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INTRODUCTION
Deschampsia P. Beauv. is a genus of 37 perennial and 

few annual grass species commonly distributed in cold 
temperate regions and high mountains in the tropics. The 
main disagreements on the delimitation of Deschamp-
sia are related to the morphological diversity and wide-
spread distribution of D. cespitosa (L.). P. Beauv. and its 
relationships to D. atropurpurea (Wahlenb.) Scheele and 
D. flexuosa (L.) Trin. The overall morphological simi-
larity between the two latter taxa and the main core of 
the genus (represented by D. cespitosa) have led to their 
inclusion in Deschampsia in many floras, treatments 
and catalogs (Parodi, 1949; Paunero, 1955; Hess & al., 
1967; Hitchcock & al., 1969; Tzvelev, 1976; Holmgren 
& Holmgren, 1977; Clarke, 1980; Clayton & Renvoize, 
1986; Conert, 1987; McVaugh, 1983; Schmeil, 1988; Rze-
dowski & Rzedowski, 1990; Stace, 1991; Zuloaga & al., 
1994; Edgar & Connor, 2000).

Alternative views advocating the segregation of 
Deschampsia atropurpurea and D. flexuosa from Des-
champsia s.l. and their treatment as separate genera have 
also been proposed. Hylander (1953) included D. atro-
purpurea in Vahlodea (= V. atropurpurea) but kept D. 
flexuosa in Deschampsia. Albers (1972a, 1972b, 1973, 

1978, 1980a, 1980b, 1980c) published several studies on 
their cytology (but also morphology), showing different 
chromosome numbers for D. atropurpurea (2n=14, dip-
loid) and D. flexuosa (2n= 28, tetraploid). Karyological 
variation in D. cespitosa (2n=26, 39, 52) is described as 
being the result of a process of fusion of smaller chromo-
somes and subsequent polyploidization (Albers, 1978). 
García-Suarez & al. (1997) presented chromosome C-
banding, isozymes, genomic DNA and plastid DNA re-
striction data, also showing some differnences among 
the three taxa. This evidence and its logical conclusion, 
assigning the separate generic status to D. flexuosa and 
D. atropurpurea, has, however, rarely been followed 
(Frey, 1999; Soreng, 2003).

Holmberg (1926) used the length of the rachilla be-
tween the florets in relation to the length of the lemma of 
the lower floret and the shape of the tip of the lemma, to 
divide Deschampsia into three sections (Table 1): sect. 
Campella, with a long rachilla between the florets and 
4-toothed lemmas with lateral teeth larger, including 
D. cespitosa, D. media, and D. setacea; sect. Avenaria, 
with shorter rachillas and 4-toothed lemmas with small, 
more or less equal teeth, including D. flexuosa; and sect. 
Vahlodea with the lemmas irregularly toothed and the 
teeth minute, including D. atropurpurea. Busch mann 
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(1950) added D. argentea, D. elongata, D. calycina (= D. 
danthonioides), D. refracta (= D. cespitosa) and a group 
of taxa (D. alpina, D. bottnica, D. littoralis, D. wibeliana) 
that have been referred to as subspecies of D. cespitosa 
(Clarke, 1980; Chiapella, 2000) to sect. Campella, and D. 
stricta (= D. flexuosa) and D. foliosa to sect. Avenaria. 
Sect. Vahlodea was retained with the single species, D. at-
ropurpurea. A preliminary cladistic study based on mor-
phology did not support this division and Deschampsia 
was depicted as a paraphyletic group (Chiapella, 2003).

DNA sequence data are now commonly used to re-
solve problems where taxonomists have not been able to 
agree on relationships using traditional characters. The 
internal transcribed spacer (ITS) region of the 18S-26S 
nuclear ribosomal DNA (rDNA) is a moderately conserved 
region that has been extensively used in phylogenetic 
studies in Poaceae (Hamby & Zimmer, 1988; Hsiao & al. 
1994, 1995a, 1995b, 1999; Baldwin & al., 1995; Greben-
stein & al., 1998; Hodkinson & al., 2000, 2002; Baumel 
& al., 2002). In spite of potential problems arising from 
multiple-copies markers (Small & al., 2004), its relative 
small size, with entire ITS sequences of over 200 grass 
species ranging between 584 and 633 bp (Hsiao & al., 
1999), makes it a suitable marker for a first approach into 
the phylogenetic study of a not previously explored genus. 

The plastid DNA trnL region has also been used in 
several molecular phylogenetic studies and, due to its 
maternally sided inheritance, in identifying the maternal 
parent in hybrid taxa in grasses (Ferris & al., 1997; Hod-
kinson & al., 2002). The region provides phylogenetic 
resolution at the generic level (Bakker & al., 2000) and 
reveals a slower evolutionary tempo than nuclear mark-
ers (Wolfe & al., 1987; Ingvarsson & al., 2003). 

This study of nuclear and plastid sequences of De-
schampsia s.l. was undertaken to: (1) circumscribe the 
genus and explore its phylogenetic relationships; (2) 
evaluate the division into sections proposed by Holm-
berg (1926) and Buschmann (1948, 1950); and (3) provide 
an hypothesis for the origin of the genus, considering its 
scattered intercontinental distribution with the highest 
concentration of species in southern South America.

MATERIALS AND METHODS
Taxon sampling and outgroup selection. — The 

34 accessions representing 18 species of Deschampsia 

s.l. studied (Appendix), included representatives of all 
sections proposed by Holmberg (1926) and of all geo-
graphic regions with a high number of taxa. Species were 
classified following Parodi (1949) and Nicora (1978) for 
the South American taxa, Van Royen (1979) for D. klossi, 
Wagner & al. (1990) for D. nubigena, Groves (1981) for 
D. christophersenii and D. mejlandii, Chiapella (2000) 
for the subspecies of D. cespitosa and Edgar & Connor 
(2000) for D. chapmanii and D. tenella. Whereas the 
monophyly of Deschampsia s.l. has never been verified 
with molecular data, its inclusion in tribe Aveneae has 
rarely been doubted. Most important treatments using 
morphological data included it unequivocally in this 
tribe (Parodi, 1949; Clayton & Renvoize, 1986; Tzvelev, 
1989). Molecular data showed, however, that the distinc-
tion between Aveneae and Poeae is not clear (Nadot & 
al., 1994; Catalán & al., 1997), and in a study using plas-
tid DNA restriction sites and morphological data both 
tribes formed an unresolved single clade (Soreng & Da-
vis, 1998). Deschampsia cespitosa was placed together 
with other Poeae taxa (Catalán & al., 2004), contradict-
ing the conventional view, based on morphology, of 
Deschampsia belonging to Aveneae. Thus, and to start 
from a conventional standard, the outgroups were se-
lected among the three main evolutionary lines depicted 
by Clayton & Renvoize (1986: 417) for tribe Aveneae sub-
tribe Aveninae (the subtribe in which Deschampsia s.l. 
is placed): (1) the Helictotrichon group (Arrhenatherum, 
Avena); (2) the Trisetum group (Trisetum); and (3) the De-
schampsia group (Aira, Agrostis). New sequences were 
obtained for Arrhenatherum elatius and Aira caryophyl-
lea, and published sequences of Agrostis capillaris, Tri-
setum flavescens and Poa pratensis were retrieved from 
EMBL/GenBank. All the outgroups were used in all the 
analyses, except Trisetum wich was used only in the ITS 
analysis (see Appendix).

DNA isolation, amplification and sequencing. — 
DNA was isolated following a modification of the 2× 
CTAB method of Doyle & Doyle (1987). Leaf pieces 
were ground to powder and treated with 750 µl extrac-
tion buffer, and incubated at 60°C for 30 minutes. Then, 
700 µl of SEVAG (chloroform: isoamyl alcohol 24  :  1) 
were added to the tissue homogenate. This was kept at 
4°C for 2 hours and then centrifuged at 14000 rpm for 5 
minutes. The clear upper phase was transferred to a clean 
Eppendorf tube, and 400 µl cold isopropanol were added 
to precipitate the DNA. The DNA pellet was rinsed with 

Table 1. Generic delimitation of Deschampsia s.l. according to Holmberg (1926), Hylander (1953), Albers (1972a, b). This 
study supports the classification of Albers.
Taxa Holmberg (1926) Hylander (1953) Albers (1972a, b)
Deschampsia cespitosa Deschampsia sect. Campella Deschampsia subgen. Campella Deschampsia
Deschampsia atropurpurea Deschampsia sect. Vahlodea Vahlodea Vahlodea
Deschampsia flexuosa Deschampsia sect. Avenaria Deschampsia subgen. Avenella Avenella
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70% ethanol, dried at 37°C, and stored in TE buffer until 
use. The entire ITS region was amplified with primers 
ITS 5 and ITS 4 (White & al., 1990), and the trnL intron 
with primers “c” and “d” (Taberlet & al., 1991). Thermal 
cycling for PCR consisted of 34 cycles, each with 1 min 
denaturation at 95°C, 1 min annealing at 48°C, 1 min 
extension at 72°C, and a final extension of 10 min. PCR 
products were purified with Qiaquick (Qiagen) spin col-
umns according to the manufacturer’s protocol. Purified 
PCR products were sequenced in an ABI Prism Dye Ter-
minator Cycle Kit (Perkin-Elmer Applied Biosystems) 
and then visualized using an ABI Prism 377 Automated 
DNA Sequencer (Perkin-Elmer Applied Biosystems).

Phylogenetic analysis. — Sequences were edited 
with Autoassembler (Perkin-Elmer Corp.) and visually 
aligned with MacClade (Maddison & Maddison, 1992). 
Parsimony analysis was performed with PAUP version 
4.0b4a (Swofford, 2000) on three different data sets: ITS, 
trnL and combined. Gaps were treated as missing data, 
characters were assumed to be unordered, and optimal 
trees were found using heuristic search with the follow-
ing options: taxa addition closest, tree-bisection-recon-
nection (TBR) branch-swapping algorithm, Mul Trees 
option in effect, starting tree obtained via stepwise ad-
dition, trees held at each step = 1, MaxTrees setting = 
100. Branch support for the groups found was estimated 
using bootstrap with 1000 replicates (Felsenstein, 1985). 
The combined analysis was done following verification 
of congruence of the data by using the character partition 
test as implemented in PAUP. It has been suggested that 
combinability of data may have a direct impact on the 
phylogeny accuracy (Cunningham, 1997), but agreement 
is lacking as to whether data should be combined or not 
(Huelsenbeck & al., 1996; Barker & Lutzoni, 2002).

RESULTS
Sequence variation and phylogenetic analyses. 

— The ITS sequences of Deschampsia s.l. ranged from 
595 to 597 bp long, the difference being due to a 2 bp 
insertion (synapomorphic for clade “B” of Fig. 1) at po-
sitions 583–584 in the ITS 2 spacer. The ITS 1 spacer 
comprised positions 1–218 (218 nucleotides), the 5.8S 
gene 219–381 (162 nucleotides), and the ITS 2 spacer 
382–595/597 (213/215 nucleotides). The aligned ITS re-
gion comprised 604 nucleotides (including outgroups), of 
which 443 (73.3%) were constant and 106 (17.6%) poten-
tially parsimony-informative. The heuristic search with 
ITS data produced 1,989 trees with tree length = 314, 
consistency index (CI) = 0.64, and retention index (RI) 
= 0.80. The strict consensus tree with bootstrap values 
is shown in Fig. 1. Deschampsia s.l. is not monophyletic 
since D. atropurpurea and D. flexuosa are not grouped 

with the remaining species, which form a well-supported 
(92% bootstrap) monophyletic group, further divided in 
two clades with good bootstrap support, clade A (84%) 
and B (81%). 

The plastid trnL intron region consisted of 584 
aligned nucleotides, of which 532 (91%) characters were 
constant and 20 (3.5%) potentially parsimony-informa-
tive. All sequences of Deschampsia excepting D. atro-
purpurea, D. flexuosa and D. klossi had a 5 bp deletion 
at positions 216–220 relative to the other taxa; this gap 
is synapomorphic for Deschampsia s.str. Deschamp-
sia atropurpurea also had a 9 bp deletion at positions 
268–276. All Deschampsia s.l. sequences differed from 
the outgroup Aira caryophyllea by two deletions, 4 bp at 
positions 371–374 and 2 bp at positions 389–390. Another 
outgroup, Agrostis capillaris, differed from Deschamp-
sia s.l. by a 5 bp deletion at positions 308–312. All acces-
sions of D. flexuosa and D. klossi had a 25 bp insertion at 
positions 438–462, which is synapomorphic for the clade 
D formed by these two taxa (Fig. 2). The trnL analysis 
produced six trees of length = 58, CI = 0.94, and RI = 

Fig. 1. ITS strict consensus tree with bootstrap values. 
Clade A, northern accessions; clade B, southern acces-
sions. Species names as in Appendix.
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0.97. As in the ITS tree, Deschampsia s.l. is not mono-
phyletic because of the positions of D. atropurpurea and 
D. flexuosa. The other species are joined in a clade, which 
remains mostly unresolved but for a small clade compris-
ing accessions of D. antarctica and D. venustula.

Combined analysis. — The pooled ITS-trnL data set 
comprised 1,188 characters after alignment, which were 
treated as unordered and equally weighted. Of these, 984 
characters were constant, and 116 potentially parsimony-
informative. Since the topologies resulting from the 
two markers differ, although sharing a common feature 
(the exclusion of D. atropurpurea and D. flexuosa from 
core Deschampsia s.l.) a character partition test was run 
on a combined matrix using a subset of 23 accessions 
of Deschampsia and 5 outgroups (Aira, Agrostis, Ar-
rhenatherum, Avena, Poa). The test value was P = 0.002, 
suggesting incongruence between the two datasets. 
Analysis yielded 16 trees (tree length = 343, CI = 0.71, 
RI = 0.78, trees not shown). Since D. klossi was identi-
fied as showing different positions in the nuclear and 
plastid topologies, a second run was done without this 
species. The value of the new character partition test was 
P = 0.967, indicating no incongruence between the two 
data sets. The strict consensus of 16 trees (tree length = 
356, CI = 0.69, RI = 0.76) is depicted in Fig. 3.

DISCUSSION
Delimitation and division into sections of De-

schampsia. — The genus Deschampsia was proposed 
by Palisot de Beauvois (1812) based on Aira cespitosa. 
Aira was divided in two groups, one with muticous lem-
mas (Linné, 1753: 63), and the other with awned lemmas 
(Linné, 1753: 64), in which A. cespitosa and A. flexuosa 
were included. In addition to this character, Palisot de-
scribed Deschampsia as having paniculate inflores-
cences, 2–3-flowered “glumes” longer than the spikelets, 
lemmas with several teeth, and straight awns, slightly 
longer than the lemmas, and inserted in or near the base. 
Early descriptions of planta taxa often do not meet mod-
ern standards (Irvine & Dixon, 1982) and repeatedly 
result in the need for revision (Cafferty & al., 2000); 
in Deschampsia the combination of characters listed 
above can be applied to the several forms of D. cespi-
tosa common in Europe, and also to D. atropurpurea 
and D. flexuosa. The consequence was a loose generic 
concept that was widely adopted (see Introduction). The  
molecular evidence presented allows for a clear defini-
tion of the generic boundaries of Deschampsia, which 
are in agreement with cytological (Albers, 1972a, 1972b, 
1973, 1978, 1980a, 1980b, 1980c; García-Suarez & al., 

Fig. 3. Combined strict consensus tree with bootstrap val-
ues, excluding D. klossi. Species names as in Appendix.

Fig. 2. trnL strict consensus tree with bootstrap values. 
Clade C, Deschampsia s.str.; clade D, D. flexuosa (= A. flex-
uosa) and D. klossi. Species names as in Appendix.



59

Chiapella • Circumscription and phylogeny of DeschampsiaTAXON 56 (1) • February 2007: 55–64

1997) and some morphological (Chiapella, 2003) data, 
both implying the exclusion of D. atropurpurea and 
D. flexuosa from Deschampsia. Among the most com-
monly used morphological characters, only the ligules 
present clear differences in the three taxa, being acute 
in Deschampsia, obtuse in D. flexuosa and irregularly 
toothed to truncate in D. atropurpurea. Other characters 
such as the shape and size of spikelets, insertion and size 
of awns, and shape of panicles vary greatly and incon-
sistently. The species remaining in core Deschampsia 
form well-supported clades in both the separate analyses 
(ITS, 92%; trnL, 84%) and combined trees (including 
D. klossi, 85%; excluding it, 100%). Although delimita-
tion of the genus seems clear with molecular data, this 
is not the case when using morphological data to dif-
ferentiate among D. atropurpurea, D. flexuosa and core 
Deschampsia. Even species remaining in Deschampsia 
rarely differ in discrete characters but rather in a contin-
uous way, which in the case of the most common species 
(D. cespitosa) implies frequent and simultaneous over-
lapping of morphological types and geographic distribu-
tions (Chiapella, 2000).

Concerning the delimitation of Deschampsia s.str., 
the ITS and trnL trees agree in the separation of D. 
atropurpurea and D. flexuosa from core Deschampsia, 
the ITS tree being better resolved than the trnL one. The 
position of D. klossi also differed between the nuclear 
and plastid trees. This species was excluded from core 
Deschampsia, and grouped with D. flexuosa in the trnL 
tree, suggesting introgression and its possible origin 
through reticulate evolution. The combined analysis, 
however, shows a circumscription of Deschampsia s.str. 
that is in agreement with the ITS tree, in which D. klossi 
falls with clade B (“Northern”) of Fig. 1.

The division into sections proposed by Holmberg 
(1926) and emended by Buschmann (1948, 1950) is not 
supported by the molecular evidence, which excludes 
the only species of sect. Vahlodea Griseb. (D. atropur-
purea) and the main species of sect. Avenaria Reichenb. 
(D. flexuosa) from Deschampsia. The species remaining 
in the genus belong to sect. Campella (Link) Griseb. (= 
D. sect. Deschampsia), which in the nuclear and com-
bined trees is divided into two major clades that roughly 
correspond to the geographic origin of the accessions 
(Figs. 1, 3). Clade A comprises most southern taxa and 
southern accessions of D. cespitosa, clade B the north-
ern accessions of D. cespitosa, D. christophersenii and 
D. mejlandii from Tristan da Cunha, and the southern 
D. danthonioides and D. patula. Clade A includes two 
subclades with moderate bootstrap support, one formed 
by the southernmost taxa D. antarctica, D. parvula and 
D. venustula (69%) and the other with the remaining 
southern taxa, D. kingii and D. laxa (mainly in Tierra 
del Fuego and Patagonia), D. berteroana (central Chile), 

D. elongata and the two New Zealandic species D. chap-
manii and D. tenella (67%). In this group, two well-sup-
ported clades are resolved, one containing the exclu-
sively South American taxa and the southern accessions 
of D. cespitosa (98%) and another with the endemic New 
Zealand taxa (86%). The Chilean annual D. berteroana 
and D. elongata remain unresolved. The well-supported 
(96%) clade comprising all the accessions of D. antarc-
tica and D. venustula has D. parvula as sister group. In 
clade B resolution is generally lower than in clade A but 
two groups are noticeable, one including the Tristan da 
Cunha species (bootstrap support 91%) and the other 
with the remaining taxa (70%). The resolution in this last 
group, which includes mostly northern hemisphere taxa 
but also the southern D. danthonioides and D. patula, is 
low, but reveal affinities between D. cespitosa and D. 
cespitosa subsp. bottnica (63%) and the accession of D. 
cespitosa retrieved from GenBank (L36513) and D. nu-
bigena (94%).

Phylogeny of Deschampsia. — The estimation of 
phylogeny by using a combination of sequences of nuclear 
and plastid markers, frequently ITS and trnL, is common 
in studies using DNA sequence data (e.g., Baumel & al., 
2002; Hodkinson & al., 2002; Catalán & al., 2004; Nick-
rent & al., 2004); nuclear data provides usually more po-
tentially informative sites. This was also the case in De-
schampsia s.l., where ITS provided 17.6% against 3.5% 
of trnL, and each dataset yielded a different history. The 
ITS data highlight the existence of two main lineages as 
represented by clades “A” and “B” in Fig. 1, whereas in 
the plastid tree (Fig. 2) these clades collapse and form a 
single large polytomy; nevertheless, Deschampsia—ex-
cluding D. atropurpurea and D. flexuosa—is depicted 
as monophyletic with good bootstrap-support (84%), 
suggesting a close relationship of the plastid genomes. 
The 5.8S region of the ITS has a length of 163 bp in all 
studied species, similar to the 164 bp observed by Hsiao 
& al. (1994), whereas the ITS1 and ITS2, with 218 bp 
and 213–215 bp, respectively, were shorter than those 
accounted for in Hsiao & al. (1994). This minor varia-
tion in sequence length was due to indels, most notably a 
2 bp insertion in a group of mainly northern hemisphere 
and two southern (D. danthonioides and D. patula) ac-
cessions. Variation among sequences of the same species 
but from distant geographic regions was remarkable in 
D. cespitosa. Comparable results of intra-specific varia-
tion in ITS sequences also have been reported so far for 
a few genera including Calycadenia, Sinapis and Vicia 
(Baldwin, 1993).

Comparisons between the combined tree (Fig. 3) and 
the single-marker trees (Figs. 1 and 2) are possible only 
with ITS, because of the large polytomy in the plastid 
tree. The only group formed in the latter is, however, 
recognisable in the nuclear single marker tree and in the 
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combined tree, that between D. antarctica and D. venus-
tula. Deschampsia s.str. is depicted as a monophyletic 
clade with bootstrap support ranging between 84% and 
100%, and the accessions of D. flexuosa are also mono-
phyletic with 100% bootstrap support. Deschampsia at-
ropurpurea remains unresolved. The combined tree has 
different topology but supports the abovegeneric circum-
scription. Aira is consistently resolved as the sister group 
of D. flexuosa whereas the other outgroups are more dis-
tantly related or unresolved.

Biogeography of Deschampsia. — The ITS tree 
(Fig. 1) depicts D. antarctica, D. venustula and D. par-
vula of southern Argentina and Chile as sister to the 
clade comprised of D. kingii, D. laxa, D. berteroana 
from central Chile, D. tenella of New Zealand and the 
South American accessions of D. cespitosa. In clade B 
the two species endemic to the Tristan da Cunha archi-
pelago, D. christophersenii and D. mejlandii, are sister 
to a clade, which includes most of the Euroasiatic acces-
sions of D. cespitosa. Thus while the molecular data hint 
at a close relationship to northern taxa, the southern geo-
graphical position of Tristan da Cunha suggests an ori-
gin of D. christophersenii and D. mejlandii by long-dis-
tance dispersal from South America. At least two facts 
support the feasibility of the latter event. First, pollen of 
Nothofagus pumilio, a key species of the Patagonian tem-
perate forests, has been found in Pleistocene peat bog 
samples of Tristan da Cunha (Hafsten, 1960). Second, 
the fern flora of the islands is rich in taxa characteristic 
of the Andean Patagonic forests (De la Sota & Ponce, 
1998) including Blechnum penna-marina (Tryon, 1966), 
and the genera Asplenium, Hymenophyllum, Hypolepis 
and Ophioglossum. The hypothesis of a South American 
origin for some elements of the Tristan da Cunha flora 
is further sustained in the position of the islands, which 
lies in the pathway of a westerly wind system. Dispersal 
against these prevailing winds from other regions seems 
highly improbable.

Although a subject that covers vast tracts of time 
and space as plant migration, is often an activity “inevi-
tably speculative” (Clayton, 1981), and a more inclusive 
sampling is needed to achieve unambiguous results. The 
existence of diversification centres in southern South 
America (11 species) and New Zealand (4 species), the 
presence of D. antarctica in several southern seas islands 
and of D. cespitosa in southern Argentina, Brazil and 
Chile, and the ITS evidence for a southern clade (Fig. 
1, clade A) suggest a major radiation of Deschampsia 
in the southern Hemisphere. How dispersion among 
such distant regions has happened remains unclear but 
some long-distance event has evidently occurred. The 
ability for long-distance dispersal in D. antarctica has 
been rated as low as suggested by its low genetic diver-
sity (Holderegger & al., 2003), which is probably due to 

vegetative propagation. But the capacity to disperse has 
been high enough to account for the presence of the spe-
cies in southern islands. Seeds of Antarctic populations 
of D. antarctica have a relatively low but rapid germina-
tion ability (Corte, 1961), indicating that long-distance 
dispersal might well result in successful establishment. 
Moreover, Deschampsia species are non-invasive and 
very restricted to their original habitats, and their ranges 
may thus well reflect past migration events.

The accessions of D. flexuosa (= A. flexuosa), regard-
less of their geographic origin, form a well-supported 
clade in all trees, falling with D. klossi in the plastid tree. 
The relative geographic proximity between D. klossi, 
common in the mountains of New Guinea (Van Royen, 
1979), and D. ligulata (= D. flexuosa var. ligulata), en-
demic to Mount Kinabalu in Borneo (Buschmann, 1950), 
makes a hybridisation event likely. The similar habitats 
in which both taxa are found further support this. 

Deschampsia and its allies D. atropurpurea (= 
Vahlodea atropurpurea) and D. flexuosa (= Avenella 
flexuosa) are a complex group (Table 2), whose mem-
bers are morphologically difficult to separate, and may 
have been prone to hybridisation and polyploidisation. 
Although providing a first insight into the phylogeny of 
the genus, ITS sequence data are sometimes not suffi-
cient for resolving the relationships of related taxa (Sang, 
2002), making necessary the use of single-copy nuclear 
genes. Further sampling of taxa of different geographic 
origins and ploidy levels, and inclusion of more molecu-
lar markers, is needed to achieve a clearer picture of the 
phylogeny of the genus. 
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J. Chiapella 767 (WU), AM0412231 (ITS), CES3; Argentina, Mendoza, Malargüe, F. Roig 15811 (MERL), AM041224, AM041254, 
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Appendix. Continued.
CES4; Argentina, Río Negro, Estancia El Condor, S. Chichizola s.n. (MERL), AM0412251 (ITS), CES5; Deschampsia chapmanii 
Petrie, New Zealand, Eyre Mts., George Burn, A. Druce S141 25-32 (CHR), AM041226, AM041256, CHAP; Deschampsia christo-
phersenii C.E. Hubb., Tristan da Cunha, Green Hill, G. Jakubowsky 285 (WU), AM041227, AM041257, CHR1; Tristan da Cunha, 
Burntwood, G. Jakubowsky 290 (WU), AM041228, AM041258, CHR2; Deschampsia danthonioides (Trin.) Benth, Chile, O’Higgins, 
Termas de Cauquenes, A. Pfister 13102 (CONC), AM0412291 (ITS), DANT; Deschampsia elongata (Hook.) Benth., Argentina, Río Ne-
gro Lago Mascardi, J. Chiapella 763 (WU), AM041230, AM041259, ELON; Deschampsia flexuosa (L.) Trin., Sweden, Härjedalen, Idre, 
J. Chiapella 775 (WU), AM041231, AM041260, FLE1; Malaysia, Mt. Kinabalu, J. van Valkenburg 1452 (WAG), AM041232, AM041261, 
FLE2; Argentina, Tierra del Fuego, Estancia Ushuaia, P. Quiroga & al. s.n. (WU), AM0412331 (ITS), FLE3; Argentina, Tierra del 
Fuego, Tolhuin, F. Roig 14929 (MERL), AM0412341 (ITS), FLE4; New Zealand, Otago, Ross Creek Reserve, P.N. Johnson 995 (CHR), 
AM0412622 (trnL), FLE5; Finland, Nauvo Haverö, Pajula, T. Lempiäinen & V. Laine s.n. (WU), AM0412632 (trnL), FLE6; Deschampsia 
kingii (Hook. f.) E. Desv., Argentina, Tierra del Fuego, Parque Nacional Tierra del Fuego, P. Quiroga & al. s.n. (WU), AM041235, 
AM041264, KIN1; Argentina, Tierra del Fuego, Estancia Ushuaia, V. Lencinas & G. M. Pastur s.n. (WU), AM041236 (ITS), KIN2; 
Deschampsia klossi Ridl., Indonesia, Irian Jaya, Mt. Jaya, J. Mardsen & al. 186 (L), AM041237, AM041265, KLOS; Deschampsia laxa 
Phil., Chile, Palena, Pampa Pichanco, F. Roig 13007 (MERL), AM041238, AM041266, LAXA; Deschampsia mejlandii C.E. Hubb., 
Tristan da Cunha, Green Hill, G. Jakubowsky 287 (WU), AM041239, AM041267, MEJL; Deschampsia nubigena Hillebr., U.S.A., Ha-
waii, East Maui, K.R. Wood 4259 (WU), AM041246, AM041268, NUBI; Deschampsia parvula (Hook. f.) E. Desv., Argentina, Tierra 
del Fuego, Río Moat, F. Roig 14920 (MERL), AM041240, AM041269, PARV; Deschampsia patula (Phil.) Skottsb., Argentina, Santa 
Cruz, Estancia Punta Alta, TBPA 744 (MERL), AM041241 (ITS), PATU; Deschampsia tenella Petrie, New Zealand, Southland, Upper 
Wanganui, P. Wardle & R.P. Buxton 94-153 (CHR), AM041244, AM041270, TENE; Deschampsia venustula Parodi, Argentina, Santa 
Cruz, Lago Argentino, F. Roig 14477 (MERL), AM041245, AM041271, VENU; Aira caryophyllea L., Chile, Bío Bío, Concepción, 
K.H. Rechinger 63093 (W), AM049252, AM049254, AIRA; Arrhenatherum elatius (L.) J. Presl & C. Presl, Austria, Lower Austria, 
Gutenstein, W. Till s.n. (WU), AM049253, AM049255, ARRH; Deschampsia cespitosa1, 3, L365134 (ITS), CESP; Agrostis capillaris 
L.3, AF4983955, AY4509486, AGRO; Avena sativa L.3, Z968907, Z968937, X756958, AVEN; Poa pratensis L.3, AF1711839, AY17734910, 
POAP; Trisetum flavescens (L.) P. Beauv.1, 3, Z9689611, Z9689711, TRIS.


