

ROBERTO CARLOS DOMINGUES MARTINS

HABITATS BENTÓNICOS DA PLATAFORMA CONTINENTAL PORTUGUESA

THE PORTUGUESE CONTINENTAL SHELF SOFT-BOTTOM BENTHIC HABITATS

ROBERTO CARLOS DOMINGUES MARTINS

HABITATS BENTÓNICOS DA PLATAFORMA CONTINENTAL PORTUGUESA

THE PORTUGUESE CONTINENTAL SHELF SOFT-BOTTOM BENTHIC HABITATS

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica da Professora Doutora Ana Maria de Jesus Rodrigues, Professora Auxiliar do Departamento de Biologia da Universidade de Aveiro e do Professor Doutor Victor Manuel dos Santos Quintino, Professor Auxiliar do Departamento de Biologia da Universidade de Aveiro e Biologia da Universidade de Aveiro.

Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio, através da atribuição da bolsa de Doutoramento com referência SFRH/BD/44231/2008.

Dedico este trabalho integralmente à minha **esposa** pelo seu amor e apoio incondicional, aos meus **irmãos**, símbolos de união e à minha **mãe** por ser a luz e bússola que me guia e orienta todos os dias.

o júri

presidente

Prof. Doutora Celeste de Oliveira Alves Coelho Professora Catedrática do Departamento de Ambiente e Ordenamento da Universidade de Aveiro

Prof. Doutor Michael Elliott Full Professor, University of Hull, United Kingdom

Prof. Doutor João Carlos de Sousa Marques Professor Catedrático da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Prof. Doutor Amadeu Mortágua Velho da Maia Soares Professor Catedrático do Departamento de Biologia da Universidade de Aveiro

Prof. Doutora Ana Maria Rodrigues (Orientadora) Professora Auxiliar do Departamento de Biologia da Universidade de Aveiro

Prof. Doutor Victor Manuel dos Santos Quintino (Coorientador) Professor Auxiliar do Departamento de Biologia da Universidade de Aveiro Após anos de muito trabalho e de muitas ausências, gostaria de começar por apresentar as minhas sinceras desculpas a todos aqueles que por algum motivo se sentiram afetados pelo meu afastamento e aproveitar para agradecer às seguintes pessoas:

Aos meus orientadores, *Professora Ana* e *Professor Victor*, suporte científico e fonte de conselhos, opiniões, críticas construtivas e reflexões. Muito obrigado por tudo!

Aos meus colegas e amigos de laboratório, que me ajudaram a chegar até aqui, desde o seu auxílio nas campanhas de amostragem e/ou identificações (Leandro, Renato, Fernando, Élio, Rita, Jaime, Puri) ou simplesmente pelo companheirismo e paciência para me aturarem nos bons e maus momentos (Adília, Anthony, Luísa, Marta, Patrícia). Finalmente, a uma pessoa que desde o princípio me respeitou como eu era e me ajudou a crescer profissional e pessoalmente e que nas fases menos boas me ajudou a não desistir ou resignar! Sem nos apercebermos, a fronteira entre o trabalho e a amizade quebrou-se e tornamo-nos grandes amigos. Muito obrigado, Rosa! Um obrigado muito especial à Prof^a. M^a Rosário, uma pessoa formidável que me ajudou em toda a componente geoquímica e na escrita do primeiro artigo, e que me apoiou incondicionalmente sem pedir nada em troca. Gostaria ainda de agradecer a todos os docentes do Departamento de Geociências pelo apoio, em particular ao Prof. Luís Menezes, Prof. Eduardo Silva, Prof. Fernando Rocha e às amigas Bárbara (pela colaboração no processamento das amostras para as análises geoquímicas e pela amizade), Daniela, Catarina, Virgínia, e a todas aqueles que nalguma fase colaboraram nas análises geoquímicas (Cristina, pelo tempo que me dedicou, Vítor, Manuela, Carla, Denise, Sr. Graça) e ainda à Sara do LCA pela paciência que teve comigo nas análises isotópicas! Ao Sr. Rui (pela ajuda nas campanhas de amostragem e amizade), Prof^a. Etelvina Figueira, Susana Loureiro, Prof. Amadeu Soares, todos os docentes, investigadores e pessoal não docente do Departamento de Biologia, pelo apoio e companheirismo. Não poderia deixar de agradecer a todos os investigadores que contribuíram para enriquecer este trabalho, nomeadamente João Gil (partilha de bibliografia), Ascensão Ravara (ajuda nas Nepthys, na cedência de bibliografia e pelos bons conselhos), Miriam Guerra (partilha de referências), Luis Carrera-Para (un taxonomista y amigo que me hay apoyado muchisimo y que me hay ayudado en todo el trabajo prático de descripción de la nuevas espécies, en la corrección del articulo y que conyuntamente con Sérgio Salazar-Vallejo (y su esposa Emília) me recibiran en Chetumal de brazos bien abiertos), Guillermo San Martín (ayuda en pisiónidos y silidos y por sus sugerencias en los manuscritos), Hannelore Paxton (confirmation of Eunicidae), Aurélie Foveau (references); Jorge Goncalves, Pedro Monteiro e Luís Bentes (EUNIS), e a todos aqueles que me ajudaram nalguma fase deste projecto e eu me estou a esquecer. Ao João e ao Nuno, da Smallmatek, pela amizade e pela disponibilização do espaço da empresa para poder escrever a tese. Agradeço às instituições que permitiram desenvolver este trabalho, nomeadamente aos Departamentos de Biologia e de Geociências da UA, à FCT pelo financiamento da bolsa de doutoramento (SFRH/BD/44231/2008), ao IPMA (campanhas no NRP "Noruega") e projetos ACOSHELF, Monitorização do Emissário Submarino da Guia, e MeshAtlantic (ERDF-Atlantic Area Program 2009-1/110).

Aos meus amigos, *Catarina* e *Sidónio, Anthony* e *Bianca, Carla* e *Pedro, Sónia* e *Zé, Rosana* e *Pedro, André* e *Raquel, Susana, Carla, Renata, Cachinho* e aos demais *amigos* não referidos, mas que por motivos óbvios não os poderei aqui listar a todos. Pela V/ amizade de longa data, que apesar deste afastamento, ela nunca se quebrou!

À minha família! Aos meus *irmãos Diana e Miguel*, que eu tanto amo e a quem lhes dedico também este documento. Ao meu *pai* e à *Júlia* por tudo o que representam na minha vida. Aos *pais da Tânia*, que acreditaram sempre no meu sucesso e foram sempre fonte de inspiração e dedicação. Têm sido um exemplo de vida, como amigos e pais; agradeço-vos por tudo o que nos têm proporcionado. Às *Madrinhas Susana* e *Maria*, por terem sempre acreditado nas minhas faculdades, até quando se impuseram para eu prosseguir os estudos e nunca me terem deixado faltar nada; ocuparam naturalmente aquele lugar que só uma mãe pode ter. Às minhas avós *Flávia, Irene* e *Encarnação* que foram e serão sempre fontes de amor e retidão. As minhas tias, tios, primas e primos que sempre se orgulharam da pessoa e do profissional que me tornei. Ao *Paulo* e à *Sandra*, primos e grandes amigos, por partilharmos tão intensamente os poucos momentos que passamos juntos! À *Mª Neves* por todas as palavras de apoio.

À minha *esposa*, a pessoa mais importante da minha vida! Acreditou em mim e apoioume incondicionalmente. Quando as forças me faltaram e os braços se baixaram, não me deixou desistir e sempre compreendeu as minhas ausências. A ela lhe devo quase tudo o que sou e por isso lhe dedico todo este manuscrito. *Amo-te Tânia*!

À minha *mãe* e a *Jesus*. Ausente deste mundo desde os meus 12 anos, Ela foi sempre motivo de orgulho para mim. Quando tudo podia ter corrido mal, Ela nunca me deixou cair. Foram o meu farol e a minha bússola impedindo que eu me desviasse do caminho certo. A ausência faz com que a saudade seja forte, mas proporcionou-me um sentimento muito genuíno de gratidão. Todos os dias temos tantas coisas boas e esquecemo-nos de agradecer. Por isso todos os dias lhes agradeço por tudo o que me proporcionaram e pelas forças que me darão nas lutas futuras! *Amo-te Mãe*!

resumo

Plataforma continental Portuguesa; Península Ibérica Ocidental; substrato móvel; macrofauna bentónica; habitats; comunidades; espécies; padrões distribuição; relações ambientais e biológicas; biogeografia.

As comunidades de macrofauna bentónica são ecológica e economicamente relevantes, sendo fonte de diversos bens e serviços. A sua identificação, caracterização e mapeamento são importantes para identificar áreas marinhas protegidas e para uma melhor utilização do ambiente marinho. Este trabalho apresenta um estudo holístico da diversidade e distribuição espacial das comunidades de macrofauna bentónica ao longo da plataforma continental Portuguesa. Cerca de 145 locais posicionados ao longo da plataforma ocidental e setentrional foram amostrados com uma draga Smith-McIntyre de área 0,1 m², a profundidades que variaram entre os 13 e 195 metros. Os sedimentos foram caracterizados em termos de granulometria, de matéria orgânica e geoquímica. São propostos seis *habitats* bentónicos principais para a plataforma continental Portuguesa, analisada a relação entre os dados biológicos e ambientais e discutidas questões biogeográficas relacionadas com a distribuição espacial de espécies e das comunidades.

A distribuição da granulometria e assinatura geoquímica dos sedimentos da plataforma continental revelou-se bastante complexa, refletindo importantes diferencas nas fontes (naturais e antropogénicas), origem fluvial, geomorfologia da plataforma, hidrodinamismo e atividade biológica. Relativamente à macrofauna, entre os mais de 30 mil indivíduos recolhidos, foram identificados cerca de 737 taxa, dos quais quatro são novas espécies e aproximadamente 40 correspondem a primeiras ocorrências para a costa Portuguesa. As espécies mais frequentes foram a Ampharete finmarchica, Ampelisca sp. e Lumbrineris lusitanica sp. nov. enquanto as mais abundantes foram Mediomastus fragilis, Polygordius appendiculatus e Ampharete finmarchica. A abundância por local de amostragem variou entre 7 e 1.307 espécimens e a diversidade alfa atingiu um máximo de 96 taxa. Os sedimentos mais arosseiros apresentaram maior diversidade е abundância comparativamente com os sedimentos envasados. Foram identificados seis habitats bentónicos na plataforma continental Portuguesa: (a) sedimentos grosseiros com Protodorvillea kefersteini, Pisione remota, Angulus pygmaeus e várias espécies intersticiais; (b) areias finas hidrodinamicamente expostas e próximas da linha de costa com Magelona johnstoni, Urothoe pulchella e Angulus fabula; (c) comunidade de Abra alba em areia envasadas da plataforma profunda do noroeste; (d) Galathowenia oculata, Lumbrinerides amoureuxi e outros poliquetas escavadores e tubícolas em areais envasadas muito profundas na plataforma sudoeste; (e) Euchone rubrocincta, Nematonereis unicornis e várias espécies setentrionais nas areias envasadas da plataforma sul; (f) vasas com Sternaspis scutata, Heteromastus filiformis e Psammogammarus caecus. A granulometria do sedimento (particularmente teor em finos), matéria orgânica, profundidade e hidrodinamismo foram as variáveis ambientais com a maior relação com os padrões de distribuição da macrofauna.

As espécies cosmopolitas e de latitudes superiores (clima Boreal ou Temperado Frio) dominaram o setor noroeste, sendo substituídas por espécies mais quentes na área de transição entre os canhões da Nazaré e S. Vicente, que dominaram por conseguinte a plataforma sul. O presente estudo evidenciou a abundância e diversidade da macrofauna bentónica ao longo da área costeira de Portugal, na qual coexistem faunas das províncias biogeográficas do norte da Europa, bem como subtropicais. Integrado com outro estudos, este poderá ser a base para uma melhor gestão da plataforma continental Portuguesa.

abstract

Portuguese continental shelf; Western Iberia; soft-bottom; benthic macrofauna; habitats; communities; species; distribution patterns; biological-environmental relationships; biogeography.

Macrofauna benthic communities are ecologically and economically relevant, providing important ecological goods and services. Their identification, characterization and mapping are important to identify marine protected areas and to an overall better use of the marine environment. This work presents a comprehensive assessment of the diversity and spatial distribution of the softbottom benthic macrofauna communities along the Portuguese continental shelf. A total of 145 sites positioned along the west and south coasts of Portugal were sampled with a 0.1 m² Smith-McIntyre grab, at depths ranging from 13 to 195 metres. Sediment grain-size, total organic matter and bulk geochemistry were characterized. It is proposed six major soft-bottom benthic habitats for the Portuguese continental shelf, analysed the relationship between the macrofauna patterns and environmental variables and discussed the biogeographic issues related to the spatial distribution of species and communities.

The sediments grain-size distribution and geochemical signature were complex, reflecting differences in the sources, fluvial input, shelf morphology, hydrodynamic energy and biological activity. Concerning the macrofauna, 737 taxa were identified in more than 30000 specimens. Four new species and nearly 40 new species occurences for the Portuguese coast were recorded in the scope of this work. The most frequent species were Ampharete finmarchica, Ampelisca sp. and Lumbrineris lusitanica sp. nov., while the most abundant were Mediomastus fragilis, Polygordius appendiculatus and Ampharete finmarchica. Abundance per site ranged from 7 to 1307 specimens per 0.1 m² and *alpha* diversity reached a maximum of 96 taxa per 0.1 m². Coarser sediments presented higher diversity and abundance than mud sediments. Six major soft-bottom benthic habitats were identified and characterized: (a) coarse sediments with Protodorvillea kefersteini, Pisione remota, Angulus pygmaeus and other interstitial species (Lusitanean Venus community); (b) Near shore hydrodynamic exposed fine sands with Magelona johnstoni, Urothoe pulchella and Angulus fabula (Boreal Lusitanean Tellina community); (c) Abra alba community in northwestern deep muddy sands (with northern biogeographic affinity): (d) Galathowenia oculata. Lumbrinerides amoureuxi and other burrowers and tubicolous polychaetes in southwestern deep muddy sands (biological community with warmer affinity); (e) Euchone rubrocincta, Nematonereis unicornis and other warmer water species in muddy sands of the southern and sheltered shelf; (f) Muds of Sternaspis scutata, Heteromastus filiformis and Psammogammarus caecus. Sediment grain-size, organic matter, depth and hydrodynamic energy were the variables best related with the macrofauna distribution patterns.

Cosmopolitan and northern species (Cold Temperate and Boreal affinity) dominated the northwestern sector, were replaced by warmer species (Lusitanean, Mediterranean and African affinity) in a transition area between the Nazaré and S. Vicente Canyons, which then dominated the southern shelf. The present study highlighted the abundance and diversity of the macrofauna along a coastal area where cold temperate, warm temperate and subtropical faunas can coexist. Integrated with other studies, it can support a better management of the Portuguese coastal shelf.

TABLE OF CONTENTS

Introduc	ction	1
1.1.	The general context: marine environment importance	3
1.2.	Concepts	4
1.3.	Macrofauna benthic communities: the state of the art	7
1.4.	The Portuguese continental shelf: an holistic overview	9
Material	I and methods	15
2.1.	Study area and sampling	17
2.2.	Laboratory analysis	17
2.2.	.1. Sediment grain-size analysis	17
2.2.	.2. Total organic matter analysis	20
2.2.	.3. Geochemical analysis	20
2.2.	.4. Macrofauna	20
2.3.	Data analysis	22
2.3.	.1. Grain-size sediments	22
2.3.	.2. Geochemistry	22
2.3.	.3. Macrofauna	23
Results		27
Α.	Environmental characterization	29
3.1.	Grain-size distribution	29
3.2.	Total organic matter content	33
3.3.	Geochemistry	34
В.	Biological characterization	42
3.4.	Macrofauna abundance patterns	42
3.5.	Species richness and diversity patterns	46
3.6.	Distribution patterns of particular species	48
3.7.	Identification and characterization of benthic habitats	57
3.8.	Case studies of the shelf diversity	68
3.8.	.1. Diversity of the Family Lumbrineridae	68
3.8.	.2. Diversity of the Family Pisionidae	87
Discuss	sion	97
4.1.	Physical habitat characterization	99
4.1.1.	Shelf sediments	99
4.1.2.	Factors best related to the spatial distribution of the shelf sediments	101

<i>4.1.3.</i> Sediment quality guidelines104			
4.2. Macrofauna diversity distribution patterns105			
4.3. Soft-bottom benthic habitats110			
<i>4.3.1.</i> Coarse sediments with <i>Protodorvillea kefersteini, Pisione remota</i> and <i>Angulus pygmaeus</i> 110			
<i>4.3.2.</i> Near shore hydrodynamic exposed fine sands with <i>Magelona johnstoni,</i> <i>Urothoe pulchella</i> and <i>Angulus fabula</i> 111			
4.3.3. Abra alba community in northwestern deep muddy sands			
<i>4.3.4. Galathowenia oculata</i> and <i>Lumbrinerides amoureuxi</i> in southwestern very deep muddy sands112			
<i>4.3.5. Euchone rubrocincta</i> and <i>Nematonereis unicornis</i> in muddy sands of the southern and sheltered shelf113			
<i>4.3.6.</i> Muds of Sternaspis scutata, Heteromastus filiformis and Psammogammarus caecus 114			
4.4. Environmental – biological relationships114			
4.5. Biogeography of benthic macrofauna species and communities			
Conclusions			
References			
Annexes			

LIST OF FIGURES

Figure 1 – Classification of the biogeographic subprovinces of benthic (<1000 m) and deep sea biomes (>1000 m, including pelagic and benthic biomes) adopted for the OSPAR Maritime Area (Dinter, 2001 in UNESCO, 2009)......6 Figure 2 – Study area: the Portuguese continental shelf. Sampling sites are represented by black dots......18 Figure 3 – Smith-McIntyre grab......19 Figure 5 – Representation of a lumbrinerid maxillary apparatus. Legend: A – Carriers, MI and MII (dorsal view); B - MII, MIII and MIV (ventral view); ca - carriers, cp - connecting plate, al – attachment lamella, M – maxilla (Carrera-Para, 2006a)......21 Figure 6 – Spatial distribution of sediment types according the median value in the Figure 8 - Draftsman plot between environmental variables (Depth, TOM, median grainsize, gravel, sand, fines, biogenic fraction). Pearson correlation between each pair of Figure 9 – Spatial distribution of total organic matter content in the Portuguese continental Figure 10 – Plots showing the variation between selected major and minor elements contents of sediment and the sample geographical location. The position of relevant rivers Figure 11 – Major and minor elements classification and ordination analysis identifying the geochemical groups (A, B, C, D). Baseline sediment variables (grain-size classes and total organic matter - TOM) are superimposed as supplementary variables (dashed vectors)......40 Figure 12 – Spatial distribution of samples according its geochemistry affinity groups (A, Figure 14 – Spatial distribution of benthic macrofauna abundance (A) and alpha diversity (B), Shannon-Wiener diversity (C) and Pielou evenness (D) in the Portuguese continental shelf......44 Figure 15 – Spatial distribution of polychaetes abundance (A) and alpha diversity (B), in Figure 16 – Spatial distribution of molluscs abundance (A) and alpha diversity (B), in the Portuguese continental shelf......45 Figure 17 – Spatial distribution of crustaceans abundance (A) and alpha diversity (B), Shannon-Wiener diversity (C) and Pielou evenness (D) in the Portuguese continental shelf......46 Figure 18 – Abundance spatial distribution patterns of some selected polychaete species: Ampharete finmarchica (A), Monticellina heterochaeta (B), Prionospio fallax (C) and Protodorvillea kefersteini (D)......51 Figure 19 – Abundance spatial distribution patterns of some selected polychaete species: Magelona johnstoni (A), Aphelochaeta sp. 1 (B), Heteromastus filiformis (C) and Euchone

Figure 20 - Abundance spatial distribution patterns of the new Lumbrineridae (Polychaeta) species: Gallardoneris iberica sp. nov. (A), Lumbrineris luciliae sp. nov. (B), Figure 21 – Abundance spatial distribution patterns of some selected molluscs species: Thyasira flexuosa (A), Abra alba (B), Corbula gibba (C) and Thracia villosiuscula (D).....54 Figure 22 – Abundance spatial distribution patterns of some selected molluscs species: Glycymeris glycymeris (A), Nassarius reticulatus (B), Saccella commutata (C) and Figure 23 – Abundance spatial distribution patterns of some selected species: crustracean Ampelisca sp. (A), crustracean Urothoe pulchella (B), echinoderm Echinocyamus pusillus Figure 24 – Classification (A) and ordination diagrams (PCO, B; nMDS, C) based on the abundance benthic macrofauna data. Pearson correlation vectors of environmental data are provided as supplementary variables in diagram B. The species with the highest Figure 25 – Spatial distribution of the soft-bottom benthic habitats along the Portuguese continental shelf (macrofauna affinity groups obtained based on the abundance macrofauna data). A – Coarse sediments with Protodorvillea kefersteini, Pisione remota, and Angulus pygmaeus; B – Near shore hydrodynamic exposed fine sands with Magelona iohnstoni, Urothoe pulchella and Angulus fabula; C1 - Abra alba community in northwestern deep muddy sands; C2 - Galathowenia oculata and Lumbrinerides amoureuxi in southwestern very deep muddy sands; C3 - Euchone rubrocincta and Nematonereis unicornis in muddy sands of the southern and sheltered shelf; D – Muds of Figure 26 – Gallardoneris iberica sp. nov. Paratype (ECOSUR0128). Legend: A, anterior end, dorsal view; B, parapodium 4, frontal view; C, parapodium 16, frontal view; D, parapodium 88, frontal view; E, composite multidentate hooded hook, from parapodium 4; F, simple multidentate hooded hooks, from parapodium 16; G, maxillary apparatus, dorsal view; H, maxillae III; I, maxillae IV. Scale bars: A, 0.3 mm; B, C, D, 0.025 mm; E, F, 0.012 Figure 27 – Lumbrineris luciliae sp. nov. Paratype (ECOSUR0129). Legend: A, anterior end, dorsal view; B, parapodium 3, frontal view; C, parapodium 13, frontal view; D, parapodium 77, frontal view; E, composite multidentate hooded hook, from parapodium 3; F, simple multidentate hooded hook from parapodium 77; G, acicula from parapodium 86; H, maxillae III and IV, dorsal view. Scale bars: A, 1.0 mm; B, C, D, H 0.1 mm; E, F, 0.025 Figure 28 – Lumbrineris lusitanica sp. nov. Paratype (ECOSUR0130). Legend: A, anterior end, dorsal view; B, parapodium 3, frontal view; C, parapodium 13, frontal view; D, parapodium 79, frontal view; E, composite multidentate hooded hook, from parapodium 3; F, simple multidentate hooded hooks, from parapodium 79; G, maxillae III and IV, dorsal Figure 29 – Lumbrineris pinaster sp. nov. Paratype (ECOSUR0131). Legend: A, anterior end, dorsal view; B, parapodium 3, frontal view; C, parapodium 13, frontal view; D, parapodium 153, frontal view; E, composite multidentate hooded hook, from parapodium 3; F, simple multidentate hooded hook with long hood, from parapodium 13; G, preacicular simple multidentate hooded hook with short hood, from parapodium 79; H,

postacicular simple multidentate hooded hook with short hood, from parapodium 79; I, maxillae III and IV, dorsal view. Scale bars: A, 0.4 mm; B, C, 0.5 mm; D, I, 0.025 mm; E, Figure 30 - Ordination analysis based on morphological descriptors of specimens of Abyssoninoe, Lumbrineris, Gallardoneris, Lumbrinerides, Lumbrineriopsis and Ninoe species (A) and of Lumbrineris luciliae sp. nov., L. lusitanica sp. nov. and L. pinaster sp. nov. The most correlated variables (rho>0.8) are shown as dashed vectors. Legend: A.P.L. – postchaetal lobe shape in anterior parapodia; CMHH – composite multidentate hooded hook; SMHH - simple multidentate hooded hook; SBHH - simple bidentate hooded hook; MI attach. lam. - MI attachment lamellae; MIII unid. + knob - MIII unidentate followed by a knob; prominent proj. MIII - prominent projection in the basal part of MIII; MIV unid. + dev. plate - MIV unidentate with a developed plate; MIV unid. + pointed tooth – MIV unidentate with a pointed tooth; W10 – width at chaetiger 10 excluding parapodia......84 Figure 31 – Distribution and relative abundance of *Pisione* species along the Portuguese Figure 32 - Classification (A) and Principal Coordinates Analysis (B) based on morphological descriptors of the Pisione species occurring in the Portuguese continental shelf. Descriptors are represented as vectors. Legend: W10 - width at chaetiger 10; CP2/CP3 – ratio between the length of the dorsal cirri of parapodia 2 (CP2) and parapodia 3 (CP3); nrT – number of teeth of the supra-acicular chaetae; P1– protruding length of the

LIST OF TABLES

Table 1 – Geochemical composition of surface sediments from the Portuguese continental Table 2 - Trace elements enrichment factors (EF) for Portuguese continental shelf Table 3 – Spearman correlation matrix (T: total organic matter; median: M; sand: 2 mm – Table 4 – Major and minor elements and baseline sedimentary descriptors mean values in the geochemical affinity groups (TOM: total organic matter; gravel: >2 mm fraction; sand: Table 5 – Characterization of the benthic assemblages identified in the Portuguese continental shelf. Mean values are reported to the unit sampling area (0.1 m^2) . The top 15 characteristic species in each group were defined according the highest product between the constancy and fidelity indices. The 5 most abundant species were defined according the highest mean abundance (per site) among all groups. Sediment types: G = gravel, VCS = very coarse sand, CS = coarse sand, MS = medium sand, FS = fine sand, VFS = very fine sand, M = mud; TOM = Total organic matter content; Constancy: Cn = constant, C = common, O = occasional, R = rare; Fidelity: E = elective, P = preferential, I = Table 6 – Mean species abundance (ind./0.1 m^2) per affinity group. The 20 species with the highest mean abundance per group are listed (light grey). The 5 exclusive species with the highest abundance in the groups are also highlighted (dark grey). * = mean abundance below 0.05 ind/ 0.1 m⁻².....64 Table 7 – Results of PERMANOVA main test between biological affinity groups based on median grain-size, gravel, sand and fines content......67 Table 8 – Values for the t-statistic and associated significance in the pair-wise tests between biological affinity groups, for the environmental descriptors that rejected the main test null hypothesis (sediments grain-size, TOM, depth, hydrodynamic regime and latitude). Significance values: * p < 0.05; ** p < 0.01; (ns) = non-significant.67 Table 9 - Comparison of morphological descriptors and intraspecific variability of the morphological characters assessed on species found in the Portuguese continental shelf.Legend: nr. = number; ch. = chaetiger; all ch. = feature present in all chaetigers; CMHH = composite multidentate hooded hooks; SMHH = simple multidentate hooded hooks; SBHH = simple bidentate hooded hooks; LSMHH = limbated simple multidentate hooded hooks; * — incomplete specimens. n.a. = not applicable; "—" = no available data. Table 10 - Environmental characterization of the sites where Lumbrineridae species occurred along the Portuguese continental shelf (SD = standard deviation)......72 Table 11 – Morphological descriptors mean values and standard deviation (SD) of the Pisione species found on the Portuguese continental shelf. Legend: W10 = width at chaetiger 10; CP2/CP3 = ratio between the length of the dorsal cirri of parapodia 2 (CP2) and parapodia 3 (CP3); NrT = number of teeth of the supra-acicular chaetae; P1/W10 = ratio between protruding length of the notoaciculae through the parapodia (P1) and W10; Table 12 - Environmental characterization of the sites where Pisione species occurred along the Portuguese continental shelf. Legend: SD = standard deviation; Gravel = grainsize fraction > 2 mm; Sand = grain-size fraction 0.063 — 2 mm; Fines = grain-size fraction < 0.063mm; Biogenic fraction = faunal skeletal remains > 2.0 mm; TOM = total organic matter content; MS = medium sand; CS = coarse sand; VCS = very coarse sand; G = fine Table 13 – Results of PERMANOVA main test and mean Euclidean distance between and

Chapter 1

Introduction

1.1. The general context: marine environment importance

The oceans contain 97% of the globe's water and cover 71% of the Earth. The oceanic environment influences the biosphere, regulates the atmosphere and climate and plays an integral role supporting the largest and the most dynamic ecosystem on Earth. Due to this, several human activities (fisheries, industry, trading/transportation, recreation, research, among others) are marine-related. Over one-third of the U.S. (nearly \$700 billion)¹ and almost 40% of the EU's² Gross National Products are generated in the coastal areas, where the majority of the population worldwide lives. Moreover, 90% of the EU's foreign trade is conducted by sea². Reflecting this key importance, several European policies, strategies and legislation (e.g. the Integrated Maritime Policy for the European Union (COM (2007) 575)³; the Marine Strategy Framework Directive⁴; the Europe 2020, a strategy for smart, sustainable and inclusive growth⁵) have been established and applied since the OSPAR Convention⁶ and the United Nations Convention on the Law of the Sea⁷, to protect the marine environment and to promote a better use of the North-East Atlantic Ocean and its resources. In this context Portugal, with one of world's biggest Exclusive Economic Zones, have been following this international trend launching recently, for instance, the National Ocean Strategy⁸, created by the Task Group for Maritime Affairs⁹ (Resolution n.º 128/2005 of the Council of Ministers), intended to "prepare a proposal setting measures to be implemented by the Portuguese Government in order to establish an integrated policy for maritime affairs and articulate all entities with authority in oceanrelated issues". Furthermore, the Portuguese marine's interest was also shown by the presentation of the proposal for the extension of the Portuguese continental shelf beyond 200 nautical miles (in a total of nearly 2.15 million squares of seabed), to the Commission on the Limits of the Continental Shelf of the United Nations by the Task Group for the Extension of the Portuguese Continental Shelf (Estrutura de Missão para a Extensão da Plataforma Continental – EMEPC), aiming to find new exploitable resources¹⁰.

To better protect this fragile environment is key to study all compartments. In this study, only the bottom will be focused.

¹http://www.OceanEconomics.org/nationalreport, 30.10.12

²http://ec.europa.eu/maritimeaffairs/atlas/seabasins/index_en.htm, 30.10.12

³http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2007:0575:FIN:EN:PDF, 30.10.2012

⁴http://ec.europa.eu/environment/water/marine/directive_en.htm, 29.10.2012

⁵http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:2020:FIN:EN:PDF, 29.10.2012

⁶http://www.ospar.org/html_documents/ospar/html/ospar_convention_e_updated_text_2007.pdf, 30.10.2012

⁷http://www.un.org, 30.10.12

⁸https://webgate.ec.europa.eu/maritimeforum/system/files/National_Ocean_Strategy_Portugal_en.pdf, 29.10.2012 ⁹http://www.emam.com.pt/, 29.10.2012

¹⁰http://www.emam.com.pt, www.campanhasmarbis.org, 24.10.2012

1.2. Concepts

The ocean floor can be generally divided in the continental margin, corresponding to the submerged edge of the continent, and the abyssal plain (or deep-sea floor) which lies at a depth of 4000 m, in average (Castro and Huber, 2008). The continental margin includes the continental shelf (up to the shelf break, i.e. the edge of the shelf where slope gradient abruptly increases toward deep waters), the continental slope (a very steep region, from shelf break to deep-sea floor) and the continental rise (a gentle sloping region at the base of the continental slope) (Castro and Huber, 2008). The continental shelf, which corresponds to nearly 8% of the ocean's surface area, is the shallowest part of the continental margin, being characterized by gentle slopes and variable worldwide widths (less than 1 Km in the Pacific coast of the South America to 750 km in the Siberian Arctic coast) and shelf breaks (often 120 to 200 m water depth) (Castro and Huber, 2008). Continental shelf systems have high economic and ecological importance and are the major sinks for sediments exported from land. They are highly complex due to combination of diverse gradients of abiotic factors, like salinity, oxygen, temperature, bottom currents, organic matter, geochemistry, sediment type (e.g. Castro and Huber, 2008; Levinton, 2009). In most shelf sediments, it is possible to recognize different types of source components: (a) a lithogenic component, essentially composed by detrital particles derived from weathering of continental rocks; (b) a biogenic component consisting of skeletal remains and (c) a hydrogenous or authigenic component (clays, ferro-manganese oxyhydroxides), directly precipitated from seawater or produced by the reaction of sediment particles with seawater or through microbial activity (Schulz and Zabel, 2006 and references therein). The relative contribution of these inputs for shelf marine sediments is the dominant factor controlling their bulk chemical composition, which can therefore provide valuable insights into the mechanisms involved in sediment formation, transport, dispersal and deposition patterns, hydrodynamic regimes and lithology of the adjacent land areas (Rubio et al., 2000; Stevenson, 2001; Daesslé et al., 2004; Karageorgis et al., 2005; Machado et al., 2005; Preda and Cox, 2005; Jouanneau et al., 2008; Corredeira et al., 2009; Delgado et al., 2010; Nobi et al., 2010; Sánchez-García et al., 2010).

Biodiversity has a quite complex definition, which can be, simply, the diversity of life on Earth. The Convention on Biological Diversity¹¹, defines it as "the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic

¹¹http://www.cbd.int/, 30.10.2012

ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems", comprehending therefore the diversity of genes, species and ecosystem. It is estimated that European Union loses 3% of Gross Domestic Product per year (€450 billion) due to the loss of biodiversity.¹² To avoid those loses, the EU Biodiversity Strategy to 2020 (COM (2011) 244)¹² has being implemented to better protect the biodiversity and ecosystems and to use more green infrastructures. It is well known that the biological diversity in coastal and ocean environments is high and very important. However, no consensus has been found regarding the number of the total known marine species. According to Mora et al. (2011) nearly 194 thousand of marine species (180 thousand animals and plants) are catalogued, while Heip et al. (2009) refer that 230 thousand of marine plants and animals species are known worldwide. Approximately 12 thousand metazoans species are recognized in the western European seas, despite those assessments are clearly underestimated for most groups (Heip et al., 2009). The marine sediments, which cover more than 80% of the ocean floor, support a large diversity of organisms being the greater benthic biomass dominated by macrofauna invertebrates. Macrofauna corresponds to the animal species retained on a 1.0 mm sieve (or 0.5 mm for some authors, due to the quantification of smaller "macrobenthic" species, Levinton, 2009) and benthos comprehend those that have a relation with the seabed (infauna, if invertebrates live below the sediment-water interface and epifauna if they live on the surface). These organisms tend to live in particular environmental conditions and interact with other species by several processes (e.g. competition, predation; Seitz, 2011), forming selfregulated ecological communities (or biocoenosis/biocenosis) (Levinton, 2009). Continental shelves can present several physical benthic habitats, such as mudflats, extensive sandy areas, coarser sediments or rocky outcrops. This habitat variability influences the distribution of benthos which is not uniform but rather patchily distributed (Brooks et al., 2006). The distribution range of species is conditioned by habitatphysiology limitations, but also geographic barriers to dispersal (Levinton, 2009). Their combination breaks up the marine environment into a sequence of relatively distinct species assemblages. The geographic regions containing these assemblages are known as provinces (Figure 1), which can be characterized by some exclusive species, while others tend to occurs in adjacent provinces.

¹²http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm, 29.10.2012

Figure 1 – Classification of the biogeographic subprovinces of benthic (<1000 m) and deep sea biomes (>1000 m, including pelagic and benthic biomes) adopted for the OSPAR Maritime Area (Dinter, 2001 *in* UNESCO, 2009).

Habitat was historically defined as the physical environment where an organism lives (e.g. Castro and Huber, 2008; Levinton, 2009). However, with the implementation of the EUNIS classification system (Connor et al., 2004), that definition matched with the definition of biotope, combining both the physical habitat (the abiotic conditions) and the biological community supported by it. Hereinafter, the terminology marine habitat will correspond to the marine biological community (as the characterizing elements of the biotic environment), together with the abiotic factors, operating together at a particular scale (Moss, 2008). The need to recognize and protect the European's habitats, lead the Council to implement the EU Habitats Directive (92/43/EEC)¹³, one of the bases of Europe's nature conservation policy, being built around two pillars: the Natura 2000 network of protected sites and the strict system of species protection. The European Nature Information System, EUNIS, compiles data on species, habitat types and sites gathered in the framework of Natura 2000 (and other sources considered as reference data), including a pan-European classification system. This classification aims to simplify the harmonized description and collection of data across Europe through the use of criteria for habitat identification, covering all types of habitats (natural and artificial, from terrestrial to freshwater and marine)¹⁴.

¹³http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm, 29.10.2012
¹⁴http://eunis.eea.europa.eu/about.jsp, 30.10.12

1.3. Macrofauna benthic communities: the state of the art

Marine benthic communities are ecologically and economically relevant, providing important ecological goods and services (e.g. fisheries of target commercially valuable bivalves, shrimps and crabs), having major roles in the trophic links in coastal ecosystems, recycling nutrients, detoxifying pollutants and being an important food source for other larger animals (Lenihan and Micheli, 2000). Those communities tend to vary greatly in terms of abundance, biomass and species richness and that is why several works have been focused in the study of the biogeographic, spatial and temporal patterns of benthic communities and the governing factors affect them, namely the sediment type, organic matter content, depth, latitudinal gradients and correlated variables (e.g. nutrients, pH and temperature, among others) (e.g. Hily et al., 2008; Serrano et al., 2008; Przeslawski et al., 2011). Broadscale and holistic soft-bottom macrofauna communities studies were carried out in the past in several worldwide continental shelves (e.g. Petersen, 1918; Jones, 1950; Thorson, 1957; Pérès and Picard, 1964; Picard, 1965; Glémarec, 1973; Gentil, 1976; Cabioch, 1968; Marques, 1987; among others). Atlantic and Mediterranean benthic communities were qualitatively and quantitatively described by those studies and they still excellent sources of comparison with contemporaneous studies. Thorson (1957) made a general review of the benthic communities worldwide, from which the most important European communities can be here highlighted: (a) the Tellina tenuis and Tellina fabula (now Angulus) community (described by Petersen (1918) as boreal Lusitanean Tellina community) in pure sandy bottoms, from the tidal zone to about 10 m depth; (b) the Venus gallina (now Chamelea) community (also the boreomediterranean Venus community originally described by Petersen (1918) or the boreal offshore sand association of Jones (1950)), found in the near and midshelf; (c) the Venus fasciata (now Clausinella), Spisula elliptica and Branchiostoma lanceolatum community (described by Ford (1923) as the deep Venus community and by Jones (1950) as the boreal offshore gravel association) from shallow shelly gravels or deeper sands; (c) the Syndosmya (now Abra) alba community (originally described by Petersen (1918) or the boreal offshore muddy sand association of Jones (1950) in boreal near shore mixed and muddy bottoms; (d) the Amphiura filiformis and A. chiajei community (also the boreomediterranean Amphiura community originally described by Petersen (1918) as the Echinocardium filiformis community plus the Brissopsis chiajei community or the boreal offshore mud association of Jones (1950)) in muddy sand to muds, from 15 to 100 m; (e) the Maldane sarsi and Ophiura sarsii community in mud at greater depths (100 to 300 m).

Pérès and Picard (1964) and Picard (1965) summarized and fully described the dominating communities in the Mediterranean Sea, based in the studies carried out off the Marseille region. The most important communities presented were: (a) the well sorted fine sands biocenosis, in nearshore fine sands, up to 20 m; (b) the biocenosis of coarse sands and fine gravels under the influence of bottom currents, in coarse sands and gravels, up to 70 m; (c) the biocenosis of coastal detritic bottoms in heterogeneous/mixed sediments, up to 95 m; (d) the biocenosis of deep circalittoral detritic bottoms in mixed sediments, from 95 to 200/250 m; (e) the biocenosis of the circalitoral muddy detritic bottoms in bottoms influenced by high riverine fines input, up to 95 m; (f) the biocenosis of the terrigenous coastal muds in pure muds with some biogenic content; (g) the biocenosis of the deep muds in the deep circalittoral and bathyal zones. Glémarec (1973) studied the benthic communities from the North Gascony continental shelf (French Atlantic coast), dividing the study area in three main zones (étages), accordingly to their coastal proximity, seawater temperature and salinity: the infralittoral étage, the coastal étage and the open sea étage. In the infralittoral étage were recognized the clean fine sands of Venus gallina (now Chamelea) and Mactra corallina (now M. stultorum), the muddy sands with Acrocnida brachiata and Euclymene oerstedi (fines content from 10 to 50%), the sandy muds of Nucula turgida, Abra alba and Sternaspis scutata (with more than 80% of fines), the mixed sediments of Nucula nucleus and Tapes (now Polititapes) aureus and the gravels of Dosinia exoleta. The coastal étage included the following assemblages: the fine sands of Venus gallina (now Chamelea) and Dosinia lupinus (similar but deeper, >40 m, than the infralittoral fine sands), the muddy sands of Amphiura filiformis and Tellina serrata (fines content can range between 10 and 30%, in deeper than 10/15 m), the sandy muds of Maldane glebifex and Clymene modesta (now Euclymene lombricoides) (fines content vary between 30 and 90%), the muds of Virgularia spp. and Sternaspis scutata (fines near 80%), the mixed sediments of Nucula nucleus and Venus ovata (now Timoclea), the gravels of Amphioxus or of Branchiostoma lanceolatum and Venus fasciata (now Clausinella) (gravel content greater than 20%); the coarse sands of Echinocyamus pusillus and Tellina pygmaea (now Angulus pygmaeus) (gravel content below 20%). The open sea étage was characterized by: the medium shelly sands of Ditrupa arietina and Dentalium entalis (now Antalis), the muddy sands of Onuphis lepta and Auchenoplax crinita, the sandy muds of Nucula sulcata and Brissopsis lyrifera (fines ranging between 20 and 50%), the muds of *Ninoe armoricana* and *Sternaspis scutata* (fines greater than 50%), the mixed sediments of Nucula nucleus and Pitar rudis and the gravels of Astarte sulcata and Venus casina.

1.4. The Portuguese continental shelf: an holistic overview

The Portuguese continental shelf is integrated in the West Iberian Margin and extends from the Gulf of Cadiz to the Galicia Bank (Figure 2) for approximately 900 km in length, with an average width of about 45 km and an irregular steep slope plunging to the abyssal plain. Shelf-break slope occurs approximately at 160 m depth. It is considered very well studied in terms of geomorphology, bathymetry, oceanography and sediments (mostly from SEPLAT Program, launched in the 70's and finished in 2012; MAMAOT, 2012). Reviews of the main physiographic and geomorphological features of the Portuguese part of the West Iberian Margin, an example of a rifted and non-volcanic continental margin, can be found in Vanney and Mougenot (1981) and Mougenot (1989). The West Iberian Margin is characterized by the presence of three abyssal plains (lberia, Tagus and Horseshoe) at nearly 4500m water depth. The western Portuguese shelf is incised by several deep submarine canyons with a northeast-southwest trend descending into the abyssal areas, namely, Porto, Aveiro, Nazaré, Cascais/Lisbon, Setúbal and S. Vicente; Portimão canyon, in the southern sector, presents a N – S trend (Vanney and Mougenot, 1990; Figure 2). Those canyons represent morphological, sedimentary and hydrological boundaries (Guerreiro et al., 2007; Oliveira et al., 2007). The Portuguese shelf has been divided into four main sectors (Figure 2): northwestern (Caminha-Nazaré), central (Nazaré-Setúbal), southwestern (Setúbal – Cape S. Vicente) and southern (Algarve, Cape S. Vicente - Vila Real St. António), mostly reflecting the dissection of three major Portuguese canyons: Nazaré, Setúbal and S. Vicente. In the northwestern sector, the continental shelf is moderately wide (30 - 60 km) and receives a significant sedimentary input from several rivers (Minho, Lima, Cávado, Ave, Douro, Vouga and Mondego), with highest fluvial discharges in the winter season (Dias and Nittrouer, 1984). The Douro River is responsible for 79% of the total annual shelf sediment supply, estimated in 2.25 x 10⁶ t.y⁻¹ (Oliveira et al., 1982). The central sector varies in width from 3 to 30 km, narrowing considerably at the heads of the Lisbon and Setubal submarine canyons. It is largely fed by the Tagus River, which displays an average annual water discharge ranging from 80 to 720 m³.s⁻¹ (Loureiro and Macedo, 1986; Jouanneau et al., 1998) and delivers an average suspended load to the shelf of approximately 4×10^5 t.y⁻¹ (Vale and Sundby, 1987). The southwestern continental shelf is 10-20 km wide. The Sado River is the major carrier of terrigenous sediments for this sector, but most of the riverborne material is trapped in the estuary before reaching the continental shelf (Monteiro et al., 1982; Jouanneau et al., 1998; Alt-Epping et al., 2007). To the south of latitude 38°N, the riverine sediment supply to the shelf is poor (Dias and Nittrouer, 1984). Finally, the southern

9

sector of the Portuguese continental shelf is relatively narrow (8 km to 28 km) and receives most of its sediment supply from the Guadiana River (Vanney and Mougenot, 1981; Dias and Nittrouer, 1984; Dias, 1987). The average suspended load delivered the Guadiana River to the shelf is estimated in 57.90 x 10^4 m³.y⁻¹ (Morales, 1997).

The majority of the Portuguese rivers drain Late Proterozoic-Paleozoic metamorphic rocks and Variscan granitoids from the highland areas of Portugal and, to a lesser extent, the Meso-Cenozoic sedimentary formations from the Lusitanean and Algarve Basins. Variations in the lithology of the continental bedrock sources have intense effects on the sediment composition and grain-size distribution patterns (Monteiro et al., 1982; Dias and Nittrouer, 1984; Paiva et al., 1997; Araújo et al., 2002; Alves et al., 2003b; Machado et al., 2005; Abrantes and Rocha, 2007; Mil-Homens et al., 2006, 2009).

The total annual rainfall in southern Portugal is much lower than in the north. Approximately 65% of the total annual rainfall occurs to the north of the Tagus River, with an average mean value above 1000 mm per year (SNIRH, 2010). The highest values (> 2400 mm / year) are recorded in the Estrela and Gerês mountain ranges drained by the Mondego and the Cávado rivers, respectively (SNIRH, 2010).

Generally, in terms of the hydrodynamic regime, the Portuguese coast is divided in three areas: mesotidal exposed Atlantic coast, from the northern Portuguese border to Cape Carvoeiro west coast, mesotidal moderately exposed Atlantic coast, from Cape Carvoeiro to Ponta da Piedade south coast and mesotidal sheltered Atlantic coast, from Ponta da Piedade to Vila Real de Santo António, the remaining southern coast (cf. Figure 2; Bettencourt et al., 2004). Therefore, the western coast of Portugal is a high energy shelf environment exposed to NW swells from the North Atlantic, whereas the southern shelf sector has a lower energy regime with dominant SW-S and SE swells (Mil-Homens et al., 2007). Near the 50 m water depth and near the thermocline zone the salinity in the North Atlantic can range between 35.8 and 36.0, however this parameter exhibits a complex depth related pattern due to the circulation of different water currents (Van Aken, 2000). The current system affecting the Iberian Atlantic coast is guite complex and comprises the following main currents: (a) the slow Portugal Current (PC), generally southward flowing, that extends from about 10°W to about 24°W longitude; (b) the fast and poleward flowing Portugal Coastal Current (PCC), that dominates during summer, favoring coastal upwelling processes and (c) the Portugal Coastal Countercurrent (PCCC), a southward surface current that flows along the coast to about 10-11°W longitude during the downwelling season (Ambar and Fiúza, 1994; Álvarez-Salgado et al., 2003). Due to upwelling events, the biological productivity is particularly high to the north of the Nazaré

Canyon and around the cape S. Vicente (southwestern and southern shelf sectors) where marine biological productivity can be enhanced up to 60 - 90 g C/m² per year (Fiúza et al., 1982; Fiúza, 1983; Peliz et al., 2005; Martins et al., 2006a, 2006b).

In terms of biogeography, the Portuguese shelf is integrated in the Temperate Northern Atlantic realm, Lusitanean province and South European Atlantic Shelf ecoregion (Spalding et al., 2007); the Lusitanean province is thus subdivided in three subprovinces, two of them located in Portugal, the Lusitanean Cool subprovince, from the Spanish Cantabrian shelf to S. Vicente Canyon and the Lusitanean Warm South subprovince, including the southern shelf and the Gulf of Cádiz (Figure 1; Dinter, 2001).

The macrofauna benthic communities from the Portuguese coast are well known, mainly in lagoons (e.g. Quintino et al., 1986, 1987, 1989; Carvalho et al., 2011b), estuaries (e.g. Moreira et al., 1993; Rodrigues and Quintino, 1993; Rodrigues et al., 2006, 2011), sandy beaches (e.g. Dexter, 1988; Vale et al., 2010), intertidal rocky shores (e.g. Saldanha, 1974, 1995; Araújo et al., 2005; Pereira et al., 2006), submarine canyons (e.g. Cúrdia et al., 2004; Cunha et al., 2011) and seamounts (e.g. Corral et al., 2006; Surugiu et al., 2008; Reveillaud et al., 2010). However, soft-bottom benthic communities in the Portuguese continental shelf are poorly studied, from which only some particular coastal shelf areas were focused, namely the southern shelf, mostly the near shore shelf (Margues, 1987; Alves et al., 2003a; Gonçalves et al., 2010; Carvalho et al., 2011a; Freitas et al., 2011), the near shore shelf between Óbidos and Peniche (Reis et al., 1982), the near shore shelf off Aveiro (Cunha et al., 1997; Freitas et al., 2003a; Silva, 2011) and the near shore shelf off Lisbon (Freitas et al., 2003b). The most important study was carried out in the eastern part of the southern shelf sector by Margues (1987), in which the following five bioceonosis were defined, based on the data of 28 samples: (a) the biocenosis of the infralittoral sands dominating the nearshore coast, being recognized two facies: Spisula solida in well calibrated medium sands from 8/9 to 12 m and Branchiostoma lanceolatum in clean coarse sand under strong bottom currents influence, from 11 to 15/20 m; (b) the biocenosis of the costal detritic bottoms found in the low infralittoral and circalittoral zones (up to 100 m water depth), in sands with high biogenic content and low to moderate content in fines (usually up 10%); (c) the biocenosis of the deep circalittoral detritic bottoms found in gravelly sands with high biogenic content, from 100 to 180 water depth; (d) the biocenosis of the circalittoral muddy detritic bottoms noticed often between 50 and 150 m in muddy sands; (e) the biocenosis of the offshore muds characterized by the species in pure muds or slightly sandy muds, from 50 to 200 m water depth. Thorson (1957) also found records in the Portuguese coast of the Venus

11

gallina community (off Faro; notes of Sparck, 1931 in Thorson, 1957), deep Venus community (32 m, off Faro; Sparck, 1931 in Thorson, 1957) and Tellina tenuis (now Angulus) community (Ria de Faro; Vilela, 1947 in Thorson, 1957). Invaluable knowledge was also taken from diversity studies of particular faunistic groups, such as, Margues (1989) and Marques and Bellan-Santini (e.g. 1990, 1993; for the amphipods of the northernmost, southwestern and southern Portuguese continental shelf), Almaca (1985; for the Brachyura fauna of Iberian Peninsula), Cúmano (e.g. 1939, 1945 1953; for the echinoderm fauna of Portugal), Jesus and Fonseca (1998; for echinoderms of the southwestern shelf), Nobre (e.g. 1903 a,b, 1904, 1937, 1942; for molluscan and other faunistic groups), Macedo et al. (1999; for molluscs) and Gil (2011; for the polychaetes Portuguese fauna), Other studies spread in internal reports of the Portuguese Fisheries Institute (IPMA¹⁵), focusing the benthic macrofauna diversity (and in the environmental characterization), were undertaken off Lisbon and Sesimbra by Cabeçadas et al., (2002, 2003, 2004) and Gaudêncio and Guerra (1994, 1998) and near Sines (Gaudêncio and Guerra, 2012). First occurrences of some species in the Portuguese coast was highlighted in dispersed publications (e.g. Ashworth, 1912; Carvalho, 1929; Augener, 1933; Machado, 1942; Bellan 1960; Laubier, 1968; Amoureux, 1974; Gil and Sardá, 1999). The distribution and abundance status of the most important commercial species of bivalves were being monitored by IPMA since 1983. Those studies focused mainly the white clam (Spisula solida), striped venus (Chamelea gallina), sabre clam (Ensis siliqua), razor clam (Pharus legumen), dog cockle (Glycymeris glycymeris), among others, which constitute important banks in the nearshore southern and northwestern coasts (e.g. Gaspar et al., 2004, 2005, 2010a, b). Recently, it was presented an approach to identify the soft-bottom macrobenthic communities in the report of the State of the Art regarded to the Portuguese implementation of the Marine Strategy Framework Directive (Continent subdivision), resulting mostly from the sparse data from IPMA (MAMAOT, 2012). The Portuguese coast was divided in three major depths (<50 m; 50 - 150 m; >150 m) and in three main geographical areas (northern border to Nazaré Canyon – Area A, Nazaré Canyon to Ponta da Piedade – Area B and Ponta da Piedade to Vila Real de Sto. António – Area C), being the benthic community structure imposed by these a priori partitions. Thus, a more comprehensive biodiversity assessment of the Portuguese continental shelf and particularly the identification and characterization of the benthic macrofauna communities is still to be performed.

¹⁵http://www.ipma.pt/, 30.01.13

Aims of this thesis

The present work aims to contribute to:

- Characterize the sediments of the Portuguese continental shelf in terms of grainsize, total organic matter and bulk geochemistry and to identify some of the main factors explaining their distribution patterns;
- ✓ Identify and characterize the benthic macrofauna communities along the Portuguese continental shelf
- ✓ Analyze and discuss some of the major factors explaining the distribution of those communities, based on the hypothesis that they were established in shelf areas with no significant differences in terms of the selected abiotic factors (sediments, total organic matter, latitude, depth and hydrodynamics);
- ✓ Contribute with new insights to the diversity and ecology of some polychaete families;
- ✓ Discuss biogeographic issues related to the spatial distribution of species and communities.

Thesis structure

To achieve those goals the results and discussion are organized in two main chapters, covering the environmental characterization and the biological characterization (abundance and diversity patterns, distribution patterns of particular species, a comprehensive assessment of the soft-bottom benthic habitats and two cases studies of the shelf diversity within the Lumbrineridae and Pisionidae families).

The contents presented in the "Environmental characterization" chapter were published in: Martins R., Azevedo M.R., Mamede R., Sousa B., Freitas R., Rocha F., Quintino V., Rodrigues A.M. (2012a) Sedimentary and geochemical characterization and provenance of the Portuguese continental shelf soft-bottom sediments. *Journal of Marine Systems*, 91, 41–52.

The contents of the "Biological characterization" were submitted as follows:

✓ Martins, R., Quintino, V., Rodrigues, A.M. (*in press*) Diversity and spatial distribution patterns of the soft-bottom macrofauna communities on the Portuguese continental shelf. *Journal of Sea Research*.

- Martins R., Magalhães, L., Peter, A., San Martín G., Rodrigues A.M., Quintino V. (submitted a). Diversity, distribution and ecology of the Family Syllidae (Annelida) in the coasts of Portugal (Western Iberian Peninsula). *Hydrobiologia*.
- Martins, R., Sampaio, L., Quintino, V., Rodrigues, A.M. (submitted b) Soft-bottom Portuguese continental shelf polychaetes: diversity and distribution. *Journal of Marine Systems*.
- ✓ Martins, R., Sampaio, L., Freitas, R., Quintino, V., Rodrigues, A.M. (to be submitted) Diversity and distribution of benthic malacofauna on the Portuguese continental shelf. *Journal of Sea Research*.

The following articles correspond to new diversity insights within two polychaete families, presented here in chapter 3.8 as particular case studies of the shelf diversity:

- ✓ Martins, R., Carrera-Parra, L.F., Quintino, V., Rodrigues, A.M. (2012b) Lumbrineridae (Polychaeta) from the Portuguese continental shelf (NE Atlantic) with the description of four new species. *Zootaxa*, 3416, 1–21.
- Martins R., San Martín G., Rodrigues A.M., Quintino V. (2012c) On the diversity of the genus *Pisione* (Polychaeta, Pisionidae) along the Portuguese continental shelf, with a key to European species. *Zootaxa*, 3450, 12–22.

Chapter 2

Material and methods

2.1. Study area and sampling

The study area comprised the entire Portuguese continental shelf, from Caminha (41°51.8'N, 9°15.6'W) to Vila Real Santo António (36°56.1'N, 7°24.7'W) (Figure 2). A total of 145 sampling sites were positioned in a regular grid of perpendicular lines to the coastline, separated from each other nearly 10 Km (in the southwestern and southern shelf) or 15 Km (in the northwestern shelf; Figure 2) and stratified by depth (<50 m, 50 m, 75 m, 100 m, >100 m). Those sites were spread over the entire survey area, from the northern to the southeastern border and from 13 to 195 metres water depth, in order to cover as much as possible the whole range of potential benthic habitats. Sediments were collected with a 0.1 m² Smith-McIntyre grab (Figure 3) a grab with a reliable operation in a wide sediment types, easy to use and operate on board and widely used in several studies in Europe, simplifying the comparison of results (Eleftheriou and McIntyre, 2005). At each site, a total of two sediment samples was taken, one to study the macrofauna and the other to study the environmental descriptors (grain-size, total organic matter content and geochemistry analyses). Sediment samples were rejected depending on the sediment grab quantity or sedimentary differences between both replicates. Macrofaunal sediment samples were sieved on board over 1 mm mesh size (Figure 4) and the residue fixed in neutralized formalin (4%) stained with rose Bengal. The survey was carried out in 2007 and 2008, on board of the "Noruega" vessel of the Portuguese Fisheries Institute (IPMA).

2.2. Laboratory analysis 2.2.1. Sediment grain-size analysis

Grain size analysis was performed by wet and dry sieving, according to the methodology described by Quintino et al. (1989): *i*) chemical destruction of organic matter with H₂O₂; *ii*) measurement of the total sediment dry weight, followed by chemical dispersion with tetrasodium pyrophosphate (30g/l) and wet sieving through a 63 μ m mesh screen; *iii*) measurement of the second dry weight of the material left on the 63 μ m mesh screen; *iv*) dry sieving of the sand fraction (particles with diameter from 63 μ m to 2 mm) and the gravel fraction (particles with diameter above 2 mm), through a battery of sieves spaced at 1 ϕ size intervals (ϕ = -log₂ the particle diameter expressed in mm). Raw grain size data were expressed as weight percentages of the total sediment.

Figure 2 – Study area: the Portuguese continental shelf. Sampling sites are represented by black dots. Numbers indicate the samples selected for geochemical analyses.

Figure 3 – Smith-McIntyre grab.

Figure 4 – Sieving of sediment over 1 mm mesh size, on board.

2.2.2. Total organic matter analysis

Total organic matter content (TOM) was performed by loss on ignition of 1 g of dried sediment at 450 °C during 5 hours and expressed as a percentage of total sediment dry weight. At this temperature, there is minimal risk of volatizing inorganic carbon (Kristensen and Anderson, 1987).

2.2.3. Geochemical analysis

A subset of 21 samples was selected from the entire set of samples. The <2 mm sediment fraction of the samples was dried, ground in an agate mill and analyzed for major (Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P) and trace (V, Cr, Ni, Cu, Zn, Ga, As, Pb, Rb, Sr, Ba and U) elements, using a Philips X-ray wavelength dispersive fluorescence spectrometer (model Panalytical Axios) in the Department of Geosciences at University of Aveiro (Portugal). Loss on ignition (LOI) was determined by heating 1 g of dry sample at 1350 °C for 12 minutes. Detection limits are less than 0.01% for major elements and between 1-5 ppm for trace elements.

2.2.4. Macrofauna

The macrofauna samples were abundantly rinsed with water through a 0.5 mm mesh sieve under a fume hood and hand sorted. Macroinvertebrates were identified under a stereomicroscope to species level, whenever possible, following, the commonest references (e.g. Fauvel (1923, 1927), Campoy (1982), George and Hartmann-Schröder (1985), Pleijel and Dales (1991), Chambers and Muir (1997), San Martín (2003) and Viéitez et al. (2004), for annelids; Tebble (1976), Graham (1988), Thompson (1988) and Macedo et al. (1999) for molluscs; Chevreux and Fage, (1925), Bouvier (1940) for crustaceans; Southward and Campbell (2006) for echinoderms, among other references). Quality of the sorting process and taxonomic identification were internally guaranteed by experienced colleagues. Then the specimens were counted and transferred for long-term storage to 70% ethanol. The validity, authority and distribution of benthic species were confirmed in the World Register of Marine Species (WoRMS) (Appeltans et al., 2012)¹⁶. Within the manuscript only the species name is shown. A complete list of full species names with respective authority can be found in the annex 2.

The morphological characterization, diversity and distribution of two polychaetes Families (Lumbrineridae and Pisionidae) were deeply explored due to its abundance and

¹⁶ www.marinespecies.org, 25.10.12

biodiversity and presented as case studies of the diversity within this study. The specimens of the Family Lumbrineridae were identified and some of them were morphologically examined. In which concerns the description of the 4 new species of the Lumbrineridae family, a total of 184 specimens were used for a detailed morphological study. The descriptions of the new species were based on the type materials and followed the format of Carrera-Parra (2006b). The maxillary apparatus of each individual was extracted after an anterodorsal incision and mounted dorsally and ventrally on a slide to study the details of both the maxillae (M) and the mandible under an optical microscope. For each specimen, the length through chaetiger 10 (L10) and the width at chaetiger 10 excluding parapodia (W10) were determined. The terminology of the maxillary apparatus (Figure 5), the blade size of composite multidentate hooded hooks (CMHH) and the size of simple multidentate hooded hooks (SMHH) followed Carrera-Parra (2006a). Photographs of relevant morphological features were taken to illustrate the descriptions. The Lumbrineridae type specimens were deposited in the Muséum National d'Histoire Naturelle, Paris (MNHN), Museu Nacional de História Natural e da Ciência, Lisbon (MB), the Reference Collection of ECOSUR-Chetumal, Mexico (ECOSUR), and in the Collection of the Departamento de Biologia, Universidade de Aveiro (DBUA).

Figure 5 – Representation of a lumbrinerid maxillary apparatus. Legend: A – Carriers, MI and MII (dorsal view); B – MII, MIII and MIV (ventral view); ca – carriers, cp – connecting plate, al – attachment lamella, M – maxilla (Carrera-Para, 2006a).

Regarding to the study of the four *Pisione* species, a total of 75 specimens were used for a detailed morphological study. The measurement of total length, the width at chaetiger 10 (W10), the number of parapodia in complete specimens, the buccal aciculae shape, the

length of the dorsal cirrus of parapodia 2 (CP2, mm) and 3 (CP3, mm), the shape of dorsal cirri, the number of teeth of the supra-acicular chaetae (nrT), the protruding length of the notoaciculae through the parapodia (P1, mm), the number and shape of the various types of compound chaetae (e.g. heterogomph, recurved or straight), the length of the longest blade (mm), the presence/absence of infra-acicular simple chaetae (IA), the number, location and shape of genital organs and the size of female gametes (µm). A set of *Pisione* specimens were deposited in the Museu Nacional de História Natural e da Ciência, Lisbon (MB). Additional material remains in the Department of Biology, University of Aveiro, Portugal.

2.3. Data analysis

2.3.1. Grain-size sediments

The amount of sediment in each grain size class was expressed, as a percentage of the whole sediment, dry weight, for each site. These results were used to calculate the median value, corresponding to the diameter that has half the grains finer and half coarser. No detailed grain size analysis was performed for the fines fraction (particles with diameter below 63 µm) and sediment samples with more than 50% fines content were classified as mud. The textural classification of the sediment samples was based in the Wentworth (1922) scale, using the median value, expressed in phi (Φ) units: mud (> 4 Φ), very fine sand (median between 3 – 4 Φ), fine sand (2 – 3 Φ), medium sand (1 – 2 Φ), coarse sand (0 – 1 Φ), very coarse sand ((-1) – 0 Φ) and fine gravel ((-2) – (-1) Φ). The relationships between depth, total organic matter, gravel (> 2 mm), sand (2 – 0.063 mm), fines (< 0.063 mm) and biogenic fraction (> 2 mm biogenic particles) contents were analysed with pairwise scatter plots between variables and with the associated Pearson correlations.

2.3.2. Geochemistry

The geochemical data matrix [element contents x sites] was simplified by eliminating collinear variables, highly correlated (Spearman correlation above 0.80), and analysed by classification and ordination methods, following the variables logarithmic transformation (those with disparate concentrations within sites) and normalization (to mean 1 and standard deviation 0). Classification analysis was performed by agglomerative hierarchical clustering, using the unweighted pair-group mean average (UPGMA) algorithm, following the calculation of the Euclidean distance between samples. Ordination was performed by Principal Components Analysis (PCA). The final biplot (sites and variables) included grain-size (based on the median values) and total organic matter data as supplementary
variables in order to evaluate the correlation structure between these and the geochemical data.

The trace element enrichment factors (EF) relative to Upper Crust (UC) average values (Taylor and McLennan, 1985) were calculated using the expression:

$$EF = ([X]/[Y])_{sample} / ([X]/[Y])_{UC})$$

where X corresponds to the trace element concentration and Y to the proxy element concentration for samples and UC, respectively. The geochemical data were previously standardized in order to compensate for natural mineralogical and grain-size variability, (Loring, 1991). From the large number of conservative elements proposed in the literature (Al, Cs, Fe, Li), aluminium was chosen for standardization purposes due to its strong correlation with the clay mineralogy and clay sized particles (< 2 µm) (Brumsack, 2006).

2.3.3. Macrofauna

2.3.3.1. Abundance and diversity description

Abundance, species richness and diversity measurements were calculated per sampling site and mean values were obtained per sediment type, depth classes (<30 m, 30 - 60 m, 60 - 100 m and >100 m), hydrodynamic regime areas (sheltered=1; moderately exposed=2; exposed=3; according to the classification proposed by Bettencourt et al., 2004), latitudinal degree on the western shelf and longitudinal degree on the southern shelf, and major shelf areas (western, southern and entire shelf). Alpha diversity (α) or sample species richness corresponds to the total quantity of species per sampling unit (0.1 m²). Beta or turnover diversity, which corresponds to the extent of biotic change or species replacement along an sedimentary, bathymetric or latitudinal gradient (Whitaker, 1960; Gray, 2000), was calculated for all the above mentioned categories, except for the single sampling site. It was obtained by dividing the mean *alpha* diversity per sample in a given category, by the total number of species found in that same category (Whittaker, 1960). As an example, beta diversity was calculated for the whole Portuguese shelf, β_{shelf} , as the quotient between the mean a *lpha* diversity of the entire set of samples (α_{shelf}) by the total number of species recorded in the shelf. Other diversity indices were also calculated per site, to complement and comprehend the spatial variation of the diversity along the Portuguese shelf, namely, Shannon-Wiener diversity (H', log_2), Margalef richness (d), Pielou evenness (J[']), Simpson $(1-\lambda)$ and Rarefaction indices (ES50).

2.3.3.2. Lumbrineridae and Pisionidae morphological characterization Regarding to the Family Lumbrineridae, a data matrix of morphological descriptors for *Abyssoninoe, Gallardoneris, Lumbrineris, Lumbrinerides, Lumbrineriopsis* and *Ninoe* species was constructed on the basis of the presence/absence of the several categories identified for each descriptor: hooded hooks type (composite multidentate, simple multidentate, limbated simple multidentate, simple bidentate), aciculae color (yellow, reddish, black), aciculae type (straight, curved), 4 and 5 maxillae, MI attachment lamellae, MII ligament, MIII type (edentate, unidentate, unidentate followed by a knob, bidentate, multidentate), prominent projection in the basal part of MIII, MIV pigmentation, MIV types (edentate, unidentate, unidentate with well-developed plate, unidentate with pointed tooth, broad rectangular plate with a projection), anterior postchaetal lobe shape (conical, rounded, digitiform, digitiform wide basally, auricular), postchaetal branchiae. All characters had the same weighting in the analysis. Another data matrix was also prepared for the new species of Lumbrineris using the presence/absence of some relevant features for this genus (aciculae type, MIII type, MIV type, prominent projection in the basal part of MIII, anterior postchaetal lobe shape) as well as the width at chaetiger 10, the last chaetiger with composite multidentate hooded hooks, the first chaetiger where simple multidentate hooded hooks appear and the last chaetiger with ventral limbates. Both matrices were submitted to ordination analysis, using Principal Coordinates Analysis, Jaccard distance matrix between samples (specimens) for the upon the presence/absence matrix and upon the Euclidean distance matrix between samples, following the variables normalization for the Lumbrineris data matrix. In addition, the most correlated variables (Spearman rho > 0.8) were represented as vectors.

For the Family Pisionidae, a multivariate analysis of the morphological data was performed on the basis of a sub-set of descriptors, including W10 (mm), P1/W10, CP2/CP3, nrT (1 – unidentate; 2 – bidentate) and IA (0 – absent; 1 present). This data matrix was submitted to agglomerative hierarchical clustering, using the unweighted pairgroup mean average algorithm (UPGMA) and ordination analysis, using Principal Coordinates Analysis (PCO), upon the Euclidean distance matrix between specimens, following the variables normalization.

2.3.3.3. Benthic communities identification and characterization

The data matrix with the macrofauna abundance per site was square root transformed and the Bray-Curtis similarity calculated between sites. The similarity matrix was analyzed using agglomerative hierarchical clustering, with the un-weighted pair-group mean average algorithm (UPGMA) and ordination analysis, with non-metric multidimensional scaling (NMDS). These techniques were used for the identification of the biological affinity groups, also named benthic assemblages thorough the text. The biological groups were characterized according to the mean abundance, species richness, *alpha* and *beta* diversity, Shannon-Wiener diversity (log₂), Pielou evenness, Margalef richness, Simpson

24

Material and methods

index, Rarefaction index, the sediment baseline data, the number of exclusive species and the characteristic species. The characteristic species of each assemblage were obtained following their constancy (C) and fidelity (F) in the assemblage. The constancy corresponds to a sampling frequency and is given by the number of sites where the species was sampled expressed as a percentage of the total number of sites in the assemblage (Dajoz, 1971). The fidelity corresponds to the quotient between the species constancy in a given assemblage and the sum of the constancies of the same species in all the assemblages where it exists (Retière, 1979). For constancy, species were classified into constant (C>50.0%), common (50.0≥C>25.0%), occasional $(25.0 \ge C > 12.5\%)$ and rare $(C \le 12.5\%)$, and for fidelity into elective (F > 90.0%), preferential (90≥F>66.6%), indifferent (66.6≥F>33.3%), accessory (33.3≥F>10.0%) and accidental (F≤10.0%). The characteristic species per affinity group were selected following the highest product between the constancy and fidelity indices, which is a easy way to find the highest values of those measures cumulatively (e.g. Lourido et al., 2010). Using a oneway model in PERMANOVA+ (Anderson et al., 2008), the null hypotheses (H₀) of no significant differences among the biological affinity groups were tested for the following fixed factors: (a) sediment descriptors (median grain-size, gravel (> 2 mm), sand (2-0.063 mm), fines (< 0.063 mm) content; H_01), total organic matter content (H_02), depth (H_03), hydrodynamic regime (sheltered=1; moderately exposed=2; exposed=3; H₀4) and latitude (H_05) . The significance in the main and pair-wise tests was obtained following unrestricted permutation of the raw data (9999 permutations) and the calculation of type III sums of squares. The null hypotheses were rejected at p < 0.05. The biological-environmental relationship was analyzed with the BIOENV procedure (BEST routine), using the Spearman correlation coefficient (Clarke and Gorley, 2006) and considering the environmental variables depth, median grain-size, gravel, sand, fines, biogenic fraction and TOM contents, hydrodynamic regime and latitude.

All the multivariate analyses were performed with PRIMER v.6 (Clarke and Gorley, 2006) and the hypothesis tests with the PERMANOVA+ add-on, permutational multivariate analysis of variance (Anderson et al., 2008). The software ArcGis 10 was used to represent abundance, diversity indices and affinity groups in a GIS environment. Additionally, the abundance of some selected species was spatially represented. The software Adobe Illustrator CS 5.0 was used to edit and improve the design of all figures.

25

Material and methods

Chapter 3

Results

A. Environmental characterization

The contents presented in this chapter are published in: Martins R., Azevedo M.R., Mamede R., Sousa B., Freitas R., Rocha F., Quintino V., Rodrigues A.M. (2012a) Sedimentary and geochemical characterization and provenance of the Portuguese continental shelf soft-bottom sediments. *Journal of Marine Systems*, 91, 41–52.

3.1. Grain-size distribution

The spatial distribution of the surface sediments and the fines content along the Portuguese continental shelf are shown in Figure 6 and Figure 7. The relation between environmental variables (depth, TOM, median grain-size, gravel, sand, fines and biogenic fraction contents) and their Pearson correlations are shown in Figure 8. Median grain-size showed high correlations with gravel and fines (Figure 8), which are co-related sedimentary variables, and moderate positive correlations with depth (rho=0.36, cf. Figure 8). The gravel distribution shows right-skewness reflecting the absence of gravel in several sites (Figure 8). Coarser deposits (ranging from gravel to coarse sand) occur mainly in the inner and mid-shelf of the northwestern sector, at depths between 20 and 80 m and immediately south of the Nazaré and Setúbal canyons (Figure 6). Fine and very fine sands (with fines content below 5%) are found along a continuous band in the near shore shelf; finer sands with fines content ranging mainly 5 and 25% dominate the outer shelf of the northwestern shelf (deeper than 80 m) and in the southwestern shelf; sandy sediments from the western part of the southern shelf are heterogeneous ranging mostly from medium to very fine sands with variable content in fines (5–49%) (Figure 6 and 7). Mud deposits were recognized in the shelf areas off the mouths of the Minho, Douro, Tagus (western coast) and Guadiana rivers (mud patch occupying most of the southern shelf), at water depths of nearly 100 m, 64-97 m, 87-137 m and 44-174 m, respectively (Figure 6). Most relevant sediment raw data is shown Annex 1.

Figure 6 – Spatial distribution of sediment types according the median value in the Portuguese continental shelf.

Figure 7 – Spatial distribution of fines content in the Portuguese continental shelf.

Figure 8 – Draftsman plot between environmental variables (Depth, TOM, median grainsize, gravel, sand, fines, biogenic fraction). Pearson correlation between each pair of variables is shown in the graph corner.

3.2. Total organic matter content

The spatial distribution of the total organic matter content (TOM) in the Portuguese continental shelf is shown in Figure 9. TOM patterns followed the surface sediments spatial distribution. A high correlation between TOM and both fines content and median grain-size were found (rho=0.90 and 0.73, respectively; Figure 8), which can be related to the dependence between each sediment parameter. Mud samples have the highest mean TOM values (6.71%) and gravel deposits the lowest (0.81%).

Figure 9 – Spatial distribution of total organic matter content in the Portuguese continental shelf.

3.3. Geochemistry

3.3.1. Geochemical composition of the bulk sediment fraction (< 2 mm)

A total of 21 superficial sediment samples were selected accordingly to the presence of the major Portuguese rivers, depth (nearshore and offshore) and the different granulometric types (excluding fine gravel) identified in the Portuguese continental shelf (cf. Figure 2 and 12). The < 2 mm fraction of those samples were analyzed for major (Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P) and trace elements (V, Cr, Ni, Cu, Zn, Ga, As, Pb, Rb, Sr, Ba and U), corresponding to the mostly analysed elements. The results obtained are summarized in Table 1.

3.3.1.1. Major elements

The samples of Portuguese shelf sediments display a wide range of major element contents: SiO₂ (28.98–85.71%), CaO (2.13–30.95%) and Al₂O₃ (0.87–16.35%) are the most abundant, followed by Fe₂O₃ (0.93–9.62%), K₂O (0.38–3.18%), MgO (0.13–1.93%), Na₂O (0.01–1.19%), TiO₂ (0.06–0.81%), P₂O₅ (0.05–0.26%) and MnO (0.01–0.05%) (cf. Table 1). Loss on ignition varies between 3.03 and 28.97% (cf. Table 1) and tends to increase with increasing CaO contents. The highest SiO₂ values occur in the coarser sediments and in some fine sands located off the mouths of major rivers (Figure 10). The maximum CaO contents are found in fine and very fine sand deposits (CaO > 15%) and Al₂O₃ is clearly enriched in the three mud samples (6.53–16.35%), two from the Tagus mud patch and one from the southern shelf (Figure 10). K₂O, Na₂O and TiO₂ contents are relatively low and show a systematic increase with increasing Al₂O₃ contents, whilst Fe₂O₃(T), MnO and MgO display scattered distribution patterns.

3.3.1.2. Trace elements

The trace element compositions of the Portuguese shelf sediments are also highly variable (Table 1). Sr (81 to 1274 ppm) and, to a lesser extent, U (2–7 ppm) concentrations are particularly elevated in CaO-rich sediments. Ba (50–335 ppm) and Rb (16–155 ppm) show no obvious relation with grain size and are strongly enriched in the samples with higher K₂O contents. Cr (18–135 ppm), Zn (11–174 ppm), V (15–124 ppm), Pb (12–86 ppm), Cu (1–25 ppm), Ni (1–25 ppm) and Ga (1–20 ppm) tend to be concentrated in the mud samples from the Tagus and Guadiana shelves. However, Cr contents can also be high in the sandy deposits located off the mouths of the Douro, the Mondego and the Mira rivers (Figure 10). The maximum As values (14–51 ppm) are recorded in the shelf sediments from the Cávado River and one sample from the Tagus mud patch (Figure 10).The calculation of trace element enrichment factors (EF) relative to

the Upper Crust (UC) average values (Table 2) shows that the Portuguese shelf sediments are characterized by: (a) a pronounced enrichment in As; (b) highly variable EF values for Rb, U, Cr, Pb, Sr, Zn and V and (c) low enrichment or depletion in Ba, Cu and Ni. The highest EF values for Cr, Pb and As are found in samples from off estuarine areas (Ave, Cávado, Lima, Douro, Tagus, Sado and Guadiana). Sample 229, collected in the southern shelf sector, near the Guadiana estuary, records the maximum EF values for nearly all trace metals.

Table 1 – Geochemical composition of surface sediments from the Portuguese continental shelf.

Sites		9	12	25	31	67	73	79	86	98	113	116	119	133	141	158	161	180	195	197	226	229
SiO₂	(%)	66.4	78.6	85.7	30.0	83.8	39.9	83.5	29.0	38.4	54.2	56.5	79.3	71.7	72.6	36.6	50.5	32.9	47.8	51.3	33.4	79.1
Al ₂ O ₃	(%)	3.0	5.3	4.3	4.5	5.5	6.9	5.9	5.0	5.3	16.4	9.7	6.5	2.1	4.2	3.8	3.3	3.6	4.7	3.6	6.5	0.9
$Fe_2O_3(T)$	(%)	2.3	2.1	1.0	4.2	1.8	3.4	1.1	3.5	2.1	5.4	3.9	1.2	0.9	1.8	6.9	1.2	2.2	2.1	2.4	9.6	1.0
MnO	(%)	0.05	0.04	0.01	0.02	0.03	0.02	0.02	0.03	0.03	0.04	0.03	0.02	0.01	0.01	0.03	0.03	0.04	0.03	0.02	0.05	0.03
MgO	(%)	0.3	0.6	0.2	1.0	0.4	1.0	0.3	1.5	1.4	1.8	1.4	0.4	0.1	0.4	1.6	0.9	1.9	1.0	1.0	1.4	0.3
CaO	(%)	14.0	4.7	2.9	31.0	2.2	22.9	2.1	30.7	25.8	4.8	10.7	4.4	12.9	9.7	25.2	22.0	28.8	21.8	21.2	23.4	9.8
Na₂O	(%)	0.1	0.4	0.2	0.3	0.5	0.9	0.8	0.7	0.5	1.2	1.0	0.4	0.0	0.1	0.4	0.5	0.6	0.2	0.1	0.5	0.0
K₂O	(%)	1.5	2.0	2.2	1.6	2.1	2.0	2.4	1.5	1.5	3.2	2.7	2.3	1.1	1.9	2.1	1.1	0.8	1.1	1.3	1.9	0.4
TiO₂	(%)	0.1	0.7	0.1	0.3	0.6	0.4	0.4	0.2	0.4	0.8	0.6	0.4	0.1	0.2	0.3	0.2	0.2	0.3	0.2	0.4	0.1
P_2O_5	(%)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.3	0.1
L.O.I.	(%)	12.2	5.5	3.4	27.2	3.0	22.5	3.5	27.8	24.4	12.2	13.5	5.0	11.0	9.1	23.0	20.2	29.0	21.0	18.8	22.6	8.7
Cr	(ppm)	17.9	41.8	74.9	70.8	57.2	45.8	26.1	36.6	40.8	72.5	135.1	22.9	30.1	34.9	71.2	26.3	33.3	38.3	38.1	73.2	20.0
Ga	(ppm)	3.0	5.7	4.0	5.6	5.6	8.6	5.8	6.7	5.8	20.0	11.5	6.6	1.8	4.4	5.3	3.8	4.5	5.4	4.1	8.6	1.0
As	(ppm)	45.4	6.7	5.5	11.0	5.9	7.2	3.3	11.4	8.3	17.1	6.1	6.8	13.0	4.0	15.3	3.6	11.9	14.2	6.3	50.9	23.0
Rb	(ppm)	67.5	76.3	88.9	64.5	76.2	85.6	90.6	65.7	66.7	155.1	114.0	102.8	39.3	68.0	63.1	45.3	35.6	48.1	48.6	65.7	16.4
Sr	(ppm)	514.0	146.4	133.1	611.6	81.3	552.3	87.5	1274.4	922.4	151.2	234.0	175.1	413.8	281.5	752.7	1096.1	1125.8	641.6	614.0	632.7	363.3
Ва	(ppm)	138.9	184.4	247.5	105.7	187.6	173.7	233.9	163.0	182.0	335.3	269.8	253.8	149.6	186.5	81.5	200.5	109.3	136.6	115.3	153.5	49.9
Zn	(ppm)	11.6	27.6	11.6	32.6	26.3	43.7	16.2	48.7	37.4	173.5	77.0	29.1	10.9	22.7	50.8	17.3	38.4	41.2	43.7	111.4	28.1
v	(ppm)	31.8	18.4	16.1	29.6	17.8	37.7	14.6	33.7	28.2	95.0	51.9	23.5	20.6	21.1	38.5	20.5	37.3	47.8	20.4	124.0	21.5
Pb	(ppm)	20.2	21.4	20.4	20.5	20.0	22.1	20.6	25.1	21.6	86.0	37.5	27.1	15.0	17.8	19.3	11.5	17.0	19.8	18.1	65.4	16.8
Ni	(ppm)	2.2	5.9	3.2	9.4	4.3	12.6	4.1	9.4	8.8	25.0	14.6	4.2	1.0	7.4	10.3	4.8	9.7	9.9	6.0	16.8	1.0
Cu	(ppm)	1.0	1.0	6.6	12.1	4.3	14.7	6.4	3.5	8.1	25.2	16.8	6.8	5.0	6.7	1.0	5.3	11.9	14.1	6.7	19.2	8.3
U	(ppm)	3.8	4.4	2.3	5.0	2.9	5.0	2.3	6.0	5.9	4.3	3.9	3.4	2.8	2.6	6.4	6.1	6.8	4.5	3.9	4.1	2.6

Table 2 – Trace elements enrichment factors (EF) for Portuguese continental shelf sediments. Shaded cells represent elemental enrichment (EF > 5).

					Ele	ements					
Sites	Cr	U	As	Rb	Sr	Ва	Zn	v	Pb	Ni	Cu
9	2.6	6.8	151.8	3.1	7.4	1.0	0.8	2.7	6.8	0.6	0.2
12	3.4	4.5	12.8	2.0	1.2	0.8	1.1	0.9	4.1	0.8	0.1
25	7.6	2.9	13.0	2.9	1.3	1.3	0.6	1.0	4.8	0.6	0.9
31	6.9	6.1	25.0	2.0	6.0	0.5	1.6	1.7	4.7	1.6	1.6
67	4.5	2.9	10.9	1.9	0.6	0.7	1.0	0.8	3.7	0.6	0.5
73	2.9	3.9	10.5	1.7	3.5	0.5	1.4	1.4	3.2	1.4	1.3
79	1.9	2.1	5.7	2.1	0.6	0.9	0.6	0.6	3.6	0.5	0.7
86	3.2	6.5	23.2	1.8	11.1	0.7	2.1	1.7	5.1	1.4	0.4
98	3.3	6.0	15.8	1.7	7.5	0.7	1.5	1.3	4.1	1.3	0.9
113	1.9	1.4	10.6	1.3	0.4	0.4	2.3	1.5	5.3	1.2	0.9
116	6.1	2.2	6.4	1.6	1.1	0.6	1.7	1.4	3.9	1.1	1.1
119	1.5	2.8	10.6	2.2	1.2	0.8	1.0	0.9	4.2	0.5	0.6
133	6.2	7.2	62.4	2.6	8.5	1.5	1.1	2.5	7.2	0.4	1.4
141	3.6	3.4	9.7	2.2	2.9	1.0	1.2	1.3	4.3	1.3	1.0
158	8.2	9.2	41.0	2.3	8.6	0.5	2.9	2.6	5.2	2.1	0.2
161	3.4	9.9	11.0	1.9	14.3	1.3	1.1	1.6	3.5	1.1	1.0
180	4.1	10.3	33.8	1.4	13.7	0.7	2.3	2.6	4.8	2.1	2.0
195	3.6	5.2	30.7	1.4	6.0	0.6	1.9	2.6	4.3	1.6	1.8
197	4.6	5.9	17.8	1.9	7.4	0.7	2.6	1.4	5.1	1.3	1.1
226	4.9	3.4	79.0	1.4	4.2	0.5	3.7	4.8	10.1	2.0	1.8
229	10.0	16.2	267.9	2.6	18.1	1.2	6.9	6.3	19.6	0.9	5.8

3.3.2. Spearman correlations

The Spearman correlation values (rho) between major and trace elements, TOM and grain-size data (sand and fines fractions) are displayed in Table 3. SiO₂ shows a moderate level of positive correlation with K₂O and the sand fraction contents (rho = 0.38 and 0.36, respectively) and a strong negative correlation with CaO (rho = -0.96), TOM (rho = -0.72), mud fraction contents (rho = -0.56) and most trace metals. CaO is positively correlated with MgO, Sr and U (rho = 0.63, 0.92 and 0.80, respectively). Positive correlations are also found between Al₂O₃ and TiO₂, K₂O, Na₂O, Fe₂O₃(T), TOM and mud particle contents. Fe₂O₃(T) and MnO show a high to moderate level of positive correlation against P₂O₅, MgO, TOM and mud particle contents. Finally, the trace elements Ga, Pb, Ni, Zn, Cu and Cr define good positive correlations with Al₂O₃, Fe₂O₃(T) and MnO, whilst Rb and Ba are positively correlated with SiO₂, Al₂O₃ and K₂O (cf. Table 3).

Table 3 – Spearman correlation matrix (T: total organic matter; median: M; sand: 2 mm – 0.063 mm fraction; fines: <0.063 mm fraction).

	SiO ₂	AI_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K₂O	TiO ₂	P_2O_5	Cr	Ga	As	Rb	Sr	Ва	Zn	v	Pb	Ni	Cu	U	Fines	Sand	м	т
SiO ₂	1																									
Al ₂ O ₃	0.01	1																								
Fe ₂ O ₃	-0.71	0.42	1																							
MnO	-0.33	0.13	0.48	1																						
MgO	-0.78	0.38	0.80	0.49	1																					
CaO	-0.96	-0.21	0.57	0.23	0.63	1																				
Na₂O	-0.29	0.72	0.43	0.30	0.63	0.11	1																			
K₂O	0.38	0.74	0.22	-0.10	0.02	-0.53	0.46	1																		
TiO₂	0.00	0.87	0.43	0.32	0.47	-0.19	0.67	0.63	1																	
P ₂ O ₅	-0.53	0.50	0.89	0.64	0.70	0.37	0.44	0.28	0.57	1																
Cr	-0.20	0.55	0.56	0.07	0.45	0.09	0.34	0.49	0.51	0.54	1															
Ga	-0.26	0.95	0.59	0.23	0.58	0.05	0.80	0.62	0.83	0.60	0.52	1														
As	-0.44	-0.15	0.44	0.55	0.33	0.43	-0.18	-0.33	-0.11	0.47	-0.01	-0.01	1													
Rb	0.42	0.79	0.13	-0.07	-0.05	-0.56	0.48	0.92	0.62	0.23	0.37	0.66	-0.36	1												
Sr	-0.87	-0.35	0.38	0.25	0.57	0.92	0.06	-0.66	-0.31	0.23	-0.12	-0.10	0.37	-0.66	1											
Ва	0.49	0.63	-0.18	-0.13	-0.13	-0.61	0.50	0.71	0.47	-0.07	0.22	0.48	-0.56	0.82	-0.56	1										
Zn	-0.62	0.52	0.83	0.40	0.89	0.45	0.53	0.17	0.53	0.74	0.54	0.68	0.39	0.10	0.37	-0.08	1									
v	-0.66	0.32	0.76	0.50	0.72	0.55	0.35	0.00	0.26	0.77	0.35	0.49	0.68	-0.01	0.46	-0.18	0.78	1								
Pb	-0.12	0.88	0.53	0.26	0.38	-0.05	0.60	0.66	0.70	0.56	0.49	0.90	0.11	0.75	-0.22	0.50	0.54	0.43	1							
Ni	-0.67	0.58	0.84	0.36	0.88	0.48	0.60	0.23	0.56	0.81	0.65	0.71	0.24	0.18	0.36	0.04	0.89	0.80	0.51	1						
Cu	-0.27	0.47	0.34	0.06	0.42	0.17	0.34	0.05	0.32	0.27	0.37	0.47	0.21	0.14	0.06	0.11	0.56	0.58	0.39	0.59	1					
U	-0.85	0.01	0.58	0.44	0.80	0.80	0.42	-0.29	0.21	0.53	0.17	0.24	0.27	-0.33	0.79	-0.32	0.53	0.51	0.04	0.60	0.07	1				
Fines	-0.56	0.43	0.59	0.05	0.62	0.44	0.40	0.16	0.35	0.49	0.56	0.57	0.27	0.11	0.26	0.05	0.64	0.63	0.44	0.73	0.57	0.36	1			
Sand	0.38	-0.29	-0.43	0.08	-0.40	-0.32	-0.19	-0.16	-0.12	-0.32	-0.62	-0.37	-0.28	-0.13	-0.11	-0.06	-0.46	-0.52	-0.37	-0.55	-0.58	-0.13	-0.90	1		
м	-0.47	0.66	0.64	0.29	0.73	0.31	0.74	0.33	0.70	0.57	0.46	0.76	0.09	0.29	0.18	0.21	0.71	0.55	0.58	0.74	0.61	0.47	0.71	-0.48	1	
т	-0.72	0.46	0.82	0.40	0.89	0.57	0.54	0.06	0.43	0.72	0.54	0.63	0.37	0.04	0.48	-0.06	0.92	0.84	0.46	0.93	0.59	0.62	0.72	-0.56	0.69	1

Figure 10 – Plots showing the variation between selected major and minor elements contents of sediment and the sample geographical location. The position of relevant rivers or mud patches and the effects range low threshold (ERL) is also indicated.

3.3.3. Multivariate analysis

The results of cluster and ordination analysis for major and trace element data are shown in Figure 11. Minimization of collinearity effects was achieved by selecting only one variable within each subset of highly correlated variables (rho > 0.80), since the chosen variable conveys essentially all the information contained in the others. Reduction of the initial variable data set involved the selection of Al₂O₃ (TiO₂, Ga, and Pb removed), K₂O (Rb removed), Fe₂O₃ (MgO, P₂O₅, Zn and Ni eliminated) and CaO (Sr and U excluded). Grain-size and TOM were added as supplementary variables and do not affect the analysis. Axis 1 accounts for 37.2% of the total variance and is characterized by high positive loads for the majority of major and trace elements (excluding SiO₂, CaO and As) and high negative loads for SiO₂. TOM plots concordantly with the positive segment of this axis. Axis 1 discriminates well the mud and very fine sand deposits from the coarser sediments (fine, medium and coarse sands). Axis 2 is responsible for 29.8% of the total variance and has high positive loads for SiO₂, K₂O, Al₂O₃, Na₂O and Ba and negative loads for CaO and As. It divides the sandy deposits into two main groups: (a) sand sediments showing a marked enrichment in SiO₂, K₂O, Al₂O₃, Na₂O and Ba (b) sand deposits with high CaO contents. Axis 3 describes 12.1% of the total variance and shows high positive loadings for MnO, As, SiO₂ and Fe₂O₃(T). Samples located off the mouth of the Cávado and Guadiana rivers plot as a discrete cluster of data points in the extreme positive end of axis 3, suggesting that these rivers act as an important source of As. Based on the results of multivariate analysis, it was possible to subdivide the Portuguese shelf sediments into four main groups: A, B, C and D (Figure 11 and Figure 12; Table 4). Group A includes the three mud samples collected off the mouths of the Tagus and Guadiana rivers, which are characterized by strong trace metal enrichments and high concentrations of TOM (cf. Table 4; Figure 12). Group B comprises the carbonate-rich sands with high CaO, Sr and U contents and an average amount of mud sized particles of 25.47% (cf. Table 4). This group is found in the deeper parts of the northwestern coast shelf and also in shallower environments in the central, southwestern and southern sectors (Figure 12). Group C corresponds to sand sediments of variable grain-size (from fine to very coarse sand), displaying very high concentrations of SiO₂ and moderate abundances of Al₂O₃, K₂O and TiO₂. Their low contents of organic matter and mud sized particles are consistent with the observed trace metal depletion (cf. Table 4). Some of these deposits occur in the middle shelf of the northwestern sector (Figure 12). Group D consists of two coarse sand samples, enriched in SiO₂, MnO and As (cf. Table 4), located off important estuarine systems (Figure 12).

			Α	В	С	D
	SiO ₂		48.00	42.79	80.60	72.73
			10.85	4.27	5.27	1.95
ø	Fe ₂ O ₃ (T)		6.29	2.89	1.50	1.63
ent	MnO		0.04	0.03	0.02	0.04
em	MgO	(%)	1.52	1.14	0.40	0.31
or el	CaO	(70)	12.96	24.21	4.33	11.88
lajo	Na₂O		0.88	0.40	0.38	0.88
Σ	K₂O		2.59	1.42	2.14	0.95
	TiO ₂		0.58	0.25	0.38	0.07
	P_2O_5		0.19	0.12	0.10	0.09
	U		4	5	3	3
	Zr		145	78	200	16
	Cr		94	43	43	19
	Ga		13	5	5	2
ø	As		25	10	5	34
ent	Br		74	41	16	4
em	Rb	(nnm)	112	56	84	42
or el	Sr	(ppiii)	339	800	151	439
ling	Ва		253	142	216	94
2	Zn		121	36	22	20
	V		90	31	19	27
	Pb		63	19	21	19
	Ni		19	8	5	2
	Cu		20	8	5	5
ent	ТОМ		6.79	3.42	1.47	1.54
lime	Sand	(%)	31.83	73.12	87.01	94.77
Sed	Mud		68.07	25.47	7.26	1.88

Table 4 – Major and minor elements and baseline sedimentary descriptors mean values in the geochemical affinity groups (TOM: total organic matter; gravel: >2 mm fraction; sand: 2 mm - 0.063 mm fraction; mud: <0.063 mm fraction).

Figure 11 – Major and minor elements classification and ordination analysis identifying the geochemical groups (A, B, C, D). Baseline sediment variables (grain-size classes and total organic matter – TOM) are superimposed as supplementary variables (dashed vectors)

Figure 12 – Spatial distribution of samples according its geochemistry affinity groups (A, B, C, D) in the Portuguese continental shelf.

B. Biological characterization

3.4. Macrofauna abundance patterns

A total of 737 species were identified from a set of 30008 individuals (full list of species, total abundance and number of presences can be found in Annex 2). The most abundant phyla were the Annelida, Mollusca and Arthropoda (Subphylum Crustacea) (20241, 2544 and 2236 individuals, respectively; cf. Figure 13). The most abundant taxa were the polychaetes, bivalves, nematodes, nemerteans and amphipods (19731, 1996, 1709, 1611 and 1413 specimens, respectively). The spatial representation of the abundance per sampling site is shown in Figure 14–A. The abundance of the macrofauna ranged from 7 to 1307 specimens per site (0.1 m⁻²). Mean abundance reached 207 specimens per site. Abundance decreased from coarser sediments to muddy sediments, with increasing depth, from the most exposed to the sheltered shelf and from the northernmost latitude to the southernmost coast. Considering this, the highest abundance of benthic fauna were obtained in gravel (479.0 ind. 0.1 m⁻²), in the inner (<30 m water depth; 300.9 ind. 0.1 m⁻²) and in the exposed shelf area (261.6 ind. 0.1 m⁻²) and in the northern latitudinal degrees (>200 ind. 0.1 m⁻²). By contrast, lower abundances were found in the majority of the 31 muddy sites (79.1 ind. 0.1 m^{-2} , among 31 sites), in the deepest shelf (> 100 m water depth; 134.1 ind. 0.1 m⁻²), in the southern sheltered shelf (151.2 ind. 0.1 m⁻²) and in the southwestern shelf (latitudinal range 37°N – 37.99°N; 137.5 ind. 0.1 m⁻²).

Figure 13 – Total abundance of the benthic macrofauna per Phylum.

The most abundant taxa (N>500 ind.) were Nematoda n.i. (1709 ind.; 5.7% of the total abundance A_T), Nemertea n.i. (1611 ind.; $A_T = 5.4\%$), *Mediomastus fragilis* (967 ind.; $A_T =$

3.2%), *Polygordius appendiculatus* (890 ind.; $A_T = 3.0\%$), *Ampharete finmarchica* (800 ind.; $A_T = 2.7\%$), *Prionospio fallax* (684 ind.; $A_T = 2.3\%$), *Spio filicornis* (560 ind.; $A_T = 1.9\%$), *Protodorvillea kefersteini* (557 ind.; $A_T = 1.9\%$), *Ampelisca* sp. (549 ind.; $A_T = 1.8\%$), and Oligochaeta n.i (510 ind.; $A_T = 1.7\%$). Those are the global results; however some differences were found analyzing the three major faunal groups separately. Regarding to the annelid polychaetes (19731 specimens), the most abundant families were the spionids (2927 ind.), syllids (1459 ind.), capitellids (1363 ind.), cirratulids (1341 ind.) and ampharetids (1338 ind.). Abundance of polychaetes ranged from 0 (one muddy site) to 620 (one site in very coarse sand) specimens per site (0.1 m⁻²) (Figure 15–A). The most abundant species were *Mediomastus fragilis*, *Polygordius appendiculatus*, *Ampharete finmarchica*, *Prionospio fallax*, *Spio filicornis*, *Protodorvillea kefersteini* and *Eunice vittata*. Overall, polychaetes abundance followed the general macrofauna patterns, decreasing from coarser to muddy sediments, with increasing depth, from the exposed to the sheltered shelf and from the northern latitude to the southernmost coast.

Among the molluscs, a total of 2544 specimens were analysed corresponding to 170 species, 2 Aplacophora, 2 Scaphopoda, 8 Polyplacophora, 53 Gastropoda and 105 Bivalvia. Abundance ranged from 1 to 172 specimens per site (0.1 m⁻²). From the 145 sites only thirteen sites were characterized by a total absence of molluscs. The lowest abundance values were found in the sheltered, muddy and deeper sites whereas the highest values were obtained in coarser sediments of the near and mid exposed western shelf (Figure 16–A). The most abundant species (N>100 ind./0.1 m²) were *Abra alba*, *Thracia villosiuscula*, *Thyasira flexuosa*, *Kurtiella bidentata* and *Corbula gibba*.

A total of 2236 crustaceans were identified corresponding to 195 species. The Families Ampeliscidae (634 ind.), Cirolanidae (146 ind.) and Apseudidae (133 ind.) were the most abundant, among the 78 families recorded in this study area. The most abundant species (N>50 ind.) were *Ampelisca* sp., *Apseudes* sp. 2, *Ampelisca brevicornis*, *Campylaspis* cf. *glabra* and *Othomaera othonis*. Fourteen sites were characterized by a total absence of crustaceans. Mean abundance reached 15 specimens per site, and decreased with increasing depth, from the sheltered shelf to the most exposed shelf and from the southern to the northern latitudinal degrees (Figure 17 – A). No clear abundance pattern was found among sediment types (higher mean abundance was found in gravel (31.0 ind. 0.1 m^{-2}) and very fine sand (22.7 ind. 0.1 m^{-2}) while lower values were found in coarse sands (8.1 ind. 0.1 m^{-2}) and muds (10.3 ind. 0.1 m^{-2})).

Figure 14 – Spatial distribution of benthic macrofauna abundance (A) and alpha diversity (B), Shannon-Wiener diversity (C) and Pielou evenness (D) in the Portuguese continental shelf.

Figure 15 – Spatial distribution of polychaetes abundance (A) and *alpha* diversity (B), in the Portuguese shelf.

Figure 16 – Spatial distribution of molluscs abundance (A) and *alpha* diversity (B), in the Portuguese continental shelf.

Figure 17 – Spatial distribution of crustaceans abundance (A) and *alpha* diversity (B), in the Portuguese continental shelf.

3.5. Species richness and diversity patterns

A total of 737 species were recorded. Polychaetes, bivalves, amphipods, gastropods and decapods presented the highest species richness values (319, 105, 99, 53 and 38 species, respectively). The most frequent taxa were Nemertea n.i. (F=72.4%, 105 sites), *Ampharete finmarchica* (F=64.8%, 94 sites), *Ampelisca* sp. (F=53.8%, 78 sites), *Lumbrineris lusitanica* (F=46.9%, 68 sites), *Aponuphis bilineata* (F=44.8%, 65 sites), *Spiophanes kroyeri* (F=44.1%, 64 sites) and *Notomastus latericeus* (F=42.8%, 62 sites). The *alpha* diversity ranged from 3 to 96 spp. 0.10 m⁻²; 17 sites had less than 20 spp. while 21 sites had more than 70 (cf. Figure 14 – B). The mean *alpha* diversity was 45.8 spp. 0.1 m⁻². Highest mean *alpha* diversity were found in gravel (66.0 spp. 0.1 m⁻²), in the inner (below 30 m; 54.1 spp. 0.1 m⁻²), in the sheltered (47.2 spp. 0.1 m⁻²). The lower values of mean *alpha* diversity were found in mud (25.3 spp. 0.1 m⁻²), regarding to sediment types, in very deep bottoms (above 100 m; 41.0 spp. 0.1 m⁻²), according to depth classes, in the

most exposed shelf (43.6 spp. 0.1 m⁻²) in terms of hydrodynamic areas, and in the eastern part of the southern shelf (33.2 spp. 0.1 m⁻²) analyzing longitude and latitude degrees.

The highest *beta* diversity values were found in mud ($\beta = 10.1$) regarding to sediment types, between 60 – 100 m (β = 10.9) in terms of depth classes and in the moderately exposed coast (β = 10.8) according to the hydrodynamic regime areas. Regarding to latitude, the highest beta diversity values were found in the latitudinal range 38° N-38.99° N (β = 8.4) and in the longitudinal range 8° W–8.99° W (β = 7.3), in terms of longitude. The lowest values were found in gravel (β = 3.5), in terms of sediment types, below 30 m $(\beta = 6.2)$, in terms of depth, and in the sheltered coast ($\beta = 9.6$), in terms of hydrodynamics. A slightly decrease of beta diversity was noticed with increasing latitude, being this pattern more clear if only the northwestern part of the shelf was considered (slope = 0.80). The *beta* diversity for the western part of the shelf, for the southern and for the entire shelf was respectively 13.6, 9.5 and 16.1. The highest values of the diversity indices (Shannon-Wiener, H' > 5; Figure 14 – C; Margalef richness, d > 9, Simpson > 0.9 and Rarefaction, ES50 > 25) were found mainly in the western part of the southern shelf sector, in the southwestern shelf, south of the Setubal canyon and off Sesimbra (Espichel Cape), off Peniche (Carvoeiro Cape) and in the northernmost shelf sector. The lowest diversity values were recorded in muds and in several fine sands along the near shore shelf. The highest values of Pielou's evenness (J > 0.9; Figure 14 – D) were obtained mainly in muds and finer sands at greater depths. The highest diversity areas mentioned before presented moderate equitability. The diversity indices decreased with increasing latitude, such as for the Rarefaction index (slope = -0.73) or Margalef index (slope = -0.27) or Shannon-Wiener index (slope = -0.10).

Like the abundance data, the overall diversity results did not fully overlap the results gained from the isolated analysis of three major faunal groups, particularly regarding to crustaceans, as follows.

Among the 319 polychaete species recorded in this study, a total of 49 families were found, being the highest number of species found within the Syllidae, Spionidae, Cirratulidae, Paraonidae and Maldanidae presented (36, 23, 19, 16 and 16 species, respectively). The most frequent species, occurring at least in 60 sites, were *Ampharete finmarchica, Lumbrineris lusitanica, Aponuphis bilineata, Spiophanes kroyeri* and *Notomastus latericeus*. The *alpha* diversity, ranged from 1 to 65 spp. 0.1 m⁻² (Figure 15–B). Higher values of *alpha* diversity were found mainly in five areas: western part of the southern shelf sector, coarser sediments of the southwestern shelf, off Sesimbra, off

Peniche and northernmost shelf sector. Low or very low *alpha* diversity values were recorded in muds and in the near shore shelf sand.

The most frequent mollusc species, occurring at least in 20 sites, were *Abra alba*, *Corbula gibba*, *Thracia villosiuscula*, *Saccella commutata*, *Tellina compressa*, *Thyasira flexuosa*, *Angulus pygmaeus*, *Fustiaria rubescens*, *Gouldia minima*, *Dosinia lupinus* and *Tellimya ferruginosa*. The *alpha* diversity values, per each sampling site, ranged from 1 species (in seven sites) to 21 spp. 0.10 m⁻² (in one site) (Figure 16–B). Lower values of *alpha* diversity were found in mud and deeper bottoms and higher values were recorded in gravel, shallow depths and in the exposed shelf.

Regarding to crustaceans, the most frequent species, occurring at least in 20 sites, were *Ampelisca* sp., *Ampelisca brevicornis*, *Lembos* sp., *Harpinia antennaria* and *Diastylis bradyi*. The number of species per site, ranged from 1 (in 10 sites) to 30 spp. 0.10 m⁻² (in one site), excluding 14 sites with total absence of crustaceans (Figure 17–B). Higher *alpha* diversity values were found in medium and very fine sands, in the inner shelf and in the southern sheltered shelf as well as off Peniche. Lower values of *alpha* diversity were found in mud and coarse sand, in deep bottoms, in the exposed shelf, but also all over the western shelf sector (when compared with the southern shelf sector).

3.6. Distribution patterns of particular species

The spatial distribution patterns of some species are here presented to obtain a better comprehension of the species diversity and the Portuguese shelf benthic communities. The spatial distribution of the abundance of some selected species is shown in Figure 18 to Figure 23.

Several species showed in this study broad spatial distributions being present along the entire shelf. Among these more cosmopolitan species some can be highlighted:

- a) The polychaetes Ampharete finmarchica (Figure 18–A), Monticellina heterochaeta (Figure 18–B), Prionospio fallax (Figure 18–C), Aphelochaeta sp.1 (Figure 19–B), Lumbrineris lusitanica (Figure 20–C), Galathowenia oculata, Terebellides stroemii and the molluscs Thyasira flexuosa (Figure 21–A), Abra alba (Figure 21–B), Corbula gibba (Figure 21–C) and Kurtiella bidentata or the sipunculid Golfingia (Golfingia) elongata dominated the finer sands, most of them in the deep shelf.
- b) The polychaetes Magelona filiformis and Magelona johnstoni (Figure 19–A) or the decapod Diogenes pugilator, the molluscs Nassarius reticulatus (Figure 22–B) or Angulus fabula, the amphipods Urothoe pulchella (Figure 23–B), Pontocrates

altamarinus or *Megaluropus agilis* were more abundant in fine sands of the near shore shelf.

- c) Nemerteans, nematodes, polychaetes (e.g. Protodorvillea kefersteini (Figure 18– D), Spio filicornis, Polygordius appendiculatus, Sphaerosyllis bulbosa, Lumbrineriopsis paradoxa, all Pisione species or several syllids), bivalves (e.g. Angulus pygmaeus, Thracia villosiuscula (Figure 21–D), Limatula subovata or Glycymeris glycymeris (Figure 22–A) or the sipunculid Aspidosiphon (Aspidosiphon) muelleri muelleri (Figure 23–D) were some of the most abundant and dominant taxa in coarser sediments of the western shelf.
- d) The amphipod *Harpinia antennaria* or the polychaetes *Sternaspis scutata* and *Ninoe armoricana* presented their highest abundances in muds.
- e) The bivalves Spisula subtruncata, Chamelea striatula, Clausinella fasciata, Spisula elliptica, Chamelea gallina, the gastropod Euspira pulchella, the polychaetes Aricidea (Allia) roberti and Aricidea (Aricidea) wassi or the anthozoa Edwardsia claparedii presented higher abundances in the northwestern shelf.
- f) The scaphopod *Fustiaria rubescens*, the bivalves *Saccella commutata* (Figure 22– C) and *Palliolum incomparabile* and the Aplocophora sp. 1 polychaetes *Pterolysippe vanelli, Sarsonuphis bihanica* were mostly collected in the southwestern deepest shelf.
- g) The polychaetes Eunice vittata, the crustacean Ampelisca sp. (Figure 23–A) or the sipunculids Golfingia (Golfingia) vulgaris vulgaris and Onchnesoma steenstrupii steenstrupii were highly abundant in both southern and southwestern shelf sectors.
- h) The polychaetes *Heteromastus filiformis* (Figure 19–C) and *Gallardoneris iberica* (Figure 20–A), or the molluscs *Leptochiton cancellatus* (Figure 22–D) and *Laevicardium crassum* reached higher abundances in the southern shelf.

However, several other species were exclusively found:

a) In the northwestern shelf (between the northern Portuguese border and the Nazaré Canyon), where can be highlighted, for instance, the polychaetes Phyllodoce rosea, Microspio mecznikowianus, Prionospio aluta or Glycera oxycephala, the crustaceans Nebalia cf. strausi, Schistomysis cf. ornata or Pagurus excavatus, the bivalve Spisula elliptica or the gastropod Caecum subannulatum.

- b) Off Peniche (e.g. the polychaete Lacydonia Miranda, the cumacean Campylaspis cf. glabra; the crustaceans Euphausiacea lathrippa bisbidens, Jaera (Jaera) cf. albifrons or Eurydice naylori).
- c) In the western shelf. The southern distribution limit of the species were located in the vicinity of some of the western canyons, namely the Lisbon canyon (e.g. *Caulleriella zetlandica*, Sthenelais limicola, Phaxas pellucidus, Mactra stultorum or Pharus legumen), Setúbal Canyon (e.g. Streptodonta pterochaeta, Syllis licheri, Mesochaetopterus saggitarius, Modiolus barbatus, Abra prismatica) or São Vicente Canyon (e.g. Tellimya ferruginosa, Cylichna cylindracea, Chamelea striatula, Eunice harassii, Magelona johnstoni (Figure 19–A), Glycera mimica, Echinocyamus pusillus (Figure 23–C), Amphiura chiajei) or in the vicinity of capes, such as the Carvoeiro Cape, off Peniche (e.g. Malmgreniella cf. mcintoshi, Gari tellinella, Anomia ephippium and Scrobicularia plana) or Sines cape (e.g. Aricidea (Acmira) assimilis).
- d) In both southwestern and southern shelf sectors (being most abundant in the later sector). The species Anapagurus pusillus, Paralacydonia paradoxa, Lumbrineris luciliae (Figure 20–B), Syllidia armata, Haplosyllis spongicola, Sphaerosyllis taylori, among several others, exhibited their northern limits near the Nazaré Canyon. This work sets the northern limit of Lumbrineris pinaster (Figure 20–D) in the Tagus mud patch. The Setúbal Canyon was the setentrional limit of Calyptraea chinensis, Retusa truncata, Eulima glabra, Yoldiella philippiana, Tellina serrata, Bathyarca pectunculoides, Arcopagia crassa, Nematonereis unicornis or Urothoe elegans, among several others.
- e) In the southern shelf. The most abundant southern exclusive species (at least 5 specimens recorded in total) were the polychaetes *Parapionosyllis brevicirra*, *Schistomeringos rudolphii, Euchone rubrocincta* (Figure 19–D) and *Paradoneis armata*, the Euphausiacea *Conilera cylindracea* and *Cirolana cranchi*, the amphipods *Microdeutopus versiculatus*, *Medicorophium minimum* and *Ericthonius punctatus*, the decapod *Liocarcinus navigator* and the bivalves *Pitar rudis* and *Montacuta phascolionis*.

A total of 125 species (51 crustaceans, 38 molluscs, 35 polychaetes and 1 echinoderm) were found exclusively in the southern shelf, while 276 species were uniquely recorded in the western shelf (90 polychaetes, 68 crustaceans, 56 bivalves, 29 echinoderms, 25 gastropods, among other taxa).

Figure 18 – Abundance spatial distribution patterns of some selected polychaete species: Ampharete finmarchica (A), Monticellina heterochaeta (B), Prionospio fallax (C) and Protodorvillea kefersteini (D).

Figure 19 – Abundance spatial distribution patterns of some selected polychaete species: *Magelona johnstoni* (A), *Aphelochaeta* sp. 1 (B), *Heteromastus filiformis* (C) and *Euchone rubrocincta* (D).

Figure 20 – Abundance spatial distribution patterns of the new Lumbrineridae (Polychaeta) species: *Gallardoneris iberica* **sp. nov.** (A), *Lumbrineris luciliae* **sp. nov.** (B), *L. lusitanica* **sp. nov.** (C), *L. pinaster* **sp. nov.** (D).

Figure 21 – Abundance spatial distribution patterns of some selected molluscs species: *Thyasira flexuosa* (A), *Abra alba* (B), *Corbula gibba* (C) and *Thracia villosiuscula* (D).

Figure 22 – Abundance spatial distribution patterns of some selected molluscs species: *Glycymeris glycymeris* (A), *Nassarius reticulatus* (B), *Saccella commutata* (C) and *Leptochiton cancellatus* (D).

Figure 23 – Abundance spatial distribution patterns of some selected species: crustracean *Ampelisca* sp. (A), crustracean *Urothoe pulchella* (B), echinoderm *Echinocyamus pusillus* (C) and sipunculid *Aspidosiphon muelleri muelleri* (D).

3.7. Identification and characterization of benthic habitats

The multivariate analysis based on the benthic macrofauna abundance data is shown in Figure 24 and the spatial representation of the affinity groups in Figure 25. Six affinity groups were identified, A, B, C1, C2, C3 and D (Figure 24 and Figure 25). Their overall characterization is shown in Table 5 and the species succession in Table 6.

The PCO axis 1 (cf. Figure 24 – B) accounts for 13.8% of the total variation and opposes the sites of groups C2, C3 and D, and the majority of C1 to the sites of group A. The environmental variables superimposed on the analysis show that these opposing groups of sites correspond to a sedimentary partition, separating the shallower sites with high gravel and sand contents, on the negative pole, from the deeper sites with finer sediments on the positive pole of the axis. Median, gravel content, total organic matter, depth and fines content were high correlated with axis 1 (Pearson rho = 0.79, -0.66, 0.64, 0.61, and 0.52, respectively). Axis 2 gathered 8.5 % of the total variation and isolates the sites from group B and part of C1 on the positive pole. The superimposed environmental descriptors indicate that axis 2 corresponds to a partition based mainly in the hydrodynamic regime, latitude and sand content (Pearson rho = 0.50, 0.46, and 0.34 respectively). It isolates the sandy sites located in the northern exposed coast on the positive pole from sites of southern and more sheltered shelf areas. In Figure 24 – C is shown the ordination of the groups by NMDS, to which the most correlated species (Spearman rho > 0.45) were superimposed and represented as vectors. Several species were highly correlated with group A (bottom left side of Figure 24 - C), such as Pisione remota, Glycera lapidum, Syllis pontxioi or Angulus pygmaeus. The species Magelona filiformis and Magelona johnstoni were most correlated with Group B, positioned in the top left side of the representation. The species Spiophanes bombyx and Prionospio fallax were associated to the group C1 although some of these species were also common with the assemblage B. The species represented in the right side, Labioleanira yhleni and Nephtys incisa were associated to the group D, while Ampharete finmarchica and Monticellina heterochaeta were mostly associated to C2. The species *Eunice vittata* were correlated with group C3. Group A included 31 sites, located mainly on coarse sediments of the near and midwestern shelf (Figure 25), characterized by the highest gravel content and by low content in fines and TOM (Table 5). The mean faunal abundance was highest in this group (398 ind. 0.1 m⁻²) and the diversity measurements were high overall compared to other groups (Table 5). From a total of 440 species here sampled, 128 were exclusive or presented high fidelity (cf. Table 5). Protodorvillea kefersteini, Pisione remota and Goniadella gracilis were the most characteristic species, while the most abundant taxa were Nematoda n.i.

(53 ind. 0.1m^{-2}) and *Polygordius appendiculatus* (28 ind. 0.1 m^{-2}) and *Mediomastus fragilis* (22 ind. 0.1 m^{-2}) (Table 6).

Group B gathered 13 sites from the western near shore shelf (Figure 25). Sediments comprised predominantly fine sands, with very low fines, gravel, biogenic fraction and TOM content (Table 5). The macrofauna abundance, species richness and diversity presented here some of lowest values. The low evenness and *beta* diversity values indicate that the community was dominated by a specific set of species which did not vary greatly between sites. These characteristic species were *Magelona johnstoni, Urothoe pulchella, Spiophanes bombyx, Angulus fabula, Sigalion mathildae* and *Magelona filiformis*. The number of exclusive species was low (25 species) (cf. Table 5).

Group C1 assembled 29 sites from the northwestern outer shelf (Figure 25), mainly composed by fine and very fine sands with high content of sand and moderate content of fines, gravel, and TOM (Table 5). The mean abundance was high and the mean *alpha* diversity and total species richness were moderate, compared to other groups. All the diversity parameters in C1 were slightly lower comparing to the muddy sand groups C2 and C3 (Table 5). Some of the most characteristic species were *Tellina compressa*, *Prionospio fallax, Chaetozone gibber* and *Abra alba*. A total of 30 species were exclusively found in group C1 (cf. Table 5).

Group C2 included 32 sites, from deep areas (mean depth of 132.2 m; cf. Table 5) and mostly from the southwestern shelf (20 sites; Figure 25). Sediments were dominantly fine and very fine sands, with high content of sand, and moderate content of fines and TOM (Table 5). Mean abundance, mean *alpha* diversity and total species richness was moderate while diversity measurements were moderately high (cf. Table 5). Polychaetes, such as *Galathowenia oculata, Lumbrinerides amoureuxi* and *Pterolysippe vanelli*, dominated the list of the most characteristic species of this assemblage, including also the bivalve *Saccella commutata*. This group presented 47 exclusive species (cf. Table 5).

Group C3 comprised a set of 15 sites exclusively found in the southern shelf (Figure 25), composed by fine and medium sands and mud. Sand, fines, TOM and biogenic fraction content were moderate (Table 5). Mean abundance and total species richness were high. Mean *alpha* diversity and several other diversity measurements (H', d, 1- λ ' and ES50) showed the highest values in this group (Table 5). The most characteristic species were polychaetes, namely *Euchone rubrocincta*, *Nematonereis unicornis, Panthalis oerstedi* and *Cirrophorus branchiatus* (cf. Table 5). A total of 56 species were exclusive, within the 347 sampled in C3 (cf. Table 5).
Group D corresponded to 21 sites, mostly muds (19/21), sampled in the three largest shelf mud patches: Guadiana (southeastern shelf), Tagus (off Lisbon) and immediately north of the Nazaré (northwestern shelf) (Figure 25). These sediments were characterized by very high fines content and TOM and low content of sand, gravel and biogenic fraction content (Table 5). Abundance and diversity values were very low, excluding *beta* diversity and evenness values, showing a high species turnover within the group. The most characteristic species were *Sternaspis scutata, Heteromastus filiformis* and *Psammogammarus caecus*. Nineteen species were exclusively recorded (cf. Table 5).

On the basis of the biological affinity group, the null hypothesis of no significant differences between sediments grain-size data, TOM, depth, hydrodynamic regime and latitude (cf. Table 7) were all rejected at p < 0.0001. Most of the pairwise comparisons between groups for grain-size, also rejected the null hypothesis at p < 0.01, except between groups C1 – C2 and C2 – C3, indicating that no sedimentary significant differences were found between those groups (cf. Table 8). Most pairwise comparisons also rejected the null hypothesis at p < 0.01 for TOM, except between A – B and C2 – C3 (cf. Table 8). According to depth, most of the pairwise comparisons also rejected the null hypothesis at p < 0.01, except between A – C3, B – C3 and C1 – D (cf. Table 8). Most of the pairwise comparisons, on the basis of the hydrodynamic regime also rejected the null hypothesis at p < 0.01, except between A – B and C3 – D (cf. Table 8). Regarding latitude, most pairwise comparisons also rejected the null hypothesis at p < 0.01, except between A – B and C2 – D (cf. Table 8). These results showed that grain-size, TOM, depth, hydrodynamic regime and latitude contributed to the definition of the six biological affinity groups. Group A and D differed from the others mainly due to sediments (coarse and muddy sediments, respectively). Group B was established mainly based in the sediments (fine sands with low gravel, fines and TOM content). Depth, hydrodynamics and latitude were the main factors related to groups C1 (northwestern very exposed shelf), C2 (moderately exposed, southwestern and deeper shelf) and C3 (sheltered and southern shelf) given that no significant sedimentary differences were found among the three muddy sand groups.

The global test of the BIOENV analysis showed that the combination of variables which best relates to the biological data were depth, hydrodynamic regime, grain-size median, gravel, fines and TOM content (rho = 0.554). At rho = 0.550, the set of variables also included latitude and sand content.

Results

Figure 24 – Classification (A) and ordination diagrams (PCO, B; nMDS, C) based on the abundance benthic macrofauna data. Pearson correlation vectors of environmental data are provided as supplementary variables in diagram B. The species with the highest Spearman correlation (rho > 0.45) are shown in diagram C.

Figure 25 – Spatial distribution of the soft-bottom benthic habitats along the Portuguese continental shelf (macrofauna affinity groups obtained based on the abundance macrofauna data). A – Coarse sediments with *Protodorvillea kefersteini, Pisione remota,* and *Angulus pygmaeus*; B – Near shore hydrodynamic exposed fine sands with *Magelona johnstoni, Urothoe pulchella* and *Angulus fabula*; C1 – *Abra alba* community in northwestern deep muddy sands; C2 – *Galathowenia oculata* and *Lumbrinerides amoureuxi* in southwestern very deep muddy sands; C3 – *Euchone rubrocincta* and *Nematonereis unicornis* in muddy sands of the southern and sheltered shelf; D – Muds of *Sternaspis scutata, Heteromastus filiformis* and *Psammogammarus caecus.*

Table 5 – Characterization of the benthic assemblages identified in the Portuguese continental shelf. Mean values are reported to the unit sampling area (0.1 m^2) . The top 15 characteristic species in each group were defined according the highest product between the constancy and fidelity indices. The 5 most abundant species were defined according the highest mean abundance (per site) among all groups. Sediment types: G = gravel, VCS = very coarse sand, CS = coarse sand, MS = medium sand, FS = fine sand, VFS = very fine sand, M = mud; TOM = Total organic matter content; Constancy: Cn = constant, C = common, O = occasional, R = rare; Fidelity: E = elective, P = preferential, I = indifferent, A = accessory; * = exclusive species in each group.

Affinity groups	Α	В	C1	C2	C3	D
Nr. of sampling sites	31	13	29	32	15	21
Main sediment type	Coarse sediments	Fine sand	Muddy sands	Muddy sands	Muddy sands	Muds
Sediment types	VCS (14/31), CS (7/31), G (6/31), MS (2/31), VFS (1/31), no data (1/31)	FS (12/13), VCS (1/13)	FS (17/29), VFS (7/29), M (2/29), VCS (1/29), CS (1/29), G (1/29)	FS (15/32), MS (6/32), VFS (5/32), M (4/32), CS (1/32), no data (1/32)	FS (4/15), M (4/15), VFS (3/15), MS (2/15), VCS (1/15), maërl (1/15)	M (19/21), VFS (1/21), FS (1/21)
Gravel content	27.2	3.0	3.2	1.9	2.7	0.2
(mean, %) Sand content (mean; %)	68.8	93.8	76.8	72.1	60.5	16.6
Fines content (mean; %)	3.9	3.2	20.1	26.0	36.9	83.2
Biogenic fraction (mean; %)	4.5	0.3	0.7	2.9	4.5	1.6
TOM content (mean; %)	1.1	1.2	2.4	4.0	4.6	7.3
Depth (mean; m)	50.7	35.2	91.2	132.2	42.6	95.8
Abundance (mean)	397.7	139.7	213.4	157.6	229.1	48.4
richness Mean <i>alnha</i>	440	151	294	345	347	183
diversity (ind. 0.1 m ⁻²)	60.3	28.3	45.4	49.7	68.4	20.5
Beta diversity (within group)	7.3	5.3	6.5	6.9	5.1	8.9
Shannon-Wiener (mean; H')	4.5	3.6	4.5	4.8	5.2	3.7
Margalef (mean; d)	10.1	5.8	8.6	9.7	12.4	5.0
Simpson (mean; 1-λ')	0.89	0.83	0.90	0.94	0.95	0.91
mean; ES50)	22.7	18.3	23.8	25.9	28.4	18.1
(mean; J')	0.76	0.75	0.82	0.85	0.86	0.88
species	128	25	30	47	56	19

Table 5 (cont.) – Characterization of the benthic assemblages identified in the Portuguese continental shelf. Mean values are reported to the unit sampling area (0.1 m2). The top 15 characteristic species in each group were defined according the highest product between the constancy and fidelity indices. The 5 most abundant species were defined according the highest mean abundance (per site) among all groups. Sediment types: G = gravel, VCS = very coarse sand, CS = coarse sand, MS = medium sand, FS = fine sand, VFS = very fine sand, M = mud; TOM = Total organic matter content; Constancy: Cn = constant, C = common, O = occasional, R = rare; Fidelity: E = elective, P = preferential, I = indifferent, A = accessory; * = exclusive species in each group.

Affinity groups	Α	В	C1	C2	C3	D
Characteristic species (with Constancy and Fidelity indications)	Protodorvillea kefersteini (Cn/P) Pisione remota (Cn/E)* Goniadella gracilis (Cn/P) Angulus pygmaeus (Cn/E) Glycera lapidum (Cn/P) Sphaerosyllis bulbosa (Cn/P) Polygordius appendicula- tus (Cn/P) Thracia villosiuscula (Cn/P) Pulliella sp. (Cn/E)* Syllis pontxioi (Cn/P) Hesionura elongata (Cn/E) Malmgreniella ljungmani (Cn/I) Pisione parapari (C/E)* Prionospio sp. (Cn/P) Gyptis propinqua (C/P)	Magelona johnstoni (Cn/P) Urothoe pulchella (Cn/P) Spiophanes bombyx (Cn/I) Angulus fabula (Cn/P) Sigalion mathildae (Cn/P) Magelona filiformis (Cn/I) Hippomedon denticulatus (C/P) Megaluropus agilis (C/P) Leucothoe incisa (C/P) Pharus legumen (C/E)* Glycera convoluta (C/P) Prionospio fallax (Cn/I) S. typicus (C/I) Chaetozone carpenteri (C/I) Bathyporeia elegans (O/I)	Tellina compressa (Cn/l) Prionospio fallax (Cn/l) Chaetozone gibber (C/P) Phaxas pellucidus (C/l) Spiophanes bombyx (Cn/l) Thyasira flexuosa (Cn/l) Pionospio aluta (C/E)* Abra alba (Cn/l) Aricidea pseudoarticu- lata (C/l) Aricidea catherinae (C/l) Phyllodoce rosea (O/E)* Pseudopolydo- ra antennata (Cn/l) Poecilochae- tus serpens (Cn/l) Spio filicornis (Cn/l) Nephtys hombergii (C/l)	Galathowenia oculata (Cn/I) Lumbrinerides amoureuxi (C/E)* Saccella commutata (Cn/I) Paralacydonia paradoxa (Cn/I) Pterolysippe vanelli (Cn/I) Sarsonuphis bihanica (Cn/I) Aphelochaeta sp.1 (Cn/I) Monticellina heterochaeta (Cn/I) Aplacophora sp.1 (C/P) Isolda pulchella (C/I) Eunice vittata (Cn/I) Terebellides stroemii (Cn/I) Ampharete finmarchica (Cn/A) Chirimia biceps (C/I) Leiocapitella dollfusi (O/P)	Euchone rubrocincta (Cn/P) Nematonereis unicornis (Cn/P) Prionospio multibranchia- ta (Cn/P) Panthalis oerstedi (Cn/P) Cirrophorus branchiatus (Cn/P) Lumbrineris pinaster (Cn/I) Lygdamis muratus (Cn/I) Paralacydonia paradoxa (Cn/I) Eunice vittata (Cn/I) Schistomerin- gos rudolphi (C/E)* Parapionosyl- lis brevicirra (Cn/P) Harmothoe antilopes (Cn/P) Polydora flava (Cn/I) Notomastus latericeus (Cn/I)	Sternaspis scutata (C/E) Heteromastus filiformis (C/P) Psammogam- marus caecus (C/I) Sarsonuphis bihanica (Cn/I) Nephtys incisa (C/I) Ampharete finmarchica (Cn/A) Harpinia antennaria (C/I) Chaetozone sp.2 (C/A) Ninoe armoricana (C/I) Glycera unicornis (Cn/A) Ampelisca sp. (Cn/A) Labioleanira yhleni (C/I) Athanas nitescens (O/P) Alpheus cf. glaber (O/P) Paraprionos- pio pinnata (C/A)
Most abundant species	Nematoda n.i. Polygordius appendicula- tus Mediomastus fragilis Protodorvillea kefersteini Spio filicornis	Magelona johnstoni Chaetozone carpenteri Edwardsia claparedii Magelona filiformis Glycera convoluta	Nemertea n.i. Prionospio fallax Caulleriella alata Aponuphis grubii Spiophanes bombyx	Ampharete finmarchica Pterolysippe. vanelli Sarsonuphis bihanica Monticellina heterochaeta Galathowenia oculata	Ampelisca sp. Eunice vittata Paralacydonia paradoxa Notomastus latericeus Lumbrineris lusitanica	Nephtys incisa Heteromastus filiformis Harpinia antennaria Sipuncula n.i. Labioleanira yhleni

Table 6 – Mean species abundance (ind./0.1 m²) per affinity group. The 20 species with the highest mean abundance per group are listed (light grey). The 5 exclusive species with the highest abundance in the groups are also highlighted (dark grey). * = mean abundance below 0.05 ind/ 0.1 m⁻².

Таха	Α	В	C1	C2	C3	D
Pisione remota (Southern, 1914)	9.9					
Pisione parapari Moreira, Quintas and Troncoso, 2000	6.5					
Pulliela sp.	2.5					
Caecum sp.	2.5					
Limatula subovata (Monterosato, 1875)	1.8					
Nematoda n.i.	53.1	0.2	0.8	0.6	1.2	0.1
Polygordius appendiculatus Fraipont, 1887	28.1		0.3	0.2	0.1	
Mediomastus fragilis Rasmussen, 1973	22.2	0.9	7.4	0.7	1.5	0.3
Protodorvillea kefersteini (McIntosh, 1869)	17.6		0.3	0.1		
Spio filicornis (Müller, 1776)	15.3	0.8	2.5	0.1		
Aspidosiphon (Aspidosiphon) muelleri muelleri Diesing, 1851	13.7	0.2		0.3	2.8	0.3
Oligochaeta n.i.	12.5		2.9	0.6	1.1	0.1
Sphaerosyllis bulbosa Southern, 1914	9.3		0.1		1.1	*
Aonides oxycephala (Sars, 1862)	7.2		0.1	0.1	0.7	
Malmgreniella ljungmani (Malmgren, 1867)	6.8			- ·	0.9	*
Glycera lapidum Quatrefages, 1865	6.3		0.3	0.1	0.1	
Goniadella gracilis Verril, 1873	4.7		0.4	*		
Aponuphis bilineata (Baird, 1870)	4.5	3.2	1.2	3.2	1.2	*
Thracia villosiuscula (MacGillivray, 1827)	4.4	0.2	*		0.2	
Gyptis propinqua Marion, 1875	4.1		0.0	0.4	0.1	
Psamathe fusca Johnston, 1836	3.8		0.2	0.1	0.1	
Pseudomystides limbata Sain-Joseph, 1888	3.4		*	0.1	0.1	
Hesionura elongata (Southern, 1914)	3.3		*		0.0	*
Anguluo nyamooyo (Lován, 1946)	3.1			*	0.3	
Diogonos pugilator (Poux 1820)	3.0	0.5				
Maetra sp		0.5				
Nacia sp. Pharus legumen (Linnaeus, 1758)		0.3				
Diopatra micrura Pires Payton Quintino and Rodrigues 2010		0.5				
Pontocrates altamarinus (Bate and Westwood, 1862)		0.2				
Magelona johnstoni Fiege Licher and Mackie 2000	*	29.6	14			
Chaetozone carpenteri McIntosh 1911	03	23.8	0.9	01	02	02
Edwardsia clanaredii (Panceri, 1869)	0.0	4.8	0.5	*	0.2	0.2
Magelona filiformis Wilson 1959	*	4.5	1.6		0.1	0.1
Glycera convoluta Keferstein, 1862		3.5	0.4			
Urothoe pulchella (Costa, 1853)		2.1	0.1		0.1	
Sigalion mathildae Audouin and Milne Edwards in Cuvier. 1830	0.1	1.6	0.1	0.1		
Nassarius reticulatus (Linnaeus, 1758)	0.2	1.4	0.1	••••	0.2	
Spisula subtruncata (da Costa, 1778)	*	1.2	0.6		0.2	
Scoloplos typicus (Eisig, 1914)	0.1	0.8	0.2		0.1	*
Megaluropus agilis Hoeck, 1889		0.7			0.1	
Anthozoa n.i.		0.7	*	*	0.1	
Angulus fabula (Gmelin, 1791)		0.7	0.6	*		
Hippomedon denticulatus (Bate, 1857)	0.1	0.6		*		*
Leucothoe incisa (Robertson, 1892)	0.3	0.6	*			
Urothoe grimaldii Chevreux, 1895		0.5	*			
Nephtys cirrosa (Ehlers, 1868)	0.1	0.5			0.4	*
<i>Tellimya ferruginosa</i> (Montagu, 1808)	0.1	0.5	0.3	0.1		0.1
Podarkeopsis capensis (Day 1963)	0.1	0.4	0.2	*	0.1	*
Venus casina Linnaeus, 1758	0.1	0.4	*			

(cont).

Table 6 (cont.) – Mean species abundance (ind./0.1 m²) per affinity group. The 20 species with the highest mean abundance per group are listed (light grey). The 5 exclusive species with the highest abundance in the groups are also highlighted (dark grey). * = mean abundance below 0.05 ind/ 0.1 m⁻².

Таха	Α	В	C1	C2	C3	D
Prionospio aluta Maciolek, 1985			1.9			
<i>Melinna cristata</i> (M. Sars, 1851)			0.7			
Phyllodoce rosea McIntosh, 1877			0.7			
Aricidea simonae Laubier and Ramos, 1974			0.1			
Chaetozone sp.1			0.1			
Nemertea n.i.	16.6	10.8	25.4	2.9	6.4	1.3
Prionospio fallax Söderström, 1920	1.8	6.1	18.4	0.4	0.2	
<i>Caulleriella alata</i> (Southern, 1914)	0.5		7.0	0.1	0.8	
Aponuphis grubii (Marenzeller, 1886)		1.4	6.4	0.1	2.5	
Spiophanes bombyx (Claparède, 1870)	0.7	5.5	5.7	0.1	0.1	0.1
<i>Lagis koreni</i> Malmgren, 1866	0.1	0.5	4.1	0.1	0.2	
<i>Thyasira flexuosa</i> (Montagu, 1803)	*		4.0	0.3	0.1	0.1
Spiophanes kroyeri Grube, 1860	0.3	1.9	3.6	1.6	0.7	0.2
Prionospio ehlersi Fauvel, 1928		0.3	3.6	0.3	0.1	0.2
Echinocyamus pusillus (O.F. Müller, 1776)	1.7	0.5	3.3	0.2		
Abra alba (W. Wood, 1802)	0.3	3.1	3.1	0.1	0.3	0.1
Prionospio steenstrupi Malmgren, 1867		0.2	3.1	0.7	0.1	0.1
<i>Myriochele danielsseni</i> Hansen, 1878	0.4		2.7	1.3	0.5	
<i>Tellina compressa</i> Brocchi, 1814			2.2	0.8	0.1	0.1
Nephtys hombergii Savigny in Lamarck, 1818		0.1	2.2	0.6	0.5	*
Owenia fusiformis delle Chiaje, 1844	0.1		2.1	0.1	1.3	
Corbula gibba (Olivi, 1792)	0.7	0.2	2.1	0.2	1.3	0.3
Nephtys kersivalensis McIntosh, 1908	0.8	0.6	1.9	0.6	0.9	
<i>Aricidea (Allia) roberti</i> Hartley, 1984	0.2	0.2	1.7	0.4	0.1	0.1
Aricidea (Aricidea) pseudoarticulata Hobson, 1972			1.7	0.2	0.1	
<i>Kurtiella bidentata</i> (Montagu, 1803)	0.9		1.7		0.9	*
Lumbrinerides amoureuxi Miura, 1981				0.9		
Bathyarca pectunculoides (Scacchi, 1835)				0.3		
<i>Ebalia nux</i> A. Milne-Edwards, 1883				0.2		
<i>Ringicula auriculata</i> (Ménard de la Groye, 1811)				0.2		
Yoldiella philippiana (Nyst, 1845)				0.2		
Ampharete finmarchica (M. Sars, 1864)	0.6	0.3	2.6	16.2	8.0	3.1
Pterolysippe vanelli (Fauvel, 1936) sensu Eliason, 1955, emend	0.1	0.1	1.2	7.8	1.3	
Sarsonuphis bihanica (Intes and le Loeuff, 1975)	*		0.7	7.7	5.9	2.5
Monticellina heterochaeta Laubier, 1961	1.5		0.7	7.1	1.0	1.9
Galathowenia oculata (Zachs, 1923)	0.2	0.3	3.6	6.3	0.8	0.4
<i>lsolda pulchella</i> Müller in Grube, 1858			0.7	4.2	1.0	
Pseudopolydora antennata (Claparède, 1869)		0.1	2.7	3.1		*
Terebellides stroemii Sars, 1835	0.5		0.6	2.9	0.7	0.2
Chirimia biceps (M. Sars, 1861)			*	2.8	0.1	1.0
Aphelochaeta sp.1	0.2		0.9	2.3	0.2	0.1
<i>Potamilla torelli</i> (Malmgren, 1866)	0.4		0.4	1.7	0.8	
Onchnesoma steenstrupii steenstrupii Koren and Danielssen, 1876	*		0.1	1.7	0.6	0.2
Saccella commutata (Philippi, 1844)			0.4	1.6	0.1	0.1
Paraprionospio pinnata (Ehlers, 1901)	0.1	0.1	0.5	1.2	1.1	0.6
<i>Golfingia (Golfingia) elongata</i> (Keferstein, 1862a)	0.3	0.4	0.7	1.0	0.1	0.3
<i>Ophiura albida</i> Forbes, 1839	0.5	0.7	0.4	1.0		0.8
Magelona wilsoni Glémarec, 1966			0.1	0.9	0.3	*
Aplacophora sp.1	0.1		0.1	0.9		*
Phyllodoce maculata (Linnaeus, 1767)	0.1	0.1		0.7	0.1	
<i>Glycera alba</i> (O.F. Müller, 1776)	0.1		0.6	0.7	0.2	

(cont).

Table 6 (cont.) – Mean species abundance (ind./0.1 m²) per affinity group. The 20 species with the highest mean abundance per group are listed (light grey). The 5 exclusive species with the highest abundance in the groups are also highlighted (dark grey). * = mean abundance below 0.05 ind/ 0.1 m⁻².

Таха	Α	В	C1	C2	C3	D
Microdeutopus versiculatus (Bate, 1856)					0.9	
Cirolana cranchi Leach, 1818					0.9	
Schistomeringos rudolphii (delle Chiaje, 1828)					0.7	
Lumbrineris sp.					0.7	
Paradoneis armata Glemarec, 1966					0.7	
Ampelisca sp.	1.0	1.5	2.3	3.7	13.3	5.5
Eunice vittata (Delle Chiaje, 1828)	2.2	0.1	0.1	5.8	12.6	0.2
Paralacydonia paradoxa Fauvel, 1913	0.1		0.2	6.2	11.5	0.8
Notomastus latericeus Sars, 1851	1.8	0.2	0.6	1.2	9.8	0.1
Lumbrineris lusitanica (Martins, Carrera-Parra, Quintino and	1.1	0.9	5.8	1.3	7.3	0.2
Rodrigues, 2012)						
Lumbrineris pinaster (Martins, Carrera-Parra, Quintino and	0.4	0.3	*	0.2	5.7	1.0
Rodrigues, 2012)	0.4	0.4	0.0	0.4	F 4	
Lygoarnis muratus (Allen, 1904)	0.4	0.4	0.3	0.1	5.1	0.4
Phoronida n.i.	0.1	0.7	2.9	0.5	4.0	0.4
Syllis garcial (Campoy, 1982)	3.8			0.3	4.3	0.7
Magalana allani Wilaan, 1959	0.1	0.0	2.0	0.2	3.0	0.3
Magelona alleni Wilson, 1956		0.3	2.0	0.4	3.1	0.1
Apseudes sp. 2 Driangania multibranghista Darkalay, 1007	1.1		0.0	0.1	2.7	0.9
Prionospio multipranchiata Berkeley, 1927	0.4		0.6	1.2	2.7	0.1
Anonumbia hyperanti (Sais, 1862)	0.4		4.0	4 7	2.5	*
Aponupriis premienti (Fauvei, 1916)	07		1.3	1.7	2.4	0.0
Syllis mercedesae Lucas, San Martin, Parapar, 2012	0.7	0.4	0.0	0.3	2.4	0.2
Euclymene cr. droebachiensis (M. Sars in G.O. Sars, 1871)	0.5	0.1	0.3	0.2	2.2	0.1
Paramphithe tetrabrahchia Hollne, 1976	0.3		0.2	0.5	2.1	
Deredencie lure (Southern, 1014)	1.3		1.5	1.1	1.9	0.0
Faradoneis Iyra (Southern, 1914)	1.4		0.9	0.5	1.9	0.2
Ecropia Iruncala (Valialla, 1924) Eriothonius punctatus (Poto, 1957)						0.3
Commaralla funicala (Laach, 1057)						0.2
Magamphonus brovidactulus Muore 1076						0.1
Megariphopus brevidaciylus Myers, 1970						0.1
Nassanus Ovolueus (Localu, 1000)			*	0.0	0.1	1.5
Heteromastus filiformis (Clanaràdo, 1864)				0.9 *	0.1	1.0
Hereinia antonnaria Moinort 1800	*		0.1	05	0.4	1.2
	0.1		0.1	0.5	0.2	1.0
Sipuncula II.I. Labiolognira yhloni (Malmaron, 1867)	0.1	0.1	0.1	0.2	0.3	0.9
Cheera unicornis Savianvin Lamarck 1818	*	0.1	0.5	0.5	0.1	0.9
Stornashic soutata Banzani, 1917		0.4	0.3	0.0	0.7	0.0
Ninos armoricana (Glámaros, 1069)			0.2	0.1	0.1	0.7
Nilloe almonicalia (Glemalec, 1900) Deammagammarus caocus Karaman, 1055	0.5		0.1	U.I *	0.1	0.0
Monticelline en	0.5		0.2	0.2		0.0
Mullicemina Sp. Athanaa nitaaaana (Laach 1912 fin Laach 1912 1914)	0.1		0.2	0.5	0.1	0.3
Allanas fillescens (Leach, 1015 [iii Leach, 1015-1014])				0.1	0.1	0.3
Nassanus elatus (Goulo, 1645) Madiaaranhium minimum (Sahiaaka, 1079)	*			0.1	0.4	0.3
Concelley rhemboides (Linneeus, 1759)					0.1	0.2
Alphaua of alphar (Olivi, 1702)				*	0.1	0.1
Appleus Cl. glaber (Olivi, 1792)	0.4			0.4		0.1
Echinocardium cordatum (Pennant, 1777) Hudrobia pouto poglosto Muus, 1062	U.1 *			0.1	0.4	0.1
nyuruura acuta neglecia iviuus, 1963				*	0.1	0.1
Lepiopeniacia Ci. iergesiina (Ni. Sais, 1857) Astarta sulaata (da Casta, 1779)	*					*
Asiante sullada (Ud UUsia, 1770) Anhiadromus flavuosus (Della Chisia, 1927)			*			*

Descriptor	Source	df	SS	MS	Pseudo-F	р
Madian grain	Affinity groups	5	312.60	62.52	34.20	0.0001
	Residual	135	246.83	1.83		
size	Total	140	559.43			
	Affinity groups	5	97.04	19.41	59.45	0.0001
TOM	Residual	135	44.08	0.33		
	Total	140	141.11			
	Affinity groups	5	91.34	18.28	50.91	0.0001
Depth	Residual	135	48.46	0.36		
-	Total	140	139.84			
Lludroduroomio	Affinity groups	5	80.65	16.13	37.91	0.0001
ragima	Residual	135	57.44	0.43		
regime	Total	140	138.08			
	Affinity groups	5	81.22	16.24	38.73	0.0001
Latitude	Residual	135	56.62	0.42		
	Total	140	137.84			

Table 7 – Results of PERMANOVA main test between biological affinity groups based on median grain-size, gravel, sand and fines content.

Table 8 – Values for the *t*-statistic and associated significance in the pair-wise tests between biological affinity groups, for the environmental descriptors that rejected the main test null hypothesis (sediments grain-size, TOM, depth, hydrodynamic regime and latitude). Significance values: * p < 0.05; ** p < 0.01; (ns) = non-significant.

	Sediments	ТОМ	Depth	Hydrodynamics	Latitude
A <i>v</i> s. B	4.1817**	0.4025(ns)	2.1417*	0.3210(ns)	1.7202(ns)
A <i>vs</i> . C1	5.3302**	4.5023**	6.1347**	3.2421**	3.3441**
A <i>vs.</i> C2	6.1310**	8.6952**	11.6360**	4.5986**	6.3887**
A vs. C3	4.5289**	6.9202**	1.1466(ns)	7.0822**	7.6299**
A <i>vs.</i> D	9.9024**	15.8890**	5.9509**	5.3580**	5.8049**
B <i>vs.</i> C1	1.9046*	3.4013**	7.2587**	4.0395**	4.2125**
B <i>vs</i> . C2	3.2392**	6.5440**	11.0450**	4.0450**	2.8608**
B <i>vs.</i> C3	3.4122**	5.2155**	1.3486(ns)	7.6771**	4.8841**
B <i>vs</i> . D	12.0920**	12.3410**	6.9635**	4.3839**	2.8425**
C1 vs. C2	0.9449(ns)	4.0648**	5.5955**	11.8080**	10.6720**
C1 <i>v</i> s. C3	1.8012*	3.6766**	6.4984**	17.0840**	11.0090**
C1 <i>v</i> s. D	8.5599**	11.4200**	0.5783(ns)	10.3190**	9.0519**
C2 <i>v</i> s. C3	1.4443(ns)	0.8770(ns)	10.6560**	5.6638**	5.2361**
C2 <i>vs.</i> D	9.7996**	7.8846**	4.3022**	2.6076*	1.3224(ns)
C3 <i>vs</i> . D	5.5861**	4.6567**	6.2869**	1.5441(ns)	2.2740*

3.8. Case studies of the shelf diversity3.8.1. Diversity of the Family Lumbrineridae

Herein, it is presented the diversity of the Family Lumbrineridae in the Portuguese shelf and the description of three new species belonging to the genus Lumbrineris and one new species of *Gallardoneris*, which is also the first record of this genus in the Atlantic Ocean. A taxonomic key to lumbrinerid species from Iberian waters is included. A total of 1943 lumbrinerids were recorded from 222 sampling sites along the Portuguese continental shelf within various projects (Acoshelf and MeshAtlantic). The diversity of lumbrinerids in the study area includes the species Abyssoninoe hibernica, Gallardoneris iberica sp. nov., Lumbrinerides amoureuxi, Lumbrineriopsis paradoxa, Lumbrineris futilis, Lumbrineris latreilli, Lumbrineris luciliae sp. nov., Lumbrineris lusitanica sp. nov., Lumbrineris pinaster sp. nov., Lumbrineris sp., Ninoe armoricana, Scoletoma fragilis, Scoletoma sp. 1 and Scoletoma sp. 2. A comparison of morphological descriptors and intraspecific variability of the most important morphological features measured in all species recorded in the studied area is reported in Table 9. A systematization of the environmental characteristics of the sampling sites where Lumbrineridae species were sampled is presented in Table 10.

The contents of this subchapter are published in Zootaxa as Martins, R., Carrera-Parra, L.F., Quintino, V., Rodrigues, A.M. (2012b) Lumbrineridae (Polychaeta) from the Portuguese continental shelf (NE Atlantic) with the description of four new species. *Zootaxa*, 3416, 1–21.

Systematics

Class Polychaeta Grube, 1850 Family Lumbrineridae Schmarda, 1861 Genus *Gallardoneris* Carrera-Parra, 2006 *Gallardoneris iberica* sp. nov. Figure 26

Material examined. *Type material*: Holotype (MNHN TYPE 1538) northwestern Portuguese continental shelf, site MESH 3B, 39°48.584' N 9°13.773' W, June 2010, in fine sand, 100.5 m. *Paratypes*: MB29–000226, 1 specimen, same data as holotype. DBUA 01315.01, 1 specimen, same data as holotype. ECOSUR0128, 1 specimen, site PC128. MB29–000227, 1 specimen, site MESH 2E. MB29–000228, 2 specimens, site MESH 7E. DBUA 01315.02, 1 specimen, site MESH 7E. *Additional material*: see Martins et al. (2012b).

Description. Holotype complete, with 101 chaetigers, LT=16.0 mm, W10=0.3 mm, L10=1.7 mm. Prostomium conical, slightly longer than wide, with a pair of nuchal organs, ventrally with short buccal lips. Peristomium about 2/3 of the prostomium length, with two rings of similar size (Figure 26-A). All parapodia well developed, first six smaller than following ones. Prechaetal lobe in parapodia 1-5 inconspicuous, in parapodia 6-14 ovoid, from parapodium 15 digitiform; smaller than postchaetal lobe in anterior parapodia, of similar size in median parapodia (15–81), longer than postchaetal from parapodium 82. Postchaetal lobe in parapodia 1–18 auricular, from parapodium 19 digitiform (Figure 26– B–D). Short rounded dorsal cirri in all parapodia. Composite multidentate hooded hooks (CMHH) in chaetigers 1–7, with 2–3 per parapodium, with short blade, with up to 7 teeth, proximal tooth largest (Figure 26–E). Simple multidentate hooded hooks from chaetiger 8, with short hood, with up to 7 teeth, proximal tooth largest, preacicular hook as large as postacicular hook (Figure 26-F). Dorsal limbate chaetae in chaetigers 1-26, ventral limbates in chaetigers 1-7. Aciculae yellow, aristate, one in anterior parapodia and up to two in posterior parapodia. Pygidium with terminal anus, without anal cirri. Mandible completely fused. Maxillary apparatus with four pairs of maxillae: maxillary carriers as long as MI, almost triangular, joined along base of MI (Figure 26–G). MI forceps-like with wide recurved base, without attachment lamella. MII stout, as long as MI, with ligament, with three teeth, without attachment lamella. MIII edentate (Figure 26–H). MIV edentate plate, with whitish central area (Figure 26-I).

Variations. Material examined varied in L10 from 1.2 to 2.3 mm, in W10 from 0.2 to 0.5 mm and also varied in the following features: the last composite multidentate hooded hooks were found from chaetigers 6 to 9; the first simple multidentate hooded hooks appeared from chaetigers 7 to 10; the end of dorsal and ventral limbate ranged from chaetigers 25 to 35 and from 7 to 13 respectively (cf. Table 9).

Reproduction. Mature specimens were found in June and October. The female gametes are globular with a diameter ranging from 129 μ m to 188 μ m. The gametes were located from parapodia 23 until last segment in incomplete specimens examined (Paratypes DBUA 01315.01, MB29–000226). The male gametes of *Gallardoneris iberica* **sp. nov.** are located posteriorly to chaetiger 18 in an incomplete specimen (Paratype MB29–000227). The male gametes have a long tail and a subspherical nucleus with diameter between 2.3 and 3.0 μ m.

Type locality. Portuguese continental shelf.

Etymology. The name of the species refers to the type locality, the Iberian Peninsula.

Distribution and habitat. *Gallardoneris iberica* **sp. nov.** was found in the Portuguese continental shelf at depths ranging from 18 to 180 m (cf. Table 10). The specimens inhabit mainly finer sediments with high content of fines, biogenic fraction and TOM (Table 10). Highest abundances were found in the southern shelf sites (Figure 20–A). The Galician shelf and the Gulf of Cádiz shelf (northwestern and southern Iberia) present extensive mud patches being a continuity of the muddy areas recorded in the shelf off the rivers Minho and Guadiana (Dias et al., 2002; Gonzalez et al., 2004; Martins et al., 2012a). These sediments seem to be preferred by this species and therefore it is expected to be found in those shelf areas.

Remarks. *Gallardoneris iberica* **sp. nov.** is the first record of this genus in the Atlantic Ocean and can be distinguished from the other two known *Gallardoneris* species by the distribution of the CMHH and the SMHH and the shape of the parapodial lobes.

Table 9 – Comparison of morphological descriptors and intraspecific variability of the morphological characters assessed on species found in the Portuguese continental shelf.Legend: nr. = number; ch. = chaetiger; all ch. = feature present in all chaetigers; CMHH = composite multidentate hooded hooks; SMHH = simple multidentate hooded hooks; SBHH = simple bidentate hooded hooks; LSMHH = limbated simple multidentate hooded hooks; * — incomplete specimens. n.a. = not applicable; "—" = no available data.

	Gallardoneris	Lumbrineris luciliae	Lumbrineris	Lumbrineris	Lumbrineris	Lumbrineris futilis
	iberica sp. nov.	sp. nov.	iusiianica sp. nov.	pinasier sp. nov.		0.0.4.0
width 10 ^m ch. (mm)	0.2-0.5	0.6-1.8	0.3-0.9	0.4-0.7	1.0	0.6-4.0
Length through 10 th ch. (mm)	1.2-2.3	2.2-6.3	1.4-3.2	1.3-2.5	2.5	2.2-1.4
Anterior postchaetal lobe (shape)	Auricular	basally	basally	Auricular	basally	basally
Hooded hook (type)	CMHH; SMHH	CMHH; SMHH	CMHH; SMHH	CMHH; SMHH	CMHH; SMHH	CMHH; SMHH
Blade CMHH (type)	short	short	short	long	long	long
Teeth CMHH (nr.)	7	9	7	7	7	7
Last CMHH (ch.)	6-9	14–21	7–15	7–12	19	10–19
Teeth simple HH (nr.)	7	7	7	7/5	10	8
1st SMHH long hood (ch.)	n.a.	n.a.	n.a.	8–13	n.a.	12-20
1st SMHH short hood (ch.)	7–10	14–21	8–16	19–35	20	21-42
1st SBHH (ch.)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Last ventral limbates (ch.)	7–13	14–21	8–17	10–15	25	10–38
Last dorsal limbates (ch.)	25–35	33?-82	25–59	36-45	36	35-74
Aciculae (colour)	Yellow	Yellow curved	Yellow	Yellow	Yellow	Black
Maxillae (nr.)	4	5	5	5	5	5
MI attachment lamellae	Absent	Present	Present	Present	Present	Present
MII ligament	Present	Present	Present	Present	Present	Present
MIII	Edentate	Unidentate arcuate	Unidentate followed by a knob	Unidentate followed by a knob	Bidentate	Unidentate followed by a knob
MIV	Edentate with whitish central area	Unidentate with a well-developed plate	Unidentate with pointed tooth	Unidentate with a well-developed plate	Unidentate with pointed tooth	Unidentate with pointed tooth
Postchaetal branchiae	Absent	Absent	Absent	Absent	Absent	Absent
Eggs size (µm)	129–188	_	181–192	98-147	—	—
Sperm size (µm)	_	2.0-3.0	2.8-3.2	2.5-3.0	_	_

	Lumbrineriopsis paradoxa	Lumbrinerides amoureuxi	Ninoe armoricana	Abyssoninoe hibernica	Scoletoma cf. fragilis
Width 10th ch. (mm)	0.4-0.8	0.3-0.6	0.5-1.1	0.4-1.1	1.2-2.1
Length through 10 th ch. (mm)	2.4-3.4	2.1-3.0	1.4-3.1	1.4-3.8	3.1–5.1
Anterior postchaetal lobe (shape)	Digitiform	First 6 rounded, then digitiform	Digitiform	Conical	Auricular
Hooded hook (type)	SBHH	SBHH	SMHH	LSMHH SMHH	SMHH
Blade CMHH (type)	n.a.	n.a.	n.a.	n.a.	n.a.
Teeth CMHH (nr.)	n.a.	n.a.	n.a.	n.a.	n.a.
Last CMHH (ch.)	n.a.	n.a.	n.a.	n.a.	n.a.
Teeth simple HH (nr.)	2	2	7–8	7–9	7
1 st SMHH long hood (ch.)	n.a.	n.a.	8–18	6–18	13-16
1st SMHH short hood (ch.)	n.a.	n.a.	23-36	30-71	*
1st SBHH (ch.)	1	5	n.a.	n.a.	n.a.
Last ventral limbates (ch.)	All ch.	All ch.	All ch.	37-78	48
Last dorsal limbates (ch.)	All ch.	All ch.	All ch.	All ch.	33
Aciculae (colour)	Yellow	Yellow	Reddish	Yellow	Black
Maxillae (nr.)	4	4	5	4	5
MI attachment lamellae	Present	Present	Present	Present	Present
MII ligament	Present	Absent	Present	Present	Present
MIII	Unidentate	Unidentate arcuate	With up to 4 teeth	Unidentate	Unidentate
MIV	Multidentate	Unidentate	Multidentate	Broad rectangular plate with a projection from middle of its inferior border	Unidentate
Postchaetal branchiae	Absent	Absent	Present (ch.3–35)	Absent	Absent
Eggs size (µm)	_	_		—	_
Sperm size (µm)	—	_	—	-	-

iberica	Lumbrineris luciliae	Lumbrineris Iusitanica	Lumbrineris pinaster	Lumbrineris	Lumbrineris futilis	Lumbrineriopsis	Lumbrinerides	Ninoe	Abyssoninoe	Scoletoma of fracilis
	sp. nov.	sp. nov.	sp. nov.	lati Cilli	CIIIIII	haiauuxa	arrouteux	arrioricaria	INDELINE	
9.3	32.7-179.3	13.8-190.0	11.0-160.5	28.7	25.6-128.3	7.0-126.9	67.9-195.0	92.9-138.5	16.0-190.0	28.9-125.5
2.7	81.6±50.9	75.1±42.1	48.1±30.9	28.7	60.1±32.3	50.5±26.0	119.9±35.2	114.7±14.8	43.2±100.1	77.9±45.9
0	6.2±19.3	7.1±15.5	2.8±6.2	3.73	20.4±29.0	23.9±20.1	4.9±11.9	0.2±0.5	2.2±6.6	13.2±22.9
4.8	64.9±22.2	77.5±19.3	57.6±29.7	65.85	68.4±25.0	72.2±19.5	73.2±11.5	48.3±24.3	58.9±25.9	66.9±20.6
6.3	28.9+20.5	15.4±17.8	39.7±32.1	30.43	11.2±13.8	3.8±10.4	21.7±12.1	51.6+24.4	39.0+27.3	19.9±20.5
1.8	8.0±6.5	3.8±8.3	6.4±6.9	6.02	5.2±7.3	5.7±11.2	5.6±2.7	2.4±4.8	2.6±4.0	3.0±4.0
9.	3.8±1.7	2.6±1.6	4.7±1.91	2.93	2.1±1.4	1.2±1.1	3.4±0.6	5.6±1.6	4.6±1.9	2.7±2.2
very	Several	All type of	Mud, very	Very fine	Fine gravel,	Coarser	Fine sand,	Mud, very	Mud, very	Very fine
and,	types of	sediments	fine sand,	sand	fine sand	sediments	medium sand,	fine sand,	fine sand,	and medium
and	sediments	but mostly	fine sand,				very fine sand	fine sand	fine sand	sand and
	but mostly	finer sands	coarse							fine gravel
	Tine sand		sand							
	and mud		:	:						
lese	Mainly	Portuguese	Southern	Southern	Portuguese	Portuguese	Mainly SW	Portuguese	Portuguese	MN
-	Bortingingeo	sneit	Portuguese	Portuguese	sneit	sneit	Portuguese	sneir	sneit	Portuguese
	shelf		Tagus	SI ICII			SIGI			SIGI
			Estuary							

Table 10 – Environmental characterization of the sites where Lumbrineridae speciesoccurred along the Portuguese continental shelf (SD = standard deviation).

Figure 26 – *Gallardoneris iberica* **sp. nov.** Paratype (ECOSUR0128). Legend: A, anterior end, dorsal view; B, parapodium 4, frontal view; C, parapodium 16, frontal view; D, parapodium 88, frontal view; E, composite multidentate hooded hook, from parapodium 4; F, simple multidentate hooded hooks, from parapodium 16; G, maxillary apparatus, dorsal view; H, maxillae III; I, maxillae IV. Scale bars: A, 0.3 mm; B, C, D, 0.025 mm; E, F, 0.012 mm; G, 2.5 mm; H, I, 0.5 mm.

Genus *Lumbrineris* de Blainville, 1828 *Lumbrineris lucilia*e sp. nov.

Figure 27

Material examined. *Type material*: Holotype (MNHN TYPE 1539) southern Portuguese continental shelf, site PC201, 37°02.860' N 8°25.285' W, April 2008, in fine sand, 32.7 m. *Paratypes:* MB29–000229, 1 specimen, site PC125. ECOSUR0129, 1 specimen, site PC191. DBUA 01317.01, 1 specimen, site MESH 3D. *Additional material:* see Martins et al. (2012b).

Description. Holotype mature male complete with 121 chaetigers (last 17 chaetigers regenerating), LT=52.0 mm, L10=4.7 mm, W10=1.8 mm. Prostomium subconical, as long as wide, with a pair of nuchal organs, ventrally with short buccal lips. Peristomium with two rings, anterior ring twice as long as second one (Figure 27-A). All parapodia well developed, first six smaller than following ones. Prechaetal lobe in first parapodia inconspicuous, in chaetigers 2-10 as a small globular protuberance, conical in posterior chaetigers; always smaller than postchaetal lobe. Postchaetal lobe digitiform in parapodia 1, digitiform wide basally from parapodia 2 to 28; in posterior chaetigers digitiform; larger in anterior and posterior parapodia; always longer than prechaetal lobe (Figure 27–B–D). Short rounded dorsal cirri in all parapodia. Composite multidentate hooded hooks in chaetigers 1–21, 3–8 per parapodium, with short blade, with up to 9 teeth, all of similar size (Figure 27–E). Simple multidentate hooded hooks from chaetiger 21, with short hood, with up to 7 teeth, proximal tooth largest; preacicular hook with a section that is twice as large as the postacicular hook (Figure 27–F). Dorsal limbate chaetae in chaetigers 1–82, ventral limbate chaetae in chaetigers 1-21. Aciculae yellow, aristate, distally curved in median and posterior parapodia (Figure 27–G), up to five in anterior parapodia and two in posterior parapodia. Pygidium with terminal anus, with two pairs of anal cirri of similar size. Mandible divided for about half its length. Maxillary apparatus with five pairs of maxillae; maxillary carriers as long as MI. MI forceps-like with attachment lamella well developed. MII as long as MI, with wide connecting plates slightly developed; with four teeth of similar size. MIII arcuate, unidentate. MIV unidentate, with well-developed plate. MV free, prominent, lateral to MIV and MIII (Figure 27–H).

Variations. The specimens examined ranged in L10 from 2.2 to 6.3 mm, in W10 from 0.6 to 1.8 mm and varied in the following features: the last appearance of the composite multidentate hooded hooks and ventral limbates and the first simple multidentate hooded hooks ranged from chaetigers 14 to 21 (cf. Table 9).

Reproduction. One mature male was found (Holotype MNHN TYPE 1539) in April; the sperm cells have a long tail and a head with a subspherical nucleus, which diameter ranging from 2 to $3 \mu m$.

Type locality. Southern Portuguese continental shelf.

Etymology. This species is named in honor of Lucília Gonçalves, mother of the first author.

Distribution and habitat. *Lumbrineris luciliae* **sp. nov.** occurred in several sediment types from gravel to mud, characterized by high sand and biogenic contents, on average, 65% and 8% respectively (cf. Table 10). The species is distributed on the whole Portuguese continental shelf, but mainly in the southern shelf, at water depths ranging from 33 to 179 m (cf. Table 10). Highest abundances were found in the western part of the southern shelf (Figure 20–B). The species seems to occur mainly in biogenically enriched sediments. The biogenic fraction of the sediment is mainly composed of skeletal remains of molluscs, echinoderms or other fauna. Those mixed sediments may play some role in the creation of a favorable predator habitat and/or a protective habitat to these specimens, which are bigger than the other new species.

Remarks. *Lumbrineris luciliae* **sp. nov.** has an arcuate, unidentate MIII and MIV unidentate with well-developed plate, digitiform wide basally postchaetal lobes in anterior parapodia, composite multidentate hooded hooks with short blade, simple multidentate hooded hooks of two sizes, preacicular hook twice as big as postacicular hook, and distally curved aciculae in median and posterior parapodia.

Figure 27 – *Lumbrineris luciliae* **sp. nov.** Paratype (ECOSUR0129). Legend: A, anterior end, dorsal view; B, parapodium 3, frontal view; C, parapodium 13, frontal view; D, parapodium 77, frontal view; E, composite multidentate hooded hook, from parapodium 3; F, simple multidentate hooded hook from parapodium 77; G, acicula from parapodium 86; H, maxillae III and IV, dorsal view. Scale bars: A, 1.0 mm; B, C, D, H 0.1 mm; E, F, 0.025 mm; G, 0.01 mm.

Lumbrineris lusitanica sp. nov.

Figure 28

Material examined. *Type material*: Holotype (MNHN TYPE 1540) northwestern Portuguese continental shelf, site R16, 41°27.557' N 8°51.866' W, October 2007, in fine sand, 52.3 m. *Paratypes*: MB29–000230, 2 specimens, same data as holotype. MB29– 000231, 2 specimens, site PC114. MB29–000232, 6 specimens, site PC118. MB29– 000233, 1 specimen, site PC119. ECOSUR0130, 2 specimens, site R25. DBUA 01316.01, 2 specimens, site PC118. DBUA 01316.02, 1 specimen, site PC119. *Additional material*: see Martins et al. (2012b).

Description. Holotype complete with 174 chaetigers, LT=33.5 mm, L10=2.5 mm, W10=0.7 mm. Prostomium conical, slightly longer than wide, with a pair of nuchal organs, short buccal lips ventrally. Peristomium shorter than prostomium, about half its length, with two rings of similar size (Figure 28–A). All parapodia well developed, first six smaller than following ones. Prechaetal lobe in parapodia 1-4 inconspicuous; from parapodia 5 very short, as a globular projection, gradually increasing in length between parapodia 6-15; from parapodia 16 as a digitiform lobe, always smaller than postchaetal lobe. Postchaetal lobe in parapodia 1 small and conical; in parapodia 2-48 digitiform wide basally; becoming longer in posterior parapodia (Figure 28-B-D). Short rounded dorsal cirri in all parapodia. Composite multidentate hooded hooks in chaetigers 1–11, 2–3 per chaetiger, with short blade, with up to 7 teeth, proximal tooth largest (Figure 28-E). Simple multidentate hooded hooks from chaetiger 11, with short hood, with up to 7 teeth, preacicular hook twice as big as postacicular hook, proximal tooth largest (Figure 28–F). Dorsal limbate chaetae in chaetigers 1–38, ventral limbate chaetae in chaetigers 1–11. Aciculae yellow, aristate, one in anterior parapodia and up to two in the posterior parapodia. Pygidium with terminal anus, with two pairs of anal cirri, dorsal longer than ventral pair. Mandible divided for about half its length. Maxillary apparatus with five pairs of maxillae; maxillary carriers as long as MI, anterior end constricted. MI forceps-like with attachment lamella well developed. MII as long as MI, with wide connecting plates slightly developed; with four teeth of similar size. MIII unidentate, followed by a knob, with a very prominent projection in the basal part of the maxilla. MIV unidentate, with a pointed tooth. MV free, prominent, lateral to MIV and MIII (Figure 28–G).

Variations. The material examined ranged in L10 from 1.4 to 3.2 mm, in W10 from 0.3 to 0.9 mm and varied in the following features: the last composite multidentate hooded hook was found from chaetigers 7 to 15; the first simple multidentate hooded hook was found

from chaetigers 8 to 16; the last ventral limbate ranged from chaetiger 8 to 17 and the last dorsal limbate from 25 to 59 (cf. Table 9).

Reproduction. Mature specimens were found only in October. Male gametes of *Lumbrineris lusitanica* **sp. nov.** (Paratypes MB29-000231, DBUA 01316.02) were located from chaetiger 35 to 139, and had a long tail and head with a subspherical form, with diameters ranging from 2.8 to $3.2 \mu m$. Female gametes (Paratypes MB29-000232, DBUA 01316.01) were located from parapodia 34 though the last segment of an incomplete specimen. The gametes were globular with a size diameter ranging between 181 and 192 μm .

Distribution and habitat. *Lumbrineris lusitanica* **sp. nov.** is widely distributed on the whole Portuguese continental shelf, at water depths ranging from 14 to 190 m, but mostly below 100 m (cf. Table 10). The species is recorded in mud as well as in fine gravel however, it is usually found in fine and very fine sands with low to moderate fines content. Overall, the sediments are characterized by very high sand content and low to moderate content in fines, gravel, biogenic fraction and TOM (averages of 77.5%, 15.4%, 7.1%, 3.8% and 2.6%, respectively) (cf. Table 10). Highest abundances were found in sheltered sites, mostly in the southern shelf (Figure 20–C).

Type locality. Northwestern and western Portuguese continental shelf.

Etymology. The specific name *lusitanica* refers to the western Iberian Roman province, where this species is very dominant.

Remarks. *Lumbrineris lusitanica* **sp. nov.** has digitiform wide basally postchaetal lobes in the anterior parapodia, CMHH with short blade, SMHH with short hood and MIII unidentate followed by a knob.

Figure 28 – *Lumbrineris Iusitanica* **sp. nov.** Paratype (ECOSUR0130). Legend: A, anterior end, dorsal view; B, parapodium 3, frontal view; C, parapodium 13, frontal view; D, parapodium 79, frontal view; E, composite multidentate hooded hook, from parapodium 3; F, simple multidentate hooded hooks, from parapodium 79; G, maxillae III and IV, dorsal view. Scale bars: A, 0.7 mm; B, C, D, G 0.05 mm; E, F, 0.025 mm.

Lumbrineris pinaster sp. nov.

Figure 29

Material examined. *Type material*: Holotype (MNHN TYPE 1541) western Portuguese continental shelf (off Tagus Estuary, Lisbon), site PC115, 38°35.368' N 9°25.567' W, in mud, 97.7 m. *Paratypes*: ECOSUR0131, 1 specimen, site PC187. MB29–000234, 1 specimen, site PC203. MB29–000235, 10 specimens, site G19(2). MB29–000236, 3 specimens, site G28(1). MB29–000237, 3 specimens, site G28(2). DBUA 01318.01, 3 specimens, site G22(1). DBUA 01318.02, 10 specimens, site G19(2). *Additional material*: see Martins et al. (2012b).

Description. Holotype incomplete with 101 chaetigers, LT=18.1 mm, L10=1.6 mm, W10=0.4 mm. Prostomium conical, as long as wide, with a pair of nuchal organs, ventrally with short buccal lips. Peristomium half the length of prostomium, with two rings; anterior ring 0.75 of total peristomial length (Figure 29–A). All parapodia well developed, first four smaller than following ones. Prechaetal lobe rounded with globular protuberance directed dorsally, increasing in size gradually from chaetigers 1 to 12, preserving shape and size to end; always smaller than postchaetal lobe. Postchaetal lobe auricular from parapodia 1 to 13, gradually transforming to digitiform lobe, clearly visible from parapodium 30; longer in posterior parapodia (Figure 29–B–D). Short rounded dorsal cirri in all parapodia. Composite multidentate hooded hooks in chaetigers 1–10, 2–3 per chaetiger, with long blade, up to 7 teeth, all of similar size (Figure 29–E). Simple multidentate hooded hooks of two types; from chaetiger 11 to 22, with long hood, up to 7 teeth, proximal tooth slightly largest (Figure 29-F); from chaetiger 23 with short hood, up to 5 teeth, proximal tooth largest. Preacicular hook with a section that is twice as large as the postacicular hook (Figure 29–G–H). Dorsal limbate chaetae in chaetigers 1–41, ventral limbate chaetae in chaetigers 1–12. Aciculae yellow, aristate, up to two per chaetiger. Pygidium with terminal anus and two pairs of anal cirri (paratype MB29-000234). Mandible divided for about half its length. Maxillary apparatus with five pairs of maxillae; maxillary carriers as long as MI, anterior end constricted. MI forceps-like with well-developed attachment lamella. MII as long as MI, with wide connecting plates slightly developed; with four teeth of similar size. MIII unidentate, followed by a knob, .MIV unidentate with a well-developed plate. MV free, prominent, lateral to MIV and MIII (Figure 29–I).

Variations. The specimens examined ranged in L10 from 1.3 to 2.5 mm, in W10 from 0.4 to 0.7 mm, and varied in the following features: the last CMHH were observed from chaetiger 7 to 12; the first SMHH with long hood from chaetiger 8 to 13; the first SMHH

with short hood from chaetiger 19 to 35; the end of ventral limbate from chaetiger 10 to 15; and the end of dorsal limbate from chaetiger 36 to 45 (cf. Table 9).

Reproduction. Mature specimens were only found in October. The male gametes of *Lumbrineris pinaster* **sp. nov.** are located posteriorly to chaetiger 37 (paratypes MB29–000235, MB29–000236, MB29–000237, DBUA 01318.01, DBUA 01318.02); they have a long tail and a subspherical nucleus with diameter between 2.5 and 3 µm. The female gametes cells are located from parapodia 38 (paratypes MB29–000235, MB29–000236, MB29–000237, DBUA 01318.01, DBUA 01318.02); they have a important of the second second

Distribution and habitat. This species occurred only on the southern Portuguese continental shelf and off the Tagus Estuary at shelf depths. It was mainly found at nearly 50 m depth (cf. Table 10). Highest abundances were found in the southern shelf (Figure 20–D). The species shows a preference for mud, very fine and fine sands. Sediments are characterized by high fines, biogenic and TOM contents (averaging, 39.7%, 6.4% and 4.7% respectively) (cf. Table 10). Although the northwestern deeper shelf is dominated by finer sediments (Martins et al., 2012a), the species was not recorded there. It is possible that the Lisbon/Cascais canyons could set a barrier to the distribution of this species. It is expected that *Lumbrineris pinaster* **sp. nov.** might also occur in the Gulf of Cádiz muddy area (southwestern Spain), which is a continuation of the extensive mud patch present in the southern Portuguese shelf.

Type locality: Off the Tagus Estuary (Lisbon), Portugal.

Etymology. The specific name was derived from the Maritime Pine seed (*Pinus pinaster*) which has a peculiar wing, resembling the Maxillae IV of this *Lumbrineris*.

Remarks. *Lumbrineris pinaster* **sp. nov.** has auricular postchaetal lobes in the anterior parapodia, CMHH with long blade, SMHH with short and long hood and MIII unidentate followed by a knob.

Figure 29 – *Lumbrineris pinaster* **sp. nov.** Paratype (ECOSUR0131). Legend: A, anterior end, dorsal view; B, parapodium 3, frontal view; C, parapodium 13, frontal view; D, parapodium 153, frontal view; E, composite multidentate hooded hook, from parapodium 3; F, simple multidentate hooded hook with long hood, from parapodium 13; G, preacicular simple multidentate hooded hook with short hood, from parapodium 79; H, postacicular simple multidentate hooded hook with short hood, from parapodium 79; I, maxillae III and IV, dorsal view. Scale bars: A, 0.4 mm; B, C, 0.5 mm; D, I, 0.025 mm; E, F, 0.012 mm.

Multivariate analysis

The results of the ordination analysis based on morphological descriptors of the lumbrinerid species occurring in the studied area are shown in Figure 30-A with a detailed analysis of the data relative to the three new Lumbrineris species shown in Figure 30-B. Axis 1 accounts for 35.6% of the total variation and is characterized by the separation of species with five maxillae, MIV completely pigmented, MI attachment lamellae, on the positive pole, and species with four maxillae and both MIII and MIV edentate, on the negative pole. This axis thus separates Lumbrineris species and Ninoe armoricana, on the positive pole, from Gallardoneris iberica sp. nov., on the left pole. Axis 2 accounts for 27.5% of the total variation and shows the separation of species with both CMHH and SMHH (Lumbrineris and Gallardoneris species) from species with simple bidentate hooks (Lumbrinerides amoureuxi and Lumbrineriopsis paradoxa) and limbated simple multidentate (Abyssoninoe hibernica). Gallardoneris iberica sp. nov. is positioned on the negative pole of axis 1 and positive pole of axis 2 in the ordination analysis (Figure 30–A). The main morphological characters that allow its differentiation from the other species, are the presence of four maxillae, MII without attachment lamellae, MIII edentate, MIV edentate with a whitish central area, presence of both composite and SMHH and absence of postchaetal branchiae, bidentate and limbated multidentate hooded hooks. The Lumbrineris species are positioned on the positive poles of axis 1 and 2 (Figure 30-A). They are separated from the other genera mostly by the absence of postchaetal branchiae (which is only found in *Ninoe*), bidentate simple hooded hooks (*Lumbrineriopsis*) and Lumbrinerides) and limbated simple hooded hooks (Abyssoninoe), and the presence of five pairs of maxillae (Abyssoninoe, Gallardoneris, Lumbrineriopsis and Lumbrinerides have four pairs of maxillae). The detailed analysis of the morphological descriptors of the new Lumbrineris species are shown in Figure 30–B. Axis 1 accounts for 49.4% of the total variance and separates species with MIII unidentate, aciculae distally curved in median and posterior parapodia and the highest values of W10 (Lumbrineris luciliae sp. nov.) from the other two new species characterized by MIII unidentate followed by a knob and aciculae straitght (L. lusitanica sp. nov and L. pinaster sp. nov). Axis 2 accounts for 41% of total variance and separates the species on the positive pole, *L. pinaster* **sp. nov.**, from L. lusitanica sp. nov., on the negative pole. The descriptors which contribute to this separation are MIV type, first SMHH and presence/absence of anterior postchaetal lobe auricular and prominent projection on MIII. The descriptor "anterior postchaetal lobe digitiform wide basally" contributes to both axes, being shared by the species L. luciliae sp. nov., and L. lusitanica sp. nov.

Figure 30 – Ordination analysis based on morphological descriptors of specimens of *Abyssoninoe, Lumbrineris, Gallardoneris, Lumbrinerides, Lumbrineriopsis* and *Ninoe* species (A) and of *Lumbrineris luciliae* **sp. nov.**, *L. lusitanica* **sp. nov.** and *L. pinaster* **sp. nov.** The most correlated variables (rho>0.8) are shown as dashed vectors. Legend: A.P.L. – postchaetal lobe shape in anterior parapodia; CMHH – composite multidentate hooded hook; SMHH – simple multidentate hooded hook; SBHH – simple bidentate hooded hook; MI attach. lam. – MI attachment lamellae; MIII unid. + knob – MIII unidentate followed by a knob; prominent proj. MIII – prominent projection in the basal part of MIII; MIV unid. + dev. plate – MIV unidentate with a developed plate; MIV unid. + pointed tooth – MIV unidentate with a pointed tooth; W10 – width at chaetiger 10 excluding parapodia.

The multivariate analysis of the morphological descriptors showed a very good separation of the four new species, and between these and the other recorded species on the Portuguese continental shelf. The following key to the Lumbrineridae species of Iberian waters is based on the understanding gained from that analysis.

Key to the Lumbrineridae species from the Iberian waters

 MI without internal accessory teeth Lumbrinerides acuta sensu Ramos, 1976^{*1} MII with three teeth; prostomium cylindrical, very elongated Lumbrinerides carpinei[*] MII with four teeth; prostomium acorn-shaped Lumbrinerides amoureuxi 14 MIII unidentate; aciculae black; SMHH from chaetiger 15
 Prechaetal lobe always shorter than postchaetal lobe
 Postchaetal lobe digitiform wide basally in anterior parapodia; aciculae distally curved in median and posterior parapodia
 Aciculae black; postchaetal lobe digitiform in anterior parapodia

* Recorded in Iberian waters, but not found in this study.
 ¹ Ramos (1976) recorded *L. acuta* from Spain and described MI without accessory teeth; however, *L. acuta*, a species

described from Rhode Island, has MI with one accessory tooth (Perkins, 1979). ² S. *impatiens* (from France) has been considered synonym of S. *tetraura* (from South Africa), without a revision of both species. Therefore, we recommend that for European seas the name S. *impatiens* should be used instead S. *tetraura*. A complete revision of both species is needed to clarify their status which is beyond the scope of the present study. ³ Record questionable according to Carrera-Parra (2006b).

3.8.2. Diversity of the Family Pisionidae

The following results present some details of the diversity and distribution of the genus Pisione Grube, 1857, Family Pisionidae Southern, 1914, on the Portuguese continental shelf. A total of 692 Pisione specimens were recorded at 48 sites sampled in various campaigns along the Portuguese shelf, belonging to *P. remota* (382 specimens, at 33 sites), P. parapari (295, at 35 sites), P. inkoi (7, at 4 sites) and P. guanche (8, at 6 sites). The present work shows that the four species can co-occur (Figure 31). Also, P. remota was found together with P. parapari at 16 sites, P. remota, P. parapari and P. guanche at 5 sites and P. remota with P. inkoi at 1 site. Nevertheless, P. parapari (13 sites, mainly in the southern near shore shelf), P. remota (10 sites mainly in the western shelf) and P. inkoi (2 sites of the western deeper shelf) may occur individually. These Pisione species occur with the molluscs Thracia villosiuscula, Angulus pygmaeus, Caecum sp., Limatula subovata, Digitaria digitaria, Gari costulata and Goodallia triangularis, the polychaetes Protodorvillea kefersteini and Gyptis propingua and the sipunculid Aspidosiphon (Aspidosiphon) muelleri muelleri. Table 11 reports the mean and associated variability of the morphological descriptors studied in the four *Pisione* species and Table 12 presents a summary of the environmental characteristics of the sampling sites is presented in. The species are characteristic of coarser sediments as shown by the high gravel and sand content and low fines content of the sediment sites.

The contents of this subchapter are published in Zootaxa in Martins R., San Martín G., Rodrigues A.M., Quintino V. (2012c) On the diversity of the genus *Pisione* (Polychaeta, Pisionidae) along the Portuguese continental shelf, with a key to European species. *Zootaxa*, 3450, 12–22.

Table 11 – Morphological descriptors mean values and standard deviation (SD) of the Pisione species found on the Portuguese continental shelf. Legend: W10 = width at chaetiger 10; CP2/CP3 = ratio between the length of the dorsal cirri of parapodia 2 (CP2) and parapodia 3 (CP3); NrT = number of teeth of the supra-acicular chaetae; P1/W10 = ratio between protruding length of the notoaciculae through the parapodia (P1) and W10; IA = presence/absence of infra-acicular simple chaeta; * = incomplete specimen.

	Pisione guanche	Pisione inkoi	Pisione parapari	Pisione remota
Number of specimens analysed	8	7	30	30
Total length (mean \pm SD, mm)	13.933±4.631	7.900±1.771	4.114±1.390	6.915±4.576
W10 (mean ± SD, mm)	0.495±0.142	0.409±0.105	0.409±0.105 0.191±0.023	
Number of parapodia	22*– 47	12*– 47	26 – 51	26 – 97
CP2 (mean ± SD, mm)	0.095±0.016	0.044±0.011	0.034±0.006	0.038±0.009
CP3 (mean ± SD, mm)	0.035±0.005	0.044±0.011	0.024±0.004	0.037±0.009
CP2/CP3 (mean ± SD, mm)	2.693±0.375	0.993±0.012	1.382±0.081	1.008±0.029
P1 (mean ± SD, mm)	0.032±0.009	0.089±0.011	0.000±0.000	0.000±0.000
P1/W10 (mean ± SD, mm)	0.066±0.013	0.233±0.062	0.000±0.000	0.000±0.000
Longest blade (mean ± SD, mm)	0.023±0.002	0.050±0.007	0.024±0.002	0.017±0.002
NrT (number)	2	1	2	1
IA (number)	0	0	0	1
			10, 18; 11,	
			18; 11, 19;	16 – 17; 16 –
Male copulatory organs	33 – 38; 34 –	No male	11, 20; 10,	18; 20 – 21;
(chaetigers)	41; 40 – 47	found	12, 20; 11,	24 – 28; 28 –
			12, 20; 11,	35; 29 – 32
			12, 21	

Table 12 – Environmental characterization of the sites where Pisione species occurred along the Portuguese continental shelf. Legend: SD = standard deviation; Gravel = grain-size fraction > 2 mm; Sand = grain-size fraction 0.063 - 2 mm; Fines = grain-size fraction < 0.063mm; Biogenic fraction = faunal skeletal remains > 2.0 mm; TOM = total organic matter content; MS = medium sand; CS = coarse sand; VCS = very coarse sand; G = fine gravel.

	Pisione guanche	Pisione inkoi	Pisione parapari	Pisione remota
Total abundance	7	8	295	382
Depth (range, m)	25 – 80	74 – 127	3 – 80	3 – 80
Depth (mean \pm SD, m)	44.2±16.3	95.2±20.6	24.6±18.6	35.9±20.1
Gravel content (mean ± SD, %)	37.6±24.3	36.4±29.1	13.1±20.1	22.2±22.4
Sand content (mean ± SD, %)	54.3±21.4	60.6±25.8	85.0±21.1	75.8±22.8
Fines content (mean ± SD, %)	8.0±15.6	3.0±3.7	1.9±7.5	2.0±7.8
Biogenic content (mean ± SD, %)	4.6±3.6	1.4±0.3	5.9±6.9	6.6±7.7
TOM content (mean ± SD, %)	0.8±0.5	2.4±1.7	0.9±0.5	0.8±0.4
	G (33%),	C (240/)	CS (63%),	CS (42%),
Main addiment types	VCS (33%),	G(34%),	VCS (14%),	VCS (36%),
Main Sediment types	CS (17%),	VCS (33%), MS (33%)	G (11%),	G (18%),
	MS (3%)	1013 (33%)	MS (11%)	MS (3%)

Systematics

Class Polychaeta Grube, 1850 Order Phyllodocida Levinsen, 1883 Family Pisionidae Southern, 1914 Genus *Pisione* Grube, 1857

Pisione guanche San Martín, López and Núñez, 1999

Material examined. MB29–000239, 1 specimen, site PC137; MB29–000240, 1 specimen, site PC138. Additional material: see Martins et al. (2012c).

Brief description. Body width (10th chaetiger) between 0.30 and 0.68 mm, total length between 9.80 and 20.40 mm and total number of chaetigers up to 74. Buccal acicula protruding obliquely, not exceeding chaetiger 1 backwards, with distal margin showing few irregular dentations at tip. All prechaetal lobes bilobed. Dorsal cirri of chaetiger 2, 2.3 to 3.3 times longer than dorsal cirri of chaetiger 3 and subsequent ones (Table 11). All dorsal cirri globular, with a short, spherical distal papilla with a pilose tip, except that of chaetiger 2, which is digitiform. Two types of chaetae: four short-bladed compound heterogomph chaetae (blade length ranging from 18 to 26 μ m; cf. Table 11) and one supra-acicular simple chaeta distally bidentate. One stout protruding notoaciculum, up to 0.049 mm. Male genitalia with 6 to 8 pairs of consecutive copulatory organs, in chaetigers 33 – 38, 34 – 41, 40 – 47 (MB29–000240; cf. Table 11). Female sexual organs not visible externally (MB29–000239). Pygidium with two long anal cirri.

Distribution and habitat. This species occurred in fine gravel (33%), very coarse (33%), coarse (17%) and medium sand (17%), with low total organic matter content, usually below 1% of total sediment dry weight and high biogenic content (4.6% in average). Specimens were recorded mainly between 25 and 80 m deep (cf. Table 12). This work extends the distribution depth range of this species, previously recorded between 8 and 45 m (San Martín et al., 1999). The northern distribution limit of *P. guanche* is now extended to off Peniche (south of the Nazaré Canyon; Figure 31), being also present immediately south of the Setúbal Canyon, along the southwestern coastal shelf sector. This is the first record of *P. guanche* in the Lusitanean biogeographic province, increasing to five the number of species known for the European continental waters. *Pisione guanche* is presently known from three biogeographic provinces: the Macaronesia (San Martín et al., 1999; Moreira et al., 2010), the Lusitanean (this study) and the Mediterranean Sea (Çinar (2009) reported it as an alien species on the southern coast of Turkey).

Remarks. Dorsal cirri of chaetiger 2 is up to 3.3 times longer than the dorsal cirri of chaetiger 3 whilst San Martín et al. (1999) and Moreira et al. (2010) reported that the dorsal cirri of chaetiger 2 was only twice as long.

Pisione inkoi Martínez, Aguirrezabalaga and Adarraga, 2008

Material examined. MB29–000241, 1 specimen, site PC89; MB29–000242, 1 specimen, site PC104. Additional material: see Martins et al. (2012c).

Brief description. Width of chaetiger 10 ranging from 0.25 and 0.62 mm, total length from 5.50 to 9.60 mm, with up to 47 chaetigers. Buccal aciculae protruding obliquely, not exceeding length of chaetiger 1, with subrounded distal margin. Prechaetal lobes bilobed in anterior chaetigers and entire on remaining segments. All dorsal cirri globular, small and similar in size (Table 11). Three types of chaetae: three long-bladed compound chaetae (blade length ranging from 39 to 65 μ m; cf. Table 11), one short-bladed compound falciger and one supra-acicular simple chaeta, distally unidentate. One stout protruding notoacicula, up to 0.11 mm. Female genital chaetigers with a simple cirriform process developed ventrally at base of parapodium. Female gametes globular, with a diameter ranging from 40 μ m to 89 μ m, located in chaetigers 29 – 42 (MB29–000241). No males were found in our samples. Pygidium with two long anal cirri.

Distribution and habitat. This species occurred in fine gravel (33%), very coarse (33%), and medium sand (33%), with moderate total organic matter content, 2.4% of total sediment dry weight in average and low biogenic content (1.4% in average). Specimens of this species were recorded mainly in the western Portuguese coast, between 74 and 127 m deep (cf. Table 12). The present study extends the distribution depth range of *P. inkoi*, previously known from 56 to117 m (Martínez et al., 2008). This species was known for the northern Iberian Peninsula and this study extends its southern limit to the western sector of the Portuguese continental shelf (Figure 31).

Pisione parapari Moreira, Quintas and Troncoso, 2000

Material examined. MB29–000243, 1 specimen, site PC91; MB29–000244, 1 specimen, site PC132. Additional material: see Martins et al. (2012c).

Brief description. Width of 10th chaetiger from 0.14 to 0.24 mm, total length from 2.24 to 7.60 mm, and total number of chaetigers ranging from 26 to 51. Buccal aciculae protrude obliquely the skin, not exceeding length of chaetiger 1, with a smooth distal margin. Prechaetal lobes entire. Dorsal cirri of chaetiger 2 is 1.3 to 1.6 times longer than the dorsal cirri of chaetiger 3 and following ones (cf. Table 11). All dorsal cirri globular-

piriform, with a papilla with pilose tip, except on chaetiger 2 digitiform. Three types of chaetae: one long-bladed compound heterogomph chaeta with curved tip (blade length ranging from 21 to 28 μ m; cf. Table 11), three short-bladed compound heterogomph chaetae and one supra-acicular simple chaeta distally bidentate. One stout notoaciculum embedded in all parapodia. Male genitalia with 2 to 3 pairs of copulatory organs appearing on chaetigers 11, 12, 21 (MB29–000243) or alternating on chaetigers 10, 18, 19, 20 in additional material (cf. Table 11). Female sexual organs not visible externally. Female gametes globular, with a diameter ranging from 38 μ m to 64 μ m, located in chaetigers 20 – 43 (MB29–000244) or earlier in additional material (19 – 28), depending on size of specimen. Pygidium with two long anal cirri.

Distribution and habitat. This species occurred in fine gravel (11%), very coarse (14%), coarse (63%) and medium sand (11%), with low total organic matter content, usually below 1% of total sediment dry weight and high biogenic content (5.9% in average). Specimens were recorded mainly in the near shore shelf of the western and southern Portuguese coast, between 3 and 80 m water depth, 24.6 m on average (cf. Table 12). The distribution depth range of this species is expanded since *P. parapari* was only previously recorded from 8 to 12 m (Moreira et al., 2000b). This species was only known in the northern Iberian Peninsula and this study extends its southern limit to the southern sector of the Portuguese continental shelf (Figure 31).

Remarks. In males, copulatory organs usually appeared in alternate parapodia, but in some cases they appeared in consecutive parapodia, which is not consistent with Moreira et al. (2000b).

Pisione remota (Southern, 1914)

Material examined. MB29–000245, 1 specimen, site R70; MB29–000246, 1 specimen, site PC91. Additional material: see Martins et al. (2012c).

Brief description. Width of 10^{th} chaetiger ranged between 0.19 and 0.46 mm, total length up to 25.5 mm and maximum of 97 chaetigers. Buccal aciculae well developed and protruding, with slightly constricted distal ends subdistally and subrounded distal margin. Prechaetal lobe bilobed in anterior parapodia and entire in posterior ones. Dorsal cirri of chaetiger 2 similar to others in size and shape, bulbous with terminal papillae, ranging from 0.022 to 0.060 mm (cf. Table 11). Three types of chaetae: three short-bladed compound chaetae (longest blade up to 21 µm; cf. Table 11), one supra-acicular simple chaeta distally unidentate and one infra-acicular simple chaeta. One stout notoaciculum embedded in all parapodia. Male genitalia with 2 to 8 pairs of consecutive copulatory

organs appear between chaetigers 29 and 32 (MB29–000246) or earlier in smaller specimens (16 – 17; cf. Table 11). Female genital chaetigers with a simple cirriform process developed ventrally at base of parapodium. Female gametes globular, with diameter ranging from 38 μ m to 86 μ m, 58 μ m in average, located in chaetigers 29 – 74 (MB29–000245), earlier in smaller specimens (16 – 36). Pygidium with two long anal cirri. **Distribution and habitat.** This species occurred mainly in coarse (42%) and very coarse (36%) sand and fine gravel (18%), with low total organic matter content, usually below 1% of total sediment dry weight and high biogenic content (6.6% in average; cf. Table 12). The species was recorded between 3 and 80 m depth, along the western and southern Portuguese coast (Figure 31). It is widely distributed along the North Atlantic, Mediterranean and Caribbean, at shelf depths (e.g. Dauvin et al., 2003; Lourido et al., 2010). A detailed revision of specimens from these other areas should be undertaken to confirm its cosmopolitan status (San Martín, 2004).

Remarks. In males, the number of pairs of successive copulatory organs varied between 2 and 8 which differed from the literature (4 - 18; San Martín, 2004). The distribution of female gametes was clearly related to body size, in agreement with Alikunhi (1951).

Multivariate analysis

The classification and ordination analysis based on selected morphological descriptors of *Pisione* species showed a clear separation of the four species (Figure 32). Axis 1 accounted for 46.6% of the total variation. On the positive pole, this axis separated the species with a proportionally longer dorsal cirri of chaetiger 2 and bidentate supra-acicular chaetae. On the negative pole, axis 1 separated the species with single unidentate supra-acicular chaeta, dorsal cirri of proportional similar length and an infra-acicular simple chaeta. This axis separated *P. guanche* and *P. parapari* on the positive pole, from *P. inkoi* and especially *P. remota* on the negative pole, this latter species being the single one with an infra-acicular simple chaeta. Axis 2 accounted for 31.5% of the total variation and showed the separation of species with higher width of the 10th chaetiger (W10) and with the highest ratio of the protruding length of the notoacicula and W10 on the positive pole (*P. inkoi*), from species with a lower W10 and aciculae embedded throughout the body (*P. parapari* and *P. remota*). The null hypothesis of no significant differences between the four species, on the basis of the selected morphological descriptors, was rejected with a very large value of the pseudo-F statistic (p < 0.0001), shown in Table 13.

Source	df	SS	MS	Pseudo-F	р		
Species	3	332.09	110.70	207.33	0.000	01	
Residual	71	37.908	0.54				
Total	74	370					
		Pisione	parapari	Pisione rem	ota	Pisione inkoi	Pisione guanche
Pisione par	rapari	Pisione 0.	<i>parapari</i> 29	Pisione rem	ota	Pisione inkoi	Pisione guanche
Pisione par Pisione ren	rapari nota	Pisione 0. 3.	<i>parapari</i> 29 12	Pisione rem 0.72	iota	Pisione inkoi	Pisione guanche
Pisione pai Pisione ren Pisione ink	rapari nota oi	<i>Pisione</i> 0. 3. 4.	<i>parapari</i> 29 12 40	<i>Pisione rem</i> 0.72 4.11	ota	Pisione inkoi	Pisione guanche

Table 13 – Results of PERMANOVA main test and mean Euclidean distance between and within species.

Such strong rejection of the null hypothesis was due to a much larger sum of squares due to the species than the residual sum of squares, indicating that the intraspecific variability was much lower than the interspecific variability. A similar conclusion can be drawn from the inspection of the mean Euclidean distance within species and between species (cf. Table 13). The highest mean Euclidean distance within species was obtained with *P. guanche* due to the high variability of the W10 values among the specimens of this species. *Pisione parapari* presented the lowest mean Euclidean distance within species denoting a reduced intra species variability regarding the analyzed morphological descriptors. All pairwise comparisons between individual species also rejected the null hypothesis at p < 0.0001. Overall, the results showed that the interspecific variability was much higher than the intraspecific variability, supporting the validity of the four Iberian species of *Pisione*. The following key to the *Pisione* species of European waters is based on the understanding gained from the multivariate analysis:

Key to the European species of Pisione

Figure 31 – Distribution and relative abundance of *Pisione* species along the Portuguese continental shelf (northeastern Atlantic).

Figure 32 – Classification (A) and Principal Coordinates Analysis (B) based on morphological descriptors of the Pisione species occurring in the Portuguese continental shelf. Descriptors are represented as vectors. Legend: W10 – width at chaetiger 10; CP2/CP3 – ratio between the length of the dorsal cirri of parapodia 2 (CP2) and parapodia 3 (CP3); nrT – number of teeth of the supra-acicular chaetae; P1– protruding length of the notoaciculae; IA – presence/absence of infra-acicular simple chaetae.

Chapter 4

Discussion

4.1. Physical habitat characterization

4.1.1. Shelf sediments

The sedimentary seascape presented in this study is generally in agreement with the shelf sediments charts from the Portuguese Hydrographic Institute.¹⁷ Recently the sediments from the Estremadura sector, unknown until 2012, were presented in MAMAOT (2012), confirming the heterogeneity of the shelf sediments.

The results obtained in the scope of the present investigation reveal that the Portuguese shelf sediments are composed by variable proportions of three main components (terrigenous, biogenic and authigenic).

4.1.1.1. Terrigenous component

All the samples of Portuguese shelf sediments contain terrigenous particles resulting from weathering of crustal continental rocks and transported by rivers as suspended load (e.g. Machado et al., 2005; Abrantes and Rocha, 2007). The high Al₂O₃ concentrations observed in the mud deposits point to a major terrigenous input, dominated by detrital clay minerals. Illite is probably the most abundant clay phyllosilicate, as indicated by the strong positive correlation between AI_2O_3 and K_2O and their low Na_2O and TiO_2 contents. However, the occurrence of smectite and chlorite particles, though not very expressive, can be inferred from the presence of positive correlations between MgO and Fe_2O_3 (T) and between Al_2O_3 and both Na_2O and TiO_2 . As demonstrated by numerous authors, clay phyllosilicates have crystal lattices that can easily accommodate most trace metals and large reactive surface areas that enhance their adsorption ability (Bergaya et al., 2006 and references therein). The high positive correlation between Al₂O₃ and Ga, Pb, Ni, Zn, Cu and Cr appears therefore to reveal that these elements are predominantly fixed on clay minerals by preferential exchange and/or adsorption. The elevated SiO₂ contents recorded in the sandy sediments of the mid and near shore assemblages (C and D) suggest a significant contribution of detrital quartz. In the midshelf sandy samples (group C), Al₂O₃ and K₂O contents was also moderately high and positively correlated indicating that these deposits contain muscovite / illite and K-feldspar in addition to terrigenous quartz. Finally, the occurrence of pronounced Ba and Rb enrichments in the sediments of the muddy (A) and midshelf sandy assemblages (C) and their positive correlation with Al₂O₃ may reflect mineralogical partitioning of these elements between feldspars and phyllosilicates (mainly illite) (Shilts, 1995; Klassen, 1998).

¹⁷ http://www.hidrografico.pt, 28.10.2012

4.1.1.2. Biogenic component

The highest concentrations of CaO were found in the fine and very fine sand deposits (affinity group B) and may be primarily ascribed to the occurrence of carbonate minerals (aragonite, calcite and Mg-calcite) from skeletal debris of marine organisms. As shown in section 3.3, CaO contents define distinctive positive correlations with MgO, Sr and U. This can be attributed to the following reasons: magnesium is easily incorporated in Mg-calcite and/or aragonite, Sr substitutes Ca in calcareous shells of marine organisms (mainly aragonitic) and, to a lesser extent, uranyl carbonate complexes can replace CO₃ or CaCO₃ groups in biogenic calcium carbonates (Scoffin, 1987; Faure, 1992; Russell, 2004; Basaham, 2009). Unlike Sr and U, MgO was positively correlated with Fe₂O₃(T) and may have been partitioned between smectitic clay and carbonate minerals.

4.1.1.3. Authigenic component

The lack of coherent variation patterns between Al₂O₃ and both Fe₂O₃ (T) and MnO suggests that Fe and Mn are not exclusively associated with lithogenous clay minerals and may also occur in authigenic iron-manganese oxides and oxyhydroxides (Dill, 2010). Fe and Mn are carried into the ocean as reduced species by river runoff. Upon introduction into seawater, Fe²⁺ and Mn²⁺ react with O₂ and are converted into insoluble oxides and oxyhydroxides. Some of these precipitates settle in the seafloor becoming part of the sediments, whilst others are fixed onto the surface of sinking sedimentary particles and originate crusts, nodules and thin coatings. Trace metals (e.g. Cu, Ni, Zn, Pb) tend to coprecipitate with or adsorb onto iron-manganese oxides (Libes, 2009 and references therein). In the shelf sediments, $Fe_2O_3(T)$ were positively correlated with Ga, Pb, Ni, Zn, Cu, V, Cr, As and TOM suggesting that trace metal adsorption and co-precipitation with secondary Fe-Mn oxides and oxyhydroxides may have occurred, leading to some decoupling in their distribution (Stockdale et al., 2010). Therefore, the strong metal enrichment observed in the Tagus and Guadiana mud patches (Group A) reflects the coexistence of both clay minerals and authigenic minerals. On the other hand, the high SiO_2 , MnO and As contents recorded in the coarse sand sediments of Group D suggest that the detrital guartz particles are coated by authigenic Fe-Mn oxyhydroxides enriched in arsenic. The presence of high positive correlations between P₂O₅ and both Fe₂O₃(T) and MnO contents indicates that P is mostly authigenic and has probably been removed from seawater (together with Fe) and adsorbed onto the surfaces of Fe-oxides and/or of Fe-Mn oxyhydroxide particles (Palmer, 1985; Dutkiewicz et al., 2005; Monbet et al., 2007).

4.1.2. Factors best related to the spatial distribution of the shelf sediments The lithology of mainland, fluvial input, hydrodynamics, physiography of the shelf (slope, morphological barriers), biological activity, paleoclimatic changes and anthropogenic contamination are the factors best related with the grain size distribution pattern and chemical composition of the Portuguese surface shelf sediments.

4.1.2.1. Mainland lithology and fluvial input

The geochemical signature of the Portuguese shelf sediments supports a major riverine input and shows that the terrigenous component is mainly derived from weathering of igneous and metamorphic source rocks. This is entirely consistent with the lithology of the adjacent land areas, since the major Portuguese rivers drain predominantly Late-Proterozoic – Paleozoic metamorphic terrains (metapelites/metagreywackes) and Carboniferous granitoids from the Iberian Variscan basement. To a lesser extent, the Meso-Cenozoic cover deposits exposed along the western and southwestern margins of Iberia can also contribute to feed the shelf with particles of siliciclastic origin (Monteiro et al., 1982; Dias and Nittrouer, 1984; Paiva et al., 1997; Araújo et al., 2002; Alves et al., 2003b; Machado et al., 2005; Abrantes and Rocha, 2007; Mil-Homens et al., 2006, 2009). Despite the widespread occurrence of limestones within the Mesozoic formations, it is unlikely that the breakdown of these rocks provides abundant clastic material, due to their rapid dissolution during weathering. The effects of regional lithology on sediment composition are particularly well documented in the mud deposits of the southern shelf (Machado et al., 2005; Gonzalez et al., 2007). Most of the sediment supply for this sector of the shelf is delivered by the Guadiana River that flows through a region dominated by Carboniferous volcano-sedimentary sequences hosting some of the most important polymetallic massive sulphide deposits in Europe (Mil-Homens et al., 2007; Delgado et al., 2010). Recent studies reveal that the Iberian Pyrite Belt is the main source of trace elements (e.g. Ni, Cu, Hg, Cd, Zn, As, Pb) for the sediments of the Guadiana mud patch (Machado et al., 2005; Gonzalez et al., 2007; Delgado et al., 2010; Sánchez-García et al., 2010). Precipitation and topography have a strong impact on river flow patterns and discharge rates. In the highlands of northern and central Portugal, rainfall is heavier than in the low lying areas of the southern part of the country explaining the larger fluvial inputs observed along the northwestern shelf. The Douro and Tagus rivers are the main sediment suppliers for this sector of the shelf (Oliveira et al., 1982; Vale and Sundby, 1987; Jouanneau et al., 1998).

4.1.2.2. Hydrodynamics and shelf morphology

Due to the high energetic conditions affecting the western coast, this sector presents low content in fines particles. The strong currents and dominant NW swells are responsible for the longshore N-S drifting of sediments, the accumulation of terrigenous sand deposits in the shelf and the transportation of mud-sized particles to the deep sea (e.g. Jouanneau et al., 1998; Dias et al., 2002). However, the occurrence of three important mud patches associated with the Tagus, Douro, Minho rivers shows that, in some cases, the fine suspended load may be trapped in the shelf. This can be ascribed to the presence of bedrock morphological barriers of tectonic origin (as in the shelf off the Douro River) or to gentle shelf gradients and weak bottom currents (as in shelf off the Minho and Tagus rivers) (Drago et al., 1999; Jouanneau et al., 1998; Dias et al., 2002). The low energy regime, with predominant SW-S and SE swells, prevailing in the southern shelf and the gentle slope of its eastern sector explain the development of the extensive Guadiana mud patch (Gonzalez et al., 2007; Mil-Homens et al., 2007). Coastal erosion is favored by strong swells and currents. As a result of mechanical breakdown, the Mesozoic limestone cliffs can contribute with a small amount of non-biogenic carbonate particles (including dolomite) to the shelf sediments. In the same rationale, subordinate amounts of siliciclastic particles resulted of the coastal erosion deposits can also feed the shelf.

4.1.2.3. Biological activity

Most of the CaO present in the Portuguese surface shelf sediments is derivated from calcareous remains of marine organisms (mainly molluscs, echinoderms and foraminifera). Quantitative estimates provided by Monteiro et al. (1982) for a set of samples of carbonate sands from the Portuguese shelf show that their biogenic component is primarily composed by molluscan fragments (> 30%) and subordinate amounts of benthic foraminifera (5.3%), echinoderms (3.6%) and other biological groups (24.6%). As a result of the upwelling of cold and nutrient-rich Eastern North Altantic Central Water, the marine biological productivity can be highly enhanced in several areas of the shelf (Fiúza et al., 1982; Fiúza, 1983; Peliz et al., 2005; Martins et al., 2006a, 2006b). These coastal upwelling events contribute directly to increase the nutrient availability and support a complex oceanic food chain, involving phytoplankton, zooplankton and fish (Schulz and Zabel, 2006 and references therein).

4.1.2.4. Paleoclimatic changes

In the final stages of the Pleistocene glacial period (16 k-13 k years BP), sea level was nearly 100 m below its present position and the shoreline was located several kilometres to the west of the actual coastline (Dias et al., 2000). Due to rapid sea level highstands in the deglaciation period and the Holocene, the terrigenous sediments accumulated at the edge of the paleocontinental shelf were preserved as relict deposits in the inner and middle shelf of the Northwestern sector, at depths between 20 and 80 m (Dias et al., 2000). Their depletion in mud-sized particles is attributed to subsequent reworking in high-energy hydrodynamic conditions (Dias and Nittrouer, 1984). Some of the coarse sands included in Group C were collected in the middle and inner shelf of the Northwestern sector and may therefore correspond to relict deposits.

4.1.2.5. Anthropogenic contamination

Recent studies have shown that, in addition to natural processes, the input of contaminants, via industrial, mining and/or domestic wastes, can increase the concentration of toxic heavy metals in river sand causing an important land to sea transfer of contamination in marine and estuarine areas (Karageorgis et al., 2005; Roussiez et al., 2006; Gonzalez et al., 2007; Radakovitch et al., 2008; Mil-Homens et al., 2009; Jesus et al., 2010; Nobi et al., 2010). The calculation of enrichment factors (EFs) provides a powerful tool for assessing the impact of anthropogenic activities in marine sediments and the environmental quality of continental shelves (Liaghati et al., 2004; Mil-Homens et al., 2007; Alagarsamy and Zhang, 2010; Delgado et al., 2010; Nobi et al., 2010; Sanchéz-García et al., 2010). The high concentrations of some trace metals (e.g. Zn, Pb, Cr and As) recorded in the samples from the Tagus and Guadiana patches (Group A) can be, at least in part, derived from anthropogenic contamination. The acid mine drainage associated with the exploration of polymetallic sulphide deposits from the Iberian Pyrite Belt (e.g. Neves Corvo and S. Domingos mines) has probably concurred to produce the strong metal enrichments observed in the mud sediments of the southern shelf (Mil-Homens et al., 2007; Delgado et al., 2010). On the other hand, it is unlikely that the elevated Pb, Cr, Zn and As contents found in the Tagus mud samples result from natural factors, pointing to an anthropogenic input from widespread industrial and urban wastes mobilized from the soils of the adjacent estuary margins (Paiva et al., 1997, Mil-Homens et al., 2007; 2009). As shown in several studies, coal / oil combustion and industrial activities are the main sources of Pb, Cr, Zn and As in worldwide shelves (e.g. Roussiez et al., 2006; Choi et al., 2007; Radakovitch et al., 2008; Reimann et al., 2009; Nobi et al.,

2010). Pb and Zn can also be supplied from the atmosphere by man-made aerosols and the use of leaded gasoline is referred to as a major source of Pb contamination (Roussiez et al., 2006; Radakovitch et al., 2008). In some sandy samples from the western shelf, As and Cr are also enriched displaying scattered distribution patterns with no obvious relation to sediment grain-size or chemical composition. Most of these samples are located in the proximity of large urban centres, industrial complexes with pyrite roasting plants and smelters (Estarreja, NW Portugal; Barreiro, near Lisbon), ports and harbours (Sines, Setúbal, Figueira da Foz, Aveiro, Leixões), where transfer of pollutants from continent to offshore may occur (e.g. Cotté-Krief et al., 2000; Reimann et al., 2009).

4.1.3. Sediment quality guidelines

The NOAA (National Oceanic and Atmospheric Administration) and US-EPA (United States Environmental Protection Agency) monitoring programs have released large databases on sediment chemistry and toxicity and provided a set of natural trace metal background levels in uncontaminated reference areas that can be used to establish sediment quality guidelines. In these guidelines, the Effects Range-Low (ER-L) represents the elemental concentration above which toxicity may begin to affect the most sensitive species and the Effects Range-Median (ER-M) threshold corresponds to the level of trace metal contents above which adverse biological effects will be more frequently observed (Long et al., 1995; Buchman, 1999). These levels were used for an initial assessment of sediment quality in the studied area. All the studied samples have trace metal concentrations below the ER-M values (Long et al., 1995; Buchman, 1999). However, the As and, to a much lesser extent, the Cr and Pb contents may exceed the ER-L recommended threshold. This is particularly evident in the muddy sediments collected off the Tagus and Guadiana estuaries, where the level of detected contamination, if not fixed, may constitute a potential environmental risk.

4.2. Macrofauna diversity distribution patterns

This study revealed a very diverse benthic macrofauna for the Portuguese continental shelf. The 319 polychaetes species represented 43% of the total number of species recorded in the present work, 737 species, which is in agreement with several other studies where polychaetes represented nearly half the total species richness (e.g. Ellingsen and Gray, 2002; Dauvin et al., 2004; Hoey et al., 2004). In the Western European margin 12269 species are known (8404 animals), from which 2244 are crustaceans, 1554 are polychaetes, 1304 are molluscs and 291 are echinoderms (Narayanaswamy et al., 2010). The present study includes almost 10% of the total animal species known in the Northeastern Atlantic, and up to 20% of the polychaetes, 13% of the molluscs, 11% of the echinoderms and 9% of the crustaceans known for the Western European margin. The total species richness here reported was higher in absolute terms comparing with all works focused on the soft-bottom benthic macrofauna diversity and/or benthic habitat mapping carried out in parts of the Portuguese shelf (Reis et al., 1982; Marques, 1987; Freitas et al., 2003a, b, 2011; Gaudêncio and Cabral, 2007), despite all of these studies surveyed smaller areas and mostly in the near shore coast. Other studies in European coasts also found lower number of species compared to the present work. In the Iberian coasts 496 species were recorded in the Ría de Aldan (27 sites, Lourido et al., 2010), 379 taxa in the Ría de Vigo (29 sites, Cacabelos et al., 2009) and 404 species in the Guipúzcoa continental shelf (North Spain; 13 sites, Martínez and Adarraga, 2001). Furthermore, in the Bay of Seine, English Channel, 172 species were recorded (55 sites; Dauvin et al., 2004), 223 species in the North Bay of Biscay (Hily et al., 2008), 193 species in the Belgian continental shelf (728 samples; Hoey et al., 2004) and 547 species in the Crete continental shelf (99 sites; Karakassis and Eleftheriou, 1997). Other broadscale studies, which spanned at least twice the area of this study, recorded higher number of species, namely, in the Norwegian continental shelf (nearly 2000 Km length, in 101 sites) where 809 species were found (Ellingsen and Gray, 2002) and in the North Sea (197 sites) where approximately 1500 species were recorded (Heip and Craeymeersch, 1995). Differences in sampling devices, in the number of samples, in the area covered, sedimentary heterogeneity, depth range and hydrodynamics should account for part of the diversity variability observed among the mentioned studies. However, considering the area covered in this study, nearly 20,000 Km², the length of the Portuguese coast, less than 1000 Km, the narrow shelf, 3 - 60 Km, the sedimentary cover, geomorphology and hydrodynamics, it is reasonable to conclude that the number of species found in this study was high.

Despite the present study revealed a great diversity of polychaetes, molluscs and crustaceans, the number of species known for these Portuguese faunal groups is higher, nearly 600 polychaetes (Gil, 2011), nearly 1200 molluscs (Macedo et al., 1999) and more than 250 crustaceans species of the order Amphipoda (Margues, 1989; Margues and Santini, 1990, 1993). Other past works carried out in the Portuguese coast spanned small and patchy areas and their main objective were mostly to present new records and diversity insights. Furthermore, the majority of the studies were done in shallow coastal areas (e.g. both Tagus estuary and Peniche coast, Amoureux and Calvário, 1981) and others in the continental margin (e.g. bathyal depths off Portugal and Morocco, Härtmann-Schröder, 1977). Some relevant exceptions include for instance, the contributions of Bellan (1960) and Gil and Sardá (1999) (for polychaetes of the southwestern and southern shelf sectors), Jesus and Fonseca (1998) (for echinoderms of the southwestern) or Margues and Bellan-Santini (1990, 1993) (for the amphipods of the northernmost, southwestern and southern Portuguese shelf). The contributions of Nobre (e.g. 1903 a, b, 1904, 1937, 1942) and Cúmano (e.g. 1939, 1945, 1953) were also very relevant to the knowledge of the molluscan and echinoderms faunas of Portugal, respectively.

In this study, the areas with the highest diversity were found in the southern sheltered shelf and those with the higher abundances in coarser sediments, on the western shelf. Low diversity and abundance were recorded in deep mud bottoms, and in fine sands of the near shore shelf, exposed to intense wave action, which were in turn dominated by some species (e.g. Magelona johnstoni in near shore fine sands or Heteromastus filiformis in muds). Similar conclusions were also achieved when polychaetes and molluscs groups were analysed separately, however crustaceans showed low abundance in coarse sands and high abundance in the sheltered southern shelf. The complexity and heterogeneity of sediments tend to increase the diversity while extreme hydrodynamic conditions, volcanism or anthropogenic factors concur to species impoverishment (Simboura et al., 2000). Coastal detritic and muddy detritic bottoms have been ascribed to the establishment of biodiversity hotspots (e.g. Pérès and Picard, 1964; Marques, 1987). Coarser sediments, due to their high small-scale heterogeneity, have been also recognized as being important hotspots (Rees et al., 2004). The intense hydrodynamic regime prevalent in the northwestern Portuguese shelf, which is more intense in the near shore western shelf, provides strong sediment instability and creates disadvantageous conditions for several species, namely polychaetes. This is in agreement with other works which observed a higher predominance of crustaceans and molluscs rather than polychaetes in near shore sands in the Mediterranean Sea (Picard, 1965) and in the

western part of the southern Portuguese shelf (Marques, 1987). Muds were usually associated to low diversity due to high content in fines where species with high muddy affinity (which can be strict or tolerant) tend to inhabit those habitats (e.g. Picard, 1965). The decrease of diversity in those sediments may also be related to an organic enrichment (Quintino et al., 2001; Silva et al. 2004) and contamination with some trace metals, namely zinc, lead, chromium and arsenic, mostly due to anthropogenic activities (e.g. acid mine drainage, industrial and urban wastes), recorded in the Portuguese shelf mud patches (Martins et al., 2012a).

The four new Lumbrineridae species here presented (Gallardoneris iberica sp. nov., Lumbrineris luciliae sp. nov., L. pinaster sp. nov. and L. lusitanica sp. nov.) were recently described by Martins et al. (2012b). It is expectable that some of those new species can occur in other shelf areas of the Iberian Peninsula, mainly in the Gulf of Cádiz due to its seascape similarity with the eastern part of the southern muddy shelf. The crustaceans Psammogammarus caecus (Mediterranean species; Vonk et al., 2011), Anapagurus pusillus (Macaronesian species known for Azores and Canary Islands) and Othomaera othonis (cold-temperate species) are firstly reported for Portugal. The molluscs Mercenaria mercenaria, Leptochiton asellus, Astarte borealis and the commensal Montacuta phascolionis, well known in the northern Europe and in the Mediterranean Sea, are also firstly recorded in the Portuguese coast (Tebble, 1976; Macedo et al., 1999). The polychaete Aricidea (Acmira) lopezi is firstly reported for the Iberian fauna, increasing up to 13 the number of species of the genus Aricidea in Portuguese waters (Gil and Sardá, 1999). According to literature (e.g. Margues, 1987; Gil and Sardá, 1999; San Martín, 2003; Viéitez et al., 2004), several polychaetes species already known for the Spanish coasts are firstly recorded in the Portuguese shelf, from which we can highlight the following hesionids Gyptis propingua and Ophiodromus pallidus, ophelids Ophelia celtica and Ophelina modesta, the scalibregamatid Scalibregma celticum, spionid Prionospio pulchra, pisionids Pisione guanche, Pisione inkoi and Pisione parapari (Martins et al., 2012c), and syllids Myrianida brachycephala, Odontosyllis fulgurans, Opisthodonta serratisetosa, Parexogone gambiae, Parapionosyllis brevicirra, Plakosyllis brevipes, Sphaerosyllis bulbosa, Sphaerosyllis sp. (description accordingly to San Martín, 2003), Streptodonta pterochaeta, Streptosyllis bidentata, Syllides convolutus, Syllides edentatus, Syllis mercedesae, Syllis parapari, Syllis pontxioi and Synmerosyllis lamelligera. The endemic Mediterranean species Parexogone gambiae and Sphaerosyllis sp. (San Martín, 2003; Musco & Giangrande, 2005) are firstly recorded in the Atlantic Ocean, more exactly in the southern Portuguese continental shelf and off Peniche,

respectively. The introduction of the alien species Prionospio pulchra, known for the Japan seas and recently recorded in the Galician coast (e.g. Moreira et al., 2000a; Lourido et al., 2008), were probably due to anthropogenic activities, such as oceanic shipping (in ballast water) or bivalve aquacultures (Moreira et al., 2000a). Other species were firstly reported for the Portuguese shelf although they were already recorded in lagoons or estuaries, such as Podarkeopsis capensis (Mira estuary; Duarte, 2011) and *Microphthalmus similis* (Obidos lagoon; Fonseca et al., 2006) or in the continental margin, like Leiocapitella dollfusi (Amoureux, 1974). This study stated that the species Sabellaria spinulosa, already known for Portugal (Saldanha, 1995), is spread all over the continental shelf. This small, tube-building polychaete worm can form reefs (habitat A4.221 in the EUNIS classification) or lives solitary or in small groups, encrusting pebbles, shells or bedrock (EUNIS habitat A5.611, named S. spinulosa on stable circalittoral mixed sediment) such was the case in this study. In some biogeographic zones, the OSPAR list states that this protected habitat is under threat and/or decline (Connor, 2010). This study also gives new insights about the ecology (sediments and bathymetry) and geographic distribution of several species (Martins et al., 2012a, b, in press). Seven species were firstly noticed in soft-bottoms, namely Haplosyllis spongicola, Opisthodonta serratisetosa, Parexogone gambiae, Syllis gerlachi, S. armillaris, S. gracilis and S. mercedesae, since they were previously associated to different hard bottom types (Lucas et al., 2012; San Martín, 2003). The meridional distribution limit of the Lusitanean species Syllis mercedesae, recently described for the continental slope off Galicia (NW Spain; Lucas et al., 2012), is now set in the southern Portuguese shelf. The distribution limit of Syllis licheri is now established between the Chausey Islands (English Channel; Olivier et al., 2011) and the Setúbal canyon vicinity. Pisione inkoi and P. parapari were known for the northern Iberian Peninsula and this study extends its southern limit to the western sector and southern sector of the Portuguese continental shelf, respectively. The northern distribution limit of Pisione guanche is now extended to off Peniche, setting the first record of P. guanche in the Lusitanian biogeographic province, increasing to five the number of species known for the European continental waters (Martins et al., 2012 c). The present work amplifies the distribution range of Magelona lusitanica, from the northernmost shelf sector to the southern shelf. The species Anadara polii, Glycymeris nummaria and Leptochiton algesirensis are southern species with their northern limit located in the southwestern shelf (Macedo et al., 1999). This study purposes an extension of the distribution of these species further north, in the northwestern shelf. It should be emphasized that several new species were recently described for the Portuguese shelf

highlighting an increasing knowledge regarding the benthic fauna, particularly polychaetes, in this area and opening the possibility that more species can be described soon for the Lusitanean province. Besides the new lumbrinerids, other species were recently found in the continental shelf, namely the onuphid *Diopatra micrura* (Pires et al., 2010), the magelonid *Magelona lusitanica* (Mortimer et al., 2011), the syllid *Syllis licheri* (Ravara et al., 2004) and the gastropod *Fusinus albacarinoides* (Hadorn et al., 2009).

The highest molluscan diversity and abundance was mainly recorded in the northwestern shelf, in areas immediately south of Carvoeiro Cape and in the western part of the southern shelf. In the Portuguese nearshore coast, the northwest and the southern molluscan banks are exploited, pointing towards mainly to the surf clam, Spisula solida, although other species (e.g. Glycymeris glycymeris) could be occasionally taken for the canning industry, due to their strong food transformation potential (Gaspar et al., 2004, 2005). Bivalves dredge fishing is one of the most important fishing activities undertaken in the south (Pereira et al., 2007). The Portuguese Fisheries Institute have been assessing the conservation status of the explored banks (e.g. Gaspar et al., 2004, 2005), and from the list of most abundant species recorded there, this study found the striped venus (Chamelea gallina), the Norwegian egg cockle (Laevicardium crassum), the mature dosinia (Dosinia exoleta), the bean solen (Pharus legumen), the big tellina (Arcopagia crassa), the banded venus (Clausinella fasciata), the striped venus (Chamelea striatula) and the dog cockle (*Glycymeris glycymeris*). Other economically relevant resources, such as crustaceans (e.g. Palaemon serratus, Cancer pagurus, Maja squinado, or Liocarcinus puber, Borja et al., 2004) were not recorded or were irrelevant in terms of abundance, reflecting the limitation of this sampling strategy to catch highly motile species.

Finally, the recent focus in the diversity and ecology of the Portuguese shelf benthic macrofauna was also shown by Gil (2011), whom inventoried nearly 600 species of polychaetes in Portugal, and by the effort to map the seabed marine habitats of the southwestern European coast, including Portugal, within the MeshAtlantic project¹⁸, based on few historic maps available¹⁹ and new campaigns. Several scientific expeditions along the Portuguese deep sea and islands (Azores, Porto Santo, Desertas, Formigas and Berlengas) were also undertaken recently, under the M@rBis program of the authority of the Task Group for the Extension of the Portuguese Continental Shelf. Although none of them explored the Portuguese continental shelf, it is relevant to emphasize its importance to improve the benthic (and pelagic) fauna insight.

¹⁸www.meshatlantic.eu, 24.10.2012

¹⁹www.rensub.com, 24.10.2012

4.3. Soft-bottom benthic habitats

This study identified six assemblages in the Portuguese continental shelf soft-bottom benthic macrofauna. Atlantic and Mediterranean benthic communities were described by Petersen (1918), Thorson (1957), Jones (1950), Pérès and Picard (1964), Picard (1965), Cabioch (1968), Glémarec (1973), Gentil (1976), Marques (1987), among others. The single study carried out in the Portuguese shelf, in the western part of the southern shelf sector, devoted to the study of the biocenosis was presented by Margues (1987). However, recently, the Portuguese implementation of the Marine Strategy Framework Directive (Continent subdivision) presented the knowledge of the soft-bottom macrobenthic communities (among several other subjects), dividing the Portuguese coast in three major depths (<50 m; 50 – 150 m; >150 m) and in three main geographical areas (northern border to Nazaré Canyon – Area A, Nazaré Canyon to Ponta da Piedade – Area B and Ponta da Piedade to Vila Real de Sto. António - Area C; (MAMAOT, 2012). A confidence level assessment was also provided. The methodology applied can be considered controversial, since it imposed a standard geographic and depth subdivision to the definition of the benthic communities and did not reflect their natural spatial distribution, such as the heterogeneity of the Portuguese shelf seascape (e.g. coarser sediments appear in both areas A and C or muds in areas B and C), like it was supposed to occur (e.g. Levinton, 2009). The coastal benthic habitat from the northern area (<50 m) mentioned in MAMAOT (2012), included a mixture of the most characteristic species from three shelf habitats described in this study (e.g. Angulus pygmaeus (A), Angulus fabula (B), Amphiura chiajei (C1)). Furthermore, the assessment of the confidence level presented in that work was low for the majority of the Portuguese shelf, reflecting the lack of information in several sectors and showing a clear weakness of the methodological strategy applied. Due to this reason and the difficult to match any of the assemblages identified in this study to those considered in MAMAOT (2012), they were not considered for comparison purposes.

4.3.1. Coarse sediments with *Protodorvillea kefersteini*, *Pisione remota* and *Angulus pygmaeus*

Within the six affinity groups defined in the present work, the coarser sediments assemblage (group A), characterized by *Protodorvillea kefersteini, Pisione remota* and *Angulus pygmaeus,* and several other species is recognized worldwide. It corresponds well to the *Venus* community identified in several European coasts (*Clausinella fasciata* (earlier *Venus*) – *Spisula elliptica* – *Branchiostoma lanceolatum*; Thorson, 1957) or to the

gravels of *Astarte sulcata* – *Venus casina* (Glémarec, 1973) or to the biocenosis of coarse sands and fine gravels under the influence of bottom currents found in the Mediterranean French coast (Picard, 1965) or to the boreal offshore gravel association (Jones, 1950). The coarse sands of the northwestern Spanish inlets also supported similar assemblages, namely characterized by *Protodorvillea kefersteini, Branchiostoma lanceolatum* and *Polygordius lacteus* in the Ría de Aldan (Lourido et al., 2010) and by *Pisione remota, P. parapari,* several syllids species and *Polygordius appendiculatus* in the Enseñada de Baiona (Moreira et al., 2006). Although *Clausinella fasciata, Spisula elliptica* and *Astarte sulcata* were present in this study, the abundance of these northern species was residual here, comparing with other characteristic species. In turn, the present community shared several species with the Mediterranean biocenosis of Picard (1965), namely *Dosinia exoleta, Thracia villosiuscula, Sigalion squamosus, Pontocrates arenarius*, among others. Several species and therefore, this replacement of species along the Eastern Atlantic coasts is probably due to biogeographic issues (e.g. Martins et al., 2012 b, c).

4.3.2. Near shore hydrodynamic exposed fine sands with *Magelona johnstoni, Urothoe pulchella* and *Angulus fabula*

The near shore hydrodynamic exposed fine sands assemblage (group B) presented low abundance, diversity and evenness, and was characterized by the polychaetes Magelona johnstoni, Sigalion mathildae and Magelona filiformis, the crustaceans Urothoe pulchella and Megaluropus agilis and the bivalves Angulus fabula and Pharus legumen. The strong hydrodynamic energy near the coast, due to the wave energy and currents may explain the generalized impoverishment of this community. The shallow pure sandy bottoms define a very particular habitat which is occupied by a well reported community. It has been identified as the Angulus tenuis and Angulus fabula boreal Lusitanean community (formerly Tellina genus for both species; Thorson, 1957), also as the boreal offshore sand association (Jones, 1950) or the fine sands with Chamelea gallina (formerly Venus gallina) and Mactra stultorum (formerly Mactra corallina) in the infralittoral étage of the North Gascony continental shelf (Glémarec, 1973) or the well sorted fine sands biocenosis in the French Mediterranean coast (Picard, 1965). In Portugal, a similar community was already documented by Reis et al. (1982) and Freitas et al. (2003b). Some of our species were not recognized in those European communities, like the magelonids which presented a very high mean abundance here or Diopatra micrura, a Lusitanean onuphid species from subtidal bottoms (Pires et al., 2010); however the

majority of the species sampled in this study were shared with those mentioned, namely *Angulus fabula, Spisula subtruncata, Sigalion mathildae, Onuphis eremita, Diogenes pugilator, Pontocrates altamarinus*, among others.

4.3.3. Abra alba community in northwestern deep muddy sands

The affinity group C1 corresponds to the northwestern muddy sands deep community characterized by the polychaetes *Prionospio fallax, Chaetozone gibber* and *Prionospio aluta* (exclusive species) and the bivalves *Abra alba, Tellina compressa, Phaxas pellucidus* and *Thyasira flexuosa*. This community is ecologically relevant in our study due to its high abundance and species richness, particularly molluscs which can be important food resource for demersal fishes and to the occurrence of habitat structuring species, such as *Lanice conchilega* (Hoey et al., 2004). This faunal assemblage is also widely recognized in the Northern European shelves as the *Abra alba* (formerly *Syndosmya alba*) community defined by Petersen (1918), Thorson (1957), Glémarec (1973) or Hoey et al. (2004), or the boreal offshore muddy sand association (Jones, 1950) or the muddy fine sands with *Abra alba* and *Corbula gibba* (Cabioch, 1968; Gentil, 1976). This community, which was already reported in northwestern Spain (Lourido et al., 2010), was present in our study in muddy sands with moderate organic matter content, and also included the polychaetes *Nephtys hombergii, Lagis koreni, Pista cristata, Owenia fusiformis* and *Spiophanes bombyx*.

4.3.4. Galathowenia oculata and *Lumbrinerides amoureuxi* in southwestern very deep muddy sands

The southwestern shelf assemblage (C2) was characterized mostly by burrowers and tubicolous polychaetes, such as *Galathowenia oculata* and *Lumbrinerides amoureuxi*, and dominated in the muddy sands of the deepest seascape. Along the northern European shelves, several deep communities in mud or muddy sandy bottoms have been recognized: the sandy muds of *Nucula sulcata* and *Brissopsis lyrifera* in the North Gascony continental shelf (Glémarec, 1973), the circumpolar *Maldane sarsi* and *Ophiura sarsii* community (Thorson, 1957) or the *Brissopsis lyrifera* and *Ophiura sarsii* community (Petersen, 1918). The faunal composition of these assemblages however has little correspondence with the biological assemblage from our study, dominated by deep species (e.g. *Lumbrinerides amoureuxi, Magelona minuta, Magelona wilsoni, Saccella commutata, Fustiaria rubescens*) and of warmer waters (e.g. *Monticellina heterochaeta, Leiocapitella dollfusi*). The biological assemblage C2 is in fact more similar to two

communities defined for the Mediterranean Sea, namely in the deep Crete continental shelf, dominated by *Tharyx* (now *Monticellina*) *heterochaeta, Sarsonuphis* sp. (here identified as *S. bihanica*) and *Terebellides stroemii* (Karakassis and Eleftheriou, 1997), and in the continental shelf off Marseille, with *Terebellides stroemii*, *Leiocapitella dollfusi, Golfingia (Golfingia) elongata* and *Amphiura filiformis* among others, corresponding to the biocenosis of the circalittoral muddy detritic bottoms (Picard, 1965). The difficulty to match the assemblage identified in this study with the Northeastern Atlantic and the Mediterranean communities reveals that it probably corresponds to a warm temperate deep group with influence of northern and southern species.

4.3.5. Euchone rubrocincta and *Nematonereis unicornis* in muddy sands of the southern and sheltered shelf

The southern muddy sand assemblage (C3) was characterized mostly by polychaetes, namely Euchone rubrocincta and Nematonereis unicornis, most of them corresponding to southern species with warm Lusitanean, Mediterranean or western African affinity (e.g. Parapionosyllis brevicirra, Syllis garciai, Lumbrineris pinaster, Lumbrineris luciliae, Chaetopleura (Chaetopleura) angulata or Chiton (Rhyssoplax) olivaceus). In the northern European coasts, two communities share a few species with C3: the facies of Sthenelais boa and Eunice vittata from the heterogeneous sediments in the Gulf of Normandy, France (Retière, 1979) and the community Prionospio mulibranchiata and Thyasyra spp. defined in the offshore of northern North Sea (Basford et al., 1990). The terrigenous coastal muds from the Mediterranean French coast shared the species Goniada maculata, Magelona alleni, Malmgreniella lunulata, Paraprionospio pinnata, Necallianassa truncata and Othomaera othonis (Picard, 1965), while a sandy mud circalittoral community in the Italian continental shelf also shared the species Calyptraea chinensis, Nephtys cirrosa, Levinsenia gracilis and Paralacydonia paradoxa (Somaschini, 1999). In the western part of the southern Portuguese shelf, Margues (1987) defined four circalittoral communities, being the coastal detritic biocenosis the closest to C3, having in common Eunice vittata, Nephtys cirrosa, Drilonereis filum, Aponuphis brementi, Jasmineira elegans, Notomastus latericeus and Paralacydonia paradoxa. Like in the southwestern affinity group, the biological assemblage here recognized did not largely overlap with other known communities. Benthic communities in circalittoral bottoms are usually more difficult to define according to Somaschini (1999), where transitional communities or facies can be established. The non-overlapping of the assemblages in the southern shelf can be related

to biogeographic issues, to the spatial resolution in our study (other communities may be seen by increasing the sampling effort) or eventually due to temporal differences.

4.3.6. Muds of Sternaspis scutata, Heteromastus filiformis and Psammogammarus caecus

The muddy community (group D) with Sternaspis scutata, Heteromastus filiformis and Psammogammarus caecus occurred mostly in the southern shelf and off Lisbon. This macrofauna assemblage corresponds to the well-known mud shelf community spread along the European coasts. Glémarec (1973) named it muds of Ninoe armoricana and Sternapsis scutata, in the Atlantic French coast. In the southern Portuguese muddy bottoms Marques (1987) recognized two assemblages: the coastal muddy detritic biocenosis (fines content ranged up to 50%) and the deep mud biocenosis. Although the present community was established in muds, it showed highest resemblance with the coastal muddy detritic bioceonosis rather than the pure mud community from Marques (1987), sharing namely the polychaetes Dasybranchus caducus, Heteromastus filiformis, Nephtys incisa, Glycera unicornis, Labioleanira yhleni, Sternaspis scutata and the crustaceans Alpheus glaber, Galathea intermedia and Goneplax rhomboides. The two communities described by Marques (1987) presented high constancy and abundance of Amphiura chiajei and Amphiura filiformis, unlike what happened in the assemblage D in the present study, where both species presented very low constancy, and in the Guipúzcoa continental shelf (Martínez and Adarraga, 2001). Also, this assemblage did not overlap the equivalent Mediterranean deep mud biocenosis identified by Picard (1965). The moderate content in sand found in the samples (< 20%) may defined the settlement of mud-tolerant species instead of strict mud species, common in the "pure" mud biocenosis, such was highlighted by several authors (e.g. Picard, 1965; Marques, 1987). It is possible to state that this assemblage corresponded to a Lusitanean mud community according to the presence of Lusitanean species (e.g. Dasybranchus caducus and Ninoe armoricana). This may also justify some of the differences between the communities.

4.4. Environmental – biological relationships

Several works have shown the relationship between soft bottom benthic macrofauna and abiotic factors, such as sediments, habitats heterogeneity, depth, hydrodynamics, among others (e.g. Ellingsen, 2002; Hily et al., 2008; Lourido et al., 2010). This study showed that the spatial distribution of the benthic macrofauna along the Portuguese continental shelf

was mainly related to the sediment grain-size, organic matter, depth and hydrodynamic energy.

Sediment grain-size and organic matter content have been identified as factors strongly related to benthic fauna spatial distributions (e.g. Dauvin et al., 2004; Hily et al., 2008; Lourido et al., 2010). It is widely accepted that species, particularly bivalves and polychaetes, show their higher abundance and biomass in a specified grain-size range (Hily, 1987). The Portuguese shelf macrofauna main groups corresponded well to a range of sediment types: coarse sediments (group A), purely fine sands (group B), muddy sands (groups C1, C2 and C3) and muds (group D). Such primary relationship with grain-size was also suggested for the Crete continental shelf (Karakassis and Eleftheriou, 1997), the Gulf of Lions continental shelf (Labrune et al., 2007), the North Bay of Biscay continental shelf (e.g. Hily et al., 2008), the Bay of Banyuls-sur-mer (northwestern Mediterranean Sea; Grémare et al., 1998), the Bay of Veys (English Channel; Dauvin et al., 2004), in Spanish Rías/inlets (e.g. Lourido et al., 2010), among others. The distribution of the sediments and their organic enrichment along the Portuguese shelf reflect the intensity of the hydrodynamics on the coast and the origin of the sediments (Martins et al., 2012a). The northwestern inner and mid shelf is dominated by clean coarse sediments indicative of the high hydrodynamic exposition to swells and currents and the paleodeposition of sediments in that area; sands with moderate organic matter content predominate in the deeper shelf and in the southwestern shelf due to the prevalent moderate hydrodynamic regime and the longshore N-S drifting of sediments (Martins et al., 2012a); finer sediments organically enriched (mostly muds) are prevalent in the sheltered southern coast and off the major rivers which contribute to an input of terrigenous particles (Martins et al., 2012a; Quintino et al., 2001; Silva et al., 2004). The northwestern shelf, due to the coarser sediments, provides several interstitial microhabitats for small-sized organisms, like pisionids, syllids, polygordiids and some bivalves. Byrnes et al. (2003) reported a direct correlation between gravel content in sediments and the abundance of some species, such as Hesionura elongata, Pisione remota, Polycirrus sp. and several syllids which correspond to gravel-inhabiting polychaetes. These species occupy and move through the interstitial space between the grains of gravel and sand which support high abundance and diversity. The abundance of the macrofauna was four to six times higher in gravel or coarser sand than in mud and the alpha diversity was 2.5 times higher in gravel than in mud.

Depth (or related descriptors) also shows some relationship with the distribution of the benthic macrofauna in the Portuguese shelf. It is recognized that marine biological

115

distribution patterns are depth related in several continental shelves (e.g. Ellingsen et al., 2002; Dauvin et al., 2004; Moulaert et al., 2007; Serrano et al., 2008; Freitas et al., 2011). Our study highlighted the decrease of *alpha* diversity and abundance with increasing depth, as was documented all over the Mediterranean Sea (e.g. Coll et al., 2010; Karakassis and Eleftheriou, 1997) or in the eastern United States continental shelf (Bergen et al., 2001). The particular low abundance and diversity observed in the near shore sandy shelf community in our study should be mainly due to the exposure of this community to stressful hydrodynamic conditions and not to depth, as was also indicated by Pérès and Picard (1964), Cabioch (1968) or Reis et al., (1982). According to Saldanha (1995), the distribution of benthic fauna in the infralittoral zone (which can reach nearly 30 metres depth in the Portuguese coast) is mostly influenced by light intensity, hydrodynamic energy (induced by wave action) and sediments, rather than depth. Moreover, Brooks et al. (2006) revised several studies from the US eastern coast and Gulf of Mexico and found inconsistent relationships between depth and both macrofaunal diversity and abundance, depicting in some cases negative, positive and no relationships. Karakassis and Eleftheriou (1997) showed that the quality and quantity of chlorophyll a, which decreased with increasing depth, influenced the faunal community structure and contributed to the decrease in biomass, abundance and diversity. In shallow areas, depth must be used as surrogate of the hydrodynamic energy profile, as the effect of wave energy is higher than in deeper areas, where this effect is more residual (Bergen et al., 2001).

Latitude was also related to the distribution of the macrofauna assemblages along the Portuguese shelf. Diversity measurements (except *alpha* diversity) slightly decreased with increasing latitude, while an inverse pattern was found regarding the abundance data. It is recognized that species richness of benthic macrofauna, mostly gastropods, bivalves and isopods, decrease towards high latitudes in both southern and northern hemispheres, although few causal relationships have been identified to explain this pattern (e.g. Roy et al., 1998, 2004; Thorson, 1957). However, this pattern seems to be controversial since some works showed positive gradients with increasing latitude along the North Atlantic for nematodes (Lambshead et al., 2000) and polychaetes (Dauvin et al., 1994, Quiroz-Martinez et al., 2011), while others concluded that latitude was not a governing factor for macrofauna (e.g. Ellingsen and Gray 2002; Gobin and Warwick, 2006). In this study however, the latitudinal gradient can explain the co-occurrence of colder water species, from the Arctic-Boreal and the Boreal biogeographic provinces, and warmer water species, from the Lusitanean, the Mediterranean and the West African Transition

biogeographic provinces, as the Portuguese shelf is the meeting place for subtropical warm and northern cold waters due to a complex current system acting along the Portuguese coast (Fiúza, 1983). The latitudinal distribution of species can also be affected by the variation of seawater temperature and rapid changes in shelf conditions, such as the presence of canyons or other morphological barriers (Cunha et al., 2011; Spalding et al., 2007). In fact, the major western Portuguese canyons (Nazaré, Lisboa and S. Vicente) may act as biogeographic barriers for the spatial distribution of several species along the Portuguese shelf, limiting colder species occurrence further south, such as *Ophelia celtica* or *Ophelina modesta*, and southern species progressing further north, e.g. *Anadara polii*, *Glycymeris nummaria, Leptochiton algesirensis, Pisione guanche* or *Parapionosyllis brevicirra*.

4.5. Biogeography of benthic macrofauna species and communities

The western Portuguese shelf acts as the southernmost limit for several species (e.g. Ophelia celtica (known for the English Channel and surrounding UK seas; Rowe, 2010), Ophelina modesta (known for the northeastern Atlantic Ocean; Rowe, 2010), Syllis licheri) and the northernmost limit for several others (e.g. Aricidea (Acmira) lopezi, Pisione guanche, Parexogone gambiae, Parapionosyllis brevicirra). In the other hand, the Portuguese macrofauna is composed by species with different biogeographic distribution: Temperate cold and/or Arctic-Boreal affinities (e.g. Bathyarca pectunculoides, Leptochiton asellus, Abyssoninoe hibernica, Eunice harassii, Ophelina minima), Lusitanean province (e.g. Gallardoneris iberica sp. nov., Lumbrineris luciliae sp. nov., L. lusitanica sp. nov., L., pinaster sp. nov. (Martins et al., 2012b); Pisione inkoi, P. parapari (Martins et al., 2012c); Syllis licheri), Mediterranean and/or Macaronesian and/or West African provinces (e.g. Turritella turbona, Vitreolina curva, Parapionosyllis brevicirra, Syllis garciai, Pisione guanche, Parexogone gambiae). The high local diversity and the co-occurrence of cold, temperate and subtropical species show that this area is a transitional zone with high ecological and biogeographic importance, being remarkable the high number of species exclusively found in the southern shelf, most of them with Mediterranean or African affinities. Margues (1987) studying the benthic communities of the western part of the southern Portuguese shelf also highlighted the co-occurrence of a considerable number of species with Mediterranean, African and Boreal affinities. Furthermore, the French Atlantic fauna includes mostly fauna from Arctic-boreal/cold temperate areas while the French Mediterranean fauna is mostly composed by warm and temperate warm species (e.g.

Dauvin et al., 2006). The absence of African species in the French western coast and the progressive influence of Mediterranean and Africa faunas in the southwestern Iberia, particularly in the southern coast, indicate that the Portuguese shelf is a transitional biogeographic zone, between colder and warmer faunas. This is supported by previous studies of several faunal groups that referred the Portuguese coast as biogeographically important and one of the most interesting in the Northeastern Atlantic (e.g. Cúmano, 1945; Ardré, 1970). Saldanha (1974), Almaça (1985) and Margues (1989) highlighted the coexistence of both Mediterranean and Atlantic faunas along the Portuguese coast. Researchers involved in the most recent campaign of M@rbis, in the rocky substrata of Berlengas islands, found 120 new records of species for these islands, some of them with southern affinities, denoting an increased influence of warmer species along the Portuguese western shelf (based in press releases²⁰). Ardré (1970, 1971) studied the marine algae of Portugal and set the distribution limit of more than 60 species in the Portuguese coast (e.g. Portugal was the southern limit for Laminaria saccharina and L. hyperborea, while it was the northern limit for Amphiroa beauvoisii or Ulva linearis). Marques and Santini (1990) observed high biogeographic affinities between the amphipods from the Portuguese coast and the Lusitanean, Mediterranean and Northern faunas, and concluded that the mixture of faunas was also related to the transitional characteristics of the Portuguese coast. Macedo et al. (1999) presented the most comprehensive study about the seashells of Portugal (based on the several malacological studies of D. Carlos de Bragança, Augusto Nobre, Fischer-Piétte, among others) and showed that several molluscs species have their distribution limit along the Portuguese shelf (e.g. Dentalium inaequicostatum or Clausinella brogniarti have their setentrional limit in the western coast while Ensis arcuatus and Neptunea despecta have their meridional limit in the Portuguese coast). The co-occurrence of species with different biogeographic affinities may be related to the hydrodynamic regime, the variation of seawater temperature, upwelling processes and rapid changes in shelf conditions, such as the presence of canyons or other morphological barriers (Spalding et al., 2007; Cunha et al., 2011). The deep indentation in the coastal rim of the Nazaré, Lisboa and Setúbal canyons, cutting the entire margin to the near shore coast, affect locally the currents and capture the sediment particles derived from the littoral drift and rivers input (Guerreiro et al., 2009). Similar disturbing effects are expected to occur in benthic species, particularly with those with limited larval dispersion capacity, affecting therefore their spatial distributions. The dominance of equatorward wind parallel to coastline and Earth rotation

²⁰ http://ecosfera.publico.pt/noticia.aspx?id=1565989, 24.10.2012

(north winds), mainly in the northwestern coast, but also around the S. Vicente Cape promotes the occurrence of upwelling events which are responsible by the replacement of the surface coastal waters by cold, nutrient rich deep waters (Reboreda et al., 2010). Despite the increase of biological productivity in these periods, the seawater temperature decrease abruptly influencing the progression of warmer species further north and colder species further south. Moreover, the Portuguese margin is affected by a complex current system which favors the meeting of subtropical warm (from the Western Africa and Mediterranean Sea) and northern cold waters (Fiúza, 1983). This factor was also considered by Marques (1987), when he stated that the migration of African and Mediterranean species to the southern Iberia would be related to the influence of the dominant warmer currents in the Gulf of Guiné and Cádiz, mainly during summer.

Furthermore, the presence of three muddy sand communities along the Portuguese shelf, one in the northwestern deep shelf (mainly up to the Nazaré Canyon), other restricted mainly to the southwestern shelf (limited between the Nazaré Canyon and the southern boarder) and other with a distinct composition in the southern coast corroborate the main conclusion that the Portuguese shelf acts as transitional biogeographic zone, but also allow the definition of three main biogeographic areas:

- a) the northern area, from the Portuguese northern border to the Nazaré Canyon, dominated by boreal/cold temperate and cosmopolitan (large ecological repartition) faunas; it must correspond to the southern boundary of the Lusitanean Cool biogeographic zone (Dinter, 2001).
- b) a biogeographic transition area, between the Nazaré and S. Vicente capes. In this area, the Lisbon and the Setúbal canyons also plays a key role, since several species present their meridional or setentrional limits nearby these canyons. Due to the meeting of northern, warm temperate and subtropical species, this area must correspond to a transition between the two biogeographic zones defined by Dinter (2001). This also suggest that the Lusitanean Warm South and the Lusitanean Cool biogeographic zones do not meet in the S. Vicente canyons as proposed by Dinter (2001), but further North along the western coast, close to the Nazaré Canyon or eventually closer to the Lisbon or Setúbal canyons.
- c) the southern shelf area with high abundance and frequency of warmer species with Mediterranean or African affinities (cosmopolitan species are also abundant). The southern shelf is already integrated in the Lusitanean Warm South biogeographic zone (Dinter, 2001).

The existence of boundaries delimiting biogeographic zones along the Portuguese coast was already presented and discussed in previous works. Cúmano (1939, 1945, 1953) defined three biogeographic zones according to the echinoderms fauna being their boundaries set in the Roca Cape and S. Vicente Cape. Species richness increases further south, particularly the Mediterranean species which increase from the Roca Cape to the Guadiana River mouth. In fact, the echinoderms fauna are mostly Boreal (and cosmopolitan) in the northernmost group (Minho River to Roca Cape), Atlantic-Mediterranean in the southwestern group and Atlantic-Mediterranean and Mediterranean in the southern group which clearly agrees with the divisions presented in this work (Cúmano, 1945). Lopes (1989) recognized two main biogeographic zones based on intertidal Demospongiae, nearly separated in the region between Peniche and Sintra. Pereira (2004) found two transitional areas along the rocky Portuguese beaches, studying the diversity and biogeography of the isopods: one in the Raso Cape and other in the S. Vicente Cape. Later, Pereira et al. (2006) studied the biogeographic patterns of intertidal epifaunal crustaceans (Amphipoda, Isopoda and Tanaidacea) and showed a gradient of species substitution between the three main areas sampled (northernmost coast, central western coast and southwestern coast) and significant differences in the species assemblages were found. As can be easily seen, the unmatching results achieved by those authors (Cúmano, 1939, 1945, 1953; Lopes, 1989; Pereira et al., 2004, 2006), keep controversial the identification of the biogeographic barrier between the Atlantic Ocean and Mediterranean Sea biotas. It is relevant to note that the boundaries here proposed are only one approach to explain the reality seen and, therefore are not rigid or static. The suggestion of a wider transition limit, which can easily incorporate the natural biota complexity, is in agreement with other authors (e.g. Olivero et al., 2012) that defended the idea that biogeographic regions may be limited by broad transition zones in some parts of their limits, whereas in other areas they may be defined by abrupt boundaries. Olivero et al. (2012) defined consistent biogeographic regions boundaries and biotic transition zones based on the amphibian species of the Mediterranean applying a combined methodology based on fuzzy logic and statistics. Therefore, future studies, applying this method or others, may improve the reliability of the biogeographic delimitation here proposed.

This work sets the first broadscale assessment of the soft-bottom macrofauna benthic biodiversity and the first overview of the benthic habitat distribution in the Portuguese continental shelf. It fulfill a historical gap in the marine environment knowledge at national

level, of which seabed habitats are an essential component, and provide key baseline information for future works, such as, the study of fuctional aspects of the marine ecosystem or monitoring of anthropogenic perturbations (urban and/or industrial discharges, oil spills or fishing impacts) or temporal variation patterns. The quantitative data can be considered a baseline since the Portuguese shelf is globally non-polluted and the environment is anthropogenically undisturbed. The knowledge here enclosed may be used by itself or combined with other studies, to recognize habitats already known in the EUNIS classification (or other classification systems), to adapt and to improve their descriptions and to identify and to propose new habitats (if their distinctiveness, representativeness distribution and ecological importance justify it); to recognize, characterize and map the distribution of the most threatened habitat types at national level (e.g. red lists) and therefore to define, justify and propose Special Area of Conservation (set up under the Bern Convention²¹ on the conservation of European wildlife and natural habitats) or Special Areas of Conservation of the Natura 2000 network²² (which can be used for single species or habitats), under the application of the EU Habitats Directive (92/43/EEC)²³ and EU Biodiversity Strategy to 2020 (COM (2011) 244)²⁴, in line with the OSPAR Convention²⁵ and Convention on Biological Diversity²⁶. The data here collected, can be used to manage the marine resources from the Portuguese coast, to assess their ecological status and the level of impact and recovery capacity when submitted to anthropogenic activities. This knowledge is key, because Portugal (and the EU members) must implement marine spatial planning approaches, in the sequence of diverse European legislation/directives (e.g. the Europe 2020 COM(2010) 2020²⁷, the Marine Strategy Framework Directive (2008/56/EC)²⁸) and National legislation (e.g. Decree-Law 142/2008²⁹ which created the Nature Conservation Key Network and the National System for Classified Areas). These policies are intended to prepare marine environment management and planning measures to achieve and preserve the good marine environmental status of marine waters - including their biological diversity - by 2020 (Marine Strategy Framework Directive¹) and fully protect the valuable natural marine heritage of Portugal and the marine resources from which economic and social activities depend on.

²¹http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?NT=104&CM=8&DF=&CL=ENG, 30.10.2012
²²http://ec.europa.eu/environment/nature/nature2000/index_en.htm, 30.10.2012

²³http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm 29.10.2012

²⁴http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm, 29.10.2012

²⁵http://www.ospar.org/html_documents/ospar/html/ospar_convention_e_updated_text_2007.pdf, 30.10.2012

²⁶http://www.cbd.int/, 30.10.2012

²⁷http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:2020:FIN:EN:PDF, 29.10.2012

²⁸http://ec.europa.eu/environment/water/marine/directive_en.htm, 29.10.2012

²⁹http://www.dre.pt/pdf1sdip/2008/07/14200/0459604611.PDF, 29.10.2012

Chapter 5

Conclusions

Conclusions

The present study gives an overall view of the soft-bottom benthic habitats of the entire Portuguese continental shelf.

The grain size distribution and geochemical signature of the Portuguese shelf sediments are highly complex, reflecting strong differences in the sources (natural and anthropogenic), fluvial input, shelf morphology, hydrodynamism and biological activity. Due to the high energetic hydrodynamic regime and large fluvial sediment supply, the northwestern and central shelf sectors display a general seawards decrease in grain size, with coarse relict deposits dominating in the inner and middle shelf, carbonate-rich fine sands characterizing the outer shelf and muds ruling the seascape off the mouths of major rivers (Douro and Tagus) and north of the Nazaré Canyon. The southwestern shelf consists mainly of carbonate fine sands of marine origin and lack significant riverine contributions. Finally, the southern shelf corresponds to a low energy environment receiving most of its sediment supply from the Guadiana River. As a result, an expressive mud patch is developed off the Guadiana estuarine system (eastern part) and heterogeneous muddy sands in western part. Trace metal enrichments were observed in the muddy areas from both the western and the southern shelf sectors, most of which appear to result from natural causes and do not exceed the international sediment quality thresholds. There is, however, local evidence for As, Zn, Cr and Pb anthropogenic contamination. The highest enrichment factor values for these trace metals are found in near-shore sediments delivered by rivers draining regions potentially polluted by urban, industrial or mine activities (Ave, Cávado, Lima, Douro, Tagus, Sado and Guadiana), highlighting the potential environmental risk of these sites.

A total of 30008 individuals were identified corresponding to 737 species. The most abundant taxa were the polychaetes, bivalves, nematodes, nemerteans and amphipods while the highest species richness was found within the polychaetes, bivalves, amphipods, gastropods and decapods. This work showed that the most frequent species were *Ampharete finmarchica, Ampelisca* sp. and *Lumbrineris lusitanica* **sp. nov.** and the most abundant were *Mediomastus fragilis, Polygordius appendiculatus* and *Ampharete finmarchica.* Four new species of polychaetes were found and nearly forty species are firstly reported for the Portuguese coast. Coarser sediments and very fine sands, shallow and sheltered areas presented higher diversity values while muds and deeper sites presented lower diversity. Six major soft-bottom benthic habitats were found in the Portuguese continental shelf: (a) coarse sediments with *Protodorvillea kefersteini, Pisione remota, Angulus pygmaeus* and several other interstitial species, such as polygordiids, syllids and nematodes (Lusitanean *Venus* community); (b) Near shore hydrodynamic

Conclusions

exposed fine sands with *Magelona johnstoni*, *Urothoe pulchella* and *Angulus fabula* (Boreal Lusitanean *Tellina* community) and characterized by low abundance, diversity and evenness; (c) *Abra alba* community in northwestern deep muddy sands (with northern biogeographic affinity); (d) *Galathowenia oculata, Lumbrineriopsis paradoxa* and other burrowers and tubicolous polychaetes in southwestern very deep muddy sands (biological community with warmer affinity); (e) *Euchone rubrocincta, Nematonereis unicornis* and several warmer species in muddy sands of the southern and sheltered shelf; (f) Muds of *Sternaspis scutata, Heteromastus filiformis* and *Psammogammarus caecus.* Sediment grain-size, organic matter, depth and hydrodynamic regime were the best variables explaining the observed macrofauna distribution patterns.

Cosmopolitan and northern species (Cold temperate and Boreal affinities) dominated the northwestern sector being replaced by warmer species (Lusitanean, Mediterranean and African affinities) in the transition area between the Nazaré and S.Vicente canyons which ruled then the southern shelf. Therefore, the present study showed the ecological importance of this study area due to its high macrofauna abundance and diversity, as well as, highlighted their transitional characteristics, where both cold temperate, warm temperate and subtropical faunas can coexist.

This work sets the first broadscale assessment of the soft-bottom macrofauna benthic biodiversity in the Portuguese continental shelf and the first holistic map of the benthic habitats. It fulfill a historical gap in the marine environment knowledge at national level, of which seabed habitats are an essential component, and provide key baseline information for future works, since the majority of the Portuguese shelf is non-polluted and the environment is anthropogenically undisturbed. Furthermore, the scientific knowledge here presented can be used in the future, as a baseline, for future integrated studies to define strategies to better manage the Portuguese coast and its resources.

Chapter 6

References

- Abrantes, I., Rocha, F., 2007. Sedimentary Dynamics of the Aveiro Shelf (Portugal). *Journal of Coastal Research*, SI 50, 1005–1009.
- Alagarsamy, R., Zhang, J., 2010. Geochemical characterisation of major and trace elements in the coastal sediments of India. *Environmental Monitoring Assessment*, 161, 161–176.
- Alikunhi, K.H., 1951. On the reproductive organs of Pisione remota (Southern), together with a review of the Family Pisionidae (Polychaeta). *Proceedings: Plant Sciences*, 33, 14–31.
- Almaça, C., 1985. Considerações zoogeográficas sobre a fauna Ibérica de Brachyura (Decapoda, Crustacea). *Arquivos do Museu Bocage*, 3, 51–67.
- Alt-Epping, U., Mil-Homens, M., Hebbeln, D., Abrantes, F., Schneider, R.R., 2007. Provenance of organic matter and nutrient conditions on a river- and upwelling influenced shelf: A case study from the Portuguese Margin. *Marine Geology*, 243, 169–179.
- Álvarez-Salgado, X.A., Figueiras, F.G., Pérez, F.F., Groom, S., Nogueira, E., Borges, A.V., Chou, L., Castro, C.G., Moncoiffé, G., Ríos, A.F., Miller, A.E.J., Frankignoulle, M., Savidge, G., Wollast, R., 2003. The Portugal coastal counter current off NW Spain: new insights on its biogeochemical variability. *Progress in Oceanography*, 56, 281–321.
- Alves, F., Chicharo, L., Nogueira, A., Regala, J., 2003a. Changes in benthic community structure due to clam dredging on the Algarve coast and the importance of seasonal analysis. *Journal of the Marine Biological Association of the United Kingdom*, 83, 719–729.
- Alves, T.M., Gawthorpe, R.L., Hunt, D.W., Monteiro, J.H., 2003b. Cenozoic tectono-sedimentary evolution of the western Iberian margin. *Marine Geology*, 195, 75–108.
- Ambar, I., Fiúza, A.F.G., 1994. Some features of the Portugal current system: a poleward slope undercurrent, an upwelling related summer southward flow and an autumn-winter poleward coastal surface current, *In*: Katsaros, K. B., Fiúza, A. F. G., Ambar, I. (Eds.), Proceedings of the second international conference on air-sea interaction and on meteorology and oceanography of the coastal zone. American Meteorological Society, Boston, USA, pp. 286–287.
- Amoureux, L., 1974. Annélides Polychetes recueillies sur les pentes du talus continental au Nord-Ouest de l'Espagne et du Portugal (Campagne 1972 de la «Thalassa». Cuadernos de Ciencias Biológicas, 3, 121–154.
- Amoureux, L., Calvário, J., 1981. Annélides Polychétes du Portugal Données nouvelles et indroduction. *Arquivos do Museu Bocage Série B*, 1 (12), 147–155.
- Anderson, M. J., Gorley, R. N., Clarke, K. R., 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. University of Auckland and PRIMER-E, Plymouth, 214 pp.
- Appeltans, W., Bouchet, P., Boxshall, G.A., De Broyer, C., de Voogd, N.J., Gordon, D.P., Hoeksema, B.W., Horton, T., Kennedy, M., Mees, J., Poore, G.C.B., Read, G., Stöhr, S., Walter, T.C., Costello, M.J. (Eds), 2012. World Register of Marine Species. Accessed at http://www.marinespecies.org on 25.10.2012.
- Araújo, M.F., Jouanneau, J.M., Valério, P., Barbosa, T., Gouveia, A., Weber, O., Oliveira, A., Rodrigues, A., Dias, J.M.A., 2002. Geochemical tracers of northern Portuguese estuarine sediments on the shelf. *Progress in Oceanography*, 52, 277–297.
- Araújo, R., Bárbara, I., Sousa-Pinto, I., Quintino, V., 2005. Spatial variability of intertidal rocky assemblages in the northwest coast of Portugal. *Estuarine and Coastal Shelf Science*, 64, 658– 670.
- Ardré, F., 1970. Contribution à l'étude des algues marines du Portugal I. La Flore. *Portugaliae Acta Biologica*, Série B, 10, 1–423.
- Ardré, F., 1971. Contribution à l'étude des algues marines du Portugal II. Ecologie et Chorologie. Bulletin du Centre d'Etudes et de Recherches Scientifiques, 8, 359-574.
- Ashworth, J.H., 1912. Catalogue of the Chaetopoda in the British Museum. A. Polychaeta, Part I Arenicolidae, 8, London, 175 pp.
- Augener, H., 1933. XI. Polychaeten aus der Zoologischen Museum von Leyden und Amsterdan. Zoologische Mededeelingen s'Rijks Museum van Natuurlijke Historie Leiden, 15, 177–211.
- Basaham, A.S., 2009. Geochemistry of Jizan shelf sediments, southern Red Sea coast of Saudi Arabia. *Arabian Journal of Geosciences*, 2, 301–310.
- Basford, D., Eleftheriou, A., Raffaelli, D., 1990. The infauna and epifauna of the northern North Sea. *Netherlands Journal of Sea Research*, 25, 165–173.
- Bellan, G., 1960. Resultats scientifiques de la campagne du N.R.P. "Faial" (1957) 2. Annelides Polychetes. Gabinete de Estudos das Pescas, Lisboa, 31 pp.

- Benkendorfer, G., Soares-Gomes, A., 2009. Biogeography and biodiversity of gastropod molluscs from the eastern Brazilian continental shelf and slope. *Latin American Journal of Aquatic Research*, 37, 143–159.
- Bergaya, F., Theng, B.K.G., Lagaly, G., 2006. Handbook of Clay Science Developments in Clay Science. Elsevier Science, 1246 pp.
- Bergen, M., Weisberg, S.B., Smith, R.W., Cadien, D.B., Dalkey, A., Montagne, D.E., Stull, J.K., Velarde, R.G., Ranasinghe, J.A., 2001. Relationship between depth, sediment, latitude, and the structure of benthic infaunal assemblages on the mainland shelf of southern California. *Marine Biology*, 138, 637–647.
- Bettencourt, A.M., Bricker, S.B., Ferreira, J.G., Franco, A., Marques, J.C., Melo, J.J., Nobre, A., Ramos, L., Reis, C.S., Salas, F., Silva, M.C, Simas, T., Wolff, W., 2004. Typology and Reference Conditions for Portuguese Transitional and Coastal Waters, Development of guidelines for the application of the European Union Water Framework Directive. INAG/IMAR, Lisboa, Portugal, 100 pp.
- Borja, A., Aguirrezabalaga, F., Martínez, J., Sola, J.C., García-Arberas, L., Gorostiaga, J.M., 2004. Benthic communities, biogeography and resources management, chapter 18, *In*: Borja A., Collins, M. (Eds), Elsevier Oceanography Series. Elsevier, 70, 455–492.
- Bouvier, E.L., 1940. Décapodes marcheurs. Faune de France, 37, 1–404.
- Brooks, R.A., Purdy, C.N., Bell, S.S., Sulak, K.J. 2006. The benthic community of the eastern US continental shelf: A literature synopsis of benthic faunal resources. *Continental Shelf Research*, 26, 804–818.
- Brumsack, H.J., 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 232, 344–361.
- Buchman, M.F., 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99–1, Coastal Protection and Restoration Division, Seattle WA, 12 pp.
- Byrnes, M.R., R.M. Hammer, B.A. Vittor, S.W. Kelley, D.B. Snyder, J.M. Côté, J.S. Ramsey, T.D. Thibaut, N.W. Phillips, J.D. Wood, J.D. Germano, 2003. Collection of Environmental Data Within Sand Resource Areas Offshore North Carolina and the Environmental Implications of Sand Removal for Coastal and Beach Restoration. U.S. Department of the Interior, Minerals Management Service, Leasing Division, Sand and Gravel Unit, Herndon, VA. OCS Report MMS 2000–056, 256 pp.
- Cabeçadas, C., Monteiro, M.T., Brogueira, M.J., Cavaco, M.H., Gonçalves, C., Ferronha, H., Nogueira, M., Cabeçadas, P., Ribeiro, A.P., Guerra, M., Gaudêncio, M.J., Passos, M., 2002. Caracterização ambiental da zona costeira adjacente aos estuários do Tejo e Sado. Relatório INIAP/IPIMAR, 32 pp + anexes.
- Cabeçadas, C., Monteiro, M.T., Brogueira, M.J., Cavaco, M.H., Gonçalves, C., Nogueira, M., Cabeçadas, P., Ribeiro, A.P., Ferronha, H., Nogueira, P., Oliveira, R., Coutinho, M.T., Guerra, M., Gaudêncio, M.J., Passos, M., Martins, R., Carneiro, M. 2003. Caracterização ecológica dos sistemas estuarinos Tejo e Sado e zona costeira adjacente. Relatório INIAP/ IPIMAR, 153 pp.
- Cabeçadas, G., Monteiro, M.T., Brogueira, M.J., Guerra, M., Gaudêncio, M.J., Passos, M., Cavaco, M.H., Gonçalves, C., Ferronha, H., Nogueira, M., Cabeçadas, P., Ribeiro, A.P., 2004. Caracterização ambiental da zona costeira adjacente aos estuários do Tejo e Sado. Relatórios Científicos e Técnicos IPIMAR, Série digital, 20, 40 pp.
- Cabioch, L., 1968. Contribution a la connaissance des peuplements benthiques de la Manche occidentale. *Cahiers de Biologie Marine*, 9, 493–720.
- Cacabelos, E., Gestoso, L., Troncoso, J., 2009. Inventario de la macrofauna bentónica de sustratos blandos de la Ensenada de San Simón (NO España)/ Check-list of soft-bottom benthic macrofauna in Ensenada de San Simón (NW Spain). Boletín de la Real Sociedad Española de Historia Natural,103, 103–119.
- Cacabelos, E., Quintas, P., Troncoso, J.S., 2008. Spatial distribution of soft-bottom molluscs in the Ensenada de San Simón (NW Spain). *American Malacological Bulletin,* 25, 9–19.
- Campoy, A., 1982. Fauna de España. Fauna de anélidos poliquetos de la Península Ibérica. EUNSA, Publicaciones de Biología de la Universidad de Navarra, Serie Zoológica, Pamplona, Spain, 7, 781 pp.
- Carrera-Parra, L.F., 2006a. Phylogenetic analysis of Lumbrineridae Schmarda, 1861 (Annelida: Polychaeta). *Zootaxa*, 1332, 1–36.
Carrera-Parra, L.F., 2006b. Revision of *Lumbrineris* de Blainville, 1828 (Polychaeta: Lumbrineridae). *Zootaxa*, 1336, 1–64.

- Carvalho, R.N. de, 1929. Catálogo de Coleccao de Invertebrados de Portugal existente no Museo Zoológico da Universidade de Coimbra. Vermes. I. Polychaeta. *Memórias e Estudos do Museu Zoológico da Universidade de Coimbra*, 37, 1–16.
- Carvalho, S., Cunha, M.C., Pereira, F., Pousão-Ferreira, P., Santos, M.N., Gaspar, M.B., 2011. The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. *Helgoland Marine Research*, 66, 489–501.
- Carvalho, S., Pereira, P., Pereira, F., Pablo, H., Vale, C. Gaspar, M., 2011b. Factors structuring temporal and spatial dynamics of macrobenthic communities in a eutrophic coastal lagoon (Óbidos Lagoon, Portugal). *Marine Environmental Research*, 71, 97–110.
- Castro, P. Huber, M., 2008. Marine Biology, 7th edition. McGraw-Hill Higher Educatio, New York, USA, 459 pp.
- Chambers, S.J., Muir, A.I., 1997. Polychaetes: British Chrysopetaloidea, Pisionidea and Aphroditoidea. Synopses of the British Fauna. The Linean Society of London and The Estuarine and Brackish-Water Sciences Association, Bath, UK, 54, 202 pp.
- Chevreux, E., Fage, L., 1925. Amphipodes. Faune de France, 9, 1–488.
- Choi, M.-S., Yi, H.-I., Yang, S.Y., Lee, C.-B, Cha, H.-J., 2007. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. *Marine Chemistry*, 107, 255–274.
- Çinar, M.E., 2009. Alien polychaete species (Annelida: Polychaeta) on the southern coast of Turkey (Levantine Sea, eastern Mediterranean), with 13 new records for the Mediterranean Sea. *Journal of Natural History*, 43, 2283–2328.
- Clarke, K.R., Gorley, R.N., 2006. PRIMER v.6: User Manual/Tutorial PRIMER-E. Plymouth, England, 190 pp.
- Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Lasram, F.B.R., Aguzzi, J., Ballesteros, E., Bianchi, C.N., Corbera, J., Dailianis, T., Danovaro, R., Estrada, M., Froglia, C., Galil, B.S., Gasol, J.M., Gertwagen, R., Gil, J., Guilhaumon, F., Kesner-Reyes, K., Kitsos, M.-S., Koukouras, A., Lampadariou, N., Laxamana, E., Cuadra, C., Lotze, H., Martin, D., Mouillot, D., Oro, D., Raicevich, S., Rius-Barile, J., Saiz-Salinas, J., San Vicente, C., Somot, S., Templado, J., Turon, X., Vafidis, D., Villanueva, R., Voultsiadou, E., 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. *PLoS ONE*, 5(8), e11842.
- Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O., Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland, Version 04.05, JNCC, Peterborough, UK, 49 pp.
- Connor, D., 2010. Sabellaria spinulosa reefs. Quality Status Report 2010, Case Reports for the OSPAR List of threatened and/or declining species and habitats – Update. OSPAR Commision, JNCC, Peterborough, UK, 5 pp.
- Corral, E., Urgorri, V., Botana, A., Señarís, M., Gil-Mansilla, E., Candás, M., Zamarro, M., Varela, C., Díaz-Agras, G., Alvariño, L., García-Álvarez, O., 2006. Moluscos gasterópodos prosobranquios dela Familia Fissurellidae recolectados en la campaña oceanográfica Francesa SEAMOUNT I.
- Corredeira, C., Araújo, M. F., Gouveia, A., Jounneau, J.-M., 2009. Sediments of Galician Continental Shelf: elemental composition and accumulation rates. *Journal of Radioanalytical* and Nuclear Chemistry, 281, 265–268.
- Costa e Silva, M., Pereira, P., Falcão, M, Fonseca, L.C., 2008. Caracterização das comunidades de anelídeos poliquetas ao longo de um gradiente de profundidade na região do Ancão (Algarve Portugal). *Pan-American Journal of Aquatic Sciences*, 3, 214–231
- Cotté-Krief, M.–H., Guieu, C., Thomas, A.J., Martin, J.-M., 2000. Sources of Cd, Cu, Ni and Zn in Portuguese coastal waters. *Marine Chemistry*, 71, 199–214.
- Cumano, H., 1939. Considerações para o estudo da fauna equinológica Portuguesa. Arquivos do Museu Bocage, 10, 1–17.
- Cúmano, H., 1945. Considerações zoogeográficas sobre a fauna equinológica de Portugal. *Arquivos do Museu Bocage*, 16, 71–83.
- Cúmano, H., 1953. Contribution to the study of the equinological fauna of Portugal. Arquivos do Museu Bocage, 24, 65–68.
- Cunha, M.R., Paterson, G.L.J., Amaro, T., Blackbird, S., Stigter, H.C., Ferreira, C., Glover, A., Hilário, A., Kiriakoulakis, K., Neal, L., Ravara, A., Rodrigues, C.F., Tiago, A., Billett, D.S.M.,

2011. Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic). *Deep-Sea Research II*, 58, 2433–2447.

- Cúrdia, J., Carvalho, S., Ravara, A., Gage, J.D., Rodrigues, A.M., Quintino, V., 2004. Deep macrofaunal assemblages from Nazaré Submarine Canyon (NW Portugal). *Scientia Marina*, 68, 171–180.
- Daesslé, L.W., Camacho-Ibar, V.F., Carriquiry, J.D., Ortiz-Hernández, M.C., 2004. The geochemistry and sources of metals and phosphorus in the recent sediments from the Northern Gulf of California. *Continental Shelf Research*, 24, 2093–2106.
- Dajoz, R., 1971. Précis d'Ecologie. Ed. Dunod. Paris, France, 549 pp.
- Dauvin, J.C., Bachelet, G., Bellan, G., 2006. Biodiversity and biogeographic relationships of the polychaete fauna in French Atlantic and Mediterranean waters. *Scientia Marina*, 70S3, 259– 267.
- Dauvin, J.C., Dewarumez, J.-M., Gentil, F., 2003. Liste actualisée des espèces d'Annélides Polychètes présentes en Manche [An up to date list of polychaetous annelids from the English Channel]. *Cahiers de Biologie Marine*, 44, 67–95.
- Dauvin, J.C., Kendall, M., Paterson, G., Gentil, F., Jirkov, I., Sheader, M., De Lange, M., 1994. An initial assessment of polychaete diversity in the northeastern Atlantic Ocean. *Biodiversity Letters*, 2, 171–181.
- Dauvin, J.C., Thiébau, E., Gomez Gesteira, J.L., Ghertsos, K., Gentil, F., Ropert, M., Sylvand, B., 2004. Spatial structure of a subtidal macrobenthic community in the Bay of Veys (western Bay of Seine, English Channel). *Journal of Experimental Marine Biology and Ecology*, 307, 217– 235.
- Delgado, J., Nieto, J.M., Boski, T., 2010. Analysis of the spatial variation of heavy metals in the Guadiana Estuary sediments (SW Iberian Peninsula) based on GIS-mapping techniques. *Estuarine Coastal and Shelf Science*, 88, 71–83.
- Dexter, D.M., 1988. The sandy beach fauna of Portugal. *Arquivos Museu Bocage, Nova Serie 1*, 101–110.
- Dias, J.M.A, Boski, T., Rodrigues, A., Magalhães, F., 2000. Coast line evolution in Portugal since the Last Glacial Maximum until present a synthesis. *Marine Geology*, 170, 177–186.
- Dias, J.M.A., 1987. Dinâmica sedimentar e evolução recente de plataforma continental Portuguesa setentrional. PhD Thesis, Universidade de Lisboa, 384 pp.
- Dias, J.M.A., Gonzalez, R., Garcia, C., Diaz-del-Rio, V., 2002. Sediment distribution patterns on the Galicia-Minho continental shelf. *Progress in Oceanography*, 52, 215–231.
- Dias, J.M.A., Nittrouer, C.A., 1984. Continental shelf sediments of northern Portugal. *Continental Shelf Research*, 3, 147–165.
- Dill, H.G., 2010. The "chessboard" classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. *Earth-Science Reviews*, 100, 1–420.
- Dinter, W., 2001. Biogeography of the OSPAR Maritime Area. A synopsis of biogeographical distribution patterns described for the North-East Atlantic. Bonn, Germany: Federal Agency for Nature Conservation, 167 pp.
- Drago, T., Araújo, F., Valério, P., Weber, O., Jouanneau, J.M., 1999. Geomorphological control of fine sedimentation on the northern Portuguese shelf. *Boletín Instituto Español de Oceanografía*, 15, 111–122.
- Duarte, M., 2011. Padrões nas associações de macroinvertebrados bentónicos de diferentes habitats na Ria de Aveiro e no estuário do Mira. MSc thesis, Faculdade de Ciências, Universidade de Lisboa, Portugal, 39 pp.
- Dutkiewicz, S., Follows, M.J., Parekh, P., 2005. Interactions of the iron and phosphorus cycles: A three-dimensional model study. *Global Biogeochemical Cycles*, 19, Gb1021.
- Eleftheriou, A., McIntyre, A.D. (Eds), 2005. Methods for the Study of Marine Benthos, 3rd edition. Wiley-Blackwell, Oxford, United Kingdom, 440 pp.
- Ellingsen K.E., Gray J.S., 2002. Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf. *Journal of Animal Ecology*, 71, 373–389
- Ellingsen, K.E., 2002. Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. *Marine Ecology Progress Series*, 232, 15–27.
- Faure, G., 1992. Principles and applications of inorganic geochemistry. Maxwell Macmillan International Editions, New York, USA, 626 pp.
- Fauvel, P., 1923. Polychètes érrantes, Faune de France. Office Central de Faunistique, Paris, France, 488 pp.

- Fauvel, P., 1927. Polychètes sédentaires, Faune de France. Office Central de Faunistique, Paris, France, 494 pp.
- Fiúza, A.F.G., 1983. Upwelling patterns off Portugal, *In:* Suess, E., Thiede, J. (Eds.), Coastal upwelling: its sediment record. Plenum Publishing Corporation, New York, pp. 85–98.
- Fiúza, A.F.G., Macedo, M. E., Guerreiro, M. R., 1982. Climatological space and time variation of the Portuguese coastal upwelling. *Oceanologica Acta*, 5, 31–50.
- Fonseca, L.C., Pereira, P., Gaspar, M., Moura, A., Carvalho S., Leitão, F., Drago, T., Falcão, M., 2006. Macrozoobentos e ambiente sedimentar da Lagoa de Óbidos (Costa Oeste de Portugal): um estudo de referência. Actas do 1º Seminário sobre Sistemas Lagunares Costeiros, 24–42.
- Freitas, R., Ricardo, F., Pereira, F., Sampaio, L., Carvalho, S., Gaspar, M., Quintino, V., Rodrigues, A. M., 2011. Benthic habitat mapping: concerns using a combined approach (acoustic, sediment and biological data). *Estuarine Coastal and Shelf Science*, 92, 4, 598–606.
- Freitas, R., Rodrigues, A.M., Quintino, V., 2003a. Benthic biotopes remote sensing using acoustics. *Journal of Experimental Marine Biology and Ecology*, 285–286, 339–353.
- Freitas, R., Silva, S., Quintino, V., Rodrigues, A.M., Rhynas, K., Collins, W., 2003b. Acoustic Seabed Classification of Marine Habitats: Studies in the Western Portuguese Coastal Shelf. *ICES Journal of Marine Science*, 3, 60, 599–608.
- Gaspar, M. B., Leitão, F., Santos, M. N., Chícharo, L., Dias, M. D., Chícharo, A., Monteiro, C. C., 2003. A comparison of direct macrofaunal mortality using three types of clam dredges. *ICES Journal of Marine Science*, 60, 733–742.
- Gaspar, M., Moura, P., Monteiro, C.C., 2010. Ponto de situação dos bancos de bivalves na zona Ocidental Norte (Junho 2010). Propostas de medidas de gestão para 2011. Relatório de campanha, 22 pp.
- Gaspar, M., Moura, P., Pereira, F., Monteiro, C.C., 2010. Ponto de situação dos bancos de bivalves na zona Sul (Maio 2010). Relatório de campanha, 21 pp.
- Gaspar, M.B., Sobral, M., Maia, F., Sobral, M.P., Viegas, M.C., Monteiro, C.C., 2004. A pescaria de moluscos bivalves na Zona Ocidental Norte e Zona Sul. Ponto de situação dos principais bancos (Set./Out. 2002). *Relatórios Científicos e Técnicos IPIMAR*, Série digital, 12, 33p.
- Gaspar, M.B., Sobral, M., Pereira, A., Maia, F., Sobral, M.P., Viegas, M.C., Monteiro, C.C., 2005. Prospecção dos bancos de moluscos bivalves nas Zonas Ocidental e Sul da costa portuguesa (campanha de pesca 2003). *Relatórios Científicos e Técnicos IPIMAR*, Série digital, 22, 31p.
- Gaudêncio, M.J, Guerra, M.T., 1994. Povoamentos macrozoobentónicos das áreas costeiras adjacentes aos estuários dos rios Tejo e Sado (Portugal). Seminário sobre Recursos Haliêuticos, Ambiente, Aquacultura e Qualidade do Pescado da Península de Setúbal. Publicações Avulsas do IPIMAR, 1, 99-110.
- Gaudêncio, M.J., Cabral, H.N., 2007. Trophic structure of macrobenthos in the Tagus estuary and adjacent coastal shelf. *Hydrobiologia*, 587, 241–251.
- Gaudêncio, M.J., Guerra, M.T., 1998. Caracterização da fauna bentónica na faixa marítima de protecção entre a foz da Ribeira de S. Julião a norte, e o farol do Outão, a sul. Relatório efectuado para o Plano de Ordenamento da Orla costeira Sintra-Sado.Relatório IPIMAR, 27 pp.
- Gaudêncio, M.J., Guerra, M.T., 2012. Contrato com Águas de Santo André. Plataforma continental portuguesa na área do emissário de Sines: composição granulométrica, densidade, teor de matéria orgânica, teor de água, macroinvertebrados bentónicos. Relatório IPIMAR, 14 pp.
- Gentil, F., 1976. Distribution des peuplements benthiques en baie de Seine. PhD Thesis, Université Paris 6, Paris, France, 162 pp.
- George, J.D., Hartmann-Schröder. G., 1985. Polychaetes: British Amphinomida, Spintherida and Eunicida. Synopses of the British Fauna. The Linean Society of London and The Estuarine and Brackish-Water Sciences Association, Bath, UK, 32, 221 pp.
- Gil, J., Sardá, R., 1999. New records of Annelida Polychaeta for the Portuguese Fauna (with comments on some already knwn species). *Arquivos do Museu Bocage*, 3(10), 287–336.
- Gil, J.C.F., 2011. The european fauna of Annelida Polychaeta. PhD thesis, Faculdade de Ciências, Universidade de Lisboa, Portugal.1554 pp.
- Glémarec, M., 1973. The benthic communities of the European North Atlantic continental shelf. Oceanography and Marine Biology: An Annual Review, 11, 263–289.
- Gobin, J., Warwick, R., 2006. Geographical variation in species diversity: A comparison of marine polychaetes and nematodes. *Journal of Experimental Marine Biology and Ecology*, 330, 234–244.

- Gogina, M., Zettler, M.L., 2010. Diversity and distribution of benthic macrofauna in the Baltic Sea: Data inventory and its use for species distribution modelling and prediction. *Journal of Sea Research*, 64, 313–321.
- Gonçalves, J.M.S., Monteiro, P., Afonso, C., Oliveira, F., Rangel, M., Machado, M., Veiga, P., Leite, L., Sousa, I., Bentes, L., Fonseca, L., Erzini, K., 2010. Cartografia e caracterização das biocenoses marinhas da Reserva Ecológica Nacional Submarina entre a foz do Rio Arade e a Ponta da Piedade. Relatório Final. ARH Algarve. Universidade do Algarve, CCMAR, Faro, Portugal, 170 pp.
- Gonzalez, R., Araújo, M. F., Burdloff, D., Cachão, M., Cascalho, J., Corredeira, C., Dias, J. M. A., Fradique, C., Ferreira, J., Gomes, C., Machado, A., Mendes, I., Rocha, F., 2007. Sediment and pollutant transport in the Northern Gulf of Cadiz: A multi-proxy approach. *Journal of Marine Systems*, 68, 1–23.
- Gonzalez, R., Dias, J.M.A., Lobo, F., Mendes, I., 2004. Sedimentological and paleoenvironmental characterisation of transgressive sediments on the Guadiana Shelf (Northern Gulf of Cadiz, SW Iberia). *Quaternary International*, 120, 133–144.
- Graham, A., 1988. Molluscs: Prosobranch and Pyramidellid Gastropods. Synopses of the British fauna, 2nd Ed. The Linean Society of London and The Estuarine and Brackish-water Sciences Association, Bath Press, Avon, UK, 662 pp.
- Gray, J.S., 2000. The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. *Journal of Experimental Marine Biology and Ecology*, 250, 23–49.
- Grémare, A., Amouroux, J.M., Vétion, G., 1998. Long-term comparison of macrobenthos within the soft bottoms of the Bay of Banyuls-sur-mer (northwestern Mediterranean Sea). *Journal of Sea Research*, 40, 281–302.
- Guerreiro, C., Rodrigues, A., Duarte, J., Oliveira, A., Taborda, R., 2007. Bottom sediment signature associated with Oporto, Aveiro and Nazaré sumbarine canyons. *Thalassas,* 23, 9–18.
- Hadorn, R., Afonso, C.M.L., Rolán, E., 2009. A new *Fusinus* (Gastropoda: Fasciolariidae) from the Algarve, south coast of Portugal. *Iberus*, 27 (1), 119–129
- Heip, C., Hummel, H., van Avesaath, P., Appeltans, W., Arvanitidis, C., Aspden, R., Austen, M., Boero, F., Bouma, TJ., Boxshall, G., Buchholz, F., Crowe, T., Delaney, A., Deprez, T., Emblow, C., Feral, JP., Gasol, JM., Gooday, A., Harder, J., Ianora, A., Kraberg, A., Mackenzie, B., Ojaveer, H., Paterson, D., Rumohr, H., Schiedek, D., Sokolowski, A., Somerfield, P., Sousa Pinto, I., Vincx, M., Węsławski, JM.,Nash, R., 2009. Marine Biodiversity and Ecosystem Functioning. Printbase, Dublin, Ireland, 100 pp.
- Heip, C.H.R., Craeymeersch, J.A., 1995. Benthic community structures in the North Sea. Helgoländer Meeresuntersuchungen, 49, 313–328.
- Hily, C., 1987. Spatio-temporal variability of *Chaetozone setosa* (Malmgren) population on an organic gradient in the Bay of Brest (France). *Journal of Experimental Marine Biology and Ecology*, 112, 201–216.
- Hily, C., Le Loc'h, F., Grall, J., Glémarec, M., 2008. Soft bottom macrobenthic communities of North Biscay revisited: Long-term evolution under fisheries-climate forcing. *Estuarine Coastal* and Shelf Science, 78, 413–425.
- Hoey, G., Degraer, S., Vincx, M., 2004. Macrobenthic community structure of soft-bottom sediments at the Belgian Continental Shelf. *Estuarine Coastal and Shelf Science*, 59, 599–613.
- Hyland, J., Balthis, L., Karakassis, I., Magni, P., Petrov, A., Shine, J., Vestergaard O., Warwick., R., 2005. Organic carbon content of sediments as an indicator of stress in the marine benthos. *Marine Ecology Progress Series*, 295, 91–103.
- Jesus, C.C., de Stigter, H.C., Richter, T.O., Bóer, W., Mil-Homens, M., Oliveira, A., Rocha, F., 2010. Trace metal enrichments in Portuguese submarine canyons and open slope: anthropogenic impact and links to sedimentary dynamics. *Marine Geology*, 271, 72–83.
- Jesus, D.C., Fonseca, L.C., 1999. First records of 13 echinoderm species on the southwest coast of Portugal. *Boletín Instituto Español de Oceanografía*, 15 (1–4), 343–349.
- Jones, N.S., 1950. Marine bottom communities. *Biological Reviews*, 25, 283–313.
- Jouanneau, J.M., C. Garcia, C., Oliveira, A., Rodrigues, A., Dias, J.A., Weber, O., 1998. Dispersal and deposition of suspended sediment on the shelf off the Tagus and Sado estuaries, S.W. Portugal. *Progress in Oceanography*, 42, 233–257.

- Jouanneau, J.M., Weber, O., Champilou, N., Cirac, P., Muxika, I., Borja, A., Pascual, A., Rodríguez-Lázaro, J., Donard, O., 2008. Recent sedimentary study of the shelf of the Basque country. *Journal of Marine Systems*, 72, 397–406.
- Karageorgis, A.P., Anagnostou, C.L., Kaberi, H., 2005. Geochemistry and mineralogy of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact. *Applied Geochemistry*, 20, 69–88.
- Karakassis, I., Eleftheriou, A., 1997. The continental shelf of Crete: structure of macrobenthic communities. *Marine Ecology Progress Series*, 160, 185–196.
- Klassen, R.A., 1998. Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland. *Environ. Geol.*, 33, 154–169.
- Kristensen, E., Andersen, F.Ø., 1987. Determination of organic carbon in marine sediments: a comparison of two CHN-analyzer methods. *Journal of Experimental Marine Biology and Ecology*, 109, 15–23.
- Labrune, C., Grémare, A., Amouroux, J.-M., Sardá, R., Gil, J., Taboada, S., 2007. Assessment of soft-bottom polychaete assemblages in the Gulf of Lions (NW Mediterranean) based on a mesoscale survey. *Estuarine, Coastal and Shelf Science*, 71, 133–147.
- Lambshead, P., Tietjen, J., Timothy, F., Jensen, P., 2000. Latitudinal diversity gradients in the deep sea with special reference to North Atlantic nematodes. *Marine Ecology Progress Series*, 194, 159–167.
- Laubier, L., 1968. Présence au Portugal de deux Annélides Polychêtes interstitielles. *Vie Milieu*, 19 (2B), 426–428.
- Lenihan, H.S., Micheli, F., 2001. Soft-sediment communities. *In*: Bertness, M.D., Gaines, S.D., Hay, M.E. (Eds.), Marine Community Ecology. Sinauer Associates, Inc, Sunderland, USA, pp. 253–287.
- Levinton, J.S., 2009. Marine Biology: Function, Biodiversity, Ecology 3rd edition. Oxford University Press, New York, USA, 640 pp.
- Liaghati, T., Preda, M., Cox, M., 2004. Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. *Environment International*, 29, 935–948.
- Libes, S.M., 2009. Introduction to marine biogeochemistry, 2nd Ed. Academic Press, Bulington, USA, 909 pp.
- Long, E.R., MacDonald, D.D., Smith, S.L., Calder, F.D., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. *Environmental Management*, 19, 81–97.
- Lopes, M.T., 1989. Demospongiae intertidais de Portugal Continental. PhD Thesis, Faculdade de Ciências da Universidade de Lisboa, 410 pp.
- Loring, D.H., 1991. Normalization of heavy-metal data from estuarine and coastal sediments. *ICES Journal of Marine Science*, 48, 101–115.
- Loureiro, J.M., Macedo, M.E., 1986. Bacia hidrográfica do rio Tejo. Monografias hidrológicas dos principais cursos de água de Portugal continental. *Direcção Geral dos Recursos e Aproveitamentos Hidráulicos*, 281–337.
- Lourido, A., Cacabelos, E., Troncoso, J.S., 2008. Patterns of distribution of the polychaete fauna in subtidal soft bottoms of the Ría de Aldán (north-western Spain). *Journal of the Marine Biological Association of the United Kingdom*, 88, 263–275.
- Lourido, A., Moreira, J., Troncoso, J., 2010. Spatial distribution of benthic macrofauna in subtidal sediments of the Ría de Aldán (Galicia, northwest Spain). *Scientia Marina*, 74, 705–715.
- Lucas, Y., San Martín G., Parapar, J., 2012. Two new species of Syllidae (Annelida: Polychaeta) from DIVA-Artabria I project (cruise 2002) to deep areas off NW Spain. *Zootaxa*, 3589, 77–88.
- Macedo, M.C., Macedo, M.I., Borges, J., 1999. Conchas Marinhas de Portugal. Editora Verbo, Lisboa, Portugal, 516 pp.

Machado, A., 1942. Notas de Zoologia. Broteria Revista Sciencias Naturaes, 11(3), 102–105.

- Machado, A., Rocha, F., Araújo, M.F., Vitali, F., Gomes, C., Dias, J.A., 2005. Geochemical characterization of surficial sediments from the southwestern Iberian continental shelf. *Ciencias Marinas*, 31, 161–177.
- MAMAOT, 2012. Estratégia Marinha para a subdivisão do Continente. Diretiva Quadro Estratégia Marinha. Ministério da Agricultura, do Mar, do Ambiente e do Ordenamento do Território, Lisboa, Portugal, 930 pp.

- Marques, J.C., 1989. Amphipoda (Crustacea) bentónicos da costa portuguesa: Estudo taxonómico, ecológico e biogeográfico. Tese de doutoramento, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal, 394pp.
- Marques, J.C., Bellan-Santini, D., 1990. Benthic Amphipod Fauna (Crustacea) of the Portuguese coast: Biogeographical considerations. *Marine Nature*, 3, 43–51.
- Marques, J.C., Bellan-Santini, D., 1993. Biodiversity in the ecosystem of the Portuguese continental shelf: distributional ecology and the role of benthic amphipods. *Marine Biology*, 115, 555–564.
- Marques, V., 1987. A plataforma continental do Algarve: definição qualitativa das biocenoses de substrato móvel. Instituto Hidrográfico, Lisboa, Portugal, 31, 204 pp.
- Martínez, J., Adarraga, I., 2001. Distribución batimétrica de comunidades macrobentónicas de sustrato blando en la plataforma continental de Guipúzcoa (golfo de Vizcaya). *Boletín Instituto Español de Oceanografía*, 17, 33–48.
- Martínez, J., Aguirrezabalaga, F., Adarraga, I., 2008. A new species of *Pisione* (Annelida: Polychaeta: Pisionidae) from circalittoral soft bottoms (SE Bay of Biscay, Basque coast). *Cahiers de Biologie Marine*, 49, 283–294.
- Martins, R., Azevedo, M.R., Mamede, R., Sousa, B., Freitas, R., Rocha, F., Quintino, V., Rodrigues, A.M., 2012a. Sedimentary and geochemical characterization and provenance of the Portuguese continental shelf soft-bottom sediments. *Journal of Marine Systems*, 91, 41–52.
- Martins, R., Carrera-Parra, L.F., Quintino, V., Rodrigues, A.M., 2012b. Lumbrineridae (Polychaeta) from the Portuguese continental shelf (NE Atlantic) with the description of four new species. *Zootaxa*, 3416, 1–21.
- Martins, R., San Martín G., Rodrigues A.M., Quintino V., 2012c. On the diversity of the genus Pisione (Polychaeta, Pisionidae) along the Portuguese continental shelf, with a key to European species. *Zootaxa*, 3450, 12–22.
- Martins, R., Quintino, V., Rodrigues, A.M. (*in press*) Diversity and spatial distribution patterns of the soft-bottom macrofauna communities on the Portuguese continental shelf. *Journal of Sea Research*.
- Martins, V., Jouanneau, J., Weber, O., Rocha, F., 2006a. Tracing the late Holocene evolution of the NW Iberian upwelling system. *Marine Micropaleontology*, 59, 35–55.
- Martins, V., Patinha, C., Ferreira da Silva, E., Rocha, F., 2006b. Holocene record of productivity in the NW Iberian continental shelf. *Journal of Geochemical Exploration*, 88, 408–411.
- Mil-Homens, M., Branco, V., Vale, C., Boer, W., Alt-Epping, U., Abrantes, F., Vicente, M., 2009. Sedimentary record of anthropogenic metal inputs in the Tagus prodelta (Portugal). *Continental Shelf Research*, 29, 381–392.
- Mil-Homens, M., Stevens, R.L., Abrantes, F., Cato, I., 2006. Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. *Continental Shelf Research*, 26, 1184–1205.
- Mil-Homens, M., Stevens, R.L., Cato, I., Abrantes, F., 2007. Regional geochemical baselines for Portuguese shelf sediments. *Environmental Pollution*, 148, 418–427.
- Monbet, P., Brunskill, G.J., Zagorskis, I., Pfitzner, J., 2007. Phosphorus speciation in the sediment and mass balance for the central region of the Great Barrier Reef continental shelf (Australia). *Geochimica et Cosmochimica Acta*, 71, 2762–2779.
- Monteiro, J.H., Dias, J.A., Gaspar, L.C., Possolo, A.M., 1982. Recent marine sediments of the Portuguese Continental Shelf. Seminar on Actual Problems of Oceonography in Portugal, Lisboa, pp. 89–96.
- Morales, J.A., 1997. Evolution and facies architecture of the mesotidal Guadiana River delta (SW. Spain–Portugal). *Marine Geology*, 138, 127–148.
- Moreira, J., Parapar j., Troncoso, J.S., 2000a. On the presence of *Prionospio pulchra* (Polycheta: Spionidae) in the Atlantic Ocean. *Cahiers de Biologie Marine*, 41, 233–239.
- Moreira, J., Quintas, P., Troncoso, J.S., 2000b. *Pisione parapari* n. sp. a new pisionid from the north-east Atlantic. *Ophelia*, 52, 177–182.
- Moreira, J., Quintas, P., Troncoso, J.S., 2006. Spatial distribution of soft-bottom polychaete annelids in the Ensenada de Baiona (Ría de Vigo, Galicia, north-west Spain). *Scientia Marina*, 70S3, 217–224.
- Moreira, J., Veiga, P., Rubal, M., 2010. First record of *Pisione guanche* (Polychaeta: Pisionidae) at the Azores archipelago. *Marine Biodiversity Records*, 3 e–95, 1–6.

Moreira, M.H., Queiroga, H., Machado, M.M., Cunha, M.R., 1993. Environmental gradients in a southern Europe estuarine system: Ria de Aveiro, Portugal. Implications for soft bottom macrofaunal colonization. *Netherlands Journal of Aquatic Ecology*, 27, 465–482.

Mortimer, K., Gil, J., Fiege, D., 2011. Portuguese Magelona (Annelida: Magelonidae) with a description of a new species, a re-description of Magelona wilsoni Glémarec, 1966 and a key to adult Magelonidae from European waters. *Italian Journal of Zoology*, 78, 124–139.

Moss, D., 2008. EUNIS habitat classification – a guide for users. European Topic Centre on Biological Diversity, 27 pp.

Mougenot, D., 1989. Geologia da margem Portuguesa. Docs. Técnicos Instituto Hidrográfico, Lisboa, 32, 259 pp.

Moulaert, I., Hostens, K., Hillewaert, H., Wittoeck, J., 2007. Spatial variation of the macrobenthos species and communities of the Belgian continental shelf and the relation to environmental variation. *ICES*, A 09, 1–13.

Musco, L., Giangrande, A., 2005. Mediterrnean Syllidae (Annelida Polychaeta) Revisited: Biogeography, Diversity and Species Fidelity to Environmental Features. *Marine Ecology Progress Series*, 304, 143–153.

Narayanaswamy, B.E., Renaud, P.E., Duineveld, G.C.A., Berge, J., Lavaleye, M.S.S., Reiss, H., Brattegard, T., 2010. Biodiversity trends along the Western European Margin. *PLoS ONE*, 5(12), e14295.

Nobi, E.P., Dilipan, E., Thangaradjou, T., Sivakumar, K., Kannan, L., 2010. Geochemical and geostatistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. *Estuarine Coastal and Shelf Science*, 87, 253–264.

Nobre, A., 1903. Subsidios para o estudo da fauna marinha do norte de Portugal. Annaes de Sciencias Naturaes Porto, 8, 37–94.

Nobre, A., 1903. Subsidios para o estudo da fauna marinha do sul de Portugal. Annaes de Sciencias Naturaes Porto, 8, 153–160.

Nobre, A., 1904. Materiaes para o estudo da fauna Portugueza. Annuario da Academia Polytechnica do Porto, 1, 1–67.

Nobre, A., 1937. Fauna marinha de Portugal. *Memórias do Museu da Universidade de Coimbra*, 99, 1–30.

Nobre, A., 1942. Estudo sobre os organismos recolhidos pela Missão hidrográfica da costa de Portugal nos anos 1923-24-27-28. *Memórias do Museu da Universidade de Coimbra*, 134, 1–80.

Oliveira, A., Santos, A.I., Rodrigues, A., Vitorino, J., 2007. Sedimentary particle distribution and dynamics on the Nazaré canyon system and adjacent shelf (Portugal). *Marine Geology*, 246, 105–122.

Oliveira, I., Valle, A., Miranda, F., 1982. Littoral problems in the Portuguese west coast. *Coastal Engineering Proceedings*, 3, 1951–1969.

Olivero, J., Márquez, A.L., Real, R., 2012. Integrating Fuzzy Logic and Statistics to Improve the Reliable Delimitation of Biogeographic Regions and Transition Zones. Systematic Biology. *In press*.

Olivier, F., Grant, C., San Martín, G., Archambault, P., McKindsey, C.W., 2011. Syllidae (Annelida: Polychaeta: Phyllodocida) from the Chausey Archipelago (English Channel, France), with a description of two new species of the Exogoninae *Prosphaerosyllis. Marine Biodiversity*, 42(1), 55–63.

Paiva, P., Jouanneau, J.-M., Araújo, F., Weber, O., Rodrigues, A., Dias, J.M.A., 1997. Elemental distribution in a sedimentary deposit on the shelf off the Tagus estuary (Portugal). *Water Air and Soil Pollution*, 99, 507–514.

Palmer, M.R., 1985. Rare earth elements in foraminifera tests. *Earth and Planetary Science Letters*, 73, 285–298.

Peliz, A., Dubert, J., Santos, A.M.P., Oliveira, P., Le Cann B., 2005. Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. *Deep-Sea Research I*, 52, 621–646.

Pereira, A., Palanco, I., Rufini, M., Moreno, O., Gaspar, M.B., 2007. La pesca de bivalvos en el litoral oceanico de la costa sur-occidental de la Península Ibérica: Descriptión de la pesquería y artes de pesca, medidas de gestión, biología de las especies comerciales y catálogo de especies de bivalvos. Junta de Andalucía. Instituto de Investigación y Formación Agraria y Pesquera. Consejería de Innovación, Ciencia y Empresa, C. de Agricultura y Pesca, 141 pp.

- Pereira, S.G., Lima, F.P. Queiroz, N.C., Ribeiro, P.A., Santos, A.M., 2006. Biogeographic patterns of intertidal macroinvertebrates and their association with macroalgae distribution along the Portuguese coast. *Hydrobiologia*, 555, 185–192.
- Pérès, J.M., Picard, J., 1964. Nouveau manuel de Bionomie benthique de la Mer Méditerranée. *Recueil des Travaux de la Station Marine d'Endoume,* 47, 1–137.
- Perkins, T.H., 1979. Lumbrineridae, Arabellidae, and Dorvilleidae (Polychaeta), principally from Florida, with description of six new species. *Proceedings of the Biological Society of Washington*, 92, 415–465.
- Petersen, C.G.J., 1918. The sea bottom and its production of fishfood. A survey of the work done in connection with valuation of the Denmark waters from 1883–1917. *Report of the Danish Biological Station*, 25, 1–62.
- Picard, J., 1965. Recherches qualitatives sur les biocoenoses marines des substrats meubles dragables de la région Marseillaise. *Recueil des Travaux de la Station Marine d'Endoume*, 52, 1–160.
- Pires, A., Paxton, H., Quitino, V., Rodrigues, A.M., 2010. Diopatra (Annelida: Onuphidae) diversity in European waters with the description of Diopatra micrura, new species. *Zootaxa*, 2395, 17–33.
- Pleijel, F., Dales, R.P., 1991. Polychaetes: British Phyllodocoideans, Typhloscolecoideans and Tomopteroideans. Synopses of the British Fauna. The Linean Society of London and The Estuarine and Brackish-Water Sciences Association, Bath, UK, 45, 202 pp.
- Preda, M., Cox., M. E., 2005. Chemical and mineralogical composition of marine sediments, and relation to their source and transport, Gulf of Carpentaria, Northern Australia. *Journal of Marine Systems*, 53, 169–186.
- Przeslawski, R., Williams, A., Nichol, S., Hughes, M.G., Anderson, T., Althaus, F., 2011. Biogeography of the Lord Howe Rise region, Tasman Sea. *Deep-Sea Research II*, 58, 959–969.
- Quintino, V., Gentil, F., Rodrigues, A.M., Peneda, M.C., 1987. Macrozoobenthic community structure in the lagoon of Albufeira, western coast of Portugal. *Journal of Experimental Marine Biology and Ecology*, 106, 229–241.
- Quintino, V., Rodrigues, A.M., Gentil, F., 1989. Assessment of macrozoobenthic communities in the lagoon of Óbidos, western coast of Portugal. *Scientia Marina*, 53, 645–654.
- Quintino, V., Rodrigues, A.M., Gentil, F., 1986. Etude faunistique et coenotique des Molusques (Bivalves et Gastéropodes) des lagunes Obidos et Albufeira (Portugal). *Haliotis*, 15, 83–90.
- Quiroz-Martinez, B., Schmitt, F.G., Dauvin, J.-C., Dewarumez, J.-M, Foveau, A., Garcia, C., 2011. Regional patterns of continental shelf polychaete diversity: examples for the North Sea, English Channel,Irish Sea and Outer Bristol Channel areas. *Italian Journal of Zoology*, 78, 324–332.
- Radakovitch, O., Roussiez, V., Ollivier, W.L., Grenz, C., Probst, J.-L., 2008. Input of particulate heavy metals from rivers and associated sedimentary deposits on the Gulf of Lion continental shelf. *Estuarine Coastal and Shelf Science*, 77, 285–295.
- Ramos, J.M., 1976. Lumbrineridae (Polichète Errantes) de Méditerranée. Annales de l'Institut Ocanographique, Paris, 52, 103–137.
- Ramos, M. (Ed.). 2010. Iberfauna. The Iberian Fauna Databank available online at http://iberfauna.mncn.csic.es/
- Ravara, A., San Martín, G., Moreira, M.H., 2004. Syllidae (Annelida, Polychaeta) from the continental shelf off Aveiro (NW Portugal) with the description of a new species, *Syllis licheri*. *Senckenbergiana biologica*, 84, 1–11.
- Reboreda, R., Dubert, J., Nolasco, R., Marta-Almeida, M., Queiroga, H., Rocha, C., Cordeiro, N., 2010. Three-dimensional Modeling of the Seasonal Variation of Phytoplankton and Zooplankton in the Iberian Upwelling System. Jornadas do Mar da Marinha 2010. 13 pp.
- Rees, E.I., 2004. Subtidal sediment biotopes in Red Wharf and Conwy Bays, North Wales: A review of their composition, distribution and ecology. Report for Countryside Council for Wales. No 655, Anglesey, UK, 52 pp.
- Reimann, C., Matschullat, J., Birke, M. and Salminen, R., 2009. Arsenic distribution in the environment: the effects of scale. *Applied Geochemistry*, 24, 1147–1167.
- Reis, S.C., Marques, V.M., Calvário, J., Marques, J.C., Melo, R., Santos, R., 1982. Contribuição para o estudo dos povoamentos bentónicos (substrato rochoso) da costa ocidental portuguesa. *Oecologia Aquatica*, 6, 91–105.
- Retière, C., 1979. Contribution à la connaissance des peuplements benthiques du golfe Normano-Breton. Thèse d'Etat, Université Rennes I, France, 431 pp.

- Reveillaud, J., Remerie, T., Van-Soest, R., Erpenbeck, D., Cárdenas, P., Derycke, S., Xavier, R., Rigaux, A., Vanreusel, A., 2010. Species boundaries and phylogenetic relationships between Atlanto-Mediterranean shallow-water and deep-sea coral associated *Hexadella* species (Porifera, Ianthellidae). *Molecular Phylogenetics and Evolution*, 56, 104–114.
- Rodrigues, A.M., Meireles, S., Pereira, T., Gama, A., Quintino, V., 2006. Spatial patterns of benthic macroinvertebrates in intertidal areas of a southern European estuary: The Tagus, Portugal. *Hydrobiologia*, 555, 99–113.
- Rodrigues, A.M., Quintino, V., 1993. Horizontal biosedimentary gradients across the Sado estuary, Western coast of Portugal. *Netherlands Journal of Aquatic Ecology*, 27, 449–464.
- Rodrigues, A.M., Quintino, V., Sampaio, L., Freitas, R., Neves, R., 2011. Benthic Biodiversity Patterns in Ria de Aveiro, Western Portugal: Environmental-Biological Relationships. *Estuarine Coastal and Shelf Science*, 95, 338–348.
- Rosenberg, R., 2001. Marine benthic faunal successional stages and related sedimentary activity. *Scientia Marina*, 65, 107–119.
- Rouse, G.W., Pleijel, F., 2001. Polychaetes. Oxford University Press, Oxford, 354 pp.
- Roussiez, V., Ludwig, W., Monaco, A., Probst, J.-L., Bouloubassi, I., Buscail, R., Saragoni, G., 2006. Sources and sinks of sediment-bound contaminants in the Gulf of Lions (NW Mediterranean Sea): A multi-tracer approach. *Continental Shelf Research*, 26, 1843–1857.
- Rowe, G., 2010. A provisional guide to the family Opheliidae (Polychaeta) from the shallow waters of the British Isles. Emu Ltd., Southampton, United Kingdom, 12 pp.
- Roy, K., Jablonski, D., Valentine, J. W., Rosenberg, G., 1998. Marine latitudinal diversity gradients: Tests of causal hypotheses. *Proceedings of the National Academy of Sciences of the United States of America*, 95, 3699–3702.
- Roy, K., Jablonski, D., Valentine, J.W., 2004. Beyond Species Richness: Biogeographic Patterns and Biodiversity Dynamics Using Other Metrics of Diversity, *In*: Lomolino, M. V., Heaney, L. R. (Eds.), Frontiers of Biogeography: New Directions in the Geography of Nature. Sinauer, Sunderland, USA, pp. 151 – 170.
- Rubio, B., Nombela, M. A., Vilas, R., 2000. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. *Marine Pollution Bulletin*, 40, 968–980.
- Rufino, M.M., Gaspar. M.B., Maynou, F., Monteiro, C.C., 2008. Regional and temporal changes in bivalve diversity off the south coast of Portugal. *Estuarine Coastal and Shelf Science*, 80, 517– 528.
- Russell, A.D., Hönisch, B., Spero, H.J., Lea, D.W., 2004. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. *Geochimica et Cosmochimica Acta*, 68, 4347–4361.
- Saldanha, L., 1974. Estudo do povoamento dos horizontes superiores da rocha litoral da costa da Arrábida (Portugal). Arquivos do Museu Bocage, 2ª série, 5, 1-382.
- Saldanha, L., 1995. Fauna Marinha Atlântica. Publicações Europa-America. Mem-Martins, Portugal, 364 pp.
- San Martín, G., 2003. Annelida, Polychaeta II: Syllidae In: M.A. Ramos, J. Alba, X. Bellés, J. Gosálbez, A. Guerra, E. Macpherson, F. Martín, J. Serrano, J. Templado (Eds.), Fauna Ibérica, Vol 21. Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain, 554 pp.
- San Martín, G., 2004. Familia Pisionidae Southern 1914. In Ramos, M.A., Alba-Tercedor, J., Belles, X., Gosálbez, J., Geurra, A., MacPherson, E., Serrano, J., Templado, J. (Eds), Fauna Ibérica. Museo Nacional de Ciencias Naturales, CSIC, Madrid, 25, pp. 446–456.
- San Martín, G., López, E., Núñez, J., 1999. Two new species of the genus *Pisione* Grube, 1857 from Cuba and the Canary Islands. *Ophelia*, 51, 29–38.
- Sánchez-García, L., Andrés, J.R., Martín-Rubí, J.A., 2010. Geochemical signature in off-shore sediments from the Gulf of Cádiz inner shelf: Sources and spatial variability of major and trace elements. *Journal of Marine Systems*, 80, 191–202.
- Schulz, H.D., Zabel, M., 2006. Marine Geochemistry, 2nd Ed. Springer, Berlin, Germany, 574 pp.
- Scoffin, T.P., 1987. An Introduction to Carbonate Sediments and Rocks. Chapman and Hall, New York, USA, 274 pp.
- Seitz, R.D., 2011. Gradient effects on structuring of soft-bottom benthic infauna: Macoma balthica and predation, recruitment, and food availability. *Journal of Experimental Marine Biology and Ecology*, 409, 114–122.

- Serrano, A., Preciado, I., Abad, E., Sánchez, F., Parra, S., Frutos, I., 2008. Spatial distribution patterns of demersal and epibenthic communities on the Galician continental shelf (NW Spain). *Journal of Marine Systems*, 72, 87–100.
- Shilts, W., 1995. Geochemical partitioning in till, *In*: Bobrowsky, P.T., Sibbick, S.J., Newell, J.M., Matysek, P.F. (Eds.), Drift exploration in the Canadian Cordillera Province of British Columbia. Ministry of Energy, Mines and Petroleum Resources, Paper 1995–2, pp. 149–163.
- Siewing, R., 1953. Morphologische Untersuchungen am "Kopf" der Pisioniden (*Pisione puzae* nov. spec., Annelida, Polychaeta). *Zoologischer Anzeiger*, 150, 298–313.
- Silva, N.A., 2011. Caracterização e Mapeamento da fauna macrobentónica da plataforma continental entre Porto e Aveiro qualidade ecológica do sistema. MSc thesis, Faculdade de Ciências, Universidade do Porto, Portugal, 146 pp.
- Simboura N., Nicolaidou A., Thessalou-Legaki M., 2000. Polychaete communities of Greece: an ecological overview. *Marine Ecology*, 21, 129–144.
- SNIRH Sistema Nacional de Informação de Recursos Hídricos, 2010. Mapa de Pluviosidade Anual de Portugal 1959/60–1990/91. Instituto da Água, Lisboa, Portugal. http://snirh.pt.
- Somaschini, A., Martini, N., Gravina, M.F., Belluscio, A., Corsi, F. & Ardizzone, G.D. 1998. Characterization and cartography of some Mediterranean soft-bottom benthic communities (Ligurian Sea, Italy). *Scientia Marina*, 62, 27–36.
- Southern, R., 1914. Clare Island Survey. Archiannelida and Polychaeta. *Proceedings of the Royal Irish Academy*, 31, 1–160.
- Southward, E.C., Campbell, A.C., 2006. Echinoderms: keys and notes for the identification of British species. *Synopses of the British Fauna*. The Linean Society of London and The Estuarine and Brackish-water Sciences Association, Bath Press, Shrewsbury, UK, 56, 272 pp.
- Spalding, M., Fox, H., Allen, G.R., Davidson, N., Ferdana, Z.A., Finlayson, M., Halpern, B.S., Jorge, M.A., Lombana, J.A., Lourie, S.A., Martin, K.,D., Mcmanus, E., Molnar, J., Recchia, C.A., Robertson, J., 2007. Marine Ecoregions of the World: a bioregionalisation of coastal and shelf areas. *Bioscience*, 57, 573–583.
- Stevenson, A.G., 2001. Metal concentrations in marine sediments around Scotland: a baseline for environmental studies. *Continental Shelf Research*, 21, 879–897.
- Stockdale, A., Davison, W., Zhang, H., 2010. Formation of iron sulfide at faecal pellets and other microniches within suboxic surface sediment. *Geochimica et Cosmochimica Acta*, 74, 2665– 2676.
- Surugiu, V., Dauvin, J., Gillet, P., Ruellet, T., 2008. Can seamounts provide a good habitat for polychaete annelids? Example of the northeastern Atlantic seamounts. *Deep-Sea Research I*, 55, 1515–1531.
- Taylor, S.R., McLennan, S.H., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, UK, 312 pp.
- Tebble, N., 1976. British Bivalve Seashells, a Handbook for Identification, 2nd Ed. British Museum (Natural History), Alden Press, Oxford, UK, 212 pp.
- Thompson, T.E., 1988, Molluscs: benthic opisthobranchs: Mollusca, Gastropoda: keys and notes for the identification of the species. Synopses of the British fauna, 2nd Ed. The Linean Society of London and The Estuarine and Brackish-water Sciences Association, Bath Press, Avon, UK, 356 pp.
- Thorson, G., 1957. Bottom communities (sublittoral or shallow shelf), *In*: Hedgpeth, J.W. (Ed), Treatise on Marine Ecology and Palaeoecology. Geological Society of America, USA, pp. 461–534.
- UNESCO, 2009. Global Open Oceans and Deep Seabed (GOODS) Biogeographic Classification. Paris, UNESCO-IOC, *IOC Technical Series*, 84, 1–89.
- Vale, C., Sundby, B., 1987. Suspended sediment fluctuations in the Tagus estuary on semi-diurnal and fortnightly time scales. *Estuarine Coastal and Shelf Science*, *25*, 495–508.
- Vale, M., Cabral, H., Andrade, F., 2010. Distribution and structure of the upper sublittoral macrobenthic communities of Tróia sand beaches (Setúbal, Portugal) and their relationship with environmental factors. *Journal of Environmental Monitoring*, 2, 964–972.
- Van Aken, H.M., 2000. The hydrographyof the mid-latitude North-East Atlantic Ocean –Part I: The deep water masses. *Deep-Sea Research I*, 47, 757–788.
- Vanney, J.R., Mougenot, D., 1981. La plate-forme continentale du Portugal et les provinces adjacentes: analyse géomorphologique. *Memórias dos Serviços Geológicos de Portugal,* 28, 145 pp.

Vanney, J.R., Mougenot, D., 1990. Un canyon sous-marin du type "gouf": le Canhão da Nazaré (Portugal). Oceanologica Acta, 13, 1–14.

Viéitez, J.M., Alós, C., Parapar, J., Besteiro, C., Moreira, J., Núñez, J., Laborda A.J., G. San Martín, 2004. Annelida Polychaeta I *In*: Fauna Iberica, Vol. 25. Ramos, M.A. et al. (Eds.). Museo Nacional de Ciencias Naturales. CSIC, Madrid, Spain, 530 pp.

Vonk, R., Hoeksema, B.W., Jaume, D., 2011. A new marine interstitial *Psammogammarus* (Crustacea, Amphipoda, Melitidae) from Gura Ici Island, off western Halmahera (North Moluccas, Indonesia), and an overview of the genus. *ZooKeys*, 128, 53–73.

Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. *The Journal of Geology*, 30, 377–392.

Whittaker, R. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. *Ecological Monographs*, 30, 279–338.

Webgraphy

http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?NT=104&CM=8&DF=&CL=ENG, 30.10.2012 http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm, 29.10.2012 http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm 29.10.2012 http://ec.europa.eu/environment/nature/natura2000/index_en.htm, 30.10.2012 http://ec.europa.eu/environment/water/marine/directive_en.htm, 29.10.2012 http://ec.europa.eu/maritimeaffairs/atlas/seabasins/index en.htm, 30.10.12 http://eunis.eea.europa.eu/about.jsp, 30.10.12 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2007:0575:FIN:EN:PDF, 30.10.2012 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:2020:FIN:EN:PDF, 29.10.2012 http://www.cbd.int/, 30.10.2012 http://www.dre.pt/pdf1sdip/2008/07/14200/0459604611.PDF, 29.10.2012 http://www.emam.com.pt/, 29.10.2012 http://www.hidrografico.pt, 28.10.2012 http://www.inrb.pt/ipimar, 30.10.12 http://www.OceanEconomics.org/nationalreport, 30.10.12 http://www.ospar.org/html_documents/ospar/html/ospar_convention_e_updated_text_2007.pdf, 30.10.2012 http://www.un.org, 30.10.12 https://webgate.ec.europa.eu/maritimeforum/system/files/National Ocean Strategy_Portugal en.pdf, 29.10.2012 www.campanhasmarbis.org, 24.10.2012 www.marinespecies.org, 25.10.2012 www.meshatlantic.eu, 24.10.2012 www.rensub.com, 24.10.2012

References

Annexes

Table 1 – Environmental data and geographic coordinates of all sites sampled along the Portuguese continental shelf. Hydrodynamics are simplified according to the hydrodynamic regime classification of Bettencourt et al. (2004) for the Portuguese coast (1 –sheltered coast; 2 – moderately exposed coast; 3 –exposed coast). G – gravel, VCS – very coarse sand, CS – coarse sand, MS – medium sand, FS – fine sand, VFS – very fine sand, M – mud, C – coarse sediment, Mx – mixed sediment, S – sand, mS – muddy sand and sM – sandy mud. n.a. – no available data.

	itude	qe	odyna-	(m)	u (Φ)	al (%)	(%)	(%)	enic on (%)	(%)	nent ificatio tworth	nent ificatio ed)
Sites	Longi	Latitu	Hydro mics	Depth	Media	Grave	Sand	Fines	Bioge fractio	TOM	Sedin classi (Went	Sedin classi (Folk adapt
2	-9.028267	41.863000	3	93.94	4.00	0.00	41.72	58.31	0.37	3.33	М	sM
3	-9.172200	41.862900	3	117.64	2.49	0.01	89.00	11.10	0.00	2.60	FS	mS
4	-9.259433	41.863200	3	130.76	3.22	0.00	77.05	23.01	0.06	3.51	VFS	mS
0 7	-9.156317	41.721307	3	05 70	3.99	2.78	47.50 83.00	49.78	0.28	4.32	VFS FS	SIVI mS
9	-8 872850	41.721883	3	46 13	0.41	3.15	95 75	0.00	1.89	1.93	CS	S
10	-8.986550	41.589350	3	75.53	-1.11	54.62	41.31	3.97	1.99	0.73	G	č
11	-9.087433	41.589333	3	98.06	2.95	0.06	60.61	39.39	0.19	4.66	FS	mS
12	-9.201850	41.587083	3	127.72	2.52	0.00	91.93	8.16	0.22	1.60	FS	S
13	-9.163433	41.456167	3	128.25	2.60	0.00	86.33	13.67	0.07	1.88	FS	mS
16	-8.864433	41.459283	3	52.27	2.73	0.00	84.70	15.36	0.36	1.72	FS	ms
18	-8.830567	41.324017	3	42 64	-1 64	0.05 59 72	99.30 39.15	1.04	2 42	0.79	G	C
19	-8.947700	41.322567	3	72.00	3.50	0.14	58.44	41.37	0.60	2.06	VFS	mS
23	-9.058300	41.188217	3	96.86	4.00	0.00	2.20	97.74	0.00	4.08	М	Μ
24	-8.954700	41.189317	3	64.31	4.00	0.00	49.58	50.37	0.01	2.23	М	sM
25	-8.856533	41.189300	3	47.25	-0.42	28.30	67.52	4.10	8.34	0.85	VCS	С
26	-8.761150	41.186633	3	28.86	1.30	0.00	99.04	1.03	0.00	0.49	MS	S
27	-8.734533	41.058283	3	24.30 48.41	-0.55	38.84	60.63 02.04	0.38	1.59	0.40	005	C
31	-9 166900	41.057255	3	134 59	3 23	3.81	92.94 61.12	35 13	2.03	3.28	VFS	mS
39	-8.814500	40.788367	3	29.25	0.38	23.75	75.97	0.01	4.33	0.49	CS	C
40	-8.917167	40.790433	3	45.15	-1.23	58.44	41.46	0.04	5.40	0.40	G	С
41	-9.001733	40.788383	3	68.55	-0.66	40.94	58.58	0.37	0.53	0.87	VCS	С
42	-9.105117	40.787967	3	99.56	2.56	0.00	94.04	5.96	0.07	1.82	FS	S
45 46	-9.109517	40.649317	3	90.94 74.10	2.50	0.00	98.44	1.57	1.00	0.89		S
40	-9.037207	40.653233	3	49.88	-0.60	38.54	61 19	0.50	1.02	0.02	VCS	C
48	-8.854850	40.654917	3	35.10	-1.10	52.90	46.87	0.14	9.86	0.49	G	č
51	-8.937117	40.515583	3	48.45	-0.06	18.66	81.37	0.00	1.48	0.40	VCS	C
52	-9.061067	40.516383	3	73.84	-0.75	37.41	61.56	0.49	0.43	0.53	VCS	С
53	-9.178983	40.532200	3	100.27	2.26	0.12	93.85	6.13	0.37	2.41	FS	S
58	-9.062117	40.380933	3	69.32	2.50	0.00	97.85	3.45	0.01	1.61	FS	S
59 60	-8.908000	40.380567	3	54.90 24.11	-0.30	0.16	85.57 97 44	2 15	0.72	0.99	FS	S
61	-8.938150	40.246417	3	32.10	2.40	0.16	99.36	0.84	0.03	0.65	FS	s
62	-9.065067	40.248067	3	68.85	2.54	0.00	98.63	1.44	0.11	1.02	FS	S
63	-9.142167	40.250967	3	91.57	2.65	0.00	90.74	9.33	0.11	1.77	FS	S
67	-9.119650	40.113667	3	82.69	2.56	0.01	97.47	3.18	0.25	1.47	FS	S
68	-8.998/6/	40.113933	3	42.34	-1.50	62.45	37.32	0.03	1.77	0.80	G	C
70	-0.934317	39 977867	3	20.00	-0.80	42 24	90.00 57 11	0.58	0.01	0.72	VCS	C
71	-9.109667	39.977567	3	67.93	-0.84	45.99	53.34	0.68	5.60	1.28	VCS	č
72	-9.235467	39.978017	3	98.70	2.78	0.00	88.46	11.53	0.13	2.98	FS	mS
73	-9.377167	39.977233	3	125.51	3.43	0.00	68.10	31.98	2.04	4.87	VFS	mS
74	-9.383417	39.844900	3	123.67	4.00	0.00	31.01	68.99	1.20	3.89	M	sM
77	-9.083500	39.845530	3	48.19	-1.00	49.97	49.53	0.47	0.49	0.65	VCS	C
70	-9.129654	39.709000	3	49.24 90.30	2.04	0.00	95.15	4 53	0.01	0.94	FS	5
80	-9.300050	39.712050	3	119.92	4.00	0.00	14.09	85.85	0.00	7.06	M	sM
85	-9.280650	39.442533	3	44.47	-0.30	0.21	99.36	0.33	22.87	0.41	VCS	S
86	-9.401533	39.441033	3	88.88	2.50	0.00	79.76	19.91	0.61	4.93	FS	mS
87	-9.508767	39.444517	3	65.63	-0.04	13.11	86.40	0.50	8.07	1.51	VCS	С
89	-9.718917	39.304917	2	99.41	1.76	0.00	91.74	8.18	1.03	4.74	MS	S
90 91	-9.601917	39.304150	2	49.80	-1.77	3 74	28.38 94 79	0.20	1.27	0.69	VCS	S
92	-9.402000	39.308367	2	32.70	-1.41	73.08	25.75	1.09	12.43	0.97	G	č
98	-9.618800	39.048950	2	96.81	3.65	0.00	62.65	37.39	0.24	3.94	VFS	mS
101	-9.497517	38.909567	2	61.74	2.54	0.00	97.49	2.52	0.08	1.08	FS	S
102	-9.557750	38.907400	2	103.35	2.35	0.00	75.38	24.80	0.24	6.93	FS	mS
103	-9.695083	38.912683	2	127.39	2.06	0.50	76.65	22.85	0.60	4.31	FS	mS
104	-9.870033	38,906900	2	126.90	n.a. ₄ ₀₀	n.a.	n.a. 1 67	n.a. 98.22	n.a.	n.a. o ce	n.a.	n.a. M
110	-9.653650	38.676667	2	121.39	n.a	0.00 n.a	n.a	n.a	n.a	9.20 n.a	n.a	n.a.
113	-9.470833	38.638500	2	87.19	4.00	0.04	1.49	98.72	0.35	8.70	M	M
114	-9.430183	38.668683	2	31.20	2.71	0.00	94.86	5.12	0.18	1.63	FS	S
115	-9.426117	38.589467	2	97.72	4.00	0.00	0.90	99.12	0.03	8.96	М	М
116	-9.427917	38.488400	2	137.40	4.00	0.00	45.19	54.78	0.03	6.19	M	sM
117	-9.367017	JS 524950	2	110.17	4.00	0.01	3.50	90.55	0.01	ö.24	IVI	IVI

ş	igitude	itude	Irodyna- s	ath (m)	lian (Φ)	vel (%)	(%) pi	(%) se	genic :tion (%)	(%) N	liment ssification entworth)	liment ssification Ik pted)
Site	Lon	Lati	nic H	Dep	Mec	Gra	San	Fine	Bio	10	Sed clas (We	Sed clas (Fol
118	-9.306400	38.571917	2	34.58	3.42	0.00	76.40	23.69	0.13	2.42	VFS	mS
119	-9.263850	38.600100	2	17.32	2.73	0.02	95.44	5.02	1.55	1.43	FS	S
122	-9.278050	38.417433	2	131.14	3.34 2.20	6.16	03.24 85.47	34.77	1 99	5.04 4.83	FS	0
123	-9.165000	38.344667	2	160.46	2.64	1.78	82.48	15.39	0.54	4.59	FS	mS
125	-9.166283	38.376917	2	120.86	3.06	1.86	64.07	34.08	1.40	3.66	VFS	mS
126	-9.168333	38.411167	2	33.60	-0.25	20.10	69.39	10.34	0.53	2.16	VCS	С
127	-9.100150	38.416483	2	99.50 116 70	4.00 2.93	0.00	24.22 76.58	75.72 23.48	0.32	7.78 2.88	IM ES	sivi mS
132	-8.832683	38.368017	2	25.13	-0.14	16.03	83.72	0.07	5.80	0.31	VCS	C
133	-8.859167	38.344933	2	48.71	1.58	8.32	45.90	45.64	4.11	0.97	MS	Mx
134	-8.891433	38.305967	2	99.04	2.62	0.00	90.71	9.26	0.90	2.87	FS	S
135	-8.946167	38.252950	2	133.40	1.22	4.22	70.10 65.97	26.84	0.17	2.82	MS	ms Mx
137	-8.818900	38.254383	2	37.50	0.25	17.23	82.16	0.53	3.79	0.54	CS	C
138	-8.826050	38.155567	2	40.99	-0.59	39.93	59.88	0.17	0.38	0.30	VCS	С
139	-8.865733	38.152700	2	92.70	0.11	0.34	98.38	1.08	1.33	1.51	CS	S
140	-8.963850 -9.024717	38.150317	2	133.72	2.63	0.75	80.97 74.26	18.35	0.29	2.96	FS CS	ms Mx
146	-8.930167	37.954033	2	94.16	3.46	0.00	66.14	33.96	9.43	2.88	VFS	mS
147	-8.982367	37.956417	2	129.70	2.02	4.79	80.96	14.14	2.09	2.85	FS	mS
148	-9.038117	37.954433	2	168.19	0.79	14.40	67.80	17.62	0.16	4.23	MS	Mx
149	-9.043550	37.844800	2	195.00	1.38	4.99	81.60	13.45	0.54	2.95	IVIS ES	mS
150	-8.924883	37.851900	2	100.72	2.03	0.00	81.05	18.98	0.17	3.29	FS	mS
158	-9.013567	37.655533	2	182.00	2.69	0.07	79.57	20.26	0.16	4.21	FS	mS
159	-8.936750	37.656633	2	136.13	3.16	0.00	75.92	24.07	0.29	3.47	VFS	mS
161 170	-8.830217	37.655250	2	42.04	2.60	0.00	96.41 98.88	3.61	0.08	2.11	FS	S
171	-8.942050	37.355917	2	96.60	2.62	0.20	88.53	11.52	0.46	2.65	FS	mS
172	-9.032517	37.350700	2	147.41	2.71	0.00	87.95	12.07	0.13	2.55	FS	mS
173	-9.050150	37.253733	2	123.07	2.67	0.01	87.72	13.13	0.61	2.51	FS	mS
175 176	-8.902567	37.250750	2	45.15	2.45	0.00	93.85	6.16 6.37	0.00	1.70	FS	S
180	-9.035483	37.038583	2	75.30	3.31	0.01	68.99	30.79	0.35	3.35	VFS	mS
181	-9.007617	37.030383	2	39.08	2.28	0.00	100.02	0.01	0.04	1.57	FS	S
186	-8.865233	36.939933	2	102.67	4.00	0.00	23.13	77.01	0.06	5.51	М	sM
187	-8.872933	37.016817	2	53.32 46 54	4.00 2.40	0.00	46.56 67 11	53.30 32.24	0.99	4.13	IM ES	sivi mS
191	-8.647750	36.872017	1	179.29	1.79	0.66	82.91	16.49	6.55	3.54	MS	mS
192	-8.643150	36.920933	1	94.27	1.59	1.63	84.36	13.99	17.88	3.24	MS	mS
193	-8.642867	37.023667	1	47.50	2.53	0.00	80.32	19.65	5.29	3.85	FS	mS
194 195	-8.642450	37.078183	1	28.72 25.57	3.22 1.95	3.73	65.85 87.21	30.43 12.52	6.02 1.36	2.93	MS	mS mS
196	-8.530733	37.016250	1	46.13	2.42	0.20	71.45	28.55	3.18	4.13	FS	mS
197	-8.533150	36.908833	1	99.15	2.60	0.07	81.45	17.45	2.75	3.00	FS	mS
198	-8.413683	36.850383	1	129.22	4.00	0.25	44.28	55.80	2.53	4.78	M	sM
200	-8.421150	36.924350	1	98.70 62.06	4.00	0.00	20.77	46.88	0.24	4.58	VES	mS
201	-8.421417	37.047667	1	32.74	2.68	0.00	79.69	20.29	6.44	3.91	FS	mS
202	-8.305050	37.036900	1	12.97	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	maërl	maërl
203	-8.303700	36.987633	1	48.75	3.99	3.96	46.09	49.91	4.64	5.43	VFS	sM
204	-8.185117	36.845100	1	100.05	4.00	0.02	25.32	91.20 74.57	0.60	6.40 5.53	M	sM
207	-8.188417	36.903233	1	77.14	4.00	0.02	20.06	79.89	0.20	8.21	M	sM
208	-8.188033	36.950417	1	45.34	1.75	0.21	78.17	21.45	3.00	4.50	MS	mS
209	-8.186850	37.024933	1	31.16	3.29	0.55	61.09	38.39	4.57	4.79	VFS	mS
210	-8.073417	36.965567	1	38.25	3.48	0.00	60.26	39.84	1.80	4.62	VES	mS
212	-8.071700	36.930800	1	48.11	2.60	0.00	62.34	37.47	2.32	4.10	FS	mS
213	-8.072067	36.881300	1	97.54	4.00	0.00	4.94	95.00	0.00	7.27	М	M
∠14 215	-0.072583 -7.958733	30.856567 36.888517	1 1	96.86	4.00 4.00	0.04	0.50	99.48 90 95	0.00	8.88 7.26	IVI M	IVI M
216	-7.954900	36.940233	1	43.88	4.00	0.00	29.52	70.56	2.89	7.43	M	sM
217	-7.834017	36.959033	1	54.15	4.00	0.05	43.19	56.73	2.60	6.23	М	sM
218	-7.828500	36.921567	1	92.92	2.88	0.13	59.54	40.35	5.30	5.44	FS	mS
∠19 220	-7.718600 -7719550	36,950950	1 1	169.16 94.11	4.00 4.00	0.59 0.11	43./4 37⊿0	55.80 62.54	14.52 18.84	6.21 5.57	IVI M	SIVI SM
222	-7.569767	37.098183	1	15.79	0.55	4.42	94.21	1.22	10.47	1.07	CS	S
223	-7.568933	37.055117	1	55.13	4.00	0.00	1.25	98.75	0.03	8.24	М	М
224	-7.568600	37.016583	1	86.92	4.00	0.00	8.48	91.52	3.29	9.18	M	M
∠∠5 226	-7.411550	36 935367 36 935367	1	139.26	4.00 4.00	0.07	40.53 48 82	ეკ.კე 51 11	0.33	0.05 5 47	M	sivi sM
227	-7.409483	36.995000	1	95.10	4.00	0.00	1.12	98.88	0.01	8.89	M	M
228	-7.406533	37.067250	1	46.46	4.00	0.00	1.34	98.70	0.07	7.79	М	М
229	-1.402000	37.115150	1	13.84	0.48	3.23	93.80	2.77	14.91	1.75	CS	S

Table 2 – Complete faunistic list with values of total abundance (A) and occurences (O)per species. Legend: * - Subphyllum Crustacea; ** - Subphyllum Hexapoda.

Phyllum	Class	Family	Species name	Δ	0
Annelida	Polychaeta	Lumbrineridae	Abyssoninge hibernica (Mc Intosh, 1903)	53	32
Annelida	Polychaeta	Acrocirridae	Acrocirrus frontifilis (Grube 1860)	23	9
Annelida	Polychaeta	Acrocirridae	Acrocirrus sp.	3	2
Annelida	Polychaeta	Nephthvidae	Aglaophamus agilis (Langerhans, 1880)	17	13
Annelida	Polychaeta	Ampharetidae	Ampharete finmarchica (M. Sars, 1864)	800	94
Annelida	Polychaeta	Sabellidae	Amphiglena mediterranea (Leydig, 1851)	3	1
Annelida	Polychaeta	Terebellidae	Amphitrite cirrata (O. F. Müller, 1771 in 1776)	15	8
Annelida	Polychaeta	Pilargidae	Ancistrosyllis groenlandica McIntosh, 1879	2	2
Annelida	Polychaeta	Spionidae	Aonides oxycephala (Sars, 1862)	239	31
Annelida	Polychaeta	Cirratulidae	Aphelochaeta sp.1	113	32
Annelida	Polychaeta	Cirratulidae	Aphelochaeta sp.2	10	8
Annelida	Polychaeta	Cirratulidae	Aphelochaeta sp.3	23	10
Annelida	Polychaeta	Approditidae	Aphrodita aculeata Linnaeus 1758	2	1
Annelida	Polychaeta	Onunhidae	Aponuphis bilineata (Baird 1870)	335	65
Annelida	Polychaeta	Onuphidae	Aponuphis brementi (Fauvel, 1916)	129	38
Annelida	Polychaeta	Onuphidae	Aponuphis grubii (Marenzeller, 1886)	244	16
Annelida	Polychaeta	Onuphidae	Aponuphis juvenile sp. 1	15	12
Annelida	Polychaeta	Onuphidae	Aponuphis juvenile sp. 2	35	11
Annelida	Polychaeta	Oenonidae	Arabella geniculata (Claparède, 1868)	2	1
Annelida	Polychaeta	Oenonidae	Arabella iricolor (Montagu, 1804)	5	4
Annelida	Polychaeta	Archiannelida n.i.	Archiannelida n.i.	16	1
Annelida	Polychaeta	Paraonidae	Aricidea (Acmira) assimilis Tebble, 1959	37	15
Annelida	Polychaeta	Paraonidae	Aricidea (Acmira) catherinae Laubier, 1967	37	21
Annelida	Polychaeta	Paraonidae	Aricidea (Acmira) cerrutil Laubier, 1966	15	(
Annelida	Polychaeta	Paraonidae	Aricidea (Acmira) lopezi Berkeley and Berkeley, 1956	5	5
Annelida	Polychaeta	Paraonidae	Aricidea (Aricidea) nsoudearticulata Hebson, 1972	75	3Z 16
Annelida	Polychaeta	Paraonidae	Aricidea (Aricidea) pseudoarticulata 100501, 1972 Aricidea (Aricidea) wassi Pettihone, 1965	25	14
Annelida	Polychaeta	Paraonidae	Aricidea capensis bansei Laubier and Ramos 1974	5	2
Annelida	Polychaeta	Paraonidae	Aricidea claudiae Laubier. 1967	1	1
Annelida	Polychaeta	Paraonidae	Aricidea simonae Laubier and Ramos, 1974	4	3
Annelida	Polychaeta	Paraonidae	Aricidea suecica Eliason, 1920	1	1
Annelida	Polychaeta	Ophelliidae	Armandia cirrhosa Filippi, 1861	4	4
Annelida	Polychaeta	Terebellidae	Artacama proboscidea Malmgren, 1866	20	11
Annelida	Polychaeta	Sabellidae	Bispira mariae Lo Bianco, 1893	3	2
Annelida	Polychaeta	Sabellidae	Bispira volutacornis (Montagu, 1804)	4	2
Annelida	Polychaeta	Flabelligeridae	Brada villosa (Rathke, 1843)	30	11
Annelida	Polychaeta	Capitellidae	Capitella tripartita Hartman, 1961	3	2
Annelida	Polychaeta	Cirratulidae	Caulleriella alala (Soullem, 1914)	231	9
Annelida	Polychaeta	Cirratulidae	Caulleriella zetlandica (McIntosh, 1911)	20	6
Annelida	Polychaeta	Ampharetidae	cf. Lysippe labiata Malmoren, 1866	21	2
Annelida	Polychaeta	Cirratulidae	Chaetozone carpenteri McIntosh, 1911	357	20
Annelida	Polychaeta	Cirratulidae	Chaetozone gibber Woodham and Chambers, 1994	37	17
Annelida	Polychaeta	Cirratulidae	Chaetozone sp.1	3	2
Annelida	Polychaeta	Cirratulidae	Chaetozone sp.2	64	33
Annelida	Polychaeta	Maldanidae	Chirimia biceps (M. Sars, 1861)	113	21
Annelida	Polychaeta	Amphinomidae	Chloeia venusta Quatrefages, 1866	14	10
Annelida	Polychaeta	Chrysopetalidae	Chrysopetalum cf. debile (Grube, 1855)	3	2
Annelida	Polychaeta	Cirratulidae	Cirratulus cf. cirratus (O. F. Müller, 1776)	8	7
Annelida	Polychaeta	Cirratulidae	Cirriformia sp.	12	7
Annelida	Polychaeta	Cirratulidae	Cirrophorus bronchistus Eblore, 1008	5	4
Annelida	Polychaeta	Paraonidae	Cirrophorus furcatus (Hartman, 1957)	23	12
Annelida	Polychaeta	Sigalionidae	Clanaredenelogenia inclusa (Clanarède, 1868)	9	4
Annelida	Polychaeta	Maldanidae	Clymenella cf. torquata (Leidy, 1855)	34	13
Annelida	Polychaeta	Cossuridae	Cossura soveri Laubier, 1964	1	1
Annelida	Polychaeta	Capitellidae	Dasybranchus cf. caducus (Grube, 1846)	1	1
Annelida	Polychaeta	Onuphidae	Diopatra micrura Pires, Paxton, Quintino and Rodrigues, 2010	3	1
Annelida	Polychaeta	Onuphidae	Diopatra sp. Juvenile	1	1
Annelida	Polychaeta	Syllidae	Dioplosyllis cirrosa Gidholm, 1962	8	4
Annelida	Polychaeta	Flabelligeridae	<i>Diplocirrus glaucu</i> s (Malmgren, 1867)	53	18
Annelida	Polychaeta	Serpulidae	Ditrupa arietina (O. F. Müller, 1776)	103	10
Annelida	Polychaeta	Oenonidae	Drilonereis filum (Claparede, 1868)	45	27
Annelida	Polychaeta	Phyllodocidae	Eteone sp.	20	13
Annelida	Polychaeta	Acoetidae	Euclone tubrecipete (Sars 1962)	2 50	12
Annelida	Polychaeta	Maldanidao	Fuctions rubiolitica (Sais, 1002) Fuctioners of droebachiensis (M. Sars in G.O. Sars 1871)	52 67	13
Annelida	Polychaeta	Maldanidae	Fuclymene of oerstedi (Clanarède 1863)	07 50	22
Annelida	Polychaeta	Maldanidae	Euclymene lombricoides (Quatrefages 1865)	5	3
Annelida	Polychaeta	Maldanidae	Euclymene sp. A	27	14
Annelida	Polychaeta	Maldanidae	Euclymeninae sp. A	11	4
Annelida	Polychaeta	Maldanidae	Euclymeninae sp. B	2	2
Annelida	Polychaeta	Phyllodocidae	Eulalia mustela Pleijel, 1987	52	18
Annelida	Polychaeta	Phyllodocidae	<i>Eumida sanguinea</i> (Örsted, 1843)	112	37
Annelida	Polychaeta	Nereididae	Eunereis longissima Johnston, 1840	74	24

Phyllum	Class	Family	Species name	Α	0
Annelida	Polychaeta	Eunicidae	Eunice harassii Audouin and Edwards, 1834	4	3
Annelida	Polychaeta	Eunicidae	Eunice sp.	5	4
Annelida	Polychaeta	Eunicidae	Eunice Vittata (Delle Uniaje, 1828)	451	5/
Annelida	Polychaeta	Terebellidae	Eupliveria nebulosa (Montagu 1818)	3	1
Annelida	Polychaeta	Syllidae	Eurysyllis tuberculata Ehlers, 1864	88	20
Annelida	Polychaeta	Syllidae	Exogone (Exogone) naidina Örsted, 1845	4	4
Annelida	Polychaeta	Syllidae	Exogone (Exogone) verugera (Claparède, 1868)	2	2
Annelida	Polychaeta	Fabriciidae	Fabricia sabella (Ehrenberg, 1836)	3	3
Annelida	Polychaeta	Serpulidae	Filograna Implexa Berkeley, 1835	2	1
Annelida	Polychaeta	Owenidae	Galathowenia oculata (Zachs, 1923)	336	56
Annelida	Polychaeta	Lumbrineridae	Gallardoneris iberica (Martins, Carrera-Parra, Quintino and Rodrigues, 2012)	44	22
Annelida	Polychaeta	Glyceridae	Glycera alba (O.F. Müller, 1776)	44	26
Annelida	Polychaeta	Glyceridae	Glycera celtica O'Connor, 1987	1	1
Annelida	Polychaeta	Glyceridae	Glycera convoluta Keferstein, 1862	59	7
Annelida	Polychaeta	Glyceridae	Glycera dayi O'Connor, 1987	65	34
Annelida	Polychaeta	Glyceridae	Glycera gigantea Quatretages, 1865	1	1
Annelida	Polychaeta	Glyceridae	Glycera mimica Hartman, 1965	200	- 30 - 6
Annelida	Polychaeta	Glyceridae	Givcera oxvcephala Ehlers, 1887	6	5
Annelida	Polychaeta	Glyceridae	Glycera unicornis Savigny in Lamarck, 1818	60	42
Annelida	Polychaeta	Goniadidae	Glycinde nordmanni (Malmgren, 1866)	100	36
Annelida	Polychaeta	Goniadidae	Goniada emerita Andouin and Milne Edwards, 1834	1	1
Annelida	Polychaeta	Goniadidae	Goniada maculata Oersted, 1843	81	50
Annelida	Polychaeta	Goniadidae	Goniadella gracilis Verril, 1873	157	28
Annelida	Polychaeta	Goniadidae	Goniadella sp. Guntis propingua Marian, 1875	4	4
Annelida	Polychaeta	Syllidao	Hanlosyllis spongicola (Grube, 1855)	129	10
Annelida	Polychaeta	Polynoidae	Harmothoe antilopes (McIntosh, 1876)	16	15
Annelida	Polychaeta	Polynoidae	Harmothoe cf. impar (Johnston, 1839)	2	1
Annelida	Polychaeta	Polynoidae	Harmothoe fraserthomsoni McIntosh, 1897	27	12
Annelida	Polychaeta	Polynoidae	Harmothoe glabra (Malmgren, 1866)	9	7
Annelida	Polychaeta	Polynoidae	Harmothoe sp.	1	1
Annelida	Polychaeta	Phyllodocidae	Hesionura elongata (Southern, 1914)	104	17
Annelida	Polychaeta	Capitellidae	Heteromastus filiformis (Claparede, 1864)	33	10
Annelida	Polychaeta	Serpulidae	Hyalonomatus marenzelleri Langerbans 1884	14	1
Annelida	Polychaeta	Serpulidae	Hydroides norveaicus Gunnerus, 1768	32	17
Annelida	Polychaeta	Nephthyidae	Inermonephtys foretmontardoi Ravara, Cunha and Pleijel, 2010	4	3
Annelida	Polychaeta	Ampharetidae	Isolda pulchella Müller in Grube, 1858	171	26
Annelida	Polychaeta	Sabellidae	Jasmineira elegans Saint-Joseph, 1894	147	49
Annelida	Polychaeta	Sigalionidae	Labioleanira yhleni (Malmgren, 1867)	51	25
Annelida	Polychaeta	Lacydoniidae	Lacydonia miranda Marion and Bobretzky, 1875	17	4
Annelida	Polychaeta	Aphroditidae	Laethonice hystrix (Savigny in Lamarck, 1818)	3 127	3
Annelida	Polychaeta	Terebellidae	Lagis Koleni Malingren, 1000	22	20 17
Annelida	Polychaeta	Spionidae	Laonice bahusiensis Söderström, 1920	39	22
Annelida	Polychaeta	Capitellidae	Leiocapitella dollfusi (Fauvel, 1936)	17	9
Annelida	Polychaeta	Maldanidae	Leiochone leiopygos (Grube, 1860)	66	34
Annelida	Polychaeta	Polynoidae	Lepidasthenia brunnea Day, 1960	5	5
Annelida	Polychaeta	Paraonidae	Levinsenia gracilis (Tauber, 1879)	60	39
Annelida	Polychaeta	Lumbrineridae	Lumbrinerides amoureuxi Miura, 1981	28	12
Annelida	Polychaeta	Lumbrineridae	Lumbrineris futilis Kinhera, 1865	04	0
Annelida	Polychaeta	Lumbrineridae	Lumbrineris latreilli Audouin and Milne Edwars, 1834	1	1
Annelida	Polychaeta	Lumbrineridae	Lumbrineris Iuciliae (Martins, Carrera-Parra, Quintino and Rodrigues, 2012)	17	11
Annelida	Polychaeta	Lumbrineridae	Lumbrineris Iusitanica (Martins, Carrera-Parra, Quintino and Rodrigues, 2012)	366	68
Annelida	Polychaeta	Lumbrineridae	Lumbrineris pinaster (Martins, Carrera-Parra, Quintino and Rodrigues, 2012)	128	25
Annelida	Polychaeta	Lumbrineridae	Lumbrineris sp.	10	5
Annelida	Polychaeta	Sabellariidae	Lygdamis muratus (Allen, 1904)	107	22
Annelida	Polychaeta	Magelonidae	Magelona alleni Wilson 1958	∠ 110	∠ 31
Annelida	Polychaeta	Magelonidae	Magelona filiformis Wilson, 1959	106	15
Annelida	Polychaeta	Magelonidae	Magelona johnstoni Fiege, Licher and Mackie, 2000	427	14
Annelida	Polychaeta	Magelonidae	Magelona lusitanica Mortimer, Gil and Fiege, 2011	16	10
Annelida	Polychaeta	Magelonidae	Magelona minuta Eliason, 1962	39	14
Annelida	Polychaeta	Magelonidae	Magelona wilsoni Glémarec, 1966	38	19
Annelida	Polychaeta	Spionidae	Malacoceros fuliginosus (Claparede, 1870)	41	13
Annelida	Polychaeta	Polynoidae	Maluare grebitex Glube, 1800 Malmareniella cf. arenicolae (de Saint Joseph 1888)	∠ 16	6
Annelida	Polychaeta	Polynoidae	Malmgreniella cf. lunulata (Delle Chiaje, 1830)	10	8
Annelida	Polychaeta	Polynoidae	Malmgreniella cf. mcintoshi (Tebble and Chambers, 1982)	3	2
Annelida	Polychaeta	Polynoidae	Malmgreniella ljungmani (Malmgren, 1867)	225	32
Annelida	Polychaeta	Polynoidae	Malmgreniella sp.	1	1
Annelida	Polychaeta	Eunicidae	Marphysa bellii (Audouin and Milne-Edwards, 1833)	19	8
Annelida	Polychaeta	Eunicidae	Iviarpriysa Kinbergi McIntosn, 1910 Mediomastus fragilis Pasmussan, 1973	1	1
Annelida	Polychaeta	Capitellidae	Meranerilla sp	967	56 1
Annelida	Polychaeta	Ampharetidae	Melinna cristata (M. Sars. 1851)	20	6
Annelida	Polychaeta	Ampharetidae	Melinna palmata Grube, 1870	35	12
Annelida	Polychaeta	Chaetopteridae	Mesochaetopterus saggitarius (Claparède, 1870)	5	5

Amelia Polytability Serpulskip Metacomilian mukrichstip (Philipp, 18-4) 6 6 0 Amelia Polytability Metacomilian mukrichstip (Philipp, 18-4) 6 0 Amelia Polytability Scientifies Metacomilian mukrichstip (Philipp, 18-4) 32 Amelia Polytability Metacomility (Philipp, 18-4) 32 32 Amelia Polytability Metacomility (Philipp, 18-4) 32 32 Amelia Polytability Metacomility (Philipp, 18-4) 32 32 32 Amelia Polytability Metacomility (Philipp, 18-4) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 3	Phyllum	Class	Family	Species name	Α	0
Annolis Polythasis Middanisas Microcyman technology 1000 5 4 4 Annolis Polythasis Sponialis Microcyman technology 1000 1 3 Annolis Polythasis Circulusas Microcyman technology 1000 22 15 Annolis Polythasis Circulusas Microcyman technology 1000 20 15 Annolis Polythasis Circulusas Microcyman technology 1000 20 17 Annolis Polythasis Circulusas Microcyman technology 1000 40 17 Annolis Polythasis Microcyman technology 1000 40 17 Annolis Polythasis Nighthy 20 Microcyman technology 1000 40 22 Annolis Polythasis Nighthy 20 Microcyman technology 1000 10 1 1 1 Annolis Polythasis Nighthy 20 Microcyman technology 1000 1 1 1 1 1 1 1 1 1 1 1 1	Annelida	Polychaeta	Serpulidae	Metavermilia multicristata (Philippi, 1844)	6	6
Annelia Polychesia Felabricia Monopharma annie Bornerdy, 160 1 2 Armelia Polychesia Circulation 3 2 55 Armelia Polychesia Circulation 3 3 15 Armelia Polychesia Circulation 4 3 16 17 4 Armelia Polychesia Circulation Monophysics (Monophysics (Mono	Annelida	Polychaeta	Maldanidae	Microclymene tricirrata Arwidsson, 1906	5	4
Antendia Projubates Circuladises Interspective sector 11.2 2.5 Annellia Projubates Circuladises Marcacillion sector 17.3 3.5 Annellia Projubates Sylicias Marcacillion sector 17.3 4.5 Annellia Projubates Sylicias Marcacillion sector 17.3 4.5 Annellia Projubates Desindas Marcacillion sector 17.3 4.5 Annellia Projubates Desindas Marcacillion sector 17.3 4.5 Annellia Projubates Desindas Marcacillion sector 17.3 4.5 Annellia Projubates Nepthylidiae Marchylidiae Marchylidiae Marchylidiae 17.5 7.5 Annellia Projubates Nepthylidiae Marchylidiae Marchylidiae 17.5 7.5 17.5 Annellia Projubates Lumbrencias Marchylidiae Marchylidiae 17.5 17.5 17.5 17.5 17.5 17.5 17.5	Annelida	Polychaeta	Hesionidae	Microphtalmus similis Bobretzky, 1870	4	2
Principal Constitution Prioritation Constitution Constitution <td>Annelida</td> <td>Polychaeta</td> <td>Spionidae</td> <td>Microspio mecznikowianus (Claparede, 1869)</td> <td>11</td> <td>3</td>	Annelida	Polychaeta	Spionidae	Microspio mecznikowianus (Claparede, 1869)	11	3
Americal Polychasta Sylidan Approximation from Comparison C7 A Americal Polychasta Sylidan Approximation from Comparison Comparison <td< td=""><td>Annelida</td><td>Polychaeta</td><td>Cirratulidae</td><td>Monticellina neterochaeta Laubier, 1961</td><td>362</td><td>55</td></td<>	Annelida	Polychaeta	Cirratulidae	Monticellina neterochaeta Laubier, 1961	362	55
Investigat Operation <	Annelida	Polychaeta	Cirratulidae	Monticellina sp. Murianida brachveonhala (Maronzollor, 1974)	23	15
Amenidia Polychesia Euroitalia Menetronesis uncomis (Doba 1840) 40 177 Amenidia Polychesia Nephitydae Menythys extra Menythys (Deba 1840) 10 18 19 Amenidia Polychesia Nephitydae Menythys extra Menythys (Deba 1840) 11 19 Amenidia Polychesia Nephitydae Menythys extra Menythys (Deba 1840) 11 19 Amenidia Polychesia Nephitydae Menythys extra Menythys (Deba 1840) 11 19 Amenidia Polychesia Nephitydae Menythys extra Menythys (Deba 1840) 11 19 Amenidia Polychesia Nephitydae Menythys extra Menythys (Deba 1840) 11 19 Amenidia Polychesia Nephitydae Menythys (Deba 1840) 11 19 Amenidia Polychesia Nephitydae Menythys (Deba 1840) 11 19 Amenidia Polychesia Nephitydae Menythys (Deba 1840) 11 19 Amenidia Polychesia Neresidiae Menite Scanta Menyton (Deba 1840) 11 1 Amenidia Polychesia Neresidiae Menite Scanta Menyton (Deba 1840) 11 1 Amenidia Polychesia Neresidiae Menite Scanta Menyton (Deba 1840) 11 1 Amenidia Polychesia Neresidiae Menite Scanta Menyton (Deba 1840) 11 1 Amenidia Polychesia Sylidise Obtarosijis folgutares (Audoun and Mine-Edward, 1833) 1 1 Amenidia Polychesia Sylidise Obtarosijis folgutares (Audoun and Mine-Edward, 1833) 1 1 Amenidia Polychesia Comphitise Obtarosijis folgutares (Audoun and Mine-Edward, 1833) 1 1 Amenidia Polychesia Comphitise Obtarosijis folgutares (Audoun and Mine-Edward, 1833) 1 1 Amenidia Polychesia Comphitise Obtarosijis folgutares (Audoun and Mine-Edward, 1833) 1 1 Amenidia Polychesia Comphitise Obtarosijis folgutares (Audoun and Mine-Edward, 1833) 1 1 Amenidia Polychesia Comphitise Obtarosijis folgutares (Audoun and Mine-Edward, 1833) 1 1 Amenidia Polychesia Comphitise Obtarosi Scanta Menyton (Bel 1840) 1 Amenidia Polychesia Comphitise Obtarosi Scanta Menyton (Bel 1840) 1 Amenidia Polychesia Comphitise Obtarosi Scanta Menyton (Bel 1840) 1 Amenidia Polychesia Comphitise Obtarosi Scanta Menyton (Bel 1440) 1 Amenidia Polychesia Comphitise Obtarosi Scanta Menyton (Bel 1440) 1 Amenidia Polychesia Comphitise Obtarosi Scanta Menyton (Bel 1440) 1 Amenidia Polychesia Comphitise Obtarosi Scanta Menyto	Annelida	Polychaeta	Owopidaa	Muriochele danielsseni Hansen, 1878	127	4 20
Amerikal Polychasta Nephtyläse Nephtyläse Nephtyläse 161 7 Amerikale Polychasta Nephtyläse Maphtyläse Statu 5 5 Amerikale Polychasta Nephtyläse Maphtyläse 5 5 Amerika Polychasta Nephtyläse 6 4 Amerika Polychasta Nephtyläse Maphtyläse 6 4 Amerika Polychasta Maphtyläse Mathyläse 5 7 14 Amerika Polychasta Mathyläse Mathyläse 5 2 1 1 Amerika Polychasta Mathyläse Mathyläse 5 2 1 1 Amerika Polychasta Oplekika Mathyläse 1 1 1 <	Annelida	Polychaeta	Eunicidae	Nematonereis unicornis (Grube 1840)	137	29 17
Armelials Polyclastis Naphtyldae Maphys consert (1965) 16 7 Arnelials Polyclastis Maphty Schward (1962) 61 15 Arnelials Polyclastis Maphty Schward (1962) 61 15 Arnelials Polyclastis Maphty Schward (1962) 61 15 Arnelials Polyclastis Maphty Schward (1967) 16 6 4 Arnelials Polyclastis Maphty Schward (1967) 16 1 1 Arnelials Polyclastis Maphty Schward (1967) 16 9 1 1 Arnelials Polyclastis Maphty Schward (1967) 27 14 1	Annelida	Polychaeta	Nephthvidae	Nephtys assimilis Örsted 1843	16	9
Ameridia Projestatis Neghtiyidisa Nightiyi biana Nightiyi biana <td>Annelida</td> <td>Polychaeta</td> <td>Nephthyidae</td> <td>Nephtys cirrosa (Ehlers, 1868)</td> <td>16</td> <td>7</td>	Annelida	Polychaeta	Nephthyidae	Nephtys cirrosa (Ehlers, 1868)	16	7
Annelia Pelgrasian Nightrykdae Maphtykjes Mola Malmyren, 1985 61 15 Annelia Pelgrasian Phylococidae Maphtyk averkansk Mohnules, 152 6 4 Annelia Pelgrasian Phylococidae Maphtyk averkansk Mohnules, 153 6 4 Annelia Pelgrasian Phylococidae Marka Malmyren, 1507 1883 6 4 Annelia Pelgrasian Marka Malmyren, 1507 181 3 3 Annelia Pelgrasian Capitellella Mohnia sys, 1851 203 1 1 Annelia Pelgrasian Sylidae Oxiontsylik Sylidae/Mayren S/Autonia and Mine-Edward, 1833 12 6 Annelia Pelgrasian Sylidae Oxiontsylik Sylidae/Mayren S/Autonia and Mine-Edward, 1833 12 6 Annelia Pelgrasian Sylidae Oxiontsylik Sylidae/Mayren S/Autonia and Mine-Edward, 1833 12 6 Annelia Pelgrasian Oxiontsylik Sylidae/Mayren S/Autonia and Mine-Edward, 1833 12 1 Annelia Pelgrasian Oxionts/Mayren/M	Annelida	Polychaeta	Nephthvidae	Nephtys hombergii Savigny in Lamarck, 1818	94	25
Annelia Polythetes Nephtyldocolcau Annelia Annelia Polythetes 127 45 Annelia Polythetes Pryldocolcau Merephyla radjonas (Simi, Sarph, 1888) 1 1 1 Annelia Polythetes Pryldocolcau Merephyla radjonas (Simi, Sarph, 1888) 1 1 1 Annelia Polythetes Oruphide Motor samural (Simarare, 1989) 21 13 Annelia Polythetes Oruphide Motor samural (Simarare, 1989) 1 1 1 Annelia Polythetes Oruphide Motor samural (Simarare, 1989) 1 1 1 Annelia Polythetes Syllide Odototsyllis Balpac Laparide, 1833 1 1 1 Annelia Polythetes Oriphide and Olipochetes ni. 510 66 Annelia Polythetes Oriphide and Caparide (Dele Ching, 1823) 1 1 1 Annelia Polythetes Oriphide and Caparide (Dele Ching, 1823) 3 2 Annelia Polythetes Orip	Annelida	Polychaeta	Nephthyidae	Nephtys incisa Malmgren, 1865	61	15
Annelida Prolychasta Phylococidae Merephylin parell Blainille, 1823 6 4 Annelida Polychasta Number of the polychasta Number of the polychasta 1 1 Annelida Polychasta Number of the polychasta Number of the polychasta 1 1 Annelida Polychasta Capital (dar Marking participations (disinu-basta), 1837 27 14 Annelida Polychasta Capital (dar Marking participations (disinu-basta), 1837 283 62 Annelida Polychasta Annelida Polychasta 1 1 Annelida Polychasta Origohasta I. 1 1 1 Annelida Polychasta Origohasta I. 1	Annelida	Polychaeta	Nephthyidae	Nephtys kersivalensis McIntosh, 1908	127	45
Annelition Polychesia Projectocias Neresiduate	Annelida	Polychaeta	Phyllodocidae	Nereiphylla paretti Blainville, 1828	6	4
Annelitia Polychaeta Nereil zonata Maingren, 1867 15 9 Annelitia Polychaeta Lumbineridue Mice amounts, 1968 21 13 Annelitia Polychaeta Capabilitian Note amounts, 1851 23 14 Annelitia Polychaeta Sylidiae Odortosylis fugurars, (Audoun and Mine-Edward, 1833) 1 1 Annelitia Polychaeta Sylidiae Odortosylis fugurars, (Audoun and Mine-Edward, 1833) 1 1 Annelitia Oligochaeta II. Oligochaeta II. Oligochaeta II. 10 10 Annelitia Polychaeta Opriella calica Annorusx and Dauvin, 1891 3 2 Annelitia Polychaeta Ophelia calica Annorusx and Dauvin, 1891 3 2 Annelitia Polychaeta Ophelia calica Annorusx and Dauvin, 1891 3 2 Annelitia Polychaeta Ophelia calica Annorusx and Dauvin, 1891 3 2 Annelitia Polychaeta Ophelia calica Annorusx and Dauvin, 1891 3 2 Annelitia Polychaeta Ophelia calica	Annelida	Polychaeta	Phyllodocidae	Nereiphylla rubiginosa (Saint-Joseph, 1888)	1	1
Annelida Polychesia Lumbrinneridae Notive armocicana (Glemarec, 1998) 21 13 Annelida Polychesia Chuphridae Notive armocicana (Glemarec, 1998) 27 14 Annelida Polychesia Amplitae Notive armocicana (Glemarec, 1998) 27 14 Annelida Polychesia Amplitae Notive armocicana (Glemarec, 1998) 27 14 Annelida Polychesia Sylificae Oddrotsylifis gibbb Clapartéde, 1833 11 1 Annelida Polychesia Oligochesten n. Oligochesten n. 510 56 Annelida Polychesia Ophelilizae dice annorus and Nilne Elwards, 1833 12 2 Annelida Polychesia Ophelilizae dice annorus and Nilne Elwards, 1833 1 1 Annelida Polychesia Ophelilizae dicesia Amorus and Nilne Elwards, 1833 1 1 Annelida Polychesia Ophelilizae dicesia Sup Elwards, 1634 1 1 Annelida Polychesia Ophelilizae dicesia Sup Elwards, 1634 1 1 1 1	Annelida	Polychaeta	Nereididae	<i>Nereis zonata</i> Malmgren, 1867	15	9
Annelida Polychaeta Campitabae Mohra sp. 151 273 14 Annelida Polychaeta Syliface Odortnorylin fugurara (Junoba nad Mine-Elward, 1833) 1 1 Annelida Polychaeta Syliface Odortnorylin fugurara (Junoba nad Mine-Elward, 1833) 1 1 Annelida Polychaeta Syliface Odortnorylin fugurara (Junoba nad Mine-Elward, 1833) 1 1 Annelida Oligochaeta n.I. Oligochaeta n.I. Oligochaeta n.I. 510 56 Annelida Polychaeta Ophelia cate annorux and Dauvin, 1981 3 2 Annelida Polychaeta Ophelia cate annorux and Dauvin, 1981 3 2 Annelida Polychaeta Ophelia cate annorux and Dauvin, 1981 3 2 Annelida Polychaeta Ophelia cate annorux and Dauvin, 1981 3 2 Annelida Polychaeta Ophelia cate annorux and Dauvin, 1981 3 1 2 Annelida Polychaeta Ophelia cate annorux and Dauvin, 1981 3 1 2 2	Annelida	Polychaeta	Lumbrineridae	Ninoe armoricana (Glémarec, 1968)	21	13
Annelida Polychesia Capitellidie Motorsalus telenceus Sars, 151 251 252 252 Annelida Polychesia Anphitomilia Motorsalus telenceus Sars, 153 1 1 Annelida Polychesia Sylidae Odortocyllis gibbs Cloparéde, 1863 183 10 Annelida Polychesia Ongochestan Oligochestan 1 1 Annelida Polychesia Ongochestan Oligochestan 1 1 Annelida Polychesia Ongohita radian (Palic Chaine, 1833) 1 1 1 Annelida Polychesia Ongohita radian (Palic Chaine, 1930) 3 2 Annelida Polychesia Ophelia radiana (Palic Chaine, 1940) 3 2 Annelida Polychesia Ophelia radiana (Palic Chaine, 1940) 3 2 2 Annelida Polychesia Ophelia radiana (Palic Chaine, 1974) 3 2 2 Annelida Polychesia Ophelia radiana (Palic Chaine, 1974) 3 5 Annelida Polychesia	Annelida	Polychaeta	Onuphidae	Nothria sp.	27	14
Annelica Polychesta Amplification Onopypers Regarder Minited, 1863 1 1 Annelica Oligochesta Oligochesta 510 56 Annelica Oligochesta Oligochesta 1 1 Annelica Oligochesta Oligochesta 1 1 Annelica Polychesta Oruphidae Oruphidae 1 1 Annelica Polychesta Oruphidae Oruphidae 1 1 Annelica Polychesta Ophelicitae Ophelic adias (Dolis Chaig, 1520) 3 2 Annelica Polychesta Ophelicitae Ophelic adias (Dolis Chaig, 1521) 3 2 Annelica Polychesta Ophelicitae Ophelic adias (Dolis Chaig, 1541) 1 1 Annelica Polychesta Ophelicitae Ophelic adias (Dolis Chaig, 1544) 1 1 Annelica Polychesta Ophelicitae Ophelicitae 1 1 1 Annelica Polychesta Ophelicitae Ophelicitae Ophelicitae	Annelida	Polychaeta	Capitellidae	Notomastus latericeus Sars, 1851	263	62
Artinitida Polychatela Syntada Outputs/miniting/Andres/Fuddual and Nume-Edwards, 103.3 1 1 Annelida Polychatela Oligochatela n.L. Oligochatela n.L. 12 6 Annelida Polychatela Onuphidae n.L. 00 12 6 Annelida Polychatela Onuphidae indica indindica indindindic indica indica indindindi indica indica indica	Annelida	Polychaeta	Amphinomidae	Notopygos megalops McIntosh, 1885	1	1
Annelida Oligoida an n.I.	Annelida	Polychaeta	Syllidae	Odoniosyllis ruigurans (Audouin and Millie-Edward, 1855)	1	1
AnnelidaOriginidasOriginidas012012AnnelidaPolychestaOmphildas111AnnelidaPolychestaOphelia cerica Annureux and Davin, 198132AnnelidaPolychestaOphelia cerica Annureux and Davin, 198132AnnelidaPolychestaOphelia cerica Annureux and Davin, 198132AnnelidaPolychestaOphelia rescofferasis Augener, 191011AnnelidaPolychestaOphelia rescofferasis Augener, 191011AnnelidaPolychestaOphelia rescofferasis Augener, 191011AnnelidaPolychestaOphelia rescofferasis Augener, 197722AnnelidaPolychestaOphichomus Baltical (Capardéa, 1864)3415AnnelidaPolychestaSylidaeOphichomus Baltical (Casiyon, 1820)22AnnelidaPolychestaSylidaeOphichomus Baltical (Casiyon, 1820)22AnnelidaPolychestaSylidaeParaonia grantas Casing (Savign, 1820)22AnnelidaPolychestaSylidaeParaonia Giarnate, 196103AnnelidaPolychestaParaonia Giarnate, 19631033AnnelidaPolychestaParaonia Casingra (Langenhan, 1811)2612AnnelidaPolychestaSylidaeParaonia Casingra (Langenhan, 1814)335AnnelidaPolychestaSylidaeParaonia Casingra (Langenhan, 1814)222	Annelida	Polychaeta	Syllidae Oligophoeto p i	Oligophaeta n i	18	10
Annelida Polychasas Orughidas Orughidas Orughidas 1 Annelida Polychasas Ophellidae Ophellidae Ophellidae Status 3 2 Annelida Polychasas Ophellidae Ophellidae Ophellidae Ophellidae Status 3 2 Annelida Polychasas Ophellidae Ophellidae Ophellidae Ophellidae Status 1 1 Annelida Polychasas Ophellidae Ophellidae Ophellidae Ophellidae Status 2 2 Annelida Polychasas Sylidae Ophellidae Ophellidae Status 2 2 Annelida Polychasas Overnidae Overnidae Overnidae Status 2 2 Annelida Polychasas Overnidae Overnidae Status 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 </td <td>Annelida</td> <td>Polychaeta</td> <td>Oligochaeta h.i.</td> <td>Oligochaeta II.I. Onunhidaa ni</td> <td>12</td> <td>50</td>	Annelida	Polychaeta	Oligochaeta h.i.	Oligochaeta II.I. Onunhidaa ni	12	50
InnelidiaPolychesinaOphellidiae<	Annelida	Polychaeta	Onuphidae	Onuphicae III. Onuphis eremita Audouin and Milne Edwards, 1833	12	1
AnnelidaPolychestenOphellidae <t< td=""><td>Annelida</td><td>Polychaeta</td><td>Onbelliidae</td><td>Ophelia celtica Amoureux and Dauvin 1981</td><td>3</td><td>2</td></t<>	Annelida	Polychaeta	Onbelliidae	Ophelia celtica Amoureux and Dauvin 1981	3	2
AnnelidaPolychaetaOphellidae <th< td=""><td>Annelida</td><td>Polychaeta</td><td>Ophelliidae</td><td>Ophelia radiata (Delle Chiaie, 1828)</td><td>3</td><td>2</td></th<>	Annelida	Polychaeta	Ophelliidae	Ophelia radiata (Delle Chiaie, 1828)	3	2
AnnelidaPolychaetaOphellinaOphellina minima Hatmänn-Schröder, 1974189AnnelidaPolychaetaHesionidaeOphellina modesta Spe-Bovitz, 195911AnnelidaPolychaetaHesionidaeOphicdromus palidus (Claparde, 1847)222AnnelidaPolychaetaSylidaeOphicdromus palidus (Claparde, 1847)3415AnnelidaPolychaetaSylidaeOphical (Claparde, 1846)3415AnnelidaPolychaetaOvernia fusiformis della Chaine, 182722AnnelidaPolychaetaOvernia fusiformis della Chaine, 18278528AnnelidaPolychaetaPolychaetaPolychaeta2712AnnelidaPolychaetaPolychaetaPolychaeta2712AnnelidaPolychaetaParaonidaeParadoneis armata Giemarea, 1986103AnnelidaPolychaetaParaonidaeParadoneis armata Giemarea, 1986103AnnelidaPolychaetaParaonidaeParadoneis armata Giemarea, 1986103AnnelidaPolychaetaSylidaeParaephonsylis brevicina Sam Marin, 196444AnnelidaPolychaetaSylidaeParaexgone gambae Lenara, Sortina (Langerhans, 1891)222AnnelidaPolychaetaSylidaeParaexgone gambae Lenara, Sortina (Sam Giemare, 1967)441AnnelidaPolychaetaSylidaeParaexgone gambae Lenara, Sortina (Sam Giemare, 1967)222<	Annelida	Polychaeta	Ophelliidae	Ophelia roscoffensis Augener, 1910	1	1
Annelida Polychaeta Ophellina modestas Sup-Bowitz, 1958 1 1 1 Annelida Polychaeta Hesionidae Ophicotromus pauluks (Claparde, 1864) 34 15 Annelida Polychaeta Sylidiae Ophicotromus pauluks (Claparde, 1864) 34 15 Annelida Polychaeta Orbinide Orbinia (Orbinia) sertulata (Savary, 1820) 2 2 Annelida Polychaeta Ownidae Ownidae Ownidae 28 10 Annelida Polychaeta Sylidiae Parachonis processoma Hartmann-Schröder, 1977 28 10 Annelida Polychaeta Polychaeta Parachonis processoma Hartmann-Schröder, 1977 26 12 Annelida Polychaeta Parachonis processoma Hartmann-Schröder, 1976 26 12 Annelida Polychaeta Parachonis processoma Hartmann-Schröder, 1976 62 21 Annelida Polychaeta Sylidae Parachonis processoma Hartmann-Schröder, 1976 62 21 Annelida Polychaeta Sylidae Parachonis procesomanhartmann-Schröder, 1976	Annelida	Polychaeta	Ophelliidae	Ophelina minima Hartmann-Schröder, 1974	18	9
AnnelidaPolychaetaHesionidaeOphicotromus flaukosus (Delle Chinje, 1827)222AnnelidaPolychaetaSyllidaeOptisthodonis serratiseissa López, San Marin A Jiménez, 1997495AnnelidaPolychaetaOvenidaeOptinia (China) serratiseissa López, San Marin A Jiménez, 1997495AnnelidaPolychaetaOvenidaeOvenida Ediformis delle Chiaje, 18448528AnnelidaPolychaetaSyllidaePalacosila (Sociarina Schröder, 19772610AnnelidaPolychaetaParaonidaeParaonidae2712AnnelidaPolychaetaParaonidaeParaonidae2712AnnelidaPolychaetaParaonidaeParaonidae2712AnnelidaPolychaetaParaonidaeParaonidae (Paraonidae)184AnnelidaPolychaetaParaonidaeParaonidae (Paraonia)1844AnnelidaPolychaetaTerabellidaeParaonias (Paraonia)1867)444AnnelidaPolychaetaSyllidaeParaexogone spile brevicina San Martin, 198441AnnelidaPolychaetaSyllidaeParaexogone spile brevicina San Martin, 1984222AnnelidaPolychaetaSyllidaeParaexogone spile brevicina San Martin, 1994411AnnelidaPolychaetaSyllidaeParaexogone spile52222AnnelidaPolychaetaSyllidaeParaexog	Annelida	Polychaeta	Ophelliidae	Ophelina modesta Støp-Bowitz, 1958	1	1
AnneliciaPolychaetaHesionidaeOphicotroms pallidus (Claparède, 1864)3415AnnelidaPolychaetaOrbinidaeOrbinia (Savign, 1820)22AnnelidaPolychaetaOrbinidaeOrbinia (Savign, 1820)22AnnelidaPolychaetaOrbinia (Savign, 1820)22AnnelidaPolychaetaSylicidaeParibas (Savign, 1820)210AnnelidaPolychaetaPolychaetaPolychaeta210AnnelidaPolychaetaPolychaetaPolychaeta210AnnelidaPolychaetaPolychaetaPolychaeta212AnnelidaPolychaetaPolychaetaParaloxydonia paradoxa Fauvel, 191330755AnnelidaPolychaetaPolychaetaParaloxydonia paradoxa Fauvel, 191339755AnnelidaPolychaetaPyllodocidaeParanelytris forterbaranchi#ohthe, 19766221AnnelidaPolychaetaSylidiaeParanogone gambiae Lanera, Sordino & San Marin, 19946813AnnelidaPolychaetaSylidiaeParaxogone habec (Webster & Benedict, 1884)222AnnelidaPolychaetaSylidiaeParaxogone pareloxy (Di Alari, 1994)6333AnnelidaPolychaetaSylidiaeParaxogone habec (Webster & Benedict, 1884)222AnnelidaPolychaetaSylidiaeParaxogone pareloxy (Webster & Benedict, 1894)333AnnelidaPolychaeta </td <td>Annelida</td> <td>Polychaeta</td> <td>Hesionidae</td> <td>Ophiodromus flexuosus (Delle Chiaje, 1827)</td> <td>2</td> <td>2</td>	Annelida	Polychaeta	Hesionidae	Ophiodromus flexuosus (Delle Chiaje, 1827)	2	2
Annelida Polychaeta Sylidae Opisthodora seratisetosa López, San Marin ASU, Iménez, 1997 49 5 Annelida Polychaeta Ovenidae Ovenida erutas (Savigory, 1820) 2 2 Annelida Polychaeta Ovenidae Ovenida erutas/ormis delle Chiaje, 1844 85 28 Annelida Polychaeta Polychaeta Polychaeta 27 12 Annelida Polychaeta Paradoniae Paradoniae Baradonia Simula Cleanarec, 1966 10 3 Annelida Polychaeta Paraonidae Paradonias irradonia Sira (Southern, 1914) 118 42 Annelida Polychaeta Paraonidae Paradonias irradoxa Fauvel, 1813) 30 75 Annelida Polychaeta Polychaeta Polychaeta Sylidae Paraonatis Kosterans (Maingran, 1867) 4 4 Annelida Polychaeta Sylidae Paraoxogone parbos (Webster & Benedic, 1884) 2 2 2 Annelida Polychaeta Sylidae Paraoxogone parbos (Webster & Benedic, 1884) 3 3 3	Annelida	Polychaeta	Hesionidae	Ophiodromus pallidus (Claparède, 1864)	34	15
Annelida Polycheata Orbinidae Orbinia (Savign, 1820) 2 2 Annelida Polycheata Sylidae Palposylib procestorma Hartmann-Schröder, 1977 26 10 Annelida Polycheata Sylidae Paradoneis armata Glemarce, 1966 10 3 Annelida Polycheata Polycheata Sylidae Paraelersia ferrugina (Langenhars, 1831) 18 46 Annelida Polycheata Polycheata Polycheata Sylidae Paraelersia ferrugina (Langenhars, 1841) 41 41 Annelida Polycheata Sylidae Parexognore packel (Nation, 1944) 41 13 Annelida Polycheata Sylidae Parexognore packel (Nation, 1944) 42 2 Annelida Polycheata Sylidae Parexognore packel (Nation, 1944) 42 2 Annelida Polycheata Amphinomidae Paraynonospio pinnata (Annelida	Polychaeta	Syllidae	Opisthodonta serratisetosa López, San Marin & Jiménez, 1997	49	5
Annelida Polychaeta Owenidae Owenidae Owenidae Owenidae Disposilia processoram altamann-Schröder, 1977 26 10 Annelida Polychaeta Polychaeta Polychaeta Paradoneis armate Glemarec, 1966 10 3 Annelida Polychaeta Paradoneis armate Glemarec, 1966 10 3 Annelida Polychaeta Paradoneis armate Glemarec, 1966 62 21 Annelida Polychaeta Paralecydonidae Paranherisia fortagina (Langerhans, 1811) 26 12 Annelida Polychaeta Tareapinosylia brevizins Zam Karin, 1984 68 13 Annelida Polychaeta Sylidiae Paranzonosylia brevizins Zam Karin, 1984 68 13 Annelida Polychaeta Sylidiae Paracogone parabes (Wabater & Benedic, 1864) 2 2 Annelida Polychaeta Sylidiae Paracogone parabersii fortagin (Langerhaeta) 2 2 Annelida Polychaeta Sylidiae Paracogone parabersii fortagin (Langerhaeta) 2 2 Annelida Pol	Annelida	Polychaeta	Orbiniidae	Orbinia (Orbinia) sertulata (Savigny, 1820)	2	2
Annelida Polychaeta Sylidae Paposylik prososon framma framman-schrober, 1977 26 10 Annelida Polychaeta Paraonidae Parabnis corstal Kinberg, 1966 27 12 Annelida Polychaeta Paraonidae Paradones jurnata Gienarae, 1966 10 3 Annelida Polychaeta Paralorus jurnata Gienarae, 1966 10 3 Annelida Polychaeta Paralorus jurnata Gienarae, 1966 10 3 Annelida Polychaeta Sylidae Paraphone Sultana, 1871 36 55 Annelida Polychaeta Sylidae Parangonosylite brevicins Sa Martin, 1984 4 4 Annelida Polychaeta Sylidae Parasogone habes (Webster & Bendict, 1984) 2 2 2 Annelida Polychaeta Sylidae Parasogone habes (Webster & Bendict, 1984) 2 2 2 Annelida Polychaeta Sylidae Parasogone habes (Webster & Bendict, 1984) 2 2 Annelida Polychaeta Splinodae Parastheloguo sp.	Annelida	Polychaeta	Owenidae	Owenia fusiformis delle Chiaje, 1844	85	28
Annelida Polychaeta Polychaeta Polychaeta Paradones Paradones Polychaeta 2/ 1/2 Annelida Polychaeta Paradones Paradones (prac) (Suchamas, 1891) 26 12 Annelida Polychaeta Synidae Paradones (prac) (Suchamas, 1891) 26 12 Annelida Polychaeta Paralezydonia paradoxa Fauvel, 1913 397 55 Annelida Polychaeta Terebelidae Paratepracydonia paradoxa Fauvel, 1913 62 21 Annelida Polychaeta Terebelidae Paratepracydonia paradoxa Fauvel, 1913 68 13 Annelida Polychaeta Sylidae Paraxogone habeo (Waster 4) 2 2 Annelida Polychaeta Sylidae Paraxogone habeo (Waster 4) 2 2 Annelida Polychaeta Sylidae Paraxogone habeo (Waster 4) 2 2 Annelida Polychaeta Amplaratidae Paratohaeja sericola: Outaredages, 1660 2 2 Annelida Polychaeta Amplaratidae Par	Annelida	Polychaeta	Syllidae	Palposyllis prosostoma Hartmann-Schröder, 1977	26	10
Amelida Polychaeta Prafadolidae Prafadolitas Miniard Solamatec, 1960 Annelida Polychaeta Paraonidae Paradones Miniard Solamatec, 1960 Annelida Polychaeta Paralacydonidae Paradones Marka (Langerhans, 1881) 26 12 Annelida Polychaeta Paralacydonidae Paradones Marka (Langerhans, 1881) 26 12 Annelida Polychaeta Paralacydonidae Paranaphirria tetrabarachiafiolithe, 1973 Annelida Polychaeta Phylidocidae Paranaphirria tetrabarachiafiolithe, 1973 Annelida Polychaeta Sylidae Paranaphirria tetrabarachiafiolithe, 1973 Annelida Polychaeta Sylidae Paranaphirria tetrabarachiafiolithe, 1974 Annelida Polychaeta Sylidae Paranapis Kosternsis (Mangera, 1667) Annelida Polychaeta Sylidae Paranapis Kosternsis (Mangera, 1667) Annelida Polychaeta Sylidae Paraxogone hebes (Webster & Benedict, 1984) Annelida Polychaeta Sylidae Paraxogone hebes (Webster & Benedict, 1984) Annelida Polychaeta Sylidae Paraxogone hebes (Webster & Benedict, 1984) Annelida Polychaeta Sylidae Paranapis Costen Sp. Annelida Polychaeta Splidiae Paranapis Costen Sp. Annelida Polychaeta Splidiae Paranaphiris (Ehlers, 1901) Sanapatecha Polychaeta Ampharetidae Parathelpous Sp. Annelida Polychaeta Fibbiligeridae Petapasilia Malmigera, 1866 1 1 Annelida Polychaeta Fibbiligeridae Phirosa plusiteralogis, 1606 1 1 Annelida Polychaeta Fibbiligeridae Phirosa plusiteralogis, 1606 1 1 Annelida Polychaeta Phyliodocidae Phirobas (Langerhans, 1870) 2 2 Annelida Polychaeta Phyliodocidae Phirobas (Maler, 1776) 3 2 Annelida Polychaeta Phyliodocidae Phyliodoce maedirensis (Langerhans, 1890) 2 2 Annelida Polychaeta Phyliodocidae Phyliodoce maedirensis (Langerhans, 1890) 2 3 Annelida Polychaeta Phyliodocidae Phyliodoce maedirensis (Langerhans, 1890) 2 4 Annelida Polychaeta Phyliodocidae Phyliodoce maedirensis (Langerhans, 1890) 2 4 Annelida Polychaeta Phyliodocidae Phyliodoce maedirensis (La	Annelida	Polychaeta	Polynoidae	Pantnalis derstedi Kinderg, 1856	27	12
AmelidaPolychaetaParadiorability (2004)Paradiorability (2004)Paradiorabi	Annelida	Polychaeta	Paraonidae	Paradonois lura (Southorn, 1914)	10	3
Amelida Amelida Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Polychaeta Syliciae Polychaeta Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Syliciae Polychaeta Polychaeta Syliciae Polychaeta Syliciae Polychaeta Polychaeta Syliciae Polychaeta Polychaeta Syliciae Polychaeta 	Annelida	Polychaeta	Syllidae	Paraehlersia ferrugina (Langerhans, 1881)	26	40
Amelida AmelidaPolychaeta Paramphinite tertaranchaklotta, 19766221Amelida PolychaetaPolychaeta SyllidaeParanalitis tosteronsis (Malmgren, 1867)44Amelida PolychaetaSyllidaeParapionosyllis brevioira San Martin, 19946813Annelida PolychaetaSyllidaeParexogone gembiae Lanera, Sordino & San Martin, 199441Annelida PolychaetaSyllidaeParexogone hebes (Webster & Benedict, 1884)22Annelida PolychaetaSyllidaeParexogone sp.22Annelida PolychaetaSplidaeParexogone sp.22Annelida PolychaetaSabelidaeParasabelia sp.22Annelida PolychaetaAmpharetidae Paratabelia sp.33Annelida PolychaetaAmphinomidae Perturanida (Amphictene) auricoma (O.F. Müller, 1776)188Annelida PolychaetaMaldanidae Petrasapilmosa (Miller, 1776)188Annelida PolychaetaPolychaeta PholodizaePholodizae Pholodizae Pholodizae Phyllodocidae11Annelida PolychaetaPhyllodocidae Phyllodoci	Annelida	Polychaeta	Paralacydoniidae	Paralacydonia paradoxa Fauvel 1913	397	55
Amelida AmelidaPolychaeta PolychaetaPhyllodocidae Parapitonsofilis breviorre San Martin, 1987)444Amelida PolychaetaSyllidaeParapitonsofilis breviorre San Martin, 199441Annelida PolychaetaSyllidaeParexogone gambiae Lanera, Sordino & San Martin, 199441Annelida PolychaetaSyllidaeParexogone sp. Parexogone sp.22Annelida PolychaetaSplonidaeParexogone sp.33Annelida PolychaetaAmpharetidae Parathelepus sp.33Annelida PolychaetaAmpharetidae Parathelepus sp.33Annelida PolychaetaAmpharetidae Petrambicone cl. borealis (M. Sars, 1862)52Annelida PolychaetaPolychaeta PetrambinomidaePetrambicone cl. borealis (M. Sars, 1862)11Annelida PolychaetaPolychaeta PetrambinomidaePetrambicone cl. borealis (M. Sars, 1862)11Annelida PolychaetaPolychaeta PetrambinomidaePetrambicone cl. borealis (M. Sars, 1862)33Annelida PolychaetaPolychaeta PhylodocidaePhylodoc longines Kinberg, 186611Annelida PolychaetaPhylodocidae PhylodocidaePhylodocidae Phylodocidae11Annelida PolychaetaPhylodocidae Phylodocidae Phylodocidae Phylodocidae111Annelida PolychaetaPhylodocidae Phylodocidae Phylodocidae Phylodocidae Phylodocidae Phylodocidae Phylodocidae Phylodocidae <br< td=""><td>Annelida</td><td>Polychaeta</td><td>Terebellidae</td><td>Paramphitrite tetrabranchiaHolthe, 1976</td><td>62</td><td>21</td></br<>	Annelida	Polychaeta	Terebellidae	Paramphitrite tetrabranchiaHolthe, 1976	62	21
AmelidaPolychaetaSylidaeParapionosylis brevicing sam Marin, 19846813AnnelidaPolychaetaSylidaeParexogone gembie Lanera, Sordino & Sam Marin, 199441AnnelidaPolychaetaSylidaeParexogone hebes (Webster & Benedict, 1864)22AnnelidaPolychaetaSylidaeParexogone sp.22AnnelidaPolychaetaSplonidaeParasabella sp.22AnnelidaPolychaetaSabellidaeParasabella sp.33AnnelidaPolychaetaAmpharetidaePareurythee ct. borealis (M. Sars, 1862)52AnnelidaPolychaetaPertinaridaePerturythee ct. borealis (M. Sars, 1862)52AnnelidaPolychaetaPertinaridaePerturythee ct. borealis (M. Sars, 1862)11AnnelidaPolychaetaPertinaridaePerturythee ct. borealis (M. Sars, 1862)33AnnelidaPolychaetaPertinaridaePerturythee ct. borealis (M. Sars, 1862)44AnnelidaPolychaetaPholoidaePholosae symphthalmica (Claparéde, 1870)87AnnelidaPolychaetaPhyliodocidaePhyliodoce langeas (Maler, 1776)2611AnnelidaPolychaetaPhyliodocidaePhyliodoce langeas (Linaneus, 1770)2611AnnelidaPolychaetaPhyliodoce and enviros (Linaneus, 1770)2611AnnelidaPolychaetaPhyliodoce and enviros (Linaneus, 1770)207Annelid	Annelida	Polychaeta	Phyllodocidae	Paranaitis kosterensis (Malmgren, 1867)	4	4
AnnelidaPolychaetaSyllidaeParexogone pambiae Lanera, Sordino & San Martin, 199441AnnelidaPolychaetaSyllidaeParexogone hebes (Webster & Benedict, 1884)22AnnelidaPolychaetaSyllidaeParexogone hebes (Webster & Benedict, 1884)22AnnelidaPolychaetaSploinidaeParaprionospio pinnata (Ehlers, 1901)8742AnnelidaPolychaetaSabellidaeParasibella sp.33AnnelidaPolychaetaAmphinomidaeParathelepus sp.33AnnelidaPolychaetaMaphinomidaeParathelepus sp.33AnnelidaPolychaetaMaldanidaePetalprofeuts terrolous Quatrelages, 166622AnnelidaPolychaetaFlabelligeridaePeta pusilla Malmgren, 1866111AnnelidaPolychaetaPholoidaePholoe synophinalmica Claparéde, 187087AnnelidaPolychaetaPhyllodocidaePhyllodoce lineata (Claparéde, 1870)87AnnelidaPolychaetaPhyllodoce and errorsis (Langaréde, 18661111AnnelidaPolychaetaPhyllodoce maculate (Linnaeus, 1767)222AnnelidaPolychaetaPhyllodoce and errorsis (Langarénas, 1880)222AnnelidaPolychaetaPhyllodoce rosa Martin, Lopaz and Nuñez, 1999115AnnelidaPolychaetaPisionidaePhyllodoce rosa Martin, Lopaz and Nuñez, 1999115Annel	Annelida	Polychaeta	Syllidae	Parapionosyllis brevicirra San Martin, 1984	68	13
AnnelidaPolychaetaSylidaeParexogone sp.22AnnelidaPolychaetaSploindaeParagopoe sp.22AnnelidaPolychaetaSploindaeParasabella sp.22AnnelidaPolychaetaSabellidaeParasabella sp.33AnnelidaPolychaetaAmpharetidaeParathelepus sp.52AnnelidaPolychaetaAmphinomidaePareurythoe c1. borealis (M. Sars, 1862)52AnnelidaPolychaetaMecinaria (Amphinctene) auricoma (O.F. Müller, 1776)188AnnelidaPolychaetaMecinaria (Amphinctene) auricoma (O.F. Müller, 1776)11AnnelidaPolychaetaPetinariidaePetaloproctus terricolus Quatrefages, 186611AnnelidaPolychaetaPholoidaePholoidae11AnnelidaPolychaetaPhylodocidaePhylodoce lineata (Claparéde, 1870)87AnnelidaPolychaetaPhylodocidaePhylodoce lineata (Claparéde, 1870)2611AnnelidaPolychaetaPhylodocidaePhylodoce lineata (Claparéde, 1870)2611AnnelidaPolychaetaPhylodocidaePhylodoce lineata (Claparéde, 1870)207AnnelidaPolychaetaPhylodocidaePhylodoce lineata (Linnaeus, 1767)207AnnelidaPolychaetaPhylodocidaePhylodoce lineata (Linnaeus, 1767)207AnnelidaPolychaetaPisionidaePision garani Moreira, Quinri	Annelida	Polychaeta	Syllidae	Parexogone gambiae Lanera, Sordino & San Martín, 1994	4	1
AnnelidaPolychaetaSylidaeParexogone sp.22AnnelidaPolychaetaSabellidaeParasabella sp.22AnnelidaPolychaetaSabellidaeParasabella sp.33AnnelidaPolychaetaAmpharetildaeParathelepus sp.33AnnelidaPolychaetaMechaetaPectinaria (Amphictene) auricoma (0.F. Müller, 1776)188AnnelidaPolychaetaPectinaria (Amphictene) auricoma (0.F. Müller, 1776)188AnnelidaPolychaetaPectinaria (Amphictene) auricoma (0.F. Müller, 1776)11AnnelidaPolychaetaPectinaria (Amphictene) auricoma (0.F. Müller, 1776)44AnnelidaPolychaetaPeta pusilla Malmgren, 186611AnnelidaPolychaetaPholoáePheta splumosa (Muller, 1776)44AnnelidaPolychaetaPhyllodocidaePhyllodoce linagies (Inagerhan, 1880)22AnnelidaPolychaetaPhyllodocidaePhyllodoce maculate (Linaeus, 1767)261111AnnelidaPolychaetaPhyllodocidaePhyllodoce maculate (Linaeus, 1767)26115AnnelidaPolychaetaPhyllodocidaePhyllodoce maculate (Linaeus, 1767)26115AnnelidaPolychaetaPhyllodocidaePhyllodoce maculate (Linaeus, 1767)207AnnelidaPolychaetaPhyllodocidaePhyllodoce maculate (Linaeus, 1767)2314AnnelidaPolychaeta	Annelida	Polychaeta	Syllidae	Parexogone hebes (Webster & Benedict, 1884)	2	2
AnnelidaPolychaetaSpionidaeParaprionospio pinnate (Ehlers, 1901)8742AnnelidaPolychaetaAmphinomidaeParathelepus sp.33AnnelidaPolychaetaAmphinomidaeParaurythoe cf. borealis (M. Sars, 1862)52AnnelidaPolychaetaPectinariidaePectinariidaePectinariidae22AnnelidaPolychaetaPectinariidaePectinariidaePetaloproctus terricolus Qualrefages, 186611AnnelidaPolychaetaFlabelligeridaePhetas pullinosa (Müller, 1776)444AnnelidaPolychaetaPholoidaePhylodocidae111AnnelidaPolychaetaPhylodocidaePhyllodoce (Caperade, 1866333AnnelidaPolychaetaPhylodocidaePhyllodoce lineata (Claparéde, 1866333AnnelidaPolychaetaPhyllodocidaePhyllodoce lineata (Claparéde, 1870)261111AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnareus, 1767)261115AnnelidaPolychaetaPhyllodocidaePhyllodoce mose McIntosh, 18772077AnnelidaPolychaetaPisionidaePisione guarche San Matrin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quirrezabalaga and Adaraga, 2008125AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quirrezabalaga and Adaraga, 2008 </td <td>Annelida</td> <td>Polychaeta</td> <td>Syllidae</td> <td>Parexogone sp.</td> <td>2</td> <td>2</td>	Annelida	Polychaeta	Syllidae	Parexogone sp.	2	2
AnnelidaPolychaetaSabellidaeParasabella sp.222AnnelidaPolychaetaAmpharetidaeParaurythoe d. borealis (M. Sars, 1862)33AnnelidaPolychaetaAmphicaePactunythoe d. borealis (M. Sars, 1862)52AnnelidaPolychaetaPectinaridaePactinaria (Amphictene) auricoma (O.F. Müller, 1776)188AnnelidaPolychaetaPectinaridaePetaloproctus terricolus Quatrefages, 186622AnnelidaPolychaetaPetalogirodus terricolus apardes, 1866111AnnelidaPolychaetaPholoidaePhyllodoce lineade (Claparde, 1868333AnnelidaPolychaetaPhyllodocidaePhyllodoce lineade (Claparde, 1870)87AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)2611AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)2611AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)207AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)20125AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)2611AnnelidaPolychaetaPisionidaePisione inkoi Martinez, Aguirezabaga and Adarraga, 2008125AnnelidaPolychaetaPisionidaePisione remota (Southern, 1914)30823AnnelidaPo	Annelida	Polychaeta	Spionidae	Paraprionospio pinnata (Ehlers, 1901)	87	42
AnnelidaPolychaetaAmphiromidaeParathelepus sp.33AnnelidaPolychaetaAmphiromidaePacturythoe C. borealis (M. Sars, 1862)52AnnelidaPolychaetaPectinariidaePectinariidaePactinariidaePactinariidae22AnnelidaPolychaetaMaldanidaePetaloproclus terricolus Quatrefages, 186611AnnelidaPolychaetaPlactinariidaePeta pusilla Malmgren, 186611AnnelidaPolychaetaPholoidaePholoe synophthalmica Claparde, 1870)44AnnelidaPolychaetaPholoidaePhyllodoce lineata (Claparde, 1870)87AnnelidaPolychaetaPhyllodocidaePhyllodoce lineata (Claparde, 1870)2611AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)2611AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)207AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)207AnnelidaPolychaetaPhyllodoceidaePhyllodoce maculata (Linnaeus, 1767)207AnnelidaPolychaetaPhyllodoceidaePhyllodoce maderensis (Lagethans, 1880)125AnnelidaPolychaetaPisionidaePisione inkoi Martinez, Aguirezabalga and Adarraga, 2008125AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314Annelida <t< td=""><td>Annelida</td><td>Polychaeta</td><td>Sabellidae</td><td>Parasabella sp.</td><td>2</td><td>2</td></t<>	Annelida	Polychaeta	Sabellidae	Parasabella sp.	2	2
AnnelidaPolychaetaAmphinomidaePareurythoe cl. boreaus (M. Sars, 1862)52AnnelidaPolychaetaMaldanidaePectinaria (Amphictene) auricoma (O.F. Müller, 1776)188AnnelidaPolychaetaMaldanidaePetata pusilla Su Quatrefages, 186622AnnelidaPolychaetaPactinariidaePetata pusilla Su Quatrefages, 186611AnnelidaPolychaetaPholoe synophthatica Claparde, 186833AnnelidaPolychaetaPhyliodocidaePhyliodoce Ineatin Claparde, 18661111AnnelidaPolychaetaPhyliodocidaePhyliodoce Ineatin Claparde, 18661111AnnelidaPolychaetaPhyliodocidaePhyliodoce Ineatin Claparde, 18702611AnnelidaPolychaetaPhyliodocidaePhyliodoce maciutat (Linnaeus, 1767)2611AnnelidaPolychaetaPhyliodocidaePhyliodoce maciutats (Linnaeus, 1767)207AnnelidaPolychaetaPhyliodocidaePhyliodoce maciutata (Linnaeus, 1767)207AnnelidaPolychaetaPhisionidaePisione guarache San Martin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione guarache San Martin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione guarache San Martin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione guarache San Martin, López and Núñez, 1999115Annelida </td <td>Annelida</td> <td>Polychaeta</td> <td>Ampharetidae</td> <td>Parathelepus sp.</td> <td>3</td> <td>3</td>	Annelida	Polychaeta	Ampharetidae	Parathelepus sp.	3	3
AnnelidaPolychaetaPectinani (Ampnictene) auroma (J.F. Muller, 1/7b)188AnnelidaPolychaetaPectinariidaePetaloprocus verifolus Quarteralges, 186622AnnelidaPolychaetaPectinariidaePetrapusilla Malmgren, 186611AnnelidaPolychaetaPholoidaePhorusa plurosa (Müller, 1776)44AnnelidaPolychaetaPhylodocidaePhylodoce ineata (Claparède, 186833AnnelidaPolychaetaPhylodocidaePhylodoce ineata (Claparède, 1870)87AnnelidaPolychaetaPhylodocidaePhylodoce macutata (Linnaeus, 1767)2611AnnelidaPolychaetaPhylodocidaePhylodoce macutata (Linnaeus, 1767)207AnnelidaPolychaetaPhylodocidaePhylodoce macutata (Linnaeus, 1767)207AnnelidaPolychaetaPhylodocidaePhylodoce macutata (Linnaeus, 1767)207AnnelidaPolychaetaPisionidaePisione junch Martine, Zaguirezabalga and Adarraga, 2008125AnnelidaPolychaetaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychaetaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)11AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)21AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776) <td>Annelida</td> <td>Polychaeta</td> <td>Amphinomidae</td> <td>Pareurythoe cf. borealis (M. Sars, 1862)</td> <td>5</td> <td>2</td>	Annelida	Polychaeta	Amphinomidae	Pareurythoe cf. borealis (M. Sars, 1862)	5	2
AnnelidaPolyChaetaMaldanidaePetra pusile Maingren, 186622AnnelidaPolyChaetaFlabelligeridaePheta pusile Maingren, 186611AnnelidaPolyChaetaFlabelligeridaePhetras plumosa (Muller, 1776)44AnnelidaPolyChaetaPholodaePholoe synophthalmica Claparède, 186833AnnelidaPolyChaetaPhyllodocidaePhyllodoce lineata (Claparède, 1870)87AnnelidaPolyChaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)2611AnnelidaPolyChaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)2611AnnelidaPolyChaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)2612AnnelidaPolyChaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)207AnnelidaPolyChaetaPisionidaePisione inkoi Martinez, Aguirrezabalaga and Adarraga, 2008125AnnelidaPolyChaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314AnnelidaPolyChaetaPisionidaePista oristata (Müller, 1776)6617AnnelidaPolyChaetaTerebellidaePista oristata (Müller, 1776)21AnnelidaPolyChaetaSerpulidaePista oristas caristata (Müller, 1776)21AnnelidaPolyChaetaSerpulidaePista oristas caristata (Müller, 1776)21AnnelidaPolyChaetaSerpulidae<	Annelida	Polychaeta	Pectinariidae	Pectinaria (Ampnictene) auricoma (O.F. Muller, 1776)	18	8
AnnelidaPolychætiaPetulialitudePetulia pusitia ivalingen, foto11AnnelidaPolychætiaPiaboligeridaePhorusa plumosa (Müller, 1776)44AnnelidaPolychætiaPholoidaePholoe synophthalmica Claparéde, 1868333AnnelidaPolychætiaPhyllodocidaePhyllodoce lineata (Claparéde, 1870)87AnnelidaPolychætiaPhyllodocidaePhyllodoce madeirensis (Langerhans, 1860)22AnnelidaPolychætiaPhyllodocidaePhyllodoce madeirensis (Langerhans, 1880)22AnnelidaPolychætaPhyllodocidaePhyllodoce madeirensis (Langerhans, 1880)227AnnelidaPolychætaPisionidaePisione guanche San Martin, López and Núñez, 1999115AnnelidaPolychætaPisionidaePisione guanche San Martin, López and Núñez, 1999125AnnelidaPolychætaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychætaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychætaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychætaTerebellidaePista cristata (Müller, 1776)21AnnelidaPolychætaSepulidaePista cristata (Müller, 1776)21AnnelidaPolychætaSepulidaePista cristata (Müller, 1776)329AnnelidaPolychætaSepulidaePista c	Annelida	Polychaeta	Rectineriidee	Petaloprocius terricolus Qualielages, 1866	2	2
AnnelidaPolychaetaPholos publicadoPholos publicado <td>Annelida</td> <td>Polychaeta</td> <td>Flabelligeridae</td> <td>Pherusa nlumosa (Müller, 1776)</td> <td>1</td> <td>1</td>	Annelida	Polychaeta	Flabelligeridae	Pherusa nlumosa (Müller, 1776)	1	1
AnnelidaPolychaetaPhyllodocidae<	Annelida	Polychaeta	Pholoidae	Pholoe synophthalmica Clanarède, 1868	3	3
AnnelidaPolychaetaPhyllodocidaePhyllodoce lorgipes Kinberg, 18661111AnnelidaPolychaetaPhyllodocidaePhyllodoce macluta (Linnaeus, 1767)2611AnnelidaPolychaetaPhyllodocidaePhyllodoce macluta (Linnaeus, 1767)2611AnnelidaPolychaetaPhyllodocidaePhyllodoce rosea McIntosh, 1877207AnnelidaPolychaetaPisionidaePisione guanche San Martin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychaetaTerebellidaePista cristata (Muller, 1776)3725AnnelidaPolychaetaSerpulidaePlacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSerpulidaePlacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaeta <td< td=""><td>Annelida</td><td>Polychaeta</td><td>Phyllodocidae</td><td>Phyllodoce lineata (Claparède, 1870)</td><td>8</td><td>7</td></td<>	Annelida	Polychaeta	Phyllodocidae	Phyllodoce lineata (Claparède, 1870)	8	7
AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)2611AnnelidaPolychaetaPhyllodocidaePhyllodoce maculata (Linnaeus, 1767)207AnnelidaPolychaetaPhyllodocidaePhyllodoce rosea McIntosh, 1877207AnnelidaPolychaetaPisionidaePisione guanche San Martin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione guanche San Martin, López and Núñez, 1999125AnnelidaPolychaetaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychaetaTerebellidaePista cristata (Nüller, 1776)6617AnnelidaPolychaetaTerebellidaePista cristata (Nüller, 1776)21AnnelidaPolychaetaSerpulidaePiacostegus cl. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSyllidaePlacostegus cl. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSyllidaePlacostegus cl. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSyllidaePlacostegus capensis (Day, 1963)1812AnnelidaPolychaetaPoecilochaetus serpers Allen, 19046640AnnelidaPolychaeta n.i.Polychaeta n.i. 111AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 23AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 355Annelida <td>Annelida</td> <td>Polychaeta</td> <td>Phyllodocidae</td> <td>Phyllodoce Iongipes Kinberg, 1866</td> <td>11</td> <td>11</td>	Annelida	Polychaeta	Phyllodocidae	Phyllodoce Iongipes Kinberg, 1866	11	11
AnnelidaPolychaetaPhyllodocidaePhyllodoce madeirensis (Langerhans, 1880)22AnnelidaPolychaetaPhyllodocidaePhyllodoc rosea McIntosh, 1877207AnnelidaPolychaetaPisionidaePisione guanche San Martin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione inkoi Martinez, Aguirrezabalaga and Adarraga, 2008125AnnelidaPolychaetaPisionidaePisione inkoi Martinez, Aguirrezabalaga and Adarraga, 200820314AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)21AnnelidaPolychaetaSerpulidaePlacostegus cf. tridentatus (Fabricus, 1779)21AnnelidaPolychaetaSerpulidaePlacostegus cf. tridentatus (Fabricus, 1779)21AnnelidaPolychaetaBescilichaetus erpens Allen, 19046640AnnelidaPolychaetaPoecilochaetus erpens (Day, 1963)1812AnnelidaPolychaetaPolychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.22AnnelidaPolychaetaPolychaeta n.i.22AnnelidaPolychaetaPolychaeta n.i.21AnnelidaPolychaetaPolychaeta n.i.21	Annelida	Polychaeta	Phyllodocidae	Phyllodoce maculata (Linnaeus, 1767)	26	11
AnnelidaPolychaetaPhyllodocidaePhyllodoce rosea McIntosh, 1877207AnnelidaPolychaetaPisionidaePisione guanche San Martin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione inkoi Martínez, Aguirrezabalaga and Adarraga, 2008125AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314AnnelidaPolychaetaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaSerpulidaePista iornensis (Pearson, 1969)3725AnnelidaPolychaetaSerpulidaePiacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaHeisoinidaePodarkeopsis capensis (Day, 1963)1812AnnelidaPolychaetaPoecilochaetidaePoecilochaeta serpens Allen, 19046640AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.222AnnelidaPolychaetaPolychaeta n.i.211AnnelidaPolychaetaPolychaeta n.i.211AnnelidaPolychaetaPolychaeta n.i.222AnnelidaPolyc	Annelida	Polychaeta	Phyllodocidae	Phyllodoce madeirensis (Langerhans, 1880)	2	2
AnnelidaPolychaetaPisionidaePisione guanche San Martin, López and Núñez, 1999115AnnelidaPolychaetaPisionidaePisione inkoi Martinez, Aguirrezabalaga and Adarraga, 2008125AnnelidaPolychaetaPisionidaePisione inkoi Martinez, Aguirrezabalaga and Adarraga, 2008125AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)21AnnelidaPolychaetaSerpulidaePiacostegus cf. tridentatus (Fabricus, 1779)21AnnelidaPolychaetaSyllidaePiacostegus cf. tridentatus (Fabricus, 1779)21AnnelidaPolychaetaSyllidaePodarkeopsis capensis (Day, 1963)1812AnnelidaPolychaetaPoecilochaetus serpens Allen, 19046640AnnelidaPolychaetaPolychaeta n.i.111AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.933AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.32AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.352AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.33 <t< td=""><td>Annelida</td><td>Polychaeta</td><td>Phyllodocidae</td><td>Phyllodoce rosea McIntosh, 1877</td><td>20</td><td>7</td></t<>	Annelida	Polychaeta	Phyllodocidae	Phyllodoce rosea McIntosh, 1877	20	7
AnnelidaPolychaetaPisionidaePisione inkoi Martínez, Aguirrezabalaga and Adarraga, 2008125AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314AnnelidaPolychaetaTerebellidaePista cristata (Southern, 1914)30823AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaSerpulidaePiacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSyllidaePlacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaHesionidaePodarkeopsis capensis (Day, 1963)329AnnelidaPolychaetaHesionidaePoecilochaetus serpens Allen, 19046640AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 111AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.9933AnnelidaPolychaetaTerebellidaePolychaeta n.i. 355AnnelidaPolychaetaSpionidaePolychaeta n.i. 38055AnnelidaPolychaetaSpionidaePolychaeta n.i. 33414AnnelidaPolychaetaSpionidaePolychaeta n.i. 80234AnnelidaPolychaetaSpio	Annelida	Polychaeta	Pisionidae	Pisione guanche San Martin, López and Núñez, 1999	11	5
AnnelidaPolychaetaPisionidaePisione parapari Moreira, Quintas and Troncoso, 200020314AnnelidaPolychaetaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaTerebellidaePista lornensis (Pearson, 1969)3725AnnelidaPolychaetaSerpulidaePlacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSylidaePlakosyllis brevipes Hartmann-Schröder, 1956329AnnelidaPolychaetaHesionidaePodarkeopsis capensis (Day, 1963)1812AnnelidaPolychaetaHesionidaePoecilochaetus serpens Allen, 19046640AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.22AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.32AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.32AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.32AnnelidaPolychaetaSpionidaePolychaeta Gruba, 183055AnnelidaPolychaetaSpionidaePolychaeta cilata (Johnston, 1838)55AnnelidaPolychaetaSpio	Annelida	Polychaeta	Pisionidae	Pisione inkoi Martínez, Aguirrezabalaga and Adarraga, 2008	12	5
AnnelidaPolychaetaPisionidaePisione remota (Southern, 1914)30823AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)3725AnnelidaPolychaetaSerpulidaePlacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSyllidaePlakosyllis brevipes Hartmann-Schröder, 1956329AnnelidaPolychaetaHesionidaePodarkeopsis capensis (Day, 1963)1812AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.22AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.29AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.22AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.222AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.222AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.355AnnelidaPolychaetaSpionidaePolychrus medusa Grube, 1	Annelida	Polychaeta	Pisionidae	Pisione parapari Moreira, Quintas and Troncoso, 2000	203	14
AnnelidaPolychaetaTerebellidaePista cristata (Müller, 1776)6617AnnelidaPolychaetaTerebellidaePista lornensis (Pearson, 1969)3725AnnelidaPolychaetaSerpulidaePlacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSyllidaePlakosyllis brevipes Hartmann-Schröder, 1956329AnnelidaPolychaetaHesionidaePodarkeopsis capensis (Day, 1963)1812AnnelidaPolychaetaPoecilochaetidaePoecilochaetus serpens Allen, 19046640AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 111AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 352AnnelidaPolychaetaTerebellidaePolycirrus medusa Grube, 18509933AnnelidaPolychaetaSpionidaePolycirrus medusa Grube, 18503414AnnelidaPolychaetaSpionidaePolydora cornuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydora lava Claparède, 187089034AnnelidaPolychaetaSpionidaePolydorg lava Claparède, 187089034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaeta	Annelida	Polychaeta	Pisionidae	Pisione remota (Southern, 1914)	308	23
AnnelidaPolychaetaTerebellidaePista Iornensis (Pearson, 1969)3725AnnelidaPolychaetaSerpulidaePlacostegus cf. tridentatus (Fabricius, 1779)21AnnelidaPolychaetaSyllidaePlakosyllis brevipes Hartmann-Schröder, 1956329AnnelidaPolychaetaHesionidaePodarkeopsis capensis (Day, 1963)1812AnnelidaPolychaetaPoecilochaetidaePoecilochaetus serpens Allen, 19046640AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.22AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.11AnnelidaPolychaetaPolychaeta n.i.32AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.33AnnelidaPolychaetaTerebellidaePolychaeta Grube, 18509933AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora cornuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydorg Clava alparède, 187089034AnnelidaPolychaetaSabellidaePolyargifus appendiculatus Fraipont, 188789034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella af	Annelida	Polychaeta	Terebellidae	Pista cristata (Müller, 1776)	66	17
AnnelidaPolychaetaSerpliidaePlakostegus ci. tridentatus (Fabricus, 1779)21AnnelidaPolychaetaSyllidaePlakosyllis brevipes Hartmann-Schröder, 1956329AnnelidaPolychaetaHesionidaePodarkeopsis capensis (Day, 1963)1812AnnelidaPolychaetaPoecilochaetidaePoecilochaetus serpens Allen, 19046640AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 111AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 352AnnelidaPolychaetaTerebellidaePolychaeta n.i. 355AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora cornuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydora lava Claparède, 187089034AnnelidaPolychaetaSabellidaePolydorglius appendiculatus Fraipont, 188789034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Terebellidae	Pista Iornensis (Pearson, 1969)	37	25
AnnelidaPolychaetaSylindaePodarkosyliis brevipes Hartmann-Schröder, 1956329AnnelidaPolychaetaHesionidaePodarkeopsis capensis (Day, 1963)1812AnnelidaPolychaetaPoecilochaetidaePoecilochaetus serpens Allen, 19046640AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 111AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 352AnnelidaPolychaetaTerebellidaePolychaeta Grube, 18509933AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora cornuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydora flava Claparède, 18708230AnnelidaPolychaetaPolygordiidaePolygordius appendiculatus Fraipont, 188789034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Serpulidae	Placostegus cf. tridentatus (Fabricius, 1779)	2	1
AnnelidaPolychaetaPoecilochaetidaePolychaeta11AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i.Polychaeta n.i.Polychaeta n.i.22AnnelidaPolychaetaTerebellidaePolychaeta n.i.Polychaeta (Johnston, 1838)555AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)555AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)8230AnnelidaPolychaetaSpionidaePolydora flava Claparède, 18708230AnnelidaPolychaetaPolycordiidaePolydora flava Claparède, 187089034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Symaae	Flakusyllis blevipes naturnann-Schröder, 1956 Podarkeonsis canensis (Day, 1962)	32	9 10
AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 11AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 352AnnelidaPolychaetaTerebellidaePolychaeta n.i. 39933AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)3414AnnelidaPolychaetaSpionidaePolydora flava Claparède, 18708230AnnelidaPolychaetaPolycordiidaePolydora flava Claparède, 187089034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Poecilochaotidae	n ouarreupsis caperisis (Day, 1903) Poecilochaetus serpens Allen 1904	10	1Z /0
AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 1Polychaeta n.i. 1Polychaeta n.i. 2AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 211AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 352AnnelidaPolychaetaTerebellidaePolycirrus medusa Grube, 18509933AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora cornuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydora filava Claparède, 18708230AnnelidaPolychaetaPolycordiidaePolycordius appendiculatus Fraipont, 188789034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Polychaeta ni	Polychaeta n i 1	00	40
AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 21AnnelidaPolychaetaPolychaeta n.i.Polychaeta n.i. 352AnnelidaPolychaetaTerebellidaePolychaeta Grube, 18509933AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora conuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydora flava Claparède, 18708230AnnelidaPolychaetaPolygordiidaePolydora flava Claparède, 187089034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Polychaeta ni	Polychaeta n.i. 1 Polychaeta n.i. 2	1	1
AnnelidaPolychaetaTerebellidaePolycinaeta (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora cornuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydora flava Claparède, 18708230AnnelidaPolychaetaPolycorditaePolygorditae polygorditae polygorditae89034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Polychaeta ni	Polychaeta n.i. 2 Polychaeta n.i. 3	5	2
AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora ciliata (Johnston, 1838)55AnnelidaPolychaetaSpionidaePolydora cornuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydora flava Claparède, 18708230AnnelidaPolychaetaPolygordiidaePolygordius appendiculatus Fraipont, 188789034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Terebellidae	Polvcirrus medusa Grube, 1850	99	33
AnnelidaPolychaetaSpionidaePolydora cornuta Bosc, 18023414AnnelidaPolychaetaSpionidaePolydora flava Claparède, 18708230AnnelidaPolychaetaSpionidaePolygordius appendiculatus Fraipont, 188789034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Spionidae	Polvdora ciliata (Johnston, 1838)	5	5
AnnelidaPolychaetaSpionidaePolydora flava Claparède, 18708230AnnelidaPolychaetaPolygordiidaePolygordius appendiculatus Fraipont, 188789034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Spionidae	Polydora cornuta Bosc, 1802	34	14
AnnelidaPolychaetaPolygordiidaePolygordius appendiculatus Fraipont, 188789034AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Spionidae	Polydora flava Claparède, 1870	82	30
AnnelidaPolychaetaSabellidaePotamilla torelli (Malmgren, 1866)9028AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Polygordiidae	Polygordius appendiculatus Fraipont, 1887	890	34
AnnelidaPolychaetaMaldanidaePraxillella affinis (M. Sars in G.O. Sars, 1872)32	Annelida	Polychaeta	Sabellidae	Potamilla torelli (Malmgren, 1866)	90	28
	Annelida	Polychaeta	Maldanidae	Praxillella affinis (M. Sars in G.O. Sars, 1872)	3	2

Andreide Polycheste Materiale Pracilies Pracilies <t< th=""><th>Phvllum</th><th>Class</th><th>Family</th><th>Species name</th><th>А</th><th>0</th></t<>	Phvllum	Class	Family	Species name	А	0
Ameridia Perjahas Mathematica Paralitan Engissima Andescan. (1956) 1 1 Ameridia Perjahas Spondage Persitiva Engissima Andescan. (1956) 50 42 Ameridia Perjahas Spondage Personan Jahn Mathematica. (1957) 66 21 Ameridia Perjahas Spondage Personan Jahn Mathematica. (1957) 16 2 Ameridia Perjahas Spondage Personan Jahn Mathematica. (1957) 119 12 Ameridia Perjahas Spondage Personan Jahn Mathematica. (1957) 119 12 Ameridia Perjahas Tombische Personan Jahn Mathematica. (1957) 110 12 Ameridia Perjahas Tombische Personan Jahn Mathematica. (1957) 10	Annelida	Polychaeta	Maldanidae	Praxillella gracilis (M. Sars, 1861)	4	4
Annelia Priophatesia Sponiale Phonoguo alla Macride, 1985 55 8 Annelia Polychatesia Sponiale Phonoguo alla Macride, 1985 124 240 Annelia Polychatesia Sponiale Phonoguo anulta cargon anulta cargon 55 86 211 Annelia Polychatesia Sponiale Phonoguo anulta cargon anulta cargon 57 77 Annelia Polychatesia Sponiale Phonoguo anulta cargon anult	Annelida	Polychaeta	Maldanidae	Praxillura longissima Arwidsson, 1906	1	1
Amelia Psychologie 520 22 22 Amelia Psychologie Sponiale Pricoragio publicher Imajima, 1900 20 7 Amelia Psychologie Sponiale Pricoragio publicher Imajima, 1900 20 7 Amelia Psychologie Sponiale Pricoragio publicher Imajima, 1900 20 7 Amelia Psychologie Sponiale Pricoragio publicher Imajima, 1900 27 1 Amelia Psychologie Tereballiage Procesco publicher Imajima, 1900 27 1 Amelia Psychologie Tereballiage Procesco publicher Imajima, 1900 17 12 Amelia Psychologie Sponiale Pseudopsychologie amelina (Space Integer) 101 12 11 Amelia Psychologie Sponiale Pseudopsychologie amelina (Space Integer) 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101	Annelida	Polychaeta	Spionidae	Prionospio aluta Maciolek, 1985	55	8
Annelia Psycholates Spinulate Processor and solution (120) 100 <td>Annelida</td> <td>Polychaeta</td> <td>Spionidae</td> <td>Prionospio ehlersi Fauvel, 1928</td> <td>124</td> <td>22</td>	Annelida	Polychaeta	Spionidae	Prionospio ehlersi Fauvel, 1928	124	22
Andela Processing numberschaps believer, 1927. 58 19 27 Andela Processing Sportation Processing of Antheracy Manages, 1867. 19 20 Annelia Processing of Antheracy Manages, 1867. 19 20 11 20 Annelia Processing of Antheracy Manages, 1867. 19 20 21 1 Annelia Processing of Antheracy Manages, 1867. 10 20 22 1 Annelia Processing of Antheracy Manages, 1867. 100 20 22 1 10 20 22 10 20 22 10 20 22 10 20 22 10 20 22 10 <td>Annelida</td> <td>Polychaeta</td> <td>Spionidae</td> <td>Prionospio fallax Söderström, 1920</td> <td>684</td> <td>40</td>	Annelida	Polychaeta	Spionidae	Prionospio fallax Söderström, 1920	684	40
Andelata Projubata Spocializa Principul Journal majorin, 1819 2.2 1 Annelida Privipates Spocializa Privipates Spocializa 1 Annelida Privipates Tereballiche Procelar graff (Langerham, 1884) 2 1 Annelida Privipates Tereballiche Procelar graff (Langerham, 1884) 110 19 Annelida Privipates Privipates Privipates 110 17 32 Annelida Privipates Privipates Privipates Privipates 110 17 32 Annelida Privipates Annelida Privipates Annelida Privipates 110 11 Annelida Privipates Statestinica Statestinica Statestinica 110 15 Annelida Privipates Statestinica Statestinica 11 1 Annelida Privipates Statestinica Statestinica 11 1 Annelida Privipates Statestininonannn 11 <td>Annelida</td> <td>Polychaeta</td> <td>Spionidae</td> <td>Prionospio multibranchiata Berkeley, 1927</td> <td>96</td> <td>21</td>	Annelida	Polychaeta	Spionidae	Prionospio multibranchiata Berkeley, 1927	96	21
Ameridia Projectation Specialism Protocol (Constructure) Part 2 1 Ameridia Projectation Constructure Constructu	Annelida	Polychaeta	Spionidae	Prionospio puicnra imajima, 1990	20	10
Amelia Polychase Tardballinge Proceed graff (Langerhank, 1984) 1 Amelia Polychase Heisonlage Portodoville deversite (March, 180) 130 22 Amelia Polychase Heisonlage Portodoville deversite (March, 180) 131 22 Amelia Polychase Heisonlage Portodoville deversite (March, 180) 131 22 Amelia Polychase Amelia Polychase 335 134 Amelia Polychase Amelia Polychase 155 14 Amelia Polychase Amelia Polychase 12 7 Amelia Polychase Satabilities contrant (M. Sar, 153) 1 1 Amelia Polychase Satabilities contrant (M. Sar, 153) 1 1 Amelia Polychase Satabilities contrant (M. Sar, 153) 1 1 Amelia Polychase Satabilities contrant (M. Sar, 153) 1 1 Amelia Polychase Satabilities contrant (M. Sar, 153) 1 1	Annelida	Polychaeta	Spionidae	Prionospio steenstruni Malmaren, 1867	58	19
Americal Polychasta Dominication Proceed/wide Metricster (Mchridon, 1669) 57 1 Annelida Polychasta Phylactocate Parametrin (Mchridon, 1669) 100 132 Annelida Polychasta Sprindual Polychasta 100 132 Annelida Polychasta Sprindual Polychasta 000 134 Annelida Polychasta Capitalidas Polychasta 11 1 Annelida Polychasta Sabelininia granufasi (Mchridon, 1669) 12 7 Annelida Polychasta Sabelininia granufasi (Mchridon, 1669) 1 1 Annelida Polychasta Sabelininia granufasi (Mchridon, 1697) 405 40 Annelida Polychasta Sabelininia granufasi (Mchridon, 1693) 1 1 1 Annelida Polychasta Sabelininia granufasi (Mchridon, 1693) 1 1 1 1 Annelida Polychasta Sabeling Granufasi (Sabeling Granuf, 1523) 16 1 1 1 1 1 <td< td=""><td>Annelida</td><td>Polychaeta</td><td>Terebellidae</td><td>Proclea graffi (Langerbans, 1884)</td><td>2</td><td>20</td></td<>	Annelida	Polychaeta	Terebellidae	Proclea graffi (Langerbans, 1884)	2	20
Annelida Paylystasts Heisondade Paramater kinze Johnson, 1836 130 22 Annelida Pelychasts Spinotastis Mindo Subicity Subici	Annelida	Polychaeta	Dorvilleidae	Protodorvillea kefersteini (McIntosh 1869)	557	31
Annelia Polychaeta Phytococidae Phatococycloreate San-Cosep, 1883 110 19 Annelia Polychaeta Annelia Polychaeta Annelia Polychaeta 305 34 Annelia Polychaeta Annelia Polychaeta 305 34 Annelia Polychaeta Control 305 34 Annelia Polychaeta Stabilitios concirate (M. Star) 16 1 Annelia Polychaeta Stabilitios concirate (M. Star) 163 1 1 Annelia Polychaeta Sylicae Stabilitios concirate (M. Star) 163 1 1 Annelia Polychaeta Scalbrogmatics Scalbrogmatics 163 1 1 Annelia Polychaeta Scalbrogmatics Scalbrogmatics 163 10 1 1 Annelia Polychaeta Scalbrogmatics Scalbrogmatics 10 1 1 1 1 1 1 1 1 1 1 1 1 <td>Annelida</td> <td>Polychaeta</td> <td>Hesionidae</td> <td>Psamathe fusca Johnston, 1836</td> <td>130</td> <td>22</td>	Annelida	Polychaeta	Hesionidae	Psamathe fusca Johnston, 1836	130	22
Annelia Polychaeta Spinitale Pourphareta Camphareta 177 32 Annelia Polychaeta Camphareta Camphareta 73 16 Annelia Polychaeta Camphareta 73 16 Annelia Polychaeta Sabeliari significans Euckari, 1849 12 7 Annelia Polychaeta Amphareta Sabeliari significans Euckari, 1849 12 7 Annelia Polychaeta Amphareta Sabeliari significans Euckari, 1849 1 1 Annelia Polychaeta Sabeliari significans Euclari, 1849 1 1 1 Annelia Polychaeta Scalibrogran delices and belows files 14 1 <t< td=""><td>Annelida</td><td>Polychaeta</td><td>Phyllodocidae</td><td>Pseudomystides limbata Sain-Joseph, 1888</td><td>110</td><td>19</td></t<>	Annelida	Polychaeta	Phyllodocidae	Pseudomystides limbata Sain-Joseph, 1888	110	19
Annelida Polychabia Amplantidae Prodyspace Pallelia prodyspace State	Annelida	Polychaeta	Spionidae	Pseudopolydora antennata (Claparède, 1869)	177	32
Annelitia Polychesia Capitalisia Polychesia State information from Maingran, 1885 79 16 Annelitia Polychesia State information from Maingran, 1895 1 1 Annelitia Polychesia State information from Maingran, 1895 1 1 Annelitia Polychesia State information from Maingran, 1895 1 1 Annelitia Polychesia State information from Maingran, 1895 1 1 Annelitia Polychesia Scattergrandiae column Machae, 1991 9 6 Annelitia Polychesia Scattergrandiae Scattergrandia Polychesia 1 1 Annelitia Polychesia Spatiantiae Scattergrandiae Scattergrandiae Scattergrandiae Scattergrandiae Scattergrandia Polychesia 1 1 Annelitia Polychesia Spatiantiae Scattergrandiae Scattergrandiae Scattergrandia Polychesia 1 1	Annelida	Polychaeta	Ampharetidae	Pterolysippe vanelli (Fauvel, 1936) sensu Eliason, 1955, emend	305	34
Annelicia Polychesis Madianicae Rendering Polychesis 1 1 Annelicia Polychesis Sabellariade	Annelida	Polychaeta	Capitellidae	Pulliella sp.	79	16
Annelida Polychesta Sabellaris spirulosa Luckeri, 1849 12 7 Annelida Polychesta Amphonentidue Sabellaris sciencina (M. Sans, 1835) 1 1 Annelida Polychesta Costinergministic binario (Intes and In Locut, 1975) 405 40 Annelida Polychesta Scatinergmain inflaum Rathie, 1843 1 1 Annelida Polychesta Scatinergmain inflaum Rathie, 1843 1 1 Annelida Polychesta Scatinergmain inflaum Rathie, 1823 1 1 Annelida Polychesta Scatinergmain inflaum Rathie, 1823 1 1 Annelida Polychesta Spionida Scatinergmain inflaum Rathie, 1820 1 1 Annelida Polychesta Spionida Scatinergmain inflaum Rathie, 1769 3 2 2 3 Annelida Polychesta Lumbriandae Scatinergmain inflaum Rathie, 1769 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3	Annelida	Polychaeta	Maldanidae	Rhodine loveni Malmgren, 1865	1	1
Annelida Poychaela Amphatelidae Solutiona	Annelida	Polychaeta	Sabellariidae	Sabellaria spinulosa Leuckart, 1849	12	7
Annelicia Polychesta Spillaba	Annelida	Polychaeta	Ampharetidae	Sabellides octocirrata (M. Sars, 1835)	2	2
Annelida Polychaeta Scalabagmardana	Annelida	Polychaeta	Syllidae	Salvatoria sp.	1	1
Annelida Polychesta Scalibregramidida Scalibregram sp. 15 10 Annelida Polychesta Dorwliedida Scalibregrams p. 16 8 Annelida Polychesta Dorwliedida Scalibregrams p. 16 8 Annelida Polychesta Dorwliedide Scalibregrams p. 16 8 Annelida Polychesta Spionidae Scoletopis (Cacintari, 1914) 14 7 Annelida Polychesta Lumbinneridae Scoletoms rap. 2 1 1 Annelida Polychesta Lumbinneridae Scoletoms rap. 2 1 1 Annelida Polychesta Scoletoms pipez (Muler, 1776) 9 8 Annelida Polychesta Scoletopic (Scolepois) priva (Sciel (Scolepois) arringer (Muler, 1776) 1 1 Annelida Polychesta Signitoria sp. 1 1 Annelida Polychesta Signitoria sp. 1 1 Annelida Polychesta Signitoria sp. 5 1 1 <	Annelida	Polychaeta	Onupnidae	Salsonuprils binarica (intes and le Loeuri, 1975)	405	40
Annelida Polychesis Scalibregmatique 15 10 Annelida Polychesis Scalibregmatique 16 8 Annelida Polychesis Dorvilleidae Scalibregmatique 10 6 Annelida Polychesis Dorvilleidae Scalibregmatique 10 6 Annelida Polychesis Scalibregmatique 10 6 Annelida Polychesis Scalibregmatique 11 14 7 Annelida Polychesis Canabia Scalibregmatique 1 1 Annelida Polychesis Chrimidae Scalibregmatique 1 1 Annelida Polychesis Orbinidae Scalibregmatique 1 1 Annelida Polychesis Signifornidae Scalibregmatique 1 1 Annelida Polychesis Signifornidae Scalibregmatique 1 1 Annelida Polychesis Signifornidae Scalibregmatique 1 1 1 Annel	Annelida	Polychaeta	Scalibrogmatidae	Scalibreama inflatum Rathke 18/3	9	1
Annelida Polychesta Dorvileidae Schistomerings neglecti (Faucel, 1923) 16 10 Annelida Polychesta Spionidae Schistomerings neglecti (Faucel, 1923) 10 6 Annelida Polychesta Spionidae Schelepis (Schelepis) (Schelepis) 13 2 Annelida Polychesta Lumbrineridae Schelepis (Schelepis) 1 1 Annelida Polychesta Lumbrineridae Schelepis (Schelepis (Schelepi	Annelida	Polychaeta	Scalibregmatidae	Scalibregma sp	15	10
Annelida Polychaeta Dorulleidae Schleismaringer andriphil (elle Chieje, 1323) 10 6 Annelida Polychaeta Spionidae Scolelepis d. indentata (Southern, 1914) 14 7 Annelida Polychaeta Lumbrineridae Scolebran Ragiis (OF-Muller, 1766) 3 2 Annelida Polychaeta Lumbrineridae Scolebran sp. 2 1 1 Annelida Polychaeta Lumbrineridae Scolebran sp. 2 1 1 Annelida Polychaeta Singlionidae Scolebran sp. 2 1 1 Annelida Polychaeta Sigalionidae Sigalion spuenosus Dello Chieje, 1917 1 1 Annelida Polychaeta Sigalionidae Sigalion spuenosus Dello Chieje, 1930 3 1 Annelida Polychaeta Sigalionidae Sigalion spuenosus Dello Chieje, 1940 6 13 Annelida Polychaeta Sigalionidae Sigalion spuenosus Dello Chieje, 1943 311 14 Annelida Polychaeta Sigalion spuenosus Dello Chieje, 1943 311 <td>Annelida</td> <td>Polychaeta</td> <td>Dorvilleidae</td> <td>Schistomeringos neglecta (Fauvel, 1923)</td> <td>16</td> <td>8</td>	Annelida	Polychaeta	Dorvilleidae	Schistomeringos neglecta (Fauvel, 1923)	16	8
Annelida Polychaeta Spionidae Scolelopic (Scolelopic) (1. dentabra (Rioja, 1918)) 9 6 Annelida Polychaeta Spionidae Scoletoms pp. 1 1 1 Annelida Polychaeta Lumbrineridae Scoletoms pp. 1 1 1 Annelida Polychaeta Combrinde Scoletoms pp. 1 1 1 Annelida Polychaeta Combrinde Scoletoms pp. 1 1 1 Annelida Polychaeta Signionidae Scoletoms pp. 1 1 1 Annelida Polychaeta Signionidae Si	Annelida	Polychaeta	Dorvilleidae	Schistomeringos rudolphii (delle Chiaje, 1828)	10	6
Annelida Polychaeta Spionidae Scolepipt d. indexina (Southern, 1914) 14 7 Annelida Polychaeta Lumbrineridae Scoletoms sp. 1 1 1 Annelida Polychaeta Lumbrineridae Scoletoms sp. 2 1 1 Annelida Polychaeta Colimitae Scoletoms sp. 2 3 Annelida Polychaeta Obinitae Scoletoms sp. 2 1 1 Annelida Polychaeta Sigalionidae Sigalion sp. 104 1 1 Annelida Polychaeta Sigalionidae Sigalion sp. 1963) 7 5 Annelida Polychaeta Sigalionidae Sigalion sp. 1963) 7 5 Annelida Polychaeta Sigalionidae Sigalion sp. 1963) 6 1 Annelida Polychaeta Sigalionidae Sigalion sp. 20 5 3 Annelida Polychaeta Sigalion sp. 20 5 3 5 Annelida Polychaeta Sigalionidee Spolinidee 5	Annelida	Polychaeta	Spionidae	Scolelepis (Scolelepis) cf. cantabra (Rioja, 1918)	9	6
AnnelidaPolycheetaLumbrineridaeScoletoma fagilis (O.F. Müller, 1766)32AnnelidaPolycheetaLumbrineridaeScoletoma sp. 111AnnelidaPolycheetaChinidiaScoletoma sp. 211AnnelidaPolycheetaOrbinidaeScoletoma sp. 2331AnnelidaPolycheetaSignitoriaSignitoria311AnnelidaPolycheetaSignitoriaSignitoria3111AnnelidaPolycheetaSignitoriaSignitoria311111AnnelidaPolycheetaSignitoriaSignitoriaSignitoria11	Annelida	Polychaeta	Spionidae	Scolelepis cf. tridentata (Southern, 1914)	14	7
Annelida Polychaeta Lumbrineridee Societoma sp. 1 1 1 Annelida Polychaeta Orbinidae Sociopios (Sociopios amiger (Miller, 1776) 9 8 Annelida Polychaeta Serpulata Serpulata 20 13 Annelida Polychaeta Serpulata Serpulata 20 13 Annelida Polychaeta Serpulata Serpulata 20 13 Annelida Polychaeta Serpulata Serpulata Serpulata 20 13 Annelida Polychaeta Serpulata Serpulata Serpulata 20 11 Annelida Polychaeta Signifor serpurata 166 5 Annelida Polychaeta Signifor serpurata 50 6 13 Annelida Polychaeta Signifor serpurata 50 13 1 12 Annelida Polychaeta Signifor serpurata Signifor serpurata 50 13 1 1 1 1 1	Annelida	Polychaeta	Lumbrineridae	Scoletoma fragilis (O.F. Müller, 1766)	3	2
Annelida Polychaeta Lumbrineridae Scoletom sp. 2 1 1 Annelida Polychaeta Orbinidae Scolopics (Scolopics) arringer (Müller, 1776) 9 8 Annelida Polychaeta Stapilichicae Significing, 1917 1 1 Annelida Polychaeta Significing, 1907 1 1 1 Annelida Polychaeta Significing, 1907 1 1 1 Annelida Polychaeta Significing, 1917 1 1 1 Annelida Polychaeta Significing, 1914 1 1 1 Annelida Polychaeta Sylidae Significing, 1914 311 28 Annelida Polychaeta Sylidae Sphaerosylifis spir, 1016 56 13 Annelida Polychaeta Spionidae Spionidae Spionidae 1 1 Annelida Polychaeta Spionidae Spionidae Spionidae 1 1 Annelida Polychaeta Spionidae	Annelida	Polychaeta	Lumbrineridae	Scoletoma sp. 1	1	1
Annelida Polycheatea Orbinidae Scolopios (Scolopios) armiger (Miller, 1776) 9 8 Annelida Polycheata Serpula (Delanco) Rioja, 1917 1 1 Annelida Polycheata Sigailonidae	Annelida	Polychaeta	Lumbrineridae	Scoletoma sp. 2	1	1
Annelida Polycheeta Orbinidae Scolopos typicus (Elsig, 1914) 20 13 Annelida Polycheeta Sigalionidae Sigalion and Mine Edwards in Cuvier, 1830 30 14 Annelida Polycheeta Sigalionidae Sigalion and Mine Edwards in Cuvier, 1830 1 1 Annelida Polycheeta Sigalion and Mine Edwards in Cuvier, 1830 1 1 Annelida Polycheeta Siganibra parva (Day, 1963) 8 6 Annelida Polycheeta Siganibra parva (Day, 1963) 6 5 Annelida Polycheeta Sylitidae Sphaerosylilis bylicose Southern. 1914 38 6 Annelida Polycheeta Sylitidae Sphaerosylilis sylixitica 1 1 Annelida Polycheeta Spionidae Spio Initiocuvita (Roja, 1917) 51 32 Annelida Polycheeta Spionidae Spio Initiocuvita (Roja, 1917) 1 1 Annelida Polycheeta Spionidae Spio Initiocuvita (Roja, 1917) 1 1 Annelida	Annelida	Polychaeta	Orbiniidae	Scoloplos (Scoloplos) armiger (Müller, 1776)	9	8
Annelida Polycheteta Serpula tobanco (Koja, 1917) 1 1 Annelida Polycheteta Sigalionidae Sigalionicae Sigalionicae 1 1 Annelida Polycheteta Sigalionicae Sigalionicae Sigalionicae 1 1 Annelida Polycheteta Sigalionicae Sigalionicae 1 1 Annelida Polycheteta Sigalionicae Sigalionicae 1 1 Annelida Polycheteta Syliciae Sigalionicae 1 1 Annelida Polycheteta Syliciae Syliciae Sigaliaerosylib subicos 1 </td <td>Annelida</td> <td>Polychaeta</td> <td>Orbiniidae</td> <td>Scoloplos typicus (Eisig, 1914)</td> <td>20</td> <td>13</td>	Annelida	Polychaeta	Orbiniidae	Scoloplos typicus (Eisig, 1914)	20	13
Antelicia Polychateta Siglalionidae Siglalionidae<	Annelida	Polychaeta	Serpulidae	Serpula Iobiancoi Rioja, 1917 Signilian methildee Audeuin and Milne Edwards in Cuuier, 1930	1	1
Amelida Polychaeta Significationa Significationa Significationa Significationa Annelida Polychaeta Philargidae Significationa parva (Day, 1863) 7 Annelida Polychaeta Philargidae Significationa parva (Day, 1863) 6 Annelida Polychaeta Syliidae Spharosylii bulboas Southern, 1914 311 23 Annelida Polychaeta Syliidae Spharosylii brain 194 38 6 13 Annelida Polychaeta Syliidae Spharosylii brain 196 15 13 Annelida Polychaeta Spinordae Spinordae Spinordae 1 1 Annelida Polychaeta Spinordae Spinordae Spinordae 1 1 Annelida Polychaeta Spinordae Spinordae Spinordae 20 64 Annelida Polychaeta Sepulate Spinordae Spinordae 1 1 Annelida Polychaeta Sepulate Spinorbanchus polyterea, 1860 </td <td>Annelida</td> <td>Polychaeta</td> <td>Sigalionidae</td> <td>Sigalion mamiliae Audouin and Mime Edwards in Cuvier, 1830</td> <td>30</td> <td>14</td>	Annelida	Polychaeta	Sigalionidae	Sigalion mamiliae Audouin and Mime Edwards in Cuvier, 1830	30	14
Amelida Polychaeta Disrrigidae Signifivity parts 1963	Annelida	Polychaeta	Sigalionidae	Sigalion squamosus Delle Chiaie 1830	8	1
Amelida Polychaeta Phyliodocidae Sige Lusipera Malmigren, 1865 6 5 Amelida Polychaeta Syliclae Spheerosylic bulkoss 311 28 Amelida Polychaeta Syliclae Spheerosylic bulkoss 36 6 Amelida Polychaeta Syliclae Spheerosylic bulkos 36 6 Amelida Polychaeta Syliclae Spheerosylic bulkos 36 6 Amelida Polychaeta Spionidae Spionidae Spionidae 35 Amelida Polychaeta Spionidae Spionidae Spionidae Spionidae Spionidae 32 Amelida Polychaeta Spionidae Spionidae Spionidae Spionidae 32 3 Amelida Polychaeta Serpulidae Spirobranchus pameri Ginba 15 3 Amelida Polychaeta Serpulidae Spirobranchus polychraeta 15 3 Amelida Polychaeta Serpulidae Spirobranchus polychraeta 16 3	Annelida	Polychaeta	Pilargidae	Siganbra parva (Dav. 1963)	7	5
Amelida Polychaeta Sylidae Sphaerosylik bulbosa Southern, 1914 311 28 Amelida Polychaeta Sylidae Sphaerosylik sp. 38 6 Amelida Polychaeta Sylidae Sphaerosylik sp. 38 6 Amelida Polychaeta Sylidae Sphaerosylik sp. 56 13 Amelida Polychaeta Spionidae Spionidae Spionidae 56 13 Amelida Polychaeta Spionidae Spionidae Spionidae Spionidae 50 11 Amelida Polychaeta Spionidae Spionidae Spionidae 50 11 Amelida Polychaeta Spionidae Spionidae Spionidae 11 11 Amelida Polychaeta Spionidae Spionidae Spionidae 12 1 Amelida Polychaeta Sepulidae Spionidae Spionidae 13 2 Amelida Polychaeta Spionidae Spiononono singueta 16 3	Annelida	Polychaeta	Phyllodocidae	Sige fusigera Malmoren 1865	6	5
Ameiida Polychaeta Sylidae Spharosylik syst 38 6 Ameiida Polychaeta Sylidae Spharosylik syst 38 6 Anneiida Polychaeta Sylidae Spharosylik syst 560 13 Anneiida Polychaeta Spioridae Spioridae <t< td=""><td>Annelida</td><td>Polychaeta</td><td>Syllidae</td><td>Sphaerosyllis bulbosa Southern. 1914</td><td>311</td><td>28</td></t<>	Annelida	Polychaeta	Syllidae	Sphaerosyllis bulbosa Southern. 1914	311	28
AnnelidaPojuchaetaSylidaeSpharosylik spjor386AnnelidaPojuchaetaSpionidaeSpharosylik styori Perkins, 19815613AnnelidaPojuchaetaSpionidaeSpio filicorris (Miller, 1776)56035AnnelidaPojuchaetaSpionidaeSpiorkaetoultara (Rioja, 1918)11AnnelidaPojuchaetaChaetopteridaeSpiorkaetopterus solitarius (Rioja, 1917)5132AnnelidaPojuchaetaSpionidaeSpiorkaetopterus solitarius (Rioja, 1917)26747AnnelidaPojuchaetaSepulidaeSpiorbanes kroyeri Grube, 18602910AnnelidaPolychaetaSerpulidaeSpiorbanes kroyeri Grube, 1860153AnnelidaPolychaetaSerpulidaeSpiorbanchus solyterma (Philips), 1844)21AnnelidaPolychaetaSerpulidaeSpiorbanchus solyterma, 1751)32AnnelidaPolychaetaSigalionidaeSthemelais boa (Johnston, 1833)111AnnelidaPolychaetaSigalionidaeSthemelais boa (Johnston, 1833)411AnnelidaPolychaetaSigalionidaeSthemelais boa (Johnston, 1833)111AnnelidaPolychaetaSigalionidaeSthemelais boa (Johnston, 1833)111AnnelidaPolychaetaSigalionidaeSthemelais boa (Johnston, 1833)111AnnelidaPolychaetaSigalionidaeSthemelais boa (Johnston, 1834) <td>Annelida</td> <td>Polychaeta</td> <td>Syllidae</td> <td>Sphaerosyllis hystrix Claparède, 1863</td> <td>45</td> <td>13</td>	Annelida	Polychaeta	Syllidae	Sphaerosyllis hystrix Claparède, 1863	45	13
AnnelidaPolychaetaSylidaeSpharosylik taylori Perkins, 19815613AnnelidaPolychaetaSpionidaeSpio multioculat (Roja, 1918)111AnnelidaPolychaetaChaetopteridaeSpion	Annelida	Polychaeta	Syllidae	Sphaerosyllis sp.	38	6
AnnelidaPolychaetaSpionidaeSpio filicorris (Müller, 1776)56035AnnelidaPolychaetaChaetopteridaeSpioniducultar (Rio, 1918)11AnnelidaPolychaetaChaetopteridaeSpiochaetopterus solitarius (Rio, 1917)5132AnnelidaPolychaetaSpionidaeSpiophanes kroyeri (Grube, 1860)26747AnnelidaPolychaetaSerpulidaeSpiraserpula massillensis (Zibrowius, 1968)2910AnnelidaPolychaetaSerpulidaeSpirobranchus famarcki (Quatrefages, 1866)153AnnelidaPolychaetaSerpulidaeSpirobranchus famarcki (Quatrefages, 1866)32AnnelidaPolychaetaSterpulidaeSpirobranchus fraguer (Linaneus, 1758)32AnnelidaPolychaetaSigalionidaeSthenelais baci (Johnson, 1833)11AnnelidaPolychaetaSigalionidaeSthenelais baci (Johnson, 1833)11AnnelidaPolychaetaSigalionidaeStreptospio sp.11AnnelidaPolychaetaSylidaeStreptospio sp.11AnnelidaPolychaetaSylidaeStreptospio sp.11AnnelidaPolychaetaSylidaeStreptospio sp.11AnnelidaPolychaetaSylidaeStreptospio sp.11AnnelidaPolychaetaSylidaeSylidae fuelocia (Btels, 1866)11AnnelidaPolychaetaSylidaeSylidae fuelocia (Btel	Annelida	Polychaeta	Syllidae	Sphaerosyllis taylori Perkins, 1981	56	13
AnnelidaPolychaetaSpionidaeSpio multiculata (Rioja, 1918)11AnnelidaPolychaetaSpionidaeSpionidaeSpionidaeSpionidaeSpionidaeSpionidaeSpionidaeSpionidae26747AnnelidaPolychaetaSpionidaeSpionidaeSpionidae2046464AnnelidaPolychaetaSerpuildaeSpiraserpula massiliensis (Zbrowis, 1968)2910AnnelidaPolychaetaSerpuildaeSpiraserpula massiliensis (Zbrowis, 1968)21AnnelidaPolychaetaSerpuildaeSpirabranchus spolytrema (Philipp, 1844)21AnnelidaPolychaetaSternaspidaeSternaspis scutata Ranzani, 1817199AnnelidaPolychaetaSigalionidaeSthenelais boa (Johnson, 133)111AnnelidaPolychaetaSigalionidaeSthenelais boa (Johnson, 133)111AnnelidaPolychaetaSjidionidaeSthebospio sp.111AnnelidaPolychaetaSjidiaeSthebospio sp.1111AnnelidaPolychaetaSylidaeSylidae Subadyte pellucida (Ehlers, 1864)1111AnnelidaPolychaetaSylidaeSylidae Sylidae Southern, 19144111111111111111111111111111	Annelida	Polychaeta	Spionidae	Spio filicornis (Müller, 1776)	560	35
AnnelidaPolychaetaChaetopteridaeSpiochaetopterus solitarius (Roja, 1917)5132AnnelidaPolychaetaSpionidaeSpiophanes borbyx (Claparède, 1870)26747AnnelidaPolychaetaSepulidaeSpiophanes kroyeri Grube, 186020464AnnelidaPolychaetaSerpulidaeSpirobranchus Jamarcki (Quatrefages, 1866)153AnnelidaPolychaetaSerpulidaeSpirobranchus polyrema (Philippi, 1844)21AnnelidaPolychaetaSerpulidaeSpirobranchus polyrema (Philippi, 1844)32AnnelidaPolychaetaSternaspis scutzta Ranzani, 1817199AnnelidaPolychaetaSigalionidaeSthenelisis bac (Johnston, 1833)11AnnelidaPolychaetaSigalionidaeStreptospirospirospirospirospirospirospirospir	Annelida	Polychaeta	Spionidae	Spio multioculata (Rioja, 1918)	1	1
AnnelidaPolychaetaSpionidaeSpiophanes bombyx (Claparée, 1870)26747AnnelidaPolychaetaSerpuildaeSpiraserpula massiliensis (Zibrowius, 1968)2910AnnelidaPolychaetaSerpuildaeSpiraserpula massiliensis (Zibrowius, 1968)2910AnnelidaPolychaetaSerpuildaeSpiraserpula massiliensis (Zibrowius, 1968)21AnnelidaPolychaetaSerpuildaeSpiraserpula massiliensis (Zibrowius, 1968)32AnnelidaPolychaetaSerpuildaeSpiraserpula massiliensis (Zibrowius, 1967)32AnnelidaPolychaetaSigalionidaeSthenelais bico (Libros, 1864)11AnnelidaPolychaetaSigalionidaeSthenelais bico (Libros, 1864)11AnnelidaPolychaetaSpinobranchus gruppilis bichatta faxazani, 1914238AnnelidaPolychaetaSylidaeStrebiospio sp.111AnnelidaPolychaetaSylidaeSylidae Strebiospio sp.111AnnelidaPolychaetaSylidaeSylidae Strebiospio sp.111AnnelidaPolychaetaSylidaeSylidae armata Suthern, 1914411AnnelidaPolychaetaSylidaeSylidae armata Quarefages, 18661688AnnelidaPolychaetaSylidaeSylidae armata Quarefages, 1866168832AnnelidaPolychaetaSylidaeSylidae arm	Annelida	Polychaeta	Chaetopteridae	Spiochaetopterus solitarius (Rioja, 1917)	51	32
AnnelidaPolychaetaSpionidaeSpiophanes kroyer Grube, 186020464AnnelidaPolychaetaSerpulidaeSpirobranchus Jamarcki (Quartelages, 1866)153AnnelidaPolychaetaSerpulidaeSpirobranchus polyterma (Philippi, 1844)21AnnelidaPolychaetaSerpulidaeSpirobranchus polyterma (Philippi, 1844)21AnnelidaPolychaetaSternaspiš scutata Ranzani, 1817199AnnelidaPolychaetaSigalionidaeSthenaspiš scutata Ranzani, 1817199AnnelidaPolychaetaSigalionidaeSthenelais bic (Johnston, 1833)111AnnelidaPolychaetaSigalionidaeSthenelais bic (Johnston, 1833)111AnnelidaPolychaetaSylinidaeSthenelais bic (Johnston, 1833)111AnnelidaPolychaetaSylinidaeSthenelais bic (Johnston, 1833)111AnnelidaPolychaetaSylinidaeSthenelais bic (Johnston, 1914)238AnnelidaPolychaetaSylinidaeStheptospins po.7111AnnelidaPolychaetaSylinidaeStheptospins po.7111AnnelidaPolychaetaSylinidaeSylinidae convolutus (Webstery Benedict, 1844)111AnnelidaPolychaetaSylinidaeSylinidae convolutus (Webstery Pience, 1866)111AnnelidaPolychaetaSylinidaeSyl	Annelida	Polychaeta	Spionidae	Spiophanes bombyx (Claparède, 1870)	267	47
AnnelidaPolychaetaSerpulidaeSpiraserpula massiliensis (Linowus, 1968)2910AnnelidaPolychaetaSerpulidaeSpirobranchus polytema (Philippi, 1844)21AnnelidaPolychaetaSerpulidaeSpirobranchus polytema (Philippi, 1844)21AnnelidaPolychaetaSternaspis soutata Ranzani, 1817199AnnelidaPolychaetaSigalionidaeStremaspis soutata Ranzani, 1817199AnnelidaPolychaetaSigalionidaeStremaspis soutata Ranzani, 181711AnnelidaPolychaetaSigalionidaeStrenabis limicola (Ehlers, 1864)4419AnnelidaPolychaetaSpilidaeStrenolasi limicola (Ehlers, 1864)111AnnelidaPolychaetaSylidaeStretolospis sp.111AnnelidaPolychaetaSylidaeStretolospis sp.111AnnelidaPolychaetaSylidaeSylidae (Ehlers, 1864)111AnnelidaPolychaetaSylidaeSylidae convolutus (Webstery Benedict, 1844)711AnnelidaPolychaetaSylidaeSylidae convolutus (Webstery Benedict, 1844)111AnnelidaPolychaetaSylidaeSylidae convolutus (Webstery Benedict, 1844)111AnnelidaPolychaetaSylidaeSylidae convolutus (Webstery Benedict, 1844)111AnnelidaPolychaetaSylidaeSylidaeSylid	Annelida	Polychaeta	Spionidae	Spiophanes kroyeri Grube, 1860	204	64
AnnelidaPolychætaSerpulidaeSpirobranchus polytema (Philippi, 1844)21AnnelidaPolychætaSerpulidaeSpirobranchus riqueter (Linnæus, 1758)32AnnelidaPolychætaSternaspidaeSternaspidaeSternaspidae32AnnelidaPolychætaSigalionidaeStrenaspis scuttae Ranzani, 1817199AnnelidaPolychætaSigalionidaeStrenaspis scuttae Ranzani, 181711AnnelidaPolychætaSigalionidaeStrenaspis scuttae Ranzani, 181711AnnelidaPolychætaSigalionidaeStreholospio p.111AnnelidaPolychætaSylidaeStreholospio p.111AnnelidaPolychætaSylidaeStreholospio p.111AnnelidaPolychætaSylidaeSylidaeSylidae111AnnelidaPolychætaSylidaeSylidaeSylidae111AnnelidaPolychætaSylidaeSylidaeSylidae3233AnnelidaPolychætaSylidaeSylidaeSylidaeSylidae3111AnnelidaPolychætaSylidaeSylidaeSylidaeSylidae323332AnnelidaPolychætaSylidaeSylidaeSylidaeSylidaeSylidae3273111AnnelidaPolychæta <td>Annelida</td> <td>Polychaeta</td> <td>Serpulidae</td> <td>Spiraserpula massiliensis (Zibrowius, 1968)</td> <td>29</td> <td>10</td>	Annelida	Polychaeta	Serpulidae	Spiraserpula massiliensis (Zibrowius, 1968)	29	10
AnnelidaPolychætaSerpulidæSpirubrarchus polyterin (ninput, 1644)21AnnelidaPolychætaSternaspidæSternaspis scutata Ranzani, 1817199AnnelidaPolychætaSigalionidæSternaspis scutata Ranzani, 1817199AnnelidaPolychætaSigalionidæStrenelais bod (Johnston, 1833)11AnnelidaPolychætaSigalionidæStrenelais bod (Johnston, 1833)11AnnelidaPolychætaSigalionidæStrenelais bod (Johnston, 1833)11AnnelidaPolychætaSyllidæStreptodonta pterochæta Southern, 1914238AnnelidaPolychætaSyllidæStreptosyllis bidentata Southern, 191441AnnelidaPolychætaSyllidæSyllidæ convolutus (Webster y Benedict, 1884)71AnnelidaPolychætaSyllidæSyllidæ convolutus (Webster y Benedict, 1884)71AnnelidaPolychætaSyllidæSyllidæ convolutus (Webster y Benedict, 1884)71AnnelidaPolychætaSyllidæSylliæ convolutus (Webster y Benedict, 1884)71AnnelidaPolychætaSyllidæSylliæ convolutus (Webster y Benedict, 1884)71AnnelidaPolychætaSyllidæSylliæ garcai (Campoy, 1882)20435AnnelidaPolychætaSyllidæSylliæ garcai (Campoy, 1882)20435AnnelidaPolychætaSyllidæSylliæ garcai (Campoy, 1882)22A	Annelida	Polychaeta	Serpulidae	Spirobranchus Iamarcki (Quatrerages, 1866)	15	3
AnnelidaPolychaetaSternaspidae <th< td=""><td>Annelida</td><td>Polychaeta</td><td>Serpulidae</td><td>Spirobranchus polytrema (Philippi, 1644) Spirobranchus trigueter (Lippaeus, 1758)</td><td>2</td><td>2</td></th<>	Annelida	Polychaeta	Serpulidae	Spirobranchus polytrema (Philippi, 1644) Spirobranchus trigueter (Lippaeus, 1758)	2	2
AnnelidaPolychaetaSigalionidaeSthenelais boa (Johnston, 1833)11AnnelidaPolychaetaSigalionidaeSthenelais boa (Johnston, 1833)111AnnelidaPolychaetaSigalionidaeSthenelais boa (Johnston, 1833)111AnnelidaPolychaetaSplonidaeSthenelais boa (Johnston, 1833)111AnnelidaPolychaetaSyllidaeStrebtospio sp.111AnnelidaPolychaetaSyllidaeStreptosyllis bidentata Southern, 191441AnnelidaPolychaetaSyllidaeStreptosyllis bidentata Southern, 191441AnnelidaPolychaetaSyllidaeSyllidae southern, 191441AnnelidaPolychaetaSyllidaeSyllidae southern, 191441AnnelidaPolychaetaSyllidaeSyllidae southern, 191441AnnelidaPolychaetaSyllidaeSyllidae southern, 191441AnnelidaPolychaetaSyllidaeSyllidae southern, 191441AnnelidaPolychaetaSyllidaeSyllidae southern, 191411AnnelidaPolychaetaSyllidaeSyllis armilaris (O.F. Niller, 1776)11AnnelidaPolychaetaSyllidaeSyllis gradi (Campoy, 1982)111AnnelidaPolychaetaSyllidaeSyllis gradi (Campoy, 1982)222AnnelidaPolychaetaSyllidaeSylli	Annelida	Polychaeta	Sternasnidae	Sternasnis scutata Ranzani 1817	19	2 Q
AnnelidaPolychaetaSigalionidaeSthenelais limicola (Ehlers, 1864)4419AnnelidaPolychaetaSpionidaeStrebiospio sp.11AnnelidaPolychaetaSyllidaeStreptodnata pterochaeta Southern, 1914238AnnelidaPolychaetaSyllidaeStreptodnata Southern, 191441AnnelidaPolychaetaSyllidaeStreptodnata Southern, 191441AnnelidaPolychaetaSyllidaeStreptodnata Southern, 191441AnnelidaPolychaetaSyllidaeSyllidae Southern, 191441AnnelidaPolychaetaSyllidaeSyllidae Southern, 1914111AnnelidaPolychaetaSyllidaeSyllidae Southern, 1914111AnnelidaPolychaetaSyllidaeSyllidae Southern, 1914111AnnelidaPolychaetaSyllidaeSyllidae Syllidae Southern, 1914111AnnelidaPolychaetaSyllidaeSyllidae Syllidae Syllidae Syllidae Syllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435327AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435327AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435327AnnelidaPolychaetaSyllidaeSyllis garciais (Campoy, 1982)204 </td <td>Annelida</td> <td>Polychaeta</td> <td>Sigalionidae</td> <td>Sthenelais boa (Johnston, 1833)</td> <td>10</td> <td>1</td>	Annelida	Polychaeta	Sigalionidae	Sthenelais boa (Johnston, 1833)	10	1
AnnelidaPolychaetaSpionidaeStreblospio sp.11AnnelidaPolychaetaSyllidaeStreblospio sp.11AnnelidaPolychaetaSyllidaeStreptodynta pterochaeta Southern, 1914238AnnelidaPolychaetaSyllidaeStreptosyllis bidentata Southern, 191441AnnelidaPolychaetaSyllidaeStreptosyllis bidentata Southern, 191441AnnelidaPolychaetaSyllidaeSyllides convolutus (Webster y Benedict, 1884)71AnnelidaPolychaetaSyllidaeSyllidaeSyllidae11AnnelidaPolychaetaSyllidaeSyllidaeSyllidae11AnnelidaPolychaetaSyllidaeSyllidae111AnnelidaPolychaetaSyllidaeSyllidae111AnnelidaPolychaetaSyllidaeSyllidaeSyllidae20435AnnelidaPolychaetaSyllidaeSyllidaeSyllidae111AnnelidaPolychaetaSyllidaeSyllidaeSyllidaeSyllidae111AnnelidaPolychaetaSyllidaeSyllidaeSyllidaeSyllidae111AnnelidaPolychaetaSyllidaeSyllidaeSyllidaeSyllidae111AnnelidaPolychaetaSyllidaeSyllidaeSyllidaeSyllidaeSyllidae2022Anneli	Annelida	Polychaeta	Sigalionidae	Sthenelais limicola (Ehlers, 1864)	44	19
AnnelidaPolýchaetaŠyllidaeStreptodonta pterochaeta Southern, 1914238AnnelidaPolychaetaPolychaetaPolychaetaSubadyte pellucida (Ehlers, 1864)11AnnelidaPolychaetaSyllidaeStreptozyllis bidentata Southern, 191441AnnelidaPolychaetaSyllidaeSyllidaeSyllidae71AnnelidaPolychaetaSyllidaeSyllidaeSyllidae11AnnelidaPolychaetaSyllidaeSyllidae11AnnelidaPolychaetaSyllidaeSyllida armata Quatrefages, 1866168AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)111AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)111AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)204357AnnelidaPolychaetaSyllidaeSyllis garciais (Campoy, 1982)277AnnelidaPolychaetaSyllidaeSyllis garciais (Campoy, 1982)27AnnelidaPolychaetaSyllidaeSyllis garciais (Campoy, 1982)27AnnelidaPolychaetaSyllidaeSyllis garciais (Tamp, Sam Martin and López, 200022AnnelidaPolychaetaSyllidaeSyllis parpari Sam Martin and López, 200098Annelida<	Annelida	Polychaeta	Spionidae	Streblospio sp.	1	1
AnnelidaPolychaetaPolynoidaeSubadyte pellucida (Ehlers, 1864)11AnnelidaPolychaetaSyllidaeStreptosyllis bidentata Southern, 191441AnnelidaPolychaetaSyllidaeSyllides convolutus (Webster y Benedict, 1884)71AnnelidaPolychaetaSyllidaeSyllidae convolutus (Webster y Benedict, 1884)11AnnelidaPolychaetaHesionidaeSyllida armata Quatrefages, 1866168AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)11AnnelidaPolychaetaSyllidaeSyllis gracilis Grube, 184011AnnelidaPolychaetaSyllidaeSyllis incheri Ravara, San Martín and Moreira, 2004327AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 2000222AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSynmerosyllis Inneligera Saint Joseph, 18875312AnnelidaPolychaetaCirratulidaeTimarete s.norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimaret	Annelida	Polychaeta	Syllidae	Streptodonta pterochaeta Southern, 1914	23	8
AnnelidaPolychaetaSyllidaeStreptosyllis bidentata Southern, 191441AnnelidaPolychaetaSyllidaeSyllidae convolutus (Webster y Benedict, 1884)71AnnelidaPolychaetaSyllidaeSyllidae echentatus Westheide, 197411AnnelidaPolychaetaHesionidaeSyllidae echentatus Westheide, 1974168AnnelidaPolychaetaSyllidaeSyllis armillaris (O.F. Müller, 1776)5113AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)11AnnelidaPolychaetaSyllidaeSyllis garciai (Grube, 184011AnnelidaPolychaetaSyllidaeSyllis garcalis Grube, 1840327AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and Moreira, 2004327AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis tameliligera Saint Joseph, 18875312AnnelidaPolychaetaCirratulidaeTirmareto f. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaCirratulidaeTirmarete sp.11Annelida <td>Annelida</td> <td>Polychaeta</td> <td>Polynoidae</td> <td>Subadyte pellucida (Ehlers, 1864)</td> <td>1</td> <td>1</td>	Annelida	Polychaeta	Polynoidae	Subadyte pellucida (Ehlers, 1864)	1	1
AnnelidaPolychaetaSyllidaeSyllidaesSyllidaes convolutus (Webster y Benedict, 1884)71AnnelidaPolychaetaSyllidaeSyllidaes convolutus (Webster y Benedict, 1884)11AnnelidaPolychaetaHesionidaeSyllidia armata Quatrefages, 1866168AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)11AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)22AnnelidaPolychaetaSyllidaeSyllis garciais Grube, 1840327AnnelidaPolychaetaSyllidaeSyllis mercedesae Lucas, San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis parciais San Martín and López, 20009119AnnelidaPolychaetaSyllidaeTerebellides stroemii Sars, 183514044AnnelidaPolychaetaCirratulidaeTimarete cr. norvegica Quatrefages, 1866)98<	Annelida	Polychaeta	Syllidae	Streptosyllis bidentata Southern, 1914	4	1
AnnelidaPolychaetaSyllidaeSyllidae armata Quatrefages, 18661AnnelidaPolychaetaSyllidaeSyllida armata Quatrefages, 1866168AnnelidaPolychaetaSyllidaeSyllis armillaris (O.F. Müller, 1776)5113AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis gracilis Grube, 184011AnnelidaPolychaetaSyllidaeSyllis gracilis Grube, 184011AnnelidaPolychaetaSyllidaeSyllis licheri Ravara, San Martín and Moreira, 2004327AnnelidaPolychaetaSyllidaeSyllis pracies Grube, 1840327AnnelidaPolychaetaSyllidaeSyllis prapari San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis pontxio San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis pontxio San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSynmerosyllis lameligera Saint Joseph, 18875312AnnelidaPolychaetaCirratulidaeTimarete stromin Sars, 183514044AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaSyllidaeTravisi forbesi Johnston, 1840111AnnelidaPolychaetaSy	Annelida	Polychaeta	Syllidae	Syllides convolutus (Webster y Benedict, 1884)	7	1
AnnelidaPolychaetaHesionidaeSyllidaeSyllia armata Quatretages, 1866168AnnelidaPolychaetaSyllidaeSyllis armillaris (O.F. Müller, 1776)5113AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis gerlachi (Hartmann-Schröder, 1960)11AnnelidaPolychaetaSyllidaeSyllis gerlachi (Hartmann-Schröder, 1960)11AnnelidaPolychaetaSyllidaeSyllis licheri Ravara, San Martín and Moreira, 2004327AnnelidaPolychaetaSyllidaeSyllis mercedesae Lucas, San Martín, Parapar, 20126920AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis lamelligera Saint Joseph, 18875312AnnelidaPolychaetaCirratulidaeTharxy marioni (Saint-Joseph, 1894)2620AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaSyllidaeTraypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSyllida	Annelida	Polychaeta	Syllidae	Syllides edentatus Westheide, 1974	1	1
AnnelidaPolychaetaSyllidaeSyllis arminiars (O.F. Muller, 1776)5113AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)20435AnnelidaPolychaetaSyllidaeSyllis garciai (Campoy, 1982)11AnnelidaPolychaetaSyllidaeSyllis garcilis Grube, 184011AnnelidaPolychaetaSyllidaeSyllis incheri Ravara, San Martín and Moreira, 2004327AnnelidaPolychaetaSyllidaeSyllis incheri Ravara, San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaCirratulidaeTharyx marioni (Saint-Joseph, 1887)5312AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaSylidaeTravisia forbesii Johnston, 184011AnnelidaPolychaetaSylidaeTravisia forbesii Johnston, 1840111AnnelidaPolychaetaSylidaeVermiliopsis sp.1	Annelida	Polychaeta	Hesionidae	Syllidia armata Quatrefages, 1866	16	8
AnnelidaPolychaetaSyllidaeSyllis garciar (Campoy, 1962)20435AnnelidaPolychaetaSyllidaeSyllis garciar (Campoy, 1962)11AnnelidaPolychaetaSyllidaeSyllis gracilis Grube, 184011AnnelidaPolychaetaSyllidaeSyllis mercedesae Lucas, San Martín and Moreira, 2004327AnnelidaPolychaetaSyllidaeSyllis mercedesae Lucas, San Martín, Parapar, 20126920AnnelidaPolychaetaSyllidaeSyllis mercedesae Lucas, San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaCirratulidaeTerebellides stroemii Sars, 183514044AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 18681031AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810311AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 1862311AnnelidaPolychaetaSyllidae	Annelida	Polychaeta	Syllidae	Syllis armiliaris (O.F. Muller, 1776)	51	13
AnnelidaPolychaetaSyllidaeSyllis gracilis Grube, 18401AnnelidaPolychaetaSylliaSyllis gracilis Grube, 184011AnnelidaPolychaetaSyllidaeSyllis gracilis Grube, 1840327AnnelidaPolychaetaSyllidaeSyllis mercedesae Lucas, San Martín and Moreira, 2004327AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 20009119AnnelidaPolychaetaCirratulidaeTerebellides stroemii Sars, 183514044AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaOphellidaeTravisia forbesii Johnston, 184011AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 1862311AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1864)23 <td>Annelida</td> <td>Polychaeta</td> <td>Syllidae</td> <td>Syllis garciar (Campoy, 1962) Syllis garlachi (Hartmann Schröder, 1960)</td> <td>204</td> <td>30</td>	Annelida	Polychaeta	Syllidae	Syllis garciar (Campoy, 1962) Syllis garlachi (Hartmann Schröder, 1960)	204	30
AnnelidaPolychaetaSyllidaeSyllis licheri Ravara, San Martín and Moreira, 2004327AnnelidaPolychaetaSyllidaeSyllis licheri Ravara, San Martín, Parapar, 20126920AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSylmerosyllis lamelligera Saint Joseph, 18875312AnnelidaPolychaetaTerebellidaeTerebellides stroemii Sars, 183514044AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSyllidaeVermiliopsis sp.111AnnelidaPolychaetaSyllidaeXenosyllis coeliaca (Bate, 1862)311AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1864)311AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1862)311AnnelidaPolychaetaSyllidae	Annelida	Polychaeta	Syllidae	Syllis gracilis Grube 1840	1	1
AnnelidaPolychaetaSyllidaeSyllis BranceBrance BranceBrance BranceBrance BranceBrance BranceBrance BranceBrance BranceBrance BranceBrance BranceBrance BranceBrance BranceBrance BranceBrance 	Annelida	Polychaeta	Syllidae	Syllis licheri Ravara, San Martín and Moreira, 2004	32	7
AnnelidaPolychaetaSyllidaeSyllis parapari San Martín and López, 200022AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSylmerosyllis lamelligera Saint Joseph, 18875312AnnelidaPolychaetaTerebellidaeTerebellides stroemii Sars, 183514044AnnelidaPolychaetaCirratulidaeTharyx marioni (Saint-Joseph, 1894)2620AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaOphelliidaeTravisia forbesii Johnston, 184011AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeXenosyllis coeliaca (Bate, 1862)31AnnelidaPolychaetaSyllidaeAenosyllis coeliaca (Bate, 1862)311AnnelidaPolychaetaSyllidaeAenosyllis coeliaca (Bate, 1862)311Arthropoda*MalacostracaMelitidaeAbludomelita obtusata (Montagu, 1813)311Arthropoda*MalacostracaMelitidaeAcanthomysis cf. longicomis (Milne-Edwards, 1837)<	Annelida	Polychaeta	Syllidae	Syllis mercedesae Lucas. San Martín. Parapar. 2012	69	20
AnnelidaPolychaetaSyllidaeSyllis pontxioi San Martín and López, 20009119AnnelidaPolychaetaSyllidaeSynmerosyllis lamelligera Saint Joseph, 18875312AnnelidaPolychaetaTerebellidaeTerebellidae stroemii Sars, 183514044AnnelidaPolychaetaCirratulidaeTharyx marioni (Saint-Joseph, 1894)2620AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaOphelliidaeTravisia forbesii Johnston, 184011AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeXenosyllis coeliaca (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)311Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1863)111Arthropoda*MalacostracaMysidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Syllidae	Syllis parapari San Martín and López, 2000	2	2
AnnelidaPolychaetaSyllidaeSynmerosyllis lamelligera Saint Joseph, 18875312AnnelidaPolychaetaTerebellidaeTerebellides stroemii Sars, 183514044AnnelidaPolychaetaCirratulidaeTharyx marioni (Saint-Joseph, 1894)2620AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaOphelliidaeTravisia forbesii Johnston, 184011AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeXenosyllis coeliaca (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)311Arthropoda*MalacostracaMelitidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Syllidae	Syllis pontxioi San Martín and López, 2000	91	19
AnnelidaPolychaetaTerebellidaeTerebellidae stroemii Sars, 183514044AnnelidaPolychaetaCirratulidaeTharyx marioni (Saint-Joseph, 1894)2620AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)11AnnelidaPolychaetaOphellidaeTravisia forbesii Johnston, 184011AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)311Arthropoda*MalacostracaMelitidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Syllidae	Synmerosyllis lamelligera Saint Joseph, 1887	53	12
AnnelidaPolychaetaCirratulidaeTharyx marioni (Saint-Joseph, 1894)2620AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)11AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaOphellidaeTravisia forbesii Johnston, 184011AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSerpulidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)311Arthropoda*MalacostracaMelitidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Terebellidae	Terebellides stroemii Sars, 1835	140	44
AnnelidaPolychaetaCirratulidaeTimarete cf. norvegica (Quatrefages, 1866)98AnnelidaPolychaetaCirratulidaeTimarete sp.11AnnelidaPolychaetaOphellidaeTravisia forbesii Johnston, 184011AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)31Arthropoda*MalacostracaMelitidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Cirratulidae	Tharyx marioni (Saint-Joseph, 1894)	26	20
AnnelidaPolychaetaCirratulidae <i>Limarete</i> sp.11AnnelidaPolychaetaOphelliidae <i>Travisia forbesii</i> Johnston, 184011AnnelidaPolychaetaSyllidae <i>Travisia forbesii</i> Johnston, 184011AnnelidaPolychaetaSyllidae <i>Trypanosyllis coeliaca</i> Claparède, 186810319AnnelidaPolychaetaSerpulidae <i>Vermiliopsis</i> sp.11AnnelidaPolychaetaSyllidae <i>Xenosyllis scabra</i> (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)31Arthropoda*MalacostracaMelitidaeAbludomelita oblusata (Montagu, 1813)11Arthropoda*MalacostracaMysidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Cirratulidae	Timarete ct. norvegica (Quatrefages, 1866)	9	8
AnnelidaPolychaetaOphellildaeIravisia torbesil Johnston, 184011AnnelidaPolychaetaSyllidaeTrypanosyllis coeliaca Claparède, 186810319AnnelidaPolychaetaSerpulidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)31Arthropoda*MalacostracaMelitidaeAbludomelita obtusata (Montagu, 1813)11Arthropoda*MalacostracaMysidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Cirratulidae	I Imarete sp.	1	1
AnnelidaPolychaetaSyllidaeInpanosylis coellaca Claparede, 186810319AnnelidaPolychaetaSerpulidaeVermiliopsis sp.11AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)31Arthropoda*MalacostracaMelitidaeAbludomelita obtusata (Montagu, 1813)11Arthropoda*MalacostracaMysidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Ophelliidae	I ravisia forbesii Jonnston, 1840	1	1
AnnelidaForgenatelaSerptinateVenosyllis scabra11AnnelidaPolychaetaSyllidaeXenosyllis scabra (Ehlers, 1864)236Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)31Arthropoda*MalacostracaMelitidaeAbludomelita obtusata (Montagu, 1813)11Arthropoda*MalacostracaMysidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)11	Annelida	Polychaeta	Syllidae	Irypanosyllis coellaca Claparede, 1868	103	19 1
Arthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)23bArthropoda*MalacostracaMelitidaeAbludomelita gladiosa (Bate, 1862)311Arthropoda*MalacostracaMelitidaeAbludomelita obtusata (Montagu, 1813)111Arthropoda*MalacostracaMysidaeAcanthomysis cf. longicornis (Milne-Edwards, 1837)111	Annelida	Polychaeta	Syllidao	Vennsullis scebre (Eblers, 1864)	ן סס	l F
Arthropoda* Malacostraca Melitidae Abludomelita obtusata (Montagu, 1813) 1 1 Arthropoda* Malacostraca Mysidae Acanthomysis cf. longicornis (Milne-Edwards, 1837) 1 1	Arthropoda*	Malacostraca	Melitidae	Abludomelita aladiosa (Bate 1862)	∠3 3	0 1
Arthropoda* Malacostraca Mysidae Acanthomysis cf. longicornis (Milne-Edwards, 1837) 1 1	Arthropoda*	Malacostraca	Melitidae	Abludomelita obtusata (Montagu, 1813)	5 1	1
	Arthropoda*	Malacostraca	Mysidae	Acanthomysis cf. longicornis (Milne-Edwards, 1837)	1	1

Phyllum	Class	Family	Species name	Α	0
Arthropoda*	Malacostraca	Alpheidae	Alpheus cf. glaber (Olivi, 1792)	6	5
Arthropoda*	Malacostraca	Ampeliscidae	Ampelisca brevicornis (Costa, 1853)	85	35
Arthropoda*	Malacostraca	Ampeliscidae	Ampelisca sp.	549	78
Arthropoda*	Malacostraca	Amphipoda n.i.	Amphipoda n.i.	1	1
Arthropoda*	Malacostraca	Amphipoda n.i.	Amphipoda sp.1	1	1
Arthropoda*	Malacostraca	Amphipoda n.i.	Amphipoda sp.2	1	1
Arthropoda*	Malacostraca	Amphitoidae	Ampithoe sp.	3	2
Arthropoda*	Malacostraca	Paguridae	Anapagurus hyndmanni (Bell, 1846)	17	9
Arthropoda*	Malacostraca	Paguridae	Anapagurus laevis (Bell, 1846)	18	15
Arthropoda*	Malacostraca	Paguridae	Anapagurus pusillus Henderson, 1888	6	6
Arthropoda*	Malacostraca	Mysidae	Anchialina agilis (G.O. Sars, 1877)	8	5
Arthropoda*	Malacostraca	Maeridae	Animoceradocus semiserratus (Bate, 1862)	23	6
Arthropoda*	Pycnogonida	Phoxichilidiidae	Anoplodactylus petiolatus (Kroyer, 1844)	10	4
Arthropoda*	Malacostraca	Anthuridae	Anthura gracilis (Montagu, 1808)	2	1
Arthropoda*	Malacostraca	Anthuridae	Anthura sp.1	9	4
Arthropoda*	Malacostraca	Anthuridae	Anthura sp.2	1	1
Arthropoda*	Malacostraca	Anthuridae	Anthuridae n.i.	1	1
Arthropoda*	Malacostraca	Aoridae	Aora spinicornis Afonso, 1977	6	2
Arthropoda	Malacostraca	Aoridae	Aoridae n.i.	5	4
Arthropoda*	Malacostraca	Calliopiidae	Apherusa bispinosa (Bate, 1857)	5	2
Arthropoda*	Malacostraca	Calliopiidae	Apherusa ct. cirrus (Bate, 1862)	1	1
Arthropoda*	Malacostraca	Apseudidae	Apseudes sp. 1	2	2
Arthropoda*	Malacostraca	Apseudidae	Apseudes sp. 2	96	15
Arthropoda	Malacostraca	Apseudidae	Apseudes sp. 3	4	4
Arthropoda*	Malacostraca	Apseudidae	Apseudes talpa (Montagu, 1808)	2	1
Arthropoda	Malacostraca	Apseudidae	Apseudopsis latrellill (Milline-Edwards, 1828)	4	2
Arthropoda	Malacostraca	Argissidae	Argissa namatipes	1	1
Arthropoda	Malacostraca	Arcturidae	Astacilla sp.1	9	6
Arthropoda*	Malacostraca	Arcturidae	Astacilla sp.2	1	1
Arthropoda	Malacostraca	Atelecyclidae	Atelecyclus rotundatus (OIM, 1792)	4	3
Arthropoda*	Malacostraca	Alpheidae	Athanas nitescens (Leach, 1813 [in Leach, 1813-1814])	1	5
Arthropoda*	Malacostraca	Atylidae	Atylus swammerdami (Mille-Edwards, 1830)	1	1
Arthropoda"	Malacostraca	Atylidae	Atylus vealomensis (Bate and Westwood, 1862)	30	13
Arthropoda*	Malacostraca	Axiidae	Axildae n.i. Dethymeraic elegene Wetkin, 1020	1	1
Arthropoda	Malacostraca	Pontoporelidae	Bathyporeia elegans Walkin, 1938	5	4
Arthropoda*	Malacostraca	Pontoporelidae	Bathyporeia guilliansoniana (Bate, 1857)	2	1
Arthropoda	Malacostraca	Pontoporendae	Bathyporeia terruipes Meinert, 1877	2	2
Arthropoda*	Malacostraca	Bodotriidae	Bodotria scorpioldes (Montagu, 1804)	23	15
Arthropoda	Malacostraca	Bouotilidae	Bodolila sp.	1	1
Arthropoda*	Malacostraca	Collionaasidaa	Collianassa sp	2	2
Arthropoda*	Malacostraca	Nannastasidas	Campulaania sp.	5	3
Arthropoda*	Malacostraca	Caprollidao	Carrella ranay Mayer 1890	21	4
Arthropoda*	Malacostraca	Malitidaa	of Allomolita nollucida (Sara 1882)	21	2
Arthropoda*	Malacostraca	Dulichiidaa	cf. Dulichia falcata (Bate, 1857)	3	2
Arthropoda*	Malacostraca	Duilchildae	of Hyporia sp	3	2
Arthropoda*	Malacostraca	Mysidao	of Lontomusis gradilis (C.O. Sars 1964)	1	1
Arthropoda*	Malacostraca	Europausiidaa	cf Meganyctinbanes norvegica (M. Sars, 1857)	10	0
Arthropoda*	Malacostraca	Mysidae	cf. Schistomysis spiritus (Norman, 1860)	10	1
Arthropoda*	Malacostraca	Cheirocratidae	Cheirocratus sundevalli (Rathke, 1843)	30	13
Arthropoda*	Malacostraca	Cirolanidae	Cirolana cranchi Leach 1818	13	1
Arthropoda*	Malacostraca	Cirolanidae	Cirolana sp	41	10
Arthropoda*	Malacostraca	Cirolanidae	Conilera cylindracea (Montagu, 1804)	10	4
Arthropoda*	Malacostraca	Anthuridae	Cvathura carinata (Krøver, 1847)	23	10
Arthropoda*	Malacostraca	Anthuridae	Cyathura sp	20	1
Arthropoda*	Malacostraca	Sphaeromatidae	Cymodoce truncata Leach 1814	24	7
Arthropoda*	Malacostraca	Devaminidae	Devaminidae n i	1	1
Arthropoda*	Malacostraca	Diastylidae	Diastylis bradyi Norman, 1879	28	20
Arthropoda*	Malacostraca	Diastylidae	Diastylis rugosa Sars. 1865	20	1
Arthropoda*	Malacostraca	Diastylidae	Diastyloides serrata (G.O. Sars, 1865)	- 1	1
Arthropoda*	Malacostraca	Diogenidae	Diogenes pugilator (Roux, 1829)	6	2
Arthropoda*	Malacostraca	Leucosiidae	Ebalia cf. tumefacta (Montagu, 1808)	1	1
Arthropoda*	Malacostraca	Leucosiidae	Ebalia granulosa H. Milne Edwards, 1837	2	2
Arthropoda*	Malacostraca	Leucosiidae	Ebalia nux A. Milne-Edwards, 1883	7	5
Arthropoda*	Malacostraca	Leucosiidae	Ebalia sp.	1	1
Arthropoda*	Malacostraca	Bodotriidae	Eocuma dimorphum Fage, 1928	3	2
Arthropoda*	Malacostraca	Bodotriidae	Eocuma dollfusi Calman, 1907	1	1
Arthropoda*	Malacostraca	Ischyroceridae	Ericthonius punctatus (Bate, 1857)	5	1
Arthropoda*	Malacostraca	lschyroceridae	Ericthonius sp.	1	1
Arthropoda*	Malacostraca	Mysidae	Erythrops elegans (G.O. Sars, 1863)	1	1
Arthropoda*	Malacostraca	Cirolanidae	Eurydice naylori Jones and Pierpoint, 1997	1	1
Arthropoda*	Malacostraca	Cirolanidae	Eurydice pulchra Leach, 1815	26	11
Arthropoda*	Malacostraca	Cirolanidae	Eurydice spinigera Hansen, 1890	45	15
Arthropoda*	Malacostraca	Majidae	Eurynome spinosa Hailstone, 1835	7	7
Arthropoda*	Malacostraca	Eusiridae	Eusirus longipes Boeck, 1861	1	1
Arthropoda*	Malacostraca	Galatheidae	Galathea intermedia Liljeborg, 1851	15	7
Arthropoda*	Malacostraca	Galatheidae	Galathea sp.	1	1
Arthropoda*	Malacostraca	Melitidae	Gammarella fucicola (Leach, 1814)	2	1
Arthropoda*	Malacostraca	Photidae	Gammaropsis maculata (Johnston, 1828)	6	4
Arthropoda*	Malacostraca	Photidae	Gammaropsis nitida (Stimpson, 1853)	1	1
Arthropoda*	Malacostraca	Photidae	Gammaropsis sophiae (Boeck, 1861)	1	1
Arthropoda*	Malacostraca	Gnathiidae	Gnathia cf. africana Barnard, 1914a	15	8

Annexes

Phyllum	Class	Family	Species name	А	0
Arthropoda*	Malacostraca	Goneplacidae	Goneplax rhomboides (Linnaeus, 1758)	4	3
Arthropoda*	Malacostraca	Dexaminidae	Guernea (Guernea) coalita (Norman, 1868)	42	7
Arthropoda*	Malacostraca	Mysidae	Haplostylus normani (G.O. Šars, 1877)	22	10
Arthropoda*	Malacostraca	Phoxocephalidae	Harpinia antennaria Meinert, 1890	44	22
Arthropoda*	Malacostraca	Phoxocephalidae	Harpinia cf. antennaria Meinert, 1891	1	1
Arthropoda*	Malacostraca	Phoxocephalidae	Harpinia cf. truncata Sars, 1891	7	6
Arthropoda*	Malacostraca	Phoxocephalidae	Harpinia pectinata Sars, 1891	19	9
Arthropoda*	Malacostraca	Lysianassidae	Hippomedon denticulatus (Bate, 1857)	13	11
Arthropoda*	Malacostraca	Janiridae	lathrippa bisbidens (Barnard, 1955a)	2	1
Arthropoda*	Malacostraca	Uristidae	Ichnopus spinicornis Boeck, 1861	1	1
Arthropoda*	Malacostraca	Bodotriidae	Iphinoe serrata Norman, 1867	23	18
Arthropoda*	Malacostraca	Bodotriidae	Iphinoe tenella Sars, 1878	3	2
Arthropoda*	Malacostraca	Bodolindae	Iprinioe inspiriosa (Goodsii, 1643)	20	15
Arthropoda*	Malacostraca	lochyrocoridao	Isdea Monagui Mille-Edwards, 1630	10	1
Arthropoda*	Malacostraca	Isonoda n i	Isonoda n i	2	1
Arthropoda*	Malacostraca	Janiridae	Jaera (Jaera) cf. albifrons Leach 1814	1	1
Arthropoda*	Malacostraca	Janiridae	Janiridae n.i.	1	1
Arthropoda*	Malacostraca	Larva n.i.	Larva n.i.	10	7
Arthropoda*	Malacostraca	Aoridae	Lembos sp.1	37	25
Arthropoda*	Malacostraca	Aoridae	Lembos sp.2	7	3
Arthropoda*	Malacostraca	Lysianassidae	Lepidepecreum longicornis (Bate and Westwood, 1862)	1	1
Arthropoda*	Malacostraca	Corophiidae	Leptocheirus hirsutimanus (Bate, 1862)	5	4
Arthropoda*	Malacostraca	Corophiidae	Leptocheirus pectinatus (Norman, 1869)	19	9
Arthropoda*	Malacostraca	Corophiidae	Leptocheirus pilosus Zaddach, 1844	9	4
Arthropoda*	Malacostraca	Corophiidae	Leptocheirus sp.	1	1
Arthropoda*	Malacostraca	Corophiidae	Leptocheirus tricristatus (Chevreux, 1887)	1	1
Arthropoda*	Malacostraca	Mysidae	Leptomysis lingvura (G. O. Sars, 1866)	2	2
Arthropoda*	Malacostraca	Leucothoidae	Leucothoe incisa (Robertson, 1892)	18	13
Arthropoda*	Malacostraca	Leucothoidae	Leucothoe lilljeborgi Boeck, 1861	2	1
Arthropoda*	Malacostraca	Polybiidae	Liocarcinus navigator (Herbst, 1794)	5	3
Arthropoda*	Malacostraca	Polybildae	Liocarcinus pusilius (Leach, 1816)	3	3
Arthropoda*	Malacostraca	Liljeborglidae	Listriella sp.1	1	1
Arthropoda*	Malacostraca	Lijeborgildae	Listinella sp.z	∠ 1	2
Arthropoda*	Malacostraca	Lycianassidao	Lucianassa insperata (Lincoln, 1070)	3	2
Arthropoda*	Malacostraca	Lysianassidae	Lysianassa numosa Boeck 1871	2	1
Arthropoda*	Malacostraca	Inachidae	Macropodia linaresi Forest and Zariquiev Alvarez 1964	2	2
Arthropoda*	Malacostraca	Maeridae	Maera cf. Joveni (Bruzelius, 1859)	3	2
Arthropoda*	Malacostraca	Maeridae	Maera grossimana (Montagu, 1808)	6	2
Arthropoda*	Malacostraca	Maeridae	Maera grossimana (Montagu, 1808)	4	1
Arthropoda*	Malacostraca	Maeridae	Maera loveni (Bruzelius, 1859)	11	7
Arthropoda*	Malacostraca	Melitidae	Maerella tenuimana (Bate, 1862)	4	4
Arthropoda*	Malacostraca	Corophiidae	Medicorophium minimum (Schiecke, 1978)	7	6
Arthropoda*	Malacostraca	Corophiidae	Medicorophium runcicorne (Della Valle, 1893)	1	1
Arthropoda*	Malacostraca	Megalopa n.i.	Megalopa n.i.	19	10
Arthropoda*	Malacostraca	Megaluropidae	Megaluropus agilis Hoeck, 1889	10	6
Arthropoda*	Malacostraca	Photidae	Megamphopus brevidactylus Myers, 1976	2	1
Arthropoda*	Malacostraca	Photidae	Megamphopus cornutus Norman, 1869	13	12
Arthropoda*	Malacostraca	Melitidae	Melita hergensis Reid, 1939	2	2
Arthropoda*	Malacostraca	Melitidae	Melita sp.	1	1
Arthropoda*	Malacostraca	Dhawaaanhalidaa	Melphiaippella macra (Norman, 1869)	1	1
Arthropoda*	Malacostraca	Aoridoo	Metaphoxus futioni (Scott, 1890)	12	5
Arthropoda*	Malacostraca	Aoridae	Microdeutopus anonatus (Rallike, 1643)	13	1
Arthropoda*	Malacostraca	Aoridae	Microdeutopus sn	3	1
Arthropoda*	Malacostraca	Aoridae	Microdeutopus sp. Microdeutopus versiculatus (Bate 1856)	14	2
Arthropoda*	Malacostraca	Corophiidae	Monocorophium acherusicum (Costa, 1853)	2	2
Arthropoda*	Malacostraca	Oedicerotidae	Monoculodes carinatus (Bate, 1857)	6	4
Arthropoda*	Malacostraca	Cirolanidae	Natatolana sp.	1	1
Arthropoda*	Malacostraca	Nebaliidae	Nebalia cf. strausi Risso, 1826	10	3
Arthropoda*	Malacostraca	Callianassidae	Necallianassa truncata (Giard and Bonnier, 1890)	14	12
Arthropoda*	Malacostraca	Pinnotheridae	Nepinnotheres pinnotheres (Linnaeus, 1758)	1	1
Arthropoda*	Malacostraca	Opisidae	Normanion sarsi Stebbing, 1906	3	1
Arthropoda*	Malacostraca	Atylidae	Nototropis falcatus (Metzer, 1871)	2	2
Arthropoda*	Pycnogonida	Nymphonidae	Nymphonidae n.i.	2	1
Arthropoda*	Malacostraca	Lysianassidae	Orchomene massiliensis Ledoyer, 1977	1	1
Arthropoda*	Malacostraca	Lysianassidae	Orchomenella nana (Kroyer, 1846)	17	6
Arthropoda*	Ostracoda	Ostracoda n.i.	Ostracoda n.i.	9	1
Arthropoda*	Malacostraca	Paguridaa	Ouromaera ouromis (minie-Edwards, 1830) Pagurus cuanansis Bell, 1846	00	10 1
Arthropoda*	Malacostraca	Paguridae	Paquirus excavatus (Herhst 1791)	1	1
Arthropoda*	Malacostraca	Caprellidae	Pariambus typicus (Krøver 1884)	e I	5
Arthropoda*	Malacostraca	Parthenonidae	Parthenope massena (Roux 1830)	1	1
Arthropoda*	Malacostraca	Cvproideidae	Peltocoxa brevirostris (Scott and Scott. 1893)	1	1
Arthropoda*	Malacostraca	Oedicerotidae	Perioculodes longimanus (Bate and Westwood. 1868)	12	9
Arthropoda*	Malacostraca	Aristiidae	Perrierella audouiniana (Bate, 1857)	4	2
Arthropoda*	Malacostraca	Crangonidae	Philocheras bispinosus bispinosus (Hailstone, 1835a)	10	5
Arthropoda*	Malacostraca	Crangonidae	Philocheras sculptus (Bell, 1847 [in Bell, 1844-1853])	1	1
Arthropoda*	Malacostraca	Crangonidae	Philocheras trispinosus (Hailstone in Hailstone and Westwood, 1835)	1	1
Arthropoda*	Malacostraca	Photidae	Photis longicaudata (Bate and Westwood, 1862)	11	7
Arthropoda*	Malacostraca	Photidae	Photis longipes (Della Valle, 1893)	12	6

Phyllum	Class	Family	Species name	Α	0
Arthropoda*	Malacostraca	Caprellidae	Phtisica marina Slabber, 1769	16	10
Arthropoda*	Malacostraca	Polybiidae	Polybius henslowii Leach, 1820	3	2
Arthropoda*	Malacostraca	Oedicerotidae	Pontocrates altamarinus (Bate and Westwood, 1862)	3	2
Arthropoda*	Malacostraca	Oedicerotidae	Pontocrates arenarius (Bate, 1858)	5	5
Arthropoda*	Malacostraca	Processidae	Processa canaliculata Leach, 1815 [in Leach, 1815-1875]	3	2
Arthropoda*	Malacostraca	Processidae	Processa edulis crassipes Nouvel and Holthuis, 1957	3	2
Arthropoda*	Malacostraca	Processidae	Processa modica modica Williamson in Williamson and Rochanaburanon,	2	2
			1979		
Arthropoda*	Malacostraca	Processidae	Processa nouveli holthuisi Al-Adhub and Williamson, 1975	5	4
Arthropoda*	Malacostraca	Melitidae	Psammogammarus caecus Karaman. 1955	31	13
Arthropoda*	Malacostraca	Pseudocumatidae	Pseudocuma (Pseudocuma) cf. longicorne (Bate, 1858)	1	1
Arthropoda*	Malacostraca	Scalpellidae	Scalpellum scalpellum (Linnaeus, 1767)	1	1
Arthropoda*	Malacostraca	Mysidae	Schistomysis cf. ornata (G.O. Sars, 1864)	1	1
Arthropoda*	Maxillopoda	Archaeobalanidae	Semibalanus balanoides (Linnaeus, 1758)	1	1
Arthropoda*	Malacostraca	Ischvroceridae	Siphonoecetes (Centraloecetes) kroveranus Bate, 1856	1	1
Arthropoda*	Malacostraca	Ischvroceridae	Siphonoecetes (Centraloecetes) striatus Myers and McGrath 1979	5	5
Arthropoda*	Malacostraca	Stenothoidae	Stenothoe marina (Bate, 1856)	2	2
Arthropoda*	Malacostraca	Stenothoidae	Stenothoe valida Dana, 1852	2	1
Arthropoda*	Malacostraca	Apseudidae	Tanaidacea n.i.	25	10
Arthropoda*	Malacostraca	Upogebiidae	Upogebia cf. stellata (Montagu, 1808)	1	1
Arthropoda*	Malacostraca	Urothoidae	Urothoe elegans (Bate, 1857)	5	4
Arthropoda*	Malacostraca	Urothoidae	Urothoe grimaldii Chevreux, 1895	7	4
Arthropoda*	Malacostraca	Urothoidae	Urothoe marina (Bate, 1857)	10	3
Arthropoda*	Malacostraca	Urothoidae	Urothoe pulchella (Costa, 1853)	30	11
Arthropoda*	Malacostraca	Oedicerotidae	Westwoodilla caecula (Bate, 1857)	6	6
Arthropoda*	Malacostraca	Xanthidae	Xantho pilipes A. Milne-Edwards, 1867	1	1
Arthropoda*	Malacostraca	Zoeni	Zoeni	6	6
Arthropoda**	Insecta	Chironomidae	Chironomidae n i	1	1
Arthropoda**	Insecta	Insecta n i	Insecta n i	1	1
Chaetognatha	Chaetognatha	Chaetognatha	Chaetognatha n i	58	25
Chordata	Leptocardii	Branchiostomidae	Branchiostoma lanceolatum (Pallas, 1774)	25	11
Chordata	Actinoptervaii	Callionymidae	Callionymus Ivra Linnaeus 1758	1	1
Cnidaria	Anthozoa	Anthozoa n i	Anthozoa n i	12	4
Cnidaria	Cnidaria	Cnidaria	Chidario n i	40	10
Cnidaria	Anthozoa	Edwardsiidae	Edwardsia clanaredii (Panceri, 1869)	85	21
Chidaria	Anthozoa	Edwardsjidae	Edwardsidae n i	2	21
Chidaria	Anthozoa	Haloclavidae	Peachia cylindrica (Reid 1848)	2	2
Chidaria	Anthozoa	Poppatulidao	Pennatula nhosphorea Linnaeus 1758	2	1
Echipodormata	Ophiuroidoa	Amphiuridae	Amphinhalia sayamata (Dollo Chinio, 1929)	20	16
Echinodermata	Ophiuroidea	Amphiuridae	Amphiphons squamata (Delle Chilaje, 1020)	30	21
Echinodermata	Ophiuroidea	Amphiuridae	Amphiura chiajeri orbes, 1045 Amphiura filiformis ($\Omega \in M$ üllor, 1776)	11	21
Echinodermata	Crinoidea	Amphiundae	Antodon bifida (Donnant, 1777)	44	20
Echinodermata	Actoroidee	Antedonidae	Anteuon binua (Felinani, 1777)	1	1
Echinodermata	Fobinoidoo	Rriggidoo	Asterina gibbosa (Fernant, 1777) Briesonsis lyrifora (Fernas, 1941)	1	1
Echinodermata	Crinoidea	Crinoidae ni	Crinoidea ni	2	2
Echinodermata	Chhoidea		Chholdea h.i. Echinocordium of mortonooni Thióny 1000	2	1
Echinodermata	Echinoidea	Loveniidae	Echinocardium ci. monenseni 1 mery, 1909	2	2
Echinodermata	Echinoidea	Loveniidae	Echinocardium Cordatum (Pennant, 1777)	9	5
Echinodermata	Echinoidea	Loveniidae	Echinocardium navescens (O.F. Wuller, 1776)	169	2
Echinodermata	Echinoloea	Cucumoriidoo	Echinocyanius pusilius (O.F. Muller, 1776)	100	34
Echinodermata	Holothuroidea	Dhyllonharidaa	Ekilialia Sp.	1	1
Echinodermala	Holothuroidea		Helethursides n.i.	1	1
Echinodermala	Holothuroidea		Holothuloidea h.i.	1	1
Echinodermata	Holothuroidea	Synaptidae	Labidopiax digitata (Montagu, 1815)	11	1
Echinodermata	Crinoidea	Antedonidae	Leptometra certica (M Andrew and Barrett, 1858)	1	1
Echinodermata	Holothuroidea	Cucumariidae	Leptopentacta cf. tergestina (M. Sars, 1857)	5	3
Echinodermata	Holothuroidea	Synaptidae	Leptosynapta Innaerens (O.F. Muller, 1776)	3	2
Echinodermata	Holothuroidea	Synaptidae	Leptosynapta sp.	1	1
Echinodermata	Holothuroidea	Cucumariidae	Ochus lacteus (Forbes and Goodsir, 1839)	8	2
Echinodermata	Ophiuroidea	Opniactidae	Ophiactis balli (VV. Thompson, 1840)	3	2
Echinodermata	Ophiuroidea	Ophiuridae	Opniocten attinis (Lutken, 1858)	2	2
Echinodermata	Ophiuroidea	Ophiocomidae	Opniopsila annuiosa (M. Sars, 1859)	1	1
Echinodermata	Ophiuroidea	Ophiocomidae	Ophiopsila aranea Forbes, 1843	2	2
Echinodermata	Ophiuroidea	Ophiotrichidae	Ophiothrix fragilis (Abildgaard, in O.F. Muller, 1789)	85	33
Echinodermata	Ophiuroidea	Ophiuridae	Ophiura albida Forbes, 1839	5	3
Echinodermata	Ophiuroidea	Ophiuridae	Ophiura ophiura (Linnaeus, 1758)	3	2
Echinodermata	Echinoidea	Spatangidae	Spatangus purpureus O.F. Müller, 1776	1	1
Echinodermata	Echinoidea	Spatangidae	Spatangus sp.	1	1
Echinodermata	Echinoidea	Strongylocentrotidae	Strongylocentrotus pallidus (G.O. Sars, 1871)	2	2
Echinodermata	Holothuroidea	Phyllophoridae	Thyone cf. fusus (O.F. Müller, 1776)	1	1
Echiura	Echiuroidea	Echiuridae	I halassema thalassemum (Pallas, 1766)	14	10
Mollusca	Bivalvia	Semelidae	Abra alba (W. Wood, 1802)	150	37
Mollusca	Bivalvia	Semelidae	Abra nitida (Müller, 1776)	7	5
Mollusca	Bivalvia	Semelidae	Abra prismatica (Montagu, 1808)	7	5
Mollusca	Bivalvia	Semelidae	Abra sp.	1	1
Mollusca	Polyplacophora	Acanthochitonidae	Acanthochitona fascicularis (Linnaeus, 1767)	2	1
Mollusca	Gastropoda	Acteonidae	Acteon tornatilis (Linnaeus, 1758)	1	1
Mollusca	Bivalvia	Pectinidae	Aequipecten opercularis (Linnaeus, 1758)	3	2
Mollusca	Bivalvia	Arcidae	Anadara polii (Mayer, 1868)	7	7
Mollusca	Gastropoda	Scissurellidae	Anatoma crispata (Fleming, 1828)	2	1
Mollusca	Bivalvia	Tellinidae	Angulus fabula (Gmelin, 1791)	31	14
Mollusca	Bivalvia	Tellinidae	Angulus pygmaeus (Lovén, 1846)	95	24
Mollusca	Bivalvia	Anomiidae	Anomia ephippium Linnaeus 1758	3	3

Phyllum	Class	Family	Species name	А	0
Mollusca	Scaphopoda	Dentaliidae	Antalis vulgaris (da Costa. 1778)	3	3
Mollusca	Aplacophora	Aplacophora	Aplacophora sp.1	35	17
Mollusca	Aplacophora	Aplacophora	Aplacophora sp.2	6	2
Mollusca	Gastropoda	Aporrhaidae	Aporrhais pespelecani (Linnaeus, 1758)	6	2
Mollusca	Bivalvia	Arcidae	Arca sp. 1	2	2
Mollusca	Bivalvia	Arcidae	Arca sp. 2	1	1
Mollusca	Bivalvia	Arcidae	Arca tetragona Poli, 1795	11	5
Mollusca	Bivalvia	Tellinidae Tellinidae	Arcopagia balaustina (Linnaeus, 1758) Arcopagia crasso (Poppapt, 1777)	1	1
Mollusca	Bivalvia	Actortidae	Astarte borealis (Schumacher, 1817)	2	2
Mollusca	Bivalvia	Astartidae	Astarte sulcata (da Costa 1778)	2	2
Mollusca	Bivalvia	Pinnidae	Atrina fragilis (Pennant, 1777)	3	3
Mollusca	Bivalvia	Thyasiridae	Axinulus croulinensis (Jeffreys, 1847)	1	1
Mollusca	Bivalvia	Arcidae	Bathyarca pectunculoides (Scacchi, 1835)	10	4
Mollusca	Gastropoda	Mangeliidae	Bela brachystoma (Philippi, 1844)	1	1
Mollusca	Gastropoda	Mangeliidae	Bela decussata (Locard, 1892)	2	2
Mollusca	Gastropoda	Mangeliidae	<i>Bela fuscata</i> (Deshayes, 1835)	9	6
Mollusca	Gastropoda	Mangeliidae	Bela sp.	1	1
Mollusca	Bivalvia	Kelliidae	Bornia geoffroyi (Payraudeau, 1826)	2	1
Mollusca	Gastropoda	Caecidae	Caecum sp.	11	9
Mollusca	Gastropoda	Caecidae	Calvetraca chinonsis (Lippacus, 1759)	6 17	3
Mollusca	Bivolvio	Cuspidariidae	Cardiomya costellata (Deshayes, 1833)	0	7
Mollusca	Gastropoda	Carditidae	Centrocardita aculeata (Poli 1795)	9	1
Mollusca	Polyplacophora	Chaetopleuridae	Chaetopleura (Chaetopleura) angulata (Spengler, 1797)	2	2
Mollusca	Bivalvia	Veneridae	Chamelea gallina (Linnaeus, 1758)	10	6
Mollusca	Bivalvia	Veneridae	Chamelea striatula (da Costa, 1778)	25	11
Mollusca	Polyplacophora	Chitonidae	Chiton (Rhyssoplax) olivaceus Spengler, 1797	1	1
Mollusca	Gastropoda	Pyramidellidae	Chrysallida indistincta (Montagu, 1808)	1	1
Mollusca	Bivalvia	Veneridae	Clausinella brogniarti (Payraudeau, 1826)	4	2
Mollusca	Bivalvia	Veneridae	Clausinella fasciata (da Costa, 1778)	17	10
Mollusca	Bivalvia	Veneridae	Coracuta sp.	2	2
Mollusca	Bivalvia	Corbulidae	Corbula gibba (Olivi, 1792)	118	36
Mollusca	Gastropoda	Drilliidae	Crassopleura maravignae (Bivona Ant. in Bivona And., 1838)	3	2
Mollusca	Bivalvia	Cuspidariidae	Culichna culindracoa (Pennant, 1793)	8	5
Mollusca	Bivalvia	Pectinidae	Delectopecten vitreus (Gmelin, 1791)	27	10
Mollusca	Bivalvia	Astartidae	Digitaria digitaria (Linnaeus, 1758)	53	à
Mollusca	Bivalvia	Ungulinidae	Diplodonta rotundata (Montagu 1803)	11	7
Mollusca	Bivalvia	Veneridae	Dosinia exoleta (Linnaeus, 1758)	1	1
Mollusca	Bivalvia	Veneridae	Dosinia lupinus (Linnaeus, 1758)	37	21
Mollusca	Gastropoda	Hydrobiidae	Ecrobia truncata (Vanatta, 1924)	6	1
Mollusca	Bivalvia	Pharidae	Ensis sp.	1	1
Mollusca	Bivalvia	Montacutidae	Epilepton clarkiae (Clark W., 1852)	1	1
Mollusca	Bivalvia	Semelidae	Ervilia castanea (Montagu, 1803)	16	1
Mollusca	Gastropoda	Eulimidae	<i>Eulima glabra</i> (da Costa, 1778)	6	5
Mollusca	Gastropoda	Naticidae	Euspira pulchella (Risso, 1826)	52	19
Mollusca	Bivalvia	Pectinidae	Flexopecten glaber (Linnaeus, 1758)	1	1
Mollusca	Gastropoda	Fasciolariidae	Fusinus rostratus (Olivi, 1792)	1	1
Mollusca	Bivolvio	Peanmobiidao	Cari costulata (Turton, 1822)	20	20
Mollusca	Bivalvia	Psammobiidae	Gari tellinella (Lamarck, 1818)	29	5
Mollusca	Bivalvia	Mytilidae	Gibbomodiola adriatica (Lamarck, 1819)	1	1
Mollusca	Gastropoda	Trochidae	Gibbula magus (Linnaeus, 1758)	1	1
Mollusca	Gastropoda	Trochidae	Gibbula sp.	16	5
Mollusca	Gastropoda	Trochidae	Gibbula varia (Linnaeus, 1758)	1	1
Mollusca	Gastropoda	Carditidae	Glans trapezia (Linnaeus, 1767)	1	1
Mollusca	Bivalvia	Glycymerididae	Glycymeris glycymeris (Linnaeus, 1758)	42	12
Mollusca	Bivalvia	Glycymerididae	<i>Glycymeris nummaria</i> (Linnaeus, 1758)	3	1
Mollusca	Bivalvia	Astartidae	Goodallia triangularis (Montagu, 1803)	32	4
Mollusca	Bivalvia	Veneridae	Gouldia minima (Montagu, 1803)	58	22
Mollusca	Polyplacophora	Hanleyidae	Hanleya hanleyi (Bean in Thorpe, 1844)	1	1
Mollusca	Bivalvia	Hiatellidae	Hiatella arctica (Linnaeus, 1767)	1	1
Mollusca	Gastropoda	Hudrobiidaa	Hydrabia acuta noglecta Muus, 1963	1	2
Mollusca	Bivalvia	Mytilidae	Injurobia acuta neglecia muus, 1905	4	1
Mollusca	Gastropoda	Trochidae	Juiubinus sp	2	2
Mollusca	Bivalvia	Kelliida	Kellia suborbicularis (Montagu, 1803)	2	2
Mollusca	Bivalvia	Montacutidae	Kurtiella bidentata (Montagu, 1803)	122	11
Mollusca	Bivalvia	Cardiidae	Laevicardium crassum (Gmelin, 1791)	13	6
Mollusca	Bivalvia	Lasaeidae	Lasaeidae n.i.	3	3
Mollusca	Polyplacophora	Leptochitonidae	Leptochiton algesirensis (Capellini, 1859)	8	3
Mollusca	Polyplacophora	Leptochitonidae	Leptochiton alveolus (M. Sars MS, Lovén, 1846)	1	1
Mollusca	Polyplacophora	Leptochitonidae	Leptochiton asellus (Gmelin, 1791)	1	1
Mollusca	Polyplacophora	Leptochitonidae	Leptochiton cancellatus (Sowerby, 1840)	40	13
NOILUSCA	Bivalvia	Lasaeldae	Lepton squamosum (Montagu, 1803)	2	1
Mollusca	Bivalvia	Limidae	Limana iuscumu (G.B. Suwerby I, 1823) Limatula subovata (Monterosato, 1875)	1 57	1 7
Mollusca	Bivalvia	Mytilidae	Linhaula subovala (monterosalo, 1075)	ت ۲	/ 1
Mollusca	Bivalvia	Lucinidae	Loripes lucinalis (Lamarck. 1818)	1	1
Mollusca	Bivalvia	Lucinidae	Loripes sp.	7	1
Mollusca	Bivalvia	Lucinidae	Lucinoma borealis (Linnaeus, 1758)	1	1
			-		

Phyllum	Class	Family	Species name	А	0
Mollusca	Gastropoda	Naticidae	Lunatia fusca (Blainville, 1825)	1	1
Mollusca	Bivalvia	Lyonsiidae	Lyonsia norwegica (Gmelin, 1791)	1	1
Mollusca	Bivalvia	Tellinidae	Macoma balthica (Linnaeus, 1758)	2	1
Mollusca	Bivalvia	l ellinidae	Macoma sp.	2	2
Mollusca	Bivalvia	Mactridae	Mactra stultorum (Lippacus, 1759)	4	1
Mollusca	Gastropoda	Mangelijdae	Mandelia sp	4	2
Mollusca	Gastropoda	Fulimidae	Mangena sp. Melanella doederleini (Brusina, 1886)	4	1
Mollusca	Gastropoda	Eulimidae	Melanella frielei (Jordan, 1895)	3	1
Mollusca	Gastropoda	Eulimidae	Melanella polita (Linnaeus, 1758)	4	4
Mollusca	Bivalvia	Veneridae	Mercenaria mercenaria (Linnaeus, 1758)	1	1
Mollusca	Gastropoda	Columbellidae	Mitrella minor (Scacchi, 1836)	1	1
Mollusca	Bivalvia	Mytilidae	Modiolus barbatus (Linnaeus, 1758)	3	3
Mollusca	Bivalvia	Mytilidae	Modiolus sp.	1	1
Mollusca	Bivalvia	Tellinidae	Moerella donacina (Linnaeus, 1758)	20	12
Mollusca	Gastropoda	Triphoridae	Monophorus perversus (Linnaeus, 1758)	2	1
Mollusca	Bivalvia	Montacutidae	Montacuta phascolionis Dautzenberg and Fischer H., 1925	1	5
Mollusca	Bivalvia	lucinidae	Musculus suppicius (Canifalite, 1835)	3 17	1/
Mollusca	Bivalvia	Lucinidae	Mytella sp	1	14
Mollusca	Gastropoda	Nassariidae	Nassarius elatus (Gould 1845)	8	4
Mollusca	Gastropoda	Nassariidae	Nassarius incrassatus (Strøm, 1768)	3	2
Mollusca	Gastropoda	Nassariidae	Nassarius ovoideus (Locard, 1886)	2	1
Mollusca	Gastropoda	Nassariidae	Nassarius reticulatus (Linnaeus, 1758)	28	14
Mollusca	Bivalvia	Nuculidae	Nucula nitidosa Winckworth, 1930	53	19
Mollusca	Bivalvia	Nuculidae	<i>Nucula</i> sp.	3	1
Mollusca	Bivalvia	Nuculanoida	Saccella commutata (Philippi, 1844)	65	29
Mollusca	Gastropoda	Muricidae	Ocenebra erinaceus (Linnaeus, 1758)	1	1
Mollusca	Gastropoda	Pyramidellidae	Odostomia sp.	2	2
Mollusca	Gastropoda	Pyramidellidae	Undina sp. Ballia kuna ina anna a bila (Diana 1990)	1	1
Mollusca	Bivalvia	Pectinidae	Palliolum Incomparabile (RISSO, 1826) Polliolum tigorinum (O. E. Müller, 1776)	17	8
Mollusca	Bivalvia	Pecunidae	Pandora inaoquivalvia (Lippacus, 1778)	9	2 1
Mollusca	Bivalvia	Cardiidae	Parvicerdium minimum (Philippi, 1836)	2	1
Mollusca	Bivalvia	Cardiidae	Parvicardium ninnulatum (Conrad, 1831)	5	3
Mollusca	Bivalvia	Cardiidae	Parvicardium scabrum (Philippi, 1844)	11	5
Mollusca	Bivalvia	Cardiidae	Parvicardium sp.	5	2
Mollusca	Bivalvia	Pharidae	Pharus legumen (Linnaeus, 1758)	4	4
Mollusca	Bivalvia	Pharidae	Phaxas pellucidus (Pennant, 1777)	50	17
Mollusca	Gastropoda	Philinidae	Philine aperta (Linnaeus, 1767)	5	5
Mollusca	Gastropoda	Philinidae	Philine cf. quadrata (S. Wood, 1839)	2	1
Mollusca	Gastropoda	Philinidae	Philine punctata (Adams J., 1800)	10	3
Mollusca	Bivalvia	Veneridae	Pitar rudis (Poli, 1795)	9	4
Mollusca	Gastropoda	Rissoidae	Plagyostila asturiana Fischer P. in de Folin, 1872	1	1
Mollusca	Gastropoda	Raphitomidae	Raphitoma flavida (Monterosato, 1884)	1	1
Mollusca	Gastropoda	Retusidae	Retusa truncatula (Brugulere, 1792)	4	4
Mollusca	Gastropoda	Ringiculidae	Ringicula auriculata (Menard de la Groye, 1811)	1	1
Mollusca	Gastropoda	Ringiculidae	Ringicula sp	1	1
Mollusca	Bivalvia	Gastrochaenidae	Rocellaria dubia (Pennant 1777)	1	1
Mollusca	Bivalvia	Semelidae	Scrobicularia plana (da Costa 1778)	2	2
Mollusca	Gastropoda	Ovulidae	Simnia sp.	2	1
Mollusca	Bivalvia	Solecurtidae	Solecurtus scopula (Turton, 1822)	1	1
Mollusca	Bivalvia	Mactridae	Spisula elliptica (Brown, 1827)	12	7
Mollusca	Bivalvia	Mactridae	Spisula sp.	3	2
Mollusca	Bivalvia	Mactridae	Spisula subtruncata (da Costa, 1778)	44	16
Mollusca	Bivalvia	Montacutidae	<i>Tellimya ferruginosa</i> (Montagu, 1808)	27	20
Mollusca	Bivalvia	Montacutidae	Tellimya sp.	2	1
Mollusca	Bivalvia	Tellinidae	Tellina compressa Brocchi, 1814	99	28
Mollusca	Bivalvia	Tellinidae	Tellina distorta Poli, 1791	3	1
Mollusca	Bivalvia	I ellinidae	Tellina serrata Brocchi, 1814	6	3
Mollusca	Bivalvia	Thraciidae	Thracia papyracea (Poll, 1791) Thracia villosiuscula (MacGillivray, 1827)	2 145	2
Mollusca	Bivalvia	Thraciluae	Thuasira flexuosa (Montagu, 1803)	140	29
Mollusca	Bivalvia	Thyasiridae	Thyasira nexuosa (Montagu, 1003)	70	18
Mollusca	Bivalvia	Thyasiridae	Thyasira subovata (Jeffreys 1881)	3	1
Mollusca	Bivalvia	Veneridae	Timoclea ovata (Pennant, 1777)	30	18
Mollusca	Bivalvia	Cuspidariidae	Tropidomya abbreviata (Forbes, 1843)	1	1
Mollusca	Gastropoda	Pyramidellidae	Turbonilla sp.	4	4
Mollusca	Gastropoda	Turritellidae	Turritella communis Risso, 1826	27	15
Mollusca	Gastropoda	Turritellidae	Turritella turbona Monterosato, 1877	23	10
Mollusca	Bivalvia	Veneridae	Venerupis corrugata (Gmelin, 1791)	2	1
Mollusca	Bivalvia	Veneridae	Venus casina Linnaeus, 1758	8	4
Mollusca	Bivalvia	veneridae	Venus sp.	6	3
IVIOIIUSCA	Gastropoda	⊏uiimidae Voldiidoo	vilieonna curva (Monterosato, 1874) Voldiollo philippiono (Nyst. 1845)	1	1
Nomotodo	Nomotodo	Nomotodo	i ulucha philippiana (Nysi, 1843) Nomatoda ni	5	5
Nemertea	Nemertee	Nemertee	Nemertea n i	1709	53 105
Phoronida	Phoronida	Phoronida	Phoronida n i	107	52
Platyhelminthes	Platyhelminthes	Platyhelminthes	Turbellaria n.i.	.9	5
Sipuncula	Phascolosomatidea	Aspidosiphonidae	Aspidosiphon (Aspidosiphon) muelleri muelleri Diesina. 1851	487	26
Sipuncula	Sipunculidea	Golfingiidae	Golfingia (Golfingia) elongata (Keferstein, 1862a)	80	25
		-			

Phyllum	Class	Family	Species name	Α	0
Sipuncula	Sipunculidea	Golfingiidae	Golfingia (Golfingia) vulgaris vulgaris (De Blainville, 1827)	24	13
Sipuncula	Sipunculidea	Phascolionidae	Onchnesoma steenstrupii steenstrupii Koren and Danielssen, 1876	72	20
Sipuncula	Sipunculidea	Phascolionidae	Phascolion (Phascolion) strombus strombus (Montagu, 1804)	11	9
Sipuncula	Phascolosomatidea	Phascolosomatidae	Phascolosoma (Phascolosoma) granulatum Leuckart, 1828	46	4
Sipuncula	Sipuncula	Sipuncula	Sipuncula n.i.	34	10

Table 3 – Constancy and fidelity indeces per affinity group and their product for the 15 most characteristic species.

Таха	Constancy per affinity group							Fidelity per affinity group							Confidence X Fidelity						
	A	В	C1	C2	C3	D	А	В	C1	C2	C3	D	A	B	C1	C2	C3	D			
Pisione remota (Southern, 1914)	74.2						100						74.2								
Protodorvillea kefersteini (McIntosh, 1869)	87.1		6.9	3.4	5.6		84.6		6.7	3.3	5.4		73.7		0.5	0.1	0.3				
Goniadella gracilis Verril, 1873	80.6		6.9	3.4			88.6		7.6	3.8			71.5		0.5	0.1					
Glycera lapidum Quatrefages,	90.3		13.8	10.3	5.6		75.3		11.5	8.6	4.6		68.0		1.6	0.9	0.3				
Angulus pygmaeus (Lovén, 1846)	71.0			3.4			95.4			4.6			67.7			0.2					
Sphaerosyllis bulbosa Southern,	77 4		34	0	11 1	48	8		36		11 5	49	62.0		0.1	0.2	13	0.2			
1914 Polygordius appendiculatus			5.4			4.0	Ũ		5.0		11.5	4.5	02.0		0.1		1.5	0.2			
Fraipont, 1887	80.6		10.3	10.3	16.7		68.3		8.8	8.8	14.1		55.1		0.9	0.9	2.4				
Thracia villosiuscula (MacGillivray,	74.2	7.7	3.4		16.7		72.7	7.5	3.4		16.3		54.0	0.6	0.1		2.7				
Pulliella sp.	51.6						100						51.6								
Syllis licheri Ravara, San Martín	54.8		34				94.1		59				51.6		02						
and Moreira, 2004 Malmoreniella liunomani	04.0		0.4				0-1.1		0.0				0110		0.2						
(Malmgren, 1867)	77.4				38.9	4.8	63.9				32.1	3.9	49.5				12.5	0.2			
Hesionura elongata (Southern,	51.6		3.4				93.7		6.3				48.4		0.2						
Pisione parapari Moreira, Quintas	45.2						100						45.0								
and Troncoso, 2000	43.2						100				40.0		45.2								
<i>Gyptis propinqua</i> Marion, 1875 <i>Prionospio</i> sp	48.4 51.6		10.3		5.6		89.7 83.3		16.7		10.3		43.4		17		0.6				
Magelona johnstoni Fiege, Licher	2.2	76.0	10.3				2.6	95.0	11.4				0.1	65.4	1.7						
and Mackie, 2000	5.2	10.9	10.5		5.0		5.0	00.0	11.4		74		0.1	03.4	1.2		0.4				
Spiophanes bombyx (Claparède.		69.2	3.4		5.6			88.5	4.4		7.1			61.3	0.2		0.4				
1870)	22.6	92.3	79.3	10.3	5.6	4.8	10.5	43.0	36.9	4.8	2.6	2.2	2.4	39.7	29.3	0.5	0.1	0.1			
Angulus fabula (Gmelin, 1791)		53.8	17.2	3.4				72.2	23.1	4.6				38.9	4.0	0.2					
Milne Edwards in Cuvier, 1830	6.5	53.8	13.8	3.4			8.3	69.4	17.8	4.4			0.5	37.4	2.5	0.2					
Magelona filiformis Wilson, 1959	3.2	53.8	24.1				4.0	66.3	29.7				0.1	35.7	7.2						
Megaluropus agilis Hoeck, 1889		38.5			5.6			87.4			12.6			33.6			0.7				
1857)	9.7	46.2		3.4		4.8	15.1	72.1		5.4		7.4	1.5	33.3		0.2		0.4			
Leucothoe incisa (Robertson,	19.4	46.2	3.4				28.1	66.9	5.0				5.4	30.9	0.2						
1892) Pharus legumen (Linnaeus, 1758)		30.8						100						30.8							
Glycera convoluta Keferstein,		30.8	10.3					74.8	25.2					23.0	2.6						
1862 Scolonlos typicus (Eisig, 1914)	65	38.5	12.0		5.6	1 9	0.2	55.7	20.2		8.0	60	0.6	21 4	2.0		0.4	0.3			
Chaetozone carpenteri McIntosh,	0.5	46.0	13.0	10.2	16.7	4.0	9.5	42.0	2	0.0	45.0	10.5	0.0	20.2	2.0	1.0	0.4	0.5			
1911 Batternenia aleman Mathim 1999	9.7	40.2	3.4	10.3	16.7	19.0	9.2	43.0	3.3	9.8	15.6	10.1	0.9	20.2	0.1	1.0	2.0	3.4			
Prionospio fallax Söderström.		23.1	3.4					87.0	13.0					20.1	0.4						
1920	9.7	61.5	79.3	13.8	11.1		5.5	35.1	45.2	7.9	6.3		0.5	21.6	35.9	1.1	0.7				
Tellina compressa Brocchi, 1814			58.6	24.1	11.1	4.8			59.4	24.5	11.3	4.8			34.8	5.9	1.3	0.2			
Chambers, 1994	3.2		44.8	3.4	11.1		5.2		71.6	5.5	17.7		0.2		32.1	0.2	2.0				
Phaxas pellucidus (Pennant,		23.1	44.8					34.0	66.0					7.8	29.6						
Thyasira flexuosa (Montagu,	2.0		51 7	17.0	5.0	110	25		56.2	107	6.0	4 E E	0.4		20.4	2.2	0.2	2.2			
1803)	3.2		51.7	17.2	5.0	14.3	3.5		50.2	18.7	6.0	15.5	0.1		29.1	3.2	0.3	2.2			
Abra alba (W. Wood, 1802)	10/	30.8	27.6	10.3	22 2	18	12.0	20.6	100	69	1/ 0	32	25	63	27.6	0.7	33	0.2			
Poecilochaetus serpens Allen,	0.7	30.0	62.1	10.5	22.2	4.0	12.9	20.0	20.5	0.9	14.5	0.2	2.5	0.5	23.0	0.7	4.0	0.2			
1904	9.7		62.1	24.1	27.8	33.3	6.2		39.5	15.4	17.7	21.2	0.6		24.5	3.7	4.9	7.1			
Phyllodoce rosea McIntosh, 1877 Nephtys hombergii Savigny in			24.1						100						24.1						
Lamarck, 1818		7.7	48.3	20.7	16.7	4.8		7.8	49.2	21.1	17.0	4.9		0.6	23.8	4.4	2.8	0.2			
Spio filicornis (Müller, 1776)	45.2	23.1	55.2	6.9			34.7	17.7	42.3	5.3			15.7	4.1	23.4	0.4					
Aricidea (Acmira) catherinae Laubier, 1967	6.5		41.4	20.7	5.6		8.7		55.9	27.9	7.5		0.6		23.1	5.8	0.4				
Aricidea (Aricidea)			37.9	34	22.2				59.6	54	34 9				22.6	02	78				
pseudoarticulata Hobson, 1972 Pseudopolydora antennata		_		0.4	~~.~					0.4	04.0			_		0.2					
(Claparède, 1869)		7.7	51.7	44.8	11.1	4.8		6.4	43.1	37.3	9.3	4.0		0.5	22.3	16.7	1.0	0.2			
Galathowenia oculata (Zachs,	6.5	15.4	51.7	89.7	38.9	14.3	3.0	7.1	23.9	41.4	18.0	6.6	0.2	1.1	12.4	37.1	7.0	0.9			
Pterolysippe vanelli (Fauvel,																					
1936) sensu Eliason, 1955,	3.2	7.7	17.2	69.0	38.9		2.4	5.7	12.7	50.7	28.6		0.1	0.4	2.2	35.0	11.1				
Monticellina heterochaeta Laubier,	10.0		044	06.0	~	40.0	6.0		44.0	20.0	32 4	10.0	0.0		07	24.4	44.0	0 -			
1961	12.9		24.1	00.2	5	42.9	0.0		11.2	39.9	23.1	19.8	0.8		2.1	34.4	0.11	0.5			

Таха	Constancy per affinity group							Fidelity per affinity group						Confidence X Fidelity					
	Α	В	C1	C2	C3	D	А	В	C1	C2	C3	D	А	В	C1	C2	C3	D	
Sarsonuphis bihanica (Intes and Le Loeuff, 1975)	3.2		17.2	72.4	11.1	52.4	2.1		11.0	46.3	7.1	33.5	0.1		1.9	33.5	0.8	17.5	
Aphelochaeta sp.1	9.7		24.1	62.1	16.7	4.8	8.2		20.6	52.9	14.2	4.1	0.8		5.0	32.8	2.4	0.2	
Aplacophora sp.1	6.5		3.4	41.4	5.6	4.8	10.5		5.6	67.2	9.0	7.7	0.7		0.2	27.8	0.5	0.4	
Saccella commutata (Philippi, 1844)			24.1	55.2	22.2	9.5			21.7	49.7	2	8.6			5.2	27.4	4.4	0.8	
<i>lsolda pulchella</i> Müller in Grube, 1858			13.8	51.7	38.9				13.2	49.5	37.2				1.8	25.6	14.5		
Ampharete finmarchica (M. Sars, 1864)	29.0	23.1	62.1	100	100	81.0	7.3	5.8	15.7	25.3	25.3	20.5	2.1	1.3	9.8	25.3	25.3	16.6	
Glycera dayi O'Connor, 1987	12.9	7.7	34.5	55.2	5.6	4.8	10.7	6.4	28.6	45.8	4.6	3.9	1.4	0.5	9.9	25.2	0.3	0.2	
Terebellides stroemii Sars, 1835	12.9		34.5	65.5	5	9.5	7.5		2	38.0	29.0	5.5	1.0		6.9	24.9	14.5	0.5	
Leiocapitella dollfusi (Fauvel, 1936)				27.6		4.8				85.3		14.7				23.5		0.7	
Magelona wilsoni Glémarec, 1966			10.3	41.4	16.7	4.8			14.1	56.6	22.8	6.5			1.5	23.4	3.8	0.3	
Euchone rubrocincta (Sars, 1862)	6.5				61.1		9.5				90.5		0.6				55.3		
Prionospio multibranchiata Berkeley, 1927	3.2		17.2	3.4	72.2	4.8	3.2		17.1	3.4	71.6	4.7	0.1		2.9	0.1	51.7	0.2	
Nematonereis unicornis (Grube,	6 F			12 0	61 1		7.0			17.0	75 1		0 5			2.2	45.0		
1840)	0.5			13.0	01.1		7.9			17.0	75.1		0.5			2.3	45.9		
Paralacydonia paradoxa Fauvel, 1913	9.7		6.9	86.2	100	33.3	4.1		2.9	36.5	42.4	14.1	0.4		0.2	31.5	42.4	4.7	
Eunice vittata (Delle Chiaje, 1828)	45.2	7.7	3.4	75.9	100	4.8	19.1	3.2	1.5	32.0	42.2	2.0	8.6	0.2	0.1	24.3	42.2	0.1	
Cirrophorus branchiatus Ehlers,	3.2		0.4	0.4	5	9.5	5.1	44.0	5.0	5.0	79.7	15.2	0.2	0.0	0.0	0.0	39.8	1.4	
1908		1.1	3.4	3.4	5			11.9	5.3	5.3	//.4			0.9	0.2	0.2	38.7		
Lygdamis muratus (Allen, 1904)	12.9	30.8	3.4	3.4	66.7		11.0	26.2	2.9	2.9	56.9		1.4	8.1	0.1	0.1	37.9		
Martin, 1984	3.2			3.4	5	9.5	4.9			5.2	75.5	14.4	0.2			0.2	37.8	1.4	
Carrera-Parra, Quintino and	97	77	34	10.3	66.7	23.8	8.0	63	28	85	54.8	19.6	0.8	0.5	01	0.9	36.5	47	
Rodrigues 2012)	0		0			20.0	0.0	0.0	2.0	0.0			0.0	0.0	0	0.0			
Harmothoe antilopes (McIntosh, 1876)	3.2		6.9	10.3	5		4.6		9.8	14.7	71.0		0.1		0.7	1.5	35.5		
Syllis garciai (Campoy, 1982)	61.3			10.3	72.2	9.5	4			6.7	47.1	6.2	24.5			0.7	34.0	0.6	
Schistomeringos rudolphii (delle					33.3						100						33.3		
Chiaje, 1828) Notomastus latericeus Sars, 1851	64 5	15.4	34.5	44 8	88.9	48	25.5	61	13.6	177	35.2	19	16.5	0.9	47	79	31.2	0.1	
Polydora flava Claparède, 1870	9.7		20.7	31.0	61.1		7.9	0	16.9	25.3	49.9		0.8	0.0	3.5	7.9	30.5	0	
Sternaspis scutata Ranzani, 1817			3.4			38.1			8.3			91.7			0.3			34.9	
Heteromastus filiformis (Claparède, 1864)				3.4	11.1	33.3				7.2	23.2	69.6				0.2	2.6	23.2	
Psammogammarus caecus	16.1			3.4		33.3	30.5			6.5		63.0	4.9			0.2		21.0	
Nephtys incisa Malmoren, 1865			3.4	20.7	5.6	33.3			5.5	32.8	8.8	52.9			0.2	6.8	0.5	17.6	
Sarsonuphis bihanica (Intes and	32		17.2	72.4	11 1	52.4	21		11.0	46.3	7 1	33.5	0.1		19	33.5	0.8	17.5	
le Loeuff, 1975) Ampharete finmarchica (M. Sars.	0.2			12.4		02.4				40.0			0.1		1.5		0.0		
1864)	29.0	23.1	62.1	100	100	81.0	7.3	5.8	15.7	25.3	25.3	20.5	2.1	1.3	9.8	25.3	25.3	16.6	
Harpinia antennaria Meinert, 1890	3.2		6.9	27.6	16.7	38.1	3.5		7.5	29.8	18.0	41.2	0.1		0.5	8.2	3.0	15.7	
Glycera unicornis Savigny in	6.5		27.0	13.0	5	47.0	4.4		19.0	9.5	34.4	32.7	0.3		5.2	1.3	17.2	15.0	
Lamarck, 1818	3.2	15.4	31.0	41.4	38.9	52.4	1.8	8.4	17.0	22.7	21.3	28.7	0.1	1.3	5.3	9.4	8.3	15.1	
Ninoe armoricana (Glémarec, 1968)			10.3	10.3	5.6	28.6			18.9	18.9	10.1	52.1			2.0	2.0	0.6	14.9	
Athanas nitescens (Leach, 1813					5.6	19.0					22.6	77.4					1.3	14.7	
[In Leach, 1813-1814]) Ampelisca sp.	16 1	46 2	41 4	79.3	94 4	71.4	4.6	13.2	11.9	22 7	27 1	20.5	0.7	6.1	49	18.0	25.6	14.6	
Labioleanira yhleni (Malmgren,		77	20.7	31.0	56	38.1		7.5	20.1	30.1	51	37.0	0.1	0.6	12	03	03	14.1	
1867) Alphaup of globor (Olivi, 1702)		1.1	20.1	01.0	0.0	44.0		1.5	20.1	10.1	0.4	00.0		0.0	7.2	0.7	0.5	44.5	
Paraprionospio pinnata (Ehlers	a –			3.4	oc -	14.3				19.4	or -	80.6		a -	. .	0.7	<u> </u>	11.5	
1901)	9.7	7.7	24.1	51.7	38.9	38.1	5.7	4.5	14.2	30.4	22.8	22.4	0.6	0.3	3.4	15.7	8.9	8.5	