Surname
Other Names

Centre Number

GCE A LEVEL - NEW

BIOLOGY - A level component 2 Continuity of Life

TUESDAY, 20 JUNE 2017 - MORNING
2 hours

ADDITIONAL MATERIALS

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	15	
2.	18	
3.	17	
4.	17	
5.	11	
6.	13	
7.	9	
Total	100	

In addition to this examination paper, you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet. If you run out of space, use the continuation pages at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The assessment of the quality of extended repsonse (QER) will take place in question 7.
The quality of written communication will affect the awarding of marks.

(a) (i) Name the type of cell division taking place in this tissue.
(ii) Count the number of cells in metaphase and anaphase. Enter the values in the table below:

Phase	Number of cells	Time in minutes	\% of cell cycle (by time)
Interphase	35	394	55
Prophase	9	101	14
Metaphase	\ldots	\ldots
Anaphase	\ldots
Telophase/cytokinesis	10	112	16
Totals	64	720	100

(iii) Calculate the time taken for the two phases, using the formula.
Time for a particular phase $=\frac{\text { number of cells in the phase }}{\text { total number of cells counted }} \times$ total time taken for cell cycle
Enter the values in the table opposite.
(iv) Calculate the percentage time spent in each phase.
Enter the values in the table opposite.
(b)
Describe two ways in which the process of cell division shown differs between plant cells
and animal cells.

Abstract

and animal cells.

2. It is possible to germinate pollen grains in vitro by placing them in a suitable solution containing a mixture of mineral salts. One technique involves hanging a droplet of the mixture from the underside of a coverslip and suspending the coverslip above a microscope slide using petroleum jelly. The pollen grains may then be observed directly through a microscope.
(a) The photomicrograph below shows part of a stage micrometer and the eyepiece graticule.

The smallest divisions on the stage micrometer measure $100 \mu \mathrm{~m}$.
(i) Calibrate the eyepiece graticule. Express your answer to one decimal place.

(ii) Use the eyepiece graticule to measure the length of the pollen tube indicated by an arrow from each photomicrograph. Measure each pollen tube to the nearest whole number. Enter the values in the table below.

Time / mins	Length of pollen tube /eyepiece graticule units	Actual length of pollen tube / $\mu \mathrm{m}$
0	0	0
20	\ldots	
40	\ldots	\ldots
60	\ldots	\ldots

(iii) Calculate the actual length of the pollen tubes in $\mu \mathrm{m}$. Write your answers in the table above.
(iv) Plot a graph of the results using a suitable scale for the y-axis.

(v) How could you make the data more reliable?
(b) Using the technique described on page 5, design an experiment to investigate the effect of pH on the growth of pollen tubes.

Give a brief description of your method.

(c) Describe the roles of the vesicle and the labelled organelles in the passage of the pollen tubes through the style of a flower.
3. In the Caribbean there is a group of lizards called Anoles. The males possess a retractable flap of skin under the throat, termed a dewlap, which is used in courtship, aggressive interactions and even encounters with predators. The patterns of orange colouration on the dewlaps of three species of Anole lizard and their distribution in Haiti are shown below.

Zone	Sites	Habitat
North	$1,2,3$	Beach
Central	$4,5,6,7$	Beach
South	$8,9,10,11,12$	Forest

Examiner
(ii) Describe how the three species are distributed between the three zones.
\qquad
\qquad
(iii) Describe how the dewlap colouration varies from north to south in the central zone.

Breeding experiments in the lab have revealed that dewlap colour-pattern is inherited as a Mendelian trait, in which orange (D) is dominant to white (d).

The gene pool of the A.brevirostris population contains no \mathbf{D} alleles.
The Hardy-Weinberg equations may be used to calculate the frequencies of the alleles \mathbf{D} and \mathbf{d} in the gene pool of the population of A.websteri
$p+q=1$
$p^{2}+2 p q+q^{2}=1$
(b) In the north zone population of 400 lizards, four were found to have white dewlaps.

Calculate the frequencies of the two alleles in this population, and calculate how many of the lizards with orange dewlaps were heterozygous.

The evolution of the three species is believed to be an example of sympatric speciation, resulting from differences in the habitats.
(c) (i) Explain how the habitat in the south zone could bring about the dewlap colouration found in A.brevirostris.
\qquad
(ii) Explain why after many generations the frequency of allele \mathbf{D} is zero in the A.brevirostris population but the frequency of allele \mathbf{d} in A.websteri will never be zero.
\qquad
\qquad
\qquad
\qquad
(d) The Anole lizards found at sites 3 and 4 are different species. Explain how their dewlap colouration may have resulted in this speciation.
4. In mice, coat colour is determined by genes at more than one locus.

Locus I.

This gene determines the colour of pigment. There are two major alleles: B coding for black pigment and \mathbf{b} for brown.

Locus II.

This gene determines the distribution of pigment in the hair. Allele A produces a phenotype called agouti. The agouti phenotype is due to yellow bands on the otherwise dark hair shaft. In the non-agouti phenotype (determined by the allele a), the yellow bands are absent, so the hair shaft is a solid dark colour.

The table below shows the genotypes and corresponding phenotypes.

Locus I genotype	Locus II genotype	Phenotype (coat colour)
BB or Bb	AA or Aa	Normal agouti
BB or Bb	aa	Solid black
bb	AA or Aa	Cinnamon (brown with yellow bands)
bb	aa	Solid brown

(a) (i) Complete the genetic diagram below to show the expected outcome of crossing mice heterozygous at both loci.

Parental phenotype x
Parental genotype x
Gametes ... x
(ii) Give the ratio in which the following phenotypes would appear in the offspring. [1] Offspring phenotypes: normal agouti : solid black: cinnamon : solid brown Phenotype ratio:

A series of crosses between mice which were heterozygous at both loci produced 32 offspring. The results are shown in the table below. A null hypothesis was proposed that there was 'no significant difference between the observed and expected numbers of offspring'.				
Phenotype Observed O				
Normal Agouti				

(b) (i) Using the table provided, calculate χ^{2} to test this null hypothesis.

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

$$
\chi^{2}=
$$

(ii) Choose an appropriate probability level and circle the critical value for χ^{2} in the table below:

Degrees	of of freedom											0.9	0.8	0.7	0.5	0.2	0.1	0.05	0.02	0.01
1	0.016	0.064	0.15	0.46	1.64	2.71	3.84	5.41	6.64											
2	0.21	0.45	0.71	1.39	3.22	4.60	5.99	7.82	9.21											
3	0.58	1.00	1.42	2.37	4.64	6.25	7.82	9.84	11.34											
4	1.06	1.65	2.20	3.36	5.99	7.78	9.49	11.67	13.28											

(iii) State whether you accept or reject the null hypothesis, and explain why.

A mutant form of the gene at locus II exists, called \mathbf{A}^{vy}, which results in hair which is yellow along its entire length. The diagrams of hairs below explain how each of the locus II alleles works.

Normal agouti \mathbf{A}

Banded hair

Mutant agouti A^{vy}

Non-agouti. a

Scientists have bred a strain of mice with the genotype $\mathbf{A}^{\mathrm{vy}} \mathbf{a}$.
Since \mathbf{A}^{vy} is dominant to \mathbf{a}, all of the mice with genotype \mathbf{A}^{vy} a could be expected to be yellow.
In fact, some are yellow, some are normal agouti and some are shades in between.

These mice have identical DNA base sequences in the agouti gene locus but the gene is being expressed differently.

The addition of methyl groups to DNA molecules (methylation) is known to interfere with the ability of the molecules to take part in the formation of mRNA. It has been suggested that methylation of the inserted sequence of bases could be responsible for the range of colours seen in the mice with genotype $A^{v y} \mathbf{a}$.
(iii) Explain how the addition of an increasing number of methyl groups to the inserted sequence of bases results in mice with a range of coat colours.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5. Currently, a million tons of wild fish are harvested from the oceans annually. Of these, 80% are used to feed fish reared in farms.
Fish do not make their own omega-3 fatty acids, they get these by eating algae. For farmed fish to be as nutritious as wild fish, they need to be fed a diet rich in omega-3 fatty acids. Algae are hard to culture on a large scale, so wild fish provide a more convenient source.

Scientists have identified and spliced genes from algae that code for producing high levels of omega-3 fatty acids into Camelina plants. The genetically modified Camelina plants now produce seeds that contain 26% omega- 3 fatty acids, so are useful for fish farm feed.
(a) Explain how named enzymes would be used to cut genes from algae and splice them into Camelina plants.
(b) Explain why feeding genetically modified Camelina seed to farmed fish could benefit biodiversity.

Nutritionists often recommend that fish are included in diets, due to their high omega-3 polyunsaturated fatty acid content.

The diagrams show two omega-3 polyunsaturated fatty acids.

eicosapentaenoic acid (EPA)
docosahexaenoic acid (DHA)
(c) With reference to the diagrams, explain why these compounds are described as:
(i) fatty acids;
\qquad
\qquad
(ii) polyunsaturated.
(d) (i) These compounds are present in fish in the form of triglygerides or phospholipids.

The diagram below shows some of the atoms of a glycerol molecule and a fatty acid molecule.

Complete the diagram to show how a bond is formed between the glycerol molecule and the fatty acid molecule, accounting for all of the atoms.

(ii) Give one function for the following types of lipid in fish:
triglyceride;
phospholipids.
6. The photomicrograph below shows part of an ovary during ovulation.

(a) Describe what subsequently happens to the following:
secondary oocyte;

Graafian follicle.
\qquad
(ii) Explain why oestrogen may therefore be used as a contraceptive.
(c) For use as a contraceptive, oestrogen can be incorporated into a porous patch which may be applied to the skin on a woman's arm. The diagram below is a schematic map of the human circulatory system.

> oxygenated blood
> deoxygenated blood \rightarrow
(i) Using numbers for blood vessels and letters for the chambers of heart, describe the route that oestrogen would take from the patch to the organ where it would exert its contraceptive effect.
(ii) Apart from containing more oestrogen, describe one other difference in the blood
leaving the patch and arriving at the target organ and state where the change would
(ii) Apart from containing more oestrogen, describe one other difference in the blood
leaving the patch and arriving at the target organ and state where the change would have taken place.
\qquad
\qquad
\qquad
7. The deep regions of the oceans ($1000-4000 \mathrm{~m}$) are nutrient-poor habitats. In order to survive, the fish that live there have evolved remarkable morphological and life-cycle strategies. The larvae of many deep-sea species develop in the nutrient-rich surface waters $(0-200 \mathrm{~m})$. Very few specimens of these fish have been caught, which makes them difficult to classify. This illustrates the tentative nature of classification. The table below provides information on specimens of three types of deep-sea fish.

Type of Fish	Example specimen	Evidence

Analysis of ribosomal RNA from examples which have been caught has produced the following phylogenetic tree.

Phylogenetic evidence

Two hypotheses have been proposed to classify these deep-sea fish:
Hypothesis 1: Tapetails, Whalefish and Bignose Fish belong to different families of fish.
Hypothesis 2: Tapetails, Whalefish and Bignose Fish are developmental stages of different species of fish within the same family.

For each type of evidence listed opposite and above, state whether they provide support for hypothesis 1 or hypothesis 2 and give reasons for your answers. From this evidence, conclude which hypothesis is more likely and suggest why a different conclusion may be reached in the future.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

