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Several natural and synthetic coumarins were assayed against different cancer cell lines. Four of them have shown cytotoxicity against a panel of three human 
solid tumor cell lines (HeLa, T-47D, and WiDr) and a clearly activity/hydrophobicity relationship. Compound 13 proved to be the most active product in all 
cell lines tested, with values of 8.0 (±0.38) μM against HeLa cells and also able to inhibit Taq DNA polymerase. This dual activity of 13 makes it a candidate 
to be considered as a “lead” compound in the search for novel antitumor drugs. 
 
Keywords:  Coumarins, Antitumor, Cell lines, Replication inhibition, Lipophilicity.   Coumarins, Antitumor. 
 
 
 
Cancer is still the second leading cause of death worldwide. 
Numerous experiments have been going on to develop compounds 
having minor or no side effects; and coumarins were reported to 
exhibit these properties [1]. 
 
Synthetic or natural coumarins are a versatile class of aromatic 
heterocycles and constitute a relevant class of pharmacological 
agents presenting a wide range of different functionalizations [2].   
Their antitumor properties include the inhibition of the cell cycle, 
thus conferring chemoprevention of cancer [3, 4]. The antitumor 
activities of coumarins and its known metabolite, umbelliferone (7-
hydroxycoumarin), were tested against three human carcinoma cell 
lines {colon-carcinoma cell line (Caco-2), a hepatoma-derived cell 
line (Hep-G2) and a lymphoblastic cell line (CCRF cem)} [5]. 
Coumarins, represented by 2,4-diaryl-4H,5H-pyrano[3,2-
c]benzopyran-5-ones, have displayed strong anti-proliferative 
activities in MCF-7 breast carcinoma cells by a mechanism that 
remains to be determined [6]. 
 
The search for new leads can also be made by combinatorial 
chemistry or semi-synthesis reactions. Although it is possible with 
these techniques to produce quickly new collections of compounds 
of various size and composition which increase molecular diversity, 
the generation of new defined stereogenic centers is an arduous 
labor [7]. 
 
In this work we report the cytotoxic and antiproliferative activities 
of a small set of natural and synthetic coumarin derivatives. Some 
of them have shown DNA polymerase inhibition previously [8, 9]. 
In order to perform structure-activity relationship (SAR) studies 
against DNA replication and antitumor activity, we envisioned 
different points of modification on the molecular scaffold. 
 
The in vitro antiproliferative activity of twenty compounds was 
evaluated using the National Cancer Institute (NCI) protocol, after 
48 h of drug exposure using the sulforhodamine B (SRB) assay, 
including the commercial drugs coumarin (18), 4-hydroxy (19), and 
6-hydroxycoumarin (20) [10-12]. The results expressed as 50% 
growth inhibition (GI50) are shown in Table 1. From the GI50 
values, the structure-activity relationships clearly show a direct 
relationship between lipophilicity and activity [13]. 
 
Compounds 1 and 2 were isolated from plants belonging to the 
Pterocaulon genus  (Asteraceae)  and  3 was obtained using NBS in 

 
Figure 1: Natural coumarins from Pterocaulon sp. and halohydrin derivative assayed.   

 
CH2Cl2 (Figure 1). Product 3 was able to inhibit Taq DNA 
polymerase, but did not show antitumor activity. Its loss of action 
could be attributed to its remarkably polarity. This halohydrin has a 
particular structural feature in its side chain, showing polar groups 
(alcohol and halogen) able to form an intramolecular hydrogen 
bond with a partial five membered cycle. 
 
Using 4-hydroxycoumarin as starting material and either allyl 
or-dimethylallyl bromine, we could obtain compounds 4-9. The 
derivatives 4 and 9 were liquid oils, due to their low polarity. Thus, 
but not surprisingly, only these two bi-substituted products 
exhibited inhibition of growth and cell division. Once again, their 
potential permeability through membranes seems to be crucial for 
their activity. 
 
Cytotoxic drugs continue to play a crucial role in cancer therapy. 
Certain cytotoxic agents have been improved via pro-drug 
approaches. Improvements have been decidedly specific for drugs 
and disease, but have drawbacks with respect to the accuracy of 
cellular uptake and drug release. Among the strategies proposed to 
enhance the passive internalization of drugs into cells, increasing 
their lipophilicity has often been validated as a successful approach 
[14]. 
 
Taking this into account, we envisaged the preparation of more 
hydrophobic derivatives using 6-hydroxycoumarin as starting 
material. Compounds 10 and 11 were obtained via silicon protecting 
groups, and 12 in a classical acetylation reaction. The less polar of 
these products (10) showed in vitro antiproliferative activity against 
representative human solid tumor cell lines. Thus, functionalized 
chemical groups containing silicon atoms might just provide 
lipophilicity to the drug, permitting it to pass through the cell 
membrane by passive diffusion. This strategy has been successfully 
implemented in the antitumor drug analogs silaplatins (cisplatin 
analogs) [15,16] and silatecans (silicon-containing camptothecins) 
[17]. 
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Figure 2: Synthesized allyl coumarins assayed. 
 

 
Figure 3: 6-Hydroxycoumarin derivatives evaluated. 

 

 
Figure 4: Assayed coumarins synthesized using Pechmann reaction 
 
In order to increase the number of compounds for biological tests 
we prepared different semi-synthetic coumarins using the von 
Pechmann reaction variant [8] in the presence of ionic liquids. 
Products 13-17 show some degree of polarity, attributable to the 
presence of phenolic moieties. Compound 13 (the most 
hydrophobic of these five products) was active against all the tested 
cell lines and against DNA replication.  
 
This dual activity of 13 makes this coumarin a good candidate to be 
considered as a “lead” product in the search of novel antitumor 
drugs, and its target of action could be nuclear DNA polymerases. 
 
Coumarins target a number of pathways in the cancer field, such as 
kinase inhibition, cell cycle arrest, angiogenesis inhibition, heat 
shock protein (HSP90) inhibition, telomerase inhibition, antimitotic 
activity, carbonic anhydrase inhibition, monocarboxylate 
transporters inhibition, aromatase inhibition and sulfatase inhibition 
[1]. DNA polymerase inhibition affects the unlimited replicative 
potential of cancer cells by inhibiting DNA replication, and 
consequently antitumor activity, in leukemic and colon cancer cell 
lines for instance. There is a close evolutionary relationship 
between DNA dependent enzymes (such as human DNA 
polymerases) and Taq DNA polymerase. These structures resemble 
a right hand domain and conserve the amino acid sequence inside 
the catalytic region [18, 19].  It is very likely that the majority of 
effects observed on cellular divisions can be mediated by the 
reaction of DNA related enzymes with biomolecules such as 
proteins, peptides, and, at higher concentrations, DNA or chemical 
drugs.  
 
In summary, the effects over cell viability were tested in vitro on 
several tumor cell lines, as well as in previous work against Taq 
DNA polymerase. Four products from a family of twenty coumarins 

Table 1: In vitro antiproliferative activity against representative human solid tumor cell lines.a 

 

  Cell line   cLogPb   
Compounds HeLa T47D WiDr     

1 na na na  3.32   
2 na na na  1.01   
3 na na na  2.64   
4 17.6 (±6.4) 26.0 (±5.1) 21.60 (±5.9)  5.15   
5  
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20             

na 
na 
na 
na 

17.5 (±1.5) 
24.1 (±4.1) 

na 
na 

8.0 (±3.9) 
na 
na 
na 
na 
na 
na 
na 

na 
na 
na 
na 

54.3 (±4.7) 
26.6 (±2.3) 

na 
na 

27.0 (±7.4) 
na 
na 
na 
na 
na 
na 
na 

na 
na 
na 
na 

21.6 (±7.6) 
32.2 (±1.8) 

na 
na 

22.6 (±3.6) 
na 
na 
na 
na 
na 
na 
na 

 2.22 
3.21 
2.28 
3.27 
3.38 
5.49 
4.19 
1.48 
2.00 
1.32 
0.88 
1.67 
1.23 
nc 
nc 
nc 
 

  

 

a Values, expressed as GI50 (50% growth inhibition), are given in μM and are means of 
three to five experiments; standard deviation is given in parentheses. 
b The detected cLog P values were implemented using ALOGPS 2.1 program that is 
publicly available. 

 
have shown cytotoxic and antitumor activity in M concentrations. 
Furthermore, compound 13 was able to inhibit both DNA 
replication and cell division in the three cancer cell lines assayed. 
 
Experimental 
 

General procedures: All the chemicals used were of analytical 
grade. Reactions requiring anhydrous conditions were performed 
under nitrogen. Dichloromethane and diethyl ether were distilled 
from CaH2 and Na/benzophenone, respectively, under N2 prior to 
use. TLC was carried out on Merck aluminum sheets coated with 
silica gel 60 F254. Plates were visualized by use of UV light and/or 
sodium permanganate 20% solution without heating. NMR spectra 
were measured at 500, 400 or 200 MHz (1H NMR) and 100 or 50 
MHz (13C NMR) in either CDCl3 or MeOD, and chemical shifts are 
reported relative to internal Me4Si (d = 0).  
 
Data for assayed coumarins are listed below and in the previously 
publications [8, 9]. 
 
5-(3',3'-Dimethylallyloxy)-6,7-methylendioxycoumarin (1) 
1H NMR (200 MHz, CDCl3): δ 1.78-1.73 (6H, bs, Me), 4.83 (bs, 
1H, H-1´a), 4.87 (1H, d, J= 7.2 Hz, H-1´b), 5.47 (1H, bs, H-2´), 
6.01 (2H, s, O-CH2-O), 6.19 (1H, d, J= 9.6 Hz, H-3), 6.52 (1H, s, 
H-8), 7.96 (1H, d, J= 9.6 Hz, H-4) 
13C NMR from HSQC (50.6 MHz, CDCl3): δ 17.00 (CH3), 29.30 
(CH3), 69.00 (CH2), 92.52 (CH-8), 101.60 (CH2), 111.88 (CH-3), 
119.53 (CH2), 139.30 (CH-4). 
 
7-(3'-Methyl-2',3'-dihydroxybutoxy)-6-methoxycoumarin (2) 
1H NMR (200 MHz, CDCl3): δ 1.34-1.26 (6H, bs, Me), 3.89 (1H, 
bs, H-2´), 3.92 (3H, s, OMe), 4.30-4.15 (2H, bs, H-1´), 6.25 (1H, d, 
J= 9.8 Hz, H-3), 6.85 (1H, s, H-5), 6.91 (1H, bs, H-8), 7.62 (1H, d, 
J= 9.8 Hz, H-4) 
13C NMR from HSQC: δ (50.6 MHz, CDCl3) 26.00 (CH3), 27.50 
(CH3), 68.40 (OMe), 70.60 (CH2), 74.80 (CH-2´), 97.60 (CH-5), 
103.40 (CH-8), 110.99 (CH-3), 142.30 (CH-4). 
 
5-(2´-Bromine-3´-hydroxy-3'-methyl-butyloxy)-6,7-methylenedi-
oxycoumarin (3) 
1H NMR (200 MHz, CDCl3): δ 1.44-1.25 (6H, bs, Me), 3.34 (1H, 
bs, OH), 4.22 (1H, dd, J= 3.2; 5.6 Hz, H-2´), 4.50 (1H, dd, J= 8.8; 
2.8 Hz, H-1´b), 5.02 (1H, dd, J= 3.2; 8.0 Hz H-1´a) 6.05 (2H, s, O-
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CH2-O), 6.22 (1H, d, J= 9.8 Hz, H-3), 6.56 (1H, s, H-8), 8.12 (1H, 
d, J= 9.8 Hz, H-8) 
13C NMR from HSQC: δ (50.6 MHz, CDCl3) 30.00 (CH3), 64.20 
(CH-2´), 74.10 (CH2), 93.22 (CH-8), 101.90 (CH2), 111.92 (CH-3), 
139.80 (CH-4).  
 
3,3-Bis(3-methylbut-2-en-1-yl)chromane-2,4-dione (4) 
1H NMR (200 MHz, CDCl3): δ 1.68-1.51 (12H, s, Me), 2.75 (4H, 
bs, H-1´), 4.90 (2H, bs, H-2´), 7.25 (1H, bs, H-6), 7.52 (1H, bs, H-
8), 7.63 (1H, dd, J= 1.8; 7.2 Hz, H-7), 7.90 (1H, dd, J= 1.6; 7.6 Hz, 
H-5) 
13C NMR (50.6 MHz, CDCl3): δ 25.93-18.07 (CH3), 37.55 (CH2), 
62.46 (C), 117.5 (CH-8), 117.64 (CH-2´), 124.84 (CH-6), 126.84 
(CH-5), 137.02 (CH-7), 137.23 (C), 155.04 (C), 170.69 (C=O), 
194.72 (C=O). 
 
4-Allyloxy-coumarin (5) 
1H NMR (200 MHz, CDCl3): δ 4.70 (2H, dd, J= 1.2; 5.0 Hz, H-1´), 
5.48 (2H, bs, H-3´), 5.69 (1H, s, H-3), 6.13 (1H, m, H-2´), 7.27 (1H, 
bs, H-6), 7.32 (1H, bs, H-8), 7.52 (1H, dd, J= 1.6; 7.2 Hz, H-7), 
7.86 (1H, dd, J= 1.4; 7.8 Hz, H-5) 
13C NMR from HSQC (50.6 MHz, CDCl3): δ 69.00 (CH2), 91.00 
(CH-3) 117.05 (CH-8), 119.00 (CH-3´), 123.00 (CH-5), 124.05 
(CH-6), 131.00 (CH-2´), 134.00 (CH-7).  
 
3-(3',3'-Dimethylallyl)-coumarin (6) 
1H NMR (200 MHz, CDCl3): δ 1.80-1.71 (6H, s, Me), 2.65 (2H, d, 
J= 7.2 Hz, H-1´), 5.04 (1H, bs, H-2´), 7.36 (1H, bs, H-8), 7.41 (1H, 
bs, H-6), 7.64 (1H, bs, H-7), 7.86 (1H, dd, J= 1.4; 7.8 Hz, H-5).   
 
4-Hydroxy-3-allyl-coumarin (7) 
1H NMR (200 MHz, CDCl3): δ 3.50 (2H, d, J= 6.8 Hz, H-1´), 5.27 
(2H, bs, H-3´), 6.03 (1H, bs, H-2´), 7.27 (2H, bs, H-6; H-8), 7.51 
(1H, dd, J= 1.6; 7.2 Hz, H-7) 7.81 (1H, d, J= 8.0 Hz, H-5) 
13C NMR from HSQC (50.6 MHz, CDCl3): δ 29.00 (CH2), 116.15 
(CH-8), 117.20 (CH-3´), 121.89 (CH-5), 123.05 (CH-6), 134.23 
(CH-7), 135.76 (CH-2´). 
 
4-(3',3'-Dimethylallyloxy)-coumarin (8) 
1H NMR (200 MHz, CDCl3): δ 1.84-1.78 (6H, s, Me), 4.68 (2H, d, 
J= 7.4 Hz, H-1´), 5.51 (1H, bs, H-2´), 5.68 (1H, s, H-3), 7.25 (1H, 
bs, H-6), 7.33 (1H, bs, H-8), 7.54 (1H, dd, J= 1.8; 7.2 Hz, H-7), 
7.83 (1H, dd, J= 1.6; 8.0 Hz, H-5).   
 
4-Allyloxy-3-allyl-coumarin (9) 
1H NMR (200 MHz, CDCl3): δ 3.40 (2H, d, J= 6.2 Hz, H-1´´), 4.63 
(2H, d, J=5.6 Hz, H-1´), 5.07 (2H, bs, H-3´´) 5.37 (2H, bs, H-3´) 
5.99 (1H, bs, H-2´´), 6.08 (1H, bs, H-2´), 7.30 (1H, bs, H-6), 7.36 
(1H, bs, H-8), 7.50 (1H, dd, J= 1.6; 7.6 Hz, H-7), 7.70 (1H, dd, J= 
1.6; 8.0 Hz, H-5). 
 
6-(t-Butyldiphenylsilyloxy)-coumarin (10) 

1H NMR (200 MHz, CDCl3) δ 1.11 (9H, s, t-Bu), 6.31 (1H d, J= 
9.6 Hz, H-3), 6.79-7.72 (14H, aromatic).  
 
6-(Di-t-butylsilyloxy)-coumarin (11) 
1H NMR (200 MHz, CDCl3): δ 1.06 (18H, s, 2t-Bu), 4.45 (1H, s, H-
Si), 6.41 (1H, d, J= 9.6 Hz, H-3), 6.98-7.22 (3H, bs, H5, 7, 8), 7.62 
(1H, d, J= 9.6 Hz, H-4).  
 
6-Acetoxycoumarin (12) 
1H NMR (200 MHz, CDCl3): δ 2.33 (3H, s, Ac), 6.46 (1H, d, J= 9.6 
Hz, H-3), 7.28 (3H, bs, H5, 7, 8), 7.66 (1H, d, J= 9.6 Hz, H-4).  
 
 

3-Isopropyl-4-methyl-5,7-dihydroxycoumarin (13) 
1H NMR (400 MHz, MeOD): δ 1.3 (6H, d, J= 9.0 Hz, 2Me), 2.65 
(3H, s, Me), 3.30 (1H, m, CH), 6.18 (1H, d, J= 2.0 Hz, H-8), 6.23 
(1H, d, J= 2.0 Hz, H-6). 
13C NMR (100 MHz, MeOD): δ 17.52 (CH3), 18.82 (2CH3), 27.37 
(CH-2´i-Pr), 94.15 (CH-8), 99.16 (CH-6), 103.37 (C), 124.20 (C), 
149.96 (C), 155.04 (C), 157.66 (C), 160.07 (C), 161.16 (C=O).  
 
3,4-Dimethyl-5,7-dihydroxycoumarin (14) 
1H NMR (400 MHz, MeOD): δ 2.08 (3H, s, Me), 2.58 (3H, s, Me), 
6.19 (1H, d, J= 2.0 Hz, H-8), 6.22 (1H, d, J= 2.0 Hz, H-6). 
13C NMR (100 MHz, MeOD): δ 11.24 (CH3), 18.07 (CH3), 94.05 
(CH-8), 99.13 (CH-6), 103.19 (C), 114.83 (C), 150.67 (C), 154.84 
(C), 157.43 (C), 160.09 (C), 163.24 (C=O). 
 
4-Methyl-5,7-dihydroxycoumarin (15) 
1H NMR (400 MHz, MeOD): δ 2.60 (3H, s, Me), 5.85 (1H, s, H-3), 
6.23 (2H, bs, H6-8). 
13C NMR (100 MHz, MeOD): δ 22.72 (CH3), 94.41 (CH-8), 98.91 
(CH-6), 102.71 (C), 108.22 (CH-3), 156.67 (C), 156.89 (C), 158.18 
(C), 161.56 (C), 162.64 (C=O).  
 
3,4-Dimethyl-7-hydroxycoumarin (16) 
1H NMR (400 MHz, MeOD): δ 2.15 (3H, s, Me), 2.41 (3H, s, Me), 
6.69 (1H, d, J= 2.4 Hz, H-8), 6.82 (1H, dd, J= 2.4; 8.8 Hz, H-6), 
7.60 (1H, d, J= 8.8 Hz, H-5). 
13C NMR (100 MHz, MeOD): δ 11.53 (CH3), 13.68 (CH3), 101.72 
(CH-8), 112.71 (CH-6), 113.02 (C), 117.04 (C), 125.65 (CH-5), 
147.93 (C), 153.43 (C), 160.29 (C), 163.19 (C=O).  
 
4-Methyl-7-hydroxycoumarin (17) 
1H NMR (400 MHz, MeOD): δ 2.42 (3H, s, Me), 6.09 (1H, s, H-3), 
6.69 (1H, bs, H-8), 6.82 (1H, bs, H-6), 7.57 (1H, bs, H-5). 
13C NMR (100 MHz, MeOD): δ 17.28 (CH3), 102.08 (CH-8), 
109.81 (CH-3), 112.41 (C), 112.94 (CH-6), 125.95 (CH-5), 154.49 
(C), 155.08 (C), 161.57 (C), 162.46 (C=O).  
 
Biological studies: All starting materials were commercially 
available, research-grade chemicals, and were used without further 
purification. RPMI 1640 medium was purchased from Sigma-
Aldrich (St Louis, MO, USA), fetal bovine serum (FBS) from 
Nataclor (Nataclor-Argentina), trichloroacetic acid (TCA) and 
dimethylsulfoxide (DMSO) from Merck (Darmstadt, Germany), and 
penicillin G-streptomycin, sulforhodamine B (SRB) and glutamine 
from Sigma-Aldrich (St Louis, MO, USA). Pure compounds were 
initially dissolved in DMSO at 400 times the desired final 
maximum test concentration, that is, 100, 10 and 1 μM. 
 
Antiproliferative assay: The human solid tumor cell lines HeLa 
(cervix), T-47D (breast) and WiDr (colon) were used in this study. 
Cells were maintained in 25 cm2 culture flasks in RPMI 1640 
supplemented with 5% FBS and 2 mM L-glutamine in a 37ºC, 5% 
CO2, 95% humidified air incubator. Exponentially growing cells 
were trypsinized and re-suspended in antibiotic containing medium 
(100 U penicillin G and 0.1 mg of streptomycin per mL). Single cell 
suspensions displaying >97% viability by trypan blue dye exclusion 
were subsequently counted. After counting, dilutions were made to 
give the appropriate cell densities for inoculation onto 96-well 
microtiter plates. Cells were inoculated at 100 μL per well at 
densities of 1.5 x 104 (HeLa and T-47D), and 2 x 104 (WiDr) cells 
per well, based on their doubling times. Each agent was tested at 
least in triplicate at different dilutions in the range of 1–100 μM. 
The drug treatment was started on day 1 after plating. Drug 
incubation time was 48 h, after which time cells were precipitated 
with 25 μL ice-cold TCA (50%, w/v) and fixed for 60 min at 4ºC. 
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Then the SRB assay was performed. The optical density (OD) of 
each well was measured at 492 nm, using BioTek’s PowerWave XS 
Absorbance Microplate Reader. Values were corrected for 
background OD from wells only containing medium. 
 
The percentage of growth (PG) was calculated with respect to 
untreated control cells (C) at each of the drug concentration levels 
based on the difference in OD at the start (T0) and end of drug 
exposure (T), according to the National Cancer Institute (USA) 
formulas 0. Therefore, if T is greater than or equal to T0 the 
calculation is PG = 100 [(T-T0)/(C-T0)]. If T is less than T0 
denoting cell killing the calculation is PG = 100 [(T-T0)/(T0)]. 

With these calculations, 3 levels of effect could be determined; 50% 
growth inhibition (GI50), total growth inhibition (TGI), and 50% 
cell killing (LC50) that represent the concentration at which PG is 
+50, 0, and -50, respectively. Thus, a PG value of 0 corresponds to 
the amount of cells present at the start of drug exposure, while 
negative PG values denote net cell kill. 
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