropod taxa were considered, which included three mite 

(Acari), two copepod, and three dipteran species, and a single species each oftanaid and barnacle 

(see Table 1). All other species present in the samples were only represented by one or two 

individuals, and were considered to be terrestrial contaminants. 
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Table 1. Arthropod taxa considered in the present study. 

Acari 

Crustacea 

Insecta 

Ascidae 
Uropodidae 
Halacaridae 
Harpacticoidea 

Metidae 
Tanaididae 
Cecidomyiidae 
Empidoidea 
Ceratopogonidae 

Leioseius sp. nov. 
Uroobovella sp. 
Copidognathus caloglossae Proche~ 
At least 2 spp. (Canthocamptidae; 
Diosaccidae) 
Metis sp. Nov. 
Tanais philetaerus Stebbing 
Lestremyiinae sp. 
At least 3 spp. (2 families); not identified 
Culicoides sp. 

Field collections and abundance determinations 

Four (X 5 m) transects were established and 50 pneumatophores longer than 10 cm were 

randomly selected from each transect. The pneumatophores were cut at ground level, and then cut 

into 5 em long segments towards the tip, complying with a measurement commonly used in 

pneumatophore studies (see Davey & Woelkerling, 1985; Tanaka & Chihara, 1987; Coppej ans & 

Gallin, 1989). This gave four elevation levels as follows, 0-5, 5-10, 10-15 and 15-20 em, with 

segments above 20 em being discarded. The mean length of considered pneumatophores was 24.7 

em (±SE 2.1cm). 

The pneumatophore segments were bagged, returned to the laboratory and washed over a 

0.12 mm mesh to retrieve arthropods, macroalgae and coarse sediment. The wash-water was 

collected and evaporated to retain the fine sediment (particles smaller that 0.12 mm). Samples 

retrieved in the mesh were transferred to small plastic bottles and treated with 25 ml hypersaline 

solution (Fain and Hart 1986). Floating specimens (mainly mites, tanaids and insect larvae) were 

removed from each bottle, identified and counted under a dissecting microscope (X 160 

magnification). The remaining contents of each bottle were brought to a 50 ml aqueous solution, 

and the arthropods (mainly copepods and insect larvae) in three 5 ml sub-samples of this, were 

determined and counted. Based on these sub-samples, the number of individuals was determined 

for the 50 ml volume, and the total number of arthropods for each sample determined by addition 

of the fractions deriving from the two extraction procedures. 

The sediment in both collections (greater than, and less than 0.12 mm particle size) and the 
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algae retrieved with the coarse sediment, were oven-dried at 600 C for 24 h, and weighed. These 

samples were then burnt for 5 h at 5000 C to eliminate the organic component, and re-weighed. 

Macroalgal dry mass (which dominated the organic biomass) was taken to be the difference 

between total mass and the inorganic mass of the coarse fraction. The pneumatophore cover 

components were related to elevation, and Spearman's rank correlation coefficients were 

determined for relationships between the abundance of each taxon and elevation, sediment dry 

mass, and algal dry mass (using data from the sixteen samples - 4 transects x 4 elevation levels). 

To determine the proportion of variability in assemblage structure explained by elevation, 

sediment and macro algae, multiple regressions were performed for the abundance of each species, 

total abundance, and species richness. The most important factor in each regression was 

determined by multiplying the average value of each factor with its coefficient, as determined 

from the multiple regression. The total mass ofthe pneumatophore segments was included in the 

correlation analysis, but as correlation values were very low (rs<0.250 for all taxa but the 

Ascidae), and never significant, it was not presented, nor further considered in the regressions. 

Assemblage recovery experiment 

This experiment was intended to further explore the dependence of the arthropod assemblages 

upon the sediment and algal cover of the pneumatophores, and was undertaken by monitoring the 

temporal changes in these assemblages after the pneumatophore cover was removed. Three 

experimental and three control plots each of 60 x 60 cm and around 3 m apart, were established. 

These contained pneumatophores occurring at densities of 300 - 400 pneumatophores per m2
• In 

the experimental plots, the sediment and algal cover was removed from all pneumatophores using 

abrasive Velcro material. Two samples of 10 pneumatophores each were randomly chosen from 

each experimental and control plot. The pneumatophores were cut at their bases, placed in bags 

and returned to the laboratory. The site was revisited after 1,4, 12 and 25 weeks, to undertake 

further sampling. The samples were processed as described above. Samples were comparable in 

summed pneumatophore length (mean 148.3 ±SE 4.5cm), alleviating the need to correct for 

possible discrepancies arising from differences in habitat availability. Paired t-tests were used to 

compare abundance values between experimental and control plots (N = 6 for each, P<0.05). The 

SPSS package ver. 9.0 (1998) was used throughout. 
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Results 

Both sediment deposition and algal cover were negatively correlated with elevation along the 

pneumatophore. At the uppermost elevation, the mass of pneumatophore cover (sediment and 

algae) was less than five times that at the base. At each elevation, the ratio of fine sediment, to 

coarse inorganic sediment, to macro algae was approximately 25: 5: 1 (Figure 1). Spearman=s 

rank correlation between the mass of the fine sediment and the coarse inorganic sediment was 1, 

indicating no differential deposition of the two sediment fractions at different elevations along 

pneumatophores. The total mass of sediment (the sum of the two sediment fractions) was 

therefore used in further correlations with arthropod distribution and abundance. There was also a 

strong correlation (rs = 0.925) between the mass of the sediment and that of the macroalgae. 

Abundances were remarkably variable among the taxa, ranging from the greatest mean 

abundance for a particular level (for 50 pneumatophores) of 533 individuals in the case of 

Tanaididae, to no individuals for the Ascidae and Ceratopogonidae (Table 2). The abundances of 

most taxa were negatively correlated with elevation, with the exception of the Ascidae, 

Halacaridae and Cecidomyiidae (Table 3). Although the most abundant taxon, the Tanaididae, 

showed a negative correlation with elevation, some samples gave extraordinary high abundance 

values at the uppermost pneumatophore level. All taxa that were significantly negatively 

correlated with elevation, were also significantly positively correlated with sediment deposition 

and algal growth (Table 3), suggesting that their abundances are related to variations in habitat 

availability along the pneumatophore length. The taxa that were positively correlated with 

elevation were all negatively related to the cover components, though the relationship was 

significant in only one case (Halacaridae). Total arthropod abundance was negatively correlated 

with elevation and positively correlated with sediment and algae (Table 3). The multiple 

regressions, however, showed that most ofthe variation in arthropod assemblage composition can 

be explained by considering elevation alone; only in one taxon (Empidoidea), and for total 

arthropod abundance was the amount of macro algae the most important factor; and only one 

taxon (Uropodidae) yielded a significant value when regressed against the mass of sediment. 

Experimental removal of the pneumatophore cover eliminated 90% of the arthropods 

(Figure 2). Although there was high temporal variability for the abundances in control plots, there 

was a general trend of recovery in the 25 week period considered. Total arthropod abundance on 

experimental pneumatophores after 25 weeks was almost ten times greater than the initial 
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abundance following removal of cover, and 60% of the control abundance. The Halacaridae 

showed the most rapid recovery (there was no difference between experimental and control 

pneumatophores at 12 and 25 weeks), with complete recovery also seen for the Harpacticoidea 

and Ceratopogonidae, after 25 weeks. The most abundant taxon (the Tanaididae) showed 

relatively slow recovery (Figure 2). 
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Figure 1. Variation of three microhabitat factors on mangrove pneumatophores: fine sediment 

(white), coarse inorganic sediment (gray) and macroalgae (black). The values represent grams of 

dry mass (for N = 4 sets of 50 pneumatophore segments each). The elevation levels indicated 

represent: 1: 0-5 cm; 2: 5-10 cm; 3: 10-15 cm; 4: 15-20 cm above ground. 

Discussion 

Pneumatophores provide ideal surfaces in estuaries for the attachment of sedentary biota, for 

example, algae and barnacles. The biota is considerably variable, taxonomically and ecologically 

(biomass and abundance), between mangrove stands and from one geographical region to the 

next. Whereas eucaryotic life growing on pneumatophores may comprise as little as finely 

structured filamentous algae, in other instances this contributes a biomass similar to that of the 

pneumatophores themselves. For example, epiphytic macrobiotic assemblages on 

pneumatophores are dominated by filamentous and lamellar algae in southern African estuarine 

systems (see Lambert et aI., 1994; Phillips et aI, 1994; 1996), by barnacles and oysters in some 

Australian bay systems (see Bayliss, 1993; Ross & Underwood, 1997), and by an array of 
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Table 2. Arthropod abundance values (mean ± SE, N = 4, per sets of 50 pneumatophores) at four 

levels of elevation on mangrove pneumatophores. All pneumatophores were longer than 15 cm, so 

the three lower levels represent abundances/50 pneumatophore segments, while the top level (15-

20 cm) contained various numbers of segments « 50). 

0-5 cm 5-10 cm 10-15 cm 15-20 cm 

Ascidae 0.00 ± 0.00 3.50 ± 2.02 0.83 ± 0.83 9.05 ± 7.01 
Uropodidae 9.00 ± 4.38 8.50 ± 2.99 2.78 ± 1.84 0.83 ± 0.83 
Halacaridae 0.00 ± 0.00 22.75 ± 11.39 69.92 ± 35.16 149.44 ± 122.78 
Cecidomyiidae 4.00 ± 2.12 4.00 ± 2.12 6.64 ± 3.61 13.71 ± 9.97 
Empidoidea 57.50 ± 11.08 21.00 ± 10.30 5.56 ± 5.56 1.25 ± 0.80 
Ceratopogonidae 101.00 ± 40.44 32.50 ± 9.54 0.83 ± 0.83 0.00 ± 0.00 
Harpacticoidea 10.50 ± 7.79 14.75 ± 9.82 6.89 ± 4.67 4.89 ± 3.77 
Metidae 80.00 ± 28.37 16.50 ± 12.35 2.03 ± 2.03 0.83 ± 0.83 
Tanaididae 312.00 ± 73.52 375.00 ± 123.19 244.90 ± 115.69 533.60 ± 294.95 
Total 574.00 ± 132.47 498.50 ± 133.93 340.39 ± 130.93 713.62 ± 384.85 

Table 3. Spearman's rank correlation values for abundance of the arthropod taxa against 1) 

elevation level on the pneumatophores, 2) mass of sediment, and 3) mass of macroalgae. Asterisks 

indicate significant relationships (* P < 0.05; ** P < 0.05). 

Taxon Elevation Sediment Macroalgae 

Ascidae 0.280 -0.227 -0.252 
Uropodidae -0.589* 0.760** 0.694** 
Halacaridae 0.573* -0.491 -0.517* 
Cecidomyiidae 0.192 -0.183 -0.053 
Empidoidea -0.748** 0.777** 0.676** 
Ceratopo gonidae -0.764** 0.787** 0.760** 
Harpacticoidea -0.209 0.149 0.052 
Metidae -0.789** 0.688* 0.618* 
Tanaididae -0.255 0.391 0.492 
Total -0.376 0.518* 0.526* 
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Figure 2. Variation in arthropods abundance (mean and SE, N = 6) for the most abundant five 

arthropod taxa and total arthropods in plots where pneumatophore cover was experimentally 

removed (gray bars) and in control plots (white bars). Pairs of asterisks indicate that abundance 

values for the control plots are significantly higher than for the experimental plots (t-paired test, P 

< 0.05). 
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Table 4. Multiple regressions of arthropod abundances and species richness against elevation, 

sediment, and macro algal mass. Individual R values higher than 0.5 are marked by asterisks, 

while overall R values are given in the last column. The factor with the highest contribution to 

each multiple regression is shown in bold. 

Taxon Intercept Coefficients Overall R 

Elevation Macroalgae Sediment 

Ascidae -11.20 4.21 0.19 2.27 0.42 

Uropodidae -0.39 -0.53 0.07 12.87 0.69 

Halacaridae -328.26 111.64* 11.63 -149.68 0.56 

Cecidomyidae -17.89 6.33* 0.05 18.36 0.47 

Empidoidea 4.27 -5.19 1.47 16.38 0.87 

Ceratopogonidae 110.20 -32.77* -0.48 27.71 0.69 

Harpacticoidea 42.78* -8.74 -1.09 10.94 0.40 

Metidae 52.40 -18.42 0.28 30.90 0.69 

Tanaididae -1001.44* 315.16* 30.80* 234.43 0.61 

Total abundance 253.26 -29.26 20.68 -224.94 0.68 
Species richness 8.10* -0.77 -0.06 2.37 0.42 

sponges, cnidarians, and ascidians in the open sea mangrove islands of Florida (Bingham, 1992; 

Bingham & Young, 1994). Depending on the nature ofthe biotic covering, in estuarine systems in 

particular, it potentially traps fine sediment. The algal and sediment covering of pneumatophores 

support a variety of motile meiofaunal arthropods, the distributions of which in southern African 

mangroves, have been the subj ect of recent investigations (proche~ & Marshall, 2001; Proche~ et 

aI., 2001). 

Ecological distributions and species abundances, in general, are influenced by habitat 

suitability (physico-chemical conditions), biotic interactions, and life history patterns (Rozenweig, 

1997). Species vertical distributions in the intertidal zone (particularly upper limits) are largely 

determined by tolerance of physical conditions relating to air exposure, such as desiccation 

(Underwood & Denley, 1984, but see Pugh & King, 1985, for Acari). While a previous 

investigation has shown that desiccation is important in structuring meiofaunal arthropod 

assemblages on pneumatophores (Proche~ & Marshall, 2001), we show here that this also relates 
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to habitat availability in some instances. Initial findings indicated that the primary habitat 

available to the meiofauna (comprising the algal and sediment cover) varies vertically along a 

pneumatophore in a manner of decreasing habitat with increasing elevation. This pattern probably 

relates to a desiccation-induced reduction in algal growth (Phillips et aI., 1994; 1996; see Figure 

3) 

Arthropod abundance of some taxa (particularly, Uropodidae, Empodiodea, 

Ceratopogonidae and Metidae) corresponds with the reduction in habitat availability by 

decreasing along the vertical height of the pneumatophore. This pattern suggests a causal 

relationship between arthropod abundance and habitat availability (with reference to interstitial 

Uropodidae and Ceratopogonidae see Krantz, 1976; Linley, 1976). The other meiofaunal taxa 

showed either a significant positive relationship (in the case ofthe Halacaridae) or, were weakly 

positively or negatively related to habitat availability. Included among the numerous factors 

responsible for overriding the effects of habitat availability are those relating to biotic interactions 

(such as competition or predation). These are suggested by abundance correlations implied from 

this study and those determined in an earlier study (Proche~ & Marshall, 2001) which showed that 

the two most abundant taxa (Halacaridae and Tanaidae) are similarly distributed on 

pneumatophores, and both are mainly negatively correlated with the taxa which closely track 

available habitat (Uropodidae, Empodiodea, Ceratopogonidae and Metidae; see Proche~ & 

Marshall, 2001). 

The low significance of algal and sediment mass regression values, as compared to the 

high predictive values held by elevation alone, suggests that in fact other factors, such as the 

direct influence of moisture, as well as biotic interactions among arthropods can be more 

important in determining vertical zonation patterns than the algal and sediment mass. However, 

the dependence of the arthropod assemblages upon the macro algal and sediment covering, is 

shown clearly by the slow pace of recovery after clearing the pneumatophores. 

The arthropod community had not completely recovered during the investigation period 

(25 weeks), with rate of recovery being vastly variable among taxa. Whereas abundances of some 

arthropod groups had recovered after twenty five weeks, the total arthropod abundance remained 

below that ofthe controls by this time (though this was largely due to the dominant Tanaididae). 

Extrapolation of the consistent temporal increase in our abundance data indicates that 
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Figure 3. Interrelationships among physical and biotic components of the mangrove 

pneurnatophore environment, based on Phillips et al., 1996 (1); Proche~ & Marshall, 2001 (2); and 

the present study (3). 

complete recovery should be affected by around fifty weeks. In another study, Eston et al. (1992) 

found epiphytic algal communities on pneumatophores to recover in four to eight months. The 

most rapidly colonising pneumatophore epiphytes include barnacles. Their recovery and 

colonisation, through the production of vast numbers of swimming larvae, happens within hours 

(Satumanatpan et al., 1999; Satumanatpan & Keough, 2000). Unlike the taxa we considered, 

barnacles are filter feeders and thus are unrelated to the algal and sediment habitat, but rather 

utilize pnuematophores as attachment surfaces only. 

Intuitively it follows that taxa whose populations recover completely, prior to full 

recovery of the habitat, are more general in their utilization of habitat than those showing partial 

recovery. This situation was found to be applicable to the rapidly recovering Halacaridae (strongly 

negatively related to habitat availability) and the Harpacticoidea (weakly related to habitat), but 

not to the Ceratopogonidae (strongly correlated to habitat) (see Table 3 and Figure 1). These 

contrasting results indicate the effects on popUlation and assemblage recovery of factors other 
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than habitat utilization, for example, life history and dispersal characteristics of the taxa. The 

temporarily consistent increase in abundance of the Halacaridae suggests that their recovery 

relates to growth of the remnant population on the pneumatophores (as not all individuals were 

removed during the experiment), whereas harpacticoid copepods could recolonise from benthic 

sediments where they occur in relatively high abundance (Alongi & Sasekumar, 1992; Proche~ et 

al., 2001). Insects (represented in our samples by larvae) have flying adults, enabling them to 

disperse effectively (Cheng & Frank, 1993), but not necessarily uniformly across available 

habitat. This may explain the variability in spatial and temporal distribution and abundance on 

pneumatophores of insects in general, and particularly, the Ceratopogonidae. With respect to the 

taxa showing poor recovery, the design of the current experiment does not permit inference 

regarding the extent to which their life histories versus habitat and niche availability and 

utilization, limit population growth. 

Even though they offer considerable opportunities for ecological study, in that they can be 

readily quantified and their spatial patterns be easily identified, mangrove pneumatophore 

meiofaunas have been poorly explored. Whereas previously, the effects of desiccation and biotic 

interactions on their communities have been highlighted, the current study elucidates the effect of 

habitat availability on community structure. Utilization of the habitat comprising the algal and 

sediment pneumatophore cover, varies considerably among the species. In addition to habitat 

availability, development of the meiofaunal arthropod populations on pneumatophores depends 

on life history characteristics of the specific taxa as well as other factors (including biotic 

interactions). Given the diversity of mangrove systems worldwide, there is considerable scope for 

comparing the effects of pneumatophore cover on the ecology of meiofaunal arthropods, by 

considering other types of mangrove systems (which support vastly differing pneumatophore 

components) from other geographical regions (Lambert et al., 1994; Bayliss, 1993; Ross & 

Underwood, 1997; Bingham & Young, 1994). 

Acknowledgements 

Kaajial U grasen and Ashvita Ramcharan (UDW) determined the arthropod samples. Nisha Singh 

is thanked for use of lab facilities. Chris George and Vish Rajpal helped on the collecting trips . 

This study was partly supported by the National Research Foundation (grant to DJM) and UDW. 

128 



References 

Alongi DM, Sasekumar A. 1992. Benthic communities. In: Robertson A.I., Alongi, D.M. (eds.) 

Tropical mangrove ecosystems. Coastal and Estuarine Studies, 41: 137-171. 

Bayliss DE. 1993. Spatial distribution of Balanus amphitrite and Elminius adelaidae on 

mangrove pneumatophores. Marine Biology 116: 251-256. 

Beck MW. 2000. Separating the elements of habitat structure: independent effects of habitat 

complexity and structural components on rocky intertidal gastropods. fournal of 

Experimental Marine Biology and Ecology 249: 29-49. 

Begg GW. 1978. The estuaries of Nata!' Natal Town and Regional Planning Report 41: 1-657. 

Bingham BL, Young CM. 1992. Stochastic events and dynamics of a mangrove root epifaunal 

community. Marine Ecology 16: 145-163. 

Bingham BL. 1994. Life histories in an epifaunal community: coupling of adult and larval 

processes. Ecology 73: 2244-2259. 

Cheng L, Frank JR. 1993. Marine insects and their reproduction. Oceanography and Marine 

Biology Annual Review 31: 479-506. 

Coppejans E, Gallin E. 1989. Macroalgae associated with the mangrove vegetation ofGazi Bay 

(Kenya). Bulletin de la Societe Royale de Botanique Beige 122: 47-60. 

Davey A, Woelkerling WJ. 1985. Studies in Australian mangrove algae. III. Victorian 

communities: Structure and recolonization in West Port Bay. fournal of Experimental 

Marine Biology and Ecology 85: 177-190. 

de Oliveira FEe. 1984. Brazilian mangal vegetation, with special emphasis on seaweeds. In: Por 

F. D. & Dor I. (eds.) Hydrobiology ofthe mangal B the ecosystem of mangrove forests. 

Developments in Hydrobiology 20: 55-66. 

Dye AH. 1983. Vertical and horizontal distribution of meiofauna in mangrove sediments in 

Transkei, southern Africa. Estuarine, Coastal and Shelf Science 16: 591-598. 

Eston VR, Braga MRA, Cordeiromarino M, Fujii MT, Yokoya NS. 1992. Macroalgal 

colonization patterns on artificial substrates inside southeastern Brazilian mangroves. 

Aquatic Botany 42: 315-325. 

Fain A, Hart BJ. 1986. A new, simple technique for extraction of mites, using the difference in 

density between ethanol and saturated NaCl. (Preliminary note). Acarologia 27: 255-256. 

129 



Gee JM, Somerfield PJ. 1999. Do mangrove diversity and leaflitter decay promote meiofaunal 

diversity? Journal of Experimental Marine Biology and Ecology 218: 13-33. 

Kathiresan K, Bingham BL. 2001. Biology of mangroves and mangrove ecosystems. Advances 

in Marine Biology 40: 81-251. 

Krantz GW. 1978. A manual of acarology (2nd ed.). Oregon University Book Stores, Corvallis. 

Lambert G, Steinke TD, N aidoo Y. 1987. Algae associated with mangroves in southern African 

estuaries. 1. Rhodophyceae. South African Journal of Botany 53: 349-361. 

Linley JR. 1976. Biting midges of mangrove swamps and salt-marshes (Diptera: 

Ceratopogonidae). In Cheng L, Marine insects, North Holland: Amsterdam, pp. 335-376. 

Mann FD, Steinke TD. 1988. Photosynthetic and respiratory responses of mangrove associated 

red algae, Bostrychia radicans and Calloglossa leprieurii. South African Journal of 

Botany 54: 203-207. 

Ndaro SGM, Olafsson E. 1999. Soft-bottom fauna with emphasis on nematode assemblage 

structure in a tropical lagoon in Zanzibar, eastern Africa: I. spatial variability. 

Hydrobiologia 405: 133-148. 

Olafsson E. 1995. Meiobenthos in mangrove areas in eastern Africa with emphasis on 

assemblage structure of free-living marine nematodes. Hydrobiologia 312: 47-57. 

Olafsson E, Carlstrom S, Ndaro SGM. 2000. Meiobenthos of hypersaline tropical mangrove 

sediment in relation to spring tide innundation. Hydrobiologia 426: 57-64. 

Phillips A, Lambert G, Granger JE, Steinke TD. 1994. Horizontal zonation of epiphytic algae 

associated with Avicennia marina (Forssk.) Vierh. pneumatophores at Beachwood 

Mangroves Nature Reserve, Durban, South Africa. Botanica Marina 37: 567-576. 

Phillips A, Lambert G, Granger JE, Steinke TD. 1996. Vertical zonation of epiphytic algae 

associated with Avicennia marina (Forssk.) Vierh. Pneumatophores at Beachwood 

Mangroves Nature Reserve, Durban, South Africa. Botanica Marina 39: 167-175. 

Proche~ ~, Marshall DJ. 2001a. Ecological patterns of two cohabiting evolutionary distinct 

animal groups: mangrove pneumatophore arthropods as a case study. Ecography, 

submitted. 

Proche~ ~, Marshall DJ, Ugrasen K, Ramcharan A. 2001. Mangrove pneumatophore 

arthropod assemblages and seasonality patterns. Journal of the Marine Biological 

Association of the United Kingdom, in press. 

130 



Pugh PJA, King PE. 1985. The vertical distribution of the British intertidal Acari - The non 

halacarid fauna (Arachnida: Acari). Journal of Zoology 207: 21-33 . 

Rosenzweig ML.1997. Species diversity in space and time (3rd edition). Cambridge University 

Press, Cambridge. 

Ross PM, Underwood AJU. 1997. The distribution and abundance of barnacles in a mangrove 

forest. Australian Journal of Ecology 22: 37-47. 

Satumanatpan S, Keough MJ. 2000. Roles of larval supply and behavior in determining 

settlement of barnacles in a temperate mangrove forest. Journal of Experimental Marine 

Biology and Ecology 260: 133-153. 

Satumanatpan S, Keough MJ, Watson GF. 1999. Role of settlement in determining the 

distribution and abundance of barnacles in a temperate mangrove forest. Journal of 

Experimental Marine Biology and Ecology 241: 45-66. 

Schrijvers J, Okondo J, Steyaert M, Vincx M. 1995. Influence of epibenthos on the 

meiobenthos of the Ceriops tagal mangrove sediment at Gazi Bay, Kenya. Marine 

Ecology Progress Series 128: 247-259. 

Somerfield PJ, Gee JM, Aryuthaka C. 1998. Meiofaunal communities in a Malaysian 

mangrove. Journal of the Marine Biology Association ofV. K. 78: 717-732. 

Tanaka J, Chihara M. 1987. Species composition and vertical distribution of macroalgae in 

brackish waters of Japanese mangrove forests. Bulletin of the National Science Museum in 

Tokyo, Series B 13: 141-150. 

Underwood AJU, Denley EJ. 1984. Paradigms, expenations, and generalizations in models for 

the structure of intertidal communities on rocky shores. In: Strong DR, Simberloff D, 

Abele LG, Thistle AB (eds.) Ecological communities: conceptual issues and the evidence. 

Princeton University Press, Princeton. 

Ward CJ, Steinke TD.1982. A note on the distribution and approximate areas of mangroves in 

South Africa. South African Journal of Botany 1: 51-53. 

131 



Chapter VIII 

Arthropod distribution across spatial scales: patterns of diversity 

and abundance 

Abstract 

Although most ecological variables are scale-dependent, few studies compare scale-related 

variations in abundance, species richness and assemblage structure. This study considers all of 

these parameters in the case of mangrove pneumatophore arthropod (Acari, crustaceans and 

insects), at seven spatial scales, from 10 cm to 100 km. Negative spatial autocorrelation in the 

abundance of common species was stronger at 10 km than at 100 km, while for rare species, 

the reverse was true. Spatial autocorrelation in species richness was found to decrease from 1 

m (strong positive autocorrelation) to 10 km (strong negative autocorrelation), but was not 

significant at the 100 km scale. While these patterns largely reflect the patchy distribution of 

pneumatophores within mangrove forests, and that of the forests along the coast, an added 

effect of spatial fragmentation can be attributed to the poor dispersal abilities of the 

arthropods, in a highly dynamic environment. Variations in the abundance of common species, 

as well as the limited distribution of rare species caused differences in assemblage structure to 

increase with increasing distance, from 10 cm to 100 km. The 100 km scale clearly stood out 

as the most distinct, indicating biogeographical, rather than ecological, differences. The study 

highlights the need for combining univariate and multivariate approaches in investigating 

scale-dependent phenomena 

Introduction 

Understanding the structuring of an ecosystem can only be achieved when all the processes 

having a significant influence are considered, and these are likely to operate over a variety of 

scales (Dayton & Tegner, 1984; Levin, 1988; 1992; 1994; Menge & Olson, 1990, McCoy & 

Bell, 19910'Neill et aI, 1991; Legendre & Fortin, 1998; Koenig, 1999). Beyond pure 

theoretical interest, scale research proved to be of practical importance, especially in 

understanding human impact at local, regional and global levels, in defining critical habitat 

fragmentation and loss, and in planning corresponding conservation activities (With et aI. , 

1997; Nagendra & Gadgil, 1999). 
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Marine SCIence IS one of the fields where scale research has been particularly 

productive (Bingham, 1992; Underwood & Petraitis, 1993; Bourget et aI., 1994; Sournia, 

1994; Saburova et aI., 1995; Farnsworth & Ellison, 1996; Schoch & Dieter, 1996; Underwood 

& Chapman, 1996; 1998; Aberg & Pavia, 1997; Cosson et aI., 1997; Lancaster & Belyea, 

1997; Swadling et aI., 1997; Guichard & Bourget, 1998; Eggleston et aI., 1999; Faucha1d et aI, 

2000). These studies indicate that the the type of substratum, from intertidal rock and Arctic 

ice to estuarine or deep-sea sediment, may greatly influence distribution patterns across scales, 

due to the action of different biotic and abiotic processes. It is however difficult, from the 

amount of knowledge accumulated so far, to assemble a detailed picture of scale-dependence 

in marine ecology. This is mainly because few habitats have been systematically surveyed, so 

as to consider large arrays of scales (but see Farnsworth & Ellison, 1996, Aberg & Pavia, 

1997, Kunin, 1998). More often, the studies cover limited sets of distance classes, and as these 

differ from one habitat to the next, comparisons are not always possible. 

A variety of methods have been devised for the analysis of spatial patterns (see reviews 

in Legendre & Legendre, 1983; Legendre & Fortin, 1989; Dutilleul, 1998; Gardner, 1998), but 

many of these have only been applied within a given distance class, within one or two orders 

of magnitude. For example, autocorrelograms (measuring self-correlation in the spatial 

distribution of single variables) are normally employed in depicting spatial patterns along 

series of evenly distanced samples. However, this method is applicable to samples separated 

by uneven distances, even when these differ by a few orders of magnitude. In this case, the 

method could provide a good deal of scale-dependence information. In the field of 

multivariate techniques, the method proposed by Underwood and Chapman (1998) is a 

relatively simple approach to analyzing cross-scale variations in community structure. 

However, it has not been applied in conjunction with univariate methods considering the 

distribution of single species. 

The present study examines distribution patterns in a group of small-bodied animals 

over an array of spatial scales (seven, from 10 cm to 100 km, this being the one of the largest 

numbers considered so far in one sampling design). More specifically, it addresses the 

arthropods living on the pneumatophores of the mangrove tree Avicennia marina. The 

objective of the study was to identify the spatial scales at which most of the variation in 

individual species abundance, total abundance, species richness, and assemblage structure 

occurs, and to compare the results of these univariate and multivariate approaches. We show 

that abundance and richness of pneumatophore arthropods are positively auto correlated over 
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composition changes increasingly with increasing spatial scale. However, variation is not 

always highest for the largest scale (100 km). In ' the most abundant species, and also in total 

arthropod abundance, the 10 km scale holds the largest amount of variation, and this is 

suggested to be in relation with physical factors such as salinity, often more variable within, 

than between, estuarine systems. 

Material and methods 

Sampling program 

Mangrove forests have a patchy distribution along the southern African coast, naturally 

occurring in open estuaries and bays (Macnae, 1963, Betjak et aI., 1977, Ward & Steinke, 

1982). The size of these patches varies from stands of a few square meters to hundreds of 

hectares, and adjacent patches are often tens of kilometers apart. The most abundant tree 

species in these forests is Avicennia marina (Forssk.) Vierh .. The pneumatophores of this 

species are pencil-like structures with a respiratory function (Tomlinson, 1986), emerging 

from the sediment of the mangrove forest floor at irregular intervals. Even in stands dominated 

by other tree species, Avicennia pneumatophores are present in high numbers, due to the broad 

distribution of subterranean roots. The pneumatophores occur at variable densities, from 0 to 

1000/ m2
. Numerous studies have considered aspects related to their size, distribution, and the 

algal assemblages that usually cover them (Saifullah & Elahi, 1992, Phillips et aI., 1994; 1996; 

Beck, 1998; 2000). Information is also available on the spatial distribution of the sessile fauna, 

with two studies actually considering spatial scale (Bingham, 1992; Farnsworth & Ellison, 

1996). Much less is known about the motile arthropod fauna; although general 

characterizations of both small-scale (centimeters) and large-scale (hundreds of meters -

kilometers) distributions exist (Proche$ & Marshall, 2001a; 2001b; Proche$ et aI., 2001), no 

inter-scale study is available. 

Sampling was done in three mangrove forests along the coast of KwaZulu-Natal 

(South Africa). The forest in Richards Bay covers an area of approximately 427.S ha and is 

divided by a 'berm' (dam) wall between a southern wildlife sanctuary, and a northern harbour. 

The forests at Beachwood (c. 44 ha) and Bayhead (c.1S ha) are located within the Durban 

metropolitan area (Ward & Steinke, 1982). One transect was set in each of Richards Bay 

Harbour, Richards Bay Sanctuary, Beachwood and Bayhead. The distance between the former 

two, as well as the distance between the latter two, was approximately 10 km. The distance 
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2 localities Richards Bay 

2 localities x 
2 transects! locality = 4 transects 

4 transects x 
2 areas! transect = 8 areas 

8 areas x 
2 double grids! area =16 double grids 

16 double grids x 
2 grids! double grid = 32 grids 

32 grids x 
2 double plots! grid = 64 double plots 

64 double plots x 
2 plots! double plot =128 plots 

15 cm 15 cm 

Figure 1. The sampling program. The 128 samples were collected from plots so arranged, as 

to allow assessing spatial relationships for species and communities at seven different spatial 

scales (localities 100lan apart, transects 10km apart, areas 1 km apart, double grids 100m 

apart, grids 10 apart, double plots 1 m apart, adjacent plots). 

between the two localities was 180 km, but for simplicity this will further be referred to as the 

100 km scale. Five finer scales (1 km, 100 m, 10m, 1 m, 10 cm) were considered in each 

transect, following a nested design based on that of Underwood & Chapman (1998) (Figure 1). 

This resulted in a total of 128 samples, allowing for comparisons at seven spatial scales. The 

environment within which sampling was conducted imposed some limitations on the sample 

layout, e.g. the distances between the sets of samples did not always represent the nominal 

values of their respective spatial scale. However, they did always represent between half and 

twice this value (e.g. double grids - nominally 100 m apart, were always between 50 and 200 

m apart). The distance between the centers of the plots in a double plot, representing the 10 cm 

scale, was always 15 cm. The actual samples were represented by the arthropods on the 

Avicennia pneumatophores within each of the 128 plots. 
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Sample collection and processing 

All the pneumatophores in a 15 x 15 cm sample quadrat were cut at ground level and returned 

to the laboratory. The pneumatophores were washed over a sieve to retain the algal and 

sediment covering, together with the arthropods larger than 0.15 mm. This was preserved in 

25 ml sample bottles with 70% ethanol. The pneumatophores in each sample were dried and 

weighed, as a surrogate of habitat availability. The content of each bottle was then treated with 

hypersaline solution (as described in Fain & Hart, 1986), which resulted in the flotation of c. 

90% of the arthropods. Floating specimens were identified and counted. The number of 

remaining arthropods was estimated by subsampling the mass of algae and sediment. This was 

brought to a 50 ml homogeneous solution; five subsamples of 5 ml each were then taken and 

arthropods in them counted until the total number of individuals belonging to one species 

surpassed twenty. A species represented by more than twenty individuals in a number of 

subsamples was not counted in the following subsamples. The average numbers of individuals 

from one species in the subsamples where this species was counted, was then multiplied by 

ten, to obtain an estimate for the 50 ml volume. c) the numbers of individuals belonging to 

each species in the two fractions were added to obtain the total value. Barnacles were counted 

separately. 

Mangrove pneumatophore taxa 

The arthropods inhabiting Avicennia pneumatophores are characterized by small SIze, 

generally low dispersal abilities, and high local abundance (Proche~ et aI., 2001). Efforts were 

made to identify all arthropods to 'morpho species ' level, however this was not possible for the 

harpacticoid copepods and the insect larvae, which were found (as slide-mounted specimens) 

to belong to numerous species, but were impossible to tell apart at the dissecting microscope. 

These two groups, representing respectively 16.86% and 10.16% of the total number of 

individuals were therefore excluded from our analyses. This left 21 species in the assemblage 

(14 Acari, 3 amphipods, 1 isopod, 1 tanaidacean, 1 barnacle, 1 collembolan). Morphospecies 

labeling was not always possible below family level; in fact among the Acari more than half 

the species are undescribed. The species considered in the study are listed in Table 1. Apart 

from the typical arthropod fauna of the mangrove forest floor (see Chapman, 1998; Proche~ et 

aI., 2001), rare taxa (e.g. Parasitidae, Cheyletidae, Erythraeidae, Nothridae), were also 

considered, in order to give correct estimates of species richness, and also to compare spatial 

patterns in common and rare species. 
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Table 1. Arthropod taxa from mangrove pneumatophores. 

Acari Mesostigrnata Parasitidae Parasitidae sp. 
Ascidae Leioseius sp. 
Uropodidae Uroobovella sp. 

Prostigrnata Halacaridae Copidognathus caloglossae 
Acarothrix umgenica 
Agauopsis sp. 

Tydeidae Tydeidae sp. 
Tarsonemidae Tarsonemidae sp. 
Cheyletidae Cheyletidae sp. 
Erythraeidae Erythraeidae sp. 

Oribatida Nothridae Nothridae sp. 
Oribatulidae Oribatulidae sp. 

Pontiobates sp. 
Astigrnata Thyreophagidae Thyreophagus sp. 

Crustacea Tanaidacea Tanaididae Tanais philetaerus 
Isopoda Sphaeromatidae Sphaeromatidae sp. 
Amphipoda Amphipoda sp. 

Melitidae Melita zeylanica 
Caprellidae Caprellidae sp. 

Cirripedia Balanidae Balanus amphitrite 
Hexapoda Poduromorpha Neanuridae Anurida maritima 

Statistical analysis 

For univariate quantification of the effect of scale on species abundance, total arthropod 

abundance, and species richness patterns, spatial autocorrelation was conducted on each of 

these measures, using Bonferroni-corrected correlograms (with Moran's I as an 

autocorrelation measure, see Moran, 1950) on log-transformed data. The SAAP (Spatial 

Autocorrelation Analysis Program) package, ver. 4.3 (Wartenberg, 1989) was used. 

Correlograms are structure functions with autocorrelation values plotted on the ordinate, and 

distances among the sampling sites classed on the abscissa (Legendre & Fortin, 1989; Koenig, 

1999). For describing spatial relations between samples, the rectangular co-ordinates system 

(Wartenberg, 1989) was employed. In defining distance classes for analyses, the unequal 

(customized) distance class option was used (see Wartenberg, 1989), in order to make each 

distance class represent one of the seven spatial scales considered. This resulted in 64, 128, 

256, 512, 1024, 2048 and 4096 pairs, respectively, for the seven distance classes. According to 

Legendre & Fortin (1989), autocorrelation values in distance classes containing more than 1 % 
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of the total numbers of pairs can be readily interpreted. This grants interpretable results for six 

of the seven distance classes in this study. The lowest number of pairs, 64, represented 0.8% 

of the total number (8128), however the results are considered for limited interpretation. 

Correlograms were used to illustrate autocorrelation in total abundance, species richness, and 

pneumatophore mass values. Autocorrelation values for individual species were given 

separately, as a table. To compare autocorrelation values in common and rare species, 

common species were defined as those present in more than 10% of the samples and 

representing more than 1 % of the total number of individuals. Species present in only. one 

sample were excluded from this analysis. 

To compare the variation in community structure at different scales avoiding data non

independence, we used the method designed by Underwood & Chapman (1998). Bray-Curtis 

dissimilarity values were calculated for pairs represented by one individual sample and the 

centroid of one set of samples it belonged to. Sets of samples were selected to represent all of 

the distance classes considered (a sample was compared with the centroid of the samples 

found in the same double plot, grid, double grid, area, transect, locality, or the centroid of all 

128 samples in the study). As 21 samples contained no arthropods, the total of 107 non-empty 

samples had to be used for comparison with seven distance classes without using the same 

sample twice. This gave a maximum of fifteen replicate dissimilarity values for each scale. 

The samples to be used for comparison at each scale were randomly chosen (Figure 2). Bray

Curtis dissimilarity values were computed using PRIMER 5 (Plymouth Routines in 

Multivariate Ecological Research) on 4th root transformed data (Clarke & Warwick, 1994), 

and then plotted against a distance axis. A one-way ANOV A, followed by a Student-Newman

Keuls test, was performed to compare the dissimilarity values for each spatial scale, using 

SPSS (ver. 9.0) for Windows. 

Results 

Univariate approaches: autocorrelation values of arthropod abundance and richness 

Positive autocorrelations in species abundance were largely characteristic to fine scales (10 

cm, 1 m, 10 m, 100 m), and negative autocorrelations, to large scales (10 km, 100 km). In the 

intermediate scale of I km, the abundances of some species were positively, and those of 

other, negatively autocorrelated. Generally, autocorrelation values decreased continuously 

with increasing distance, exceptions occurring for the lowest and highest scales (Table 2). 
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Figure 2. The method for evaluating variations in community structure at different spatial 

scales designed by Underwood & Chapman (1998). Circles represent samples or centroids for 

subsets of 2, 4, 8, and 16 samples. Links represent randomly selected sample-centroid pairs for 

which dissimilarity values are calculated. A sample is always compared to the centroid of the 

set it belongs to, and equal numbers of dissimilarity values are calculated for sets from each 

spatial scale. The example in this figure illustrates how this method is applied to a set of 16 

samples. In our study, the method was applied to a set of 128 samples. 

Unusual patterns appeared in Balanus amphitrite and Agauopsis sp. In these two species, the 

positive values for the 100 m scale were higher than both the 10m and the 1 km scales. In 

Leioseius sp., an unusually high value occurred in the 1 km class, as compared to the 100 m 

class (Table 2). The highest positive autocorrelation was at the 10 cm scale for eight species, 

and in the 1 m class for six species. The lowest negative correlation was at the 100 krn scale 

for five species, at the 10 km scale for another five species, and at the 1 km scale for 

Uroobovella sp (only significant values counted). Abundant and widely distributed species 

showed more significant values than rare and localized species (Table 2). Positive 

autocorrelation at low scales was high in common species, and lower in rarer species. For 

common species, the highest positive autocorrelation value was most often at the 10 cm scale, 

and the lowest negative value at 10 km, whereas in rare species the extreme values occurred 

more often at 1 m and 100 lan, respectively (Table 2). 

Autocorrelation of total arthropod abundance closely followed the curve for the 

dominant species, Tanais philetaerus (Figure 3, cf. Table 2). Species richness showed a 
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Table 2. Autocorrelation vales (Moran's n for arthropod species from mangrove pneumatophores at seven spatial scales. Bonferroni

corrected overall significance values are also given for the correlogram of each species. Significance: * P< 0.050; ** P< 0.001. The lowest 

significant negative values for each species is given in bold, while the highest positive significant value is underlined. The species area 

arranged in decreasing order of abundance, and species present in only one sample were excluded. 

Species Total Samples Overall 
abundance present 10cm 1m 10m 100m 1 Ian 10 Ian 100 Ian significance 

Common 

Tanais philetaerus 9362 81 0.95** 0.88** 0.79** 0.74** 0.27** -0.53** -0.01 0.001 
Copidognathus caloglossae 1139 18 0.98** 0.87** 0.90** 0.11** 0.14** -0.11** -0.11** 0.001 
Balanus amphitrite 772 45 0.87** 0.83** 0.20** 0.46** -0.02 -0.24** -0.01 0.001 
Leioseius sp. 244 56 0.53** 0.59** 0.39** 0.03 0.22** -0.14** -0.05** 0.001 
Acarothrix umgenica 144 22 0.70** 0.55** 0.11* -0.01 0.10** -0.04* -0.05** 0.001 

Rare 

Thyreophagus sp. 74 9 0.33** 0.46** 0.30** -0.03 0.11 ** -0.05** -0.05** 0.001 
Melita zeylanica 57 10 0.11 0.38** -0.01 0.03 -0.06* -0.02 -0.01 0.001 
Agauopsis sp. 33 4 0.65** 0.41 ** -0.03 0.14** -0.03 -0.03 -0.03** 0.001 
Tarsonemidae sp. 30 4 0.13* 0.22** -0.02 -0.02 -0.02 -0.02 -0.01 0.001 
Uroobovella sp. 25 9 0.75** 0.69** 0.74** -0.07 -0.07* -0.04* -0.05** 0.001 
Tydaeidae sp. 16 7 -0.04 0.14* 0.08* -0.03 0.03* -0.02 -0.02 0.002 
Pontiobates sp. 16 4 -0.02 0.08* 0.03 -0.02 0.01 -0.01 -0.01 0.103 
Spheromatidae sp. 9 4 0.63** -0.03 -0.03 0.01 0.08** -0.03 -0.03** 0.001 
Anurida maritima 4 3 0.70** -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.001 



similar curve, but with a relatively smoother slope, while correlation in total pneumatophore 

mass was less regular, but still generally decreasing with distance (Figure 3). 

A multivariate approach: differences in community structure 

At all scales but 100 km, some samples were highly similar to the centroids of their respective 

sample sets, while other were dissimilar, causing a wide scatter of the Bray-Curtis 

dissimilarity values within each scale. Even so, averaged dissimilarity values significantly 

increased with spatial scale (Table 3, Figure 4). The 100 km scale was the most distinct, as the 

highest, and also the most homogeneous dissimilarity values occurred at locality level. Among 

the other scales, the 10 em scale was quite distinct, with very low averaged dissimilarity, and 

the 1 m scale appeared as intermediate between the 10 em scale and larger scales (Table 3, 

Figure 4). 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 
-0.4 

-0.6 10cm 1m 10m 100m 1km 10km 100km 

Figure 3. Bonferroni-corrected correlograms for total arthropod abundance (squares), species 

richness (diamonds), and total pneumatophore mass (triangles) at seven scales. Significant 

values are represented by closed symbols. 
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Table 3. One-way ANOV A and Student-Newman-Keuls test comparing the Bray-Curtis 

dissimilarity values between individual samples and the centroids of the sets they belong to, at 

seven scales. 

ANOVA 

Between scales 
Within scales 
Total 

SNK test 

Average 
Standard error 
Subset 

SS 

30927.674 
55097.893 
86025.567 

df 

6 
98 
104 

MS 

5154.612 
562.223 

10 em 1 m 10 m 100 m 1 km 

24.26 37.00 45.35 
5.08 5.39 5.96 

a alb b 

57.00 
6.89 

b 

58.45 
7.59 

b 

F p 

9.168 0.001 

10 km 100 km 

59.81 
7.14 

b 

81.98 
3.98 

Significance of the subsets (a=0.05): a, 0.141; b, 0.074, c, 1.000 
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Figure 4. The relationship between Bray-Curtis dissimilarity (among samples and sample 

centroids), and spatial scale. (See Materials and Methods for a full explanation.) 
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Discussion 

Environmental patchiness 

The distribution of populations and assemblages is often limited to suitable patches of habitat. 

In a spatial perspective, the distribution of organisms is likely to be most uneven at the scale 

where environmental patchiness is most pronounced (Pielou, 1977; Maurer, 1990; Cosson et 

al., 1997). For a given population or assemblage, the size and spacing of suitable patches 

determines the level of habitat availability (Wiens, 1976; Levin & Buttel, 1987; Swadling et 

al., 1997). At the same time, the existence of non-inhabited patches can impose barriers 

resulting in local isolation. In a dynamic environment, each patch is characterized by its own 

processes of colonization, population growth, and extinction, leading to differences among 

patches (MacArthur & Wilson, 1967; Rosenzweig, 1997). In the presence of an environmental 

gradient, these differences will tend to increase with increasing distance. Even if abiotic 

gradients are absent, biotic gradients derived from patch history will cause similar effects, at 

least over small scales (Levin, 1992; 1994). 

Patchiness of arthropod distribution in mangrove pneumatophore habitats arises from 

at least three effects: 1) aggregation of individuals on a pneumatophore; 2) aggregations of 

pneumatophores within a mangrove forest; and 3) distribution of forest patches along the 

coast. The first level of patchiness is not covered by the present study, but has been partly 

addressed elsewhere (Proche§ & Marshall, 2001b). While it is preferable, especially in fine 

scale studies, to consider distances between individual animals rather than samples lumping 

together their coordinates (Gardner, 1998), the small size of pneumatophore arthropods 

negates this procedure. 

The third level of patchiness was purposefully eliminated from the study, by sampling 

only in mangrove forests, and not outside them. Yet, it could be expected that the relative 

isolation of the faunas in different forests, together with the specific characteristics of the 

estuaries and bays where they were located, should cause spatially-related differences among 

forests. The size of forest patches considered here ranges between the 1 km and 10 km scales, 

and the distance between two patches is in the region of 10 km - 100 km. 

Most of the spatial distribution patterns depicted here for pneumatophore arthropods 

should relate to the second level of patchiness, and therefore the dry mass of pneumatophores 

has been used as a surrogate of habitat availability. Variations in the density and size of 

pneumatophores occur at all scales, from 10 cm to the size of the forest patch (see Saifullah & 

Elahi, 1992). hl the present study, pneumatophore mass was negatively autocorrelated in the 
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10 krn and 100 krn scales (Figure 3), which suggests that variations also exist among 

mangrove forests. This means that the availability of small-scale habitat patches (the 

pneumatophores) differs among large-scale habitat patches (the mangrove forests). Arthropod 

abundance, if strictly determined by habitat availability, should follow a similar pattern. 

Species richness is also expected to follow a similar pattern, as larger numbers of species are 

likely to inhabit larger habitat patches (see species-area curve theory in Rosenzweig, 1997). 

And indeed, similar to pneumatophore mass, arthropod abundance and species richness show a 

decline in autocorrelation from finer, to larger scales (Figure 3). 

Habitat utilization and population dynamics 

Mangrove arthropods are unlikely to fully exploit the available pneumatophore habitat. 

Avicennia pneumatophores are not long-lived structures (Tomlinson, 1986), and are often 

affected by the various disturbances characteristic to mangrove forests (lightning, tree 

extraction, pollution, flooding; see Berjak et aI., 1977; Begg, 1978; Ellison & Farnsworth, 

2000). Colonization of new pneumatophores is a must for population survival. Furthermore, 

finding a partner and a suitable microhabitat for reproduction, are unlikely events considering 

that, for most species, the average abundance per penumatophore was below one. While many 

marine organisms have swimming larvae enabling long distance dispersal (Morgan, 2001; 

Underwood & Keogh, 2001), among pneumatophore arthropods this feature is rare (it occurs 

in barnacles (Satumantpan et aI., 1999; Satumanatpan & Keough, 2000), but is absent in mites 

and most crustaceans). Therefore, a local population can generally spread only across small 

distances. The improbability of long-distance dispersal explains why spatial dependence in 

arthropod species richness was more pronounced, as compared to that of habitat availability 

(pneumatophore mass), with stronger positive autocorrelation at finer scales, and stronger 

negative autocorrelation at larger scale (Figure 3). Spatial dependence was even more 

pronounced in the case of arthropod abundance, this being largely dependent on local 

population size, in tum determined by the probability of the recruits finding a mate and 

suitable microhabitat for reproduction. 

Further differences appear at species level. Depending on their body size, mobility and 

life history, different species utilize the available habitat to different degrees (Morse et aI., 

1985; ZwOlfer & Brandl R, 1989; Hansen, 2000). Although the abundance autocorrelation for 

most species showed decreasing trends towards larger scales, similar to that of habitat 

availability (pneumatophore mass), the preCIse shape of the latter (with top positive 
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autocorrelation values at 1 m and 1 km scales; compare Figure 3 and Table 2), was only 

followed by one arthropod species: the ascid mite, Leoseius. This is not surprising, as 

Leioseius, a predator of terrestrial affinities (see Krantz, 1978) is the only pneumatophore 

species that fully exploits the entire surface of the pneumatophores, irrespective of 

microhabitat conditions (Proche~ & Marshall, 2001 b; Proche~ et al., 2001). Other types of 

patterns in cross-scale autocorrelation are noted in the other arthropod species. The uropodid 

mite, Uroobovella, is characterized by a positive peak at 10m and a negative peak at 1 km. 

This species is strictly dependent on a specific microhabitat with dense algal growth and 

sediment deposition (Proche~ & Marshall, 2001a; 2001b), and its spatial distribution patterns 

may reflect the distribution of this microhabitat. As the algal growth is dependent on particular 

sunlight levels, the 10m peak could be explained as the typical spacing of mangrove trees or 

canopy gaps. Another pattern, with high autocorrelation in the 100 m class occurred in the 

barnacle, Balanus and the mite, Agauopsis. This is likely to indicate good intra-estuarine 

dispersal, and is easy to explain in the case of the barnacle, which has swimming larvae, but 

not in the case of the mite, which lacks them. The most common pattern (all other species, see 

Table 2), is a relatively smooth decrease in autocomelation with scale, the highest positive 

value being either at 10 cm, or at 1 m, and the lowest negative, at 10 or 100 km. No specific 

explanation for this pattern can be suggested, but it may simply depict the general spatial 

pattern for a population characterized by extinction and subsequent colonization from adj acent 

patches. 

Common and rare species 

Further differences in spatial distribution exist among common and rare species (Gaston, 

1994; McGeoch & Chown, 1997). In this study, the highest positive autocorrelation for rare 

species occurred at 1 m, rather than 10 cm, generally indicating that two adjacent individuals 

are more often 1 m apart. Also, rare species were characterized by strongest negative 

autocorrelations at 100 km, as most of them only occur in only one of the two localities (either 

Durban or Richards Bay). Such faunistic differences along the KwaZulu-Natal coast have 

been observed by Macnae (1963), and should be considered a biogeographical, rather than 

ecological, effect (see Cornell, 1985; Ricklefs, 1987; Cornell & Lawton, 1992). It is less 

obvious why common species should have the strongest negative autocorrelation at 10 km. A 

possible explanation, is that the harbours in both Durban and Richards Bay have a natural 

regime of tidal flushing, normally keeping salinities above 30 (Begg, 1978). This insures an 
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input of arthropod recruits, especially In the form of crustacean larvae (see Ross & 

Underwood, 1997; Satumanatpan et al., 1998). On the other hand, the estuarine waters in 

Beachwood are known to have salinities often as low as 12 (Phillips et al., 1994; 1996). The 

situation is similar in the Sanctuary in Richards Bay, completely closed to tidal flushing at the 

time when we collected. Tanais philetaterus, the most abundant species in both harbours, was 

represented in low numbers in Beachwood and Richards Bay Sanctuary, and this species has 

been shown to be negatively influenced by low salinities (Proche~ et a1., 2001). Such 

differences in the values of physical factors, more prominent within than among localities, can 

account for the stronger negative auto correlations at the 10 km scale. 

Community structure 

Community structure is the result of both speCIes diversity and abundances (Clarke & 

Warwick, 1994), therefore spatial variation in community structure combines all the single 

factors discussed above. If some of these varied most at 10 km and others at 100 km, 

community structure clearly varied most at 100 km. At all scales but 100 km, there was a 

broad scatter of the dissimilarity values, indicating mixed (smaller and larger) variations in 

assemblage structure, while in the 100 km scale, these were consistently large (Figure 4). 

Three different classes of distances are separated by the ANOVA procedure (Table 3). These 

can be defined as scales below alpha diversity (10 cm - 1 m), alpha diversity (1 m - 10 km), 

and beta diversity (100 km) for mangrove pneumatophore arthropods (sensu Whittaker, 1970). 

This means that the 'point diversity' for these assemblages is reached around the 1 m scale, 

while biogeographical species replacement characterizes scales larger than 100 km. 

Pneumatophore arthropod assemblages contain species of both marine and terrestrial 

ancestry, and are influenced by physical factors from both environments. It is expected 

(Ricklefs, 1990; Levin, 1994) that different patterns would occur between typical marine and 

terrestrial ecosystems, as indicated by a number of available studies (e.g. Cornell, 1985; 

Underwood & Chapman, 1996). However, to fully certify this, studies using standardized 

nested hierachical schemes, similar to the one presented here, would be necessary. 

In conclusion, this study brings together univariate and multivariate methods, to investigate 

the patterns of spatial variation in arthropod assemblages. It points out the fact that these 

methods can partly confirm one another, but also complete one another, and their combination 

is likely to produce more accurate ecological interpretations. 
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Chapter IX 

Summary and discussion 

Ecological and biogeographical patterns of secondary manne orgamsms are generally 

constrained by their terrestrial links (Vermeij & Dudley, 2000). Chapter II shows that the taxa 

that are in one way or another land-dependent (those land-dependent for most of their life 

cycle, such as the mangrove trees, or at least during the reproductive season, as the seabirds, 

seals and marine reptiles) have global distribution ranges largely corresponding to three 

climatic belts. Some genera are strictly tropical in distribution, while others are restricted to 

either northern, or southern cold waters. Very few are distributed across all latitudes. This 

results in the existence of three distinct species assemblages, one northern, one tropical and 

one southern, and also in an atypical latitudinal pattern of species richness, with three peaks in 

the three species-rich latitudinal bands, and two lows in the warm temperate regions of each 

hemisphere. 

Both the existence of three different faunas, and the bimodal distribution of species 

richness in each hemisphere is confirmed (Chapter III) for at least one group of marine mites, 

the Ameronothroidea (Oribatida), for which records from the cold-climate regions of both 

hemispheres are quite reliable. While records from tropical regions are scarce, these represent 

entirely different families, and suggest much higher species richness. The Ameronothroidea, 

together with the astigmatid family Hyadesiidae, are shown to represent an ecological group 

characterized by worldwide intertidal distributions and high numbers of species per genus. In 

this context, their low fecundity and limited dispersal possibilities, suggest long evolutionary 

associations with the marine environment. However, their diversity is still relatively low, as 

compared to that of typically marine (and not strictly intertidal) mites in the family 

Halacaridae (prostigmata). Also, the latter family is cosmopolitan and seems to have unimodal 

latitudinal distribution patterns, as suggested by Bartsch's (1989) review. 

Chapter IV reviews the available literature on southern African marine intertidal mites, 

and at the same time presents original results from a bioegeographical survey on the region's 

rocky shores. The complete list of southern African mites contains eighty two species, but this 

is likely to be an underestimation, given the absence of collections from habitats such as coral 

reefs, sandy beaches and salt marshes. The bulk of the southern African intertidal mite fauna 

(forty eight species) is contained in the family Halacaridae. Seventeen other species represent 
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the Ameronothroidea and Hyadesiidae. In both these ecological groups, the west coast is 

species-poor, while the south and east coast are species-rich (the total number of species per 

locality being about double, as compared to the west coast). These three provinces, defined for 

other southern African marine biota, are confirmed here as having different marine mite 

faunas. The pattern of species richness for intertidal mites is also similar to that already 

observed for other intertidal rocky shore faunas, and different from that characterizing coral 

reef faunas. (The coral reef element is essential in determining the patterns of species richness 

in fishes and echinoderms, both of these having much richer faunas on the east coast, as 

compared to both the west and south coast.) 

The following chapters represent a senes of investigations into the ecology of 

mangrove pneumatophore arthropods. Chapter V indicates that in this environment, species 

richness is evenly distributed between primary and secondary marine species. However, the 

two groups greatly differ in abundance, with primary marine arthropods being about one order 

of magnitude more abundant that their secondary marine counterparts. Another difference 

appears when considering assemblage composition along a salinity gradient, with primary 

marine species apparently being more sensitive to low salinity, though this needs to be tested 

experimentally. However, species from both groups are more abundant along forest fringes, 

than in other habitats, and both groups appear to have summer peaks in abundance (though the 

latter needs to be confirmed by multi-annual studies). 

Further differences between primary and secondary marine arthropods are highlighted 

In Chapter VI, concerning vertical distribution along the pneumatophores, and species 

interactions. Typical primary marine species from this environment are more abundant at 

higher elevation levels, while species with close terrestrial ancestry are more abundant at 

lower levels. When considering the halacarid mites (that have long marine associations) 

together with the primary marine group, differences in vertical distribution between the two 

groups are highly significant. Correlation values among species abundances within each of the 

two groups are always positive, while correlations between species from different groups are 

either positive or negative. Environmental factors, especially desiccation, which increase with 

both elevation and exposure to sunlight, affect both groups, causing their abundances to co

vary. 

Chapter VII suggests that desiccation affects penumatophore arthropods not only 

directly, but also by reducing algal growth. Algal mass is shown to increase sediment 

deposition, thereby accommodating more interstitial arthropods. Correlations between 

arthropod abundance and the dry mass of the algae/sediment are significantly positive for both 

154 



primary and secondary marine species. No clear differences between the two groups could be 

observed in terms of population recovery after pneumatophore defaunation, which can be 

explained by pneumatophore meiofaunal species in general lacking swimming larvae, and 

therefore having limited dispersal capacities. 

Patterns of variation in pneumatophore arthropod distribution across spatial scales are 

described in Chapter VIII, showing that levels of similarity in assemblage composition and 

species abundance decrease with increasing scale. No differences in cross-scale distribution 

were observed between primary and secondary marine species, possibly relating to the fact 

that both categories include widespread and localized species, occurring in low and high 

abundance. 

While logistic constraints imposed a limit on the number of factors considered in each 

mangrove pneumatophore ecology chapter, by putting all these chapters together, a consistent 

picture takes shape, indicating a strong dependence of the arthropod assemblages on the 

availability of suitable habitat. This in tum is dependent upon both the density and size of the 

pneumatophores, but only where sunlight and elevation conditions are suitable. Where the 

microclimate is not appropriate, the arthropod assemblages are absent or scarce, irrespective 

of pneumatophore availability. No definitive answers are provided regarding the nature of 

biotic interactions within these assemblages, although such interactions are shown to be 

present, and to some extent different between primary and secondary marine organisms. 

Previously unreported patterns emerge from the thesis with respect to biogeography. 

Differences are shown to occur between the distributions of primary and secondary marine 

organisms, as long as secondary marine organisms maintain links with terrestrial habitats (as 

in the case of seabirds and ameronothroid mites), but disappear in the case of land

independent species (such as cetaceans and halacarid mites). Also, these differences are clear 

at global scale, but become difficult to assess at regional scale, as the small number of species 

(e.g. southern African ameronothroid mites) does not allow for proper statistical treatment. 

There remain many interesting unanswered questions, relating to both ecology and 

biogeography. For example, how do abundance and species richness ratios between secondary 

marine arthropods vary among habitats and geographical regions? From the little available 

information, it appears that geographical variation in this respect is relatively small, when 

compared to variation among habitats. Values around ten primary to one secondary marine 

individuals, as documented for mangrove pneumatophores (Chapter V), have also been 

reported for sand deposits, lower rocky shores (Bartsch, 1989), as well as sea-grass beds 
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(Sanchez-Jerez et aI., 1999). A much better representation of secondary marine species (up to 

90% of the total arthropod abundance) is encountered in the upper littoral of rocky shores 

(Bartsch, 1989; Mercer et aI., 2000). There is however a dearth of understanding as to what 

are the factors determining these differences. Variations in species richness also appear to be 

mainly habitat-determined. Rocky shores in most regions of the world, as well as in most 

southern African localities, harbour a hyadesiid fauna of two to three species (chapters III, 

IV). This taxonomic group could provide an excellent model for studying niche separation 

mechanisms, in terms of feeding and tolerance to physico-chemical factors. 

An interesting pattern not previously discussed in the thesis is the high ratio of 

secondary marine to primary marine arthropod species on mangrove pneumatophores. It is 

shown here that this ratio is around 1: 1. Although few cases for comparison are available, the 

value of 1: 15 (for British subtidal hard substrata; Gee & Warwick, 1996) is more likely to be a 

typical one. A reason for the high ratio in mangrove habitats may relate to the small ecological 

distance between the typical soil environment of mites and insects, and the mangrove 

sediments. This may suggest the center of origin for secondary marine arthropods to be in 

tropical regions, where mangroves are prevalent. However, it would be simplistic to suggest a 

that a single or predominant effect has prevailed in the origin of these arthropods. For 

example, the ameronothroid mite Halozetes and the hyadesiid mites are restricted to rocky 

shore environments. It is probable that these mites originated independently of the mangrove 

environment, most likely as a result of glaciation at higher latitudes, and this resulted in 

specialized attributes for a rocky shore existence. Although these ideas are given in different 

perspectives for different organisms in chapters II and III, there is still considerable scope for 

further study in this respect. 

In the context of the growing concern for the loss of biodiversity, and its potential effects on 

ecosystem functioning, further interest should be taken in the animal groups considered here. 

Secondary marine arthropods constitute a major percentage of the total marine biodiversity, 

and could therefore be used in assessing conservation priorities for marine protected areas. 

Studies on these organisms are especially relevant in view of the recently recognized 

importance to document the biodiversity of "coastal transition zones" (CTZs), which form the 

interfaces among soils, freshwater sediments and marine sediments (Levin et aI., 2001; Wall et 

aI.,2001). 
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Part I 

Halacaropsis praecognita n. sp. (Acari: Halacaridae) from 

southern Africa 

Abstract 

The marine halacarid mite genus Halacaropsis Bartsch, 1996 (Acari: Halacaridae) currently 

comprises four species from the Mediterranean, northern Atlantic, and Australia. A new 

species, Halacaropsis praecognita n. sp. (Acari: Halacaridae) is described from the rocky 

shores of southeastern Africa (Eastern Cape and KwaZulu-Natal). This species possesses the 

characteristic peg-like setae on leg I and enlarged median claws, but is distinguishable from 

the other Halacaropsis species by not having toothed median claws on any ofthe legs. 

Introduction 

The family Halacaridae (Acari: Prostigmata) is mainly represented by marine species, living 

in habitats ranging from the littoral fringe to deep-sea trenches (Bartsch 1989). Despite a 

review (Bartsch 1972) and a few additional articles (Bartsch 1974, 1986, 1987, 1992), the 

southern African fauna remains poorly known, with less than twenty species described from 

the region. The current paper describes a new species, the largest known to date. 

The genus Halacaropsis Bartsch, 1996 is based on the 'hirsuta group' of the genus 

AgauopsisJ. and combines characters of both Agauopsis (chaetotaxy of tibia I) and Halacarus 

(chaetotaxy of tarsi I and IT). It is represented by H hirsuta (Trouessart, 1889), from the 

Mediterranean and the northern Atlantic, H warringa (Otto, 1993), from southeastern 

Australia, H capuzina Bartsch, 1996, from south-western Australia and H nereis Otto, 1999, 

from the Coral Sea. An undescribed species from southern Africa has been reported by 

Bartsch (1986, 1996). 

Material and methods 

The southern African material comprised six specimens, which were cleared in lactic acid and 

mounted in Hoyers medium. Three specimens of H nereis Otto were examined for 

companson. Drawings were prepared from light-micrographs. Abbreviations used in 

description: AD, anterior dorsal plate; AE, anterior epimeral plate; PE, posterior epimeral 

plate; GA, genito-anal plate, OC, ocular plate; PD, posterior dorsal plate; ds, dorsal setae; ae, 
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anterior epimeral setae, P-2, P-3, P-4, second, third and fourth palpal segments, staring from 

the base. All setae numbered from anterior to posterior. Legs numbered I to IV. 

Halacaropsis praecogltita n. sp. 

Holotype: male, South Africa, KwaZulu-Natal, Park Rynie, 29 VI 1999, leg. s. Proche~, from 

mid-littoral algae. Paratypes: 1) male, South Africa, KwaZulu-Natal, Park Rynie, 1 IX 1999, 

leg. s. Proche~, from Cheilosporum and Jania algae; 2) male, South Africa, Eastern Cape, 

Preslies Bay, 29 V 1999, leg. DJ. Marshall, from lower littoral coralline algae; 3) female, 

South Africa, Eastern Cape, Sardinia Bay, 8 VIII 1998, leg. DJ. Marshall, from Porphyra 

algae; 4) female, South Africa, Eastern Cape, Sardinia Bay, 8 VIII 1998, leg. DJ. Marshall, 

from mixed red algae; 5) deutonymph, South Africa, Eastern Cape, Sardinia Bay, 8 VIII 1998, 

leg. DJ. Marshall, from mixed red algae. The holotype and paratypes are deposited at the 

Natural History Museum in London (accession number BMNH(E)2001-13). 

Male. Idiosoma 575 - 660 Ilm long and 510 - 565 Ilm wide. 

Dorsum. AD 180-210 Ilm long and 175 - 190 Ilm wide, with ds-l situated on a small 

prominence, frontal spine with small lateral lobes. OC 125-130 Ilm long and 70-75 Ilm wide, 

with two corneae. PD 235-240 Ilm long and 150-190 Ilm wide, very thin and with ds-5 in its 

posterior margin. Setae ds-2, ds-3 and ds-4 large, on platelets in the striated integument (Fig. 

1A). 

Venter. AE 205-215 Ilm long and 510 Ilm wide, carrying ae-l, ae-2 and ae-3. PE 

280-310 Ilm long and 150-165 Ilm wide with one dorsal and three ventral setae. GA 255-

330 Ilm long and 180-230 Ilm wide, with genital opening placed centrally and the seventh 

pair of ventral setae on in the anterior part (Fig. 1B). 5-6 pairs of peri genital setae on the inner 

circle and 18-21 on the outer one. Genital opening with six pairs of subgenital setae, of which 

the fourth is thicker than the other (Fig. 11). 

Gnathosoma 225-230 Ilm long and 1651lm wide, rostrum slightly longer than 

gnathosomal base. Basal pair of maxillary setae long, terminal pair short, two short pairs of 

rostral setae present. Palps longer than rostrum, P-2 with a long seta, P-3 with one short, 

spiny-tipped seta, P-4 with two proximal setae, one longer than the segment, and four distal 

sub-apical setae (Fig. 1 C). 

Legs long and robust. First pair longer than the other, with ventral peg-like setae. Two 

ventral, denticulate setae are present on tibia II, one on tibia III, two on tibia IV. Chaetotaxy 
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B 

Figure 1. Halacaropsis praecognita n. sp.; A idiosoma (dorsal), male; B idiosoma (ventral), 

male; C gnathosoma (dorsal), male; D leg I, male; E leg II, male; F leg III, male; G leg IV, 

male; H female genital opening; I male genital opening. All bars: 1 OO~m. 
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summarized in Table 1, and shown in Figs. 1D-1G. Lateral claws smooth, median claws of all 

legs lacking accessory teeth. 

Table 1. Halacaropsis praecognita n. sp. ; Chaetotaxy of the legs. Tarsal counts do not 

include solenidia and parambulacral setae. The number following "+" in leg I represents the 

number of peg-like setae. 

Leg I II III IV 

Trochanter 1 1 3 1-2 
Basifemur 2-3 3-4 2 2 
Telofemur 5+3 7-8 5 5 
Genu 5-6+2 6-7 6 5-6 
Tibia 7-8+3 9-10 7-8 7-8 
Tarsus 7+1 6 5 5 

Female. idiosoma 680-820 !lm long and 470-580 !lm wide. 

Dorsum. similar to the male, AD 205-215 !lm long and 195-225 !lm wide. OC 150-

165 !lm long and 80-95 !lm wide. PD 295 !lm long and 170-180 !lm wide. 

Venter. similar to the male, AE 230-245 !lm long and 510-520 !lm wide. PE 310-

315 !lm long and 170-180 !lm wide. GA 235 !lm long and 180-190 !lm wide, with genital 

opening placed slightly posterior the center and the seventh pair of ventral setae on in the 

anterior part. Seven pairs of perigenital setae, five pairs of short, thick sub genital setae, and 

one pair of prominent spiniform endogenital setae, along with smaller indistinct ones (Fig. 

1H). 

Gnathosoma 240-290 !lm long and 120-170 !lm wide. 

Deutonymph. Idiosoma 490 !lm long and 410 !lm wide. AD 160 !lm long and 

160 !lm wide. OC 115 !lm long and 110 !lm wide. PD 210 !lm long and 95 !lm wide. AE 

225 !lm long and 410 !lm wide. PE 220 !lm long and 130 !lm wide. Genital (60 !lm long 

and 80 !lm wide) and anal (75 !lm long and 125 !lm wide) shields discrete. Gnathosoma 

175 !lm long and 100 !lm wide. 

Etymology: The name praecognita refers to the knowledge of a southern African 

Halacaropsis before its actual description (Bartsch 1986, 1996). 
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Table 2. Characters oftaxonomic significance in the genus Halacaropsis. 

Species H hirsuta H. warringa H capuzina H nereis H praecognita 

Description Trouessart, 1889 Otto, 1993 Bartsch, 1996 Otto, 1999 Present paper 

Lateral lobes at the anterior tip of AD + + + + 
Denticulate postero-ventral seta on tibia I + + + + 
Lateral claws denticulate + + + 
Accessory tooth on median claw I + + + + 

....... 
0\ 

W Accessory tooth on median claw II-IV + + + 
Rostrum slightly longer than gnathosomal base + + 
Spines at tip of P-3 seta + + + + 



Discussion 

H. praecognita sp. nov. is closest related to H. nereis Otto. The two species have in common 

the smooth lateral claws, and the lack of the accessory tooth on median claws II-IV, 

characteristics which distinguish them from all other Halacaropsis species (Table 2). 

However, the absence of an accessory tooth on the median claw of leg I, the presence of a 

denticulate postero-ventral seta on tibia I, and the rostrum, slightly longer than the 

gnathosomal base, separate H. praecognita sp. nov. from H. nereis Otto. 
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Part II 

New species of Copidognathinae (Acari: Halacaridae) from 

southern Africa 

Abstract 

Three new species of Copidognathinae (Acari: Balacaridae) are described from the eastern 

coast of southern Africa (Mozambique; South Africa: Eastern Cape and KwaZulu-Natal). 

Copidognathus caloglossae sp. nov. and Acarothrix umgenica sp. nov. were collected in 

mangrove habitats, whereas Copidognathus xaixaiensis sp. nov. was collected on a rocky 

shore. Acarothrix umgenica represents the first record of the genus Acarothrix Bartsch 1990 

from the African continent. 

Introduction 

The subfamily Copidognathinae compnses the largest halacarid genus (Copidognathus 

Trouessart, 1888, which has c. 300 species described) along with Acarothrix Bartsch, 1990, 

Arrhodeoporus Newell, 1947, Copidognathides Bartsch, 1976, Phacacarus Bartsch, 1992 and 

Werthella Lohmann, 1907. Characteristics of the subfamily are: adult anterior epimeral plate 

with one pair of pores, palp with one seta on the femur and none on the patella, leg genua 

shorter than both telofemora and tibiae, chaetotaxy of tibiae I and II similar, solenidia dorso

lateral in tarsi I and II (Bartsch, 1997a). 

To date, only one species from this subfamily, Arhodeoporus kunzi Bartsch, 1987, has 

been recorded in the subtropical waters stretching from eastern South Africa to southern 

Mozambique (Bartsch, 1987). Three new species of Copidognathinae from this region are 

described here. 

Methods 

The mites described here were collected during the last few years by D. J. Marshall of the 

University of Durban-Westville and the author in a few localities along the eastern coast of 

southern Africa (Figure 1). Specimens were cleared in lactic acid and mounted in Boyers 

medium. All measurements were taken on slide-mounted material and drawings were 

prepared from light micrographs. The type material is deposited at the Natural History 

Museum, London, United Kingdom. 
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Abbreviations used in description and figures: AD, anterior dorsal plate: AE, anterior 

epimeral plate; AP, anal plate; GA, genito-anal plate; GP, genital plate; OC, ocular plates; PD, 

posterior dorsal plate. Dorsal setae numbered ds-l to ds-6 (not including the dorsal seta on 

PE). Legs numbered I to IV. 

o 

Figure 1. The collection localities. 

Taxonomic descriptions 

Copidognathus xaixaiensis sp. nov. (Figure 2) 

Richard's Bay 
Durban (Beachwood, 
Bayhead, Isipingo) 

Mtakatye 

o 200 400 km 

Material. One male (holotype, accession number BMNH(E)200l-l4), from the middle 

littoral rocks on the breakwater wall facing the resort in Xai-Xai (Mozambique), collected in 

December 1997, leg. DJ. Marshall. 

Male. Idiosoma 265 11m long and 160 11m wide. 

Dorsum. All plates with polygonal reticulation. AD 50 11m long and 60 11m wide, with 

ds-1 positioned posterior of center; reticulation restricted to the central-posterior part. Anterior 

margin of AD rounded. OC 45 11m long and 40 11m wide, with one large cornea and ds-2 at 

the anterior end; the existence of a second cornea is not obvious. The posterior end of OC 

protruding and reaching to the trochanter of leg III; reticulation restricted to the anterior half. 

PD 175 11m long and 100 11m wide, not extending beyond the anterior margin of Oc. ds-3 to 

ds-5 evenly placed along each median costa; lateral costae not obvious. The reticulation 

covers the whole surface, although more pronounced in the anterior third, where the pattern is 

generally hexagonal. In the posterior part the polygons have various shapes, but are 
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H 

Figure 2. Copidognathus xaixaiensis sp. nov. (male), A) idiosoma, dorsal view, B) idiosoma, 

ventral view (bar: 100 flm), C) gnathosoma, dorsal view, (bar: 50 flm), D) leg I, medial view, 

E) leg II, medial view, F) leg III, lateral view, G) leg IV lateral view (bar: 100 flm), H) tarsus 

III (bar: 50 flm), I) reticulation from the anterior third of AD (bar: 10 flm). 
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generally more elongated (Figure 2A). Meshes of reticulation not subdivided, size 4-10 11m 

(Figure 21). 

Venter. All plates smooth. AE 100 11m long and 125 11m wide, with three pairs of 

ventral setae. PE 125 11m long, with one dorsal and three ventral setae. GA 120 11m long and 

90 11m wide (Figure 2B). 

Male genitalia. Located at the posterior extremity of GA, surrounded by numerous 

perigenital setae (extremely fine and difficult to count). Genital opening with four pairs of 

fine sub-genital setae, two anterior and two posterior. 

Gnathosoma. 110 11m long and 55 11m wide, with smooth cuticle. Rostrum triangular, 

palpi strongly elongated. Distal palp segment with a whorl of three long basal setae; no apical 

setae were identified (Figure 2C). 

Legs. Leg I longer and more robust than other legs. Chaetotaxy, from trochanter to 

tibia: leg I, 1, 2, 5,4, 7; leg II, 1,2, 5, 4, 7; leg III, 1, 2, 2, 3, 5; leg IV, 0, 2, 2, 3, 5. Medial 

setae on tibiae (two on legs I, II, one on legs III, IV) thickened, but not clearly bipectinated. 

Lateral setae on genu and tibia II long, on genu and tibia I extremely long, longer then 

corresponding tarsi (Figure 2D-G). Claws with a well-developed comb and long, pointed tips 

(Figure 2H). 

Female and juvenile stages. Unknown. 

Etymology. This species is named after the collecting locality, Xai-Xai (pronounce 

Shye-Shye) in Mozambique. 

Remarks. This species belongs to the Copidognathus tricorneatus group, which has 

been reviewed by Bartsch (1997b). Among the species of the group, it is similar to 

Copidognathus tricorneatus (Viets, 1938) in having large meshes in the reticulation of PD, 

medial costae not reaching the anterior margin of this plate, and triangular rostrum, with 

rostral sulcus extending to the base of the second palp segment. It has however a very 

characteristic OC, with no obvious second cornea, and ds-1 in the inner corner. Unlike in any 

species of this group, the lateral setae on the genu and tibia of leg I are unusually long. A 

similar feature occurs in the unrelated species Copidognathus venustus Bartsch, 1977. 

Copidognathus caloglossae sp. nov. (Figure 3) 

Type material (accession number BMNH(E)2001-13). Holotype: male, South Africa, 

Eastern Cape, Mtakatye Estuary, May 1999, leg. ~. Proche~. Paratypes: one male, two 

females, and one protonymph, data as in holotype; one protonymph, and two larvae, from 

169 



A 

H 
_//0:'. 
-~~ " . 

" . . 
' . . ' . 

Figure 3. Copidognathus caloglossae sp. nov. A) idiosoma, dorsal view, B) idiosoma, ventral 

view, C) gnathosoma, dorsal view, D) female ano-genital plate, E) leg I, medial view, F) leg 

II, medial view, G) leg III, lateral view, H) leg IV, lateral view, I) tip of tarsus I, J) telofemur 

I, lateral view. All drawings, except D) based on male individuals. All bars: 100 flm, except 

I), where 10 flm. 
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South Africa, KwaZulu-Natal, Bayhead Lagoon in the Durban Harbour, July 1999, leg. ~. 

Proche~. Other material (30 more individuals examined) comes from Richards Bay, Isipingo 

and Beachwood mangrove forests in KwaZulu-Natal, as well as from Inhambane 

(Mozambique). All individuals were collected from the algal association known as 

'Bostrychietum', covering the pneumatophores of the mangrove-tree Avicennia marina 

(Forsk.) Vierh .. 

Male. Idiosoma 370 - 425 11m long and 275 - 300 11m wide. 

Dorsum. AD 115 - 135 11m long and 140 - 150 11m wide, with ds-l in the anterior half. 

Three prominent porose areolae present, one oblong, anterior and two rounded, centro-lateral, 

all with groups of five to ten pores. Other pores are present on all edges of the plate, without 

forming clearly defined fields. OC 90 - 125 11m long and 60 - 80 11m wide, with centro-lateral 

porose areolae, one seta and two comeae. A ridge separates the postero-Iateral end of OC by 

from the rest of the plate. PD 230-260 11m long and 220 - 230 11m wide, with four large costae 

covered with groups of 10-15 pores; the space between the costae with an indistinct 

canalicular reticulation (Figure 3A). 

Venter. AE 120 - 155 11m long and 240 - 260 11m wide, with the first three pairs of 

ventral setae. Canaliculi mainly in two transverse bands, joining the origin of legs in pairs I 

and IT, respectively. PE 160 - 180 11m long, with evenly distributed canaliculi, carrying one 

dorsal and three ventral setae. GA 175 - 210 11m long and 150 -180 flm wide, with genital 

opening placed behind the middle. Five to nine pairs of peri genital setae, generally disposed 

in one circle; sometimes the posterior ones are more outwardly placed than the anterior ones. 

Genital opening with four pairs of sub-genital setae, two anterior and two posterior (Figure 

3B). 

Gnathosoma. 130 - 135 flm long and 115 - 125 flm wide, rostrum slightly shorter than 

gnathosomal base, palpi longer than rostrum. Gnathosomal base with evenly arranged 

canaliculi. Distal segment of palpus with a whorl of three long basal setae and a few small 

terminal setae (Figure 3C). 

Legs. First pair shorter and more robust than other legs. Claws smooth, no accessory 

process was identified (Figure 31). Canaliculi present, especially in the femora and tibiae of 

legs I and II. Chaetotaxy, trochanter to tibia: leg I, 1,2,5,4, 7; leg IT, 1,2,4,4, 7; leg ITI, 1,2, 

2, 3, 5; leg IV, 0, 2, 2, 3, 5. Medial bipectinated setae on tibiae: two on legs I and II, one on 

legs III and IV (Figure 3E-H). Ventral setae on telofemora I and II, as well as on all 
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basifemora very short (Figure 3J). Dorsal setae on tarsus I and II located in the middle of the 

segment. 

Female. Idiosoma 410 - 450 J..l.m long and 305 - 335 J..l.m wide. 

Dorsum. Similar to the male, AD 115 - 120 J..l.m long and 155 - 160 /lm wide. OC 105 

- 120 J..l.m long and 80 - 105 J..l.m wide. PD 260 - 335 /lm long and 215 - 230 /lm wide. 

Venter. AE 160 - 165 /lm long and 270 - 275 J..l.m wide. PE 170 - 180 /lm long. GA 200 -

205 J..l.m long and 150 - 175 /lm wide, with genital opening placed slightly behind the middle. 

Three pairs of perigenital setae (Figure 3D). 

Gnathosoma. 130 - 160 /lm long and 100 - 130 /lm wide. 

Protonymph. Idiosoma 275 - 410 /lm long and 225 - 310 J..l.m wide. Plates smaller than 

in adults, as compared to total body length, leaving large areas of striated integument. AD 60 -

75 /lm long and 90 - 95 J..l.m wide. OC 50 - 60 /lm long and 45 - 50 J..l.m wide, with two 

corneae located on a protuberance; however, the posterior ridge present in adults is absent. PD 

130 - 145 /lm long and 155 - 195 /lm wide. AE 85 - 95 /lm long and 160 - 220 /lm wide. PE 

125 - 130 /lm long. Genital and anal plates separate; genital 45 - 60 /lm long and 50 - 60 /lm 

wide, anal 50 /lm long and 75 - 80 J..l.m wide. 

Gnathosoma relatively small, 125 - 130 J..l.m long and 45 - 90 /lm wide. 

Legs significantly smaller than in adults, basifemur and telofemur N merged in one 

femoral segment. 

Larva. Idiosoma 270 - 280 /lm long and 195 - 210 /lm wide; plates small, large parts 

of the integument are not striated, but have irregular folds. AD 50 - 55 /lm long and 55-

60 J..l.m wide. OC 25 - 30 /lm long and 30 - 35 /lm wide. PD 75 - 85 /lm long and 95 -

100 /lm wide. AE 75 - 85 /lm long and 160 - 170 /lm wide, with large, clearly visible pores. 

PE 65 - 75 J..l.m long. Genital and anal plates separate; genital 25 - 30 /lm long and 35 -

40 J..l.m wide, anal 40 - 45 J..l.m long and 70 - 75 J..l.m wide. 

Gnathosoma 105 - 110 /lm long and 40 - 80 /lm wide. 

Femoral segments merged in all legs. 

Etymology. The name caloglossae refers to the alga Caloglossa leprieurii (Mont.) 1. 

Ag., one of the components of the algal association from which the mites were collected. 

Remarks. One uncommon feature found in C. caloglossae sp. nov. is represented by 

the completely smooth claws. It has been suggested that in the halacarid sub-family 

Rhombognathinae, smooth claws are associated with species from habitats exposed to little 
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wave action, while claw combs are used for securing the mite to substrates exposed to strong 

wave action (pugh et aI., 1987). As southern African mangroves are an estuarine feature, the 

wave action is low, favoring similar features in C. caloglossae sp. nov. (subfamily 

Copidognathinae). Other characters which, combined, are useful in defining this species are 

the four dorsal costae covered with groups of pores, short mouthparts, the short ventral setae 

on telofemora I and II, as well as on all basifemora, the medial position of dorsal setae on tarsi 

I and II. 

An aspect worth noting is the presence of this species in the Isipingo Estuary, where 

salinity is close to zero. Five other species of Copidognathus have been recorded from similar 

low-salinity habitats (Bartsch 1996). 

Acarothrix umgenica sp. nov. (Figure 4) 

Type material (BMNH(E)2001-13). Holotype: male, South Africa, KwaZulu-Natal, 

Beachwood mangroves in Durban, 18 August 1999, leg. S. Proche~. Paratypes: one male, 

same data as for holotype; two females, two protonymphs, and one larva, same locality as the 

holotype, 26 October 1999, leg. S. Proche~. Other material was collected in Richards Bay 

(South Africa, KwaZulu-Natal). In all, around 30 specimens were examined, all of which 

were collected in sediment or algae covering the pneumatophores of the mangrove-tree 

Avicennia marina. 

Adults. Sexes very much alike; no significant difference in body or plate sizes. 

Idiosoma 325 - 385 /lm long and 230 - 300 /lm wide. 

Dorsum. All plates thin, apparently smooth, although high magnifications reveal 

complex cuticular patterns. AD 80 - 90 /lm long and 100 - 105 /lm wide, with a posterior 

transversal strip-shaped part where a reticulation is visible. OC 105 - 130 /lm long and 85 -

105 /lm wide, with two corneae, one anterior seta and, locally, unclear reticulation. ds-3 could 

not be located. PD 220 - 230 /lm long and 105 - 115 /lm wide, with three pairs of setae: ds-4 

and ds-5 placed centrally, equally distant from a pair of gland pores; ds-6 ventral, close to 

anal opening, next to a pair of small gland-bearing cones, indistinct in some individuals. A 

central pattern of canalicular polygons is more visible in the anterior half of PD; in many 

individuals, particularly if well cleared, this plate appears to be completely smooth (Figure 

4A). 

Venter. All plates with fine, evenly arranged canaliculi. AE 150 - 155 /lm long and 

210 - 255 /lm wide, with three pairs of ventral setae and a pair of large pores. PE 170 - 220 
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Figure 4. Acarothrix umgenica sp. nov., male: A) idiosoma, dorsal view, B) idiosoma, ventral 

view, C) gnathosoma, dorsal view, D) leg I, lateral view; E) leg II, lateral view, F) leg III, 

dorsal view, G) leg N, lateral view, H) male genitalia, I) female genitalia. All drawings 

except I) based on male individuals. All bars: 100 /lm. 
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~m long, with one dorsal and three ventral setae. GA 155 - 175 ~m long and 120 -160 ~m 

wide, with a fold between the genital part and the anal part (Figure 4B). 

Male genitalia. Eight to ten pairs of perigenital setae, sometimes asymmetrically 

disposed. Sub genital setae: two pairs setiform and two spur-like. Behind the last spur-like 

setae, a pair of genital acetabula can sometimes be observed (Figure 4H). 

Female genitalia. Three pairs of peri genital setae surround the genital opening; and 

one pair of anterior subgenital setae (Figure 41). 

Gnathosoma. 125 - 170 ~m long and 55 - 90 ~m wide, palpi longer than rostrum. 

Gnathosomal base with evenly arranged canaliculi. Distal palp segment with a whorl of three 

long basal setae and one short subterminal seta (Figure 4C). 

Legs. First pair more robust, the other pair long and slender. Chaetotaxy of legs, from 

trochanter to tibia: leg I, 1,2,5,4,6; leg II, 1,3,5,4,6; leg III, 1,2,3,3,5; leg IV, 1, 1(?), 3, 

3, 5. Claws very long, especially in legs II, III, IV, almost smooth, dent of accessory process 

indistinct (Figure 4D-G). 

Juvenile stages. Plates very thin, with poorly defined limits. The integument IS 

generally smooth. Protonymph. Idiosoma 245 - 320 ~m long and 200 - 235 ~m wide. 

Gnathosoma 120 - 155 ~m long and 80 - 85 ~m wide. 

Legs: basifemur and telofemur IV merged in one femoral segment. 

Larva. Idiosoma 235 - 265 ~m long and 175 - 205 ~m wide. 

Gnathosoma 110 - 120 ~m long and 40 - 60 ~m wide. 

Femoral segments merged in all legs. 

Etymology. The name umgenica refers to the river Umgeni (alternative spellings: 

Mgeni, rnNgeni, uMngeni), from whose estuary the specimens were collected. According to 

Begg (1978), the name means in Zulu 'the river that flows among thorny trees (Acacia)'. 

Remarks. Acarothrix umgenica sp. nov. differs from the other two species of 

Acarothrix (compare Bartsch, 1990, 1997a) in the relative size of the dorsal plates: in the new 

species AD is much smaller and PD is larger. The shape of OC is also different, with longer 

posterior tips. The fold separating the anal and genital parts of AG, present in slide-mounted 

males and females, indicates a strong convexity of the genitalia, not noted in the other 

Acarothrix species. The reticulation present on PD is similar to that illustrated by Bartsch 

(1990) for A. palustris protonymphs, but in the new species this could only be observed in 

adults. No canalicular punctuation on the ventral plates has been described in either A. 

palustris Bartsch, 1990 or A. longiunguis Bartsch, 1997. 
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This is the first mention of the genus Acarothrix from the African continent. 

Previously, the genus was known from southern China and northern Australia (Bartsch, ' 1990, 

1997a). This distribution is possibly congruent with that of Indo-West Pacific mangrove 

forests. 
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