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resumo 
 
 

Nas costas complexas e ricas do Nordeste (NE) Atlântico e da Macaronésia, a 
superordem Peracarida (Crustacea) é um dos taxa de invertebrados marinhos 
mais abundante e comum, com um papel importante nas comunidades 
bentónicas. O estudo deste grupo é muitas vezes limitado a listas de inventários 
ou estudos de comunidade bentónicas e o seu conhecimento genético nesta 
região é deficiente. O objetivo principal desta tese foi o de melhorar o 
conhecimento sobre a diversidade e a evolução dos peracarídeos no Atlântico 
Nordeste e na Macaronésia, com ênfase nos membros presentes nas zonas 
pouco profundas e nas zonas costeiras rochosas das ordens Amphipoda, 
Isopoda e Tanaidacea. Esta tese compreende cinco capítulos com pesquisa 
original, incluindo uma biblioteca de referência de DNA barcodes neste grupo, 
através da comparação de dados morfológicos e moleculares (capítulo 2), um 
conjunto de dois estudos dedicados ao género isopode Dynamene (capítulos 3 
e 4), um capítulo dedicado à família de anfípodes Hyalidae (capítulo 5), e uma 
abordagem multi-espécies da diversidade e dos padrões filogeográficos dos 
peracarídios presentes na Macaronésia (capítulo 6). 
No primeiro capítulo, relatamos uma biblioteca de referência de DNA barcodes 
para a superordem Peracarida, que inclui espécimes de costas do Atlântico, 
principalmente da Península Ibérica, juntamente com membros adicionais do 
mesmo ou semalhantes taxa de outros locais. Um maior número de Barcode 
Index Numbers (BINs) em comparação com o número de morfo-espécies foi 
encontrado, com algumas morfo-espécies exibindo até seis BINs. A presença 
de linhagens profundamente divergentes sugere a existência de uma 
considerável diversidade taxonómica anteriormente negligenciada, mesmo 
numa das mais conhecidas faunas de peracarídeos do mundo. Estas 
descobertas indicam a necessidade de uma revisão ampla, abrangente e 
integrada da fauna de peracarídeos das costas do Atlântico do Sul da Europa. 
No segundo capítulo, o abundante mas controverso género Dynamene foi 
investigado em detalhe, ao examinar vários milhares de individuos amostrados 
durante mais de cinquenta anos. A distribuição e a taxonomia das seis espécies 
de Dynamene ao longo do eixo Nordeste Atlântico-Mar Negro foram revistas e 
actualizadas. Novos mapas de distribuição e chaves ilustradas para os machos 
adultos e fêmeas das espécies deste género, presentes no hemisfério norte, 
são fornecidas. 
Nos três últimos capítulos, as ferramentas de delineamento molecular revelaram 
uma extensa diversidade críptica no género Dynamene (3 morfoespécies vs 12 
unidades taxonómicas operacionais moleculares - MOTUs), na família de 
anfípipodes Hyalidae (7 morfoespécies vs 32 MOTUs) e em vinte e cinco 
espécies de peracarídeos (25 morfoespécies vs 90 MOTUs). Uma separação 
entre as populações presentes na Macaronésia e as presentes no continente foi 
visivel e, na maioria dos casos, as populações presentes na Macaronésia 
apresentavam maiores níveis de diversidade. Estas descobertas sugerem um 
papel maior das ilhas oceânicas na diversificação destes invertebrados 
marinhos do que se anteciparia e contribuiram para expor eventos pouco 
explorados na filogeografia e evolução da fauna marinha na Macaronésia. 
Esta tese mostrou que a biodiversidade marinha, como se observa em 
peracarídeos presentes no NE Atlântico e na Macaronésia, foi 
consideravelmente subestimada. O nível de diversidade provavelmente 
aumentará com a adição de diferentes taxa, diferentes tipos de habitat e de 
regiões marinhas distintas. Esta tese também sugere que estas ilhas oceânicas 
podem atuar como impulsionadoras da evolução, da diversificação e do 
endemismo em organismos marinhos, como acontece nos organismos 
terrestres. 
 
 

 
  



 
 

 

  



 
 

 
 

  
 
 
 

Keywords Peracarida, Crustacea, Northeast Atlantic, Macaronesia, Marine Biodiversity. 

abstract In the complex and rich Northeast (NE) Atlantic and Macaronesia coasts, the 
superoder Peracarida (Crustacea) is one of the most abundant and commom 
marine invertebrate taxa with an important role in benthic communities. The 
study of this group is often limited to inventory lists or benthic community studies 
and the genetic knowledge of the group in this region is poor. The main goal of 
this thesis was to improve knowledge on Peracarida diversity and evolution in 
the NE Atlantic and Macaronesia, with particular emphasis on shallow water and 
rocky shore members of the orders Amphipoda, Isopoda and Tanaidacea. The 
thesis comprises five chapters with original research, entailing a DNA barcode-
based screening of the species diversity in this group through the comparison of 
morphology and molecular-derived data (chapter 2), a set of two studies of the 
isopod genus Dynamene (chapters 3 and 4), one chapter about the amphipod 
family Hyalidae (chapter 5), and a multi-species analyses of the diversity and 
broad phylogeographic patterns of Macaronesian peracarideans (chapter 6). 
In the first chapter, we reported a DNA barcode reference library for the 
superorder Peracarida, comprising specimens from marine Atlantic coasts, 
mainly from Iberian Peninsula, together with additional members of the same or 
sister taxa from other locations. A higher number of Barcode Index Numbers 
(BINs) compared with the number of morphospecies was found, with some of 
them displaying up to six BINs. The presence of deeply divergent intraspecific 
lineages suggests the existence of considerable overlooked taxonomic diversity, 
even in one of the most well-known peracaridean faunas in the world. These 
findings indicate the need for a broad, comprehensive and integrated revision of 
the peracaridean fauna from the Southern European Atlantic coasts.  
In the second chapter, the commom but species-poor and controversial isopod 
Dynamene genus was investigated in detail by examining  thousands of 
specimens records sampled during more than fifty years. The distribution and 
taxonomy of the six Dynamene species along the Northeast Atlantic-Black Sea 
axis was revised and updated. New distribution maps and illustrated keys to the 
adult males and females of the northern hemisphere species are provided. 
In the last three chapters, molecular delineation tools revealed extensive cryptic 
diversity in the genus Dynamene (3 morphospecies vs 12 molecular operational 
taxonomic units - MOTUs), in the amphipod family Hyalidae (7 morphospecies 
vs 32 MOTUs) and in twenty-five peracaridean species (25 morphospecies vs 
90 MOTUs). A split between Macaronesian and continental populations was 
patent, and in most cases the Macaronesian populations displayed high levels 
of diversity. These findings suggest a much larger role of oceanic islands in the 
diversification of these marine invertebrates than would have been anticipated, 
and contributes to expose weakly explored events in the phylogeography and 
evolution of Macaronesia’s marine fauna. 
This thesis showed that marine biodiversity, as seen in peracarideans from the 
NE Atlantic and Macaronesia, has been considerably underestimated. The level 
of diversity will likely increase with the addition of different taxa, different types 
of habitat and distinct marine regions. It also suggests that these oceanic islands 
may act as drivers of evolution, diversification and endemism, just as well for 
marine organisms as they do for terrestrial ones. 
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1.1 MARINE BIODIVERSITY 

Biodiversity, the biological diversity, is the variability among living organisms and those 

who ever lived from all sources, which includes diversity within species, between species and at 

ecosystem level (Convention on Biological Diversity 1992). Marine biodiversity has long been 

underestimated when compared with terrestrial habitats due to the general believe that oceans 

are homogeneous, with limited habitat diversity, and therefore, limited species diversity and 

rare speciation events (Briggs 1994, Gray 1997).  

So far, “only” 250 000 marine eukaryote species have been described (Bouchet 2006, 

Jones et al. 2007), but it is expected that around 1 million exist and that most of marine species 

are still to be discovered (Mora et al. 2011, Appeltans et al. 2012). At higher taxonomic levels, 

marine diversity is much higher than the terrestrial counterparts (33 of the 36 major phyla of 

multicellular animals occur in the sea, and 18 of them are marine endemic) (Gray 1997, Roff and 

Zacharias 2011) and had more 2.7 billion years than terrestrial counterparts for evolutionary 

diversification (Carvalho et al. 2011). Moreover, oceans cover more than 70% of our planet and 

with technology improvement and exploration of new habitats, especially in deep sea, the 

number of new species will increase (Vrijenhoek 2009). Every year around 2000 marine species 

are discovered (Appeltans et al. 2012, Horton et al. 2017a).  

Marine species are sources of food and biotechnological resources, as well as indicators 

of environmental health and ecosystem functioning. Major threats to marine biodiversity 

include overharvesting, habitat degradation, pollution, climate change, invasive species and 

other anthropogenic stressors, most of them impacting coastal areas (Gray 1997). Coastal 

systems are more susceptible to be affected due to the growing human population 

concentrating on coastlines (Gray 1997). It has been estimated that almost half of oceans are 

heavily impacted by humans (Halpern et al. 2008). For instance, overfishing is predicted to cause 

collapse in fisheries within the next 50 years (Worm et al. 2006), while marine invaders have 

already increased their ranges and are present worldwide (Molnar et al.  2008). Given these 

major concerns, it becomes more important than ever to know how many and which species are 

present in an ecosystem in order to understand and conserve species diversity.  

Marine biodiversity has a heterogeneous distribution on the planet, with some areas 

being more diverse than others (Gaston 2000). For instance, the Arctic and Antarctic regions are 

less diverse compared with the tropics (Gray 1997). Also, there is an increase of species richness 
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in soft sediments from coastal areas to the deep sea and higher diversity in the benthic realm 

compared to the pelagic realm (Gray 1997, Tittensor et al. 2010).  

Zoobenthic species usually have an adult benthic phase and a larval pelagic phase, with 

the larvae released into the water column and dispersing over large spatial scales via 

oceanographic currents (Scheltema 1986, Hohenlohe 2004). Other zoobenthic groups, such as 

the members of the superoder Peracarida, have direct development with eggs hatching into 

juveniles or non-dispersive larval forms, thus lacking a pelagic larval phase and therefore being 

highly restricted in their dispersal (Naylor 1972, Lincoln 1979, Hayward and Ryland 1995). In 

these taxa, dispersal events are thought to be rarer and to happen locally by swimming or 

crawling, or passively through rafting on floating objects (usually algae), or mediated by human 

vectors (e.g., shipping) (Scheltema 1986, Thiel and Gutow 2005). These organisms show stronger 

genetic structure and are more susceptible to isolation (potentially leading to isolation by 

distance and allopatric fragmentation) when compared to species with dispersive larval phases. 

This is supposedly due insufficient gene flow to counterbalance the effects of genetic drift 

(Varela and Haye 2012). 

 

1.2 SUPERORDER PERACARIDA 

Peracarida is a superorder of the subphylum Crustacea, with some disagreement as to 

which orders should be included. According to World Register of Marine Species (WoRMS), it is 

composed by 11 orders and more than 20 000 described species, a third of the total number of 

crustacean species (Horton et al. 2017a). They inhabit marine, freshwater and terrestrial 

habitats. With a few exceptions (e.g., parasitism, hyperiids or pelagic mysids) (Williams and 

Boyko 2012), the peracarideans are free living benthic organisms (Naylor 1972). In marine 

environments, the Peracarida is one of the most diverse and abundant invertebrate groups and 

inhabit different habitats from shallow water to deep sea all over the world (Cunha et al. 1997, 

Dauby et al. 2001). They have different ecological roles such as parasitism, predation, detritus 

feeders and herbivory (Naylor 1972) and have high relevance in trophic interactions as an 

important source of food for other benthic animals and commercially exploited fish (Beare and 

Moore 1996, Woods 2009). Additionally, many peracaridean species are also good 

environmental indicators (Bonsdorff 1984, Ohji et al. 2002, Guerra-García et al. 2006, Lo Brutto 

et al. 2013). 
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The superorder Peracarida can be distinguished from other crustacean groups by the 

following characteristics: a free-living larval stage is absent, except for some parasitic species 

(Williams and Boyko 2012) meaning that they have direct development with the juveniles being 

morphological similar with the adults (Naylor 1972, Holdich and Jones 1983); the young are 

incubated by the female in a ventral structure called marsupium (a brood pouch formed by 

oostegites on the inner bases of two or more thoracic limbs), where they grow for some days to 

months depending on the species. Morphologically, usually they are very small (a few mm or 

cm) and are characterized by the possession of a single pair of maxillipeds, by mandibles with 

an articulated accessory process between the molar and incisor teeth in the adults, the lacinia 

mobilis, and the presence of a single thoracic segment fused to the head (Lincoln 1979, Hayward 

and Ryland 1990). Additionally, sexual dimorphism is common with morphological structures 

appearing in males before reaching adult phase (Naylor 1972). 

The general body structure of peracarideans is divided into a cephalon (head), which 

normally incorporates one true pereon somite with its associated appendages (maxillipedes), a 

pereon (thorax) of 7 somites and a pleon (abdomen) of 6 somites (Fig. 1.1). Some or all of the 

pleon somites may be fused with the terminal telson, forming a pleotelson. The cephalon bears 

a pair of antennules and a pair of usually larger antennae (often called antenna 1 and antenna 

2 respectively), each consisting of a peduncle and multi-articulated flagellum, followed by 

ventral mandibles, maxillas and maxillipeds (Naylor 1972, Lincoln 1979, Holdich and Jones 1983, 

Hayward and Ryland 1990). Morphological structures are show in detail in Fig. 1.2. 

The orders Amphipoda and Isopoda comprise almost 90% of the total known 

peracaridean species (Naylor 1972, Lincoln 1979). In rocky shore marine environments in the 

Northeast (NE) Atlantic (see Annexes 1.1 and 1.2 for details about intertidal rocky shores), 

additionally to these two orders, the order Tanaidacea is present and common (Pereira et al. 

2006, Guerra-García et al. 2011, Vinagre et al. 2016), despite the fact they only constitute less 

than 5% of known peracaridean diversity worldwide (Holdich and Jones 1983, Blazewicz-

Paszkowycz et al. 2012). Mysids and cumaceans can also be present in marine NE Atlantic coasts 

(Hayward and Ryland 1990, Costello et al. 2001), although they are less commom (Pereira et al. 

2006, Izquierdo and Guerra-García 2011, Guerra-García et al. 2011). Below, the three most 

commom peracaridean orders (Amphipoda, Isopoda, Tanaidacea) present in NE Atlantic coasts 

are described with greater detail. 
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Figure 1.1. Diagram of the anatomy of the gammaridean amphipod Elasmopus rapax, here 
used to represent the general anatomy of a Peracarida. 
Adapted from Lincoln 1979. 

 

 
Figure 1.2. Schematic representation of a peracaridean illustrating morphological structures.  
Adapted from Kensley and Schotte 1989.  
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1.2.1 Amphipoda 

The order Amphipoda (Fig. 1.3) consists in more than 9 900 known species divided in four 

sub-orders, recently rearranged (see Lowry and Myers 2013), with around 1/5 of total species 

living in fresh or inland water (Horton et al. 2017b). Amphipods are thought to have originated 

in the Lower Carboniferous, however, the fossil record only dates back to the Upper Eocene 

(Lincoln 1979, Horton et al. 2017b).  

Amphipods are characterized by body typically laterally compressed, the absence of 

carapace, pereon with 7 pairs of uniramous limbs. The first two pairs of pereopods are modified 

as gnathopods. The name Amphipoda means different foot, in reference to the two kinds of 

pereopods that amphipods possess (in contrast with isopods, see below). Amphipods are unique 

in the possession of three pairs of pleopods (biramous, multi-articulate used for swimming) and 

three pairs of uropods (robust, biramous, 1 or 2-articulate appendages).  No other 

malacostracan group possesses more than one pair of uropods. As a group, the amphipods are 

quite conservative in their overall range of body architecture, in contrast with other 

peracaridean groups, such as the Isopoda. However, in a small minority of cases, there is 

reduction in the number and type of appendages, with the pleon rudimentary or absent 

(Caprellidae) (Lincoln 1979, Hayward and Ryland 1990). 

 

 

      Figure 1.3. An example of an Amphipod: Ampithoe rubricata. 
          Source: www.aphotomarine.com. ©David Fenwick. Accessed on 25-04-2017. 
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1.2.2 Isopoda 

The order Isopoda (Fig. 1.4) comprises more than 10 300 species known to date. 

Approximately 6 250 of these are marine or estuarine (eight suborders) and the vast majority of 

species are known from depths of less than 1000 metres (Poore and Bruce 2012). Isopods 

oldest fossil is from the Carboniferous period, around 300 million years ago (Schram 1970). 

The isopod body is usually dorsoventrally flattened, and lacks a carapace. The pereopods 

are used for locomotion and have similar size, morphology and orientation, giving the order its 

name "Isopoda", from the Greek equal foot. The coxal plates of the pereopods are visible from 

above. The pleon and telson are wholly or partially fused, forming a pleotelson, with five pairs 

of biramous pleopods and a pair of uniramous or biramous uropods. In most species, the sexes 

are separate and sometimes dimorphic, with the main differences in body shape and 

mouthparts. The male pleopod 2 bears an appendix masculine, or it is sometimes combined with 

pleopod 1 to form a copulatory structure. In the female, pleopod 1 is missing and pleopod 2 is 

modified as a flat operculum. The juveniles have a succession of recognisable growth stages 

(instars) (Naylor 1972, Hayward and Ryland 1990). Marine isopods are among the most 

morphologically diverse groups of all the Crustacea (Poore and Bruce 2012). 

 

 

 

                         Figure 1.4. An example of an Isopod: Idotea balthica.  
                         Source: www.aphotomarine.com. ©David Fenwick. Accessed on 25-04-2017.  
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1.2.3 Tanaidacea 

The order Tanaidacea (Fig. 1.5) is poorly known compared with other peracaridean orders 

such as Isopoda and Amphipoda (Holdich and Jones 1983) and had an unclear status until the 

19th century, commonly being classified within the Isopoda or Amphipoda (Blazewicz-

Paszkowycz et al. 2012). They were given separate ordinal status by Hansen (1895) and currently 

the order includes almost 1400 described species divided in 4 subororders (Anderson 

2016).  Oldest fossils records date back to the Lower Carboniferous, the Triassic and the 

Jurassic (Blazewicz-Paszkowycz et al. 2012). 

Tanaidaceans are truly demersal organisms which mainly inhabit the surface layer of the 

sediments, either in burrows, as crevice dwellers or by constructing tubes. They can be found 

amongst algae in rocky shores, in mud, in crevices between the plats on back of turtles, in the 

abyssal trenches and some are found in fresh water (Holdich and Jones 1983).  

The head and the first two segments of the thorax are fused forming the cephalotorax, 

covered by the carapace, which is produced into lateral folds enclosing a branchial chamber. 

They can be dorsoventrally flattened or cylindrical, and tend to the rather elongate. The second 

fused thoracic segment bears a pair of chelate appendages, the chelipes, and the following 

ambulatory six pairs of pereops are usually similar. Each pleon segment has a pair of pleopods, 

used in swimming. The sixth and final segment of the pleon is fused with the telson forming the 

pleotelson. A single pair of uniramous or biramous uropods is borne by the pleotelson. Some 

species are hermaphroditic (Holdich and Jones 1983, Hayward and Ryland 1990, Blazewicz-

Paszkowycz et al. 2012). 

 

 
        Figure 1.5. An example of a Tanaidacea: Tanais dulongii.  

           Source: www.aphotomarine.com. ©David Fenwick. Accessed on 23-05-2017. 
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1.3 METHODS IN SPECIES DISCRIMINATION AND DELIMITATION 

1.3.1 Morphological approaches 

There are significant disparities in taxonomic knowledge across marine species. Larger 

organisms (e.g., fishes, mammals) are represented by fewer taxa and are usually well-studied 

groups. Considering how marine vertebrates are relatively well-known compared to most 

marine invertebrates, the existing gaps in knowledge are particularly disconcerting when 

attempting to estimate the biodiversity of smaller organisms such as benthic marine 

invertebrates (Radulovici et al. 2010). For these organisms, apparentely, the extent of taxonomic 

knowledge depends on the size of the taxonomic community studying it (Bouchet 2006).  Due 

to the many difficulties for biodiversity assessment using current approaches, marine faunal 

inventories usually fail to identify one third of specimens to the species level when using 

morphological methods (Schander and Willassen 2005). 

The binomial nomenclature system introduced by Carl Linnaeus, based on the anatomical 

body plan and on morphology, can be easily assessed through the observation of the specimens. 

It has been the major tool used to describe and classify species diversity. This procedure follows 

a strict protocol according to the International Code of Nomenclature by which species have 

unique binomial scientific names (genus and species) and are linked to type specimens (from 

type localities) preserved in museum collections. However, some limitations are found when 

using morphological identifications. Morphology-based identifications are very costly and time 

consuming. Accurate species-level identifications require highly trained specialists with 

considerable and diverse taxonomic expertise, especially in marine benthic invertebrate fauna 

due to its great morphological complexity (Radulovici et al. 2010). This leads to a narrow 

specialization in identifying organisms belonging to a restricted group of taxa (e.g. a carcinologist 

will likely have difficulties in identifying polychaetes and the other way around; Gordon 2000, 

Waite et al. 2004). Additionally, the number of experts worldwide is rapidly decreasing due to 

shortage in funding and to the lack of interest in pursuing a "dead" specialization (Wilson 2003). 

Because of the resulting "taxonomic impediment" and the current progress in classifying life 

(Bouchet 2006) the predicted timeframe for an inventory of marine biodiversity alone is more 

than 1000 years. Considering also the rates of biodiversity loss, it is evident that many species 

will go extinct before we even know they existed (Mora et al. 2011). 

The morphology-based approach can also be problematic for the identification of all life 

stages (e.g., eggs, larvae), for sexually dimorphic species or those with large phenotypic plasticity 
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(Ekrem et al. 2007). Moreover, the presence of damaged specimens and the ineffectiveness in 

diagnosing cryptic species (see below), which have been increasingly reported in marine 

systems, represent additional limitations (Knowlton 1993). All together, these insufficiencies of 

the morphology-based approaches strongly limit our ability to monitor biodiversity more 

extensively, accurately and quickly in benthic ecosystems, and call for alternative or 

complementary approaches. So, it is no surprise that scientists took the opportunity provided 

by the development of molecular methods to clarify many ambiguities in traditional taxonomy. 

Therefore, molecular methods have been increasingly used for species identification and 

delimitation (Hebert et al. 2004, Jörger et al. 2012) and a universal molecular system has been 

proposed for identification of eukaryotic life (Hebert et al. 2003). 

1.3.2 Molecular approaches 

The first type of molecular markers to be used in population genetics and molecular 

systematic studies were allozymes, alternative forms of enzymes coded by alleles at the same 

locus (Avise 1975). Subsequently, various methods were developed such as DNA hybridization, 

random amplified polymorphic DNA, restriction fragment length polymorphism, single strand 

conformational polymorphic DNA or DNA sequencing (Wong and Hanner 2008). The latter one 

became the method of choice for species identification and systematics studies, either by using 

nuclear or/and mitochondrial genes (Bartlett and Davidson 1991, Medeiros-Bergen et al. 1995).  

The mitochondrial genes and the nuclear genes encoding ribosomal RNA are easily 

accessible and very informative and have been particularly important for inferring species 

phylogenies or to study many systematics’ questions (Wakeley 2004). These markers, which 

have changes that are considered selectively neutral or of little or no functional consequence to 

the organism (Kimura 1983), have a degree of polymorphisms proportional to the underlying 

rate of mutation (Drake et al. 1998). Therefore, they have the potential to provide resolution 

across multiple time scales, with different genes displaying different evolutionary rates (Hillis 

1987). However, nuclear markers, on average, have a lower substitution rate, which results in 

nuclear genes evolving slower than mitochondrial ones. Consequently, they may be better at 

resolving deeper phylogenetic nodes (Moriyama and Powell 1997). 

Studies using 18S (Spears et al. 2005, Meland and Willassen 2007) and 28S rRNA genes 

(Jarman et al. 2000) exemplify the applications of nuclear loci in Peracarida phylogeny. They 

have disputed the monophyly of the Peracarida by removing the Mysida, and they have also 

disproven the monophyly of the Edriophthalma (Isopoda and Amphipoda) and the Mysidacea 
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(Mysida, Lophogastrida and Pygocephalomorpha) groups. Multi-locus approaches were also 

applied by Drumm (2010) and Mamos et al. (2016) that used mitochondrial (COI) and nuclear 

genes (28S rRNA) to resolve the phylogeny within the order Tanaidacea and the Gammarus 

balcanicus complex, respectively. 

Although several mitochondrial and nuclear loci have been employed as molecular 

markers for animal species identification and discrimination, DNA barcoding (Hebert et al. 2003), 

a single-marker approach based on a 658 base pair (bp) fragment at the 5’ end of the 

mitochondrial gene coding for cytochrome c oxidase subunit I (COI), eventually became the 

‘global standard’ (Hebert et al. 2016) and has been widely used, including in crustaceans (e.g., 

Costa et al. 2007, Raupach and Radulovici 2015, Raupach et al. 2015, Lobo et al. 2016a).  

1.3.3 DNA barcoding 

The study by Bucklin et al. (1999) was one of the early reports on the use of COl sequences 

to discriminate sibling species of crustaceans, involving eight species from three genera of 

planktonic copepods. However, it was Hebert et al. (2003) that suggested a universal DNA-based 

identification system employing COI DNA sequences as taxon “barcodes”, reportedtly fast, 

reliable and cost-effective. Several studies (see Hubert and Hanner 2015 for details) indicate 

that sequence divergences in the COI of most of the animal phyla are larger at the genus than 

at the species level, enabling the discrimination of closely related species (e.g., Costa et al. 2007). 

Although DNA barcoding reveals only a tiny segment of the genome, it examines the same core 

region, so it is possible to compare sequences across species and how they diverge, and 

therefore assign unidentified specimens to known species (Costa and Carvalho 2010).  

DNA barcoding is more than just another method of molecular identification. As its name 

implies, it involves standardization. ln practice, in any given taxonomic group, there are always 

markers that can be as good for resolving species as COI. However, by sequencing optimal 

markers for each group there will be a vast, diverse, but non-comparable array of genetic data. 

Nevertheless, COl performs sufficiently well across the broadest possible range of taxa to allow 

standardization (Hebert et al. 2003, Radulovici et al. 2010). ln addition, all the metadata 

associated with the sequences obtained can be uploaded on-line on BOLD Systems 

(Ratnasingham and Hebert 2007) and made publicly available. 

The choice of mitochondrial DNA (mtDNA) over nuclear DNA is based on the fact that 

mitochondria are present in large copy numbers in each cell, and are therefore easier to amplify 

from small amounts of tissue or when DNA is degraded. Additionally, due to maternal 
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inheritance, there is generally no recombination (Galtier et al. 2009). Finally, mtDNA has a higher 

evolutionary rate and lack of introns (Hebert et al. 2003). Compared with other mtDNA genes, 

COl has been shown to be a superior marker for species identification and discrimination 

because it doesn’t have insertions and deletions and it has a higher probability of being amplified 

in a wide range of species with standard protocols (Hebert et al. 2003, Ratnasingham and Hebert 

2013). Using mtDNA sequence information, namely COI barcodes, it is possible to construct 

phylogenetic trees, to study close to moderately deep interspecific relationships, and 

disentangle cryptic species (Meyran et al. 1997, Avise and Walker 1999, Hebert et al. 2003, Avise 

2004).  

1.3.4 Cryptic species 

Cryptic species (morphologically similar but genetically distinct) were shown to be a 

common presence in marine systems (Knowlton 1993, Leray and Knowlton 2016) and in 

crustaceans in particular (Whiteman et al. 2004, Moura et al. 2008). Cryptic species cannot be 

identified based on morphological characters, but can be distinguished using molecular 

methods, such as DNA barcoding (Hebert et al. 2004). Many taxa previously considered 

cosmopolitan are actually complexes of geographically separated cryptic species (Jaafar et al. 

2012, Jörger et al. 2012). Other cryptic complexes follow a sympatric model of speciation, with 

reproductive barriers resulting from differences in habitat choice or resource use (Miglietta et 

al. 2011).  

Cryptic species are a hidden aspect of marine biodiversity and seem to occur across all 

marine groups, therefore the extent of marine biodiversity probably is underestimated (Tautz 

et al. 2003). The identification of cryptic species can be controversial but genetic data can reveal 

at least the existence of intraspecific genetic groups with separate evolutionary history (Avise et 

al. 1987, Dawson 2001) and help to understand the process of cryptic speciation in ecological 

and evolutionary scopes (Whiteman et al. 2004, Moura et al. 2008). However, the task of 

investigating further the extent of this phenomenon and properly describe a new species needs 

additional genetic, ecological and behavioral data (Jörger and Schrödl 2013). Unfortunately, 

since the number of taxonomists is decreasing (Packer et al. 2009) and marine barcodes are 

rapidly accumulating, the majority of flagged cases stop at the level of cryptic species. Without 

a larger interest and involvement of highly trained taxonomists in marine barcoding studies, the 

advancement of the understanding of marine speciation will be slow (Boero 2010).   
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Nevertheless, uncovering these cryptic species is fundamental for the understanding of 

evolutionary processes, historical biogeography, ecology and conservation approaches. The lack 

of morphological characters to distinguish cryptic species should not lead to considerable parts 

of biological diversity remaining unaddressed (Bickford et al. 2007, Trontelj and Fišer 2009). 

 

1.4 STUDY AREA 

1.4.1 Northeast Atlantic 

The North Atlantic Ocean comprises the area in the Northern Hemisphere between 

America continent and the African-European continents (Seton et al. 2012). It was originated 

during the break-up of Pangaea in the Jurassic period and it has been influenced during its 

history by climatic oscillations with a rapid cooling in the late Eocene (from subtropical to 

temperate and cold). These changes led to biological diversification related to emerging 

environmental conditions (Golikov and Tzvetkova 1972). During the Pliocene, the North Atlantic 

was invaded by Pacific taxa via the Arctic due to the opening of the Bering Strait (Vermeij 1991). 

More recently, the Northeast Atlantic communities were influenced by the Quaternary 

glaciations, during their glacial and interglacial phases (Wares and Cunningham 2001). During 

these periods, marine organisms had to move to southern regions such as the Iberian Peninsula 

or the Macaronesia to escape the ice sheets or survive in glacial refugia. The last glacial 

maximum (LGM), was around 20 000 years ago, and Europe was covered by massive ice sheets 

(Fig. 1.6) while the sea level was lower, uncovering the continental shelves (Mix et al. 2001).  The 

present-day Northeast Atlantic marine communities are in great part the result of the above-

mentioned historical events. 
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Figure 1.6. Approximate representation of the Northeast Atlantic and Mediterranean at the Last Glacial 
Maximum. Coastlines extended to a −130 m sea-level. Shaded striped areas represent permanent land 
and sea ice cover and dotted areas represent seasonal sea ice.  
Adapted from Xavier and Van Soest 2012. 
 
 
1.4.2 Macaronesia 

Islands are natural laboratories for evolutionary diversification as well for natural 

extinction processes (Valente et al. 2014). Volcanic islands arise from the ocean floor and have 

never been connected to continental landmasses (Thornton 2007). This process begins with 

initial emergence from an underwater seamount, which is followed by a period of intense island-

building, until maximum area and elevation are reached. Islands then enter a slow erosional 

stage (Price and Clague 2002, Jackson 2013). Several models integrating island ontogeny and/or 

other factors such as area or distance to near landmass with ecological biogeography have been 

proposed to explain islands colonization and biodiversity (for details, see Paulay 1994, Stuessy 

2006, Whittaker et al. 2008, Fernández-Palacios et al. 2016, Otto et al. 2016). Nevertheless, 

dispersal from other sources is fundamental to settle life in these new formed habitats (Cowie 

and Holland 2006). 

The Macaronesia is a group of four archipelagos (Azores, Madeira including Selvagens 

islands, Canary Islands and Cape Verde) (Fig. 1.7) in NE Atlantic Ocean, off the coast of the 

European and African continents, at distances from the continental shores varying from 96 to 

1500 km (Fernández-Palacios et al. 2011). The various archipelagos and their islands all have 
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differing degrees of isolation from the continent, with Flores and Corvo (Azores) in the mid-

Atlantic being the most remote (Hawkins et al. 2000). 

The oldest “current” island, Selvagem Grande, arose 27 Million years ago (Mya) 

(Geldmacher et al. 2001) and the newest, Pico island in the Azores, only 0.27 Mya (Carine and 

Schaefer 2010). The four archipelagos have distinct geneses, although the Selvagens group that 

belongs to Madeira archipelago is part of Canaries volcanic province (Fernández-Palacios et al. 

2011). Cape Verde was not used in this thesis, therefore it will not be explored (for details see 

Ramalho et al. 2010, Ramalho 2011). Macaronesia’s first islands, Gettysburg-Ormonde and Lars, 

emerged around 60 Mya from the Madeira and Canarian volcanic provinces hotspots 

respectively, while the most recent ones are Madeira (5 Mya) and El Hierro (1.1 Mya) in the 

Madeira and Canaries volcanic provinces respectively (Geldmacher et al. 2001, 2005; Fernández-

Palacios et al. 2011). In the Azores, the junction between the American, Eurosian and African 

plates forms a complex zone, the Mid-Atlantic and Terceira-Ridges, where volcanic activity exists 

(Ferreira 2005). Azores is “younger” when compared with Madeira and Canaries archipelagos, 

with the oldest island being Santa Maria (8 Mya) and the rest of the islands being younger than 

4.1 Mya (Carine and Schaefer 2010). 

The sea levels changes during the quaternary glaciations and mainly the period after the 

LGM deeply affected Macaronesia composition (Lambeck et al. 2002, 2014, Fernández-Palacios 

et al. 2011). After the LGM, the sea level rose around 130 meters, submerging several islands in 

the Madeira and Canarian volcanic provinces and changing the shape and coastlines of the 

remaining emerged islands (Fernández-Palacios and Whittaker 2008). For instance, in the 

Madeira volcanic province, six of the eight islands existing before the LGM were covered by 

water and the Madeira island was divided in the Madeira and the Desertas. In the Canarian 

volcanic province, some islands were also covered by the rise of the sea level, but only three (of 

ten) islands submerged after the LGM (Fernández-Palacios et al. 2011). These now submerged 

islands (the Paleo Madeira and Paleo Canaries Seamounts, Fig. 1.7) (Fernández-Palacios et al. 

2011, van den Bogaard 2013) could have served as stepping stones for benthic organisms in past 

dispersal events from and to continental coasts (Hawkins et al. 2000). 

During the quaternary glaciations, currents and tides in Northeast Atlantic and 

Macaronesia changed (Crowley 1981, Keffer et al. 1988, Wilmes and Green 2014), with the 

Canary and Azores currents playing the major natural roles in large dispersal events in marine 

organisms (Barton et al. 1998, Arístegui et al. 2009). However, sea surface temperature change 

was small, namely in Azores and Madeira (between 2-3ºC) and more marked in the eastern 



 
General introduction 

17 

islands of the Canaries (Fig. 1.6) (Crowley 1981, Santos et al. 1995).  Briggs (1966) proposed a 

relationship between oceanic islands, endemism, extinction and ‘marine paleotemperatures’. 

He suggested the correlation of the lack of endemism in the shallow marine faunas of several 

Atlantic oceanic islands to extinctions caused by reduced temperatures associated with the 

quaternary glaciations. However, Ávila et al. (2008) showed that most of the mollusc species 

present in the Azores prior to the last glaciation have persisted through to the present day and 

no signs of ‘mass extinctions’ were found in the littoral marine molluscs of the Azores. Therefore, 

it is unlikely that these small changes have affected Macaronesian marine benthic populations, 

especially considering that the changes in both temperatures and sea level were gradual (Santos 

et al. 1995, Barton et al. 1998) and peracarideans have the capacity to adapt to changes in 

temperature and resist small periods of desiccation (Harvey et al. 1973). It is likely that the 

Macaronesian islands have been glacial refugia for marine benthic organisms (Domingues et al. 

2005, Almada et al. 2005). However, changes in islands area due to quaternary glaciations may 

have affected and shaped species richness, even in marine habitats (Triantis et al. 2012, Hachich 

et al. 2015). 

 

Figure 1.7.  Empty ocean bathymetry showing the Northeast Atlantic Ocean region. Besides the actual 
emerged archipelagos forming the Macaronesia region (Azores, Madeira with Selvagens, Canaries and 
Cape Verde), other seamount archipelagos, such as Palaeo-Madeira and Palaeo-Canaries (between those 
island groups and the Iberian Peninsula), the Great Meteor archipelagos (south of the Azores) and the 
Saharan archipelago (south-west of the Canaries), are also shown.  
Adapted from Fernández-Palacios et al. 2011. 
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1.5 AIMS AND STRUCTURE OF THE THESIS 

The main goal of this thesis was to improve the knowledge of Peracarida biodiversity in 

intertidal rocky shores of the NE Atlantic. The three most dominant peracaridean orders in NE 

Atlantic: Amphipoda, Isopoda and Tanaidacea, were the focus of the research, which combined 

morphology-based approaches with molecular methods. The organisms were sampled along the 

NE Atlantic (see Annexes 1.3 and 1.4 for methodology and Annexes 1.6 and 1.7 for a list of the 

peracaridean species sampled). More specifically, the objectives of the present thesis were: 

 To build, audit and annotate a core reference DNA barcoding library for the 

peracaridean fauna of the Atlantic coasts of the Iberian Peninsula. 

 To update the taxonomy and review the distribution of the isopod genus Dynamene. 

 To review the diversity of the peracarids in this region, comparing morphology-based 

species assignments with species boundaries suggested by molecular methods. 

 To clarify taxonomic ambiguities and detect potential hidden or cryptic diversity. 

 To contribute to the understanding of the role of Macaronesia islands in the 

diversification and evolution of peracarids. 

 

This thesis is divided in seven chapters, five of which (Chapters 2 to 6) consist on the 

studies performed in the scope of this thesis and organized in individual sections (Abstract, 

Keywords, Introduction, Material and Methods, Results, Discussion and Conclusions) and which 

correspond to one published article in an indexed peer-reviewed international scientific journal, 

and four articles in preparation to be submitted to indexed peer-reviewed international 

scientific journals, which are listed listed further below. All five studies were performed under 

the scope of the FCT research grant DiverseShores (PTDC/BIA-BIC/114526/2009). Financial 

support for the present thesis was also secured through a PhD grant (SFRH/BD/86536/2012) 

financed by FCT. 

Chapter 1 corresponds to the general introduction. Chapter 2 reports on, and examines, 

a core DNA barcode library for the superoder Peracarida using novel and publicly available data 

of the orders Amphipoda, Isopoda and Tanaidacea from the Atlantic Southern European Coasts. 

In Chapter 3 an extensive update of the taxonomy and distribution of Dynamene species in the 

Northeast Atlantic-Black Sea axis is presented, accompanied by keys and photographs to help in 

the identification of the males and females of the different species. Chapter 4-6 contrasts 

morphology-based species assignments with species boundaries suggested by molecular 
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methods to detect hidden or cryptic diversity in different peracaridean species in NE Atlantic, 

and explores the role of Macaronesia islands in peracaridean diversification and evolution in this 

oceanographic region. Chapter 4 explores the phylogeny and phylogeography of the isopod 

genus Dynamene present in Northeast Atlantic using a multi-locus approach. In chapter 5, the 

diversity within the amphipod family Hyalidae in Macaronesia is investigated using DNA 

barcoding. In chapter 6, a comparative analysis is carried out on the divergence patterns 

between continental Europe and Macaronesia in populations from twenty-five species from the 

orders Amhipoda, Isopoda and Tanaidacea. Chapter 7 consists in the global appraisal of the 

thesis, with the concluding remarks and future perspectives.  

Five articles have been produced on the course of this PhD thesis, which have been 

published or will be submitted for publication in due course: 

Chapter 2 Vieira PE, Raupach M, Queiroga H, Costa FO (In preparation) A DNA barcode 

reference library for the superorder Peracarida (Crustacea) from the Southern 

European Atlantic coasts.  

Chapter 3 Vieira PE, Queiroga H, Costa FO, Holdich DM (2016) Distribution and species 

identification in the crustacean isopod genus Dynamene Leach, 1814 along the 

Northeast Atlantic-Black Sea axis. ZooKeys. 635: 1-29. 

doi:10.3897/zookeys.635.10240. 

Chapter 4 Vieira PE, Desiderato D, Holdich DM, Creer S, Carvalho G, Costa FO, Queiroga H 

(In preparation) Macaronesia as an evolutionary hotspot for low dispersal 

marine invertebrates: genetic evidence from the rocky intertidal isopod 

genus Dynamene.  

Chapter 5 Vieira PE, Desiderato D, Abiatti M, Costa FO, Queiroga H (In preparation) 

Macaronesian islands as drivers of diversification of marine invertebrates in the 

Northeast Atlantic: the remarkable case of the family Hyalidae (Crustacea: 

Amphipoda).  

Chapter 6 Vieira PE, Azevedo CS, Costa FO, Queiroga H (In preparation) DNA barcoding 

reveals cryptic diversity in the superorder Peracarida (Crustacea) in Northeast 

Atlantic: implications for Macaronesia conservation, with new records for 

several species from Macaronesia. 
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2.1 ABSTRACT 

The superorder Peracarida is a highly diverse crustacean taxon, comprising numerous prominent 

members in European coastal areas’ communities and ecosystems. Here, we report on a DNA 

barcode reference library for the superorder Peracarida, comprising specimens from marine 

Atlantic coasts of Iberian Peninsula, together with additional members of the same or sister taxa 

from other locations. A total of 597 DNA barcodes were compiled in a Barcode of Life Data 

(BOLD) dataset, with 220 new DNA barcodes. The dataset included specimens of the orders 

Amphipoda (64.9%), Isopoda (32.1%), and Tanaidacea (3.0%). In total, 140 peracaridean 

morphospecies were assigned to 160 Barcode Index Numbers (BINs) in BOLD, with 155 (96.9%) 

represented by single BINs, comprising species collected from geographically distant 

populations, up to approximately 4000 km in the most extreme cases (e.g., Apohyale prevostii 

from Portugal, Iceland, Scotland, North Sea and Canada). All multiple intraspecific BINs were 

allopatric, although the geographic distance between members of each BIN lineage ranged from 

35 km up to 3000 km. Major splits were detected between upper north and south regions of the 

Northeast (NE) Atlantic, between Atlantic and the Mediterranean Sea, or sometimes even within 

countries. The most striking case was revealed for the isopod Janira maculosa, which split into 

six BINs (maximum intraspecific distance 25.16%). The high percentage of morphospecies 

matching unique BINs (96.9%) shows the good reliability of our DNA barcode library. However, 

the presence of deeply divergent intraspecific lineages morphospecies suggests the presence of 

considerable overlooked taxonomic diversity. These findings indicate the need for a 

comprehensive revision and DNA barcode-based screening of the peracaridean fauna from the 

Southern European Atlantic coasts.  
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2.3 INTRODUCTION 

Peracarida is a Superorder of the subphylum Crustacea and one of the most diverse and 

widely distributed groups of crustaceans. They are also numerically dominant organisms of 

marine benthic faunas and among the most ecologically important invertebrates (Cunha et al. 

1997, Dauby et al. 2001, Lourido et al. 2008, Moreira et al. 2008), with high relevance in trophic 

interactions (Beare and Moore 1996, Woods 2009). This group currently contains more than 

20000 known species listed in World Register of Marine Species (WoRMS) (Horton et al. 2017a), 

but numerous species still await formal description. 

The peracaridean fauna of the Iberian Peninsula coast is rich and diverse, consisting on a 

mixture of species from adjacent biogeographic regions. Being a biogeographic cross road region 

where many peracaridean species have their distribution limits (Pereira et al. 2006), this region 

is particularly relevant for monitoring alterations in distributional ranges driven by different 

factors, such as climate change, the introduction of alien species or anthropogenic activities 

(Chainho et al. 2015). Most studies of peracarid crustaceans along the coasts of the Iberian 

Peninsula have been focusing on the association of the community with algae (e.g., Sánchez-

Moyano et al. 2007, Guerra-García et al. 2009, Izquierdo and Guerra-García 2011, Guerra-García 

et al. 2011, Torrecilla-Roca and Guerra-García 2012) or their ecological distribution (e.g., 

Reboreda and Urgorri 1995, Castelló and Carballo 2001, Pereira et al. 2006, Vinagre et al. 2016).  

Species identifications and delimitation in Peracarida can be rather challenging, due to 

their small size, sexual dimorphism, morphological variation trough life cycle, and morphological 

uniformity among closely related species, which further limit the ability to discriminate species 

based on morphological characters alone (Costa et al. 2004). This leads to the knowledge of 

peracaridean diversity being constrained by the taxonomic impediment (Coleman 2015). 

In recent years, the use of molecular tools like the DNA barcoding for specimen 

identification and classification has been shown to be successful in several marine groups 

(Radulovici et al. 2009, Knebelsberger et al. 2014, Raupach et al. 2015). Its usage has become 

quite widespread, often as a complement to morphological identifications (Hebert et al. 2003, 

Hajibabaei et al. 2006, Weitschek et al. 2014). A growing number of articles are reporting hidden 

diversity in peracaridean species (e.g., Witt et al. 2006, Costa et al. 2009, Xavier et al. 2011a, 

Richards et al. 2012, Raupach et al. 2014), and the availability of reliable, scrutinized and 

annotated reference libraries of DNA barcodes is a fundamental backbone for making 

comparisons with morphology-based identifications. Such libraries can be applied to probe and 
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revise the taxonomic diversity of a specific group, provide a quick screening method for 

highlighting mismatching morphological and molecular data, and detect putative cryptic species, 

taxonomic complexes, and inaccurate or misleading identifications (Costa and Antunes 2012). 

Moreover, comprehensive barcode libraries will become essential for biomonitoring 

applications based on modern high-throughput sequencing technologies (Fonseca et al. 2010, 

Zhou et al. 2013, Leray and Knowlton 2015). 

Nevertheless, marine invertebrate species, namely peracarideans, are still poorly 

represented in the published reference libraries, with only a small fraction of the species 

occurring in European marine coasts being represented (Raupach et al. 2015 in North Sea and 

Lobo et al. 2016a in Portugal). In this study, we report and examine a core DNA barcode library 

for the Peracarida from the Southern European Atlantic Coast (Iberian Peninsula), focusing on 

representatives of the orders Amphipoda, Isopoda and Tanaidacea.  

 

2.4 MATERIAL AND METHODS 

2.4.1 Specimen sampling and taxonomic identification 

Specimens were collected between 2008 and 2015 along the Atlantic coasts of mainland 

Portugal and Spain (Fig. 2.1, Annexes 1.3 and 1.4). Samples were taken from marine rocky shore 

habitats by scraping of the algal cover or hand picking during low tide (for details see Annex 1.3). 

After collection, specimens were preserved in 96% ethanol. Sequence data and specimen 

metadata were uploaded in the project ‘Peracarida’ (PERAC) within Barcode of Life Data system 

(BOLD) (Ratnasingham and Hebert 2007). Morphology-based taxonomic identification was 

supported in specialized literature (Chevreux and Fage 1925, Naylor 1972, Lincoln 1979, Ruffo 

1982, Holdich and Jones 1983, Harrison and Ellis 1991, Hayward and Ryland 1995). The 

identifications were reviewed before and after obtaining the DNA sequences to ensure the 

correct identification of the specimens. The species’ nomenclature used in this work complies 

with the accepted nomenclature used in WoRMS and Integrated Taxonomic Informations 

System (ITIS). 
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2.4.2 DNA extraction, amplification and sequencing 

DNA extraction was performed using the E.Z.N.A. Mollusc DNA Kit (Omega Bio-tek) 

according to manufacturer instructions. Depending of the specimen size, only a small amount of 

tissue or the whole animal was used.  Then, a 658 base pair (bp) fragment from the 5′ end of the 

mitochondrial DNA gene coding for cytochrome oxidase I (COI) was amplified using the primer 

pairs LCO1490/HCO2198 (Folmer et al. 1994) or LoboF1/LoboR1 (Lobo et al. 2013). When these 

primers failed to amplify the 658-bp fragment, the primer pair Lobo F1/ ArR5 (Gibson et al. 2014) 

was used to amplify the first 550 bp of the COI fragment. 

All PCR reactions were performed in a 25 µl volume containing 2.5 µl of 10X PCR Buffer, 3 

µl of 25 mM MgCl2, 1 µl of 10 mM dNTPs, 0.2 µl of Taq polymerase (ThermoScientific) and 0.55-

1.25 µl of each primer (10mM). For the primer pair LCO1490/HCO2198, 0.55 µl of each primer 

was used and for the pairs LoboF1/LoboR1 and LoboF1/ArR5, 1.25 µl of each primer was used. 

DNA extraction used varied between 2 µl and 4 µl. Ultrapure water was added until the final 

volume. Cycling conditions for PCR reactions with the primer pair LCO1490/HCO2198 were: one 

cycle of 94°C for 1 min, 35 cycles of 94°C for 45 s, 51°C for 90 s and 72°C for 60 s, with a final 

extension of 72°C for 5 min. Regarding the use of the primer pairs LoboF1/LoboR1 and 

LoboF1/ArR5, the cycling conditions were: one cycle of 94 °C for 1 min, five cycles of 94°C for 30 

s, 45°C for 90 s and 72°C for 60 s, 45 cycles of 94 °C for 30 s, 54 °C for 90 s and 72°C for 60 s, with 

a final extension of 72°C for 5 min. Amplification success was screened in a 1.5% agarose gel, 

 Collection sites Latitude Longitude 
1 Pedreira 43.55617 -8.27494 

2 Barizo 43.32211 -8.87278 

3 Muxía 43.09283 -9.22343 

4 Canto Marinho 41.73670 -8.87619 

5 Viana Castelo 41.69380 -8.85118 

6 Apulia 41.47190 -8.78955 

7 Aveiro 40.73604 -8.59895 

8 Buarcos 40.17597 -8.90057 

9 Berlengas 39.41177 -9.51098 

10 Peniche 39.37243 -9.37755 

11 Sines 37.96088 -8.88729 

12 Vale dos Homens 37.37140 -8.83450 

13 Ingrina 37.04525 -8.87804 

14 Dona Ana 37.08696 -8.66771 

15 Arrifes 37.07605 -8.27678 

Figure 2.1. Location and coordinates of the sampling sites where peracaridean specimens were collected in this 
study. 
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using 3 µl of PCR product, and successful PCR products were then purified (isopropanol 

precipitation). Cleaned-up amplicons were sent to external sequencing service suppliers (STAB 

Vida Ltd, Portugal; Macrogen Europe, Netherlands or GATC Biotech, Germany), for bidirectional 

sequencing. 

2.4.3 Data analysis 

All sequences were analysed and edited using MEGA 7.0 (Kumar et al. 2016). Trace files 

were checked manually, unreadable zones and primers were removed and ambiguous bases 

corrected. Then, the edited sequences were aligned using Clustal W (Thompson et al. 1994) 

implemented in MEGA 7.0 (Kumar et al. 2016) and the translation verified for stop codons or 

indels. GenBank BLASTn search (Altschul et al. 1990) and BOLD Identification System tool (BOLD-

IDS) (Ratnasingham and Hebert 2007) were used to search for similarity to confirm the target 

taxa.  

Two dedicated datasets were created in BOLD and used for the analysis in this work. The 

first, “PERA-IP dataset”, includes the sequences obtained in this study from the Iberian Peninsula 

plus the available sequences in BOLD for marine and estuarine peracaridean species retrieved 

from Iberian Peninsula Atlantic coasts. The second dataset, “Global dataset”, comprises the 

previous dataset plus similar taxa (either from the same morphospecies or the same genus) from 

other locations outside the Iberian Atlantic coasts, either obtained in this study or retrieved from 

BOLD. The objective of these datasets was to compare and validate our results. 

Intra- and interspecific distances were calculated using Kimura-2-parameter (K2P) model 

(1000 boostraps) (Kimura 1980) implemented in MEGA 7.0 (Kumar et al. 2016). The Bayesian 

inference (BI) was conducted in MrBayes 3.2 (Ronquist et al. 2012) to build the Bayesian tree for 

each order separately using the “Global dataset”. The BI topologies were constructed choosing 

GTR+G+I as best-fitting model of nucleotide substitution based on its Bayesian Information 

Criterion, as implemented in MEGA 7.0 (Kumar et al. 2016).  

BINs provided by BOLD (Ratnasingham and Hebert 2013) were used as a model for 

Molecular operational taxonomic units (MOTUs) clustering for all sequences. The ‘BIN 

Discordance Report’ analysis tool was applied to analyse both datasets used in this study. BINs 

were identified as taxonomically discordant if species clusters shared a BIN. The concordant BINs 

mean that one cluster corresponded with one BIN.  

A BIN discordance report was generated to enable comparison between morphospecies 

and MOTUs generated by COI sequence data. The taxonomic reliability of the species records 
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from Iberian Peninsula was ranked using the grades A to E proposed by Costa et al. (2012), and 

adapted by Borges et al. (2016) and Oliveira et al. (2016). The ranking varies from A to E, where 

“A” represents highly reliable species barcodes and “E” barcodes with lower reliability: grade A 

(external concordance: unambiguous BIN match between specimens of the same 

morphospecies from independent BOLD projects or published sequences), grade B (internal 

concordance: species’ BIN congruent within our data set, with at least 3 specimens of the same 

species examined but no matching sequences found from independent studies), grade C 

(suboptimal concordance: at least 3 specimens of the same morphospecies are available within 

the library, but they are split among more than one nearest neighbouring BIN), grade D 

(insufficient data: low number of specimens analysed, only 1 or 2 individuals) and grade E 

(discordant species assignments: sequences for a given species in the data set did not match 

with the BIN or BINs for the same species in BOLD and the specimen may match with a BIN of a 

different species or was assigned to a separate non-neighbouring BIN). 

 

2.5 RESULTS 

2.5.1 Morphological identification of species 

A total of 220 novel COI sequences from 58 peracaridean morphospecies (14 specimens 

identified only to genus level and 5 specimens to family level) belonging to 24 families were 

generated in this study. Three orders were represented: Isopoda (131 specimens), Amphipoda 

(75 specimens) and Tanaidacea (14 specimens). The similarity searches in BOLD-IDS returned a 

significant identity match (98–100%) for 59% of the sequences. Novel barcodes were produced 

for thirty-one species. For those, the nearest match was found at similarities between 74–89%. 

Of the 220 barcodes obtained, 160 were retrieved from specimens collected in the Atlantic 

Continental coast of the Iberian Peninsula (102 from Portugal and 58 from Spain) from a total of 

50 morphospecies. All the peracaridean barcodes belonging to the orders Amphipoda, Isopoda 

or Tanaidacea retrieved from the Atlantic Iberian Peninsula available in BOLD systems 

(16/01/2017) were mined and added to the alignment (Table 2.1 – “PERA-IP dataset”, for 

sources see Annex 2.1). To avoid adding dubious and/or low quality data, only barcodes with a 

minimum length of 500 bp, registered as sampled in marine or estuarine coasts of the Atlantic 

Iberian Peninsula, and with the indication of the respective source were used. In the works of 

Xavier et al. (2009, 2012), Cabezas et al. (2013a, b, 2014) and Raupach et al. (2014), the authors 

did extensive studies regarding population structure of a specific species (for further details 

about Caprella penantis in Cabezas et al. 2013a; Caprella dilatata in Cabezas et al. 2013b, 2014; 
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Caprella scaura in Cabezas et al. 2014; Ligia oceanica in Raupach et al. 2014; Stenosoma nadejda 

in Xavier et al. 2009 and Stenosoma lancifer in Xavier et al. 2009, 2012). Our goal was not to 

replicate the same conclusions of these authors and also the inclusion of all the sequences 

obtained by them would result in a massive and repetitive data. In order to simplify the data, 

only 4-5 barcodes of each species sampled in Iberian Peninsula from these works were added to 

“PERA-IP dataset”. In the end, a total of 217 COI sequences from BOLD were added to our 160 

novel COI sequences, resulting in a 377-barcode data set from 106 morphospecies (Table 2.1 – 

“PERA-IP dataset”).  

The remaining novel sequences obtained in this study were sampled from Azores (11), 

Scotland (23), Norway (10) and Iceland (16). To facilitate the analysis of the data and further 

comparisons, 161 additional COI sequences were mined from BOLD and GenBank from closely 

related taxa (same species or genus) from non-Atlantic Iberian Peninsula marine coasts and 

added to the alignment (Table 2.1 – “Global data set”, see Annex 2.1 for sources), resulting in a 

total of 597 barcodes from 140 morphospecies. To avoid adding dubious and/or low quality data, 

only barcodes with a minimum of 500 bp, the indication where the specimens were sampled 

and source were added.  

Four morphospecies retrieved from BOLD did not have the updated taxonomic 

nomenclature: Synisoma lancifer, Synisoma nadejda, Synisoma acuminatum and Leptochelia 

dubia (for source see Annex 2.1). Using the accepted nomenclature from WoRMS and ITIS, the 

genus Synisoma Collinge, 1917 was updated to Stenosoma Leach, 1814, while Leptochelia dubia 

(Kroyer, 1842) was updated to Chondrochelia savignyi (Kroyer, 1842). All the analysis in this 

study took in consideration these changes and the new accepted nomenclature.  

Taxonomic classification, number of specimens and their geographical origin are shown 

in Annex 2.1. COI sequences with 658 bp were obtained for 40.8% of specimens (154) for “PERA-

IP dataset” and 47.7 % of specimens (285) for “Global dataset”, while the remaining individuals 

had sequences between 500 and 657 bp. Upon aligning and translating all sequences, no stop 

codons were found.  

The total number of specimens analysed per morphospecies varied from 1 to 35 (34 

species were represented by a single specimen). Thirty-seven genera were represented by one 

species, while twenty-three were represented by 2 to 9 species. Thirteen species were identified 

only to genus level (12 from Iberian Peninsula), six species were only identified until family level, 

and one to order.  
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Table 2.1. Species and sequences number used in this study. SP-Species number in each site/dataset, N – 
number of sequences. 

 
 

 
 SITE SP N SOURCE 

IB
ER

IA
N

 P
EN

IN
SU

LA
 

Pedreira 14 25 

This study 

Barizo 12 15 
Muxía 9 18 
Canto Marinho 9 19 
Viana Castelo 9 17 
Apulia 1 2 
Aveiro 4 9 
Buarcos 8 13 
Peniche 4 5 
Berlengas 2 2 
Sines 2 3 
Vale dos Homens 1 1 
Ingrina 7 8 
Dona Ana 13 16 
Arrifes 5 7 
Novel obtained in this study 50 160 
Viana Castelo 33 123 Lobo et al. 2013, 2016a 
Vila do Conde 1 2 Cabezas et al. 2013b 
Aveiro 3 8 Costa et al. 2009, Lobo et al. 2016a 
Ericeira 1 1 Cabezas et al. 2013b 
Foz do Arelho 1 1 Costa et al. 2009 
Setubal 17 30 Costa et al. 2009; Lobo et al. 2013, 2016a 
Sines 1 2 Lobo et al. 2016ª 
Sagres 1 1 Cabezas et al. 2013a 
Ria Alvor 1 1 Costa et al. 2009 
Basc Country 3 3 Aylagas et al. 2014 
Ferol 1 5 Raupach et al. 2014 
Cadiz 1 4 Cabezas et al. unpublished 
Huelva 1 4 Cabezas et al. 2013b 
Portugal unknown locations 2 5 Cabezas et al. 2013a, Larsen et al. unpublished 
North Spain unknown locations 13 13 Aylagas et al. 2014, Sotka et al. 2016 
Iberian Peninsula unknown 
locations 

3 14 Xavier et al. 2009, 2012 

Pera-IP dataset 106 377  

W
O

RL
D

W
ID

E 
AR

EA
S 

Azores 4 11 This study 
Belgium 2 3 Costa et al. 2009 
Balearic Islands 1 3 Cabezas et al. unpublished 
Italy 6 14 Maruso et al. unpublished 
France 

7 7 
Hou et al. 2011, Kilpert et al. 2012, Cowart et al. 
unpublished, Larsen et al. unpublished 

North Sea 46 107 Raupach et al. 2015 
Hawaii 1 1 Sotka et al. 2016 
Canada 5 9 Radulovici et al. 2009 
Ireland 1 1 Costa et al. 2009 
Netherlands 1 1 Ironside et al. unpublished 
Germany 1 1 Kilpert et al. 2012 
Sweden 1 1 Costa et al. 2009 
Wales 3 3 Costa et al. 2009 
Norway 6 13 This study, Costa et al. 2009 
Iceland 

9 20 
This study, Henzler and Ingólfsson 2008, Costa et 
al. 2009 

Scotland 10 25 This study, Costa et al. 2009 
 Global dataset 140 597  
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2.5.2 Intra- and interspecific divergences 

Intra- and interspecific distances concerning all the peracaridean species under analyses, 

with the exclusion of species with high intra specific distances (ISD) (higher than 3%, see Annex 

2.1 for values for each morphospecies) are provided in Table 2.2 for both datasets. This exclusion 

was to prevent incorrect distance estimations. In the “Global dataset”, the ISD was 0.59% (range 

0.00–3.83%), while the average congeneric distance was 20.93% (range 0.00–36.78%) and the 

average within family distance was slightly higher, 25.53% (range 0.00–47.93%). The “PERA-IP 

data set” showed similar results: 0.42% for species, 21.56% for genus and 25.61% for families.  

2.5.3 BI phenogram 

Figs 2.2, 2.3 and 2.4 show Bayesian trees using “Global dataset” for Amphipoda (388 

sequences), Isopoda (192 sequences) and Tanaidacea (17 sequences) respectively, with clearly 

defined and well supported clusters. Most species and genera clustered according to their 

taxonomic hierarchy, although some exceptions were found. Deep intra-specific divergences 

(more than one BIN) were found for 21 morphospecies, of which 18 were amphipods and 3 were 

isopods, with eight species with maximum distance higher than 20%: Ampelisca diadema 

(maximum of 25.5%), Caprella acanthifera (maximum of 23.2%), Janira maculosa (maximum of 

25.15%), Ampithoe rubricauta (maximum of 24.7%), Dexamine spinosa (maximum of 23.6%), 

Microdeutopus chelifer (23.6%), Jassa pusilla (maximum of 22.3%) and Ampelisca spinipes 

(maximum of 20.5%). 

Some clusters, however, included more than one morphospecies. Lekanesphaera 

rugicauda clustered with Lekanesphaera hookeri, while some species that were identified only 

until genus level clustered with species identified until species level such as Jassa hermandi with 

Jassa sp.3 or Jassa pusilla with Jassa sp.1. In the clusters containing Caprella acanthifera and 

Caprella danilevski, Microdeutopus chelifer and Microdeutopus sp., Dexamine spiniventris and 

Dexamine spinosa, and Urothoe poseidonis and Urothoe pulchella, some barcodes were also 

present in other clusters. 

2.5.4 BINs and ranking system for barcode records 

BIN attribution summary can be found in Table 2.3 for both data sets. The 597 barcode 

compliant sequences (140 morphospecies) were assigned to 160 BINs. The analysis of the “BIN 

report” produced by the BOLD system (as on 16 of January 2017) showed 96 concordant BINs, 

9 discordant BINs and 55 singletons. The 9 discordant BINs were examined and re-assessed to 

account for potential artefacts (e.g. misidentifications, specimen mislabelling, contamination, 
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misspelling, synonymies and syntax inaccuracies). After examination, four discordant BINs 

(AAX8442, AAJ2286, ABU6145, ACH9003) were considered concordant because same specimens 

did not have updated taxonomy or were not identified to species level. This brings the number 

of concordant BINs to 100 (62.5%). 

Of the 106 putative morphospecies from the Iberian Peninsula used in this study, 20 

species were not identified until species level. Therefore, the ranking system was applied to 86 

morphospecies (Annex 2.2). After the auditing procedure (for a detailed auditing procedure see 

Oliveira et al. 2016), the grades A and/or B (high taxonomic reliability) were attributed to 48 

species (55.9%); 7 species (8.1%) showed a high intraspecific divergence (grade C): Janira 

maculosa, Gammarela fucicola, Talitrus saltator, Microdeutopus chelifer, Corophium 

multisetosum, Phistica marina and Jassa pusilla; 22 species (25.6%) were attributed a grade D 

(insufficient data) and only 9 species (10.4%) were attributed a grade E (incongruent DNA 

barcodes): Lekanesphaera hookeri, Dexamine spiniventris, Dexamine spinosa, Ampelisca 

diadema, Caprella acanthifera, Caprella danilevski, Ampithoe ramondi, Ampithoe rubricata and 

Urothoe pulchella (see Annex 2.2 for details).  

Table 2.2. Intra and interspecific K2P distances of peracaridean species, genus and families analysed in 
this study.  

 Taxa Min Dist (%) Mean Dist (%) Max dist (%) 
Within species     
Pera-IP dataset* 58 0.00 0.42 2.80 
Global dataset** 102 0.00 0.59 3.83 
Within genus     
Pera-IP dataset* 13 0.59 21.56 31.91 
Global dataset** 26 0.00 20.93 36.78 
Within family     
Pera-IP dataset* 13 0.00 25.61 47.93 
Global dataset** 16 0.00 25.53 47.93 

*Dexamine spiniventris, Caprella acanthifera, Microdeutopus chelifer, Corophium multisetosum were excluded from 
the intraspecific analysis due to the high divergence values (higher than 3%). 
** Dexamine spiniventris, Caprella acanthifera, Microdeutopus chelifer, Corophium multisetosum, Sphaeroma 
serratum, Jassa pusilla, Ampelisca brevicornis, Ampelisca tenuicornis, Ampithoe rubricata, Urothoe pulchella, 
Ampelisca typical, Ampelica spinipes, Ampelisca diadema, Gammarus duebeni, Astacilla intermedia, Janira maculosa, 
Dexamine spinosa, Ampithoe ramondi, Gammarela fucicola and Talitrus saltator were excluded from the intraspecific 
analysis due to the high divergence values (higher than 3%). 

 
Table 2.3. Number of BINs and number of taxonomically concordant, discordant and singleton records for 
COI sequences used in this study. 

NUMBER OF BINS 
 Pera-IP dataset Global dataset 
CONCORDANCE 70 100 
DISCORDANCE 2 5 
SINGLETON 41 55 
TOTAL 113 160 
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Figure 2.2. The Bayesian tree based on 
COI sequences from the ninety-seven 
amphipod species used in this study. 
Numbers associated with nodes 
represent posterior probabilities from 
Bayesian Markov chain Monte Carlo 
searches conducted in MrBayes (only 
posterior probabilities higher than 
0.90 are shown). Asterisk indicates 
sequences obtained in this study. The 
isopod Ischyromene lacazei was used 
as outgroup.  
IP- Iberian Peninsula, FR – France, NS - 
North Sea, IT – Italy, UK – United 
Kingdom, NO – Norway, CA – Canada, 
IC – Iceland, AZ – Azores, IR – Ireland, 
SW – Sweden, BE – Belgium. 
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Figure 2.3. The Bayesian tree based on COI sequences from the thirty-seven isopod species used in this 
study. Numbers associated with nodes represent posterior probabilities from Bayesian Markov chain 
Monte Carlo searches conducted in MrBayes (only posterior probabilities higher than 0.90 are shown). 
Asterisk indicates sequences obtained in this study. The amphipod Abludomelita obtusata was used as 
outgroup. 
IP- Iberian Peninsula, FR – France, NS - North Sea, IT – Italy, SC – Scotland, NO – Norway, CA – Canada, IC 
– Iceland, AZ – Azores, GE - Germany. 
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Figure 2.4. The Bayesian tree based on COI sequences from the six tanaid species used in this study. 
Numbers associated with nodes represent posterior probabilities from Bayesian Markov chain Monte 
Carlo searches conducted in MrBayes (only posterior probabilities higher than 0.90 are shown). Asterisk 
indicates sequences obtained in this study. The amphipod Ampelisca ledoyeri was used as outgroup. 
IP- Iberian Peninsula. 
 

2.6 DISCUSSION  

2.6.1 Reference library of DNA barcodes 

This study contributes with DNA barcodes for 58 morphospecies from the Atlantic 

European coasts (50 from Iberian Peninsula), with 33 morphospecies being new additions to the 

global reference library. The efficiency of DNA barcodes in species discrimination relies on the 

occurrence of a gap between the maximum intraspecific and minimum congeneric barcode 

distances (Costa and Carvalho 2010). We have found such distance gap within both datasets 

(Table 2.2). Average intraspecific (0.42%) and congeneric (21.56%) distances in “PERA-IP 

dataset” were comparable to those found in other DNA barcoding studies in other marine 

invertebrate groups such as gastropods, decapods and crustaceans (Matzen da Silva et al. 2011, 

Raupach et al. 2015, Borges et al. 2016).  

We were not able to identify to species level 8 species (neither we retrieved positive 

matches from BOLD-IDS), with 6 of them from the Iberian Peninsula. This was due to the small 

size of the specimens and/or lack of distinctive morphological characters. The fact that in most 

peracaridean species distinctive morphological characters are usually present only in adults or 
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in males, can be an impediment to fully access the taxonomy of the specimens of this group 

(Costa et al. 2004, Coleman 2015). Raupach et al. (2015) and Ferreira et al. (2016a) also verified 

this difficulty in the identification of some peracaridean species in their works. A total of 20 

morphospecies used in the present study were not identified to species level (18 from the 

Iberian Peninsula) and 15 did not cluster with a morphospecies identified to species level (13 

from the Iberian Peninsula). The fact that it was possible to cluster five previously non-identified 

species (see Annex 2.3 for details) strenghs the idea that the compilation of data of different 

sources is important to correct assess species boundaries.  

2.6.2 Auditing methods 

Considering BINs as MOTUs (Ratnasingham and Hebert 2013), the comparison across 

both datasets between morphology-based identifications and BINs suggests underestimation of 

the species diversity. Indeed, the number of BINs here examined (113 for “PERA-IP dataset” and 

160 in “Global dataset”, Table 2.3) exceeded by 7 and 20, respectively, the number of morpho-

species (Table 2.3). The large number of singleton BINs (41 and 55 respectively, Table 2.3) 

reinforce the idea that the Peracarida fauna from the Atlantic coasts, including the Iberian 

Peninsula is still poorly studied, although it comprises 1/3 of the total Crustacea biodiversity 

worldwide (Horton et al. 2017a). However, the large number of concordant BINs (70 and 100 

respectively, Table 2.3) show the reliability of this library, displaying a one-to-one link with 

morphologically identified species. Some of them include specimens displaying comparatively 

small K2P distances (<1%), although they originated from populations geographically very 

distant from each other (e.g., Apohyale prevostii and Idotea granulosa), contrasting with the 

idea that these organisms have a low dispersal ability, which was also observed by Xavier 

(2011a). Concordant BINs comprising a high number of members conveyed higher confidence 

on the taxonomic identifications of those specimens. COI sequences belonging to the species 

Idotea granulosa and Jassa falcata with 20 or more members are two good examples.  

In the morphospecies present in Iberian Peninsula, species records with reliability grades 

A or B amount to 55.9% (for list of species, see Annex 2.2), which is a bit higher than the values 

found for Polychaeta – 50% (Lobo et al. 2016b), but lower than what has been determined for 

other reference libraries in Northeast Atlantic: e.g., 84.9% and 78% for fish (Knebelsberger et al. 

2014 and Oliveira et al. 2016 respectively); or 70.5% for gastropods (Borges et al. 2016). 

However, 23 morphospecies (for list of species, see Annex 2.2) lacked matching sequences from 

other studies for comparison and did not have enough data (grade D – 25.6%) to enable 

attribution of a higher grade. Interestingly, in two morphospecies, Ampelisca spinipes and 
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Sphaeroma serratum, with two sequences each, two neighbor BINs were retrieved for each 

species. Each BIN corresponded to different locations and authors. More data is needed to 

assess if this is a case of possible misidentification or hidden diversity. 

Discordant BINs and Grade E may occur for several reasons, such as misidentifications, 

sample contamination, sample mislabeling or inaccuracies of the BIN delineation algorithm 

(Hebert et al. 2003, Costa and Antunes 2012, Ratnasingham and Hebert 2013). The discordant 

BINs (in “Global dataset”) resulted from probable misidentification, because in all cases the 

identification was distinct between different authors. Without access to the specimens or 

photographies, no definitive conclusion can be made and assumption should be taken carefully. 

However, looking at associated metadata in BOLD and the BI trees (Figs 2.1-2.3) it seems the 

specimens of Dexamine spinosa and Caprella acanthifera obtained by Aylagas et al. (2014) are 

Dexamine spiniventris and Caprella danilevski respectively (Annex 2.3). Several cases are harder 

to evaluate and more sequences and data are needed: Urothoe pulchella with Urothoe 

poseidonis, Ampelisca diadema with Ampelisca ledoyeri and Ampelisca tenuicornis and finally, 

Lekanasphaera hookeri with Lekanasphaera rugicauda. 

2.6.3 High ISD in peracaridean species 

Apart from the previous cases, several morphospecies (11) displayed high ISD (Annex 2.1), 

and therefore more than one BIN, according to the threshold of 3% suggested for Crustacea by 

Costa et al. (2009). The morphospecies Gammarela fucicola, Phistica marina, Jassa pusilla, 

Talitrus saltator and Dexamine spinosa displayed high genetic divergences between distant 

populations. The first three, between Iberian Peninsula and North Sea, T. saltator between 

Iberian Peninsula/North Sea and Italy (for more details, see Lobo et al. 2016a) and the latter 

between Scotland/North Sea and France.  

Three morphospecies showed sharp genetic discontinuities among proximate 

populations in Iberian Peninsula: Dexamine spiniventris, Corophium multisetosum and 

Microdeutopus chelifer, and it does not seem that these lineages are sorted geographically. 

However, there is a possiblity that the identification of Lobo et al. (2013) of M. chelifer from 

North Portugal is not correct (Annex 2.3), since it is closer with other Aoridae species, such as 

Aora gracilis, supported by high posterior probabilty (>0.90, Fig. 2.2). Members of 

Microdeutopus species are hard to distinguish because an adult male and full develop gnathopds 

are needed to discriminate correctly between species. We encounter this constrain as we were 

not able to identify to species level a specimen of Microdeutopus sp.2 (due to small size).  
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Janira maculosa displays an interesting case with six different lineages rearranged 

geographically. Two from North Spain (although with genetic distance of 24.2%), one from North 

Sea, one from Portugal and one from France (all from different sources, see Annex 2.1). 

Members of the Janira genus can be easily distinguish from other Janiridae genera by the 

antennae longer than body and uropods longer than pleotelson (Naylor 1972). In our reference 

library, the different Janiridae genera clusters were well separated (Janira, Joeropsis and Jera, 

Fig. 2.3). Janira maculosa is present along the North Atlantic Ocean. Only three species of this 

genus are known and very little is known about the presumably occurrence of the other two 

Janira species (other than Janira maculosa) in North Atlantic Ocean and consequently their 

taxonomy (Horton et al. 2017a). The fact that different authors found and identified only this 

species within Janira genus reinforce the idea that more work related with the taxonomy of this 

genus is required. Presumably, Janira maculosa displays hidden diversity and more work is 

needed to demonstrate this.  

Ampithoe ramondi was reported as a probable widespread cryptic species by Sotka et al. 

(2016). On our records, Portugal clustered with the record from Spain obtained by Sotka et al. 

(2016) (Fig. 2.2). One record of Ampithoe rubricata, obtained by Cowart et al. unpublished from 

France appears as neighbour BIN from this group within the Ampithoe ramondi “complex” (Fig. 

2.2, posterior probability >0.90) and distinct from the rest of the Ampithoe rubricata records. 

We suspect that this record might be in fact part of one lineage of Ampithoe ramondi (Annex 

2.3). The rest of Ampithoe rubricata records obtained by us from Iberian Peninsula and from 

Radulovici et al. (2009) from Atlantic Canada clustered together. Two groups seem to appear, 

one from Iberian Peninsula and other from Canada, with maximum genetic distance of just 2.1%. 

Amphi-Atlantic distributed amphipods with postglacial colonization routes, usually from south 

to north, was reported before (Costa et al. 2009, Krebes et al. 2011), usually after the last Glacial 

Maximum around 20 000 years ago and this seems to be the case (Wares and Cunningham 2001, 

Maggs et al. 2008). 
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2.7 CONCLUSIONS 

Previous studies showed the ability of DNA barcodes to distinguish peracaridean species 

(e.g., Costa et al. 2009, Raupach et al. 2015, Lobo et al. 2016a), and our data confirmed it. DNA 

barcoding and specially barcode reference libraries are not restricted to taxonomic or systematic 

research only. The rise of modern high-throughput sequencing technologies is changing 

biomonitoring applications and surveys significantly (Fonseca et al. 2010, Leray and Knowlton 

2015). As consequence, reference datasets such as ours are essential for the correct 

identification of specimens sequenced as part of meta barcoding studies. DNA barcodes can help 

with cases of synonymy or misidentifications, detect distinct genetic populations within a 

species either separated geographically or within the same region and match non-identified 

species to well stablish BINs. The high number of BINs compared to morphospecies found in this 

(and other peracaridean studies such as Raupach et al. 2015 and Lobo et al. 2016a) also suggests 

a considerable amount of hidden diversity in this group in Iberian Peninsula and Northeast 

Atlantic Ocean. This and other studies from DNA barcoding can help to understand and improve 

the knowledge of the biodiversity of Peracarida fauna in Iberian Peninsula and European marine 

coasts. 
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3.1 ABSTRACT  

Sphaeromatid isopods, such as Dynamene, are common and abundant members of the 

invertebrate fauna of littoral and shallow sublittoral substrates. Six species of Dynamene occur 

in the northern hemisphere. Only two species exist outside this range, in Australia. The 

distribution of the various species in the Northeast (NE) Atlantic-Black Sea axis has been 

controversial due to the difficulty in the identification of the different species. This has led to 

inaccurate records of their distribution, ultimately generating uncertain or faulty assessments 

on the biodiversity of these habitats. An update and a clarification about the distribution of this 

genus is therefore in order. In this study, we describe the distribution of Dynamene species in 

the light of new records from the NE Atlantic Ocean and its associated islands, and the 

Mediterranean, Black and Red Seas, and from re-examination of museum and several authors’ 

personal collections. Based on these observations, we extend the northern and southern limits 

of D. bidentata (Adams); the western and southern limits of D. magnitorata Holdich; the 

northern, eastern and western limits of D. edwardsi (Lucas); and the eastern and western limits 

of D. bifida Torelli. The range of Dynamene tubicauda Holdich is extended, but is still only known 

from the eastern Mediterranean. We also clarify the synonymy of D. torelliae Holdich with D. 

bicolor (Rathke), and the occurrence of D. bicolor in the Black Sea. New distribution maps of the 

six Dynamene species are presented. Illustrated keys to the adult males and females of the 

northern hemisphere species are provided. 
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3.3 INTRODUCTION 

Isopod crustaceans are common and sometimes abundant members of the invertebrate 

fauna of the littoral and shallow sublittoral habitats of the world’s oceans (Poore and Bruce 

2012). Species of the sphaeromatid isopod genus Dynamene Leach, 1814 are typical 

components of these habitats on coasts of the Northeast (NE) Atlantic Ocean and its islands, and 

the Mediterranean and Black Seas. Six species are endemic to these provinces (Holdich 1968a, 

1970): D. bidentata (Adams, 1800); D. bicolor (Rathke, 1837); D. edwardsi (Lucas, 1849); D. 

bifida Torelli, 1930; D. magnitorata Holdich, 1968 and D. tubicauda Holdich, 1968. Dynamene 

torelliae Holdich, 1968 was considered to be synonymous with D. bicolor by Kussakin (1979) and 

this has been accepted by the current authors. Two additional species occur in, and are endemic 

to, Australia, but have rarely been recorded: Dynamene ramuscula (Baker, 1908) and Dynamene 

curalii Holdich and Harrison, 1980. A number of other Dynamene species are incorrectly listed 

in some databases, e.g., http:/ isopods.nhm.org/, Brusca et al. (1995-2004), Myers et al. (2008). 

Species attributed to the genus Dynamene from the western USA, i.e., D. angulata Richardson, 

1901; D. benedicti (Richardson, 1899); D. dilatata Richardson, 1899; D. glabra Richardson, 1899 

and D. sheari Hatch, 1947 do not belong to this genus, as adult males do not possess a bidentate 

process arising from the sixth pereonite (see below), and are considered incertae sedis 

(http://www.marinespecies.org/). Dynamene tuberculosa Richardson, 1899 from the Aleutian 

Islands off Alaska is also still listed as such in some databases, but was considered as the female 

of Paracerceis cordata (Richardson, 1899) by Richardson (1905).  

The distribution of the various Dynamene species associated with the NE Atlantic-Black 

Sea axis was previously examined by Holdich (1968a, 1970). Since then, many general 

community studies have been published reporting the presence of Dynamene throughout its 

range (e.g., Pereira et al. 2006 in Portugal; Arrontes and Anadón 1990, Arrontes 1991, Viejo 

1997, Castelló and Carballo 2001 in Spain; Castellanos et al. 2003 in northern Africa and Kirkim 

et al. 2006 in Turkey). In addition, a large number of specimens have become available since 

Holdich’s studies, which make the clarification and updating of distribution maps along the NE 

Atlantic-Black Sea axis necessary. This is particularly so because many of the records for the 

Mediterranean and Adriatic relate to D. torelliae, which has been synonymized with D. bicolor. 

In order to be able to identify species of Dynamene, and distinguish them from some 

other sphaeromatid isopods, it is important to understand how the morphology changes during 

the life history. Adult males (stage 8) of the various Dynamene species can be distinguished from 

those of other sphaeromatid isopods, e.g., Campecopea Leach, 1814; Cymodoce Leach, 1814; 
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Ischyromene Racovitza, 1908; Lekanosphaera Verhoeff, 1943 and Sphaeroma Bosc, 1802, that 

may be found in the same habitat, by a large two-pronged medial process (the bidentate 

process) arising from the dorsal posterior margin of the sixth pereonite (Fig. 3.1). This 

characteristic is unique to the genus (Harrison and Ellis 1991). Some species of Oxinasphaera 

Bruce, 1997 have such a process, but this arises from the pleon (Bruce 1997, Schotte and Kensley 

2005), and paired processes arise from the seventh pereonite in Dynamenella dioxus Barnard, 

1914. Juveniles and females, and even sub-adult males (stages 6 and 7), are more difficult to 

distinguish between the species, and may also be confused with females of other genera. Vieira 

et al. (2015) have shown clear differences between D. bidentata, D. magnitorata and D. 

edwardsi at the genetic level using cytochrome oxidase I. Details of the changes occurring 

throughout the life history of the best-studied species, D. bidentata, are given below.  

Dynamene species are present in a wide-range of habitats, but usually amongst algae and 

in cryptic habitats, e.g., under rocks, crevices, empty barnacle tests, amongst serpulid and 

tunicate colonies, mussel beds and encrusting sponges, from midlittoral to shallow sublittoral 

levels (Holdich 1970, 1976). Dynamene bidentata, at least, has a biphasic life cycle with a change 

of habitat, where the immature stages are present amongst the algal cover (which they eat), 

whilst the adults occupy cryptic habitats where they reproduce and where females can incubate 

their broods in relative safety (Holdich 1968b, 1970, 1976). Further details of the habitats 

occupied by Dynamene along the NE Atlantic-Black Sea axis are given for each species below.  

Given that fully adult males may not be present in many collections, species identification 

is often difficult and leads to incorrect assignments, questioning the validity of the information 

about the actual distribution of the species. The literature is scattered with misidentifications, 

which have come to light when such authors’ material and/ or publications have been examined 

by us. In the present study, we aim to update and correct the geographical distribution of the 

six-described species of Dynamene from the NE Atlantic-Black Sea axis. To facilitate 

identification, keys to adult males and females of these six species are provided along with 

associated photographs. It is hoped that these will enable those involved in littoral and 

sublittoral surveys in the marine environment to identify species of Dynamene more easily. 
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Figure 3.1. Adult male (stage 8) and pre-ovigerous female (stage 7) Dynamene bidentata.  
A - Dorsal view of stage 7 female. B - Lateral view of pleon (with posterior border of pereonite 7), 
pleotelson and right uropod of stage 7 female. C - Ventral view of pleotelson and uropods of stage 7 
female. D - Dorsal view of stage 8 male. E - Lateral view of pereonal segment 6, pleon, and pleotelson and 
exopod of right uropod of stage 8 male. 
Adapted from Holdich 1968b. 
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3.4 MATERIAL AND METHODS 

The records of David Holdich (DMH) used in this study are derived from field work carried 

out in various localities in the British Isles, Atlantic islands, Atlantic coasts of mainland Europe, 

and the Mediterranean and Aegean Seas (Holdich 1968a, c, 1970, Holdich and Lincoln 1974, 

Holdich 1976). In addition, there have been donations from many colleagues between 1970 and 

2014 (see Acknowledgments section 3.10). Other samples deposited in several museum 

collections, particularly those in Leiden, Lisbon, London and Paris (see Acknowledgements 

section 3.10), and dating back to the 1920s, have been examined. Also, the Dynamene 

specimens (deposited at the Universities of Aveiro and Minho) collected by Pedro Vieira, 

Henrique Queiroga and Filipe Costa with the help of other colleagues (see Acknowledgments 

section 3.10) were used to supplement the collections. These samples were collected from the 

NE Atlantic coasts and the Macaronesian archipelagos of Madeira, Azores and Canary islands, 

between 2009 and 2015. Samples were taken from rocky shore habitats by scraping of the algal 

cover and hand picking during low tide.  

All specimens of Dynamene from DMH’s collections have been deposited in the Naturalis 

Biodiversity Centre, Leiden, The Netherlands under the catalogue numbers: RMNH.CRUS.1. 

7517-7616 and 7642-7676. Specimens of Dynamene already present in the Leiden collections 

have the catalogue numbers: RMNH.CRUS.1. 7450-7514.  

In most cases the only records considered were of specimens actually seen by the authors, 

confirmed by molecular tools (unpublished data), or where there were clear diagrams in the 

literature. Although Holdich (1968c) confirmed many specimens from England and Wales during 

his surveys, since that time most records of D. bidentata have mainly come about as part of the 

general fauna collected in marine surveys. So, although many records exist in various British 

databases, particularly those held in the National Biodiversity Network (NBN) Gateway and 

ERICA (see Acknowledgements section 3.10), the current authors have not tried to track down 

voucher specimens, but have relied on identifications being correct as only one species of 

Dynamene is indigenous to the British Isles, thus making records more reliable. Details of all the 

specimens examined in the current study are given in Annex 3.1.  

Using information in the databases, maps were constructed of the six Dynamene species 

occurring along the NE Atlantic-Black Sea axis using the software ARCGIS 10.3.  

Keys and photographic montages based on the main characters of adult males (stage 8) 

and females are given in section 3.6 and 3.7 and Figs 3.2, 3.3. To construct the montages, 
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photographs of alcohol preserved specimens were taken with a Dino-Eye Microscope Camera 

attached to a Wild M5 binocular microscope via a phototube. Images were edited using 

appropriate software on a computer. 

 

3.5 RESULTS 

In this section a generic description of Dynamene is given, followed by details of each of 

the six-species present along the NE Atlantic-Black Sea axis. Keys to and photographs of males 

and females of each species are given in section 3.6 and 3.7 and Figs 3.2, 3.3. Comparisons are 

made in the main discussion section 3.8 and overall conclusions are dealt with in the section 3.9. 

Details of the material examined and geographical coordinates of locations are given in Annexes 

3.1 and 3.2. 

3.5.1 Dynamene Leach, 1814 

Synonymy. Nesaea Leach (1814). 

Prochonaesea: Hesse (1873). 

Sorrentosphaera: Verhoeff (1944). 

Diagnosis. Eubranchiate sphaeromatid with body approximately elliptical. Anteriorly, 

cephalosome separating the bases of the antennules. Eyes set slightly into pereonal tergite 1. 

Coxal plates of pereonites 1–7 separated from tergites by sutures. The seventh somite is 

overlapped by the sixth in adult males (stage 8), with the pleura extended postero-laterally into 

two small processes, which vary in shape according to species. Pleotelson domed or keeled, and 

terminating in an obvious terminal foramen, which may be enclosed forming a tube. Antennular 

peduncle articles 1 and 2 dilated and juxtaposed to ventral margins of cephalosome. All 

pereopods ambulatory. Both rami of pleopods 1-3 bearing margin of plumose setae. Endopods 

of uropod fused with protopods and juxtaposed to pleotelsonic margin; exopods posteriorly 

directed. Sexual dimorphism pronounced. Adult male with pereonal tergite 6 longer than those 

preceding, posterior margin with an elongate, posteriorly directed process either side of the 

mid-line (the bidentate process). Posterior part of pleotelson with central boss. Penes small, 

separate. Endopod of pleopod 2 lacking appendix masculina. Female with pereonal tergite 7 

similar to those preceding and lacking bidentate process; pleotelson smooth. Ovigerous female 

with ventral marsupium, formed from four pairs of lamellae, which arise from pereonites 1-4. 

Mouthparts strongly metamorphosed. 

Type species. Oniscus bidentatus Adams, 1800 
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3.5.2 Dynamene bidentata (Adams, 1800) 

Restricted synonymy. Oniscus bidentatus Adams (1800). 

Naesa bidentata: Leach (1815). 

Dynamene bidentata: Holdich (1968a, b, c, 1969, 1970, 1971, 1976); Kussakin (1979); Harrison 

and Ellis (1991). 

An extensive synonymy was given by Holdich (1968a, c) for citations prior to 1968. 

Material examined. Specimens have been examined from 129 locations in the NE Atlantic, 

mainly from the British Isles, Channel Islands, France, Spain, Portugal and Morocco – see 

Annexes 3.1 and 3.2. A number of literature records have been included where the diagrams 

clearly indicate this species. In addition, there are 76 records from the NBN database. 

Key morphological characters. Body convex; in stage 8 males the pleotelsonic boss is large and 

bilobed, the two halves are separated by a wide v-shaped groove; the arms of the bidentate 

process taper to a point, and are sparsely rugose dorsally (Fig. 3.2A–B). In stage 7 females the 

pleotelsonic dome is smoothly rounded in side view and the pleotelsonic foramen is open and 

flush with the edge of the pleotelson (Fig. 3.3A–B). In populations from Atlantic coasts the 

smooth outline of the pleotelsonic dome in females and juveniles is key to separating this 

species from D. magnitorata and D. edwardsi, where it is keeled in side view. Further details are 

provided by the scanning electron microscope pictures of the posterior body of a stage 8 male 

and a stage 7 female in Holdich (1976). 

Size. Adult males (stage 8) typically 7.0 × 3.0 mm, although specimens 10 mm in length have 

been seen; pre-ovigerous females (stage 7) typically 6.0 × 2.9 mm.  

Life-history. There are eight life-history stages in both males and females (Holdich 1968b). 

Sexual dimorphism becomes apparent in stage 6 males with the appearance of a very small 

bidentate process, this increases in size at the seventh, and is fully developed by the eighth and 

terminal stage (Figs 3.1D, 3.4–lower row 6–8). This process is absent from juveniles and females 

(Figs 3.1A-B, 3.3A–M, 3.4–upper row 6–8). Juveniles and females up to and including stage 7 are 

very similar to each other morphologically. At the moult to stage 8 females become ovigerous 

and are very similar morphologically between the species. Their mouthparts are strongly 

metamorphosed, and they die after releasing their broods (Hansen 1905, Holdich 1968b, 1971). 

Stage 8 males live for two breeding seasons, at least in the British Isles, and remain in their 

cryptic habitat for the entire period without apparently feeding (Holdich 1971). Those in their 
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second year are recognizable from the growths of algae, and sometimes serpulids, on the 

pleotelson.  

Habitat. All stages can be found on a wide variety of mid- to lower littoral algae, and also in rock 

pools in the upper littoral zone. Fenwick (pers. comm., July 2016) has found this species 

commonly amongst lower shore and sublittoral coralline algae in Cornwall, and he has also 

recorded adults from under large lower shore pebbles. Stage 7 females and stage 8 males move 

from the algae into cryptic habitats, such as crevices and empty barnacle tests, particularly 

Balanus perforatus, to breed (Holdich, 1970, 1976). Stage 7 females moult into stage 8 females 

within such a habitat and reach peak numbers in April/May each year (Holdich 1968b).  

Colour. Some degree of camouflage in the algal habitat is given by green, yellow and brown 

‘uniformis’ phenotypic varieties, and this is enhanced by the development in some individuals 

of patterns of white or red, dorsal, non-adaptable chromatophores (Tinturier-Hamelin 1962, 

1967, Holdich 1969, Arrontes 2009). In the past some workers have given specific status to the 

red and green colour varieties, e.g. rubra and viridis (see Holdich 1968c). Adult males are 

particularly colourful when found amongst red algae on the lower shore, with the margins of 

the body segments and uropods bordered in orange.  

Geographical distribution. The distribution of this species shown in Holdich (1970, 1974) has 

been extended by the present study. It occurs from the Shetland Islands to Tarfaya in western 

Morocco and Tenerife and Gran Canaria in the Canary Islands, which are the only two records 

of the species in Macaronesia (Fig. 3.5A). Within this range D. bidentata occurs in the north, 

northwest (including the outer islands), west and south coasts (as far as the Isle of Wight) of 

Great Britain, around Northern and Southern Ireland, the Channel Islands, northwest (NW) 

France, Atlantic Iberian Peninsula and in NW Africa. Arrontes (1991) cites D. bidentata as being 

the most abundant isopod species on shores in northern Spain. It is the only species present in 

the British Isles (with the exception of a single record of D. magnitorata in southern England). It 

is particularly common in Southwest (SW) England and SW Wales, especially where the large 

barnacle, Balanus perforatus is present. There is one recent record for northeastern England, 

which may be the result of a stranding, as are records for The Netherlands, where it is not 

considered indigenous (Holthuis 1956). The closest record to the Mediterranean of D. bidentata 

is Tarifa, in southern Spain (Guerra-García et al. 2011, Izquierdo and Guerra-García 

2011, Guerra-García et al. 2012, Torrecilla-Roca and Guerra-García 2012).  
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Remarks. Maggiore and Fresi (1984) described D. bidentata from the Gulf of Naples (publishing 

descriptions and figures), and several authors (e.g., Castelló and Carballo 2001, Castellanos et 

al. 2003, Junoy and Castelló 2003) have used Maggiore and Fresi’s (1984) observations to justify 

their findings of D. bidentata in the Mediterranean. Yet, examination of the single specimen 

found by Maggiore and Fresi (1984) showed that it was in fact a D. magnitorata. A lot of 

confusion regarding the identification of D. bidentata was caused by Torelli (1930) who figured 

what she called D. bidentata (a stage 8 male and a stage 8 ovigerous female), from the Bay of 

Naples, Italy. Omer-Cooper and Rawson (1934) used Torelli’s figures to illustrate D. bidentata 

from Britain, which was then proliferated in some British identification guides, e.g., Barrett and 

Yonge (1964), although this has been corrected in more modern guides, e.g., Hayward and 

Ryland (1995). Pauli (1954) also used Torelli’s figures to illustrate D. bidentata from the Black 

Sea. Holdich (1968a) collected material from Naples and decided that Torelli’s figures were in 

fact of a new species, commonly found in the Bay of Naples, which he named D. torelliae Holdich, 

1968. However, Kussakin (1979) decided that D. torelliae was in fact synonymous with D. bicolor 

(Rathke, 1837). This species was in fact unknown to Holdich at the time of his studies. Databases 

we have consulted indicate that D. bidentata commonly occurs around Northern and Southern 

Ireland. However, we could only find one modern published record, i.e., de Grave and Holmes 

(1998) from Lough Hyne in County Cork. Unlike most other isopods, stage 8 male Dynamene 

bidentata do not have appendix masculina on the endopods of the second pair of pleopods, this 

is also the case in the other Dynamene species. This phenomenon has also been noted by 

Messana (2004) in Sphaeroma terebrans Bate, 1866. It is very difficult to observe mating in 

Dynamene due to the cryptic habitat of the adults. It is probable that sperm are released directly 

into the marsupium as the eggs are laid. 

3.5.3 Dynamene bicolor (Rathke, 1837) 

Restricted synonymy. Campecopea bicolor: Rathke (1837).  

Dynamene bidentata: Torelli (1930); Omer-Cooper and Rawson (1934); Pauli (1954); Holthuis 

(1956); Barrett and Yonge (1964); [not D. bidentata of Adams (1800)].  

Dynamene torelliae: Holdich (1968, 1970).  

Dynamene bicolor: Kussakin (1979); Maggiore and Fresi (1984).  

Material examined. Specimens have been examined from 48 locations in 12 countries in the 

Mediterranean and Black Seas - see Annexes 3.1 and 3.2. A number of literature records have 

been included where the diagrams clearly indicate this species. 
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Key morphological characters. In stage 8 males the pleotelsonic boss is comprised of two right-

angled triangular structures separated by a deep groove (however, the boss may be very low 

lying in some specimens, e.g., those from the Black Sea); the arms of bidentate process taper to 

a point and are rugose dorsally (Fig. 3.2J–K). In stage 7 females the pleotelsonic dome is keeled 

in side view and the pleotelsonic foramen is flush with the edge of the pleotelson (Fig. 3.3H, I). 

The females of this species are very difficult to separate from those of D. magnitorata. Maggiore 

and Fresi (1984) provide a complete description of D. bicolor.  

Size. Adult males (stage 8) typically 3.5 × 1.5 mm, pre-ovigerous females (stage 7) typically 3.0 × 

1.3 mm.  

Life-history. Nothing is known of the life-history, other than the fact that sexual dimorphism 

occurs with males developing the bidentate process characteristic of the genus.  

Habitat. Juveniles are usually found in shallow water on a variety of algae down to 3.0 m and 

adults in empty Balanus tests, in mussel beds, in rock crevices, within sponges, and under rocks 

throughout the Mediterranean. However, occasionally they have been found in deeper water, 

e.g., off the island of Chios (Greece) specimens were collected from Cystoseira at depths from 

0.5 – 30 m (see Annex 3.1).  

Colour. As with D. bidentata, some degree of camouflage in the algal habitat is given by yellow 

or dull green ‘uniformis’ phenotypic varieties, and this is enhanced by the development in some 

individuals of patterns of white or red, dorsal, non-adaptable chromatophores (Holdich 1969). 

Geographical distribution. The distribution of this species shown in Holdich (1970) has been 

extended by the present study. It is the most commonly recorded Dynamene species in the 

Mediterranean, occurring from the Balearic Islands in the west to the coast of Israel in the east, 

although there are only a few records for the North African coast (Fig. 3.5B). It has been 

frequently recorded around the Greek islands and mainland coast of both Greece and Turkey. 

The most northerly record is for Croatia in the Aegean Sea. It has also been recorded for a 

number of countries around the Black Sea (Bulgaria, Romania, Turkey and Georgia; Fig. 3.5B). 

Most records in the literature refer to D. torelliae, which is now considered synonymous with D. 

bicolor.  

Remarks. Many records exist, both published and unpublished, for Dynamene bicolor (usually 

as ‘D. torelliae’) in the Mediterranean Sea, particularly from the coasts of Spain, France, Italy 

and Greece (Holdich 1970, Bakir et al. 2014). However, its presence in Egypt and Israel was 

unreported until now. Previous observations indicated its presence in the Black Sea (Kussakin 



 
Distribution and species identification in the crustacean isopod genus Dynamene Leach, 1814 along the 

Northeast Atlantic-Black Sea axis 

53 

1979), where it was thought to be the only Dynamene species present (Gönlügür-Demirci and 

Katağan 2004). On comparing specimens from the Black and Mediterranean Seas the current 

authors have accepted the decision of Kussakin (1979) that D. torelliae and D. bicolor are 

synonymous. However, it is clear that some of the specimens from the Black Sea have a reduced 

pleotelsonic boss, and the two may eventually turn out to be separate species when more 

material is examined. Kirkim et al. (2006) commented on the form of the pleotelsonic boss, 

stating that this can vary from two small projections to a well-formed boss in specimens of ‘D. 

torelliae’ from the Aegean Sea. Rathke’s (1837) drawings of D. bicolor show the posterior halves 

of a female and a stage 7 male. The male has two joined hemispherical pleotelsonic bosses, 

which are similar to those found in the same stage of ‘D. torelliae’ and unlike that of D. edwardsi 

the other species in the region, which is single. 

3.5.4 Dynamene bifida Torelli, 1930 

Restricted synonymy. Dynamene bifida: Torelli (1930).  

Dynamene bifida: Holdich (1968, 1970).  

Material examined. Specimens were examined from seven locations in Spain, Greece, France, 

Italy and Turkey in the Mediterranean – see Annexes 3.1 and 3.2. A number of literature records 

have been included where the diagrams clearly indicate this species. 

Key morphological characters. In stage 8 males each arm of the bidentate process is large, 

tapering and with a well-developed, downwardly-directed accessory process a quarter of the 

way from the apex; the pleotelsonic boss is very small with raised pointed corners (Fig. 3.2G–H). 

In stage 7 females the pleotelsonic dome is smoothly rounded in side view and the pleotelsonic 

foramen is at the end of short tube (Fig. 3.3L–M).  

Size. Adult males (stage 8) typically 5.0 × 3.0 mm, although a specimen of 7.0 mm length has 

been seen; pre-ovigerous females (stage 7) typically 4.0 × 2.0 mm.  

Life-history. Nothing is known of the life-history of this species, other than the fact that sexual 

dimorphism occurs with males developing the bidentate process characteristic of the genus. 

Habitat. Adults, including stage 8 females, were found among Hydroides unicata colonies and 

other cryptic habitats in the Bay of Naples (Torelli 1930, Holdich 1970). Ledoyer (1962) recorded 

it from Ulva lactuca at Endoume, southern France, and Holthuis (unpublished records) from 

rocky shores amongst algae at 0.0–1.0 m at Banyuls-sur-Mer. The latter record included stage 8 

females.  
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Colour. All specimens seen were a pale, sandy yellow. No polychromatism was observed. 

Geographical distribution. The distribution of this species shown in Holdich (1970) has been 

extended by the present study. It has a widespread distribution in the Mediterranean stretching 

from southern Spain to Turkey (Fig. 3.5C).  

Remarks. Originally described by Torelli (1930) from the Bay of Naples, males of this distinctive, 

and sometimes large species, has been infrequently recorded, and females even less so. The 

accessory process on each arm of the bidentate process is similar to that found in the Australian 

species, D. ramuscula (Holdich and Harrison 1980). The fact that ovigerous females were found 

amongst shallow-water algae raises questions about the life-history of this species, although in 

the Bay of Naples this stage has been recorded with males in more protective habitats. 

3.5.5 Dynamene edwardsi (Lucas, 1849) 

Restricted synonymy. Naesa edwardsi: Lucas (1849).  

Dynamene hanseni: Monod (1923).  

Dynamene edwardsi: Holdich (1968a, 1970); Harrison (1982).  

Dynamene bidentata: Picker and Griffiths (2011).  

An extensive synonymy was given by Holdich (1968a, c) for citations prior to 1968.  

Material examined. Specimens were examined from 89 locations in NE Atlantic, Mediterranean, 

Adriatic, Aegean and Red Seas – see Annexes 3.1 and 3.2. A number of literature records, e.g., 

the Suez Canal, have been included where the diagrams clearly indicate this species.  

Key morphological characters. Body convex; in stage 8 males the apices of arms of the bidentate 

process are swollen, each with a short, downwardly-directed spur; the pleotelsonic boss is plate-

like with two forward-facing pegs; the body exhibits various degree of setation (Fig. 3.2E–F), e.g., 

specimens examined from the Balearic Islands (Spain) and the island of Chios (Greece) are 

somewhat different from other D. edwardsi seen by us in being very hirsute, with a pronounced 

developing boss and respiratory tube in the stage 7 males. In stage 7 females the pleotelsonic 

dome is keeled in side view, with a median protuberance; the pleotelsonic foramen is at the end 

of a short tube (Fig. 3.3E–G). Further details are provided by the scanning electron microscope 

pictures of the posterior body of a stage 8 male and a stage 7 female in Holdich (1976).  

Size. Adult males (Stage 8) typically 5.5 × 2.25 mm; pre-ovigerous females (stage 7) typically 3.0 

× 1.1 mm, specimens of 4.4 × 2.3 mm have been seen from the Venice Lagoon, Italy.  
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Life-history. Nothing is known of the life-history of this species, other than the fact that sexual 

dimorphism occurs with males developing the bidentate process characteristic of the genus. 

Habitat. Juveniles and adults have been found amongst a variety brown, green and red algae in 

the littoral and sublittoral zones, sometimes in conjunction with D. bicolor in the Mediterranean, 

and with D. bidentata and D. magnitorata on Atlantic coasts. Adults have also been recorded 

from amongst mussels and tube worm colonies and barnacle tests in the Bay of Naples (Torelli 

1930, Holdich 1970), and elsewhere in the Mediterranean (e.g., Rivosecchi 1961, Bellan-Santini 

1962). It has been found associated with encrusting matter on solid surfaces in some harbours 

and canals. On occasions, it has been found amongst the ‘trottoir’ on steep-sided cliffs as deep 

as 10 m. Monod (1932) recorded it from coralline and fucoid algae on the coast of NW Africa. In 

the Azores, adults have been recorded from empty Chthamalus stellatus tests attached to lower 

shore cobbles, along with Campecopea lusitanica. In West Portugal (Buarcos) it is present with 

D. bidentata and D. magnitorata. However, while D. bidentata adults were present in barnacles, 

no D. edwardsi were found inside barnacles, only among intertidal algae and on a few ‘small’ 

algae in shaded crevices at 0-1 m. Also, they were not present among mussels. Unusually, adults, 

including stage 8 females, were found in upper shore sandstone crevices, along with 

Campecopea hirsuta, in southern Portugal. 

Colour. The general body colour is a dull grey-green, individuals sometimes exhibit 

polychromatism caused by patterns of white, dorsal, non-adaptable chromatophores as seen in 

some of the other species (Holdich 1969).  

Geographical distribution. The distribution of this species shown in Holdich (1970) has been 

extended by the present study. It is the most meridional of the Atlantic species, occurring from 

Galicia in NW Spain to Nouadhibou in Mauritania (Fig. 3.5D). This is the currently known 

southern limit of Dynamene species of the NE Atlantic-Black Sea axis. It is widespread in the 

Macaronesian islands and in the eastern and western Mediterranean (Fig. 3.5D). The most 

northerly record comes from the Venice Lagoon in the Adriatic Sea. It is also the only Dynamene 

species recorded from the Red Sea, in the Gulf of Aqaba (Fig. 3.5D). Glynn (1972) recorded a 

species that is clearly D. edwardsi from the Suez Canal. Picker and Griffiths (2011) have recorded 

this species (as D. bidentata) from South Africa.  

Remarks. Dynamene edwardsi occupies a wide vertical range in the littoral zone on NE Atlantic 

shores, and from the littoral zone down to 10 m in the Mediterranean. In recent field work, it 

was found to be very abundant in the Canary Islands and Madeira archipelago, whereas D. 
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magnitorata was more common in the Azores and D. edwardsi rare. It is the most southerly of 

the Dynamene species extending down the West African coast to Mauritania and the only record 

for tropical waters. Glynn (1972) suggested that D. edwardsi has migrated from the 

Mediterranean throughout the whole length of the canal. Our study has shown that it has now 

reached the Gulf of Aqaba in the Red Sea The records for the Suez Canal and Red Sea are 

interesting as they show movement from the Mediterranean Sea into the Red Sea, whilst many 

marine species are moving in the opposite direction (Galil et al. 2014). No Dynamene species 

have yet been recorded from the Indian Ocean (Schotte and Kensley 2005). However, a stage 8 

male has been recorded from Port Elizabeth harbour in South Africa by Picker and Griffiths 

(2011). They suggest that it may have been introduced as a fouling organism or in ballast water. 

It is known that this species can be transported amongst fouling organisms on ships, as 

evidenced by the finding a stage 8 male on a ship in Tangiers harbour (Morocco) (see Annex 3.1). 

This species is variable in its morphology and particularly in the degree of hirsuteness. It may be 

that some of the specimens collected from the Balearic and Greek islands are in fact a new 

species, but more material is needed to prove this. Ideally, a molecular genetic analysis needs 

to be carried out on Mediterranean and Adriatic specimens. Such a technique applied to 

specimens from some NE Atlantic coasts and Macaronesian islands has shown that a number of 

cryptic species may be present (Vieira et al. 2015, chapter 4 in this thesis). 

3.5.6 Dynamene magnitorata Holdich, 1968 

Restricted synonymy. Dynamene magnitorata: Holdich (1968).  

Dynamene bidentata: Monod (1932); Maggiore and Fresi (1984). 

Dynamene magnitorata: Holdich (1968a, 1970, 1976).  

Material examined. Specimens were examined from 52 locations in the NE Atlantic, and four 

countries in the Mediterranean - see Annexes 3.1 and 3.2. A number of literature records have 

been included where the diagrams clearly indicate this species.  

Key morphological characters. Body convex; in stage 8 males the pleotelsonic boss is large, 

bilobed, with the two halves separated by a narrow groove; the arms of the bidentate process 

are of similar width along their lengths and are dorsally tuberculate (Holdich 1976, fig. 3A, B; Fig. 

3.2C–D in this section). In stage 7 females the pleotelsonic dome is keeled in side view and the 

pleotelsonic foramen is flush with the edge of the pleotelson (Fig. 3.3C–D). Further details are 

provided by the scanning electron microscope pictures of the posterior body of a stage 8 male 
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and a stage 7 female in Holdich (1976). The females of this species are very difficult to separate 

from those of D. bicolor.  

Size. Adult males (stage 8) typically 4.25 × 2.25 mm, pre-ovigerous females (stage 7) typically 4.0 

× 2.0 mm.  

Life-history. A comparison of the life-histories of D. bidentata and D. magnitorata from two 

Atlantic coast locations was made by Holdich (1976). Only a limited number of D. magnitorata 

specimens were available but it showed that this species has a similar sequence of seasonal 

events (see description for D. bidentata). However, whereas D. bidentata stage 8 males live for 

two breeding seasons, those of D. magnitorata may only live for one.  

Habitat. A mid- to lower littoral and shallow sublittoral species, although sometimes recorded 

from deeper water. Its range occasionally overlaps that of D. bidentata. Juveniles are found 

associated with a wide range of littoral and shallow water algae, particularly Corallina sp., 

Rhodomenia palmata, Chondrus cripspus and Gigartina stellata. Adults have been found in 

empty tests of Balanus crenatus, amongst ascidians, and in channels within sponges (including 

those associated with eel grass beds). In the Roscoff region (northern France) adults were 

frequently found within the encrusting sponge, Halichondria sp. In the Azores (São Miguel 

island) adults have been found sublittorally in the empty tests of Megabalanus azoricus, as well 

as intertidally among algae on the islands of Terceira, São Miguel and Santa Maria. On 

Fuerteventura (Canary Islands) adult males were caught using a surface dip net. In the Chafarinas 

Islands off Mediterranean Morocco they have been recorded from 0.0 m down to 20.0 m on a 

variety of algae. Like Dynamene bidentata (Harvey et al. 1973), D. magnitorata adults were 

found to have a tolerance to high air temperatures, i.e., 38° C (Holdich 1976). However, survival 

at 5° C was much lower for D. magnitorata compared to D. bidentata (Holdich 1976) and this 

may be the reason it has not colonized more northerly regions.  

Colour. Individuals exhibit a wide variety of colours, often matching the colour of their 

background, the predominant colours being coralline-pink and brown, rather than the greens 

and yellows seen in D. bidentata. Individuals sometimes exhibit polychromatism caused by 

white, dorsal, non-adaptable chromatophores, as seen some other species (Holdich 1969, 1976).  

Geographical distribution. The distribution of this species shown in Holdich (1970) has been 

extended by the present study. It has been recorded from southern England (a single specimen 

only that may be the result of a stranding), the Channel Islands, around the coasts of Brittany, 

the Atlantic Iberian Peninsula and NW Africa, the islands of the Azores, Canary Islands and 
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Madeira in the Macaronesian archipelagos, and in the Mediterranean along the European and 

African coasts, and also Egypt (Fig. 3.5E).  

Remarks. Almost all the Dynamene specimens found in the Azores during recent field work 

belonged to D. magnitorata. However, Dynamene was less prevalent in the benthic community 

when comparing with Canaries and Portugal (pers. obs., unpublished data). Maggiore and Fresi 

(1984) described D. bidentata from the Bay of Naples, but in fact examination of the specimen 

showed it to be a male D. magnitorata. If the author’s had compared an actual D. bidentata with 

their specimen then they would have realized this, particular as it is so much smaller than any 

known D. bidentata specimen. Dynamene magnitorata has only rarely been recorded in the 

Mediterranean, i.e. twice in Spain, and once in each of Egypt, Italy, Monaco and Tunisia, 

although it was found to be common on the Chafarinas Islands off Morocco (Castellanos et al. 

2003) (see Annex 3.1). 

3.5.7 Dynamene tubicauda Holdich, 1968 

Restricted synonymy. Dynamene tubicauda Holdich (1968).  

Dynamene tubicauda: Holdich (1968a, 1970); Lombardo (1984); Borg et al. (2006).  

Material examined. Specimens were examined from six Italian locations in the Bay of Naples 

and off the island of Elba, and one location off Malta - see Annexes 3.1 and 3.2. A number of 

literature records from Sicily have been included as the diagrams clearly indicate this species 

(Lombardo 1984).  

Key morphological characters. The morphology of this species is unique amongst the known 

Dynamene species - in stage 8 males the pereon length and width are similar; the epimera and 

front of the head form a shelf; the antennular peduncle is expanded; there are two widely 

separated, peg-like pleotelsonic bosses; and the pleotelsonic foramen is at the end of a 

ventrally-closed tube (Fig. 3.2I). In stage 7 females the body is also flattened with the epimera 

forming a shelf round the body; the pleotelsonic foramen is at the end of a well-developed tube 

(Fig. 3.3J–K).  

Size. Adult males (stage 8) typically 3.0 × 2.0 mm, pre-ovigerous females (stage 7) typically 2.5 × 

2.0 mm.  

Life-history. Nothing is known of the life-history of this species, other than the fact that sexual 

dimorphism occurs with males developing the bidentate process characteristic of the genus. 
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Holdich (1968) only recorded males, but both sexes have been recorded in the present study. 

Lombardo (1984) was the first to describe the adult female.  

Habitat. This species has been found between 2-30 m amongst algae in muddy/ sandy and 

coralline habitats, rock scrapings, freely swimming at 30 m, and also in sea grass meadows 

(Lombardo 1984, Borg et al. 2006).  

Colour. Pale yellow. No polychromatism was observed. 

Geographical distribution. The distribution of this species shown in Holdich (1970) has been 

extended by the present study. However, it appears to be restricted to the eastern 

Mediterranean, having only been recorded off the west coast of Italy (Holdich 1968), Sicily 

(Lombardo 1984) and Malta (Borg et al. 2006). The most northerly record is for the island of Elba 

and the most southerly is off Malta (Fig. 3.5F).  

Remarks. The distribution of this species is the most restricted of all the Dynamene species along 

the NE Atlantic-Black Sea axis. Considering the large number of samples examined during this 

study this restricted distribution is most likely real. Its unusual flattened shape and the position 

of the pleotelsonic foramen at the end of a tube, even in adult males, may be an adaptation to 

inhabiting sediments. 

3.5.8 Dynamene sp. 

Material examined. Two stage 8 males. See Annexes 3.1 and 3.2.  

Key morphological characters. The bilobed pleotelsonic boss has a posteriorlydirected spine not 

seen in any other stage 8 males. The uropodal exopod is wide and the body markedly hirsute.  

Habitat. Known only from the stomach contents of a black scorpionfish Scorpaena porcus. 

Geographical distribution. Known only known from NW Aegean Sea.  

Remarks. Only two specimens have been found, both stage 8 males, and both from the stomach 

contents of a black scorpionfish, Scorpaena porcus. This could well be a new species of 

Dynamene, but more material is needed to confirm this. It may even be related to the hirsute 

specimens found in the Balearic Islands and the Greek island of Chios. The fish is known to be a 

bottom feeder in the Black Sea, close to where the specimen came from, which was in the NW 

Aegean, where it occurs at 20–40 m depth (Başçïnar and Saǧlam 2009). Rafrafi-Nouira et al. 

(2016) examined the diet of S. porcus from waters off the coast of Tunisia, but the only isopods 

they found were listed as unidentified. 
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3.6 KEY TO THE STAGE 8 MALES OF DYNAMENE SPP. ALONG THE NE ATLANTIC-
BLACK SEA AXIS 

1. With a bidentate process arising from posterior margin of pereonite 6 - sub-adult and adult ♂ 
Dynamene (Figs 1, 2, 3) ….………………………………………………………………….……..……………..…….………. 2 

 - Without bidentate arising from posterior margin of pereonite 6 
............................................................juvenile and ♀ Dynamene (see key to females, section 3.7) 

2. With large bidentate process arising from posterior margin of pereonite 6: adult ♂ Dynamene 
(Figs 1D, 2A-K) ………………………….…….……………………………………………………...….……………………..…... 3 

- With small or medium bidentate process arising from posterior margin of pereonite 6 
………..………………………………….………….………..…....… sub-adult ♂ Dynamene (Fig. 4–lower row 6-7) 

3. Pereon length and width similar; epimera and front of head forming a shelf; antennular 
peduncle expanded; two widely separated, peg-like pleotelsonic bosses; pleotelsonic foramen 
at end of a ventrally-closed tube (Fig. 2J) ………………………………………….………..……….. D. tubicauda 

- Pereon length greater than width, pleura and front of head not forming a shelf; antennular 
peduncle not expanded; pleotelsonic boss single …………..…….……………………………..…………..….… 4 

4. Bidentate processes large, tapering and with a well-developed, downwardly-directed 
accessory process a quarter of the way from the apex; pleotelsonic boss very small with raised 
pointed corners (Fig. 2G-H) …………………………………………………………………....……………...….. D. bifida 

- Bidentate processes without well-developed accessory process; pleotelsonic boss well-
developed, without raised pointed corners ..…………………………..………………………………….………….. 5 

5. Apices of bidentate processes swollen, each with short, downwardly-directed spur; 
pleotelsonic boss plate-like with two forward-facing pegs; body exhibiting various degree of 
setation, sometimes hirsute (Fig. 2E-F) ……………………………………………..…….………..….. D. edwardsi 

- Bidentate processes without swollen apices or spurs, pleotelsonic boss not plate-like ……...... 6 

6. Pleotelsonic boss comprised of two right-angled triangular structures separated by a deep 
groove (however, the boss may be very low lying in some specimens, e.g. those from the Black 
Sea); arms of bidentate process tapering to point, rugose dorsally (Fig. 2I, K) 
…………………………………………………………...…………………………………………………………….………. D. bicolor 

- Pleotelsonic boss comprising two hemispherical structures separated by a wide or a narrow 
groove, joined at the base ……………….…………….………………………………………….….…….….…………..… 7 

7. Pleotelsonic boss large, bilobed, two halves separated by a narrow groove; arms of bidentate 
process of similar width with along length, dorsally tuberculate (Fig. 2C-D) 
………………….……………………………………………………………………….……..……….………...…. D. magnitorata 

- Pleotelsonic boss large, bilobed, two halves separated by a wide v-shaped groove; arms of 
bidentate process tapering to point, sparsely rugose dorsally (Fig. 2A-B)………….….. D. bidentata 
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3.7 KEY TO STAGE 7 FEMALES AND JUVENILES OF DYNAMENE SPP. ALONG THE NE 
ATLANTIC-BLACK SEA AXIS 

1. Sphaeromatid without process arising from the posterior margin of the pereonite 6, and with 
simple pleotelsonic foramen; with or without dorsal tuberculation …………………………..…..… 
……………………………………………………..juvenile and ♀♀ Campecopea, Dynamene and Ischyromene 

- Without tuberculation on surface of posterior pereonites, pleonites and/or pleotelsonic dome 
(Figs 1A, B; 3A-M, 4-upper row 6-8) ….............…... juvenile and ♀♀ Dynamene ……………………..…2  

2. Body flattened, epimera flattened to form a shelf round the body; pleotelsonic foramen at 
end of a well-developed tube (Fig. 3J-K) ……….……………..……….……………….……….….… D. tubicauda  

- Body convex, pleura not flattened to form shelf round body; pleotelsonic foramen either flush 
with edge of pleotelson or at end of a short tube ………………..………………………………………….…….. 3 

3. Pleotelsonic dome smoothly rounded in side view, pleotelsonic foramen open and flush with 
edge of pleotelson or at end of short tube …………………………………………………………..…….……….….. 4 

- Pleotelsonic dome keeled in side view, with or without a median protuberance ….…….….….... 5 

4.Pleotelsonic foramen open and flush with edge of pleotelson (Fig. 3A-B) 
…..…….……………………………………………………….………………………………………………..……….. D. bidentata  

- Pleotelsonic foramen at end of short tube (Fig. 3L-M) ………..……..…........................…… D. bifida  

5. Pleotelsonic dome keeled in side view, pleotelsonic foramen flush with edge of pleotelson 
…………………………………………………………..….… Fig. 3C-D - D. magnitorata and Fig. 3H, I - D. bicolor  

-  Pleotelsonic dome keeled in side view, with median protuberance; pleotelsonic foramen at 
end of short tube (Fig. 3E, F, G) ……………….…………….……………………………………..………. D. edwardsi  

Notes: 

When identifying Dynamene juveniles and ♀♀ care must be taken not to confuse them with 

those of Ischyromene lacazei Racovitza, 1908 and Campecopea lusitanica (Nolting, Reboreda 

and Wägele, 2008). If in doubt, then consult Schüller and Wägele (2005) and Bruce and Holdich 

(2002) respectively.  

Except for size, juveniles are very similar to stage 7 females. Dynamene magnitorata and D. 

bicolor females are very similar and cannot be keyed out, except on size – on average D. 

magnitorata tends to be larger (see section 3.5). Ovigerous females are very similar between 

species and it is not possible to create a key for them. They are characterized by metamorphosed 

mouthparts, ventral marsupium, wide body and a pleotelsonic foramen that is more upturned 

and which gradually becomes closed posteriorly (Fig. 4–upper row 8). 
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Figure 3.2. Main features of adult males (stage 8) of the NE Atlantic-Black Sea axis Dynamene spp. 
A, B – D. bidentata (South Wales). Arrows indicate shape of the bidentate process (A), uropods (A, B) and 
pleotelsonic boss (B). C, D - D. magnitorata (Roscoff, France). Arrows indicate shape of the bidentate 
process (C), the uropods (C, D) and the pleotelsonic boss (C, D). Note the difference in the shape of the 
boss and the ends of the arms of the bidentate process to those of D. bidentata. E, F – D. edwardsi (E – 
Canaries, F - Azores). Arrows indicate shape of the bidentate process (E, F), uropods (F) and pleotelsonic 
boss (E, F).  Specimen in E shows relatively little dorso-lateral setation, whilst that in F is hirsute. Note the 
differences in the shape of the boss and the tips of the arms of the bidentate process compared to those 
of D. bidentata and D. magnitorata. G, H - D. bifida (France, Mediterranean). Arrows indicate shape of the 
bidentate process (G, H), uropodal exopod (H) and pleotelsonic boss (G). Note the large accessory process 
on each arm of the bidentate process, the small sessile pleotelsonic boss and the long narrow uropodal 
exopods. I – D. tubicauda (Bay of Naples, Italy). Arrows indicate the unique body shape, tubular respiratory 
channel, peg-like pleotelsonic bosses, and the curved uropodal exopods.  J, K - D. bicolor (Bay of Naples, 
Italy). Arrows indicate shape of the bidentate process (J), and pleotelsonic boss (J, K). Note in particular, 
the rugose nature of the dorsal surface of the bidentate arms and the triangular shape of each half of the 
boss – in specimens from the Black Sea the boss is of a similar shape but much less prominent. 
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Figure 3.3. Main features of females and juveniles of the NE Atlantic-Black Sea axis Dynamene spp. 
A, B - Dynamene bidentata (South Wales). Arrows indicate smooth outline of pleotelsonic dome (A) and 
non-tubular pleotelsonic foramen (B). C, D - Dynamene magnitorata (Roscoff, France). Arrows indicate 
angular outline of pleotelsonic dome (C), posterior extension of pleotelsonic keel and non-tubular 
pleotelsonic foramen (D).  E, F, G - Dynamene edwardsi (Italy). Arrows indicate angular outline of 
pleotelsonic dome (E) with central bulge (E, F, G) and tubular pleotelsonic foramen. (E and F from Naples, 
Italy; G - hirsute female from the Venice Lagoon, Italy). H, I - Dynamene bicolor (Naples, Italy). Arrows 
indicate angular outline of pleotelsonic dome (I) and non-tubular pleotelsonic foramen (H). J, K - 
Dynamene tubicauda (Ischia, Italy). Arrows indicate flattened epimera surrounding body that give this 
species a unique body shape (J, K) and the tubular pleotelsonic foramen (J, K). L, M. Dynamene bifida 
(Ischia, Italy). Arrows indicate smooth outline to pleotelsonic dome (L) and pleotelsonic foramen at end 
of short tube (M). 
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Figure 3.4. Dorsal views of the posterior halves of the bodies of various life history stages (5-8) of 
Dynamene bidentata.  
5 – juvenile. Upper row – female stages 6, 7 and 8 (ovigerous).  Lower row – male stages 6, 7 and 8.  
Adapted from Holdich 1968b. 
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Figure 3.5. Distribution of Dynamene species along the NE Atlantic-Black Sea axis based on material 
validated during the present study. 
A - Dynamene bidentata. B – Dynamene bicolor. C –Dynamene bifida. D –Dynamene edwardsi. E –
Dynamene magnitorata. F - Dynamene tubicauda. 
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3.8 DISCUSSION  

Three species of Dynamene occur on the shores of the continent and islands of the NE 

Atlantic Ocean (D. bidentata, D. magnitorata and D. edwardsi). In recent field work, no 

Dynamene specimens were collected in Scandinavia or Iceland (pers. obs., unpublished data). 

This is probably due to the fact that members of this genus may not be able to tolerate cold 

water and weather. For example, studies by Holdich (1968b, c, 1970) were meant to be carried 

out on the Gower Peninsula in South Wales, but the severe and long-lasting winter of 1962-1963 

decimated the populations, as well as those of Balanus perforatus, and the study site was 

relocated to western Pembrokshire in 1964 (SW Wales), where the populations of both were 

unaffected. Moyse and Nelson-Smith (1964) showed that when sea and air temperatures were 

below 5°C for a long period, viable broods were not produced by females of D. bidentata. 

Moreover, with lower average air temperatures, populations of Dynamene must restrict their 

growth phases to fewer months of the year (Holdich 1976). The previously known northerly limit 

of Dynamene was Ardrossan in the west of Scotland (Holdich 1970). In this study, we extended 

the northern range of this genus to Clatholl in the north of Scotland, and recent surveys by British 

workers have shown that it also occurs in the Shetland Islands north of Scotland. There are a 

number of records for the Western Isles off Scotland (Fig. 3.5A) that are warmed by the Gulf 

Stream. However, one record is shown from north-eastern England (Fig. 3.5A), which tends to 

be colder than the west coast due to a lack of influence from the Gulf Stream, but it is not known 

if a permanent population exists there. It may represent a stranding from a population 

elsewhere. Holthuis (1956) recorded D. bidentata from the other side of the North Sea in The 

Netherlands. He was of the opinion that it was not indigenous there, but was occasionally 

stranded with flotsam and jetsam. There are old records in the literature of D. bidentata for 

eastern Scotland (Scott 1899) and also for south-east England (Butler 1878), but none (other 

than the record mentioned above) have come to light in the last few decades.  

Dynamene bidentata is the only species present in the British Isles (Holdich 1969, 1970; 

Holdich and Lincoln 1974). Although in our databases there is a record of Dynamene 

magnitorata in southern England, we believe this probably does not represent an actual 

permanently established population. However, D. magnitorata is common on Guernsey 

(Channel Islands), which is not that far geographically from the south of England. According to 

Holdich (1970), and confirmed by the current study, D. bidentata is distributed along the Atlantic 

coasts of Europe from the northern British Isles to Portugal. Barrois (1888) recorded D. 

bidentata from the Azores, and it is listed as being present there by Ferraz et al. (2004) and 
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Borges et al. (2010). Rodrigues (1990) recorded it as being common on the island of Flores. 

However, none of the specimens we have examined from the Azores have been of this species, 

and the records may well have been D. magnitorata or D. edwardsi. Pereira et al. (2006), Guerra-

García et al. (2011), Izquierdo and Guerra-García (2011), Guerra-García et al. (2012) 

and Torrecilla-Roca and Guerra-García (2012) recorded it from southern Portugal and southwest 

Spain, and indicated that these regions as the most meridional locations where this species was 

collected. Our observations extend the distribution of D. bidentata further south, i.e., Akhfenir 

in Morocco and Tenerife and Gran Canaria in the Canary Islands. Because D. bidentata can 

survive at temperatures up to 38° C (Harvey et al. 1973), it is possible that this species occurs 

further south.  

During the current study the authors examined many collections from the Mediterranean 

and we did not find any D. bidentata. It has been pointed out above that Torelli’s (1930) ‘D. 

bidentata’ from the Bay of Naples is in fact D. bicolor, as are a number of other references to D. 

bidentata in the literature. Also, Maggiore and Fresi’s (1984) ‘D. bidentata’ from the Bay of 

Naples is a D. magnitorata. From the examination of some other collections we also conclude 

that Castelló’s (1986) ‘D. bidentata’ is an Ischyromene sp., that Kirkim’s (1998) ‘D. bidentata’ is 

D. bicolor, and that Castellanos’ et al. (2003) ‘D. bidentata’ is D. magnitorata. It is not impossible 

that D. bidentata occurs in the western Mediterranean as it has been recorded close to the Strait 

of Gibraltar (Torrecilla-Roca and Guerra-García 2012), but currently there is no evidence for this.  

On Atlantic mainland coasts and islands, D. bidentata, D. edwardsi and D. magnitorata 

are usually present in the midlittoral to sublittoral zones, although occasionally they are found 

higher up the shore. Usually the juveniles are present among the fronds of brown, red and 

sometimes green algae, whilst the adults inhabit cryptic habitats such as crevices, empty 

barnacle tests, mussel beds and encrusting organisms. Individuals often match the colour of the 

algae they are feeding on and additional camouflage is afforded by linear and globular patterns 

of white chromatophores on the dorsal surface (Tinturier-Hamelin 1962, Holdich 1969, 1976). 

In the Mediterranean and Black Seas, D. magnitorata, D. bifida, D. bicolor and D. edwardsi 

usually inhabit shallow water zones, although the last two species can also be present in deeper 

water off steep-sided islands. Juveniles of these species inhabit algae whilst adults are usually 

found in more cryptic habitats, but sometimes amongst algae. Dynamene tubicauda has been 

found between 2-30 metres amongst algae in muddy/sandy and coralline habitats, rock 

scrapings, freely swimming at 30 m, and also in sea grass meadows (Lombardo 1984, Borg et al. 

2006, Holdich, pers. obs.). The vertical range of D. bicolor is the largest, extending from shallow-
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water algae and cryptic habitats such as barnacles down to 33 m off steep-sided islands. The 

vertical ranges of some Dynamene species may overlap, e.g., D. bidentata and D. magnitorata 

on Atlantic Ocean shores, although the latter usually occurs at a lower level on the shore 

(Holdich 1970, Arrontes and Anadón 1990a; Castelló and Carballo 2001, Guerra-García et al. 

2011, Izquierdo and Guerra-García 2011). Dynamene bicolor and D. edwardsi frequently inhabit 

the same shallow-water algae in the Mediterranean. 

 

3.9 CONCLUSIONS 

Six species of Dynamene are present along the NE Atlantic-Black Sea axis, and one species 

extends into the Red Sea. It would appear that D. bidentata is restricted to coastal habitats of 

the NE Atlantic, no evidence was found to suggest it inhabits the Mediterranean. Dynamene 

magnitorata has a wider geographical range, occurring on coastal habitats of the NE Atlantic as 

well as those of the Mediterranean. Dynamene edwardsi has the widest geographical range of 

the six species under consideration, extending from the Macaronesian archipelagos in the NE 

Atlantic, down the north-western coast of Africa, through the Mediterranean into the Suez Canal 

and Red Sea. It is not known if a recent record from South Africa represents an introduction or 

an established population. Dynamene bicolor, D. bifida and D. tubicauda are restricted to the 

Mediterranean, although D. bicolor also extends into the Black Sea. Dynamene bicolor is the 

most commonly found and most wide-spread Dyamene species in the Mediterranean. 

Dynamene bifida has only been recorded at six locations, but its range extends from southern 

Spain to Turkey. Dynamene tubicauda has the smallest geographical range having only been 

recorded for Italy and Malta. Some species have large vertical ranges, having been found 

intertidally down to 30 m. It is highly probable that some of the records for 

the Dynamene species are the result of introductions via fouling organisms attached to ocean-

going vessels, e.g., D. magnitorata and D. bifida with their sporadic distribution in the 

Mediterranean, and D. edwardsi in South Africa. 

There are still a number of outstanding issues relating to Dynamene that can only be dealt 

with if more material becomes available. Firstly, the status of the hirsute species from the 

Balearic Islands and the Greek island of Chios – are these a form of D. edwardsi or a new species? 

Secondly, the status of ‘D. torelliae’ – is it really synonymous with D. bicolor from the Black Sea? 

Thirdly, the status of the specimens found in the Scorpaena porcus stomach, which appears 

different from the other species, but cannot be confirmed until more stage 8 males are found. 
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Fourthly, a genetic analysis of all the species needs to be carried out to ascertain the taxonomic 

status and species boundaries, and the phylogenetic relationships between species, especially 

those in the Mediterranean and Black Seas. Currently, only D. bidentata, D. magnitorata and D. 

edwardsi from NE Atlantic coasts have been analyzed, and have been found to be distinct. 
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4.1 ABSTRACT 

Diversification and speciation of terrestrial organisms is anticipated in oceanic islands like 

Macaronesia, a group of Atlantic islands that have arisen from the ocean floor and have never 

been connected to continental landmasses. Less expected, and investigated, is the 

diversification of marine organisms in oceanic islands, even in organisms having a putatively 

lower dispersal capability, such as the case of many peracarid crustaceans that lack larval stages. 

In this study, we used a multi-locus approach to investigate the role of oceanic islands on the 

diversity and evolution of the isopod species of the genus Dynamene present in Northeast 

Atlantic. Sequences of two mitochondrial (COI and 16S rRNA) and two nuclear (18S rRNA and 

28S rRNA) loci were obtained from specimens of Dynamene edwardsi (Lucas, 1849), Dynamene 

magnitorata Holdich, 1968 and Dynamene bidentata (Adams, 1800) collected along the 

Northeast Atlantic Ocean, between Morocco and Scotland, and in Macaronesian archipelagos 

of Canaries, Madeira and Azores. While for D. bidentata and D. magnitorata no major 

phylogeographic structure was detected, within D. edwardsi, between 5 to 9 deeply divergent 

lineages were patent. The 9 cytochrome oxidase I (COI) lineages displayed genetic distances 

between 4% to 19%, values that compare to those found between established species of 

peracarids. D. edwardsi revealed a long, rich and complex phylogeographic history in 

Macaronesia, where the geodynamics of islands emergence and submergence, possibly 

associated with founder effects and subsequent lack of gene flow among populations, 

frequently appears to supersede geographical distances in justifying diversification. That is the 

case of the completely sorted lineages of Madeira and Porto Santo, displaying as much as 18% 

genetic distance despite their vicinity, while haplotypes from the distant Canary island of 

Tenerife, group in Madeira’s clade. These findings suggest a much larger role of oceanic islands 

in the diversification of marine invertebrates than would have been anticipated, and contributes 

to expose weakly explored events in the phylogeography of Macaronesia’s marine organisms. 

 

 

 

 

 

 

 

4.2 KEYWORDS 

Dynamene, Macaronesia, cryptic species, oceanic islands, endemisms, Northeast Atlantic. 



 
Biodiversity and evolution of the coastal peracaridean fauna of Macaronesia and Northeast Atlantic 
 

74
 

4.3 INTRODUCTION 

Marine benthic invertebrates that inhabit intertidal coastal areas are unique as they have 

characteristics that make them different from both terrestrial organisms and other marine taxa 

(Hachich et al. 2015). This is particularly true on islands, as they are separated from other 

suitable areas by variable extents of deep water (Hawkins et al. 2000). Many intertidal species 

have pelagic larvae which may enable them to disperse widely over open water, potentially 

circumventing the habitat discontinuity. However, some small invertebrates, such as “free-living 

isopods”, are more prone to isolation compared with other marine species with pelagic larvae, 

because they have direct development, and consequently, putatively lower dispersal capacity. 

Long-distance dispersion may occur through random events such as rafting on detached 

macroalgae or floating debris, but this is limited by the capacity of the specimens to survive such 

events and by their ability to successfully colonize the new habitat (Thiel and Gutow 2005).  

Patterns of colonization and gene flow of marine benthic organisms in Macaronesia, 

which comprises the Atlantic oceanic archipelagos of the Azores, Madeira, Canaries and Cape 

Verde, have been studied before, but only in organisms with pelagic phase (Chevolot et al. 2006, 

Sá-Pinto et al. 2008, Xavier et al. 2010). Because these archipelagos have volcanic origin and 

have never been connected with mainland, their biota is the result of dispersal from distant 

geographical sources and in situ evolution and diversification (Fernández-Palacios et al. 2011). 

Spread along the Northeast Atlantic Ocean, these islands span a wide range of climatic 

conditions, holding a highly diverse marine biota which experienced dynamic geological and 

climatic changes over relatively long periods (e.g., Pleistocene glaciations), thus providing a 

singular case-study to investigate evolution and phylogeography (Wares and Cunningham 2001, 

Maggs et al. 2008).  

However, understanding the diversity of such organisms is hampered by lack of 

comprehensive data on species distribution (Witt et al. 2006, Radulovici et al. 2009) as well the 

difficulty in describing species based solely on morphological characters (Knowlton 1993, 

Remerie et al. 2006, Beheregaray and Caccone 2007). In isopods, for example, even family-level 

diagnostic characters might change with development and gender, making difficult their 

identification (Larsen and Wilson 1998, Larsen 2001). Growing records on the occurrence of 

cryptic species among marine organisms (Knowlton 2000, Mathews 2006, Witt et al. 2006) 

further complicate the interpretation of past data records and underline the importance of their 

recognition in biodiversity monitoring (Knowlton 2000, Cook et al. 2008). Molecular approaches 

are essential for this purpose, and they have been successfully used among the isopods, to help 
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detection of new species (Xavier et al. 2011b, Khalaji-Pirbalouty and Raupach 2014), 

discriminate morphologically similar species (Radulovici et al. 2009, Xavier et al. 2012) or 

unravelling multiple cryptic species complexes (Raupach and Wägele 2006, Markow and Pfeiler 

2010, Varela and Haye 2012, Brix et al. 2014, Raupach et al. 2014). 

The existence of cryptic species is suspected (but not yet investigated) within most of the 

large genera in the isopod family Sphaeromatidae such as Cilicaea, Cymodoce, Dynamenella, 

Exosphaeroma, Pseudosphaeroma and Dynamene (Poore and Bruce 2012). The members of the 

genus Dynamene Leach, 1814 (Isopoda: Sphaeromatidae) are common and abundant on rocky 

intertidal and shallow subtidal habitats of the Northeast Atlantic Ocean, and the Mediterranean 

and Black Seas. Only three species are present in the NE Atlantic (Holdich 1970, Vieira et al. 

2016): D. bidentata (Adams, 1800), D. edwardsi (Lucas, 1849) and D. magnitorata Holdich, 1968. 

In this study, we examine the genetic diversity and phylogeography of Dynamene 

morphospecies from the NE Atlantic using a multi-locus approach. Studies examining the genetic 

diversity of low dispersal benthic marine organisms in this region have focused only on the 

mainland shores. Here, the Macaronesian archipelagos of Azores, Madeira and Canary will be 

also taken into consideration, and this genus will be used to investigate the role of Macaronesian 

islands in the phylogeography and evolutionary history of marine invertebrates lacking a pelagic 

dispersal stage. 

 

4.4 MATERIAL AND METHODS 

4.4.1 Specimen sampling and taxonomic identification 

Dynamene specimens were collected along the distribution range of the genus in the NE 

Atlantic (Vieira et al. 2016) between 2009 and 2015 in the algae cover of the rocky shore 

intertidal (Fig. 4.1; see Annexes 1.3, 1.4, 1.5 for details). Three species were sampled: Dynamene 

bidentata, Dynamene magnitorata and D. edwardsi. D. bidentata was collected in Scotland, 

Iberian Peninsula, Morocco and Gran Canaria (Fig. 4.1A), D. magnitorata was found in Iberian 

Peninsula, Morocco and in the islands of Santa Maria, Terceira, São Miguel and La Palma (Fig. 

4.1B) and D. edwardsi in Iberian Peninsula, Madeira, Porto Santo, Selvagens, Gran Canaria, La 

Palma, Tenerife, El Hierro, São Miguel and Morocco (Fig. 4.1C). Two additional individuals 

sampled in 2014 (see Acknowledgements section 4.8) from algae present at one-meter depth in 

two harbors from the Mediterranean were also incorporated in the study, one from France and 

another from Croatia (Fig. 4.1C). After collection, the specimens were immediately preserved in 
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96% alcohol. Morphology-based taxonomic identification was supported in specialized literature 

(Holdich 1968a, Vieira et al. 2016). The identifications were reviewed before and after obtaining 

the DNA sequences to ensure the correct identification of the specimens.  

Scanning electron microscope images were produced by David Holdich whilst at the 

University of Nottingham – see Holdich (1976) for details of preparation and equipment used. 

4.4.2 DNA extraction, amplification and sequencing 

DNA extraction was performed using the “E.Z.N.A. Mollusc DNA extraction Kit” according 

to manufacturer instructions. Depending of the specimen size, only a small amount of tissue or 

the whole animal was used.  We used the cytochrome oxidase subunit I DNA barcode region as 

the prime locus for investigating the genetic diversity of Dynamene. A total of 179 sequences 

were obtained (40 for D. bidentata, 101 for D. edwardsi and 38 for D. magnitorata) (Annex 4.1). 

Based on the COI phylogeny we selected representative specimens of each region for each 

species for further analyses of sequence variation using part of the mitochondrial gene 16s rRNA 

(total of 43 sequences), a partial segment of the nuclear gene coding for 28s rRNA (total of 46 

sequences) and the variable regions 2-5 of 18s rRNA (total of 120 sequences). All PCR reactions 

were performed in a total of 25 µl volume, containing 12.5 µl supreme taq (Nzytech), 0.5-1.25 

µl of each primer (10mM) and 1-4 µl DNA extraction. The remaining volume consisted in 

ultrapure water. For PCR conditions and primers used, see Annex 4.2.  

The 658 base pair (bp) barcode region was amplified using the primers LoboF1/LoboR1 

(Lobo et al. 2013) or LCO1490/HCO2198 (Folmer et al. 1994) depending on the PCR reaction 

success. The 16S rRNA fragment was amplified with the primers 16Sar/16Sbr (Palumbi et al. 

2002) or D16SAR/D16SBR (Geller et al. 1997) depending on the PCR reaction success. The 

nuclear genes coding 18S rRNA were amplified with the primers 18sAi/18sBi (Whitting 2002) 

and 28S with the primers AM-28S-H/AM-28S-T (Tomikawa et al. 2007). Amplification success 

was verified in a 1.5% agarose gel. DNA templates were purified (“Roche purification kit” 

according to manufacturer instructions) and sequenced bidirectionally in an external service 

supplier (STABVida), using an ABI 3730 sequencer and following standard chain-termination 

sequencing protocols. 

All sequences were deposited in Barcode of Life Data Systems (BOLD) (Ratnasingham and 

Hebert 2013) under the project (DYNA - “Dynamene NE Atlantic”). 
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4.4.3 Data analysis 

All sequences were analysed and edited using MEGA 7.0 (Kumar et al. 2016). Trace files 

were checked manually, unreadable zones and primers were removed and ambiguous bases 

corrected. For the 658 bp COI region, the edited sequences were aligned using Clustal W 

(Thompson et al. 1994) as implemented in MEGA 7.0 (Kumar et al. 2016) and the translation 

verified for stop codons or indels.  

Sequences of 16S, 18S and 28S were aligned separately using Clustal W (Thompson et al. 

1994) tool in MEGA 7.0 (Kumar et al. 2016) as suggested by Talavera and Castresana (2007) and 

highly variable regions were deleted from the analysis using Gblocks (Castresana 2000), 

producing a final dataset for 16S, 18S and 28S consisting in, respectively for each species: D. 

bidentata (458 bp, 1120 bp, 781 bp); D. edwardsi (451 bp, 1084 bp, 801 bp) and D. magnitorata 

(426 bp, 1125 bp, 780 bp).  

4.4.4 Phylogenetic analyses 

Phylogenetic analyses for each locus and for the concatenated data (merged together in 

DNASP 5.10, Librado and Rozas 2009), were performed using maximum likelihood (ML) and 

Bayesian inference (BI). The software MEGA 7.0 (Kumar et al. 2016) was used to determine the 

best model of evolution (see Annex 4.3 for list of models). The ML tree was reconstructed using 

PhyML 3.0 (Guindon et al. 2010) (http://www.atgc-montpellier.fr/phyml/). Branch support was 

estimated using 1 x 103 bootstraps. The Bayesian tree was reconstructed using MrBayes on 

XSEDE (3.2.6) (Ronquist et al. 2012)  

(https://www.phylo.org/portal2/createTask!selectTool.action?selectedTool=MRBAYES_XSEDE) 

through CIPRES Science Gateway (Miller et al. 2010). Two independent runs were conducted 

with 2 x 108 generations each. Parameters were sampled every 1 x 103 generations. In the end a 

Majority rule consensus tree was reconstructed with a burn-in of 10%. 

Haplotype genealogy was investigated by building a network of haplotypes using TCS 

version 1.21 (Clement et al. 2000) with a 90% statistical parsimony connection limit. The 

networks were edited and drawn in TcsBU (Múrias dos Santos et al. 2015).  

4.4.5 Molecular-based species delineation 

Two different approaches and five methods of molecular based species deliniation were 

applied to explore the number of Molecular operational taxonomic units (MOTUs). They were 

applied to COI, 16s and concatenated data (except for the BIN system that relies only on COI). 

The first two were based on distance measures. First, COI sequences were automatically subject 
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to the BIN system implemented in BOLD. This approach clusters barcode sequences 

algorithmically to calculate MOTUs that show high concordance to species (Ratnasingham and 

Hebert 2013). Then, the Automatic Barcode Gap Discovery (ABGD) species delineation tool on a 

web interface (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) was applied with 

default settings using the Kimura-2-parameter (K2P) distance matrix (Puillandre et al. 2012). 

Finally, three tree-based methods were applied: GMYC single and multi threshold models 

(Fujisawa and Barraclough 2013) and bPTP (Zhang et al. 2013). Since the GMYC methods requires 

an ultrametric tree, we first calculated a Bayesian ultrametric phylogenetic tree. The tree was 

generated in BEAST 2.4.6 (Bouckaert et al. 2014) with the appropriate best model (Annex 4.3), 

and four independent runs for 7 x 107 Markov chain Monte Carlo (MCMC) generations, sampled 

every 1 x 104 generations, were performed. Convergence of the parameters was evaluated using 

Tracer 1.6 software (Rambaut et al. 2014). The consensus tree was annotated using 

TreeAnnotator 2.4.6 (Bouckaert et al. 2014). The consensus tree was loaded into the R software 

package ‘SPLITS’ (Species Limits by Threshold Statistics; Ezard et al. 2009) in R 3.2.0 (R Core 

Group, 2015; available at: http://www.r-project.org) and analysed using the single- and 

multiple-threshold models. In contrast to GMYC, bPTP uses non-ultrametric phylograms. For the 

input tree, we used ML phylogenies obtained before. Species delimitation analysis was 

performed using the python code (available at: www.exelixis-lab.org/software.htm, Zhang et al. 

2013) with 1 x 106 iterations of MCMC and 25% burn-in. 

4.4.6 Genetic diversity and structure  

Mean and maximum pairwise distances (p-distances) were calculated for each species 

(intraspecific distances - ISD) using MEGA 7.0 (Kumar et al. 2016), for all loci used in this work 

(16S, 18S and 28S after the application of Gblocks). Additionally, p-distances for COI and 16S 

(after the application of Gblocks) within and between MOTUs were also calculated in MEGA 7.0 

(Kumar et al. 2016). Indices of genetic diversity, namely haplotype diversity (Hd) and nucleotide 

diversity (π) were estimated for each locus for each species and MOTU using DNASP 5.10 

(Librado and Rozas 2009).  

Using the COI data, Fst estimations were made using Arlequin 3.5 (Excoffier and Lischer 

2010). Significance of pairwise Fst values was tested by performing 1 x 104 permutations 

between locations, under the null hypothesis of no differentiation. Locations with less than 

three individuals were excluded from these analyses. Analysis of molecular variance (AMOVA) 

was performed in order to access the hierarchical population structure at the spatial scales using 

Arlequin 3.5 (Excoffier and Lischer 2010).  
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In order to test for a model of isolation by distance we applied a Mantel test to the Fst (as 

a genetic distance measure) between regions and geographical distance matrices on IBDWS web 

interface (http://ibdws.sdsu.edu/~ibdws/distances.html, Jensen et al. 2005). 

4.4.7 Estimation of approximate time of divergence 

To provide a first, rough estimate of the timing of the split between lineages, we applied 

two methods. Initially, to test the null hypothesis of equal evolutionary rates throughout the 

tree, and therefore the usefulness of COI divergence rates, the molecular clock test was 

performed by comparing the ML value for the given topology with and without the molecular 

clock constraints under the best fitting model (GTR+G+I) in MEGA 7.0 (Kumar et al. 2016). The 

null hypothesis was not rejected (P > 0.05) and therefore a strict clock could be applied. The COI 

divergence rate has not been previously estimated for Dynamene species. However, there are 

estimates for other isopods: 2.5% per million years (Myr) for Stenasellus (Ketmaier et al. 2003) 

and Asellus (Verovnik et al. 2005, Konec et al. 2015) and 1.56 – 1.72% per Myr for Orthometopon 

(Poulakakis and Sfenthourakis 2008). We opted for using 1.5% and 2.5%, that is the lowest and 

the highest estimated COI divergence rates in isopods, by applying a strict molecular clock and 

a standard coalescent model in BEAUTI 2.4.6 (Bouckaert et al. 2014). We then analysed the 

concatenated data in BEAST 2.4.6 (Bouckaert et al. 2014) applying the TN93+G+I model (1 x 109 

generations sampled every 1 x 103 trees) and annotated the consensus tree using TreeAnnotator 

2.4.6 (Bouckaert et al. 2014). These rates were also applied sucessfully by Xavier et al. (2012) 

and Panova et al. (2016) in other isopod genus (Stenosoma and Idotea respectively), and fit 

within the range of COI rates estimated for other marine invertebrates (Knowlton and Weigt 

1998, Wares and Cunningham 2001, Sponer and Lessios 2009, Markow and Pfeiler 2010).  

Subsequentely, we applied the Time Tree tool in MEGA 7.0 (Kumar et al. 2016) to access 

the divergence times for all branching points in a tree. This tool produces a time tree with the 

same topology as the active tree where all divergence time estimates are based on the branch 

lengths. The emergence of the most recent islands, El Hierro (1.1 million years ago - Mya) and 

La Palma (1.7 Mya) (Fernández-Palacios and Wittaker 2008) were used to calibrate the tree. In 

order to obtain the ultrametric tree, we applied a strict molecular clock and a standard 

coalescent model in BEAUTI 2.4.6 (Bouckaert et al. 2014). The concatenated data was analysed 

in BEAST 2.4.6 (Bouckaert et al. 2014) using a TN93+G+I model and four gamma categories for 1 

x 109 generations, with sampling every 1 x 103 trees, in order to estimate the time since the most 

recent common ancestor (tMRCA) with 95% highest posterior density (HPD) intervals. Effective 

sampling sizes (ESSs, > 200 for all parameters) and convergence of the parameter estimates were 
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assessed in Tracer 1.6 software (Rambaut et al. 2014). A consensus tree was calculated using 

TreeAnnotator 2.4.6 (Bouckaert et al. 2014). 

4.4.8 Ancestral Range Reconstructions and Demographic Inference 

Different phylogeographic and different demographic evolution scenarios were tested 

using the R package BioGeoBars (Matzke 2013a; http://phylo.wikidot.com/biogeobears; for 

detailed information, methodology and associated packages see Matzke 2013b, 2014).  We also 

used Mesquite 3.2 (Madison and Madison 2017) to access ML estimation of the most probable 

ancestral using the Markov k-state 1 parameter (Mk1) model (Lewis 2001) assigning the same 

probability to changes between any two states. For both analysis, the concatenated ML tree 

obtained in MEGA 7.0 (Kumar et al. 2016) using 1 x 103 bootstraps (GTR+G+I) was used with one 

representative haplotype per MOTU. 

 

4.5 RESULTS 

4.5.1 Mophological analysis 

Morphologically, Dynamene edwardsi, D. bidentata and D. magnitorata are relatively 

easy to discriminate among adult males, but harder to separate between sub-adult males, 

juveniles and females (Holdich 1968a, Vieira et al. 2016). Figure 4.2 shows high magnification 

power photographs of the three species. The main difference is in the form of the pleotelsonic 

boss (thinner arrows), which in D. edwardsi is an upright plate with peg-like structures at the 

corners (Fig. 4.2A, B) whilst in D. bidentata it is bilobed, the two halves being separated by a 

wide v-shaped groove (Fig. 4.2C, D). In D. magnitorata that structure is also bilobed, but the two 

halves are more angular and separated by a narrow groove (Fig. 4.2E, F). Also important is the 

shape of the arms of the bidentate process (thicker arrows), which arises from the posterior 

margin of sixth pereonite – a feature unique amongst sphaeromatid isopods. In D. edwardsi the 

end of each arm has a downwardly-directed spur (Fig. 4.2A), whilst that of D. bidentata tapers 

to a point (Fig. 4.2C), and that of D. magnitorata is more tuberculate and ends bluntly (Fig. 4.2E). 

No stable diagnostic morphological differences were found among individuals of the same 

species between different locations. 
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4.5.2 Molecular analyses and MOTU delimitation 

A total of 179 sequences for COI (658 bp), 43 for 16S rRNA, 120 for 18S rRNA and 46 for 

28S rRNA were obtained for the three Dynamene species (Annex 4.1). All the different locus 

(individually and concatenated) clearly discriminated the three species (Fig. 4.3A; Annexes 4.7, 

4.8, 4.9, 4.10) and BI and ML produced similar topologies. Consequently, we show the BI tree 

with posterior probabilities from each analysis, complemented with ML bootstrap support (ML 

concatenated tree displayed in Annex 4.10). D. edwardsi showed much higher values of 

intraspecific variance (Table 4.1) and genetic diversity indices (Annex 4.4) compared with both 

D. bidentata and D. magnitorata. 

The total number of MOTUs obtained varied between 7 and 20 depending of the locus 

and method applied (Fig. 4.3B-N). Dynamene edwardsi displayed the highest number of MOTUs 

(between 5 and 11), followed by D. magnitorata (between 1 and 5) and D. bidentata (between 

1 and 4). The majority rule (most common MOTUs across different delimitation methods) 

delimited 12 MOTUs (Fig. 4.3O), with D. edwardsi delimited by 9 MOTUs, D. magnitorata by 2 

and D. bidentata by 1 (Annex 4.1). For the sake of discussion, we assume these numbers of 

MOTUs as the minimum plausible and most trustworthy given the data, and use them as a 

reference from here onwards. All MOTUs showed low intra specific genetic variance (< 1%) but 

high average p-distances between different MOTUs (2.02-23.55% for COI and 0.40-30.02% for 

16S) (table 4.2). Within D. edwardsi and D. magnitorata the individual MOTUs were exclusive to 

specific regions and sometimes even islands (Annex 4.1). MOTU II displayed the highest value of 

nucleotide diversity, and MOTU XI was the one with the highest values of haplotype diversity 

and segregation sites. MOTU III and XII were the only ones displaying single haplotypes (Annex 

4.4). 
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Figure 4.1. Sampling locations and haplotype networks for each Dynamene species. A – Dynamene 
bidentata (COI haplotype network). B – Dynamene magnitorata (COI haplotype network). C – Dynamene 
edwardsi (COI, 16S, 18S and 28S haplotype networks). COI haplotype numbers according with Annex 4.1 
also displayed.  Most probable haplotype ancestor according with TCS 1.21 (Clement et al. 2000) 
highlighted (only displayed in haplotype networks with 3 or more haplotypes). 

C
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Figure 4.2. Stereoscan electronmicrographs of three species of Dynamene showing differences in the posterior pereon and 
pleotelson. A - pereon and pleotelson of stage 8 male Dynamene edwardsi (24x). B - pleotelsonic boss in dorsal view (30x). C -
posterior pereon, and pleotelson of stage 8 male Dynamene bidentata (45x). D - pleotelsonic boss in dorsal view (20x). E - posterior 
pereon and pleotelson of stage 8 male Dynamene magnitorata (40x). F - pleotelsonic boss in dorsal view (15x).  
Adapted by Holdich 1976. 
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4.5.3 Phylogeographic structure  

Results of AMOVA (Annex 4.5) showed that most of the variation in the 3 species was 

between regions. In D. edwardsi 98.14% of the variation occurred between the regions assumed 

in Annex 4.1 (except Galicia, Portugal West and Portugal South that grouped together). 

Observed pairwise Fst values between locations from different regions were in general high and 

close to 1 showing significant differentiation between regions, but lower between locations in 

the same region (Annex 4.6). In D. magnitorata, the variance was best explained by the variation 

between the group of regions of Iberian Peninsula (Galicia, Portugal West and Portugal South), 

Azores (Terceira, São Miguel and Santa Maria) and La Palma: 55.63%; while the Fst values were 

higher than 0.6 between locations from different groups (Iberian Peninsula and Azores), but less 

than 0.4 between locations within these groups. The results of the AMOVA of D. bidentata 

showed that most of the variation (67.58%) occurred between the groups: Iberian Peninsula 

(Galicia, Portugal West and Portugal South), Scotland, Morocco North and Gran Canaria. 

Observed pairwise Fst values between locations from different groups (Iberian Peninsula, 

Scotland and Morocco) were higher than 0.6 and lower than 0.3 between locations within each 

group (Annex 4.6).  

COI networks of the three species (Fig. 4.1) supported the AMOVA results and clearly 

discriminated the same regions, with no shared haplotypes between different regions. In D. 

edwardsi, applying 90% of parsimony to COI, resulted in nine networks. The number of networks 

were different for each locus decreasing gradually from COI to 28S, although the clustering of 

the clades remained similar. While the network of 16S showed five networks, for both 18S and 

28S two networks were displayed. The main difference in the clustering of the networks was in 

28S, which exhibited Porto Santo in the same network of Madeira and Canaries archipelagos, 

contrary with the other three loci (Fig. 4.1C). In both D. magnitorata and D. bidentata only one 

network was retrieved in each, and the haplotypes from La Palma and Gran Canaria respectively 

were the ones more distant from the other haplotypes (Fig. 4.1A, B).  

Results of the isolation by distance test showed no significant correlation between genetic 

distance and geographic distance in any of the studied species (p>0.05 for all species). 

4.5.4 Ancestral range and time divergence 

Both Timetree approach and COI rates used generated similar values (Dynamene 

edwardsi - Fig. 4.4, the other two species not shown). The COI-based divergence time estimates 

for all the D. edwardsi MOTUs (Fig. 4.4) were higher than one million years (except for node 8 
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with the Timetree approach, see Fig. 4.4 for nodes correpondence), however between Azores 

and Mediterranean specimens, they were estimated to be between 0.26-0.42 Myr (Fig. 4.4A, B). 

The most recent estimated divergence was between MOTU VIII and IX: 0.93-1.10 Myr and the 

first and oldest split within D. edwardsi goes back 7.47-9.58 Myr (Fig.4.4). The divergence 

between D. magnitorata and D. bidentata was around 6.63-8.51 Myr and the divergence 

between all the lineages within these 2 species probably occured less than 1 million years (data 

not shown). 

The reconstruction of ancestral range was only possible for D. edwardsi (Fig. 4.4), because 

the two methods use trees with clearly discriminated lineages, which did not occur in D. 

magnitorata and D. bidentata. Both analyses used supported similar scenarios, with some 

differences (Fig. 4.4B). BioGeoBars method suggested that the ancestors of the first big cluster 

was most probable the MOTU II, with MOTU III with a similar probability, while the Mk1 model 

suggested MOTU III as the most probable one. In the other D. edwardsi cluster, BiogeoBars 

suggested MOTU VII as the most probable ancestral while Mk1 suggested MOTU VI. The most 

ancestral MOTU within D. edwardsi was suspected to be MOTU II and III according with 

BioGeoBars method, while Mk1 indicated MOTU III as the most probable one.  

The analysis of the dispersal method with BioGeoBars retrieved DIVALIKE+J as the most 

probable one. From the total events (9.52), 6.64 were founder events with anagenetic dispersal 

(1.52) and vicariance (1.36) also playing a role. A table with detailed information about the 

different dispersal methods can be consulted at http://phylo.wdfiles.com/local--

files/biogeobears/BioGeoBEARS_supermodel.png (accessed on 01 February 2017). 

 

4.6 DISCUSSION 

The diversity and distribution of the genus Dynamene in the northern hemisphere has 

been recently reviewed and updated (Vieira et al. 2016). This review was based on morphology, 

as well as on new and published occurrence records, which included the Macaronesian 

archipelagos. Just six species are known for the north hemisphere and, among these, only three 

are found in the NE Atlantic: D. bidentata, D. magnitorata and D. edwardsi. Our findings, based 

on both detailed morphological inspection and DNA sequence data from multiple mitochondrial 

and nuclear loci, challenge those figures. They strongly suggest the existence of at least 7 

species, and possibly 4 times more species than currently recognized.   
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This increase in the diversity of Dynamene derives only from molecular data and is due 

mainly to D. edwardsi, which is notably the species with the widest distribution in the 

Macaronesian islands among the three here investigated. Combined and isolated data from the 

4-analysed mitochondrial DNA (mtDNA) and nuclear loci provide compelling evidence for the 

existence of at least 5 deeply divergent evolutionary units within D. edwardsi morphotype, 

which have been genetically isolated for a long period and therefore could qualify for recognition 

as separate species. The 5 genetic lineages are completely sorted, consistently recognized as 

separate MOTUs in all loci, and geographically arranged in such a way that within the same island 

only one lineage is represented at most, thus excluding any indication of occurrence of sympatric 

speciation.  

 

 

Figure 4.3. A - Bayesian clade credibility tree of Dynamene species studied inferred from the 658-bp-long 
sequence of COI gene. The dots by respective nodes indicate Bayesian posterior probability and maximum 
likelihood bootstrap values over 0.65 (within MOTUs not shown). Vertical black bars correspond to molecular 
operational taxonomic units by various methods of species delimitation: B - BINs delimitation. C-E. bPTP 
analyses. C - COI. D - 16S rRNA. E - concatenated four-marker dataset. F-H. ABGD analyses. F - COI. G - 16S 
rRNA. H - concatenated four-marker dataset. I-K. GMYC single threshold analyses: I - COI. J - 16S rRNA. K -
concatenated four-marker dataset. L-N. GMYC multiple threshold analyses: L - COI. M - 16S rRNA. N -
concatenated four-marker dataset. O - Consensus MOTUs. 
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Table 4.1. Molecular distances (Mean and Max. distances) based on the Kimura 2-parameter model of the analysed specimens for each Dynamene species. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.2. Average pairwise distances between MOTUs for COI (lower diagonal) and 16S (upper diagonal) and in diagonal the mean pairwise distances within each MOTU 
based on COI. 
 

 MOTU I MOTU II MOTU III MOTU IV MOTU V MOTU VI MOTU VII MOTU VIII MOTU IX MOTU X MOTU XI MOTU XII 
MOTU I 0.0003 0.0304 0.0622 0.1314 0.1312 0.1356 0.1272 0.1277 0.1292 0.2884 0.2713 0.2699 
MOTU II 0.1222 0.0091 0.0631 0.1265 0.1263 0.1307 0.1200 0.1228 0.1198 0.2875 0.2775 0.2786 
MOTU III 0.1506 0.1424 0.0000 0.1378 0.1354 0.1419 0.1321 0.1319 0.1333 0.3002 0.2706 0.2692 
MOTU IV 0.1805 0.1727 0.1746 0.0012 0.0267 0.0244 0.0501 0.0453 0.0535 0.2902 0.2709 0.2747 
MOTU V 0.1846 0.1842 0.1772 0.0755 0.0042 0.0155 0.0533 0.0474 0.0556 0.2920 0.2729 0.2767 
MOTU VI 0.1838 0.1930 0.1852 0.0909 0.1178 0.0037 0.0555 0.0497 0.0578 0.2918 0.2727 0.2764 
MOTU VII 0.1717 0.1713 0.1747 0.1308 0.1404 0.1282 0.0040 0.0207 0.0207 0.2910 0.2646 0.2635 
MOTU VIII 0.1776 0.1778 0.1732 0.1341 0.1414 0.1281 0.0408 0.0031 0.0178 0.2909 0.2693 0.2683 
MOTU IX 0.1690 0.1730 0.1781 0.1438 0.1402 0.1302 0.0482 0.0379 0.0005 0.2946 0.2661 0.2651 
MOTU X 0.2355 0.2343 0.2158 0.2115 0.2083 0.2223 0.2101 0.2166 0.2207 0.0042 0.1074 0.1111 
MOTU XI 0.2229 0.2258 0.2198 0.2079 0.2027 0.2174 0.2140 0.2048 0.2159 0.1658 0.0064 0.0040 
MOTU XII 0.2204 0.2264 0.2234 0.2042 0.2061 0.2232 0.2110 0.2023 0.2130 0.1651 0.0227 - 

Species COI Mean 
ISD 

COI Max. 
ISD 

16S Mean 
ISD 

16S Max. 
ISD 

18S Mean 
ISD 

18S Max. 
ISD 

28S Mean 
ISD 

28S Max. 
ISD 

Dynamene edwardsi 0.1414 0.2192 0.0829 0.1596 0.0093 0.0236 0.0117 0.0282 
Dynamene bidentata 0.0043 0.0154 0.0018 0.0044 0.0002 0.0036 0.0000 0.0000 
Dynamene magnitorata 0.0074 0.0265 0.0025 0.0047 0.0052 0.0117 0.0013 0.0064 
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Figure 4.4. Biogeographical scenario for the origin and diversification of Dynamene edwardsi. A – Timetree 
concatenated chronogram, with the other two species removed. Blue horizontal bars indicate 95% HPD 
intervals. B – Most probable ancestral in each node with corresponding age. Only probabilities with more than 
10% are shown. The most probable(s) MOTU(s) is/are shown in full colour. In black, non-definied MOTUs.  
C - The present-day distribution of the different D. edwardsi MOTUs. Colours and nodes number match in the 
three sub-figures. 
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The number of recognizable sorted lineages and MOTUs within D. edwardsi may increase 

further, depending of the delimitation methods used and if the locus under consideration is a 

slow nuclear gene (maximum 5 lineages), or a fast mitochondrial one (up to 11 lineages). Lack 

of divergence or fixed substitutions in the nuclear loci between some of the lineages, which in 

turn are apparent with mtDNA, does not exclude necessarily the possibility that they still 

represent separate cryptic species. Since rates of substitution are much slower in the nuclear 

loci, often highly divergent COI lineages (e.g. >20%) may parallel with very little differentiation 

in rDNA sequences (e.g. <1%; Borges et al. 2012). In fact, both nuclear loci here used are 

notoriously known for poor species-level discrimination ability in many groups of animals (e.g., 

Jörger et al. 2012), despite their robustness for reconstructing deeper phylogenies (e.g., Wetzer 

et al. 2013). Therefore, a combination of mitochondrial and nuclear multi-locus approach is 

advised to better access species boundaries and unravel cryptic diversity (Jörger and Schrödl 

2013, Grabowski et al. 2017). 

Taking COI data as a benchmark for comparison of genetic distances among crustacean 

species (Costa et al. 2007, Lobo et al. 2016a), even the shortest distances between D. edwardsi 

MOTUs (3.79%) would fall outside the recorded distribution of intraspecific distances in 

numerous well established morphospecies, including this study’s results for D. bidentata and D. 

magnitorata (maximum 1.54% and 2.65% respectively; Table 4.1). On the other hand, the 

highest average distance observed between the 9 MOTUs of D. edwardsi (21.92%) surprasses 

the average distance between D. bidentata and D. magnitorata (16.55%). The range of COI 

genetic distances observed within the D. edwardsi complex are similar to values reported for a 

number of cryptic species complexes of isopods, such as Ligia occidentalis complex comprising 

15 putative cryptic species with a divergence range of 13% to 27% (Markow and Pfeiler 2010), 

Excirolana braziliensis with 3 putative species 14% to 19% (Varela and Haye 2012), Chelator 

insignis, 5 lineages with > 20% divergence (Brix et al. 2014) and Sphaeroma terebrans with 4 

distinct clades diverging 15 to 18% (Baratti et al. 2005, 2011).  

The extensive population structure revealed in D. edwardsi was strongly explained by the 

differences among regions by the AMOVA analysis (98.14% - Annex 4.5) and each MOTU was 

geographically circumscribed, with the Macaronesia archipelagos of Madeira and Canaries 

comprising most of the diversity (80% of the total haplotypes). Moreover, the high Fst values 

obtained (Annex 4.6) also suggest that gene flow is rare or absent between populations from 

different MOTUs. This idea is also supported by the congruence of the different loci (Fig. 4.3, 

Annexes 4.7-4.10), and as suggested by Bachtrog et al. (2006), in ‘ideal’ systems like islands, 
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under strict allopatry (i.e., no gene flow), all regions of the genome will have a single divergence 

history, and vary only in their coalescence times. This extensive population structure contrasts 

with the other two well-defined Dynamene species that were sampled mainly in Moroccan and 

European continental coasts. Although in both D. bidentata and D. magnitorata it is still possible 

to observe the absence of shared haplotypes (Fig. 4.1) and reduced gene flow between major 

regions (Annex 4.6), the different loci do not follow the same topology (Fig. 4.3, Annexes 4.7-

4.10). The fact that in D. magnitorata and D. bidentata, Macaronesian populations are distinct 

from mainland ones (Figs 4.1, 4.3) indicate some level of differentiation and highlight the 

importance of these islands in the isolation of Dynamene species. 

The life cycle of the D. edwardsi is not known but both D. bidentata and D. magnitorata 

are well-studied (Holdich 1970, 1976), although all the Dynamene species have sexual 

dimorphism with males developing the bidentate process characteristic of the genus (Vieira et 

al. 2016). Both D. bidentata and D. magnitorata have a biphasic life cycle with a change of 

habitat, where the immature stages are present amongst the algal cover, whilst the adults 

occupy cryptic habitats and empty barnacle tests where they stay to reproduce and where 

females incubate their broods. Dispersal of the juveniles is usually limited to the same “beach” 

and long dispersal events are rare (Holdich 1968b, 1970, 1976), although these species are 

present in a wide range of locations (Vieira et al. 2016). In the Atlantic Ocean, the three species 

have been found amongst a variety of algae in the littoral and sublittoral zones (Vieira et al. 

2016). From our personal observations, it seems that their presence is more specific to each 

location and not to habitat preference, as they can colonize a wide range of habitats (Holdich 

1970, Vieira et al. 2016). The same is observed when comparing the different MOTUs, as they 

are specific to different locations (within each species). Moreover, it seems that these MOTUs 

do not have the capacity to establish in locations where other MOTUs of the same species are 

present, or at least their genetic signature is lost by genetic drift. 

The fact that the genetic variation is not explained by distance or island emergence (data 

not shown), together with the fact that the dispersal events occurred mainly by founder events, 

suggests that complex stochasticity dispersal events were the primary pattern of evolution, 

which was also observed by Sá-Pinto et al. (2008) in Macaronesia when compared three Patella 

species and none showed the same colonization pattern. The most interesting case is Madeira 

(within D. edwardsi), where this population is closely related with Tenerife, La Palma and El 

Hierro, a group of islands formed at different times and hundreds of kilometers apart, when 

comparing with the island of Porto Santo, only 50 km away. Complex evolutionary patterns were 
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also observed in the isopod genus Ligia in Hawaii archipelago, with no direct correlation with 

island genesis or geographical distances (Santamaria et al. 2013). 

In other marine invertebrates (sponges and gastropods), a clear ancient split was 

observed (older than 3 Mya) between Macaronesian and Continental forms (Sá-Pinto et al. 2008, 

Xavier et al. 2010), which was not so clear in D. edwardsi, although in Dynamene magnitorata 

and Dynamene bidentata, populations from Macaronesia are clearly distinct from continental 

coasts, but this diversification occurred more recently (less then 1 Myr). In D. edwardsi, the 

Azores population is genetically closer with the Iberian Peninsula when compared with the other 

two archipelagos. Phylogeographic studies published so far emphasize the strong affinities of 

the Azorean populations with those of Madeira, Canaries and western Africa (Santos et al. 1995), 

which was also observed by Sá-Pinto et al. (2008) in limpets and Domingues et al. (2006) in fish. 

Although, like we observed in D. edwardsi, previous conections between populations of Azores 

and Iberian Peninsula or Mediterranean were reported before (Xavier et al. 2010). 

Macaronesian islands have been proposed as an offshore refugium for several marine 

organisms (e.g., Chevolot et al. 2006; Domingues et al. 2006; Domingues et al. 2007, 2008, Xavier 

et al. 2010) during the quaternary glaciations. These groups of islands appeared million years 

ago (see chapter 1 of this thesis, Fernández-Palacios and Wittaker 2008 and Fernández-Palacios 

et al. 2011 for details), at different geological times and were shaped by the Pleistocene 

glaciations (2.58 Myr-present) where the sea level changed several times, and more recently, 

rised more than 100 m (over the last 20 000 years), and covered several islands that could have 

served as stepping stones in the past, namely the Paleo Madeira and Paleo Canaries (Fernández-

Palacios et al. 2011, 2015). Stepping stone colonizations are commom in many terrestrial 

invertebrates in Macaronesia (reviewed by Juan et al. 2000) and this scenario can not be 

discarded for marine invertebrate species. This may explain the genetic proximity in D. edwardsi 

of the Porto Santo Island population with those from the Iberian Peninsula, which it seems to 

have occurred between 5.02-5.39 Mya, before this glaciation period (Fernández-Palacios et al. 

2011). However, the change in sea surface temperature was small (Crowley 1981, Santos et al. 

1995) and unlikely to affect Macaronesian marine populations, at least those not close with 

continental coasts, as these changes in both temperatures and sea level were gradual (Barton 

et al. 1998). Additionally, members of the genus Dynamene have high tolerance to low (5ºC) and 

high temperatures (>38ºC) (Harvey et al. 1973), which indicates that these species could have 

survived these multiple geological events.  
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4.7 CONCLUSIONS 

Our study revealed twelve consistent MOTUs within the genus Dynamene in NE Atlantic, 

with nine belonging to Dynamene edwardsi, and restricted geographically, in whose genesis 

Macaronesia's elaborated geomorphological dynamics appear to have played a key role. This 

contributed to the presence of most of the diversity of this species in the islands, although no 

clear explanatory evolutionary pattern could be inferred, which may reflect the high 

stochasticity of long distance dispersal events together with an intricate geomorphological 

history. 

It is noteworthy that Dynamene is a genus with only six known species present in the 

Northern Hemisphere and just three in the Northeast Atlantic (Vieira et al. 2016).  If the putative 

cryptic species here reported are confirmed by further studies, it would represent a staggering 

increase of 300 % in the known species diversity in the northern hemisphere for this species-

poor genus. These findings highlight the relevance of Macaronesia islands in the promotion of 

isolation and genetic diversity in this genus, and can contribute to the investigation of 

comparative patterns of evolution and speciation of marine invertebrates in this region. Given 

the frequent occurrence and dominance of these isopods in the rocky shore communities, this 

information can be highly pertinent for coastal management and conservation strategies in 

Macaronesia region. Further studies, namely analysis of other locations in this region and 

Mediterranean seas are required to fully understand the history of these species and the 

phylogeographic relationships within this genus.  
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5.1 ABSTRACT 

Pleistocene’s glaciations are considered a central element of the phylogeographic history of the 

Northeast Atlantic, but little is known about the role of the Macaronesian archipelagos in the 

evolutionary history and diversification of marine invertebrates in this region. Among the 

amphipod crustaceans, the members of the family Hyalidae are particularly common and 

abundant in intertidal rockyshores of the Northeast (NE) Atlantic. In this study, we aimed to 

investigate the genetic variability of Hyalidae species inhabiting the rocky shores of Macaronesia 

and of the Atlantic European coast. We used the DNA barcoding region to screen the genetic 

structure and diversity of these species and populations for the first time, with a particular focus 

on the genetic differentiation between island and continental populations. A total of 159 

cytochrome oxidase I (COI) sequences from seven Hyalidae species were amplified from the 

Macaronesian archipelagos, Morocco, Iberian Peninsula, Iceland, Norway and Scotland. In 

addition to clearly discriminating the 7 morphospecies studied, DNA barcode sequences also 

unravelled very high levels of hidden diversity in some of them, making up between 26 and 32 

molecular operational taxonomic units (MOTUs) in total, depending of the method used, with 

as much as 13 MOTU’s detected in Apohyale stebbingi, and pairwise distances between MOTUs 

ranging from 1.64 to 16.76 %. In the majority of the cases, the highest number of MOTUs was 

found in Macaronesian populations, although some morphospecies also displayed a few 

separate MOTUs in continental populations. Apohyale prevostii formed only one MOTU, despite 

the very large geographical distances among the analysed populations (between Iberian 

Peninsula and Norway). Most of the MOTUs were also allopatric, with a trend for segregation 

between islands and continental populations on one side, but also for separation of MOTUs 

among islands. A notable exception is A. stebbingi, which frequently displays several MOTUs 

within the same island, as in the case of Madeira where up to 4 MOTUs of this species were 

found. Results suggest distinct evolutionary and diversification patterns among Hyalidae 

species, but the deep separation between continental and islands lineages appears to be a 

common feature to all of them. These findings indicate that the complex geologic history of the 

Macaronesian archipelagos served as an important promoter of remarkable diversification 

patterns in marine invertebrates of the NE Atlantic, a phenomenon which only now starts to be 

dully appreciated through the use of molecular data. 

 

5.2 KEYWORDS 
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5.3 INTRODUCTION 

The family Hyalidae Bulycheva, 1957 is part of the superfamily Talitroidea, which, 

according to Serejo (2004), also includes three other families – Chiltoniidae Barnard, 1972, 

Dogielinotidae Gurjanova, 1953 and Talitridae Rafinesque, 1815. Bousfield and Hendrycks 

(2002) revised the hyalids, based on the North Pacific fauna and split the large Hyale Rathke, 

1837 genus into five additional new genera and created 13 new species. After a further revision 

(Serejo 2004, Horton et al. 2017b) the family Hyalidae was subdivided into two subfamilies 

(Hyacheliinae Bousfield and Hendrycks, 2002 and Hyalinae Bulycheva, 1957) with 11 genera and 

more than 110 species worldwide.  

The family Hyalidae is predominantly and commonly found among algae of the intertidal 

and shallow subtidal areas of tropical and subtropical zones (Serejo and Sittrop 2009), although 

a few species are reported at higher latitudes (McBane and Croker 1984). Like the other 

peracarideans, hyalids have direct development, lacking the larval phase, which is one of the 

most common ways of dispersal in the marine environment. The occurrence and abundance of 

hyalid species are usually related to the complexity of the fronds of the algae, with the juveniles 

preferring more filamentous algae (Pterosiphonia, Gymnogongrus), while the adults choosing 

less ramified and foliaceous algae (Sargassum, Gelidium, Ulva) (Moore 1976, McBane and Croker 

1983, Dubiaski-Silva and Masunari 1998). They are mainly detritivores in marine and estuarine 

habitats and serve as food for many fishes and birds and, like many other amphipods, they play 

an important role in the food chain (Serejo 2004).  

Presently, a complete and corrected checklist of this family, at least for the North Atlantic 

coasts, is missing. For instance, in World Register of Marine Species (WoRMS) database (Horton 

et al. 2017a), several species of the genus Hyale Rathke, 1837, which now are assigned to 

different genera, are still included as accepted species with more than one name (e.g., H. 

stebbingi and Apohyale stebbingi, H. schmidti and Protohyale (Protohyale) schmidtii). At the 

moment (March 2017), only 13 species are reported in the NE Atlantic Ocean (Ruffo 2006, De 

Broyer et al. 2007, Horton et al. 2017b).   

The NE Atlantic Ocean has a wide range of climatic conditions (from subtropical to 

subarctic), experienced complex geological and climatological changes during its history (e.g., 

the Pleistocene glaciation) and has a highly diverse biota. These conditions provide an 

interesting case study to understand the patterns of genetic diversity and their drivers (Wares 

and Cunningham 2001, Maggs et al. 2008). 
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DNA barcodes are recognised, standardised molecular tags for species identification and 

delimitation (Hebert et al. 2003). The DNA barcode region established for most animal groups is 

the mitochondrial gene cytochrome c oxidase subunit I. The suitability of the COI gene to deliver 

species-diagnostic barcode in different vertebrate and invertebrate taxa is well documented 

(Ward et al. 2005, Costa et al. 2007). Moreover, DNA barcoding may lead to species discovery 

by flagging cryptic species, which are species with indistinguishable morphology but distinct on 

a genetic level, although a combination of genetic, ecological and morphological data is needed 

to describe a new species (Radulovici et al. 2009). 

Previous studies have addressed the biology of the Hyalidae family in NE Atlantic, but 

these have focused mostly on habitat and food preferences (e.g., Guerra-Garcia et al. 2012, 

Torrecilla-Roca and Guerra-García 2012, Vinagre et al. 2016). In NE Atlantic, Apohyale prevostii 

was the only Hyalidae species studied using molecular tools in DNA barcode reference libraries 

(e.g., Raupach et al. 2015, Lobo et al. 2016a). Moreover, only a few hyalid species have been 

studied worldwide (Hiwatari and Kajihara 1984, Dubiaski-Silva and Masunari 1998, Tsoi and Chu 

2005). In the present study, we aim to fill this gap by presenting an overview of the genetic 

variability and phylogeny of Hyalidae species in NE Atlantic Ocean using the COI gene, 

highlighting the potential of the Macaronesia archipelagos to be hotspots of evolution and 

speciation and therefore, holding high cryptic diversity in this family. 

 

5.4 MATERIAL AND METHODS 

5.4.1 Specimens collection and taxonomic identification 

Specimens were collected between 2011 and 2015 during low tide by scrapping the algae 

cover of the rocky shore intertidal of continental coastal areas (Norway, Scotland, Iceland, 

Portugal, Spain and Morocco) and archipelagos (Canaries, Madeira and Azores) of the Northeast 

Atlantic Ocean (Annexes 1.3, 1.4, 1.5, 5.1). After collection, specimens were preserved in 96% 

ethanol. Morphology-based taxonomic identification was supported in specialized literature 

(Lincoln 1979, Ruffo 1982, Dallwitz et al. 2000). The identifications were reviewed before and 

after obtaining the DNA sequences to ensure the correct identification of the specimens. 

Specimens of Apohyale media sampled in 2015 in southwest Atlantic (Rio Janeiro, Brazil; 

Latitude: -22.9565, Longitude: -43.1642) and identified by Serejo C (see acknowledgments 

section 5.8) were also included in this study. Sequence data and specimen metadata were 

uploaded in the project ‘Hyalidae DiverseShores’ (DSHYA) within Barcode of Life Data (BOLD) 
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(Ratnasingham and Hebert 2013). The species’ nomenclature used in this work complies with 

the accepted nomenclature used in WoRMS and Integrated Taxonomic Informations System 

(ITIS).  

5.4.2 Genetic analysis 

From each sample, a piece of isolated trunk muscle tissue or few pereopods or the central 

part of body were used. DNA extraction was carried out using the E.Z.N.A Mollusc DNA Kit 

(Omega Biotek), following the manufacturer’s instructions. The barcode region of the 

mitochondrial DNA (mtDNA) gene cytochrome oxidase I was amplified in a MyCycler™ Thermal 

Cycler (Bio-Rad) thermal cycler using a pre-made PCR master mix and one of the three primer 

pairs (see Annex 5.2 for details), depending on amplification success. LCO1490/HCO2198 and 

LoboF1/LoboR1 primers sets were tested first, in this order, for each extraction and when these 

failed to amplify the 658-base pair (bp) fragment, LoboF1/ArR5 primer pair was used. PCR 

thermal cycling conditions for each primer pair are also presented in Annex 5.2. Each reaction 

contained 2.5 μl 10× PCR buffer, 3 μl of 25 mM MgCl2, 1 μl of 10 mM dNTP mixture, 0.2 μl of 5 

U/μl of DNA Taq polymerase (ThermoScientific), 10 μM of each primer (1.25 μl for 

LoboF1/LoboR1; 0.5 μl for LCO1490/HCO2198; 0.55 μl for ArR5), 2-4 μl of DNA template and 

completed with sterile milli Q-grade water to make up a total volume of 25 μl. 

The PCR products were purified from primers and free nucleotides with the High PCR 

purification Kit Roche according to manufacturer instructions and then sequenced 

bidirectionally using the BigDye Terminator 3 kit, and run on an ABI 3730XL DNA analyser (all 

from Applied Biosystems™) by STAB Vida Lda (Portugal).  

5.4.3 Data treatment and analysis  

Each trace file was edited individually and manually, unreadable zones and primers were 

removed and ambiguous bases corrected. The resultant sequences were aligned using Clustal W 

(Thompson et al. 1994) implemented in MEGA 7.0 (Kumar et al. 2016) and inspected for eventual 

anomalies, such as stop codons or indels. Sequences of different length were obtained: 658 bp 

amplified with primers LCO1490/HCO2198 and LoboF1/LoboR1; 550 bp with LoboF1/ArR5. To 

avoid the problem of increasing artificially the differences, the smallest common fragment of 

550 bp was used for diversity and phylogenetic analyses.  
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5.4.4 Estimate of genetic diversity and MOTU delimitation 

Uncorrected pairwise (p) distances for COI within each species and between species were 

calculated in MEGA 7.0 (Kumar et al. 2016), and were used to estimate genetic divergence 

between pairs of taxa. Indices of genetic diversity, namely number of haplotypes (H), haplotype 

diversity (Hd) and nucleotide diversity (π) were estimated for each species using DNASP 5.10 

(Librado and Rozas 2009).  

For each species, two groups were created based on the location where they were 

sampled, “Continental” and “Macaronesia”. “Continental” group includes the specimens 

sampled in Portugal, Spain, Morocco, Scotland, Norway, Iceland and Brazil, while the 

“Macaronesia” group includes the individuals sampled in Azores, Madeira and Canaries 

archipelagos. The goal of this comparison was to verify if Macaronesia populations would have 

general higher values of genetic diversity indices, comparing with the remaining populations. In 

order to do that, uncorrected p-distances, number of haplotypes, haplotype diversity and 

nucleotide diversity were calculated for each group in each species.  

Four tools were used to determine the minimum threshold between intra- and inter-

specific distance and therefore the number of MOTUs. First, through the software R (www.r-

project.org) with the libraries APE (Paradis et al. 2004) and SPIDER (function ‘localMinima’; 

Brown et al. 2012).  Additionally, the Automatic Barcode Gap Discovery (ABGD) species 

delineation tool on a web interface (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) 

(Puillandre et al. 2012) with the default value of Pmin = 0.001 was used as the minimum allowed 

intraspecific distance. The maximum allowed intraspecific distance was set to Pmax = 0.03, as 

this threshold value has been shown to be effective in delimiting crustacean species (Costa et 

al. 2009). We applied the Kimura-2-parameter (K2P) model sequence correction, which is a 

standard for barcode analyses (Hebert et al. 2003). Further, the Cluster Sequences tool 

implemented in BOLD 4 (http://v4.boldsystems.org) (Ratnasingham and Hebert 2013) were 

used and the generated BINs were used as MOTUs. Finally, opposing to previous methods that 

consisted on distance methods, we applied the bPTP tree-based method. The bPTP method 

incorporates the number of substitutions in the model of speciation and assumes that the 

probability that a substitution gives rise to a speciation event follows a Poisson distribution. The 

branch lengths of the input tree are supposed to be generated by two independent classes of 

the Poisson events, one corresponding to speciation and the other to coalescence. Additionally, 

the bPTP adds Bayesian support (BS) values for the delimited species (Zhang et al. 2013). For the 

input tree, we used the Maximum-likelihood (ML) tree obtained in section 5.3.5 (see below). 
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Species delimitation analysis was performed on the bPTP web server (available at: 

http://species.h-its.org/) with 1 x 106 iterations of Markov chain Monte Carlo (MCMC) and 25% 

burn-in. 

5.4.5 Phylogenetic analyses 

Phylogenetic analyses of the COI were conducted with the ML and the Bayesian inference 

(BI) methods. Only one sequence per haplotype was used, which was extracted with the function 

‘haplotype’ of the library PEGAS (Paradis 2010) using the software R (www.r-project.org). The 

function Best fitting model of MEGA 7.0 (Kumar et al. 2016) was used to search for the most 

appropriate model of evolution for our dataset. The TN93+I+G model was found to be the best-

fit model for the data. The ML tree was reconstructed using the software package PhyML 

(Guindon et al. 2010) (http://www.atgc-montpellier.fr/phyml/). Branch support was inferred by 

1 x 103 bootstraps. Bayesian phylogenetic analyses were performed with the software MrBayes 

on XSEDE (3.2.6) (Ronquist et al. 2012)  

(https://www.phylo.org/portal2/createTask!selectTool.action?selectedTool=MRBAYES_XSEDE) 

through CIPRES Science Gateway (Miller et al. 2010). Two independent runs were conducted 

with 2 x 108 generations each. Parameters were sampled every 1 x 103 generations. In the end a 

Majority rule consensus tree was reconstructed with a burn-in of 10%. The sequence of 

Gammarus locusta was retrieved from BOLD (accession number: BNSA073-12) and used as 

outgroup.  

In order to visually compare the two regions (“Continent” and “Macaronesia”), neighbour 

joining tree (NJT) for each region were constructed using 1 x 103 bootstraps of support. 

Haplotype genealogy was also investigated by building a network of haplotypes with a 

90% statistical parsimony connection limit, with the software TCS 1.21 (Clement et al. 2000). The 

networks were edited and drawn in TCSbu (Múrias dos Santos et al 2015). Information of the 

frequency and distribution of haplotypes was also depicted in the network by making circle size 

proportional to haplotype frequency in the total sample. 
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5.5 RESULTS 

5.5.1 Morphological identification 

Seven species belonging to four genera were found and sampled: Apohyale perieri (Lucas, 

1849), A. media (Dana, 1853), A. prevostii (Milne Edwars, 1830), A. stebbingi (Chevreux, 1888), 

Hyale pontica Rathke, 1847, Protohyale (Protohyale) schmidtii (Heller, 1866) (hereafter called 

Protohyale schmidtii), Serejohyale spinidactylus (Chevreux, 1926). Representative specimens of 

each species are shown in Fig. 5.1. No appreciable morphological differences were found 

between individuals of the same species between different locations. 

5.5.2 Estimates of genetic diversity 

The COI gene was amplified for a total of 159 individuals (Annex 5.1): 21 for A. perieri, 17 

for A. media, 40 for A. stebbingi, 14 for A. prevostii, 34 for P. schmidtii, 26 for S. spinidactylus 

and 7 for H. pontica. Of the 550 bp aligment, 235 variable sites were found, of which 221 were 

parsimony informative, excluding outgroup species. A total of 103 haplotypes were observed, 

of which 11 singletons.  

The overall Hd was 0.988 and π was 0.1952. Compared to the “Continent” (45 

haplotypes), the “Macaronesian” region (60 haplotypes) displayed a slightly higher Hd (0.989 vs 

0.964) but a considerably higher π (0.2012 vs 0.1760) (Table 5.1). Hd ranged from 0.593 in A. 

prevostii, to 0.977 in P. schmidtii, although both A. stebbingi and S. spinidactylus showed similar 

high values of Hd (0.972). Nucleotide diversity ranged from 0.0015 in A. prevostii to 0.1218 in S. 

spinidactylus (Table 5.1). The “Macaronesian” clades showed a higher haplotype and nucleotide 

diversity than the “Continental” ones, except for P. schimdtii and A. media which displayed 

respectively higher nucleotide and haplotype diversity (Table 5.1). 

The analysis of pairwise COI nucleotide divergences for all Hyalidae species in our dataset 

showed a very high divergence among individuals, both between species and within species 

(Table 5.2). While the overall average distance was 17.8%, the within-species divergence 

averaged 6.5% (range of 0-12.3%) (Table 5.2) but between-species average divergence was close 

to 21% (range of 18.2-24.1%) (Table 5.2). The minimum distance among species was detected 

between A. prevostii and H. pontica (18.2%) (Table 5.2). 
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Table 5.1. Number of sequences (N), number of haplotypes (H), haplotype diversity (Hd) and nucleotide 
diversity (π) for the Hyalidae species included in the present study. *Brazil; **Only present in “Continent”. 

 Region N H Hd π 

All 
  159 103 0.988 0.1952 

Continent 78 45 0.964 0.1760 
Macaronesia 81 60 0.989 0.2012 

Apohyale perieri 
  21 10 0.776 0.0486 

Continent 12 4 0.455 0.0023 
Macaronesia 9 7 0.944 0.0716 

Apohyale media 
  17 10 0.868 0.0929 

Continent * 5 5 1.000 0.0145 
Macaronesia 12 5 0.727 0.0331 

Apohyale 
stebbingi 

  40 30 0.972 0.1210 
Continent 19 14 0.959 0.0199 

Macaronesia 21 16 0.971 0.1383 

Apohyale prevostii ** 14 5 0.593 0.0015 

Protohyale 
schmidtii 

  34 28 0.977 0.0680 
Continent 16 10 0.892 0.0264 

Macaronesia 18 18 1.000 0.0226 

Serejohyale 
spinidactylus 

  26 19 0.972 0.1218 
Continent 5 4 0.900 0.0022 

Macaronesia 21 15 0.962 0.1270 
Hyale pontica ** 7 4 0.810 0.0028 

  

 
 
 
 
Table 5.2. Average pairwise distance between species. In diagonal, pairwise average distance within 
species.  

  1 2 3 4 5 6 7 
1) A. perieri 0.049 

     
  

2) A. media 0.241 0.093 
    

  
3) A. prevostii 0.224 0.206 0.002 

   
  

4) A. stebbingi 0.231 0.230 0.185 0.123   
 

  
5) H. pontica 0.212 0.209 0.182 0.207 0.003     
6) P. schmidtii 0.227 0.217 0.197 0.231 0.193 0.068   
7) S. spinidactylus 0.225 0.236 0.215 0.233 0.210 0.233 0.120 
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Figure 5.1. Representative specimens of the species sampled and used in this study. A - Apohyale stebbingi. B - A. prevostii.             
C - A. perieri. D - Serejohyale spinidactylus. E -Protohyale (Protohyale) schmidtii. F - A. media. G -Hyale pontica.  
Photos taken by Andrea Desiderato. Specimens not to scale. 
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5.5.3 MOTUs delimitation 

Molecular species delimitation resulted in partitioning our data set into 26–32 MOTUs 

(Fig. 5.2). The BOLD tool uses a threshold of 2.2% (Annex 5.3), which originated 32 MOTUs. The 

tool ‘local minima’ of SPIDER, originated a higher value for this threshold, 5.4% (Annex 5.3), 

delineating 26 MOTUs. The number of MOTUs generated by ABGD based on K2P was 26 MOTUs 

and was in concordance with the “local minima”. The bPTP retrieved the same MOTUs as the 

BOLD tool (32). The additional MOTUs identified by BOLD tool and bPTP comparing with ABGD 

and “local minima” were only in A. stebbingi (MOTUs 24, 26 and 29) and P. schmidtii (MOTUs 

16, 27 and 32) (see Fig. 5.2 and Annexes 5.1, 5.4 for details). Only 2 out of 7 species analysed in 

this study (A. prevostii and Hyale pontica) corresponded to just one MOTU, with a within-species 

distance lower than 1% (Annex 5.4). The other species varied between 3 MOTUs (A. media) and 

10 to 13 (A. stebbingi) depending of the delimitation method used (Fig. 5.2, Annexes 5.1, 5.4). 

Because there was not a consensus between the methods, we decided to adopt the 32 MOTUs 

value (Annexes 5.1, 5.4) for two reasons. First, it was the only value obtained by both a distance 

and tree based method. Second, the BIN system used by BOLD is the standard delimitation 

method for species when using DNA barcode analyses (Hebert et al. 2003). 

5.5.4 Phylogenetic analyses 

The topologies of ML and BI were almost identical for the shallow and highly supported 

nodes of the tree, allowing clear species discrimination by observation of the clustering patterns. 

All pre-defined MOTUs clustered in generally well supported monophyletic groups, 

independently of the evolutionary model and tree-building method used. Here we display BI 

tree (Fig. 5.2). Deeper nodes of the trees showed an overall decrease in node support and more 

differences among topologies, revealing a polytomy and not significant solved nodes. The most 

complex clade was the one of A. stebbingi. The relations among clades were not clear, but, 

except for H023 which formed a singleton MOTU (see Annex 5.1 for haplotype number details), 

all the haplotypes from the “Continent” grouped together in the biggest MOTU (MOTU-8, Annex 

5.4), isolating from the Macaronesian clusters. A. stebbingi also displayed the highest number 

of haplotypes (30) and networks (11) (Table 5.1, Fig. 5.4). Six networks were represented just by 

one haplotype, two by two haplotypes and two by three haplotypes. One network displayed 

several haplotypes, represented by Scotland, Portugal, Galicia and Morocco, with no shared 

haplotypes between locations. 
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Serejohyale spinidactylus displayed five different MOTUs, with high support, each 

belonging to a different island or coast, except for MOTU-19 that included haplotypes from 

Galicia and from Azores (H066) and for MOTU-2 which includes haplotypes of Madeira and 

Selvagem Grande (Fig. 5.2, Annexes 5.1, 5.4). Six networks were retrieved for S. spinidactylus, 

with 21 haplotypes obtained from 26 specimens (Table 5.1, Fig. 5.4), grouped by region (two 

networks from Gran Canaria, one from La Palma; one shared between Madeira and Selvagens; 

one from El Hierro and finally one obtained from São Miguel and Galicia). No haplotypes were 

shared between locations. 

Protohyale schmidtii displayed two big and well supported clusters and was the only 

morphospecies in which the higher number of MOTUs appeared in “Continent” (Fig. 5.2, Annex 

5.4). Four different MOTUs, MOTU-31 (from European Coasts), MOTU-16 (from Porto Santo and 

Madeira) and MOTUs-27, 32 (Morocco) cluster together (Fig. 5.2, Annexes 5.1, 5.4). The other 

lineage was composed mainly from haplotypes of the Macaronesia, with the exception of a 

single haplotype from Galicia (Figs 5.2, 5.3). The networks (28 haplotypes from 34 specimens, 

Table 5.1) also displayed the two big groups (Fig. 5.4) and no shared haplotypes between 

locations.  

Apohyale perieri showed a subdivision into three lineages, one with two singletons from 

Madeira (H003, MOTU-2) and Gran Canaria (H007, MOTU-3), one with haplotypes from La Palma 

(MOTU-4) and the last represented by MOTU-1 from different locations (Galicia, Portugal, São 

Miguel and Madeira) (Fig. 5.2, Annexes 5.1, 5.4). A total of 16 haplotypes from 21 individuals 

were used and retrieved four networks (Fig. 5.4), although two were represented by just on 

haplotype each (Madeira and Gran Canaria). A network retrieved from La Palma with three 

haplotypes was also obtained and finally a star-like network was shared between several distant 

regions (Galicia, Portugal, São Miguel and Madeira), with one haplotype shared by specimens 

from Galicia, Portugal and Madeira (Fig. 5.4). 

Apohyale media was clustered in two main lineages, however, the “Continental” 

specimens were not from European coasts but from Brazil (type locality). The high support, 

exhibited from both analyses, confirmed the taxonomical identification of the new records from 

Macaronesia of this species. The cluster from Brazil displayed high divergence (Hd: 1.000, π: 

0.0145, Table 5.1, Fig. 5.2).  Eleven haplotypes from 17 specimens were used and three networks 

were obtained, one from individuals from Brazil, one from Gran Canaria, La Palma and Madeira 

and one constituted by two haplotypes from Gran Canaria and Hierro (Fig. 5.4).  
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Figure 5.2. Bayesian consensus tree of the cytochrome oxidase I gene of he seven Hyalidae species 
studied. Values of nodes correspond to maximum likelihood bootstrap (above branches) and to Bayesian 
posterior probabilities (below branches), respectively. Black lines represent cluster of each morpho-
species, coloured lines MOTUs defined with different delimitation methods: green by localminima, red by 
ABGD, blue by BINs of BOLD and orange by bPTP. n.s. indicates less than 50 % support. See Annex 5.1 for 
the code of the haplotypes. 
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Finally, the other two species, Apohyale prevostii and Hyale pontica, displayed only one 

lineage (Fig. 5.2) and one network each, with A. prevostii displaying a start-like network (Fig. 

5.4). 

The visual comparison between the NJT of the two regions, showed a greatly higher 

differentiation along the “Macaronesian” coasts, despite the higher number of morphospecies 

along the “Continental” coasts (Fig. 5.3). In the “Continental” NJT, only Apohyale stebbingi and 

P. schmidtii displayed two highly divergent clades where, in both species, a singleton belonging 

to the coasts of Galicia departed from the general clade (Fig. 5.3). 

 

 

Figure 5.3. Comparison between “Continental” and “Macaronesian” Neighbour Joining Trees, respectively 
on the left and right. 
 

5.6 DISCUSSION 

5.6.1 Hyalidae phylogeny and distribution in Northeast Atlantic 

This is the first study that contributes with DNA barcodes for Hyalidae species from 

Macaronesia and Morocco and for six (all except Apohyale prevostii) Hyalidae species in 

European coasts. Of the thirteen confirmed hyalids recorded in the Northeast Atlantic Ocean 

(Horton et al. 2017a, b), six were sampled and one (Apohyale media) was reported for the first 

time, increasing the amount to fourteen. Parhyale eburnea is recorded on WoRMS also in the 

North Atlantic Ocean, although it is stated as endemic of the Mediterranean Sea (Ruffo 1982) 

and the occurrence has not been verified. The absence of A. prevostii and H. pontica from the 

Macaronesia was also observed by Krapp-Schickel and Ruffo (1990), although Borges et al. 
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(2010) reported A. prevostii as part of Azorean marine fauna. We observed that the southern 

limit of these two species was West Portugal, although Pereira et al. (2006) sampled a few H. 

pontica specimens in South Portugal and Guerra-García et al. (2011) in South Spain. These two 

species are present in Northern European coasts (Costello et al. 2001) and although they are 

widely distributed (Annex 5.1), they only retrived one MOTU each (Fig. 5.2) and displayed 

reduced distances between the northern haplotypes from Scotland, Norway and Iceland and the 

ones from Portugal and Galicia (Fig. 5.4), which was also observed in A. stebbingi (Fig. 5.4). This 

lower diversification in the northern regions could be accounted for the recent recolonization 

after the last glacial maximum (Maggs et al. 2008). 

 
Figure 5.4. Haplotype networks of the seven Hyalidae species studied. A - Protohyale schmidtii. B - 
Apohyale media. C - Serejohyale spinidactylus. D – Hyale pontica. E - Apohyale perieri. F – Apohyale 
prevostii. G - Apohyale stebbingi. Open cirles represent missing haplotypes; open squares with numbers 
of missing haplotypes are displayed when more than four haplotypes are missing. 
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It is important to underline that this study is the first record of Apohyale media from 

Madeira and Canaries coasts. This species is cosmopolitan in tropical and subtropical waters 

(Serejo 1999). It occurs along the coasts of the South Atlantic Ocean, particularly West coasts 

(Serejo 1999, De Broyer et al. 2007), and in the Gulf of Mexico until Florida (Nelson 1995, LeCroy 

2007), while the northernmost record of it, along the East Atlantic coasts, was Cape Verde (De 

Broyer et al. 2007). It is also documented along the coasts of Pacific and Indian Oceans (Serejo 

1999, Martín and Díaz 2003), but many records of this species in the literature, especially Pacific 

records, may actually refer to other species (LeCroy 2007), as for the specimens from New 

Zealand, which were recently attributed to the new species Apohyale papanuiensis Kilgallen, 

2011 (Kilgallen 2011).  

Reid (1939) described a new species of hyalid, called Hyale ramalhoi, from the coasts of 

Madeira, which was later added to the H. spinidactyla complex (Serejo 2001), and subsequently 

renamed as the new genus Serejohyale, which is represented by four species S. spinidactylus, S. 

youngi, S. spinidactyloides and S. ramalhoi (Horton et al. 2017a). Serejohyale ramalhoi was never 

found again after its description and the holotype went missing. Moreover, during this work, 

close areas to the type one were sampled, but only specimens of S. spinidactylus were retrieved, 

nurturing the hypothesis of a misidentification or a possible extinction. However, it is 

remarkable how the specimens from Madeira are genetically distant from the others, suggesting 

a cryptic species in the same area of a previously identified, maybe wrongly, different species.   

The average interspecies distance in this family seemed in line with other amphipod works 

(Raupach et al. 2015, Lobo et al. 2016a), but the average intraspecific distance was considerably 

high compared with the standard values for Crustacea (Costa 2007). The lowest distance 

between species was in the not congeneric species Apohyale prevostii and Hyale pontica, 

showing signals of a possible paraphyly in the genus Apohyale. Moreover, A. perieri appeared in 

a different and distant cluster of the other three congeneric species, although with low node 

support. The unsolved phylogeny demonstrated a possible saturation of the gene COI, which 

was not enough to resolve the relationships between the species of this family. More species, 

and possible additional genes, would be needed to correctly access the phylogeny of the 

Hyalidae family and perhaps a further taxonomic revision. 
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5.6.2 Macaronesia role in Hyalidae cryptic diversity 

Only the Hyalidae species in this study that inhabit both regions, “Macaronesia” and 

“Continent” displayed high intraspecific genetic distances (Table 5.2) and several MOTUs (Fig. 

5.2).  Remarkably, the “Macaronesia” region displayed a higher nucleotide diversity than the 

“Continent”, despite the lower number of morphospecies (Table 5.1). Although amphipods 

cryptic speciation has been reported before (Witt et al. 2006, Costa et al. 2009, Radulovici et al. 

2009), this is the first recorded case for amphipod cryptic taxa existing in the Macaronesia. Here, 

we propose the roles that Macaronesia could have played in these species (Table 5.3). 

Geographic expansion  

The presence of two distinct lineages in Apohyale media could be related to an ancient 

migration and speciation, such as the barnacle Ceratoconcha with anfiatlantic distribution 

(Baarli et al. 2017). The higher nucleotide diversity displayed in the lineage of Macaronesia 

(Table 5.1) and the presence of two different MOTUs in it (Fig. 5.2, Annex 5.1), could be signals 

of an origin from this region. Nevertheless, one of these MOTUs, was composed by close and 

abundant haplotypes, with one of them shared between Madeira and La Palma (Annex 5.1), 

which could mean a recent geographic expansion, maybe also operated by human transport. 

Because this species is cosmopolitan and present along the coasts of the South Atlantic Ocean 

(Serejo 1999), more specimens from these regions are needed to understand their roles as 

possible stepping stones in the expansion of this species.  

Glacial refugium 

The possible role of Macaronesia region as refugium during Pleistocene glaciations was 

documented before in marine invertebrates (Sá-Pinto et al. 2008, Xavier et al. 2010). In the 

species Serejohyale spinidactylus and Apohyale perieri, Macaronesia may have played a similar 

role. This hypothesis is strengthened by the reduced haplotype distances in the MOTUs of 

mainland. Moreover, the presence of haplotypes from Azores, in S. spinidactylus and A. perieri, 

within the same MOTUs of the haplotypes from mainland, suggested a colonization from these 

islands to the “Continent”. This scenario is in line with the common opinion that postulates the 

Azores as glacial refugium (Chevolot et al. 2006, Xavier et al. 2010). In S. spinidactylus, the 

lineage of the “Continent” appears to be one of the shallowest giving support to a recent 

colonization and speciation of this clade. Further, the haplotype of A. perieri, shared between 

Madeira and European coasts, could be a signal of back colonization, through synanthropic 
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transport. Even though, this common haplotype, could also be a recent colonization from 

Madeira. 

Speciation pool 

The incredibly high number of private MOTUs from the Macaronesia region (17-21) is a 

strong signal of the speciation that has been taking place in it. High mtDNA difference with only 

one shared haplotype in A. perieri indicates a low genetic exchange and suggests the isolation 

of the different populations (MOTUs). The importance of islands for species evolution is 

worldwide accepted (Selmi and Boulinier 2001, Villacorta et al. 2008, Losos and Ricklefs 2009, 

Warren et al. 2015). It is well documented that vicariance events, caused either by the 

emergence of land barriers or by the isolation within glacial refuges, have prompted allopatric 

divergence and speciation in many marine organisms (Quesada et al. 1995, Wares and 

Cunningham 2001, Patarnello et al. 2007, Xavier and Van Soest 2012). Nonetheless, the 

colonization of oceanic volcanic islands is strictly dependent of the species dispersal capability. 

In amphipods, which lack a larval phase, dispersal mechanisms are limited to rafting objects and 

anthropic mediated transport (Thiel and Gutow 2005, Cowie and Holland 2006, Wildish and 

Pavesi 2012, Cabezas et al. 2013a). Accordingly, the biology of the hyalids as inhabitants of algae 

with a high rafting dispersal potential, such as species of the genus Sargassum (Dubiaski-Silva 

and Masunari 1998), increase the possibility of these events (Deysher and Norton 1981, Poore 

2005). For instance, the situation of S. spinidactylus is emblematic, reporting five well-supported 

MOTUs, with a considerably high average divergence of 12% among them. Furthermore, of the 

four lineages belonging only to the Macaronesia, three of them are private to single islands (one 

shared between Madeira and Selvagem Grande), corroborating the segregation scenario. As for 

the possibility of well-described allopatric speciation in remote islands, in the clade of the 

morphospecies A. stebbingi, there are more MOTUs belonging to same site. For instance, the 

divergence between the four MOTUs of the site Ponta da Cruz belonging to Madeira, shows the 

appearance of possible sympatric cryptic species. Sympatric speciation is a phenomenon that is 

not completely understood. For Mayr (1947), in sympatric speciation, populations first become 

reproductively isolated and then diverge. This is usually related to a shift in ecological preference 

of the divergent species, as for the soil predilection of the palms of Lord Howe Island (Savolainen 

et al. 2006), or the plant host for phytophagous insects (Berlocher and Feder 2002). Nonetheless, 

the possibility of a shift in the ecological habits of A. stebbingi, such as the preference for 

different algae during their life cycle, is a strong possibility.  
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However, allopatric speciation in a vicariance scenario is also a possibility, if it would have 

occurred concurrently with the evolution of the Macaronesia. In fact, it is acknowledged that 

the present-day Macaronesia is only the residual of a bigger complex that now is submerged for 

a major part (Fernández-Palacios et al. 2011). The emerged seamounts during the Pleistocene, 

now eroded and submerged, could have allowed the dispersion between the different 

archipelagos of the Macaronesia, especially to the Azores from the Paleo Madeira and Paleo 

Canaries Seamounts (Den Broeck et al. 2008, Fernández-Palacios et al. 2011). Similarly, they 

could have worked as stepping stones for the colonization of recent islands from Europe and 

Africa (Carine et al. 2004). The network of P. schmidtii, for example, showed the connection 

between haplotypes from Morocco and Porto Santo, which is the oldest emerged island in the 

archipelago of Madeira. This could be a remnant of the past connection between the two regions 

which could have resulted in the speciation of the two different lineages from Macaronesia and 

Continent. 

 

Table 5.3. Roles and effects of Macaronesia region on the different species of the family Hyalidae. 

Role Effect  Case species 

Geographic 
expansion 

Large expansion along Atlantic Ocean with 
possible ancient split between Macaronesia 
and South Atlantic populations 

Apohyale media 

Glacial 
refugium 

Due to the climatic stability during the last 
glaciation, some species sheltered along the 
coasts of these islands and recolonized the 
mainland after it. 

Apohyale perieri and 
Serejohyale spinidactylus 

Speciation 
pool 

"De novo" islands of Macaronesia are 
susceptible to speciation due to the 
segregation from mainland and reduced gene 
flow. Possibilities of allopatric and sympatric 
speciation. 

Serejohyale 
spinidactylus, Protohyale 
schmidtii and Apohyale 

stebbingi 
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5.7 CONCLUSIONS 

The poor-studied family Hyalidae is commom and abundant in Northeast and 

Macaronesian coasts (Lincoln 1979, Ruffo 1982, Hayward and Ryland 1995). Unexpected high 

intraspecific variation (4.9-12.3%) and high number of MOTUs (24-30) was found in five Hyalidae 

morphospecies (Apohyale media, A. perieri, A. stebbingi, Serejohyale spinidactylus and 

Protohyale schmidtii). This diversification is manly due to the Macaronesian region which 

displayed higher genetic diversity values and number of MOTUs when compared with 

continental coasts.  This was the first study to spot cryptic diversity in the order Amphipoda in 

Macaronesia islands and reinforce two ideas: first, marine invertebrates should be taken in 

consideration in molecular studies in islands and second, that amphipods can be used as models 

in molecular delimitation studies. More species should be used to fully understand the 

phylogeny of Hyalidae and other locus, together with ecological and possible more 

morphological data should be incorporated to describe these putative new crypic species. 
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6.1 ABSTRACT 

The Northeast (NE) Atlantic Ocean is a vast and complex marine region. The oceanic islands of 

Macaronesia, present in NE Atlantic, namely the Madeira and Canaries archipelagos are ideal 

natural laboratories to study gene flow in benthic marine invertebrates, namely in species with 

low dispersal capacity, such as the superorder Peracarida, because they are “isolated” from 

other coasts. In this study, we examined the DNA barcodes in twenty-five peracaridean species 

(belonging to the orders Amphipoda, Isopoda and Tanaidacea) to investigate allopatric 

diferentiation between the populations from the archipelagos of Madeira and Canaries and the 

ones from Iberian Peninsula. This was achieved by detecting a pattern of high genetic distance 

between populations from these two regions in all species, and by using delimitation molecular 

methods to find distinct molecular operational taxonomic units (MOTUs) in each species within 

each region. Globally, between 81 and 98 MOTUs were found in these twenty-five species. 

Moreover, new records for twenty-one species were found in these regions. The data suggests 

the existence of a phylogeographic barrier between the archipelagos of Madeira and Canaries 

and the Iberian Peninsula, which is responsible for a deep genetic differentiation between the 

populations of peracarideans from these two regions. These results emphasize the genetic 

heritage hosted by some unprotected areas in Macaronesia, underlining the need to consider 

organisms with comparatively lower dispersal and the fine-scale endemicity in the design of 

more effective networks of marine protected areas. 
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6.3 INTRODUCTION 

Establishing species boundaries is crucial for biodiversity assessment (Knowlton 2000, 

Cook et al. 2008). Traditional approaches for species delimitation only rely on morphological 

identification. However, relying taxonomy only on morphologic characters might critically 

underestimate biodiversity, namely in small marine invertebrates with complex morphological 

traits (Knowlton 1993, Remerie et al. 2006). For instance, in Peracarida, a superorder of the 

subphylum Crustacea, besides their small size, even family-level diagnostic characters might 

change with development and gender, making their identification difficult. Moreover, closely 

related species and genus can have very similar key morphological characters (Harrison and Ellis 

1991, Larsen and Wilson 1998, Larsen 2001). Consequently, a combination of multiple 

approaches (e.g., molecular, morphological and ecological data) is required to accurately access 

species boundaries (Remerie et al. 2006, Roe and Sperling 2007, Hou et al. 2011). This is 

particularly true for marine invertebrates species, because some studies have shown the 

existence of cryptic species, which are species that are genetically distinct, but difficult to 

distinguish using only morphological characters (Knowlton 2000, Mathews 2006, Witt et al. 

2006). 

The use of recognized and standardized molecular tools such as the DNA barcoding for 

specimen identification and delimitation has been shown to be successful in several marine 

groups (Radulovici et al. 2009, Knebelsberger et al. 2014, Raupach et al. 2015). Its usage has 

become quite widespread as a tool to species discovery by flagging cryptic species (Radulovici 

et al. 2009), when complement to morphological identifications (Hebert et al. 2003, Hajibabaei 

et al. 2006). Despite the growing number of articles reporting hidden diversity in peracaridean 

species in NE Atlantic (e.g., Costa et al. 2009, Xavier et al. 2011b, Raupach et al. 2014), the 

Macaronesia region, a group of ocean islands in NE Atlantic, have been neglected in these 

studies. These islands are the result of volcanic activity and have never been connected with 

mainland, therefore, their biota is the result of dispersal from distant geographical sources and 

in situ evolution and diversification (Fernández-Palacios et al. 2011).  This fact makes these 

islands an interesting study subject to understand genetic diversity in marine benthic organisms 

with direct development and theorically low dispersal capacity, and consequently more prone 

to isolation, such as the Peracarida (Hayward and Ryland 1995).  

Recently, we were able to find cryptic diversity with several distinct genetic linages from 

Macaronesia in the isopod genus Dynamene (Chapter 4) and in different morphospecies of the 

amphipod family Hyalidae (Chapter 5). Using this information as a starting point, we aim in this 
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study, to use DNA barcoding (Cytochrome c Oxidase subunit I - COI) to examine the cryptic 

diversity of twenty-five peracaridean morphospecies belonging to the orders Amphipoda, 

Isopoda and Tanaidacea from the NE Atlantic taking in consideration the Macaronesian 

archipelagos of Madeira, Canaries and Azores, as well the mainland shores of Iberian Peninsula 

and Morocco. Moreover, we want also, based in chapters 4 and 5, to explore and demonstrate 

the genetic variation between populations from Iberian Peninsula and the archipelagos of 

Madeira and Canaries. 

 

6.4 MATERIAL AND METHODS  

6.4.1 Specimen sampling and taxonomic identification 

Specimens were collected between 2011 and 2015 and sampled during low tide from 

marine intertidal rocky shores by scraping the algal cover or hand picking during low tide (see 

Annex 1.3 for sampling details) along the Northeast Atlantic coasts (see Annexes 1.4, 1.5, 6.1 for 

details). 

After collection, specimens were preserved in 96% ethanol. Sequence data and specimen 

metadata were uploaded in the dataset ‘Peracarida Macaronesia vs IberiaPeninsula’ (DS-

PMACA) within Barcode of Life Data system (BOLD). Morphology-based taxonomic identification 

was supported in keys for peracarids (Chevreux and Fage 1925, Naylor 1972, Lincoln 1979, Ruffo 

1982, Holdich and Jones 1983, Harrison and Ellis 1991, Hayward and Ryland 1995). The species’ 

nomenclature used in this work complies with the accepted nomenclature used in World 

Register of Marine Species (WoRMS) and Integrated Taxonomic Informations System (ITIS). 

For each species, two obligatory groups (Iberian Peninsula vs Madeira/Canaries) were 

created based on the location where they were sampled. The choice of these two regions took 

in consideration the major genetic differences observed previously in Chapter 4 and 5, in 

populations sampled in Iberian Peninsula coasts and the archipelagos of Madeira and Canaries 

(Fig. 6.1). Our aim was to explore if this genetic difference between these two regions would be 

observable in different peracaridean species. The first group included the specimens sampled in 

Iberian Peninsula (IP) and the second included the specimens collected in Madeira and Canaries 

archipelagos (MACA). Additionally, wherever the same species were present in Morocco 

(MORO) and/or Azores (AZ), these specimens from these regions were added to the analysis 

(Fig. 6.1). 
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6.4.2 Genetic analysis and data treatment 

DNA extraction, amplification of COI, PCR products purification and sequencing was 

performed using the methodology previously described in chapter 5 (section 5.3.2). Depending 

of the specimen size, only a small amount of tissue or the whole animal was used. For details 

about PCR conditions and primers used, please see section 5.3.2 and Annex 5.2.  

Each trace file was edited individually and manually, unreadable zones and primers were 

removed and ambiguous bases corrected. The resultant sequences were aligned using Clustal W 

(Thompson et al. 1994) implemented in MEGA 7.0 (Kumar et al. 2016) and inspected for eventual 

anomalies, such as stop codons or indels in DNASP 5.10 (Librado and Rozas 2009). Sequences of 

different length were obtained depending of the primer used (see section 5.3.2 and Annex 5.2). 

Therefore, a common fragment of 520 base pair (bp) obtained from all sequences was used. 

GenBank BLASTn search (Altschul et al. 1990) and BOLD Identification System tool (BOLD-

IDS) (Ratnasingham and Hebert 2007) were used to search for similarity to confirm the target 

taxa.  

Figure 6.1. Sampling locations according to the groups defined in section 6.4.1.  

AZ 

IP 

MACA 

MORO 
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6.4.3 Genetic diversity and phylogenetic analyses 

Maximum and mean pairwise distances (p-distances) for COI within each species were 

calculated in MEGA 7.0 (Kumar et al. 2016). Genetic differences between IP and MACA groups 

were calculated using p-distances in MEGA 7.0 (Kumar et al. 2016). 

The Bayesian inference (BI) was conducted in MrBayes 3.2 (Ronquist et al. 2012) to build 

the Bayesian tree for each order separately. The BI topologies were constructed choosing 

GTR+G+I as best-fitting model of nucleotide substitution based on its Bayesian Information 

Criterion as implemented in MEGA 7.0 (Kumar et al. 2016). Runs were conducted with 7 x 106 

generations each. Parameters were sampled every 1 x 102 generations. A burn-in of 10% was 

applied.  

6.4.4 Molecular species delimitation 

Four methods were used to determine the number of MOTUs. Our goal was to understand 

if each morphospecies corresponded to one or more MOTUs and if these MOTUs matched the 

groups IP and MACA. Usually, each morphological species matches only a MOTU, however 

cryptic species match two or more (Hebert et al. 2004). First, we used two distance-based 

barcode gap approachs. The Automatic Barcode Gap Discovery (ABGD) species delineation tool 

was performed on a web interface (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) 

with default settings for the Kimura-2-parameter (K2P) distance matrix (Puillandre et al. 2012). 

Then, the Cluster Sequences tool implemented in BOLD 4 (http://v4.boldsystems.org) 

(Ratnasingham and Hebert 2013) was applied.  

The web server bPTP (http://species.h-its.org/ptp/), which implements the Poisson tree 

processes model, was used for the phylogenetic approach (Zhang et al. 2013). Maximum-

likelihood (ML) trees for COI were estimated with MEGA 7.0 (Kumar et al. 2016) and used as 

input. Evolutionary models were selected using also MEGA 7.0 (Kumar et al. 2016) under the 

corrected Akaike information criterion. Species delimitations were performed using 500 000 

Markov chain Monte Carlo iterations with a 20% burn-in. 

Finally, the 95% statistical parsimony connection limit was used, by using TCS 1.21 

(Clement et al. 2000). This is a common method derived from population genetics to visualize 

possible intraspecific relationships. Sequences are assigned to networks connected by changes, 

which are non-homoplastic with a certain probability. Even though this is not equivalent to 

defining species boundaries, statistical parsimony has also been applied successfully to delimit 

candidate species before (e.g., Pons et al. 2006, Sauer and Hausdorf 2012). 
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6.5 RESULTS 

6.5.1 Morphological analysis 

Twenty-five peracaridean species present in IP and MACA were used in this study. A total 

of 483 sequences were used, with 137 being novel sequences obtained in this study, 36 obtained 

in Chapter 2, 168 in Chapter 4 and 116 from Chapter 5 of this thesis. To these, 26 sequences 

obtained from specimens sampled in Portugal (except for Stenothoe monoculoides that was 

sampled in North Sea and no sequence was available from Iberian Peninsula region) were added, 

which were retrieved from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (see Annex 6.1 

for number of specimens in each species and source).  Of the total number of species, thirteen 

were amphipod species belonging to ten genera (see Fig. 6.2 for representative of each species): 

Apohyale perieri (Lucas, 1849), Apohyale stebbingi Chevreux, 1888; Protohyale (Protohyale) 

schmidtii (Heller, 1866); Serejohyale spinidactylus (Chevreux, 1926); Caprella acanthifera Leach, 

1814; Ampithoe ramondi Audouin, 1826; Ampithoe helleri Karaman, 1975; Ampithoe riedli 

Krapp-Schickel, 1968; Podocerus variegatus Leach, 1814; Stenothoe monoculoides (Montagu, 

1815); Quadrimaera inaequipes (A. Costa, 1857); Jassa herdmani (Walker, 1893) and Elasmopus 

pectenicrus (Spence Bate, 1862). Nine were isopod species belonging to seven genera (see Fig. 

6.3 for representative of each species): Gnathia maxillaris (Montagu, 1984); Anthura gracilis 

(Montagu, 1808); Joeropsis brevocornis Koehler, 1885; Dynamene magnitorata Holdich, 1968; 

Dynamene edwardsi (Lucas, 1849); Dynamene bidentata (Adams, 1800); Cymodoce truncata 

Leach, 1814; Campecopea lusitanica (Nolting, Reboreda & Wägele, 1998) and Janira maculosa 

Lach, 1814. Three were tanaidacean species belonging to two genera (see Fig. 6.4 for 

representative of each species): Tanais dulongii (Audouin, 1826); Tanais grimaldii (Dollfus, 1897) 

and Apseudopsis latreilli (Milne Edwards, 1828). 

Additionally to the general identification keys used before (Chevreux and Fage 1925, 

Naylor 1972, Lincoln 1979, Ruffo 1982, Holdich and Jones 1983, Harrison and Ellis 1991, Hayward 

and Ryland 1995), the software package DELTA (DEscription Language for TAxonomy) with the 

interactive identification keys (INTKEY) for amphipods, isopods and tanaids (Dallwitz et al. 2000, 

Lowry and Springthorpe 2001, Larsen 2002, Keable et al. 2002, Oliver Coleman et al. 2010) and 

updated identification keys for the genera Gnathia (Hispano et al. 2014), Dynamene (Holdich 

1968a, Vieira et al. 2016), Campecopea (Harrison and Ellis 1991, Nolting et al. 1998, Bruce and 

Holdich 2002), Cymodoce (Harrison and Ellis 1991, Khalaji-Pirbalouty et al. 2013, Khalaji-

Pirbalouty and Raupach 2014), Anthura (Poore 2001) Apseudopis (Esquete et al. 2012, 2016), 

Tanais (Bamber and Robbins 2009, Bamber 2012), Caprella (Riera et al. 2003, Lacerda and 
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Masunari 2011, Guerra-García 2012, Guerra-García et al. 2013), Jassa (Conlan 1990, Krapp-

Schickel et al. 2008), Elasmopus (Lowry and Hughes 2009, Vader and Krapp-Schickel 2012, 

Gouillieux and Sorbe 2015, Alves et al. 2016), Stenothoe (Krapp-Schickel 2006, 2015) and 

Ampithoe (Conlan 1982, Hughes et al. 2008), were also used to accuretly identify the specimens. 

Checklists for Northeast Atlantic and Macaronesia were used to verify species presence and 

distribution (Krapp-Schickel and Ruffo 1990, Castelló and Carballo 2001, Costello et al. 2001, 

Junoy and Castelló 2003, Pereira et al. 2006, Castelló and Junoy 2007, Boyko et al. 2008, Borges 

et al. 2010, Izquierdo and Guerra-García 2011, Guerra-García et al. 2011, Anderson 2016, Horton 

et al. 2017a, b).  

Twelve of the twenty-five species analysed were present in Azores and nine in Morocco 

(Table 6.1). Janira maculosa and Apseudopsis latreillii were the least represented species (only 

six specimens each), while Dynamene edwardsi (99 specimens) and Apohyale stebbingi (36 

specimens) were the ones with the higher number of individuals. 

6.5.2 Molecular analysis 

Mean intraspecific distance (ISD) varied between 0.36% (Dynamene magnitorata) and 

17.16% (Janira maculosa), while Maximum (Max) ISD was higher than 3% for all species except 

D. magnitorata (2.46%) and D. bidentata (1.23%) (Table 6.1). Mean p-distances between IP and 

MACA regions were always higher than 3% (except once again for D. magnitorata and D. 

bidentata), with the highest value observed in the isopod Anthura gracilis (28.00%, Table 6.1). 

The molecular species delineation methods applied in the twenty-five species retrieved 

between 81 (by ABGD-K2P) and 98 (TCS 95%) MOTUs depending of the method applied (Table 

6.2). Amphipod species originated between 41 and 53 MOTUs (Fig. 6.5, Table 6.2), isopods 

between 27 and 31 MOTUs (Fig. 6.6, Table 6.2) and tanaidaceans between 11 and 14 MOTUs 

(Fig. 6.7, Table 6.2). A major rule (most commom number of MOTUs for each species) was 

applied and in case of a tie, a conservative approach was applied (lowest number of MOTUs). 

The consensus number of MOTUs was 90 (Table 6.2), with the species D. bidentata and D. 

magnitorata with just one MOTU each and the species D. edwardsi and Apohyale stebbingi with 

9 and 11 MOTUs each respectively (Table 6.2). 
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Figure 6.2. Representative figures of the amphipods species used (not to scale). A- Ampithoe helleri (♂); B - Ampithoe ramondi (♂); C - Ampithoe riedli (♂) gnathopods 1 
(Gn1) and 2 (Gn2); D – Apohyale perieri (♂) Gn1 and Gn2; E – Apohyale stebbingi (♂) head, Gn1 and Gn2; F - Caprella acanthifera (“sensu lato” ♂); G - Elasmopus pectenicrus 
(♂); H - Jassa herdmani (thumbed ♂ “major form”); I – Podocerus variegatus (♂); J – Protohyale (Protohyale) schmidtii (“Hyper form” ♂) Gn1 and Gn2; K - Quadrimaera 
inaequipes (♂) head, Gn1 and Gn2; L - Serejohyale spinidactylus (♂); M - Stenothoe monoculoides (♀). Adapted from: A (as Ampithoe neglecta), E, M - (Lincoln 1979); B, C 
(as Hyale perieri), D (as Hyale stebbingi), I, J (as Hyale schmidtii), K - (Ruffo 1982); F - (Zeina et al. 2015); G - (Lowry and Hughes 2009); H - (Beerman and Purz 2013); L (as 
Hyale spinidactyla) - (Krapp-Schickel et al. 2011).  
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Figure 6.3. Representative figures of the isopod species used (not to scale). A - Gnathia maxillaris (Adult 
♂); B -Anthura gracilis (♀); C - Joeropsis brevocornis; D - Dynamene magnitorata (Adult ♂); E - Dynamene 
edwardsi (Adult ♂); F - Dynamene bidentata (Adult ♂); G - Cymodoce truncata (Adult ♂); H - Campecopea 
lusitanica morpho A (Adult ♂); I - Janira maculosa. Adapted from: A – (Hispano et al. 2014); B, C, F, I –
(Naylor 1972); D, E – (Holdich 1968a); G – (Khalaji-Pirbalouty et al. 2013); H – (Bruce and Holdich 2002).
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Figure 6.4. Representative figures of the tanaidacean species used (not to scale). A – Tanais dulongii 
(Adapted from Holdich and Jones 1983); B - Tanais grimaldii (Adapted from Bamber and Costa 2009); C - 
Apseudopsis latreilli (Adapted from Esquete 2012). 
 
 

Table 6.1. Presence (●) of the peracaridean species used in this study in each region defined in section 
6.4.1. Mean and Max ISD for each species and the Mean p-distance between the Iberian Peninsula (IP) 
and Madeira and Canaries archipelagos (MACA) for each species are also displayed.  
*Stenothoe monoculoides was retrieved from North Sea instead of IP. 

Order Species IP MACA AZ MORO 
Mean 

ISD 
Max 
ISD 

Mean p-distances 
between IP and 

MACA 
Amphipoda Ampithoe helleri ● ●   0.0715 0.1327 0.1230 
Amphipoda Ampithoe ramondi ● ● ●  0.0181 0.0385 0.0341 
Amphipoda Ampithoe riedli ● ●  ● 0.0439 0.0827 0.0782 
Amphipoda Apohyale perieri ● ● ●  0.0483 0.1135 0.0770 
Amphipoda Apohyale stebbingi ● ● ● ● 0.1243 0.2000 0.1574 
Amphipoda Caprella acanthifera ● ● ● ● 0.0805 0.1462 0.1374 
Amphipoda Elasmopus pectenicrus ● ●  ● 0.0381 0.0635 0.0583 
Amphipoda Jassa herdmani ● ● ●  0.0751 0.1362 0.1237 
Amphipoda Podocerus variegatus ● ●   0.0613 0.1019 0.0974 
Amphipoda Protohyale schmidtii ● ● ● ● 0.0693 0.1346 0.1087 
Amphipoda Quadrimaera inaequipes ● ●   0.0911 0.1596 0.1357 
Amphipoda Serejohyale spinidactylus ● ● ●  0.1152 0.1769 0.1348 
Amphipoda Stenothoe monoculoides* ● ●   0.1637 0.2765 0.2765 
Isopoda Anthura gracilis ● ● ● ● 0.1521 0.2846 0.2800 
Isopoda Campecopea lusitanica ● ●   0.1012 0.1981 0.1226 
Isopoda Cymodoce truncata ● ● ●  0.1263 0.2019 0.1619 
Isopoda Dynamene bidentata ● ●  ● 0.0036 0.0154 0.0123 
Isopoda Dynamene edwardsi ● ● ● ● 0.1140 0.1865 0.1643 
Isopoda Dynamene magnitorata ● ● ●  0.0076 0.0269 0.0246 
Isopoda Gnathia maxillaris ● ●   0.1324 0.2038 0.2000 
Isopoda Janira maculosa ● ●   0.1715 0.2673 0.2564 
Isopoda Joeropsis brevicornis ● ●   0.1252 0.2500 0.2462 
Tanaidacea Apseudopsis latreilii ● ●   0.1674 0.2404 0.2372 
Tanaidacea Tanais dulongii ● ●  ● 0.0840 0.1192 0.1150 
Tanaidacea Tanais grimaldii ● ● ●  0.0919 0.1481 0.1065 

A 
B 

C 

A 
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Table 6.2. Results of the different molecular species delineation methods applied in this study. 

Order Species ABGD K2P 
MOTU 
BOLD 

TCS 95% bPTP 
Consensus 
number of 

MOTUs 
Amphipoda Ampithoe helleri 3 3 3 3 3 

Amphipoda Ampithoe ramondi 1 2 2 2 2 

Amphipoda Ampithoe riedli 2 2 3 2 2 

Amphipoda Apohyale perieri 4 4 4 4 4 

Amphipoda Apohyale stebbingi 9 13 11 11 11 

Amphipoda Caprella acanthifera 3 4 4 4 4 

Amphipoda Elasmopus pectenicrus 2 3 4 3 3 

Amphipoda Jassa herdmani 2 2 3 3 2 

Amphipoda Podocerus variegatus 3 3 3 3 3 

Amphipoda 
Protohyale (Protohyale) 
schmidtii 2 5 6 2 2 

Amphipoda Quadrimaera inaequipes 3 3 3 3 3 

Amphipoda Serejohyale spinidactylus 5 5 5 5 5 

Amphipoda Stenothoe monoculoides 2 2 2 2 2 

Isopoda Anthura gracilis 4 5 5 5 5 

Isopoda Campecopea lusitanica 2 3 2 3 2 

Isopoda Cymodoce truncata 4 4 4 4 4 

Isopoda Dynamene bidentata 1 1 1 1 1 

Isopoda Dynamene edwardsi 7 9 9 9 9 

Isopoda Dynamene magnitorata 1 1 2 1 1 

Isopoda Gnathia maxillaris 3 3 3 3 3 

Isopoda Janira maculosa 3 3 3 3 3 

Isopoda Joeropsis brevicornis 2 2 2 2 2 

Tanaidacea Apseudopsis latreilli 3 3 3 3 3 

Tanaidacea Tanais dulongii 6 6 6 4 6 

Tanaidacea Tanais grimaldii 4 5 5 4 5 

 Total 81 96 98 89 90 

 

To better discriminate the different species in the phylogenetic analysis, sister taxa (25 

species, 32 sequences) commom in IP and/or MACA (see section 6.5.1 for checklist of references 

consulted) were added to the analysis (see Annex 6.1 for list of species, number of specimens 

and source). Of these, 17 species (24 sequences) were obtained in this thesis. In all orders, BI 

phenogram clearly discriminated the different species (Fig. 6.5 for Amphipoda, Fig. 6.6 for 

Isopoda and Fig. 6.7 for Tanaidacea). Species of the same genus or family grouped in general 

together and MOTUs matched the different linages. Two different main clusters were most of 

the cases patent, corresponding with IP and MACA, with AZ and MORO lineages matching IP or 

MACA depending of the species (Figs 6.5, 6.6, 6.7). 
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Figure 6.5. Bayesian clade credibility tree based on COI sequences of the amphipod species used in this 
study. Dotes (●) associated with nodes represent posterior probabilities higher than 0.75. Vertical black 
bars correspond to MOTUs obtained by the different methods of species delimitation applied (Table 6.2): 
A – lowest number of MOTUs, B – maximum number of MOTUs, C – morphospecies. Cymodoce truncata 
(Ct) and Dynamene bidenatata (Db) were used as outgroup. Lineages colours according with region: blue-IP, 
green-MACA, purple – AZ, orange – MORO. 
Ap - Apohyale prevostii; Hp – Hyale pontica; Am – Apohyale media; Ec – Elasmopus canarius; Er – Elasmopus rapax; 
Ev – Elasmopus vachoni; Cp – Caprella penantis; Cp – Caprella mutica; Jo – Jassa ocia; Jp – Jassa pusilla; Jm – Jassa 
marmorata; Js – Jassa slatteryi; Cl – Capella liparotensis; As – Ampithoe sp.; Ar – Ampithoe rubricata; Hy – Hyalinae; 
Sm – Stenothoe marina.  
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Figure 6.6. Bayesian clade credibility tree based on COI sequences of the isopod species used in this study. 
Dotes (●) associated with nodes represent posterior probabilities higher than 0.75. Vertical black bars 
correspond to MOTUs obtained by the different methods of species delimitation applied (Table 6.2): A – 
lowest number of MOTUs, B – maximum number of MOTUs, C – morphospecies. Apohyale prevostii and 
Apohyale perieri were used as outgroup. Lineages colours according with region: blue-IP, green-MACA, purple – 
AZ, orange – MORO. 
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Figure 6.7. Bayesian clade credibility tree based on COI sequences of the tanaid species used in this study. 
Dotes (●) associated with nodes represent posterior probabilities higher than 0.75. Vertical black bars 
correspond to MOTUs obtained by the different methods of species delimitation applied (Table 6.2): A – 
lowest number of MOTUs, B – maximum number of MOTUs, C – morphospecies. Apohyale prevostii was 
used as outgroup. Lineages colours according with region: blue-IP, green-MACA, purple – AZ, orange – MORO. 
 

6.6 DISCUSSION 

6.6.1 New records for Macaronesia and Moroccan coasts 

By using DNA barcodes of twenty-five representative species of three different 

peracaridean orders (Amphipoda, Isopoda, Tanaidacea), we were able to unravel hidden cryptic 

diversity. Up to 81-98 putative cryptic species were discovered, with a clear discrimination 

between the populations from Southern European Atlantic coasts and the populations from 

Madeira and Canary Islands. Moreover, to the best of our knowledge, in this study, the following 

peracaridean species were recorded in Macaronesia Islands and Morocco for the first time: 

Anthura gracilis in Tenerife, Porto Santo, Selvagens, Gran Canaria and La Palma; Campecopea 

lusitanica in Porto Santo, Gran Canaria and La Palma; Cymodoce truncata in Porto Santo, 

Madeira and La Palma; Gnathia maxillaris in Gran Canaria, La Palma and Porto Santo; Janira 

maculosa in La Palma; Joeropsis brevicornis in Tenerife, La Palma and Madeira; Apseudopsis 

Tanais 
dulongii 

Tanais 
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Apseudopsis 
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latreillii in Porto Santo and Gran Canaria; Tanais dulongii in La Palma and Morocco; Tanais 

grimaldii in Selvagens and Porto Santo; Zeuxo exsargasso in Porto Santo; Ampithoe helleri in La 

Palma; Ampithoe ramondi in Tenerife and Madeira; Ampithoe riedli in Morocco, Madeira and La 

Palma; Caprella acanthifera in El Hierro, La Palma, Morocco and Tenerife; Elasmopus canarius 

in La Palma and El Hierro; Elasmopus pectenicrus in Tenerife, Porto Santo, Morocco and 

Madeira; Elasmopus vachoni in La Palma; Jassa herdmani in Madeira, Porto Santo and São 

Miguel; Podocerus variegatus in La Palma and Porto Santo; Quadrimaera inaequipes in Gran 

Canaria, La Palma and Madeira and Stenothoe monoculoides in Tenerife (see Annex 6.1 for 

details). 

6.6.2 Phylogeographic discontinuity between Macaronesia and adjacent continental 
coasts 

Twenty-three species (of the twenty-five used) displayed higher ISD than 3%, which is 

above the value found in most of the established species of crustaceans where COI barcode 

variation was examined (Costa et al. 2007). The only species with a lower value were Dynamene 

bidentata (1.54%) and Dynamene magnitorata (2.69%). These two species were the only species 

with just one representative sequence for MACA region (and the only ones with less than three 

sequences). Interestingly, the use of the same delimitation methods (ABGD-K2P and bPTP) 

applied to COI used in this study, and in chapter 4, retrieved different number of MOTUs (2 vs 1 

respectively) for D. magnitorata. The reason for this difference was the the length of the COI 

fragment examined: 520 bp in this study vs 658 bp used in chapter 4. This strenghtens the idea 

that the sequence length, and also multilocus approaches are crucial to correctly delineate 

species based on molecular data (Delić et al. 2017).  

The variation between the populations from IP and MACA regions within each species 

(excluding D. bidentata and D. magnitorata) ranged between 3.41% (Ampithoe ramondi) and 

28.00% (Anthura gracilis). As observed in chapters 4 and 5, this information suggests little or no 

gene flow between populations from these two regions. Phylogeographic discontinuities were 

reported before in marine environments worldwide e.g., between Patagonia and Falkland 

islands (Lesse et al. 2008), in the Alboran basin (Xavier et al. 2011a), between east and west 

Mediterranean (Arnaud-Haond et al. 2007), in the eastern Pacific in North America (Markow and 

Pfeiler 2010) and in the eastern Pacific in South America (Varela and Haye 2012), but little is 

known in the NE Atlantic. Sá-Pinto et al. (2008), Xavier et al. (2010) and Domingues et al. (2008) 

also verified in sponges, gastropods and fish respectively, reduced gene flow and therefore 
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genetic variation between populations from Madeira and Canary islands and those from Iberian 

Peninsula, suggesting that a possible marine phylogeographic barrier exists for marine fauna. 

Peracaridean species have direct development, lacking a pelagic larval phase and 

therefore being highly restricted in their dispersal (Hayward and Ryland 1995). Long dispersal 

events are uncommom and dispersal of individuals happens locally by swimming or crawling, or 

passively through rafting on floating objects or mediated by human vectors (Thiel and Gutow 

2005). These species are more susceptible to isolation when compared to species with dispersive 

larval phases and effective gene flow between distant populations can be rare (Varela and Haye 

2012). An exception to direct development (in peracarids) is Gnathia maxillaris, which is a fish 

ectoparasite during some phases of its larval stage, interweaving with periods in benthic 

habitats, while the adults inhabit shallow waters (Hispano et al. 2014). Nevertheless, and 

although each peracaridean species has a distinct life cycle, a deep genetic differentiation 

between the populations from MACA and IP appears to be a common feature to many of them, 

suggesting that other factors than geographic distance may play a major role in the allopatric 

fragmentation within these species. Moreover, the fact that this fragmentation has been also 

observed in species with a larval dispersal phase (e.g., Gnathia maxillaris, sponges and 

gastropods) suggests that even in for organisms with presumably higher dispersal capacity, 

there is evidence for a sweeping phylogeography discontinuity for marine invertebrates in that 

region of the NE Atlantic.  

While a clear differentiation between MACA and IP populations was patent in all the 

species studied, the populations from Azores and Morocco displayed affinities to either one, 

depending on the species. The populations of the Azores archipelago are usually presumed to 

have higher affinities with the ones from Madeira and Canaries archipelagos (Santos et al. 1995), 

due to the Canaries current (Arístegui et al. 2009). Previous works showed genetic affinities 

between these archipelagos in marine invertebrates (Hawkins et al. 2000, Sá-Pinto et al. 2008), 

while others suggest stronger affinities between Azorean and Iberian populations (Xavier et al. 

2010). In our work, the two patterns were observed, with 8 species showing higher proximity 

between Azorean populations and MACA, and 4 with IP. In most of the peracaridean species 

here studied (7 out of 9), a higher affinity between Moroccan and IP populations was found, 

which contradicts other studies that relate the populations from Morocco with those from 

Macaronesia, due to their proximity, and/or differentiate them from the IP populations (Santos 

et al. 1995, Cabezas et al. 2013a, Xavier et al. 2011a, 2016).   
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6.6.3 Macaronesian conservation status 

Accurate species delimitation is an essential starting framework for conservation 

strategies, since species are the basic units for distributional and habitat studies in biodiversity 

assessment. However, the species concept is probably the most controversial issue in biology 

(Coyne and Orr 2004). Species boundaries are a conceptual tool used to organize the diversity 

of life into categories. This started with the classification of organisms into "species" based on 

their phenotype and inferred reproductive compatibility, but with the emergence of molecular 

methods, arose also the importance of the genotype for species delineation (Radulovici et al. 

2010). Through the use of molecular methods, MOTUs could be considered as the functional 

units of biodiversity and might act as proxies for estimating diversity (Hey 2006). Concepts such 

as "Evolutionary Significant Units" (ESU) help surpassing the limitations imposed by rigid species 

boundaries, enabling the recognition of pertinent infraspecific units for the purpose of 

biodiversity conservation (Casacci et al. 2014). Hence, regardless of the formal species 

boundaries of the peracarids here investigated, it appears there is an extraordinary level of 

endemicity of genetic lineages and ESUs with very small ranges, frequentely no larger than the 

island that harbours them. 

Management strategies greatly benefit from molecular tools in understanding the 

processes involved in promoting and maintaining biodiversity. For instance, zooplankton species 

diversity and distribution have been used as an important measure of environmental change in 

the Arctic Ocean (Bucklin et al. 2007, Hunt et al. 2010). The evolution of natural populations 

requires genetic variation, and the higher this is, the greater will be the ability to respond 

satisfactorily to natural stochastic changes or derived from human activities. Therefore, the 

preservation of genetic diversity should be considered an essential factor in the design of marine 

conservation strategies by including areas that represent fundamental evolutionary processes 

(Avise 2000, Allendorf and Luikart 2007). 

In the marine environment, priority should be given to the conservation of those species 

most vulnerable to human activities and those whose populations are in a degree of degradation 

that endangers the survival of the species or local populations. In this sense, population genetics 

and empirical studies indicate that island and endemic species are more likely to become extinct 

than continental or non-endemic species (Frankham 1998). On the other hand, the human 

activities that mainly affect the marine environment usually take place in coastal areas, whose 

extension is limited and is where the highest marine productivity is reached (Allendorf and 

Luikart 2007).  
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Many Macaronesia islands and sites are included in some kind of marine protected areas 

(e.g. under Natura 2000, http://ec.europa.eu/environment/nature/natura2000/index_en.htm), 

and in several cases comprising specific protection regimes for marine mammals or reptiles such 

as Caretta caretta and Monachus monachus, or habitats such as reefs. However, marine 

invertebrates are often neglected, especially in cases of non-engineering species, and little 

information is known about the status of each species/MOTU/ESU or population. Although some 

marine invertebrate species have been used to try to understand the genetic affinities between 

the populations from different islands (Quintero et al. 2012), the peracarideans, which are one 

of most abundant benthic groups, have received little or nearly none attention (Krapp-Schickel 

and Ruffo 1990, Castelló and Junoy 2007). This study demonstrated that percacaridean species 

need to be consider in the design of more effective networks of marine protective areas and 

genetic information should be consider in order to protect the “endemisms” that each 

island/group of islands hosts. Moreover, most of the MOTUs detected in this study (and in this 

thesis) occur in non-protected areas and islands, hence further consideration must be given to 

the pertinence of their incorporation in marine protected areas.  

 

6.7 CONCLUSIONS 

Marine biodiversity is still greatly understimated, namely in what concerns with marine 

invertebrate fauna (Radulovici et al. 2010). The existence of cryptic diversity is suspected in 

many small marine invertebrates with complex morphological traits (Knowlton 1993, Remerie 

et al. 2006), but its occurence in the Peracarida fauna of the NE Atlantic is still poorly 

documented. Using DNA barcoding, our study revealed a staggering number of MOTUs 

(between 81 and 98) in only twenty-five peracaridean species belonging to the orders 

Amphipoda, Isopoda and Tanaidacea from NE Atlantic and Macaronesia. Moreover, a global 

pattern of deep genetic differentation between the Iberian Peninsula and Macaronesian 

populations was observed in all species. These remarkable findings indicate that the role of 

Macaronesia as an hotspot for the evolution and diversification of these marine invertebrates 

has been greatly unappreciated. Hence, the unique genetic heritage hosted by some non-

protected areas in Macaronesia, claims for consideration of the fine-scale endemicity, and for 

organisms with comparatively lower dispersal, in the design of more effective networks of 

marine protected areas. 
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7.1 OVERVIEW: CONTEXT AND ORIGINALITY 

Human activities have been generating an increasing impact on the loss of ocean 

biodiversity (McCauley et al. 2015). However, impact assessments and monitoring initiatives are 

usually based on large and conspicuous species that represent a minor fraction of marine 

diversity. Smaller organisms, such as marine invertebrates, which play important ecological roles 

and that may reflect more comprehensively the impacts of environmental disturbances on the 

ecosystems, remain overlooked in many biodiversity surveys. This highlights a major limitation 

in the ability to correctly monitor biological communities (Leray and Knowlton 2016). With most 

of the marine eukaryotic species still to be described (Mora et al. 2001, Appeltans et al. 2012), 

it is crucial to improve the knowledge of diagnostic morphological characters, train additional 

taxonomic experts, increase the number of sampling areas and habitats, and incorporate 

molecular tools in species descriptions (Wägele et al. 2011, Costello et al. 2012, Leray and 

Knowlton 2016). Additionally, failure to recognize cryptic diversity, will result in considerable 

underestimation of the extant biodiversity (Radulovici et al. 2010). Therefore, it is crucial to 

combine morphological and molecular tools to correctly access biodiversity (Knowlton 1993).  

The knowledge of peracaridean fauna of Northeast (NE) Atlantic, namely in southern 

regions such as Iberian Peninsula, Morocco and Macaronesia, is still poor when compared with 

other groups or/and regions. Through the comprehensive examination of multiple species in this 

important order of crustaceans, this thesis contributed not only to considerable progress on the 

knowledge of the peracaridean biodiversity in NE Atlantic - unravelling unexpectedly high levels 

of cryptic diversity in a wide range of species - but it also disclosed the prominent role of the 

Macaronesian archipelagos in promoting the genetic diversification, evolution and speciation of 

these, and possibly other marine invertebrates, in the NE Atlantic. 

 

7.2 OVERVIEW: MAIN FINDINGS 

One of the main contributions of this thesis was the creation of a core reference library 

of DNA barcodes for marine peracarids of the Iberian Peninsula. Novel and publicly available 

data was used from more than one hundred species to build this library. Deeply divergent 

intraspecific variation was found in nineteen morphospecies, suggesting the existence of 

considerable overlooked taxonomic diversity. With the rise of modern high-throughput 

sequencing technologies, reference datasets such as ours are essential for the correct 

identification of specimens sequenced as part of meta barcoding studies (Leese et al. 2016). 
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Additionally, the correct verification of available data is crucial to detect misidentifications and 

to detect distinct genetic populations.  

A second significant contribution of this thesis was the detailed investigation of the isopod 

genus Dynamene present in the Northern Hemisphere, which had several incorrect assignments, 

questioning the validity of the information about the correct distribution and taxonomy of the 

species. This was done by examining new records from the Northeast Atlantic Ocean and its 

associated islands, the Mediterranean, Black and Red Seas, from re-examination of museum and 

several authors’ personal collections and from literature. Illustrated keys for adult males and 

females are provided to help other researchers to easily and correctly identify the members of 

this genus. The distribution of the six Dynamene species along the Northeast Atlantic-Black Sea 

axis was largely extended, namely in Macaronesian islands.  

In the fourth chapter, twelve molecular operational taxonomic units (MOTUs) were found 

among the only three Dynamene species present in NE Atlantic, with nine belonging to 

Dynamene edwardsi. Application of multiple mtDNA and nuclear locus essentially confirmed the 

major and more deeply divergent MOTUs, although, without surprise, nuclear markers could 

not discriminate all 9 MOTUs observed for COI barcodes (e.g. Delic et al. 2017). All together this 

constitutes strong evidence for the existence of multiple completed sorted evolutionary lineages 

within this isopod, and that D. edwardsii is in fact a complex of 9 cryptic species.  Interestingly, 

each D. edwardsi MOTU was clearly delimited geographically, and some of them were even 

exclusive for single islands. While it was clear that most of the diversity in this species occured 

in the islands, no single, all-encompassing evolutionary pattern could be inferred to explain the 

observed genetic structure. This is probably a result of the high stochasticity of long distance 

dispersal events and the inability of eventual migrants to genetically displace the resident 

lineages. Assuming as genuine the putative cryptic species here reported, it would represent a 

staggering three-fold increase in the known species diversity for this genus in the northern 

hemisphere, which currently has only six species documented (Vieira et al. 2016). 

In the fifth chapter, seven species of the amphipod family Hyalidae were used to contrast 

DNA barcodes of populations Macaronesia islands with those from continental coasts. Higher 

genetic diversity and higher number of MOTUs were found in Macaronesian region, which 

reinforce the role that these islands have in the isolation and diversification of peracaridean 

species. Moreover, this was the first study to report cryptic diversity in the order Amphipoda in 

Macaronesia islands. 
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In the sixth chapter, by means of using a multi-species approach (twenty-five 

peracaridean species), our study revealed a stunning number of MOTUs (between 81 and 98) 

and we were able to demonstrate a global pattern of genetic differentation between Iberian 

Peninsula and Macaronesian populations patent in numerous peracaridean species. These 

evidences underline the genetic heritage that Macaronesia holds and its role as an hotspot for 

the evolution and diversification of peracarids and are a strong case underlining the need to 

consider these marine invertebrates in conservation studies and in the design of more effective 

networks of marine protected areas.  

 

7.3 FUTURE PERSPECTIVES 

This study emphasizes the different kinds of methods and criteria that can be use for 

species identification/delineation (morphological and phylogenetic). Although, these two main 

concepts offer limitations (see Hey 2006 for details), the complementary aspects of both 

aproaches tend to convey more accurate species delineations. This thesis extended considerably 

the knowledge of biodiversity of NE Atlantic peracaridean fauna and opened innumerous 

possibilities for further studies, namely in the exploration of the exceptional role of 

Macaronesian archipelagos for the understanding of the phylogeography and evolution of 

marine invertebrates in the NE Atlantic. As follow up of this work, we suggest three main topics 

that should be further investigated and explored to correctly access peracaridean biodiversity 

in NE Atlantic. In order to proceed with these steps, more individuals along the distribution range 

of each species should be incorporated and multiple loci examined. 

Cryptic species and the revision of species complexes 

The concept of species is complex, and even if cryptic species do not have apparent 

distinct morphological characters, the fact that there is variation at a genetic level reflects 

different evolutionary histories (Knowlton 1993). With the emergence of ‘molecular species’ 

where molecular diagnostic characteristics are used to delimit species (e.g., Grabowski et al. 

2017) instead of morphological traits, it is fundamental to screen the genetic variation of 

organisms. The lack of known or visible morphological variation can be a consequence of 

insufficiency of experts, poor knowledge about individual species or due to the sampling or 

preservation conditions (Wägele et al. 2011) and the detection of cryptic species using molecular 

tools can help overcoming this problem. Ocasionally this can lead to the subsequent discovery 

of unnoticed diagnostic morphological characters, and therefore to the discovery and 
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description of new species (Knowlton 1993, Hawkins et al. 2000). Several peracaridean species 

are assumed to be complexes of species because their morphology slighty varies, but this 

variation is not enough to consider them as different species (e.g., Krapp-Schickel and Vader 

1998, Bruce and Holdich 2002, Vader and Krapp-Schickel 2012). A detailed examination should 

be carried out in the species Campecopea lusitanica, Ampithoe ramondi, Serejohyale 

spinidactylus, Caprella acanthifera, Elasmopus pectenirus and Tanais dulongii and a correlation 

between these different forms with molecular operational taxonomic units should be 

performed. 

Shallow phylogenies of the target peracaridean taxa 

One of the biggest gaps still left by this thesis, concerns the shallow phylogenetic 

relationships of target taxa, namely within the genus Dynamene and the family Hyalidae, which 

could not be totally resolved. The incorporation of the Mediterranean Dynamene species could 

help solving this problem, although some species are uncommon and difficult to find (e.g., 

Dynamene tubicauda, Vieira et al. 2016). As for the family Hyalidae, it seems more complex and 

difficult to achieve this goal, because more than one hundered species of this family exist 

worldwide and their taxonomy is complex (Serejo 2004, Horton et al. 2017b). Nonetheless, the 

early results obtained in chapter 5 indicate that the genera nomenclature in this family is 

incorrect. 

Phylogeographic discontinuities between Macaronesia and the continental coasts 

More than fifty species were found in this thesis to be present in both Macaronesia and 

continental European Atlantic coasts (Annexes 1.6 and 1.7), but in only twenty-five it was 

possible to obtain data to investigate possible genetic differentiation between Macaronesia and 

Iberian Peninsula coasts. With the use of more peracaridean species, more robustness could be 

achieved. Moreover, the addition of other major marine invertebrate groups such as 

echinoderms, gastropods, polychaetes or other crustacea, could help clarify if the 

phylogeograhpic discontinuity observed for these peracarids is also present in any other, and 

which, marine invertebrates with a pelagic phase, as well gaining further insight into the possible 

role of Macaronesia islands in the diversification of other marine invertebrates.
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ANNEXES OF CHAPTER 1. 

 
Annex 1.1. Rocky shore intertidal 

Rocky shores (Annex 1.2) are intertidal areas of seacoasts that consist of solid rocks. 

Usually, they present three levels. The upper intertidal level is only flooded during high tides. 

The mid-littoral level is a turbulent zone that is (un)covered twice a day. This level extends from 

the upper limit of the barnacles to the upper limit of large brown algae (e.g. Laminariales). The 

lower intertidal is usually covered with water and it is only uncovered when the tide is extremely 

low (Lewis 1964, Connell 1972).  

Rocky shores are often a biologically rich environment, due to temperate coastal waters 

that are mixed by waves and convection, maintaining adequate availability of nutrients. Also, 

the sea brings plankton and broken organic matter in with each tide. The high availability of light 

(due to low depths) and nutrient levels means that primary productivity of seaweeds can be very 

high. Therefore, marine benthic invertebrates are abundant and diverse. Despite these 

favourable factors, these benthic species are limited by salinity, wave exposure, temperature 

and mainly desiccation, to which they have to adapt. Other threats include predation from birds 

and other marine organisms, as well as the effects of pollution (Lewis 1964, Connell 1972). 

Marine benthic invertebrates that inhabit rocky shores are unique as they have 

characteristics that make them, in theory, less isolated than terrestrial organisms but more 

isolated than other marine taxa as the sea is generally viewed as being more homogeneous and 

lacking clear physical barriers to dispersal (Palumbi 1992, Palumbi 1994). Rocky shore organisms 

however are isolated from other areas of suitable habitat by deep water. Most hard substrata 

give way at some depth to sedimentary habitats, and even on continental coastlines rocky areas 

are usually interspersed with sandy beaches (Hawkins et al. 2000). To circumvent this situation, 

many littoral organisms have dispersing larval stages (Scheltema 1971). However, rafting is the 

only dispersal method for animals with direct development such as Peracarida. Long-distance 

dispersion may occur through random events such as rafting on detached macro algae (Thiel 

and Gutow 2005), via anthropogenic transfer (Wittmann and Ariani 2009) or even rarer if 

specimens remain attached to its prey (Sponer and Lessios 2009) or to marine birds (Frisch et al. 

2007).  Once founded, via transport of one gravid individual or at least two different-sexed 

individuals, a population can establish and, more importantly, persist in the new habitat 

(Highsmith 1985). 
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Annex 1.2. Intertidal marine rocky shores in Northeast Atlantic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Top left: Praia Formosa, Santa Maria (Photo taken by Pedro Vieira). Top right: Insouane, Morocco (Photo taken 
by Laura Peteiro). Bottom left: El Faro, La Palma (Photo taken by Mafalda Tavares). Bottom right: Carsaig, 
Scotland (Photo taken by Henrique Queiroga). 
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Annex 1.3. Sampling methodology. 

Specimens and locations that served as backbone of this thesis were collected in marine 

rocky shores along the Northeast Atlantic (Annex 1.2), between Norway and Iceland in the north 

and Morocco and Canary Islands in the south, in 51 locations (Annexes 1.4, 1.5). Two types of 

sampling protocols were applied. The first one, used for the DiverseShores project (therefore 

called “DiverseShores”, Annex 1.5), between April and September of 2011, at three regions of 

NE Atlantic (each comprising three coasts): North (Norway, Iceland and Scotland), Centre 

(Galicia, West and South Portugal) and South (Gran Canaria, La Palma and Madeira including 

Porto Santo island). In each coast, samples were collected in three locations, making a total of 

27 locations. This nested sampling design attempted to separate regions by 1000s of km, coasts 

within each region by 100s of km, and sites within each coast by 10s of km. Samples were taken 

as far as possible from obvious sources of perturbation. As a compromise between effort and 

efficiency, scrapings of 20x20 cm quadrats of the algal cover were made in each intertidal level 

(lower, middle and upper), in four microhabitats at each level: immersed-shade, immersed-

sunny, emersed-shade and emersed-sunny. Three replicates in each microhabitat were taken, 

haphazardly distributed within each level.  

Twenty-two additional locations in Continental Portugal, Azores, Morocco and Canaries 

islands were sampled between 2008 and 2015 (henceforth called “Additional sampling”, Annex 

1.5) to complement the previous sampling locations. Scrapings of the algal cover were made 

during low tide along the intertidal level in habitats selected halphazardly. Accompanying fauna 

was retrieved by washing the algae in freshwater and immediately preserved in alcohol. Data 

on the algae species sampled were not included in this thesis.  

Additional (some) peracaridean specimens from Selvagem Grande and Selvagem Pequena 

intertidals (therefore called “Selvagens”, Annex 1.5) were also used. These specimens were 

provided by the Portuguese Museum of Natural History and Science in Lisbon and obtained in 

2010 and 2011 during the EMEPC/M@rBis/Selvagens2010 and EMAM/PEPC_M@rBis/2011 

campaigns, with catalog numbers M@rBis__001452, M@rBis__000147, M@rBis__001450, 

M@rBis__000031, M@rBis__001451, M@rBis__000267, M@rBis__000929 and 

M@rBis__001417. 

Taxonomic identification was based on morphologic characteristics using general 

identification books and papers (e.g., Naylor 1972, Lincoln 1979, Ruffo 1982, Holdich and Jones 

1983, Hayward and Ryland 1990, 1995). Specimens collected from “DiverseShores” were 

identified until genus or species level and the total number of specimens is provided (Annex 1.6). 



 
Biodiversity and evolution of the coastal peracaridean fauna of Macaronesia and Northeast Atlantic 
 

150
 

Only part of the specimens from “Additional sampling” and “Selvagens” were identified until 

genus or species level. The rest of the specimens were only identified until order or family level 

and total number of specimens was not possible to access at the time this thesis was written 

(Annex 1.7).  

Although these specimens and locations served as backbone to this thesis, some 

specimens provided by colleagues from other locations were used to complement specific 

chapters wherever necessary, namely Canto Marinho, Apulia and Aveiro in chapter 2, Croatia 

and France in chapter 4 and Brazil in chapter 5 (see each specific material and methods and 

acknowledgments for more details). All the specimens sampled and used (except for chapter 3) 

are deposited in the Laboratory of Marine Ecology of the Biology Departament in the University 

of Aveiro. For the several additional specimens and locations used in chapter 3, see the material 

and methods and acknowledgments of chapter 3 and Annexes 3.1 and 3.2. The specimens used 

in chapter 3 are deposited in Naturalis Biodiversity Center (Royal Natural History Museum, 

Leiden, The Netherlands). 
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Annex 1.4. Sampling locations map. 
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Annex 1.5. Sampling locations and respective co-ordinates, organized by sampling protocol. 

Project Country/Region Locations Latitude Longitude 
“D

IV
ER

SE
SH

O
RE

S”
 

Norway 
Baloy 60.805 4.806 
Viksoy 60.175 5.042 
Hellesoy 60.663 4.787 

Iceland 
Reykjavik 64.163 -22.009 
Grindavik 63.826 -22.411 
Strandarkirkja 63.823 -21.660 

Scotland 
Bellochantuy 55.525 -5.711 
Easdale 56.288 -5.635 
Carsaig 56.319 -5.965 

Galicia 
Muxia 43.092 -9.223 
Pedreira 43.556 -8.275 
Barizo 43.322 -8.873 

Portugal West 
Buarcos 40.176 -8.901 
Peniche 39.372 -9.378 
São Pedro Moel 39.758 -9.033 

Portugal South 
Arrifes 37.076 -8.276 
Ingrina 37.045 -8.878 
Dona Ana 37.087 -8.668 

Madeira (including 
Porto Santo island) 

Ponta Cruz 32.633 -16.943 
Reis Magos 32.646 -16.824 
Porto Frades 33.073 -16.296 

Gran Canaria island 
Playa Melenara 27.989 -15.370 
Agaete 28.163 -15.699 
Bañaderos 28.149 -15.540 

La Palma island 
La Salemera 28.578 -17.761 
La Fajana 28.842 -17.794 
El Faro 28.457 -17.850 

“A
D

D
IT

IO
N

A
L 

SA
M

PL
IN

G
” 

Portugal 

Viana Castelo 41.689 -8.848 
Agudela 41.241 -8.728 
Berlengas 39.412 -9.511 
Sines 37.961 -8.887 
Vale dos Homens 37.371 -8.834 

São Miguel island 
Mosteiros 37.900 -25.817 
Ribeira chã 37.715 -25.487 
Ponta Ferreirinha 37.861 -25.855 

Santa Maria island 
São Lourenco 36.988 -25.054 
Praia Formosa 36.949 -25.094 

Terceira island 
Porto Martins 38.683 -27.058 
Cinco Ribeiras 38.675 -27.329 

Tenerife island 
Mal Paso 28.034 -16.540 
Los Cristianos 28.044 -16.711 

El Hierro island 
Los Sargos 27.784 -18.011 
Arenas Blancas 27.767 -18.121 

Morocco 

Arzila 35.458 -6.048 
El Jadida 33.264 -8.511 
Essaouire 31.516 -9.771 
Insouane 30.841 -9.821 
Akhfenir 28.097 -12.050 
Tarfaya 27.918 -12.961 

“SELVAGENS” Selvagens 
Selvagem Grande 30.140 -15.860 
Selvagem Pequena 30.033 -16.0167 
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Annex 1.6. List of peracaridean species and number of specimens sampled in “DiverseShores” 
sampling protocol.

Iceland 7728 
Reykjavik  871 
Ampithoe rubricata 4 
Apherusa jurinei 6 
Apohyale prevostii 229 
Caprella linearis 4 
Dexamine spinosa 3 
Echinogammarus stoerensis 3 
Gammarus finmarchicus 7 
Idotea balthica 1 
Idotea granulosa 450 
Idotea pelagica 10 
Jaera (Jaera) praehirsuta 10 
Jassa falcata 28 
Leptocheirus pilosus 16 
Munna kroyeri 15 
Parajassa pelagica 85 
Grindavik  1418 
Ampithoe rubricata 51 
Apherusa sp. 24 
Apohyale prevostii 12 
Caprella linearis 5 
Dexamine spinosa 52 
Gammarus finmarchicus 14 
Idotea granulosa 664 
Idotea pelagica 136 
Jaera (Jaera) praehirsuta 12 
Janira maculosa 5 
Jassa falcata 69 
Munna kroyeri 7 
Parajassa pelagica 359 
Stenothoe monoculoides 8 
Strandarkirkja  5439 
Ampithoe rubricata 2 
Apherusa jurinei 16 
Apherusa sp. 214 
Apohyale prevostii 154 
Echinogammarus stoerensis 17 
Gammarus finmarchicus 11 
Idotea balthica 3311 
Idotea granulosa 1654 
Idotea pelagica 38 
Jaera (Jaera) praehirsuta 22 
Norway 7216 
Baloy 2952 
Ampithoe rubricata 7 
Apherusa jurinei 27 
Apohyale prevostii 1874 
Echinogammarus obtusatus 7 
Echinogammarus stoerensis 6 
Gammarus locusta 3 
Idotea granulosa 91 
Idotea pelagica 4 
Jaera (Jaera) praehirsuta 844 
Stenothoe monoculoides 72 
Tanais dulongii 17 
Hellesoy 3613 
Apherusa jurinei 17 
Apohyale prevostii 2451 
Echinogammarus stoerensis 1 
Idotea granulosa 72 
Idotea metallica 1 
Idotea pelagica 93 
Jaera (Jaera) praehirsuta 398 
Stenothoe monoculoides 186 

Tanais dulongii 394 
Viksoy 651 
Apherusa jurinei 14 
Apohyale prevostii 336 
Echinogammarus obtusatus 41 
Idotea granulosa 3 
Jaera (Jaera) praehirsuta 255 
Tanais dulongii 2 
Scotland 8243 
Carsaig 4078 
Ampithoe rubricata 63 
Apherusa jurinei 85 
Apherusa jurinei  32 
Apohyale prevostii 71 
Apohyale stebbingi 620 
Caprella acanthifera 84 
Caprella penantis 2 
Dexamine spinosa 2 
Dynamene bidentata 22 
Echinogammarus stoerensis 24 
Gammarus locusta 10 
Hyale pontica 8 
Hyalidae 64 
Idotea granulosa 507 
Idotea pelagica 368 
Jaera (Jaera) praehirsuta 269 
Jassa falcata 303 
Jassa ocia 1 
Leptocheirus pilosus 4 
Ligia oceanica 2 
Orchestia mediterranea 18 
Parajassa pelagica 44 
Stenothoe monoculoides 1051 
Tanais dulongii 424 
Easdale 3195 
Ampithoe rubricata 21 
Apherusa jurinei 42 
Apohyale prevostii 261 
Apohyale stebbingi 323 
Campecopea hirsuta 4 
Caprella acanthifera 20 
Dexamine spinosa 1 
Dynamene bidentata 14 
Gammarus finmarchicus 12 
Gammarus locusta 1 
Hyale pontica 14 
Hyalidae 1 
Idotea granulosa 110 
Idotea pelagica 370 
Jaera (Jaera) praehirsuta 193 
Janira maculosa 332 
Jassa falcata 292 
Jassa ocia 3 
Lembos websteri 5 
Ligia oceanica 3 
Microdeutopus chelifer 1 
Munna kroyeri 6 
Parajassa pelagica 12 
Stenothoe monoculoides 999 
Tanais dulongii 155 
Bellochantuy 970 
Ampithoe rubricata 14 
Apherusa jurinei 25 
Apohyale perieri 10 
Apohyale prevostii 144 

Apohyale stebbingi 183 
Caprella acanthifera 2 
Dexamine spinosa 6 
Dynamene bidentata 19 
Hyale pontica 5 
Idotea granulosa 6 
Idotea pelagica 17 
Jaera (Jaera) praehirsuta 30 
Janira maculosa 13 
Jassa falcata 29 
Parajassa pelagica 4 
Stenothoe monoculoides 84 
Sunamphitoe pelagica 37 
Tanais dulongii 342 
Galicia 25557 
Pedreira 6556 
Ampithoe helleri 32 
Ampithoe rubricata 12 
Apherusa jurinei 22 
Apohyale perieri 25 
Apohyale prevostii 16 
Apohyale sp. 8 
Apohyale stebbingi 532 
Astacilla longicornis 1 
Campecopea lusitanica 619 
Caprella danilevskii 29 
Caprella penantis 23 
Cyathura carinata 25 
Dexamine spinosa 134 
Dynamene bidentata 90 
Dynamene magnitorata 1486 
Elasmopus rapax 89 
Gnathia maxillaris 26 
Guernea coalita 21 
Idotea granulosa 25 
Idotea pelagica 259 
Ischyrocerus anguipes 5 
Ischyromene lacazei 204 
Jaera (Jaera) praehirsuta 23 
Jassa falcata 333 
Jassa ocia 27 
Leptochelia savignyi 38 
Ligia oceanica 24 
Microdeutopus chelifer 439 
Munna kroyeri 12 
Orchestia mediterranea 16 
Parajassa pelagica 299 
Podocerus variegatus 13 
Protohyale (Protohyale) schmidtii  541 
Pseudoprotella phasma 20 
Serejohyale spinidactylus 4 
Stenosoma lancifer 13 
Stenothoe monoculoides 395 
Tanais dulongii 680 
Barizo 9644 
Amphitholina cuniculus 2 
Ampithoe gammaroides 12 
Anthura gracilis 3 
Apherusa jurinei 184 
Apohyale perieri 1431 
Apohyale prevostii 14 
Apohyale stebbingi 300 
Campecopea hirsuta 91 
Campecopea lusitanica 26 
Caprella acanthifera 7 
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Caprella penantis 280 
Cyathura carinata 1 
Cymodoce truncata 6 
Dynamene bidentata 302 
Dynamene magnitorata 88 
Hyale pontica 40 
Hyalidae 48 
Idotea granulosa 154 
Idotea pelagica 576 
Ischyromene lacazei 979 
Jaera (Jaera) praehirsuta 157 
Janira maculosa 8 
Jassa falcata 140 
Joeropsis brevicornis 49 
Microdeutopus chelifer 204 
Munna kroyeri 36 
Parajassa pelagica 1657 
Podocerus variegatus 62 
Protohyale (Protohyale) schmidtii  1674 
Pseudoparatanais batei 7 
Serejohyale spinidactylus 363 
Stenosoma lancifer 2 
Stenothoe monoculoides 643 
Tanais dulongii 84 
Tanais grimaldii 15 
Muxía 9357 
Ampithoe gammaroides 1 
Apherusa jurinei 127 
Apohyale perieri 118 
Apohyale prevostii 171 
Apohyale stebbingi 113 
Astacilla longicornis 1 
Campecopea lusitanica 5 
Caprella acanthifera 4 
Caprella penantis 1223 
Caprella scaura 1 
Cyathura carinata 23 
Cymodoce truncata 6 
Dynamene bidentata 69 
Dynamene magnitorata 172 
Dynamene edwardsi 2 
Elasmopus rapax 127 
Gnathia maxillaris 8 
Hyale pontica 119 
Hyalidae 92 
Idotea granulosa 465 
Idotea pelagica 206 
Ischyromene lacazei 1799 
Jaera (Jaera) praehirsuta 9 
Janira maculosa 7 
Jassa falcata 68 
Jassa ocia 18 
Microdeutopus chelifer 69 
Munna kroyeri 2 
Parajassa pelagica 2873 
Podocerus variegatus 208 
Protohyale (Protohyale) schmidtii 307 
Pseudoparatanais batei 2 
Serejohyale spinidactylus 731 
Stenosoma lancifer 21 
Stenothoe monoculoides 108 
Tanais dulongii 82 
Portugal West 5393 
Buarcos 2016 
Ampithoe helleri 6 
Apherusa jurinei 4 
Apohyale perieri 2 
Apohyale prevostii 10 
Apohyale stebbingi 2 

Apseudopsis latreillii 3 
Caprella acanthifera 26 
Caprella liparotensis 11 
Caprella penantis 296 
Caprella scaura 22 
Cyathura carinata 9 
Cymodoce truncata 18 
Dexamine spinosa 11 
Dynamene bidentata 100 
Dynamene edwardsi 1 
Dynamene magnitorata 51 
Elasmopus rapax 33 
Gammarus locusta 12 
Gnathia maxillaris 20 
Guernea coalita 11 
Hyale pontica 14 
Hyalidae 49 
Idotea pelagica 237 
Ischyrocerus anguipes 6 
Ischyromene lacazei 16 
Janira maculosa 1 
Jassa herdmani 43 
Jassa falcata 240 
Microdeutopus chelifer 86 
Munna kroyeri 128 
Parajassa pelagica 6 
Podocerus variegatus 23 
Protohyale (Protohyale) schmidtii 341 
Protohyale (Protohyale) schmidtii  131 
Pseudoparatanais batei 12 
Stenosoma lancifer 22 
Stenothoe monoculoides 37 
Tanais dulongii 107 
São Pedro Moel 737 
Apohyale perieri 56 
Apohyale prevostii 40 
Apohyale stebbingi 10 
Caprella liparotensis 6 
Caprella penantis 169 
Cymodoce truncata 2 
Dexamine spinosa 4 
Dynamene magnitorata 4 
Hyale pontica 2 
Idotea metallica 4 
Idotea pelagica 400 
Ischyrocerus anguipes 4 
Jassa falcata 2 
Jassa ocia 2 
Podocerus variegatus 6 
Stenothoe monoculoides 26 
Peniche 2640 
Ampithoe helleri 52 
Apohyale prevostii 9 
Apohyale stebbingi 246 
Campecopea lusitanica 284 
Caprella acanthifera 1 
Caprella penantis 7 
Cymodoce truncata 172 
Dexamine spinosa 86 
Dynamene bidentata 24 
Dynamene edwardsi 48 
Dynamene magnitorata 448 
Eurydice sp. 1 
Guernea coalita 8 
Hyale pontica 1 
Hyalidae 2 
Idotea pelagica 1 
Jassa herdmani 4 
Jassa falcata 68 
Jassa ocia 16 

Lekanesphaera rugicauda 4 
Leptochelia savignyi 30 
Melita palmata 8 
Microdeutopus chelifer 38 
Munna kroyeri 128 
Podocerus variegatus 2 
Protohyale (Protohyale) schmidtii  38 
Pseudoparatanais batei 4 
Stenosoma lancifer 1 
Stenothoe monoculoides 332 
Tanais dulongii 577 
Portugal South 5616 
Dona Ana 1047 
Ampelisca sp. 4 
Amphilochus neapolitanus 1 
Ampithoe ramondi 20 
Ampithoe riedli 4 
Ampithoe rubricata 11 
Apherusa jurinei 35 
Apohyale perieri 2 
Apohyale stebbingi 21 
Apseudes talpa 2 
Apseudopsis latreillii 30 
Campecopea hirsuta 21 
Caprella liparotensis 4 
Caprella penantis 16 
Corophium sp. 15 
Dexamine spinosa 37 
Dynamene edwardsi 14 
Dynamene magnitorata 52 
Elasmopus pectenicrus 7 
Elasmopus rapax 184 
Ericthonius punctatus 2 
Gnathia maxillaris 4 
Guernea coalita 22 
Hyalidae 9 
Janira maculosa 4 
Jassa falcata 54 
Joeropsis brevicornis 19 
Leptochelia savignyi 94 
Microdeutopus chelifer 21 
Munna kroyeri 32 
Podocerus variegatus 1 
Protohyale (Protohyale) schmidtii 13 
Pseudoparatanais batei 1 
Stenothoe monoculoides 44 
Stenothoe tergestina 3 
Tanais dulongii 244 
Arrifes 3302 
Ampithoe ramondi 28 
Apohyale perieri  32 
Apohyale stebbingi 718 
Campecopea hirsuta 145 
Campecopea lusitanica 1 
Caprella acanthifera 4 
Caprella penantis 173 
Dexamine spinosa 9 
Dynamene edwardsi 5 
Dynamene magnitorata 140 
Elasmopus pectenicrus 52 
Elasmopus rapax 172 
Gnathia maxillaris 4 
Hyale pontica 18 
Jassa falcata 72 
Joeropsis brevicornis 19 
Leptochelia savignyi 141 
Microdeutopus chelifer 54 
Munna kroyeri 41 
Protohyale (Protohyale) schmidtii  231 
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Serejohyale spinidactylus 4 
Stenosoma lancifer 28 
Stenothoe monoculoides 32 
Tanais dulongii 1171 
Ingrina 1267 
Ampelisca sp. 5 
Ampithoe ramondi 22 
Ampithoe riedli 27 
Apherusa jurinei 7 
Apohyale perieri 4 
Apohyale prevostii 2 
Apohyale stebbingi 46 
Campecopea hirsuta 19 
Caprella penantis 5 
Cymadusa filosa 4 
Cymodoce truncata 1 
Dexamine spinosa 5 
Dynamene edwardsi 42 
Elasmopus rapax 5 
Gnathia maxillaris 8 
Guernea coalita 10 
Hyalidae 14 
Jassa falcata 24 
Jassa ocia 4 
Leptochelia savignyi 17 
Microdeutopus chelifer 48 
Munna kroyeri 20 
Stenothoe monoculoides 40 
Tanais dulongii 888 
Madeira 3253 
Porto Frades 628 
Amphilochus neapolitanus 5 
Ampithoe ferox 60 
Ampithoe ramondi 58 
Anthura gracilis 5 
Apohyale media 2 
Apohyale perieri 6 
Apohyale sp. 1 
Apohyale stebbingi 38 
Apseudes talpa 2 
Apseudopsis latreillii 10 
Campecopea lusitanica 26 
Caprella acanthifera 7 
Cyathura carinata 2 
Cymodoce truncata 3 
Dexamine spinosa 13 
Dynamene edwardsi 17 
Dynamene magnitorata 1 
Elasmopus pectenicrus 4 
Elasmopus rapax 31 
Gnathia maxillaris 4 
Janira maculosa 1 
Jassa herdmani 5 
Joeropsis brevicornis 5 
Leptochelia savignyi 14 
Quadrimaera inaequipes 4 
Microdeutopus chelifer 26 
Munna kroyeri 12 
Paravireia holdichi 4 
Podocerus variegatus 7 
Protohyale (Protohyale) schmidtii 6 
Serejohyale spinidactylus 23 
Stenothoe monoculoides 12 
Stenothoe tergestina 1 
Sunamphitoe pelagica 2 
Tanais dulongii 163 
Tanais grimaldii 3 
Zeuxo exsargasso   
Zeuxo sp. 47 

Reis Magos 925 
Ampithoe ferox 99 
Ampithoe ramondi 2 
Apohyale media 11 
Apohyale sp 1 
Apohyale stebbingi 203 
Campecopea lusitanica 5 
Caprella acanthifera 128 
Caprella penantis 16 
Dynamene edwardsi 194 
Elasmopus pectenicrus 27 
Janira maculosa 2 
Jassa falcata 18 
Joeropsis brevicornis 7 
Microdeutopus chelifer 1 
Munna kroyeri 34 
Paravireia holdichi 3 
Podocerus variegatus 5 
Serejohyale spinidactylus 77 
Stenothoe monoculoides 68 
Tanais dulongii 19 
Zeuxo sp. 5 
Ponta Cruz 1700 
Ampithoe helleri 12 
Ampithoe ramondi 31 
Ampithoe riedli 149 
Apohyale perieri 70 
Apohyale media 6 
Apohyale stebbingi 564 
Campecopea lusitanica 5 
Caprella acanthifera 100 
Caprella penantis 67 
Cyathura carinata 2 
Cymodoce truncata 1 
Dynamene edwardsi 228 
Elasmopus pectenicrus 12 
Hyalidae 2 
Janira maculosa 2 
Jassa herdmani 33 
Jassa falcata 140 
Joeropsis brevicornis 27 
Quadrimaera inaequipes 4 
Munna kroyeri 46 
Paravireia holdichi 1 
Podocerus variegatus 18 
Protohyale (Protohyale) schmidtii 3 
Protohyale sp. 1 2 
Serejohyale spinidactylus 94 
Stenothoe tergestina 8 
Tanais dulongii 36 
Zeuxo sp. 37 
La Palma 6075 
La Fajana 2103 
Ampithoe ferox 20 
Ampithoe ramondi 18 
Ampithoe riedli 282 
Anthura gracilis 2 
Apohyale media 8 
Apohyale perieri  44 
Apohyale stebbingi 435 
Campecopea lusitanica 15 
Caprella acanthifera 127 
Caprella penantis 15 
Cyathura carinata 1 
Cymadusa filosa 4 
Cymodoce truncata 11 
Dexamine spinosa 1 
Dynamene edwardsi 157 
Dynamene magnitorata 1 

Elasmopus vachoni 15 
Elasmopus rapax 293 
Eurydice sp. 2 
Gnathia maxillaris 7 
Janira maculosa 114 
Jassa falcata 147 
Joeropsis brevicornis 47 
Leptochelia savignyi 5 
Leucothoe venetiarum 2 
Quadrimaera inaequipes 27 
Munna kroyeri 1 
Podocerus variegatus 39 
Protohyale (Protohyale) schmidtii 142 
Serejohyale spinidactylus 54 
Stenothoe monoculoides 29 
Zeuxo sp. 38 
La Salemera 1796 
Ampelisca sp. 1 
Ampithoe ferox 4 
Ampithoe ramondi 42 
Ampithoe riedli 111 
Apohyale media 262 
Apohyale perieri 2 
Apohyale stebbingi 416 
Apseudes talpa 1 
Caprella acanthifera 127 
Caprella danilevskii 2 
Dexamine spinosa 15 
Dynamene edwardsi 39 
Elasmopus rapax 98 
Gnathia maxillaris 3 
Hyalidae 24 
Janira maculosa 30 
Joeropsis brevicornis 1 
Leptochelia savignyi 2 
Lysianassa ceratina 4 
Quadrimaera inaequipes 38 
Protohyale (Protohyale) schmidtii 109 
Serejohyale spinidactylus 214 
Stenothoe monoculoides 2 
Sunamphitoe pelagica 2 
Tanais dulongii 245 
Zeuxo sp. 2 
El Faro 2176 
Ampithoe ferox 15 
Ampithoe helleri 6 
Ampithoe ramondi 129 
Ampithoe riedli 102 
Apohyale media 22 
Apohyale perieri 96 
Apohyale prevostii 5 
Apohyale stebbingi 590 
Campecopea lusitanica 5 
Caprella acanthifera 50 
Caprella penantis 19 
Cymadusa filosa 4 
Dynamene edwardsi 108 
Dynamene magnitorata 3 
Elasmopus canarius 152 
Elasmopus rapax 501 
Gnathia maxillaris 2 
Janira maculosa 5 
Joeropsis brevicornis 87 
Lekanesphaera levii 4 
Quadrimaera inaequipes 6 
Podocerus variegatus 5 
Protohyale (Protohyale) schmidtii 16 
Serejohyale spinidactylus 24 
Stenothoe monoculoides 18 
Stenothoe tergestina 45 
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Tanais dulongii 151 
Zeuxo sp. 6 
Gran Canaria 5768 
Bañaderos 2018 
Amphilochus neapolitanus 8 
Ampithoe ferox 60 
Ampithoe helleri 8 
Ampithoe ramondi 34 
Ampithoe riedli 6 
Apohyale media 60 
Apohyale stebbingi 685 
Campecopea lusitanica 28 
Caprella acanthifera 9 
Caprella penantis 11 
Cyathura carinata 4 
Cymadusa filosa 17 
Cymodoce truncata 1 
Dexamine spinosa 2 
Dynamene bidentata 1 
Dynamene edwardsi 322 
Elasmopus canarius 128 
Elasmopus rapax 100 
Eurydice sp. 1 
Gnathia maxillaris 4 
Janira maculosa 1 
Jassa falcata 29 
Joeropsis brevicornis 9 
Leucothoe venetiarum 2 
Lysianassa ceratina 1 

Quadrimaera inaequipes 5 
Microdeutopus chelifer 5 
Munna kroyeri 55 
Protohyale (Protohyale) schmidtii 77 
Serejohyale spinidactylus 279 
Stenothoe monoculoides 27 
Tanais dulongii 30 
Zeuxo sp. 9 
Agaete 1177 
Amphilochus neapolitanus 1 
Ampithoe ferox 174 
Ampithoe ramondi 6 
Anthura gracilis 4 
Apohyale media 13 
Apohyale stebbingi 280 
Apseudopsis latreillii 1 
Campecopea lusitanica 1 
Caprella acanthifera 47 
Caprella penantis 10 
Cyathura carinata 2 
Cymadusa filosa 26 
Dynamene edwardsi 120 
Elasmopus rapax 380 
Gnathia maxillaris 4 
Janira maculosa 3 
Jassa falcata 43 
Joeropsis brevicornis 2 
Munna kroyeri 7 
Serejohyale spinidactylus 16 

Tanais dulongii 31 
Zeuxo sp. 9 
Playa Melenara 2573 
Ampithoe ferox 93 
Ampithoe riedli 29 
Apohyale perieri 16 
Apohyale stebbingi 571 
Apseudes talpa 17 
Apseudopsis latreillii 12 
Caprella acanthifera 144 
Cyathura carinata 37 
Cymadusa filosa 49 
Dynamene edwardsi 226 
Elasmopus rapax 641 
Gnathia maxillaris 2 
Hyalidae 2 
Janira maculosa 12 
Joeropsis brevicornis 150 
Leptochelia savignyi 47 
Microdeutopus chelifer 40 
Munna kroyeri 16 
Paravireia holdichi 29 
Protohyale (Protohyale) schmidtii 2 
Serejohyale spinidactylus 156 
Stenothoe monoculoides 15 
Stenothoe tergestina 6 
Tanais dulongii 252 
Zeuxo sp. 9 
Total “DiverseShores” 74849 
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Annex 1.7. List of peracaridean species and number of specimens sampled in “Additional 
sampling” and “Selvagens” sampling protocols.

São Miguel 472 
Mosteiros 38 
Dynamene edwardsi 2 
Amphipoda n.i. 17 
Hyalidae 19 
Ponta da Ferraria 14 
Dynamene edwardsi 1 
Anthuridae 1 
Hyalidae 9 
Lekanesphaera sp. 3 
Ribeira Chã 420 
Anthura gracilis 3 
Amphipoda n.i. 207 
Caprella acanthifera 5 
Caprellidae 3 
Corophium spp. 47 
Cyathura sp. 2 
Dynamene edwardsi 1 
Dynamene magnitorata 27 
Elasmopus vachoni 2 
Jassa herdmani 3 
Hyalidae 48 
Leptochelia sp. 3 
Munnidae 62 
Tanaidacea n.i. 5 
Tanais grimaldii 2 
Terceira 203 
Porto Martins 50 
Dynamene magnitorata 42 
Amphipoda n.i. 5 
Anthuridae 2 
Cymodoce truncata 1 
Cinco Ribeiras 153 
Idotea granulosa 56 
Dynamene magnitorata 1 
Hyalidae 96 
Santa Maria 249 
São Lourenço 71 
Amphipoda n.i. 34 
Ampithoe ramondi 2 
Dynamene magnitorata 2 
Hyalidae 25 
Serejohyale spinidactylus 2 
Hyalidae 2 
Ampithoe sp. 1 
Stenothoe sp. 1 
Dexamine sp. 1 
Elasmopus vachoni 1 
Praia Formosa 178 
Amphipoda n.i. 132 
Ampithoe ramondi 2 
Dynamene magnitorata 6 
Hyalidae 24 
Janiridae 5 
Munnidae 1 
Tanaidacea n.i. 8 
El Hierro 247 
Los Sargos 79 

Amphipoda n.i. 30 
Dynamene edwardsi 7 
Caprellidae 6 
Hyalidae 30 
Serejohyale spinidactylus 3 
Tanaidacea n.i. 3 
Arenas Blancas 168 
Amphipoda n.i. 121 
Caprellidae 3 
Dynamene edwardsi 5 
Elasmopus canarius 4 
Hyalidae 19 
Janiridae 12 
Tanaidacea n.i. 4 
Tenerife 143 
Mal Paso 66 
Ampithoe ramondi 5 
Dynamene edwardsi 8 
Elasmopus pectenicrus 4 
Hyalidae 21 
Amphipoda n.i. 9 
Cyathura sp. 1 
Tanaidacea n.i. 3 
Caprellidae 2 
Janiridae 5 
Joeropsis brevicornis 2 
Stenothoe monoculoides 3 
Zeuxo exsargasso 3 
Los Cristianos 77 
Amphipoda n.i. 8 
Anthura gracilis 1 
Caprellidae 4 
Dynamene edwardsi 7 
Hyalidae 50 
Isopoda n.i. 3 
Tanaidacea n.i. 4 
Portugal 310 
Vale dos Homens 23 
Cymodoce sp. 1 
Dynamene bidentata 20 
Dynamene edwardsi 2 
Sines 35 
Hyalidae 9 
Dynamene spp. 17 
Sphaeromatidae 9 
Agudela 94 
Dynamene bidentata 1 
Peracarida n.i. 75 
Orchestia gammarelus 5 
Hyale pontica 4 
Hyalidae 9 
Berlengas 54 
Campecopea sp. 42 
Dynamene edwardsi 4 
Amphipoda n.i. 5 
Tanaidacea n.i. 3 
Viana Castelo 104 
Anthura gracilis 4 

Cyathura carinata 2 
Dynamene spp. 35 
Peracarida n.i. 63 
Morocco 1078 
Arzila 633 
Anthura gracilis 3 
Dynamene edwardsi 30 
Ampithoe riedli 4 
Amphipoda n.i. 405 
Caprellidae 10 
Dynamene magnitorata 1 
Hyalidae 14 
Leptochelia sp. 1 
Tanaidacea n.i. 163 
Tanais dulongii 2 
Akhfehnir 34 
Stenothoe sp. 5 
Melita sp. 3 
Hyalidae 17 
Shaeroma serratum 1 
Ischyromene sp. 4 
Elasmopus pectenicrus 3 
Dynamene bidentata 1 
El Jadida 279 
Amphipoda n.i. 213 
Caprella acanthifera 6 
Tanaidacea n.i. 17 
Isopoda n.i. 21 
Dynamene bidentata 19 
Caprellidae 1 
Dynamene edwardsi 2 
Essaouire 76 
Dynamene bidentata 27 
Amphipoda n.i. 29 
Idotea sp. 6 
Cymodoce sp. 2 
Stenossoma sp. 5 
Caprellidae 7 
Insouane 14 
Dynamene edwardsi 2 
Dynamene bidentata 12 
Tarfaya 42 
Dynamene edwardsi 16 
Campecopea lusitanica 1 
Hyalidae 25 
Total “Additional sampling” 2702 
  
Selvagem Grande 19 
Dynamene edwardsi 8 
Hyalidae 7 
Anthura gracilis 2 
Tanais grimaldii 2 
Selvagem Pequena 17 
Dynamene edwardsi 6 
Hyalidae 7 
Tanais grimaldii 1 
Tanaidacea n.i. 3 
Total “Selvagens” 36 
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ANNEXES OF CHAPTER 2. 

Annex 2.1. List of species, number of individuals, mean ISD (in bold values higher than 0.03), 
location and sources used in chapter 2. 

Order Species Iberian 
Peninsula 

Other 
sites 

Mean 
ISD 

Country/Region Source 

Amphipoda Amphipoda n.i. 1 0 - Portugal This study 

Amphipoda 
Abludomelita 

obtusata 
10 0 0.0003 Portugal Lobo et al. 2016a 

Amphipoda Ampelisca brevicornis 0 3 0.0453 Italy, Atlantic France Cowart et al. unpublished; 
Maruso et al. unpublished 

Amphipoda Ampelisca diadema 1 4 0.1973 
Portugal, North Sea; 

Italy 

Raupach et al. 2015; Lobo et 
al. 2016a; 

Maruso et al. unpublished 
Amphipoda Ampelisca ledoyeri 0 3 0.0020 Italy Maruso et al. unpublished 
Amphipoda Ampelisca sarsi 1 0 - Spain Aylagas et al. 2014 
Amphipoda Ampelisca sp.1 2 0 0.0000 Portugal Lobo et al. 2016a 
Amphipoda Ampelisca sp.2 1 0 - Portugal Lobo et al. 2016a 

Amphipoda Ampelisca spinipes 1 1 0.2050 Spain; North Sea Aylagas et al. 2014; 
Raupach et al. 2015 

Amphipoda Ampelisca tenuicornis 0 3 0.1172 North Sea; 
Italy 

Raupach et al. 2015; 
Maruso et al. unpublished 

Amphipoda Ampelisca typica 0 3 0.1365 Italy Maruso et al. unpublished 

Amphipoda Ampithoe helleri 13 0 0.0046 Portugal; Spain 
This study; Lobo et al. 

2016a 

Amphipoda Ampithoe ramondi 5 1 0.0647 
Portugal; Spain; 

Hawaii 
This study; Sotka et al. 2016 

Amphipoda Ampithoe riedli 1 0 - Portugal This study 

Amphipoda Ampithoe rubricata 3 6 0.0605 
Portugal; Spain; 
Atlantic France; 
Atlantic Canada 

This study; Radulovici et al. 
2009; Cowart et al. 

unpublished 
Amphipoda Aora gracilis 0 3 0.0092 North Sea Raupach et al. 2015 
Amphipoda Aora typica 4 0 0.0018 Portugal Lobo et al. 2016a 
Amphipoda Apherusa bispinosa 0 3 0.0010 North Sea Raupach et al. 2015 

Amphipoda Apherusa jurinei 5 4 0.0085 
Portugal; North Sea; 

Scotland 
This study; Raupach et al. 
2015; Lobo et al. 2016a 

Amphipoda Apohyale prevostii 5 7 0.0019 
Portugal; North Sea; 

Canada, Scotland, 
Iceland 

This study; Radulovici et al. 
2009; Raupach et al. 2015; 

Lobo et al. 2016a 

Amphipoda 
Apolochus 

neapolitanus 
1 0 - Spain Aylagas et al. 2014 

Amphipoda Bathyporeia tenuipes 1 0 - Spain Aylagas et al. 2014 

Amphipoda Caprella acanthifera 6 1 0.0691 
Portugal, Spain, 

Scotland 
This study; Aylagas et al. 
2014; Lobo et al. 2016a 

Amphipoda Caprella danilevskii 1 0 - Portugal Lobo et al. 2016a 
Amphipoda Caprella dilatata 4 0 0.0056 Spain Cabezas et al. 2013b 
Amphipoda Caprella fretensis 1 0 - Spain Aylagas et al. 2014 

Amphipoda Caprella liparotensis 2 0 0.0000 Portugal This study 

Amphipoda Caprella mutica 0 2 0.0109 North Sea, Canada 
Radulovici et al. 2009; 

Raupach et al. 2015 

Amphipoda Caprella penantis 6 0 0.0112 Portugal 
Cabezas et al. 2013a; Lobo 

et al. 2016a 
Amphipoda Caprella scaura 4 0 0.0000 Portugal Cabezas et al. 2014 
Amphipoda Caprella sp. 1 0 - Portugal This study 

Amphipoda 
Cheirocratus 
intermedius 

1 0 - Spain Aylagas et al. 2014 

Amphipoda Corophiidae n.i.1 1 0 - Portugal Lobo et al. 2016a 
Amphipoda Corophiidae n.i.2 1 0 - Portugal Lobo et al. 2016a 
Amphipoda Corophiidae n.i.3 1 0 - Portugal Lobo et al. 2016a 
Amphipoda Corophiidae n.i.4 1 0 - Portugal Lobo et al. 2016a 
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Order Species 
Iberian 

Peninsula 
Other 
sites 

Mean 
ISD 

Country/Region Source 

Amphipoda 
Corophium 

multisetosum 8 0 0.0977 Portugal Lobo et al. 2013, 2016a 

Amphipoda Corophium sp. 0 2 0.0039 Azores This study 
Amphipoda Corophium volutator 0 3 0.0000 North Sea Raupach et al. 2015 

Amphipoda Dexamine spiniventris 8 0 0.0900 Portugal, Spain 
This study; Lobo et al. 

2016a 
 

Amphipoda Dexamine spinosa 1 3 0.1676 
Spain, North Sea, 
Scotland, France 

This study; Aylagas et al. 
2014; Raupach et al. 2015; 
Cowart et al. unpublished 

Amphipoda Dexamine thea 0 3 0.0031 North Sea Raupach et al. 2015 

Amphipoda 
Echinogammarus 

obtusatus 0 2 0.0094 Iceland, Norway Costa et al. 2009 

Amphipoda 
Echinogammarus 

marinus 
5 7 0.0068 

Portugal, North Sea; 
Ireland; Scotland; 
Sweden; Wales; 
Iceland; Norway 

Costa et al. 2009; Raupach 
et al. 2015; Lobo et al. 

2016a 
 

Amphipoda 
Echinogammarus 

trichiatus 
0 1 - Netherlands Ironside et al. unpublished 

Amphipoda Elasmopus rapax 10 0 0.0006 Spain; Portugal 
This study; Lobo et al. 2013, 

2016a 
Amphipoda Elasmopus sp. 2 0 0.0019 Portugal This study 

Amphipoda Gamarella fucicola 6 3 0.0941 Portugal, North Sea 
Raupach et al. 2015; Lobo et 

al. 2016a 
Amphipoda Gammaropsis nitida 0 3 0.0022 North Sea Raupach et al. 2015 
Amphipoda Gammaropsis sp. 1 0 - Portugal Lobo et al. 2016a 

Amphipoda Gammarus chevreuxi 4 1 0.0131 Portugal, France 
Costa et al. 2009; Hou et al. 

2011 

Amphipoda Gammarus crinicornis 1 4 0.0110 
Portugal, Belgium, 

North Sea 
Costa et al. 2009; Raupach 

et al. 2015 

Amphipoda Gammarus duebeni 0 3 0.0265 
Wales, North Sea, 

Norway 
Costa et al. 2009; Raupach 

et al. 2015 
Amphipoda Gammarus insensibilis 4 0 0.0031 Portugal Costa et al. 2009 

Amphipoda Gammarus locusta 5 3 0.0159 
Portugal, Belgium, 

Wales, Scotland 
Costa et al. 2009 

Amphipoda Gammarus salinus 0 3 0.0138 North Sea Raupach et al. 2015 
Amphipoda Halice walkeri 1 0 - Spain Aylagas et al. 2014 
Amphipoda Haripinia sp. 1 0 - Portugal Lobo et al. 2016a 
Amphipoda Harpinia antennaria 0 1 - North Sea Raupach et al. 2015 

Amphipoda Haustorius arenarius 5 1 0.0005 Portugal; North Sea 
Raupach et al. 2015; Lobo et 

al. 2016a 
Amphipoda Iphimedia minuta 1 0 - Spain Aylagas et al. 2014 

Amphipoda Jassa falcata 10 10 0.0071 
Portugal, Spain, 

Scotland, North Sea, 
Iceland 

This study; Raupach et al. 
2015; Lobo et al. 2016a 

Amphipoda Jassa hermandi 2 3 0.0162 Portugal, North Sea This study; Raupach et al. 
2015 

Amphipoda Jassa marmorata 0 3 0.0000 North Sea Raupach et al. 2015 
Amphipoda Jassa ocia 1 0 - Portugal This study 

Amphipoda Jassa pusilla 2 2 0.1474 Portugal, North Sea 
Raupach et al. 2015; Lobo et 

al. 2016a 
Amphipoda Jassa sp.1 1 0 - Portugal Lobo et al. 2013 
Amphipoda Jassa sp.2 1 0 - Portugal This study 
Amphipoda Jassa sp.3 2 0 0.0265 Portugal Lobo et al. 2013, 2016a 
Amphipoda Leucothoe incisa 1 0 - Portugal Lobo et al. 2016a 
Amphipoda Melita hergensis 7 0 0.0034 Portugal Lobo et al. 2016a 

Amphipoda Melita palmata 9 3 0.0089 Portugal, North Sea Raupach et al. 2015; Lobo et 
al. 2016a 

Amphipoda 
Microdeutopus 

chelifer 4 0 0.1224 Portugal, Spain This study; Lobo et al. 2013 
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Order Species 
Iberian 

Peninsula 
Other 
sites 

Mean 
ISD 

Country/Region Source 

Amphipoda Microdeutopus sp.1 6 0 0.0121 Portugal Lobo et al. 2016a 
Amphipoda Microdeutopus sp.2 1 0 - Spain This study 

Amphipoda 
Monocorophium 

acherusicum 0 3 0.0021 North Sea Raupach et al. 2015 

Amphipoda 
Monocorophium 

insidiosum 
0 3 0.0204 North Sea Raupach et al. 2015 

Amphipoda 
Monocorophium 

sextonatae 
0 3 0.0000 North Sea Raupach et al. 2015 

Amphipoda Orchestia gammarelus 1 4 0.0000 
Portugal, North Sea, 

Iceland 

This study; Hanzler and 
Ingólfsson 2008; Raupach et 

al. 2015 

Amphipoda 
Orchestia 

mediterranea 1 2 0.0000 Spain, North Sea 
This study; Raupach et al. 

2015 

Amphipoda Paracaprella pusilla 4 3 0.0038 
Spain, Balearic 

Islands Cabezas et al. unpublished 

Amphipoda Parajassa pelagica 8 5 0.0132 
Portugal, Spain, 

Scotland, Iceland 
This study; Lobo et al. 

2016a 
Amphipoda Parapleustes bicuspis 1 0 - Portugal Lobo et al. 2016a 

Amphipoda Phtisica marina 3 2 0.0234 Portugal, North Sea Raupach et al. 2015; Lobo et 
al. 2016a 

Amphipoda Podocerus variegatus 5 0 0.0077 Spain This study 

Amphipoda 
Pseudoprotella 

phasma 
1 0 - Portugal Lobo et al. 2016a 

Amphipoda 
Quadrimaera 

inaequipes 
10 0 0.0015 Portugal Lobo et al. 2013, 2016a 

Amphipoda Serejohyale 
spinidactylus 

1 0 - Portugal This study 

Amphipoda Stenula sp. 2 0 0.0031 Portugal Lobo et al. 2016a 

Amphipoda Talitrus saltator 9 4 0.0426 
Portugal, North Sea, 

Italy 

Raupach et al. 2015; Lobo et 
al. 2016a; 

Maruso et al. unpublished 
Amphipoda Unciolella lunata 1 0 - Spain Aylagas et al. 2014 
Amphipoda Urothoe elegans 0 3 0.0000 North Sea Raupach et al. 2015 
Amphipoda Urothoe grimaldii 1 0 - Portugal Lobo et al. 2016a 
Amphipoda Urothoe poseidonis 0 3 0.0000 North Sea Raupach et al. 2015 

Amphipoda Urothoe pulchela 1 1 0.1473 Spain, France 
Aylagas et al. 2014; Cowart 

et al. unpublished 
Isopoda Anthura gracilis 3 0 0.0000 Portugal; Spain This study 
Isopoda Astacilla damnoniensis 1 0 - Portugal This study 
Isopoda Astacilla intermedia 0 3 0.0317 North Sea Raupach et al. 2015 
Isopoda Astacilla longicornis 0 3 0.0030 North Sea Raupach et al. 2015 
Isopoda Campecopea hirsuta 5 0 0.0005 Portugal; Spain This study 

Isopoda 
Campecopea 

lusitanica 
4 0 0.0020 Spain This study 

Isopoda Cleantis prismatica 1 0 - Portugal This study 
Isopoda Cyathura carinata 8 0 0.0103 Portugal This study 
Isopoda Cymodoce truncata 4 0 0.0027 Portugal, Spain This study 
Isopoda Dynamene bidentata 5 0 0.0031 Portugal This study 
Isopoda Dynamene edwardsi 4 0 0.0008 Portugal This study 

Isopoda 
Dynamene 

magnitorata 4 0 0.0040 Portugal This study 

Isopoda Eurydice pulchra 0 3 0.0041 North Sea Raupach et al. 2015 
Isopoda Eurydice spinigera 2 0 0.0034 Portugal This study 
Isopoda Gnathia maxillaris 3 0 0.0000 Portugal; Spain This study 

Isopoda Idotea balthica 0 7 0.0051 Iceland; North Sea, 
Canada 

This study; Radulovici et al. 
2009; Raupach et al. 2015 

Isopoda Idotea chelipes 3 0 0.0208 Portugal This study 
Isopoda Idotea emarginata 0 3 0.0093 North Sea Raupach et al. 2015 
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Order Species 
Iberian 

Peninsula 
Other 
sites 

Mean 
ISD 

Country/Region Source 

Isopoda Idotea granulosa 13 21 0.0057 

Portugal; Spain; 
Azores; Scotland; 

North Sea; Iceland; 
Norway 

This study; Raupach et al. 
2015 

Isopoda Idotea linearis 0 3 0.0010 North Sea Raupach et al. 2015 
Isopoda Idotea metallica 0 2 0.0017 North Sea Raupach et al. 2015 
Isopoda Idotea neglecta 0 6 0.0096 Azores This study 

Isopoda Idotea pelagica 9 6 0.0020 
Portugal, Spain, 

North Sea, Scotland, 
Iceland, Norway 

This study; Raupach et al. 
2015 

Isopoda Ischyromene lacazei 8 0 0.0035 Spain, Portugal This study 

Isopoda Jaera albifrons 5 3 0.0110 Spain, Portugal, 
North Sea, Canada 

This study; Radulovici et al. 
2009; Raupach et al. 2015; 

Lobo et al. 2016a 

Isopoda Janira maculosa 3 3 0.1994 
Spain, Portugal, 

France, North Sea 

This study; Kilpert et al. 
2012; Aylagas et al. 2014; 

Raupach et al. 2015 
Isopoda Joeropsis brevicornis 2 0 0.0117 Portugal, Spain This study 

Isopoda Lekanesphaera 
rugicauda 

0 5 0.0009 North Sea Raupach et al. 2015 

Isopoda 
Lekanesphaera 

hookeri 4 0 0.0000 Portugal This study 

Isopoda 
Lekanesphaera 

terceirae 0 2 0.0243 Azores This study 

Isopoda Ligia oceanica 5 0 0.0103 Spain Raupach et al. 2014 

Isopoda Natatolana borealis 1 3 0.0038 Spain, North Sea Aylagas et al. 2014; 
Raupach et al. 2015 

Isopoda Sphaeroma serratum 1 1 0.0578 Portugal, Germany This study; Kilpert et al. 
2012 

Isopoda Sphaeromatidae 3 0 0.0010 Portugal This study 

Isopoda 
Stenosoma 

acuminatum * 
5 0 0.0020 Iberian Peninsula Xavier et al. 2009, 2012 

Isopoda Stenosoma lancifer * 8 0 0.0026 Iberian Peninsula 
This study; Xavier et al. 

2009, 2012 
Isopoda Stenosoma nadejda * 4 0 0.0100 Iberian Peninsula Xavier et al. 2009 

Tanaidacea Apseudes talpa 3 0 0.0000 Portugal 
This study; Larsen et al. 

unpublished 
Tanaidacea Apseudopsis latreillii 2 0 0.0020 Portugal This study 

Tanaidacea Condrochelia savignyi 
** 

3 1 0.0031 Portugal, Spain; 
France 

This study; Aylagas et al. 
2014; Larsen et al. 

unpublished 
Tanaidacea Tanaididae n.i. 1 0 - Portugal This study 
Tanaidacea Tanais dulongii 6 0 0.0074 Portugal, Spain This study 
Tanaidacea Tanais sp. 0 1 - Norway This study 

 
* Genus in BOLD with name (Synisoma) not updated. 
** Process ID GBCM933-13 in BOLD with name not updated: as Laptochelia dubia 
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Annex 2.2. Grade system according with Oliveira et al. 2006 applied to the 87 identified 
(species level) morphospecies from Iberian Peninsula used in chapter 2.

Species Grade 
Ampithoe helleri A 
Apherusa jurinei A 
Apohyale prevostii A 
Apseudes talpa A 
Caprella penantis A 
Chondrochelia savignyi A 
Echinogammarus marinus A 
Elasmopus rapax A 
Gammarus chevreuxi A 
Gammarus crinocornis A 
Gammarus locusta A 
Haustorius arenarius A 
Idotea granulosa A 
Idotea pelágica A 
Jaera albifrons A 
Jassa falcata A 
Jassa herdmani A 
Melita palmata A 
Orchestia gammarellus A 
Orchestia mediterranea A 
Parajassa pelagica A 
Stenosoma lancifer A 
Abludomelita obtusata B 
Anthura gracilis B 
Aora typica B 
Campecopea hirsuta B 
Campecopea lustitanica B 
Caprella dilatata B 
Caprella scaura B 
Cyathura carinata B 
Cymodoce truncata B 
Dynamene bidentata B 
Dynamene edwardsi B 
Dynamene magnitorata B 
Gammarus insensibilis B 
Gnathia maxillaris B 
Halice walkeri B 
Idotea chelipes B 
Ischyromene lacazei B 
Ligia oceânica B 
Melita hergensis B 
Paracaprella pusilla B 
Podocerus variegatus B 

Quadrimaera inaequipes B 
Stenosoma acuminatum B 
Stenosoma nadejda B 
Tanais dulongii B 
Corophium multisetosum C 
Gammarela fucicola C 
Janira maculosa  C 
Jassa pusilla C 
Microdeutopus chelifer C 
Phistica marina C 
Talitrus saltator C 
Ampelisca sarsi D 
Ampelisca spinipes D 
Ampithoe riedli D 
Apolochus neapolitanus D 
Apseudopsis latreilli D 
Astacilla damnoniensis D 
Bathiporeia tenuipes D 
Caprella fretensis D 
Caprella liparotensis D 
Cheirocratus intermedius D 
Cleantis prismatica D 
Eurydice spinigera D 
Iphimedia minuta D 
Jassa ocia D 
Joeropsis brevicornis D 
Leucothoe incisa D 
Natatolana borealis D 
Parapleutes bicuspis D 
Pseudoprotella phasma D 
Serejohyale spinidactylus D 
Sphaeroma serratum D 
Unciolella lunata D 
Urothoe grimaldii D 
Ampelisca diadema E 
Ampithoe ramondi E 
Ampithoe rubricata E 
Caprella acanthifera E 
Caprella danilevski E 
Dexamine spiniventris E 
Dexamine spinosa E 
Lekanesphaera hookeri E 
Urothoe pulchella E 
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Annex 2.3. Sugested identifications to previously non-identified species and to possible 
misidentifications spoted in chapter 2. 

   Previously 
identification Source Suggested identification 

Jassa sp.3 Lobo et al. 2013, 2016a Jassa herdmani 
Jassa sp.1 Lobo et al. 2013 Jassa pusilla 

Microdeutopus sp.1 Lobo et al. 2016a Microdeutopus chelifer 

Corophidae n.i.3 Lobo et al. 2016a Monocorophium 
acherusicum 

Corophidae n.i.4 Lobo et al. 2016a Monocorophium 
sextonatae 

Caprella acanthifera Aylagas et al. 2014 Caprella danilevski 
Dexamine spinosa Aylagas et al. 2014 Dexamine spiniventris 

Microdeutopus chelifer Lobo et al. 2016a Aoridae 

Ampithoe rubricata Cowart et al. 
unpublished Ampithoe ramondi 
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ANNEXES OF CHAPTER 3.  

Annex 3.1. Material examined in chapter 3. 

Explanation note: Each entry shows the number of specimens observed for each life history stage, habitat, 

person who provided the specimen(s), location and country, co-ordinates and other information. 

 
Dynamene bicolor (Rathke, 1837) 
Mediterranean 

Spain 
8 stage 8 ♂♂, 1 stage 7 ♂, 4 ♀♀, 2 juvs; 0-1 m, H. Zibrowius (Endoume Marine Lab.), 1986; Alicante, 38⁰ 20’ N, 0⁰ 29’ 
E (RMNH.CRUS.1.7573). 
2 stage 8 ♂♂ (largest 3 mm x 1.5 mm) 2 stage 7 ♀♀ (largest 3 mm x 1.5 mm); 0.1 m, L. B. Holthuis, 1954; Rosen by 
Casa Zariguiey (Baai van Cadaques), 42⁰ 14’ N, 3⁰ 12’ E (RMNH.CRUS.1.7493). 
3 stage 8 ♂♂, 3 ♀♀; amongst barnacles, shallow water, D. M. Holdich, 1984; Arenal d’en Castell, Menorca, 40⁰ 1’ N, 
4⁰ 10’ E (RMNH.CRUS.1.7575). 
1 stage 7 ♂, 4 ♀♀; red and brown algae in rock pool amongst the encrusting red algae, D. M. Holdich, 1984; Arenal 
d’en Castell, Menorca, 40⁰ 1’ N, 4⁰ 10’ E (RMNH.CRUS.1.7576). 
1 stage 8 ♀; no habitat details, J. Castelló (University of Barcelona, Spain), 1983; Cap d’Artutx, Spain, 39⁰ 55’ N, 3⁰ 49’ 
E (RMNH.CRUS.1.7578). 
1 ♀: no habitat details, J. Castelló (University of Barcelona), 1983; Cala Morell, Menorca, 40⁰ 3’ N, 3⁰ 53’ E 
(RMNH.CRUS.1.7579). 
2 juvs; no habitat details, J. Castelló (University of Barcelona), 1983; Botafoc, Ibiza, 38⁰ 54’ N, 3⁰ 49’ E 
(RMNH.CRUS.1.7580). 
3 ♀♀; shallow-water encrusting red algae and Padina, D. M. Holdich, 1978; Calla Longa, Ibiza, 38⁰ 57’ N, 1⁰ 31’ E 
(RMNH.CRUS.1.7582). 
2 ♀♀; shallow-water algae, D. M. Holdich, 1978; San Antonio, Ibiza, 38⁰ 58’ N, 1⁰ 18’ E (RMNH.CRUS.1.7583). 
1 ♀; no habitat details, J. Castelló (University of Barcelona), 1984; Estany d’es Peix, Formentera, 38⁰ 43’ N, 1⁰ 25’ E 
(RMNH.CRUS.1.7584). 

France 
13 stage 8 ♂♂, 9 stage 7 ♀♀, 3 stage 8 ♀♀, 6 juvs; 5-6 m, H. Zibrowius (Endoume Marine Lab.), 1980s; Ponteau, nr 
Marseille, 43⁰ 22’ N, 5⁰ 76’ E, and Marseille, 43⁰ 17’ N, 5⁰ 22’ E (RMNH.CRUS.1.7586). 
1 stage 8 ♂, 2 ♀♀; littoral, H. Schmalfuss (Germany), 1962; Villefranche-sur-Mer, 43⁰ 42’ N, 7⁰ 18’ E 
(RMNH.CRUS.1.7588). 
Many ♀♀ and juvs; shallow-water algae, M-L. Roman (University of Marseille), 1978; Lagune du Brusc (near Toulon to 
the east of Marseille), 43⁰ 04’ N, 5⁰ 48’ E (RMNH.CRUS.1.7589). 
1stage 8 ♂, 1 stage 7 ♂, 1 stage 8 ♀; amongst algae at 1m depth; Argelès, 42⁰ 32’ N, 3⁰ 1’ E. No other details. 
(RMNH.CRUS.1.7495). 
15 stage 8 ♂♂, 5 stage7 ♀♀, 2 stage 8 ♀♀; some from 12-15 m, others from rocky face at N. Citadel, H. Zibrowius, pre-
1987; NW Corsica (Calvi), 42 ⁰ 34’ N, 8⁰ 45’ E. Pre-1987, but some samples dated from 1950s - these are from previous 
workers (e.g. Pérès and Picard at Endoume Marine Station). (RMNH.CRUS.1.7585). 
1 stage 8 ♂ (4 mm), 1 ♀; there are 4 stage 8 ♀♀, but it is difficult to tell which species they are as both D. bifida and D. 
torelliae were found together; rocky shore, between seaweed, 0-1 m, 1957; Banyuls-sur-Mer, 42 ⁰ 29’ N, 3⁰ 7’ E 
(RMNH.CRUS.1.7498). 

Italy 
59+ stage 8 ♂♂, 32+ stage 7 ♂♂, 100+ ♀♀, 100+ juvs; shallow water Cystoseira and Sargassum and crevices, D. M. 
Holdich, 1967; Mergellina Harbour, Bay of Naples, 40⁰ 49' N, 14⁰ 13' E (RMNH.CRUS.1.7527 and RMNH.CRUS.1.7591). 
1 stage 7 ♀; J. A. W. Lucas, 1953; Posillipo, Bay of Naples, 40⁰ 48’ N, 14⁰ 12’ E (RMNH.CRUS.1.7501). 
1 stage 7 ♂; amongst algae near Zool. Station, Bay of Naples, L. B. Holthuis, 1950; 40⁰ 49’ N, 14⁰ 13’ E 
(RMNH.CRUS.1.7502). 
4 stage 8 ♂♂, 1 stage 7 ♂; amongst mussels, JAW Lucas. 1953; Via Caracciola (Grand Hotel), Bay of Naples, 40⁰ 50’ N, 
14⁰ 13’ E (RMNH.CRUS.1.7503). 
1 stage 8 ♂ (damaged); amongst barnacles, J. A. W. Lucas, 1953; Rodonde, Gulf of Naples, 40⁰ 49’ N, 14⁰ 13’ E 
(RMNH.CRUS.1.7504). 
1 stage 7 ♀; amongst barnacles, J. A. W. Lucas, 1953; Rodonde, Bay of Naples, 40⁰ 49’ N, 14⁰ 13’ E 
(RMNH.CRUS.1.7505). 
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1 stage 8 ♂; amongst barnacles; J. A. W. Lucas, 1953; Mergellina, Bay of Naples, 40⁰ 49’ N, 14⁰ 13’ E 
(RMNH.CRUS.1.7506). 
3 stage 8 ♂♂, 1 ♀, 1 juv; no habitat details, H. Zibrowius, 1980s; Elba island, 42⁰ 48’ N, 10⁰ 08’ E (RMNH.CRUS.1.7599). 
1 stage 8 ♂; 3 stage 7 ♂♂, 1 stage 8 ♀, 2 ♀♀; no habitat details, G. Messana, 1990s; St Andrea, Elba island, 42⁰ 48’ N, 
10⁰ 8’ E. Specimens returned to collector. 
6 stage 8 ♂♂, 1 stage 8 ♀, 8 ♀♀; no habitat details, H. Zibrowius, 1980s; Isola di Bergegge, Gulf of Genova, 44⁰ 14’ N, 
8⁰ 26’ E (RMNH.CRUS.1.7600). 
16 males stage 8 ♂♂, 3 stage 7 ♂♂, 6 ♀♀ females and juvs; 3.5 m on algae, U. Schieke and E. Fresi, 1968, 1970; E.La 
Voru au Wand, Ms Mary, S. Angelo, Ischia island, Bay of Naples, 40⁰ 44’ N, 13⁰ 57’ E (RMNH.CRUS.1.7605). 
10 males 8 ♂♂, 8 stage 7 ♂♂, 13 ♀♀, 3 juvs; Cystoseira at 4 m (S. Anna), Hydroides and algae at 1-3 m, algae and 
detritus at 35 m (P. S. Pancrazio), algae and sediment at 8-12 m (L’Ameno), U. Schieke and E. Fresi, 1968, 1969; S. 
Anna, L’Ameno, P.S. Pancrzio, Ischia island, Bay of Naples, 40⁰ 44’ N, 13⁰ 57’ E (RMNH.CRUS.1.7606). 
2 stage 8 ♂♂, 2 stage 7 ♂♂, 2 stage 8 ♀♀, 49 ♀♀ and juvs; 3.5 m detritus, Dictyoptera by laboratory, 0.5 m (Castelló), 
U. Schieke and E. Fresi, 1968, 1969; Castello and Ecological Laboratory, Ischia island, Bay of Naples, 40⁰ 44’ N, 13⁰ 57’ 
E (RMNH.CRUS.1.7607) 
16 stage 8 ♂♂, 15stage 6/7 ♂♂, 29 ♀♀ and juvs; 1-4 m on algae below lab., U. Schieke and E. Fresi, 1968; Ecological 
Laboratory, Ischia island, Bay of Naples, 40⁰ 44’ N, 13⁰ 57’ E (RMNH.CRUS.1.7608). 
5 stage 8 ♂♂, 4 stage 7 ♂♂, 30 ♀♀ and juvs; 0.5-4 m on Cystoseira and Dictyoptera, U. Schieke and E. Fresi, 1968; 
Castello and below Ecological Laboratory, Ischia island, Bay of Naples, 40⁰ 44’ N, 13⁰ 57’ E (RMNH.CRUS.1.7609). 
3 stage 8 ♂♂; trottoir, U. Schieke and E. Fresi, 1968; Palermo, Sicily, 38⁰ 11’ N, 13⁰ 20’ E (RMNH.CRUS.1.7601). 

Croatia 
1 stage 7 ♂; no other details, 1960; Rovinji, 45⁰ 4’ N, 13⁰ 38’ E, (RMNH.CRUS.1.7507) (labelled as from Yugoslavia). 

Greece 
3 stage 8 ♂♂,1 stage 7 ♂, 1 stage 8 ♀, 1 ♀; shallow water algae, D. A. Jones, 1967; Emborios Bay, Chios island, 38⁰ 11’ 
N, 26⁰ 1’ E (RMNH.CRUS.1.7529). 
11 stage 8 ♂♂ (averaging 3 mm in length), 1 stage 7 ♂, 2 stage 8 ♀♀, 9 ♀♀ and juvs,; variety of algae, e.g. Cystoseira, 
Sargassum at a variety of depths, e.g 0.5 m down to 33 m, D. A. Jones, 1967; Cathedral Rock, Emborios Bay, Cape 
Maskla, Chios island, 38⁰ 11’ N, 26⁰ 1’ E (RMNH.CRUS.1.7645). 
7 stage 8 ♂♂, 2 stage 8 ♀♀; from oscula of sublittoral sponge, D. M. Holdich, 1980; Gerakini Beach, Halkidiki Peninsula, 
40⁰ 16’ N, 23⁰ 26’ E (RMNH.CRUS.1.7612). 
2 stage 8 ♂♂; from sublitoral coralline algae, D. M. Holdich, 1980; Gerakini Beach, Halkidiki Peninsula, 40⁰ 16’ N, 23⁰ 
26’ E (RMNH.CRUS.1.7613). 
22 stage 8 ♂♂, 4 stage 8 ♀♀, 1 ♀, (plus 1 male Campecopea hirsuta); from surface of empty Pinna shell at 2 m, D. M. 
Holdich, 1980; Gerakini Beach, Halkidiki Peninsula, 40⁰ 16’ N, 23⁰ 26’ E (RMNH.CRUS.1.7614). 
4 juvs; from fucoid algae at 0.5 m, D. M. Holdich, 1980; Ouranoupolis, Halkidiki Peninsula, 40⁰ 19’ N, 23⁰ 58’ E 
(RMNH.CRUS.1.7615). 
1 stage 8 ♂ (damaged). 0-15 m, W. J Wolffen and M. Loosies, 1967; Missolonghi (to west of the Gulf of Corinth, now 
called Mesolongion, 38⁰ 22’ N, 21⁰ 25’ E (RMNH.CRUS.1.7508). 
9 stage 7 ♀♀; no habitat details, W. J. Wolff and M. Loosjes, 1964; Sulaora, Epirus (bordering Albania), 39⁰ 30’ N, 20⁰ 
15’ E (RMNH.CRUS.1.7509). 
1 stage 7 ♂, 1 ♀; weed under stones, <1 m, D. A. Jones, 1967; Corfu island, 39⁰ 36’ N, 19⁰ 49’ E (RMNH.CRUS.1.7643). 
1 ♀; encrusting red seaweeds, D. M. Holdich, 1983; Matala, Crete island, 34⁰ 59’ N, 24⁰ 44’ E (RMNH.CRUS.1.7644). 

Turkey  
2 stage 8 ♂♂ (4.2 x 2 mm), 1 stage 7 ♂; intertidal and shallow water algae and other habitats, F. Kirkim, mid-1990s; 
Izmir region, 38⁰ 28' N, 27⁰ 6' E (RMNH.CRUS.1.7657). 
10 stage 8 ♂♂, 5 stage 7 ♂♂, 17 stage 7 ♀♀, plus 1 Cymodoce ♀ sp; 0-50 cm deep, C. Swennen, 1957; Antalya, 36⁰ 53' 
N, 30⁰ 44' E (RMNH.CRUS.1.7510). 
25 stage 8 ♂♂, 2 stage 7 ♂♂, 5 stage 8♀♀, 13 stage 7 ♀♀ and juvs; 5-20 cm deep, C. Swennen, 1959; Antalya harbour, 
36⁰ 53' N, 30⁰ 42' E (RMNH.CRUS.1.7511). 
1 stage 8 ♀; C. Swennen, 1959; Antalya harbour, 36⁰ 53' N, 30⁰ 42' E (RMNH.CRUS.1.7512). 

Israel 
2 stage 8 ♂♂, 1 stage 7 ♂, 1 ♀, 1 juv; algae from rocky shore; T. Haran (Tel Aviv University), 1977-78; Mikhmoret 
(south of Haifa), 32⁰ 24' N, 34⁰ 52' E (RMNH.CRUS.1.7528). 
9 stage 8 ♂♂ (largest 4.0 x 2.0 mm), 14 stage 6/7 ♂♂ (3.25 x 1.5 mm), 60 ♀♀ (largest 3.5 x 1.4 mm), 63 juvs; algae on 
rocky shore (Ulva, Sargassum, Jania, Acanthophora, Cystoseira), T. Haran (Tel Aviv University), 1977-78; Mikhmoret 
(south of Haifa), 32⁰ 24' N, 34⁰ 52' E (RMNH.CRUS.1.7649). 
1 stage 6 ♂, 9 ♀♀, 4 juvs; littoral algae, L. Fischelson, 1976; Rosh HaNikva, north of Haifa, 33⁰ 5' N, 35⁰ 6' E (for Haifa) 
(RMNH.CRUS.1.7650). 
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7 stage 8 ♂♂, 4 stage 7 ♂♂, 6 ♀♀; littoral algae (Cystoseira, Laurencia, Jania), L. Fischelson, 1976; Acre, north of Haifa, 
32⁰ 55' N, 35⁰ 4' E (for Haifa) (RMNH.CRUS.1.7652). 
3 stage 7 ♂♂, 1 stage 6 ♂, 7 ♀♀, 7 juvs; littoral algae (Pterocladia, Acanthophora, Ulva, Jania, Bryopsis, Sargassum, 
Padina), L. Fischelson, 1976; Bat-Yam, south of Tel Aviv, 32⁰ 5 N', 34⁰ 48' E (for Tel Aviv) (RMNH.CRUS.1.7654). 
4 ♀♀, 4 juvs; littoral algae (Pterocladia, Colpomenia), L. Fischelson, 1977; Michmoreth north of Netania, 32⁰ 20' N, 34⁰ 
52' E (for Netania) (RMNH.CRUS.1.7655). 
2 ♀♀, 4 juvs; littoral algae (Jania, Centroceras), L. Fischelson, 1977; Palmhim, north of Ashdod, 31⁰ 55' N, 34⁰ 42' E 
(RMNH.CRUS.1.7656). 

Malta 
1 stage 7 ♂, 1 ♀; intertidal rock pool, D. M. Holdich, 1997; Mellieha Bay, 35⁰ 58’ N, 14⁰ 21’ E (RMNH.CRUS.1.7661). 
3 stage 8 ♂♂, 3 stage 7 ♀♀; rocky sea bed, 1-2 m, S. Schembri, 2010; Cirkewwa, 35⁰ 59’ N, 14⁰ 19’ E 
(RMNH.CRUS.1.7662). 

Egypt 
2 stage 8 ♂♂; M. M. Atta, 1981; Agamy area, Alexandria, 31⁰ 9’ N, 29⁰ 55’ E (RMNH.CRUS.1.7667). 

Tunisia 
4 stage 8 ♂♂; Th Monod; Tunis (?), 38⁰ 48’ N, 10⁰ 10’ E. Museum National d’Histoire Naturelle, Paris collection. IS 
683. 

Black Sea 
Turkey 
1 stage 7 ♂, 1 stage 8 ♀♀, 1 ♀, 1 juv; no habitat details, A. M. Gozler, 2007; Rýze coast, 41⁰ 01' N, 40⁰ 28' E 
(RMNH.CRUS.1.7530). 
1 stage 8 ♂ (3 x 1.3 mm – very small), 5 stage 7 ♂♂ (3.5 x 1.5), 8 ♀♀ (3.5 x 1.5 mm), 1 juv; no habitat details, A. M. 
Gozler, 2007; Rýze coast, 41⁰ 01' N, 40⁰ 28'E (RMNH.CRUS.1.7670). 
1 stage 8 ♂, 1 stage 6 ♂, 2 stage 8 ♀♀, 4 ♀♀, 13 juvs; infralittoral down to 5 m depth, algae (Cystoseira spp.), amongst 
Mytilus galloproincialis, G. Gönlügür, 2006; Sinop coast, 42⁰ 00' N, 35⁰ 10' E (RMNH.CRUS.1.7671). 
1 stage 7 ♀; 0-5m deep. C. Swennen, 1969; Trabzon harbour (north coast of Turkey near eastern end of Black Sea), 
40⁰ 57' N, 39⁰ 43' E (RMNH.CRUS.1.7514). 

Romania 
1 stage 8 ♂,1 stage 6 ♂, 1 stage 8 ♀, 5 ♀♀, 6 juvs; hard bottoms and silt amongst Mytilus and empty shells of Balanus 
improvisus at 5-10 m, M. Băcescu, 1961; eastern Constanta, 44⁰ 12' N, 28⁰ 38' E (RMNH.CRUS.1.7672). 

Bulgaria 
1 stage 8 ♂ (damaged back end), 2 ♀♀ (one damaged); no habitat details, O. G. Kussakin, 1950s; Varna, 43⁰ 13' N, 28⁰ 
00' E (RMNH.CRUS.1.7673). 
3 stage 8 ♂♂, 1 stage 6 ♂, 2 stage 8 ♀♀, 3 ♀♀, 2 juvs; no habitat details, O. G.  Kussakin; label just says Black Sea, could 
be Varna, 43⁰ 13' N, 28⁰ 00' E (RMNH.CRUS.1.7674). 

Georgia 
1 stage 8 ♂; 0.5-1.5 m, O. G. Kussakin, 1900s; Sukhumi Bay - 43⁰ 00' 12'' N, 41⁰ 00' 55'' E (RMNH.CRUS.1.7675). 
 
Dynamene bidentata (Adams, 1800) 
Atlantic 

Canary Islands (Spain) 
1 stage 7 ♂, 2 ♀♀, one juv; algae in upper shore pool, D.M. Holdich, 1970; El Medano, Tenerife, 28⁰ 2’ N, 16⁰ 32’ W 
(RMNH.CRUS.1.7558). 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Bañaderos, Gran Canaria, 28° 8' N, 15° 32' 
W. 

England (including the Isle of Man) 
6 stage 8 ♂♂ (second year, with growth of algae on pleotelson and uropods), 4 stage 7 ♀♀, 5 stage 8 ♀♀ (one with 
epicarid parasite Ancyroniscus bonnieri),; empty Balanus perforatus tests, D. M. Holdich, 1996; Trevone Bay, Cornwall, 
50⁰ 32’ N, 4⁰ 58’ W (RMNH.CRUS.1.7546 ). 
In addition, specimens of D. bidentata were examined by DMH from the following locations during the period 1964-
1975 (Holdich 1970, 1974, 1976) and subsequently: Bovisand (50°19' 60" N, 04° 06' 60" W); Cape Cornwall (50°07' 
01" N, 05° 42' 04" W); Castle Rocks, Falmouth (50° 08' 38" N, 05° 03' 40" W); Derby Haven, Isle of Man (54° 04' 00" N, 
04° 37' 00" W); Goodrington Sands (50° 24' 60" N, 03° 33' 60" W); Helford Passage (50° 05' 34" N, 05° 06' 07" W); 
Ilfracombe (51° 12' 32" N, 04° 07' 46" W); Kennack Sands (50° 00' 00" N, 05° 10' 00" W); Lizard (49° 57' 43" N, 05° 11' 
54" W); Marazion (50° 07' 00" N, 05° 27' 00" W); Mullion Cove (49° 59' 49" N, 05° 15' 18" W); Periglio Bay, St Agnes, 
Scilly Isles (49° 53' 60" N, 06° 24' 00" W); Port Erin, Isle of Man (54° 05' 03" N, 04° 45' 39" W); Portland Harbour (50° 
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34' 00" N, 02° 26' 00" W); South Milton Sands (50° 15' 00" N, 03° 50' 60" W); St Agnes (50° 19' 01" N, 05° 14' 02" W); 
St Marys, Isles of Scilly (49° 55' 15" N, 06° 18' 48" W); St Ives (50° 11' 60" N, 05° 28' 00" W); Treyarnon (50° 31' 12" N, 
05° 01' 44" W); Wembury, Church Reef (50° 17' 26" N, 04° 46' 46" W); Widermouth (50° 7' 13" N, 04° 33' 37" W); 
Whitesand Bay (50° 19' 60" N, 04° 15' 60" W). 

British Natural History Museum (BMNH) collection: 
Port St Mary, Isle of Man (54° 04' 33" N, 04° 44' 21" W); Kimmerridge Bay (50° 36' 39" N, 02° 06' 59" W); Brandy Bay 
(50° 36' 47" N, 02° 09' 26" W); Hobarrow Bay (50° 36' 33" N, 02° 08' 55" W); St Agnus, Scilly Isles – in sponges and 
worm tubes (49° 53' 35" N, 06° 20' 25" W); Porth Warne, St Agnus, Scilly Isles - amongst red algae (49° 54' 58" N, 06° 
17' 53" W); Porth Hellick, Scilly Isles (49° 55' 07" N, 06° 16' 49" W), Hells Gate Beach, Lundy – intertidal weed (51° 10' 
41" N, 04° 20' 02" W). 

National Biodiversity Network: 
14 records have been used from the NBN database, but details are not given as they can be found on the NBN website: 
www.searchnbn.net. 

ERICA database: 
St Martins, Isles of Scilly (49° 58' 48" N, 06° 17' 28" W); Tresco, Isles of Scilly (49° 56' 47"N 06° 20' 18" W); Bryher, Isles 
of Scilly (49° 57' 08" N, 06° 21' 54" W); Smith Sound, Isles of Scilly (49° 52' 52" N, 06° 21' 59" W); Old Town, Isles of 
Scilly (49° 54' 09" N, 06° 18' 13" W); Mevagissey (50° 15' 16" N, 04° 46' 01" W); St Mawes (50° 09' 18" N, 05° 01' 20" 
W); Porthleven (50° 04' 57" N, 05° 19' 21" W); Clovelly (50° 59' 00" N, 04° 23' 00" W), Feock (50° 11' 36" N, 05° 03' 
35" W); Gwithian (50° 13' 42" N, 05° 23' 39" W); Mounts Bay (50° 05' 35" N, 05° 22' 27" W); Padstow Bay (50° 34' 49" 
N, 04° 55' 20" W); Penzance (50° 07' 00" N, 05° 31' 60" W); Portlooe (50° 20' 31" N, 04° 27' 38" W); Portscatho (50° 
11' 06" N, 04° 58' 15" W); Rosenithon (50° 02' 48" N, 05° 04' 02" W); Treen (50° 11' 10" N, 05° 36' 05" W); Trevelgue 
(50° 25' 33" N, 05° 03' 13" W); Weymouth (50° 36' 17" N, 02° 32' 12" W). 

Northern Ireland  

National Biodiversity Network: 
22 records have been used from the NBN database, but details are not given as they can be found on the NBN website: 
www.searchnbn.net. 

Southern Ireland (Eire) 
1 stage 7 ♂, 2 stage 8 ♂♂, two ♀♀, 2 juvs; rocky shore, D. McGrath, 1975; Galway, Southern Ireland (Eire), 53⁰ 16’ N, 
9⁰ 3’ W (RMNH.CRUS.1.7519). 
1 stage 7 ♂, 8 stage 8 ♂♂, 76 ♀♀ and juvs; rocky shore, D. McGrath, 1975; Galway, Southern Ireland (Eire), 53⁰ 16’ N, 
9⁰ 3’ W (RMNH.CRUS.1.7550). 

British Natural History Museum (BMNH) collection: 
Roundstone (53° 23' 36" N, 09° 51' 27" W), Tory Island (55° 15' 55" N, 08° 13' 49" W), Valentia (51° 53' 59" N, 10° 20' 
00" W). 

National Biodiversity Data Centre (Ireland): 
Ballycotton (51° 49' 59" N, 08° 01' 03" W), Carrownedin (54° 13' 55" N, 09° 05' 21" W), Corkagh Beg (54° 16' 11" N, 
08° 45' 17" W), Doonbeg (52° 44' 43" N, 09° 31' 26" W), Dungarvan (52° 44' 43" N, 07° 32' 45" W), Fenit (52° 17' 07" 
N, 09° 52' 34" W), Finvarra (53° 08' 58" N, 09° 08' 22" W), Garrywilliam (52° 18' 34" N, 10° 03' 17" W), Glengariff (51° 
44' 52" N, 09° 32' 56" W), Liscannor (52° 56' 10" N, 09° 26' 16" W), Loughshinny (53° 33' 39" N, 05° 58' 55" W), Mullagh 
(52° 47' 31" N, 09° 29' 06" W), Rathlee (54° 16' 49" N, 09° 03' 31" W), The Seven Hogs (52° 19' 33" N, 10° 01' 13" W). 

National Biodiversity Network: 
1 record have been used from the NBN database, but details are not given as they can be found on the NBN website: 
www.searchnbn.net. 

Scotland 
7 ♀♀ and juvs; on algae in water off rocks at LWM, R. S. Scott, Leicester University Expedition, 1970; Ceann Ear, 
Monach Islands, NW Scotland, 57⁰ 31’ N, 7⁰ 36’ W (RMNH.CRUS.1.7549). 
14 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Carsaig, Scotland, 56° 9' N, 5° 57' 
W. 
1 stage 8 ♂, 14 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Easdale, Scotland, 
56° 17' N, 5° 38' W. 
3 stage 6-8 ♂♂, 15 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Bellochantuy, 
Scotland, 55° 31' N, 5° 42' W. 
In addition, specimens of D. bidentata were examined by DMH from the following locations during the period 1964-
1974 (Holdich 1970, 1974): Ardrossan (55° 36' N, 04° 43' W), Clatholl (58° 10' N 00", 05° 19' 00" W).  

British Natural History Museum (BMNH) collection: 
Oban (56° 24' 54" N, 05° 28' 15" W), Mull (approx. 56° 26' 21" N, 06° 00' 03" W). 
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National Biodiversity Network: 
27 records have been used from the NBN database, but details are not given as they can be found on the NBN website: 
www.searchnbn.net. 

Wales 
6 stage 8 ♂♂ (year 1, 5.0-6.0 mm), 1 back end stage 8 ♂, 2 stage 8 ♂♂ (year 2), 1 stage 6 ♂, 8 stage 7 ♀♀ (5.5 mm), 2 
stage 8 ♀♀, 2 juvs; adults from empty Balanus perforatus tests on mid-shore and juveniles from mid-shore Fucus 
serratus, D.M. Holdich, 1965; St Brides Haven, Pembrokeshire, South Wales, 51⁰ 46’ 00" N, 5⁰ 6’ 00" W 
(RMNH.CRUS.1.7517). 
3 stage 8 ♂♂ (year 2), 6 stage 8 ♂♂ (year 2), 4 stage 6 ♂, 4 stage 7 ♀♀ (5.5 mm), 3 stage 8 ♀♀, 1 juv; adults from empty 
Balanus perforatus tests on mid-shore and juveniles from mid-shore Fucus serratus, D.M. Holdich, 1994; St Brides 
Haven, Pembrokeshire, South Wales, 51⁰ 46’ 00" N, 5⁰ 6’ 00" W (RMNH.CRUS.1.7548). 
In addition, specimens of D. bidentata were examined by DMH from the following locations during the period 1964-
1975 (Holdich 1970, 1976) and subsequently: Aber-Eiddy (51° 56' 30" N, 05° 11' 55" W), Abermawr (51° 56' 17" N, 05° 
12' 27" W), Broad Haven (51° 42' 05" N, 05° 09' 11" W), Caer-fai Ba (51° 52' 00" N, 05° 15' 00" W), Dinas Head (52° 01' 
15" N, 04° 54' 36" W), Freshwater East (51° 38' 44" N, 04° 51' 34" W), Freshwater West (51° 38' 60" N, 05° 02' 60" W), 
Goodwick Harbour (51° 59' 60" N, 04° 59 '00" W), Manorbier (51° 37' 60" N, 04° 46' 60" W), Martins Heaven (51° 44' 
14" N, 05° 14' 01" W), Monks Haven (51° 42' 60" N, 05° 08' 00" W), Musselwick Sands (51° 42' 60" N, 05° 12' 00" W), 
Nolton Haven (51° 48' 58" N, 05° 06' 27" W), Porth Colman (52° 52' 00" N, 04° 41' 00" W), Rhoscolyn (53° 15' 00" N, 
04° 34' 60" W), Rhosneigre (53° 13' 00" N, 04° 30' 60" W), Sandy Haven (51° 43' 32" N, 05° 06' 41" W), Skomer (51° 
43' 60" N, 05° 16' 60" W), Stackpole (51° 37' 41" N, 04° 53' 45" W), West Angle (51° 40' 60" N, 05° 04' 60" W), West 
Dale Bay (51° 42' 28" N, 05° 11' 19" W), Whitesand Bay (51° 53' 10" N, 05° 18' 18" W. Records for the Gower Peninsula 
in South Wales prior to 1961 have not been included as the isopod was eliminated from this region in the severe 
winter of 1961/62, and the authors have seen no new records. 

National Biodiversity Network: 
12 records have been used from the NBN database, but details are not given as they can be found on the NBN website: 
www.searchnbn.net. 

Channel Islands 
14 stage 8 ♂♂, 3 stage 7 ♀♀, 14 stage 8 ♀♀, 2 juvs; upper mid-shore crevice with tubiculous tanaids, mid and lower 
shore in empty Balanus perforatus shells and crevices, D.M.Holdich, 1982; Rocquaine Bay, Guernsey, 49⁰ 26’ N, 2⁰ 39’ 
W (RMNH.CRUS.1.7551). 
4 stage 8 ♂♂, 3 stage ♀♀; mid shore in empty Balanus perforatus shells, D.M. Holdich, 1982; Petit Bot Bay, Guernsey, 
49⁰ 25’ N, 2⁰ 34’ W (RMNH.CRUS.1.7552). 
4 ♀♀; lower shore weed (Chondrus crispus), D.M. Holdich, 1982; Rocquaine Bay, Guernsey, 49⁰ 26’ N, 2⁰ 39’ W 
(RMNH.CRUS.1.7553). 

France 
2 stage 8 ♂♂ (6.0-6.5 mm), 1 stage 7 ♀ (5.5 mm), 1 stage 8 ♀; adults from empty Balanus perforatus test on mid-
shore; ♀7 from mid-shore Ascophyllum nodosum, D.M. Holdich, 1975, shore by Roscoff Marine Station, Brittany, 
France, 48⁰ 43’ N, 3⁰ 59’ W (RMNH.CRUS.1.7518). 
2 stage 7 ♂♂, 7 stage 8 ♂♂ (one 7 mm), 2 stage 8 ♀♀, 16 ♀♀ and juvs; algae, empty barnacle tests and crevices, mid-
lower shore, D.M. Holdich, 1988; Trénez, S. Brittany, 47⁰ 47’ N, 3⁰ 42’ W (RMNH.CRUS.1.7560). 
5 ♀♀ and juvs; red algae lower shore, D.M. Holdich, 1988; Trénez, S. Brittany, 47⁰ 47’ N, 3⁰ 42’ W (RMNH.CRUS.1.7561). 
4 stage 7 ♂♂, 7 stage 8 ♂♂, 9 females ♀♀ and juvs; rocky mid-shore weed and crevices, D.M Holdich, 1988; Kerfanny, 
S. Brittany, 47⁰ 51’ N, 3⁰ 38’ W (RMNH.CRUS.1.7562). 
1 stage 7 ♂, 2 stage 8 ♂♂, 2 stage 8 ♀♀, 4 ♀♀ and juvs; empty barnacle tests and mid-shore algae, D.M. Holdich, 1975; 
Roscoff Marine Station Brittany, 48⁰ 43’ N, 3⁰ 59’ W (RMNH.CRUS.1.7563). 
2 stage 7 ♀♀; littoral, L. Deckker, 1982; Bestree Pord, Finisterre, 48⁰ 15’ N, 3⁰ 55’ W (RMNH.CRUS.1.7480). 
1 juv; H. Nouvel, 1952; Isla Vete de Callo Baie de Morlaiz, not far from Roscoff, 48⁰ 43’ N, 3⁰ 53’ W 
(RMNH.CRUS.1.7481). 
1 stage 8 ♂ (5.5 mm), 1 juv; C. Swennen, 1958; Perros-Guirec, Brittany, 48⁰ 48’ N, 3⁰ 26’ W (RMNH.CRUS.1.7482). 
2 stage 8 ♂♂ (8mm and 6 mm), 1 juv; H. Nouvel, 1952; Roscoff, Brittany, 48⁰ 43’ N, 3⁰ 59’ W (RMNH.CRUS.1.7483). 
1 stage 7 ♂, 1 stage 7 ♀; H. Nouvel, 1936; Brest, St Ann, 48⁰ 23’ N, 4⁰ 29’ W (RMNH.CRUS.1.7492). 

Museum National d’Histoire Naturelles, Paris collection: 
1 ♀; 1922; location unknown (IS 1288). 
2 ♀♀; 1922; Concarneau, S. Brittany, 48⁰ 48’ N, 3⁰ 26’ W (IS 1292). 
1 stage 6 ♂; 1922; Concarneau, 48⁰ 48’ N, 3⁰ 26’ W (IS 1303). 
1 female; Concarneau, 48⁰ 48’ N, 3⁰ 26’ (IS 1291). 
4 stage 8 ♂♂; 1922; Concarneau, 48⁰ 48’ N, 3⁰ 26’ (IS 1295). 
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Spain 
4 stage 6/7 ♂♂, 1 stage 8 ♂, 6 ♀♀, 31 juvs; Fucus vesiculosus zone, R. Anadon, 1982; Bañugues (Asturias), 43⁰ 31’ N, 
5⁰ 39’ W (RMNH.CRUS.1.7569). 
15 stage 7 ♂♂, 1 stage 8 ♂, 1 stage 8 ♀, 27 ♀♀, 51 juvs; mesolittoral, P. Reboreda, 1984, 1987, 1988; Ria del Ferrol 
(43⁰ 29’ N, 8⁰ 13’ W), Ria de Arosa (42⁰ 34’ N, 8⁰ 53’ W), Isla Castelo (43⁰ 36’ N, 8⁰ 11’ W) (RMNH.CRUS.1.7570). 
1 ♀; littoral amongst Leathesia, R.M.N.H., St. 0. 15, 1962; San Vincente, Peninsula del Grove, Ria del Arosa, 42⁰ 34’ N, 
8⁰ 53’ W (RMNH.CRUS.17485). 
1 stage 7 ♂; R.M.N.H., St. 0. 90,1967; Punta San Vincente del Grove, 42⁰ 34’ N, 8⁰ 53’ W (RMNH.CRUS.17486). 
1 stage 8 ♂ (7 mm), 1 stage 7 ♀ (5 mm); littoral in Saccorhiza, 1962; San Vincente, 42⁰ 34’ N, 8⁰ 53’ W 
(RMNH.CRUS.17489). 
1 stage 8 ♂, 2 stage 7 ♀♀, 1 juv; 0-1 m, 1963; San Vincente, Peninsula dell Grove, 42⁰ 34’ N, 8⁰ 53’ W 
(RMNH.CRUS.17491). 
1 stage 8 ♂, 77 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Pedreira, Galicia, 43° 
33' N, 8° 16' W. 
1 stage 8 ♂, 121 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Barizo, Galicia, 43° 
19' N, 8° 52' W. 
6 stage 6-8 ♂♂, 32 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Muxía, Galicia, 
43° 5' N, 9° 13' W. 
No specimens available, but a clear photograph by Guerra-Garcia shows a stage 8 ♂♂ from Tarifa island, Spain, 36⁰ 00’ 
N, 5⁰ 36’ W. For detailed habitat information and number of individuals refer to Izquierdo et al. (2011), Guerra-García 
et al. (2011), Guerra-García et al. (2012), Torrecilla-Roca and Guerra-García (2012). 

Portugal 
2 stage 8 ♂♂, 45 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Buarcos, Portugal, 
40° 10' N, 8° 54' W. 
8 stage 8 ♂♂, 6 stage 8 ♀♀, 80 juvs; intertidal rocky shores among algae, in barnacles and in crevices, during low tide, 
P. Vieira, 2015; Buarcos, Portugal, 40° 10' N, 8° 54' W. 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2015; Agudela, Portugal, 41° 14' N, 8° 43' W. 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Praia Vale dos Homens, Portugal, 37° 22' 
N, 8° 50' W. 
3 juvs, intertidal rocky shores among algae during low tide, P. Vieira, 2011; Peniche, Portugal, 39° 22' N, 9° 22' W. 
18 juv; among algae, F.O. Costa, 2012; Praia Norte, Portugal, 41° 41' N, 8° 50' W. 
4 juv; among algae, F.O. Costa, 2014; Sines, Portugal, 38°28' N, 8°59' W. 
2 juv; among algae, F.O. Costa, 2012; Vila do Conde, Portugal, 41°21' N, 8°45' W. 

Morocco (NW Africa) 
1 ♀ stage 7; Very smooth, no hairs, no keel on pleotelsonic dome, foramen right shape. Label is in Dutch. Station 30 - 
found 23 km from Rabat (33⁰ 58’ N, 6⁰ 50’ W), NW Morocco, Casablanca. 20 October 1974. RMNH.CRUS.1.7450. 
2 stage 7 ♂♂; H. Gantès, 1949; Témara, 33⁰ 55’ N, 6⁰ 54’ W (RMNH.CRUS.1.7451). 
2 stage 8 ♂♂, 1 stage 6 ♂, 19 ♀♀ and juvs; among Laminaria, P. Vieira, 2015; El Jadida, Morocco, 33° 14' N, 8° 28' W. 
1 stage 8 ♀; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Akhfenir, Morocco, 28° 6' N, 12° 3' 
W. 
2 stage 8 ♂♂, 11 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Insouane, Morocco, 
30° 50' N, 9° 49' W. 
1 stage 8 ♂, 30 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Essaouire, Morocco, 
31° 30' N, 9° 46' W. 
 
Dynamene bifida Torelli, 1930 
Mediterranean 

Spain 
1 stage 7 ♂, 1 ♀; under stones 0.5 m, D.M. Holdich, 1985; Pueblo Pier, Mojacar, Spain, 37⁰ 8’ N, 1⁰ 49’ E 
(RMNH.CRUS.1.7574). 

France 
1 stage 8 ♂, 1 stage 7 ♂, 1 stage 8 ♀; rocky shore, between seaweed, 0-1 m, L.B. Holthuis, 1955; Banyuls Marine 
Laboratory, France, 42⁰ 29’ N, 6⁰ 6’ E (RMNH.CRUS.1.7526). 
1 stage 8 ♂, 1 stage 7 ♂, 1 stage ♂ 6, 3 stage 7 ♀♀; 0-1m deep, near lab, L.B. Holthuis, 1955; Banyuls-sur-Mer, France 
42⁰ 29’ N, 3⁰ 7’ E (RMNH.CRUS.1.7496). 
5 stage 8 ♂♂ (4-6 mm), 4 stage 8 ♀♀; rocky shore, between seaweed, 0-1 m, L.B. Holthuis, 1957; Banyuls-sur-Mer, 
France, 42⁰ 29’ N, 6⁰ 6’ E (RMNH.CRUS.1.7498). 
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Italy 
2 stage 8 ♂♂ (one back end, likely to be >7 mm total length), 2 stage 7 ♂♂, 3 ♀♀; 1.0 m under stones, D.M. Holdich, 
1969; Ischia island, Bay of Naples, Italy, 40⁰ 44' N, 13⁰ 56' E (RMNH.CRUS.1.7525). 
1 stage 8 ♂ (front end only), 2 stage 8 ♀♀; amongst shallow-water Hydroides colony, D.M. Holdich, 1967; Mergellina, 
Bay of Naples, Italy, 40⁰ 49’ N, 14⁰ 13’ E (RMNH.CRUS.1.7592). 

Turkey 
1 stage 8 ♂ (4.5 x 2 mm), 1 ♀ (3.2 x 1.75); intertidal and shallow-water algae and other habitats, F. Kirkim, mid-1990s; 
central location of Aegean coast at Izmir, (RMNH.CRUS.1.7659). 
In addition, specimens of D. bifida were examined by DMH from Corfu (39⁰ 36’ N, 19⁰ 49’ E) during the period 1964-
1970 (Holdich 1970), but no further details are available. 
 
Dynamene edwardsi (Lucas, 1849) 
Atlantic 
Azores (Portugal) 
1 stage 8 ♂ (3 mm), 2 stage 7 ♂♂, 2 stage 8 ♀♀ (3 mm), 6 stage 7 ♀♀ (2.8 mm), 9 juvs; rocky shore with deep tide 
pools, Tydeman Azores Exp. 1981; CANCAP-V. Stat. 5.K15, south-east coast Corvo, south of Rosario, 39° 40’ N, 31° 07’ 
W (RMNH.CRUS.1.7452). 
3 stage 8 ♂♂ (4 mm), 6 stage 7 ♂♂, 12 stage 7 ♀♀ (3 mm), 1 juv; Tydeman Azores Exp. 1981; CANCAP-V. Stat. 5.K10, 
north coast São Jorge, Faja da Caldeira, 38° 38’ N, 27° 56’ W (RMNH.CRUS.1.7453). 
1 stage 8 ♂, 1 stage 7 ♂, 5 ♀♀, 1 juv, (plus one Campecopea lusitanica); rock flat with holes and tide pools, much algae, 
Tydeman Azores Exp. 1981; CANCAP-V. Stat. 5.KO2, east coast Santa Maria, Baia, S. Lourence, 36° 56’ N, 25° 06’W 
(RMNH.CRUS.1.7460). 
1 stage 8 ♂ (3.5 mm), 1 stage 8 ♀; tide pools and fissures with strong currents, 2 m deep, Tydeman Azores Exp. 1981; 
CANCAP-V, Stat. 5.KO1, Formigas, 37° 16’ N, 24° 47’ W (RMNH.CRUS.1.7456). 
1 stage 8 ♂ (3.5 mm); rocky shore with large protected pool and several smaller pools, all connected with the sea by 
crevices, considerable growth of algae, Hartog and Lavaleye, 1979; Terceira, south coast, west of Angra do Heroismo, 
between Baia de Vila Maria and São Mateus da Calheta. Stat. 22, 38° 39’ N, 27° 15’ W (RMNH.CRUS.1.7454). 
1 stage 8 ♂ (4 mm); rocky shore collecting and snorkling, Hartog and Lavaleye, 1979; Pico, south coast, Lages harbour, 
Azores, 38° 24’ N, 28° 15’ W (RMNH.CRUS.1.7457). 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Ponta da Ferraria, São Miguel, 37° 51' N, 
25° 51' W. 
2 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Mosteiros, São Miguel, 37° 54' N, 25° 49' 
W. 

Madeira (Portugal)  
4 stage 8 ♂♂, 1 stage 7 ♀, 1 stage 8 ♀; rocky littoral/sublittoral with boulders, snorkling, ONVERSAAGD-Madeira-
Morokko Exp., 1976; south coast of Madeira, Funchal west of harbour, 32° 44’ N, 16° 44’ W (RMNH.CRUS.1.7471). 
1 stage 7 ♂, 1 stage 6 ♂, 2 ♀♀, 1 juv; polluted rocky littoral, tide pools, crevices, Tydeman-Madeira-Mauritania Exp., 
1978; Stat 3.KO2-CANCAP-III, south coast of Madeira, Funchal, 32° 38’ N, 16° 56’ W (RMNH.CRUS.1.7473). 
1 stage 8 ♂, 2 stage 8 ♀♀, (plus one Cymodoce sp.); rocky littoral, pools, shallow sublittoral, Tydeman-Madeira-
Mauritania Exp. 1978; Stat. 3, KO1-CANCAP-III, south-east coast of Madeira, Caniçal, 32° 44’ N, 16° 44’ W 
(RMNH.CRUS.1.7474). 
1 stage 8 ♂ (4 mm by 2mm); shore-collecting, snorkling and diving, depth 0-22 m, ONVERSAAGD-Madeira-Morocco 
Exp., 1976; Stat. 14 south-east coast of Madeira near Caniçal, 32° 44’ N, 16° 44’ W (RMNH.CRUS.1.7475). 
2 stage 8 ♂♂ (4 mm by 2mm), 1 stage 7 ♂, 1 ♀; polluted rocky littoral pools, Tydeman-Madeira-Mauritania Exp., 1978; 
Stat 3-KO3-CANCAP III, south coast of Madeira, Funchal, west of harbour pier 32° 38’ N, 16° 58’ W 
(RMNH.CRUS.1.7476). 
7 ♀♀ and juvs; rocky littoral, pools, shallow sublittoral, Tydemena-Madeira-Mauritania Exp., 1978; Stat. 3.KO1-
CANCAP-III, south-east coast of Madeira, Caniçal, 32° 44’ N 16° 44’ W (RMNH.CRUS.1.7477). 
Many specimens, including stage 8 ♂♂; rocky littoral, pools, shallow sublittoral, Tydeman-Madeira-Mauritania Exp., 
1978; Stat. 3.KO1-CANCAP-III, south-east coast of Madeira, Caniçal, 32° 44’ N, 16° 44’ W (RMNH.CRUS.1.7478). 
17 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Porto dos Frades, Porto Santo, 
33° 4' N, 16° 17' W. 
161 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Reis Magos, Madeira, 32° 38' N, 
16° 49' W. 
2 stage 8 ♂♂, 159 ♀♀; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Ponta da Cruz, Madeira, 
32° 37' N, 16° 56' W. 
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Portuguese Museum of Natural History and Science (MUHNAC) collection: 
19 ♀♀ and juvs; intertidal; EMEPC/M@rBis/Selvagens 2010 Mission Report, 2010; Selvagem Grande, 30⁰ 8’ N, 15⁰ 52’ 
W (M@rBis__001450; M@rBis__001452; M@rBis__001417; M@rBis__000031). 
2 juvs; intertidal; EMEPC/M@rBis/Selvagens 2010 Mission Report, 2010; Selvagem Pequena, 30⁰ 2’ N, 16⁰ 1’ W 
(M@rBis__000267; M@rBis__000929). 

Canary Islands (Spain) 
2 ♀♀; empty barnacle tests amongst tufted coralline algae on mid-shore lava rocks, D. M. Holdich, 2002; Playa Blanca, 
Lanzarote, 28⁰ 51’ N, 13⁰ 49’ W (RMNH.CRUS.1.7559). 
1 stage 8 ♂; rocks, muddy, polluted littoral, Tydeman-Selvagens-Canary Is. Exp. 1980; Sta. 4.KO2: CANCAP IV, Las 
Palmas - north coast of Gran Canaria, 28° 9’ N, 15° 26’ W (RMNH.CRUS.1.7463). 
1 stage 8 ♂ (4 mm); rocky littoral, Tydeman-Cancap-II Canary Is. Exp. 1977; Stat. K13, west coast of Fuerteventura 
near Punta Jandia, 28° 4’ N, 14° 30’ W (RMNH.CRUS.1.7464). 
1 ♀; rocks, tide pools, sandy bay, sea-grass, depth to 5 m, Tydeman - Selvagens-Canary Is. Exp. 1980; Stat. KO6: 
CANCAP IV, Arinaga, east coast of Gran Canaria, 27° 51’ N, 15° 24’ W (RMNH.CRUS.1.7466). 
2 stage 8 ♂♂ (4.5 mm by 2 mm), one ♀; rocky shore, tide pools, shallow sandy bay, 0-2 m, Tydeman-Selvagens-Canary 
Is. Exp. 1980; Stat 4. K12: CANCAP IV, Arrecif - south-east coast of Lanzarote, 28° 57’ N, 13° 33’ W 
(RMNH.CRUS.1.7467). 
1 stage 7 ♂; rocky shore with tide flat and pools, depth 0-4 m, Tydeman-Selvagens-Canary Is. Exp. 1980; Stat. 4.K13 
CANCAP IV, Rada de Arrieta - east coast of Lanzarote, 29° 9’ N, 13° 25’ W (RMNH.CRUS.1.7468). 
3 stage 8 ♂♂, 1 stage 8 ♀; littoral sheltered rocky coast, rockpools and skindiving to 6 m, CANCAP-II: Tydeman Canary 
Is. Exp. 1977; Stat K2, Puerto de Mogan, Gran Canaria, 27° 49’ N, 15° 50’ W (RMNH.CRUS.1.74693). 
93 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; La Fajana, La Palma, 28° 50' N, 
17° 47' W. 
31 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; La Salemera, La Palma, 28° 34' N, 
17° 45' W. 
1 stage 8 ♂, 78 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; El Faro, La Palma, 
28° 27' N, 17° 51' W. 
25 stage 6-8 ♂♂, 282 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Bañaderos, 
Gran Canaria, 28° 8' N, 15° 32' W. 
2 stage 8 ♂♂, 99 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Caleta, Gran Canaria, 
28° 9' N, 15° 41' W. 
2 stage 6-8 ♂♂, 63 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Playa Melenara, 
Gran Canaria, 27° 59' N, 15° 22' W. 
2 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2015; Arenas Blancas, El Hierro, 27°46' N, 18° 7' 
W. 
4 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2015; Los Sargos, El Hierro, 27°47' N, 18° 0' W. 
3 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2015; Los Cristianos, Tenerife, 28° 2' N, 16°42' 
W. 
1 stage 7 ♂, 5 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2015; Mal Paso, Tenerife, 28°24' N, 
16°17' W. 

Portugal 
14 stage 8 ♂♂, t33 stage 8 ♀♀, 10 ♀♀; upper shore sandstone crevices (with Campecopea hirsuta) and mid-shore 
barnacles, D. M. Holdich, 1981; Dona Ana, Algarve, Portugal, 37⁰ 6’ N, 8⁰ 40’ W (RMNH.CRUS.1.7567). 
1 stage 8 ♂, 1 ♀, 1 juv; amongst mussels on breakwater at mid-tide, D.M. Holdich, 1981; Villamoura, Algarve, Portugal, 
37⁰ 5’ N, 8⁰ 7’ W (RMNH.CRUS.1.7568). 
11 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Peniche, Portugal, 39° 22' N, 9° 
22' W. 
11 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Dona Ana, Algarve, Portugal, 37° 
5' N, 8° 40' W. 
1 stage 8 ♂, 1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Arrifes, Algarve, Portugal, 37° 
4' N, 8° 16' W. 
6 stage 6-8 ♂♂, 25 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Ingrina, Algarve, 
Portugal, 37° 2' N, 8° 52' W. 
2 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Praia Vale dos Homens, Portugal, 37° 22' 
N, 8° 50' W. 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Buarcos, Portugal, 40° 10' N, 8° 54' W. 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Berlengas, Portugal, 39° 24' N, 9° 30' W. 
1 juv; among algae, F.O. Costa, 2014; Sines, Portugal, 38° 28' N, 8° 59' W. 
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Spain 
1 ♀; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Muxía, Galicia, Spain, 43° 5' N, 9° 13' W. 
No specimens available, but a clear photograph by Guerra-Garcia shows a stage 8 ♂♂ from Tarifa island, Spain, 36⁰ 00’ 
N, 5⁰ 36’ W. For detailed habitat information and number of individuals refer to Izquierdo et al. (2011), Guerra-García 
et al. (2011), Guerra-García et al. (2012), Torrecilla-Roca et al. (2012). 

Morocco (NW Africa) 
1 stage 8 ♂; from fouling organisms on side of ship, H. Zibrowius, 1980s; Tanger (Tangiers) Harbour Tangiers, 35⁰ 53’ 
N, 5⁰ 30’ W (RMNH.CRUS.1.7571). 
1 stage 8 ♂, 29 juvs and ♀♀ and juvs; among algae in pools, P. Vieira, 2015; Arzila, Morocco, 35° 27' N, 6° 2' W. 
1 stage 8 ♂, 1 juv; intertidal rocky shores among algae, P. Vieira, 2015; El Jadida, Morocco, 33° 14' N, 8° 28' W. 
3 stage 6-8 ♂♂, 16 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Tarfaya, Morocco, 
27° 54' , 12° 57' W. 
2 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Insouane, Morocco, 30° 50' N, 9° 49' W. 

Mauritania (Western Africa) 
Monod’s (1923) description of D. hanseni from Port Étienne (now Nouadhibou) (20⁰ 56’ N, 17⁰ 2’ W) is clearly D. 
edwardsi. Monod’s specimen (Museum National d’Histoire Naturelles, Paris collection) was seen and verified by DMH. 

Mediterranean 

Spain 
1 stage 8 ♂, 1 ♀; no details of habitat, H. Zibrowius, 1980s; Alicante, Spain, 38⁰ 20’ N, 0⁰ 29’ E (RMNH.CRUS.1.7572). 
1 stage 7 ♀ (4.5 mm); no habitat details, L.B. Holthuis, 1949; Baai van Cadaqués, Casa Zariguiey, Spain, 42⁰ 17’ N, 3⁰ 
15’ E (RMNH.CRUS.1.7494). 
1 stage 7 ♀; no habitat details, J. Castelló, 1983; Cala Morell, Menorca, Spain, 40⁰ 3’ N, 3⁰ 53’ E (RMNH.CRUS.1.7577). 
1 stage 7 ♂; no habitat details, J. Castelló, 1984; Cala Olivera, Ibiza, Spain, 38⁰ 57’ N, 1⁰ 24’ E (RMNH.CRUS.1.7581). 

France 
9 stage 8 ♂♂, 2 stage 7 ♂♂, 1 stage 6 ♂, 15 ♀♀, 10  juvs; 5-6 m, H. Zibrowius, 1980s; Ponteau, nr Marseille, 43⁰ 22’ N, 
5⁰ 76’ E, and Marseille, France -  43⁰ 17’ N, 5⁰ 22’ E (RMNH.CRUS.1.7586). 
1 stage 7 ♂, 1 stage 8 ♀, 4 ♀♀, 2 juvs; from shallow-water Cystoseira, I. Gordon, 1952; Banyuls-sur-Mer, France, 42⁰ 
29’ N, 3⁰ 7’ E (RMNH.CRUS.1.7587). 
4 stage 8 ♂♂, 2 stage 7 ♂♂, 3 ♀♀, 1 stage 8 ♀ (one male 5.5 mm by 3 mm, one female 4 mm by 2.2 mm); 0-1 m depth, 
1957; Port Vendres, south of Perpignan, France, 43⁰ 31’ N, 3⁰ 7’ E (RMNH.CRUS.1.7497). 
2 stage 8 ♂♂, intertidal on artificial hard surfaces in docks, A. Marchini, 2014; La Grande Motte, France, 43°33' N 4° 
5' W. 

Monaco 
1 stage 7 ♂, one juv.; 1-2 m, 1952; Baiede Garnoles, Monaco, 43⁰ 44’ N, 7⁰ 23’ E (RMNH.CRUS.1.7500). 

Italy 
2 stage 8 ♂♂ (5.0 mm), 2 stage 7 ♂♂, 3 ♀♀; shallow water crevices and empty barnacle tests, D.M. Holdich, 1967; 
Mergellina Harbour, Naples, Italy, 40⁰ 49' N, 14⁰ 13' E (RMNH.CRUS.1.7522). 
1 stage 7 ♂, 2 ♀♀, 5 juvs; no habitat details, H. Zibrowius, 1980s; Vado Ligure, Gulf of Genova, Italy, 44⁰ 16’ N, 8⁰ 26’ 
E (RMNH.CRUS.1.7590). 
2 stage 8 ♂♂, 5 stage 7 ♂♂, 4 stage 8 ♀♀, 22 ♀♀ and juvs; from shallow-water Hydroides colony, Cystoseira and 
Sargassum, D. M. Holdich, 1967; V. Galloti, Mergellina, Bay of Naples, Italy, 40⁰ 49’ N, 14⁰ 13’. Two ♀♀ added to this 
vial; no habitat details, E. Fresi, 1967; Capri island, Bay of Naples, Italy, 40⁰ 33’ N, 14⁰ 13’ E (RMNH.CRUS.1.7593). 
12 stage 8 ♂♂, 8 ♀♀; intertidal on artifical hard surfaces in docks, J. Ferrario and A. Marchini, 2014; Genoa Harbour, 
Italy, 44⁰ 24’ N, 8⁰ 55’ E (RMNH.CRUS.1.7595). 
10 stage 8 ♂♂, 5 stage 8 ♀♀, 2 ♀♀; intertidal on artifical hard surfaces in docks, J. Ferrario and A. Marchini, 2014; Santa 
Margherita Ligure docks, Italy, 44⁰ 19’ N, 9⁰ 12’ E (RMNH.CRUS.1.7596). 
2 stage 8 ♂♂, 2 stage 7 ♂♂, 2 ♀♀; walls of canal, R. Sconfietti, 1982-83; Basino di San Marco and Porto di Lido, Venice, 
Italy, 45⁰ 26’ N, 12⁰ 18’ E (RMNH.CRUS.1.7524). 
11 stage 8 ♂♂, 4 stage 7 ♂♂, 3 stage 8 ♀♀; 5 females, 1 juv; walls of canal, R. Sconfietti, 1982-83; Basino di San Marco 
and Porto di Lido, Venice, Italy, 45⁰ 26’ N, 12⁰ 18’ E (RMNH.CRUS.1.7597). 
4 stage 8 ♂♂, 2 stage 7 ♂♂, 1 stage 6 ♂, 5 stage 8 ♀♀, 6 ♀♀, 1 juv; 0.5 m, brown and red algae on rocks, U. Schieke 
and E. Fresi, 1968, 1969, 1970; Carta Romana, Castello and below Ecological Laboratory, Ischia island, Bay of Naples, 
Italy, 40⁰ 44’ N, 13⁰ 57’ E (RMNH.CRUS.1.7603). 
5 stage 8 ♂♂, 2 stage 6 ♂♂, 8 juvs; intertidal on artificial hard surfaces in docks, J. Ferrario and A. Marchini, 2014; 
Marina of Porto Retondo, Sardinia, Italy, 41° 1' N 9°32' W. 
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1 stage 8 ♂; intertidal on artificial hard surfaces in docks, J. Ferrario and A. Marchini,  2014; Marina of Castelsardo, 
Sardinia, Italy, 40° 54' N 8°42' W. 
1 stage 8 ♂, 1 stage 6 ♂, 1 stage 8 ♀, 28 juvs; intertidal on artificial hard surfaces in docks, J. Ferrario and A. Marchini, 
2013; Harbour of Leghorn, Tuscany, Italy, 43°33' N 10°17' W. 
4 stage 8 ♂♂, 3 stage 6 ♂♂, 2 stage 8 ♀♀, 11 juvs; intertidal on artificial hard surfaces in docks, P. J. Ferrario and A. 
Marchini, 2013; Harbour of la Spezia, Liguria, Italy, 44° 6' N 9°54' W. 

Croatia 
2 stage 8 ♂♂, intertidal on artifical hard surfaces in docks, P. M. Maric, 2014; Marina Kornati, Croatia, 43°56' N 15°26' 
W. 

Greece 
1 stage 8 ♂; no habitat details; H. Zibrowius, 1980s; Rhodes island, Greece, 36⁰ 25’ N, 28⁰ 13’ E (RMNH.CRUS.1.7616). 
2 stage 8 ♂♂, 3 stage 7 ♂♂, seven ♀♀; under rocks in 20-30 cm water, D.M. Holdich, 2001; Lindos, Rhodes island, 
Greece, 36⁰ 5’ N, 28⁰ 5’ E (RMNH.CRUS.1.7642). 
3 stage 7 ♂♂, 10 ♀♀ and juvs; variety of algae, e.g. Cystoseira, Sargassum, from 0.5 m – 33 m, D.A. Jones, 1967; 
Emborios Bay and Cathedral Rock, Chios island, Greece, 38⁰ 11’ N, 26⁰ 1’ E (RMNH.CRUS.1.7646). 
1 stage 7 ♂, 3 ♀♀; shallow water algae, D.A. Jones, 1967; Emborios Bay, Chios island, Greece, 38⁰ 11’ N, 26⁰ 1’ E 
(RMNH.CRUS.1.7532). 

Turkey 
2 stage 8 ♂♂ (4.5 x 2.3 mm, 5 x 2.5 mm), 1 stage 8 ♀; 1 stage 7 ♀ (4.5 x 2.2 mm); intertidal and shallow-water algae 
and other habitats, F. Kirkim, 1995; Aegean coast at Izmir, 38⁰ 28' N, 27⁰ 6' E (RMNH.CRUS.1.7658). 

Malta 
2 stage 8 ♂♂, one ♀; 0.5-1 m, rocky seabed, L. Bonnici, 2010; Birzebbugh, Malta, 35⁰ 47’ N, 14⁰ 31’ E 
(RMNH.CRUS.1.7663). 

British Natural History Museum (BMNH) collection: 
1 stage 7 ♂; fenders; Valetta Harbour, 35⁰ 54’ N, 14⁰ 30’ E. 

Israel 
2 stage 8 ♂♂, 1 stage 7 ♂, 2 ♀♀; littoral algae from rocky shore, L. Fischelson, 1976; Acre north of Haifa, Israel, 32⁰ 55' 
N, 35⁰ 4' E (RMNH.CRUS.1.7523). 
1 stage 7 ♂, 4 ♀♀, 1 juv; littoral algae, L. Fischelson, 1976; Rosh HaNikra, Haifa, Israel, 33⁰ 5' N, 35⁰ 6' E 
(RMNH.CRUS.1.7647). 
1 stage 8 ♂, 3 stage 6/7 ♂♂, 3 ♀♀ (one 3.5 x 1.5 mm), 5 juvs; algae on rocky shore (Ulva, Jania), T. Haran, 1977-78; 
Mikhmoret, Israel, 32⁰ 24' N, 34⁰ 52' E (RMNH.CRUS.1.7648). 
21 stage 8 ♂♂ (4 x 1.75 mm – 3 x 1.5 mm), 17 stage 6/7 ♂♂, 1 stage 8 ♀39 ♀♀, 4 juvs; littoral algae (Colpomenia, 
Cystoseira, Hypnea, Laurencia, Jania), from rocky shore, L. Fischelson, 1976; Acre, north of Haifa, Israel, 32⁰ 55' N, 35⁰ 
4' E (RMNH.CRUS.1.7651). 
1 stage 8 ♂; littoral algae (Acanthophora), L. Fischelson, 1976; Bat-Yam, south of Tel Aviv, Israel, 32⁰ 5 N, 34⁰ 48' E 
(RMNH.CRUS.1.7653). 

Egypt 
2 stage 7 ♂♂, 5 ♀♀; no habitat details, M.M. Atta, 1981; Alexandria, Egypt, 31⁰ 9’ N, 29⁰ 55’ E (RMNH.CRUS.1.7666). 

Tunisia 
No specimen available, but a clear 2009 photograph by R. García, shows a stage 8 ♂ from Tunis, Tunisia, 36⁰ 50’ N, 
10⁰ 14’ E. 

Algeria 
Naesea edwardsi Lucas, 1849. 
No specimens available, but description by Lucas (1849) is clearly of this species. Precise co-ordinates are not known, 
so approximate ones from Algiers harbour were used: 36⁰ 48’ N, 3⁰ 13’ E. 

Suez Canal 
Glynn’s (1972) record for the Suez Canal at Tis’ A, which is close to Suez and the entrance to the Gulf of Suez, is clearly 
of this species based his figures. 29⁰ 58’ N, 32⁰ 32’ E. 

Red Sea 
Egypt-Israel 
1 stage 8 ♂ (4 x 1.75 mm), 1 ♀, one juv.; littoral algae (Padina, Galaxauma), L. Fischelson, 1976; Eilat Port, Israel, 29⁰ 
31' N, 34⁰ 56' E, and Dahab (Egypt) further south on north coast of Gulf of Aqaba, 28⁰ 30' N, 34⁰ 30' E 
(RMNH.CRUS.1.7665). 
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Dynamene magnitorata Holdich, 1968 
Atlantic 

Azores (Portugal) 
1 stage 8 ♂ (damaged), 1 stage 7 ♂, 4 ♀♀, 3 juvs; A. Costa (University of the Azores, Ponta Delgada, S. Miguel), 1995 
and M. Jones M. (2 juveniles) (University of Plymouth), 1996; São Miguel Island, 37⁰ 46’ N, 25⁰ 29’ W 
(RMNH.CRUS.1.7555). 
3 stage 8 ♀♀; from shallow sub-tidal empty Megabalanus azoricus tests (along with Eurydice affinis and amphipods), 
scuba diving, A. Costa, 2010; São Miguel Island, 37⁰ 46’ N, 25⁰ 29’ W (RMNH.CRUS.1.7556). 
 2 ♀♀; rocky cove with tide pools, cobble beach, subtidal algae, Tydeman. Azores Exp. 1981, CANCAP-V. Stat. 5.KO3, 
1981; south coast of Santa Maria, 36° 57’ N, 25° 07’ W (RMNH.CRUS.1.7455). 
1 stage 8 ♂ (4 mm), 1 stage 7 ♀ (3 mm), 1 juv; rocky shore collecting, snorkling, Hartog and Lavaleye, 1979. Pico, south 
coast, Lages harbour, 38° 24’ N, 28° 15’ W (RMNH.CRUS.1.7457). 
2 stage 7 ♂♂, 1 stage 6 ♂, 3 ♀♀, 7 juvs, plus 1 Cymodoce sp; Depth approx. 10-20 m, sheltered bay, Tydeman Azores 
Exp, CANCAP-V. Stat. 5. DO1, 1981; south coast of São Miguel, 37° 43’ N, 25° 30’ W (RMNH.CRUS.1.7461). 
2 ♀♀, 4 juvs; Tydeman Azores Exp. 1981, CANCAP-V. Stat. 5. DO7, 1981; rocky coast, south of harbour, south-east 
coast Faial near Horta, 38° 31’ N, 28° 37’ W (RMNH.CRUS.1.7462). 
1 stage 8 ♂; Tydeman Azores Exp. 1981, CANCAP-V. Stat. 5.D11, 1981; west entrance to small bay, north coast of 
Flores, 39° 31’ N 31° 12’ (RMNH.CRUS.1.7459). 
1 stage 8 ♂ (4 mm), 1 stage 7 ♀; depth 20 m, cobbles with algae, van Veen grab; Tydeman Azores Exp. 1981, CANCAP-
V. Stat. 5.116, 1981; north of Sao Jorge, 38° 38’ N 27° 55’ (RMNH.CRUS.1.7458). 
1 stage 8 ♂, 42 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Porto Martins, 
Terceira, 38° 40' N, 27° 3' W. 
2 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2015; Praia Formosa, Santa Maria, 36° 56' N, 25° 
5' W. 
2 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Cinco Ribeiras, Terceira, 38° 40' N, 27° 19' 
W. 
1 stage 6 ♂, 22 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2015; Ribeira Chã, São 
Miguel, 37° 42' N, 25° 29' W. 

British Natural History Museum collection: 
♂♂, ♀♀, juvs, lot of samples; habitat and site data apparently available, 1959; Terceira Is, 38° 43’ N, 27° 13’ W – general 
co-ordinates for island. 

Museum National d’Histoire Naturelle, Paris collection: 
3 stage 8 ♂♂, 1 stage 8♀, 2 ♀♀; J. Charcot Biacores, 1971; Azores – no other details, IS 770. 
1 stage 8 ♂, 2 ♀♀; J. Charcot Biacores, 1971; Azores – no other details, IS 780. 

Madeira (Portugal) 
1 ♀; Tydeman - Selvagens-Canary Is. Exp. Stat. 4. K26: CANCAP IV, Porto Santo (this is an island north of Madeira), SW 
coast Baixo, 33° 04’ N, 16° 20’ W (RMNH.CRUS.1.7465). 
Numerous ♀♀ and juvs, plus some Cymodoce sp. and other crustaceans; rocky littoral pools, shallow sublittoral, 
Tydeman - Madeira-Maritania Exp. Stat. 3.KO1-CANCAP-III, SE coast of Madeira, Caniçal, 1978; 32° 44’ N, 16° 44’ W 
(RMNH.CRUS.1.7472). 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Porto dos Frades, Porto Santo, 33° 4' N, 16° 
17' W. 

Canary Islands (Spain) 
2 stage 8 ♂♂ (4 mm x 1.75 mm); surface dip net, CANCAP-II: Tydeman Canary Is. Exp. Stat. 17, 1977; south of 
Fuerteventura, Punta Jandia, 27° 39’ N, 14° 22’ W (RMNH.CRUS.1.7468). 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2011; La Fajana, La Palma, 28° 50' N, 17° 47' W. 
2 stage 8 ♂♂, 1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2011; El Faro, La Palma, 28° 27' N, 
17° 51' W. 

England 
1 ♀; red seaweed in rockpool, M. Storey, 2011; Newton’s Cove, Weymouth, Dorset 50⁰ 40’ N, 2⁰ 30’ W 
(RMNH.CRUS.1.7547). 

Channel Islands 
4 stage 6/7 ♂♂, 2 stage 8 ♂♂ (one 5 x 2.2 mm), 5 ♀♀; lower shore weed (Chondrus crispus) sponge, Halichondria, 
channels (males), D. M. Holdich, 1982; Guernsey, L’Eree, Rocquaine Bay, 49⁰ 26’ N, 2⁰ 39’ W (RMNH.CRUS.1.7553). 
2 stage 8 ♂♂ (one 4 mm long), 8 stage 7 ♂♂, 18 ♀♀, 5 juvs; rubbings from red algae on lower shore, D. M. Holdich, 
1982 Petit Bot Bay, Guernsey, 49⁰ 25’ N, 2⁰ 34’ W (RMNH.CRUS.1.7554). 
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France 
3 stage 8 ♂♂ (5.0 mm), 1 stage 8 ♀, 2 stage 7 ♀♀; rocky shore crevices, D. M. Holdich, 1975; Roscoff Marine Station, 
48⁰ 43’ N, 3⁰ 59’ W (RMNH.CRUS.1.7520). 
1 stage 8 ♂, 3 stage 7 ♂♂, 3 ♀♀;  red algae on lower shore, D. M. Holdich, 1988; Trénez, S. Brittany, 47⁰ 47’ N, 3⁰ 42’ 
W (RMNH.CRUS.1.7561). 
1 ♀;  rocky mid-shore weed and crevices, D. M. Holdich, 1988;  Kerfanny, S. Brittany, 47⁰ 47’ N, 3⁰ 43’ W (approx.) 
(RMNH.CRUS.1.7562). 
12 stage 8 ♂♂, 3 stage 7 ♂♂, 4 stage 8 ♀♀, 8 ♀♀ and juvs; empty barnacle test and mid-shore algae, D. M. Holdich, 
1975; Roscoff Marine Station shore, Brittany, 48⁰ 43’ N, 3⁰ 59’ W (RMNH.CRUS.1.7564). 
1 stage 8 ♂, stage 7 ♂♂, many juveniles, H. Nouvel, 1939; Bisdarz, Roscoff, 48⁰ 43’ N, 3⁰ 59’ (approx.) 
(RMNH.CRUS.1.7484). 
1 stage 8 ♂, 1 stage 7 ♀; H. Nouvel, 1952. Grève Santec, Perarhidy, 48⁰ 41’ N, 3⁰ 58’ W (RMNH.CRUS.1.7487). 
1 stage 7 ♀; H. Nouvel, 1952; Roscoff, Térèris, NW France, 48⁰ 43’ N, 3⁰ 59’ W (approx.) (RMNH.CRUS.1.7488). 

Museum National d’Histoire Naturelles, Paris collection: 
1 ♀; Th Monod; Guitec, NW France, IS 678. 
In addition, specimens of D. magnitorata were examined by DMH from the following locations during the period 
1964-1975 (Holdich 1970, 1976) and subsequently: 
Argenton (48° 31' 41" N, 04° 46' 41" W), Barfleur (49° 40' 04" N, 01° 15' 24" W), Brignognan (48° 40' 20" N, 04° 18' 
49" W), Isles de Glénans (47° 17' 37" N, 03° 12' 28" W), Trégaster (48° 50' 32" N, 03° 31' 06" W). 

Portugal 
2 stage 8 ♂♂, 10 stage 7 ♂♂, 7 ♀ and juvs; sub-tidal algae, D. M. Holdich, 1981; Amação de Pêra, Algarve, 37⁰ 6’ N, 8⁰ 
21’ W (RMNH.CRUS.1.7565). 
1 stage 7 ♂, 6 ♀♀ and juvs; sub-tidal algae, D. M. Holdich, 1981; Dona Ana, Algarve, 37⁰ 6’ N, 8⁰ 40’ W 
(RMNH.CRUS.1.7566). 
2 stage 8 ♂♂, 9 stage 6 ♂♂, 192 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; 
Peniche, Portugal, 39° 22' N, 9° 22' W. 
5 ♀♀ and juvs; intertidal rocky shores among algae and in crevices during low tide, P. Vieira, 2014; Peniche, Portugal, 
39° 22' N, 9° 22' W. 
1 juv; intertidal rocky shores among algae during low tide, P. Vieira, 2011; São Pedro Moel, Portugal, 39° 45' N, 9° 1' 
W. 
1 stage 8 ♂, 39 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Dona Ana, Algarve, 
Portugal, 37° 5' N, 8° 40' W. 
52 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Arrifes, Algarve, Portugal, 37° 4' 
N, 8° 16' W. 
1 juv; among algae, F.O. Costa, 2013; Arrabida, Portugal, 38° 28' N, 9° 59' W. 
10 juv; among algae, F.O. Costa, 2012; Praia Norte, Portugal, 41° 41' N, 8° 50' W. 
51 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Buarcos, Portugal, 40° 10' N, 8° 54' W. 
2 juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2014; Berlengas, Portugal, 39° 24' N, 9° 30' W. 

Spain 
1 ♀; mesolittoral, Reboreda, P. (University of Santiago de Compostela, Spain), 1984, 1987, 1988; Puerto Sou, Ria de 
Noi, 42⁰ 43’ N, 8⁰ 59’ W (RMNH.CRUS.1.7570). 
1 stage 8 ♂, 1 stage 7 ♂ 7, 1 stage 7 ♀ (4 mm); 1963; San Vincent, 43⁰ 22’ N, 4⁰ 23’ W (RMNH.CRUS.1.7479). 
1 stage 7 ♂, plus 1 stage 6 ♂ and 1 ♀ D. bidentata; littoral, 1962; Jidorio Pectregoso, west of Is. de Arosa’ Exc. R.M.N.H. 
Sta. 0. 75, 42⁰ 33’ N, 8⁰ 51’ W (RMNH.CRUS.17490). 
3 stage 8 ♂♂, 607 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Pedreira, Galicia, 
Spain, 43°33' N, 8°16' W. 
1 stage 8 ♂, 48 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Barizo, Galicia, Spain, 
43° 19' N, 8° 52' W. 
4 stage 6-8 ♂♂, 132 ♀♀ and juvs; intertidal rocky shores among algae during low tide, P. Vieira, 2011; Muxía, Galicia, 
Spain, 43° 5' N, 9° 13' W. 
No specimens available, but a clear photograph by Guerra-Garcia shows a stage 8 ♂♂ from Tarifa island, Spain, 36⁰ 00’ 
N, 5⁰ 36’ W. For detailed habitat information and number of individuals refer to Izquierdo et al. (2011), Guerra-García 
et al. (2011), Guerra-García et al. (2012), Torrecilla-Roca et al. (2012). 

Morocco (NW Africa) 
4 ♀♀ and juvs; among algae in pools, P. Vieira, 2015; Arzila, Morocco, 35° 27' N, 6° 2' W  

Museum National d’Histoire Naturelle, Paris collection: 
2 stage 8 ♂♂, 5 ♀♀; T. Monod; Fedhala, nr Casablanca, 33⁰ 41’ N, 7⁰ 22’ W, IS 680. 
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Mediterranean 

Spain 
3 stage 8 ♂♂; 0-1 m, H. Zibrowius, 1986; Alicante, 38⁰ 20’ N, 0⁰ 29’ E (RMNH.CRUS.1.7573). 
2 ♂ stage 8, 1 ♀ stage 8, 1 ♀ stage 7; 0.0 m – 20.0 m on a variety of algae, C. Catellanos et al. (University of Alcalá, 
Spain), 1991-1993; Chafarinas Islands, off Mediterranean Morocco, Spanish Territory, 35⁰ 11' N, 2⁰ 25' E 
(RMNH.CRUS.1.7521). 

Monaco 
1 stage 7 ♂ (damaged); 5-6 m, H. Nouvel, 1971; en face de port Fonteveille, 43⁰ 43’ N, 7⁰ 25’ E (RMNH.CRUS.1.7499). 

Italy 
1 stage 8 ♂, 1 ♀ (back end); F. Maggiore, 1975; Ischia Porto 40⁰ 44’ N, 13⁰ 57’ E (RMNH.CRUS.1.7610). Labelled as D. 
bidentata (see Maggiore and Fresi 1984). 

Egypt 
3 stage 8 ♂♂, 2 stage 7 ♂♂, 2 ♀♀, 2 juvs; M. M. Atta, 1981; Alexandria, 31⁰ 9’ N, 29⁰ 55’ E (RMNH.CRUS.1.7668). 

Tunisia 

Museum National d’Histoire Naturelle, Paris collection: 
3 stage 8 ♂♂; T. Monod; Tunis? IS 678. 
 
Dynamene tubicauda Holdich, 1968 
Mediterranean 

Italy 
2 stage 8 ♂♂, 1 stage 8 ♀, 2 ♀♀, 2 juvs; 10 metres, E. Fresi & U. Schieke, 1968; Ischia island, Naples, Italy, 40⁰ 44' N, 
13⁰ 56' E (RMNH.CRUS.1.7531). 
2 stage 8 ♂♂; 12 m and 20 metres on Halimeda, U. Schieke & E. Fresi, E., 1967; Banco S. Croce, Sorrento, Bay of 
Naples, Italy, 40⁰ 37’ N, 14⁰ 22’ E (RMNH.CRUS.1.7594).  
3 stage 8 ♂♂, 2 stage 8 ♀♀, 8 ♀♀, 4 juvs; on Dictyota, Vidalia and Halimeda at 10.5 metres (very muddy) (D.S. 
Pancrazio); 30 metres on sand and coralline fragments (Secca di ischia), U. Schieke & E. Fresi, 1967, 1968, 1969, 1970; 
Ischia island, Italy, 40⁰ 44’ N, 13⁰ 57’ E (RMNH.CRUS.1.7611). 
3 stage 8 ♂♂, 3 stage 7 ♂♂, 1 ♀, one juvenile; 2-5 metres, H. Zibrowius, 1980; Elba island, Italy, 42 ⁰ 47’ N, 10⁰ 08’ E 
(RMNH.CRUS.1.7598). 
From rock scappings and algae at 5-10 metres around Sicily (Italy), Lombardo (1984) recorded 1 stage 8 ♂ from Isola 
Lachea (37⁰ 33’ N, 15⁰ 9’ E) (Catania), 3 stage 8 ♂♂ from Brucoli (37⁰ 16’ N, 15⁰ 11’ E) (Siracusa), and 1 ♀ from 
Calaberdardo (36⁰ 52’ N, 15⁰ 85’ E) (Siracusa). The present authors have not seen the specimens for the present study 
but the published drawings are clearly of this species. 

Malta 
4 stage 8 ♂♂; Posidonia oceanica meadow at 12 m, J. A. Borg, 1998; Mellieha Bay, Malta, 35⁰ 58’ N, 14⁰ 21’ E 
(RMNH.CRUS.1.7664). 
 
Dynamene sp. 
Aegean 
1 stage 8 ♂; found in stomach of black scorpionfish Scorpaena porcus, M. Băcescu, 1982; N.W. Aegean, 40⁰ N, 25⁰ E 
(approx.) (RMNH.CRUS.1.7533). 
1 stage 8 ♂; found in stomach of black scorpionfish Scorpaena porcus, M. Băcescu, 1982; N.W. Aegean, 40⁰ N, 25⁰ E 
(approx.) (RMNH.CRUS.1.7660). 
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Annex 3.2. List of locations where Dynamene specimens were recorded in chapter 3. 

Species present Region Country/Archipelago Location Latitude Longitude 

Dynamene bicolor Black Sea Bulgaria Varna 43°12'52"N 28°00'36"E 
Dynamene bicolor Black Sea Georgia Sukhumi Bay 43°00'00"N 41°00'00"E 
Dynamene bicolor Black Sea Romania Constanta 44°12'41"N 28°38'40"E 
Dynamene bicolor Black Sea Turkey Rýze 41°01'52"N 40°28'23"E 
Dynamene bicolor Black Sea Turkey Sinop 42°00'28"N 35°10'57"E 
Dynamene bicolor Black Sea Turkey Trabzon harbour 41°00'20"N 39°44'14"E 
Dynamene bicolor Mediterranean Sea Croatia Rovinji 45°04'00"N 13°37'60"E 
Dynamene bicolor Mediterranean Sea Egypt Alexandria 31°11'07"N 29°52'32"E 
Dynamene bicolor Mediterranean Sea France Argelès 42°32'11"N 03°03'23"E 
Dynamene bicolor Mediterranean Sea France Banylus-sur-Mer 42°29'14"N 03°07'40"E 
Dynamene bicolor Mediterranean Sea France Calvi 42°34'14"N 08°45'00"E 
Dynamene bicolor Mediterranean Sea France Toulon 43°04'00"N 05°47'50"E 
Dynamene bicolor Mediterranean Sea France Villefranche-Mer 43°42'11"N 07°18'48"E 
Dynamene bicolor Mediterranean Sea France Marseilles 43°16'60"N 05°21'60"E 
Dynamene bicolor Mediterranean Sea Greece Corfu Island 39°36'00"N 19°48'60"E 
Dynamene bicolor Mediterranean Sea Greece Emborious Bay 38°11'01"N 26°00'60"E 
Dynamene bicolor Mediterranean Sea Greece Gerakini Beach 40°15'60"N 23°26'00"E 
Dynamene bicolor Mediterranean Sea Greece Matala 34°59'00"N 24°44'00"E 
Dynamene bicolor Mediterranean Sea Greece Mesolongion 38°22'00"N 21°25'00"E 
Dynamene bicolor Mediterranean Sea Greece Ouranoupolis 40°19'55"N 23°57'60"E 
Dynamene bicolor Mediterranean Sea Greece Sulaora 39°30'35"N 20°15'30"E 
Dynamene bicolor Mediterranean Sea Israel Acre 32°54'60"N 35°04'00"E 
Dynamene bicolor Mediterranean Sea Israel Bat-Yam 32°05'42"N 34°46'23"E 
Dynamene bicolor Mediterranean Sea Israel Michmoret 32°20'14"N 34°51'00"E 
Dynamene bicolor Mediterranean Sea Israel Mikhmoret 32°24'14"N 34°52'00"E 
Dynamene bicolor Mediterranean Sea Israel Palmhim 31°55'00"N 34°42'00"E 
Dynamene bicolor Mediterranean Sea Israel Rosh Hanikva  33°04'56"N 35°06'16"E 
Dynamene bicolor Mediterranean Sea Italy Elba Island 42°47'60"N 10°07'60"E 
Dynamene bicolor Mediterranean Sea Italy Grand Hotel 40°50'00"N 14°15'00"E 
Dynamene bicolor Mediterranean Sea Italy Ischia Island 40°43'56"N 13°57'59"E 
Dynamene bicolor Mediterranean Sea Italy Isola di Bergegge 44°14'00"N 08°26'00"E 
Dynamene bicolor Mediterranean Sea Italy Mergellina 40°49'00"N 14°13'00"E 
Dynamene bicolor Mediterranean Sea Italy Palermo 38°10'60"N 13°20'00"E 
Dynamene bicolor Mediterranean Sea Italy Posillipo 40°47'40"N 14°11'35"E 
Dynamene bicolor Mediterranean Sea Malta Cirkewwa 35°58'42"N 14°19'29"E 
Dynamene bicolor Mediterranean Sea Malta Mellieha Bay 35°58'04"N 14°21'05"E 
Dynamene bicolor Mediterranean Sea Spain Arenal d'en Castell 40°01'30"N 04°10'34"E 
Dynamene bicolor Mediterranean Sea Spain Alicante 38°20'08"N 00°29'13"E 
Dynamene bicolor Mediterranean Sea Spain Botafoc 38°53'60"N 01°26'00"E 
Dynamene bicolor Mediterranean Sea Spain Cadaqués 42°14'25"N 03°12'18"E 
Dynamene bicolor Mediterranean Sea Spain Cala Morell 40°02'60"N 03°53'00"E 
Dynamene bicolor Mediterranean Sea Spain Calla Longa 38°57'16"N 01°31'36"E 
Dynamene bicolor Mediterranean Sea Spain Cap d'Artutx 39°55'44"N 03°49'22"E 
Dynamene bicolor Mediterranean Sea Spain Estany d'es Peix 38°43'04"N 01°25'21"E 
Dynamene bicolor Mediterranean Sea Spain San Antonio 38°58'05"N 01°17'59"E 
Dynamene bicolor Mediterranean Sea Tunisia Tunis Harbour 36°50'00"N 10°13'60"E 
Dynamene bicolor Mediterranean Sea Turkey Antalya 36°52'60"N 30°44'00"E 
Dynamene bicolor Mediterranean Sea Turkey Izmir 38°27'09"N 27°05'50"E 
Dynamene bidentata Atlantic Ocean Canary Islands Bañaderos 28°08'59"N 15°32'24"W 
Dynamene bidentata Atlantic Ocean Canary Islands Tenerife Island 28°02'03"N 16°32'27"W 
Dynamene bidentata Atlantic Ocean Channel Islands Petit Bot Bay 49°25'03"N 02°33'50"W 
Dynamene bidentata Atlantic Ocean Channel Islands Rocquaine Bay 49°25'60"N 02°38'60"W 
Dynamene bidentata Atlantic Ocean England Bovisand 50°19'60"N 04°06'60"W 
Dynamene bidentata Atlantic Ocean England Cape Cornwall 50°07'01"N 05°42'04"W 
Dynamene bidentata Atlantic Ocean England Castle Rocks 50°08'38"N 05°03'40"W 
Dynamene bidentata Atlantic Ocean England Clovelly 50°59'00"N 04°23'00"W 
Dynamene bidentata Atlantic Ocean England Feock 50°11'36"N 05°03'35"W 
Dynamene bidentata Atlantic Ocean England Goodrington Sands 50°24'60"N 03°33'60"W 
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Dynamene bidentata Atlantic Ocean England Gwithian 50°13'42"N 05°23'39"W 
Dynamene bidentata Atlantic Ocean England Helford Passage 50°05'34"N 05°06'07"W 
Dynamene bidentata Atlantic Ocean England Kennack Sands 50°00'00"N 05°10'00"W 
Dynamene bidentata Atlantic Ocean England Ilfracombe 51°12'32"N 04°07'46"W 
Dynamene bidentata Atlantic Ocean England Lizard 49°57'43"N 05°11'54"W 
Dynamene bidentata Atlantic Ocean England Marazion 50°07'00"N 05°27'00"W 
Dynamene bidentata Atlantic Ocean England Mevagissey 50°15'16"N 04°46'01"W 
Dynamene bidentata Atlantic Ocean England Mounts Bay 50°05'35"N 05°22'27"W 
Dynamene bidentata Atlantic Ocean England Mullion Cove 49°59'49"N 05°15'18"W 
Dynamene bidentata Atlantic Ocean England Padstow Bay 50°34'49"N 04°55'20"W 
Dynamene bidentata Atlantic Ocean England Penzance 50°07'00"N 05°31'60"W 
Dynamene bidentata Atlantic Ocean England Portland Harbour 50°34'00"N 02°26'00"W 
Dynamene bidentata Atlantic Ocean England Kimmerridge Bay 50°36'39"N 02°07'00"W 
Dynamene bidentata Atlantic Ocean England Porthleven 50°04'57"N 05°19'21"W 
Dynamene bidentata Atlantic Ocean England Portlooe 50°20'31"N 04°27'38"W 
Dynamene bidentata Atlantic Ocean England Portscatho 50°11'06"N 04°58'15"W 
Dynamene bidentata Atlantic Ocean England Rosenithon 50°02'48"N 05°04'02"W 
Dynamene bidentata Atlantic Ocean England South Milton Sands 50°15'00"N 03°50'60"W 
Dynamene bidentata Atlantic Ocean England St Agnes 50°19'01"N 05°14'02"W 
Dynamene bidentata Atlantic Ocean England St Mawes 50°09'18"N 05°01'20"W 
Dynamene bidentata Atlantic Ocean England St Ives 50°11'60"N 05°28'00"W 
Dynamene bidentata Atlantic Ocean England Treen 50°11'10"N 05°36'05"W 
Dynamene bidentata Atlantic Ocean England Trevelgue 50°25'33"N 05°03'13"W 
Dynamene bidentata Atlantic Ocean England Trevone 50°32'41"N 04°58'53"W 
Dynamene bidentata Atlantic Ocean England Treyarnon 50°31'12"N 05°01'44"W 
Dynamene bidentata Atlantic Ocean England Wembury 50°17'26"N 04°46'46"W 
Dynamene bidentata Atlantic Ocean England Weymouth 50°36'17"N 02°32'12"W 
Dynamene bidentata Atlantic Ocean England Whitesand Bay 50°19'60"N 04°15'60"W 
Dynamene bidentata Atlantic Ocean England Hells Gate Beach 51°10'41"N 04°20'02"W 
Dynamene bidentata Atlantic Ocean England Widermouth 50°47'13"N 04°33'37"W 
Dynamene bidentata Atlantic Ocean France Bay de Morlaix 48°41'45"N 03°53'11"W 
Dynamene bidentata Atlantic Ocean France Brest 48°22'60"N 04°29'00"W 
Dynamene bidentata Atlantic Ocean France Finisterre 48°17'55"N 04°12'43"W 
Dynamene bidentata Atlantic Ocean France Perron-Quirec 48°47'60"N 03°26'00"W 
Dynamene bidentata Atlantic Ocean France Roscoff 48°43'40"N 03°58'09"W 
Dynamene bidentata Atlantic Ocean France Kerfanny 47°51'00"N 03°38'00"W 
Dynamene bidentata Atlantic Ocean France Trénez 47°46'60"N 03°42'00"W 
Dynamene bidentata Atlantic Ocean Ireland Ballycotton 51°49'59"N 08°01'03"W 
Dynamene bidentata Atlantic Ocean Ireland Carrownedin 54°13'55"N 09°05'21"W 
Dynamene bidentata Atlantic Ocean Ireland Cork 51°30'08"N 09°18'11"W 
Dynamene bidentata Atlantic Ocean Ireland Corkagh Beg 54°16'11"N 08°45'17"W 
Dynamene bidentata Atlantic Ocean Ireland Doonbeg 52°44'43"N 09°31'26"W 
Dynamene bidentata Atlantic Ocean Ireland Dungarvan 52°05'30"N 07°32'45"W 
Dynamene bidentata Atlantic Ocean Ireland Fenit 52°17'07"N 09°52'34"W 
Dynamene bidentata Atlantic Ocean Ireland Finvarra 53°08'58"N 09°08'22"W 
Dynamene bidentata Atlantic Ocean Ireland Galway 53°15'60"N 09°03'00"W 
Dynamene bidentata Atlantic Ocean Ireland Garrywilliam 52°18'34"N 10°03'17"W 
Dynamene bidentata Atlantic Ocean Ireland Glengariff 51°44'52"N 09°32'56"W 
Dynamene bidentata Atlantic Ocean Ireland Liscannor 52°56'10"N 09°26'16"W 
Dynamene bidentata Atlantic Ocean Ireland Loughshinny 53°33'39"N 05°58'55"W 
Dynamene bidentata Atlantic Ocean Ireland Mullagh 52°47'31"N 09°29'06"W 
Dynamene bidentata Atlantic Ocean Ireland Rathlee 54°16'49"N 09°03'31"W 
Dynamene bidentata Atlantic Ocean Ireland Roundstone 53°23'36"N 09°51'27"W 
Dynamene bidentata Atlantic Ocean Ireland The Seven Hogs 52°19'33"N 10°01'13"W 
Dynamene bidentata Atlantic Ocean Ireland Valentia 51°53'60"N 10°20'60"W 
Dynamene bidentata Atlantic Ocean Isle of Man Derby Haven 54°04'00"N 04°37'00"W 
Dynamene bidentata Atlantic Ocean Isle of Man Port Erin 54°05'03"N 04°45'39"W 
Dynamene bidentata Atlantic Ocean Isles of Scilly Bryher 49°57'08"N 06°21'54"W 
Dynamene bidentata Atlantic Ocean Isles of Scilly Old Town 49°54'10"N 06°18'13"W 
Dynamene bidentata Atlantic Ocean Isles of Scilly Periglio Bay 49°53'60"N 06°24'00"W 
Dynamene bidentata Atlantic Ocean Isles of Scilly Porth Hellick 49°54'54"N 06°16'47"W 
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Dynamene bidentata Atlantic Ocean Isles of Scilly Smith Sound 49°52'52"N 06°21'59"W 
Dynamene bidentata Atlantic Ocean Isles of Scilly St Agnus 49°53'38"N 06°21'03"W 
Dynamene bidentata Atlantic Ocean Isles of Scilly St Martins 49°58'48"N 06°17'28"W 
Dynamene bidentata Atlantic Ocean Isles of Scilly St Marys 49°55'15"N 06°18'48"W 
Dynamene bidentata Atlantic Ocean Isles of Scilly Tresco 49°56'47"N 06°20'18"W 
Dynamene bidentata Atlantic Ocean Morocco Akhfenir 28°05'51"N 12°03'02"W 
Dynamene bidentata Atlantic Ocean Morocco El Jadida 33°15'51"N 08°30'38"W 
Dynamene bidentata Atlantic Ocean Morocco Essaouire 31°30'58"N 09°46'17"W 
Dynamene bidentata Atlantic Ocean Morocco Insouane 30°50'21"N 09°49'23"W 
Dynamene bidentata Atlantic Ocean Morocco Rabat 33°59'42"N 06°53'01"W 
Dynamene bidentata Atlantic Ocean Morocco Témara 33°56'31"N 06°56'36"W 
Dynamene bidentata Atlantic Ocean Ireland Tory Island 55°15'00"N 08°13'00"W 
Dynamene bidentata Atlantic Ocean Portugal Agudela 41°14'27"N 08°43'39"W 
Dynamene bidentata Atlantic Ocean Portugal Buarcos 40°10'34"N 08°54'02"W 
Dynamene bidentata Atlantic Ocean Portugal Peniche 39°22'21"N 09°22'39"W 
Dynamene bidentata Atlantic Ocean Portugal Praia Norte 41°41'21"N 08°50'52"W 
Dynamene bidentata Atlantic Ocean Portugal Sines 37°57'39"N 08°53'14"W 
Dynamene bidentata Atlantic Ocean Portugal Vale dos Homens 37°22'17"N 08°50'04"W 
Dynamene bidentata Atlantic Ocean Portugal Vila do Conde 41°21'03"N 08°45'15"W 
Dynamene bidentata Atlantic Ocean Scotland Ardrossan 55°36'43"N 04°43'10"W 
Dynamene bidentata Atlantic Ocean Scotland Oban 56°24'54"N 05°28'15"W 
Dynamene bidentata Atlantic Ocean Scotland Mull 56°26'21"N 06°00'03"W 
Dynamene bidentata Atlantic Ocean Scotland Bellochantuy 55°31'32"N 05°42'40"W 
Dynamene bidentata Atlantic Ocean Scotland Carsaig 56°19'09"N 05°57'54"W 
Dynamene bidentata Atlantic Ocean Scotland Clatholl 58°10'60"N 05°19'60"W 
Dynamene bidentata Atlantic Ocean Scotland Easdale 56°17'17"N 05°38'05"W 
Dynamene bidentata Atlantic Ocean Scotland Monach Islands 57°30'60"N 07°36'00"W 
Dynamene bidentata Atlantic Ocean Spain Bañugues 43°32'36"N 05°38'49"W 
Dynamene bidentata Atlantic Ocean Spain Barizo 43°19'20"N 08°52'22"W 
Dynamene bidentata Atlantic Ocean Spain Isla Castelo 43°36'17"N 08°11'28"W 
Dynamene bidentata Atlantic Ocean Spain Muxía 43°05'34"N 09°13'24"W 
Dynamene bidentata Atlantic Ocean Spain Pedreira 43°33'22"N 08°16'30"W 
Dynamene bidentata Atlantic Ocean Spain Ria de Arosa 42°34'07"N 08°53'07"W 
Dynamene bidentata Atlantic Ocean Spain Ria del Ferrol 43°28'53"N 08°12'50"W 
Dynamene bidentata Atlantic Ocean Spain Tarifa Island 36°00'00"N 05°36'38"W 
Dynamene bidentata Atlantic Ocean Wales Aber-Eiddy 51°56'30"N 05°11'55"W 
Dynamene bidentata Atlantic Ocean Wales Abermawr 51°56'17"N 05°12'27"W 
Dynamene bidentata Atlantic Ocean Wales Broad Haven 51°42'05"N 05°09'11"W 
Dynamene bidentata Atlantic Ocean Wales Caerfai Bay 51°52'00"N 05°15'00"W 
Dynamene bidentata Atlantic Ocean Wales Dinas Head 52°01'15"N 04°54'36"W 
Dynamene bidentata Atlantic Ocean Wales Freshwater East 51°38'44"N 04°51'34"W 
Dynamene bidentata Atlantic Ocean Wales Freshwater West 51°38'60"N 05°02'60"W 
Dynamene bidentata Atlantic Ocean Wales Goodwick Harbour 51°59'60"N 04°59'00"W 
Dynamene bidentata Atlantic Ocean Wales Manorbier 51°37'60"N 04°46'60"W 
Dynamene bidentata Atlantic Ocean Wales Martins Heaven 51°44'14"N 05°14'01"W 
Dynamene bidentata Atlantic Ocean Wales Monks Haven 51°42'60"N 05°08'00"W 
Dynamene bidentata Atlantic Ocean Wales Musselwick Sands 51°42'60"N 05°12'00"W 
Dynamene bidentata Atlantic Ocean Wales Nolton Haven 51°48'58"N 05°06'27"W 
Dynamene bidentata Atlantic Ocean Wales Porth Colman 52°52'00."N 04°41'00"W 
Dynamene bidentata Atlantic Ocean Wales Rhoscolyn 53°15'00"N 04°34'60"W 
Dynamene bidentata Atlantic Ocean Wales Rhosneigre 53°13'00"N 04°30'60"W 
Dynamene bidentata Atlantic Ocean Wales Sandy Haven 51°43'32"N 05°06'27"W 
Dynamene bidentata Atlantic Ocean Wales Skomer 51°43'60"N 05°16'60"W 
Dynamene bidentata Atlantic Ocean Wales St Brides Haven 51°45'60"N 05°05'60"W 
Dynamene bidentata Atlantic Ocean Wales Stackpole 51°37'41"N 04°53'45"W 
Dynamene bidentata Atlantic Ocean Wales West Angle 51°40'60"N 05°04'60"W 
Dynamene bidentata Atlantic Ocean Wales West Dale Bay 51°42'28"N 05°11'19"W 
Dynamene bidentata Atlantic Ocean Wales Whitesands Bay 51°53'10"N 05°18'18"W 
Dynamene bifida Mediterranean Sea France Banylus-sur-Mer 42°29'14"N 03°07'40"E 
Dynamene bifida Mediterranean Sea France Endoume 43°16'21"N 05°21'33"E 
Dynamene bifida Mediterranean Sea Greece Corfu Island 39°36'00"N 19°48'60"E 
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Dynamene bifida Mediterranean Sea Italy Ischia Island 40°43'56"N 13°57'59"E 
Dynamene bifida Mediterranean Sea Italy Mergellina 40°49'00"N 14°13'00"E 
Dynamene bifida Mediterranean Sea Spain Mojacar 37°07'60"N 01°51'00"W 
Dynamene bifida Mediterranean Sea Turkey Izmir 38°27'09"N 27°05'50"E 
Dynamene edwardsi Atlantic Ocean Azores Angra do Heroismo 38°38'60"N 27°14'60"W 
Dynamene edwardsi Atlantic Ocean Azores Corvo Island 39°39'60"N 31°07'00"W 
Dynamene edwardsi Atlantic Ocean Azores Formigas Island 37°15'60"N 24°47'00"W 
Dynamene edwardsi Atlantic Ocean Azores Mosteiros 37°54'01"N 25°49'04"W 
Dynamene edwardsi Atlantic Ocean Azores Pico Island 38°23'60"N 28°15'00"W 
Dynamene edwardsi Atlantic Ocean Azores Ponta da Ferraria 37°51'40"N 25°51'17"W 
Dynamene edwardsi Atlantic Ocean Azores Santa Maria Island 36°56'53"N 25°05'34"W 
Dynamene edwardsi Atlantic Ocean Azores São Jorge Island 38°37'41"N 27°56'11"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Arenas Blancas 27°46'02"N 18°07'17"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Arinaga 27°51'00"N 15°23'60"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Arrecife  28°57'08"N 13°32'59"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Bañaderos 28°08'59"N 15°32'24"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Caleta 28°09'47"N 15°41'57"W 
Dynamene edwardsi Atlantic Ocean Canary Islands El Faro 28°27'27"N 17°51'01"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Fuerteventura 28°04'10"N 14°30'36"W 
Dynamene edwardsi Atlantic Ocean Canary Islands La Fajana 28°50'32"N 17°47'40"W 
Dynamene edwardsi Atlantic Ocean Canary Islands La Salemera 28°34'41"N 17°45'38"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Las Palmas 28°08'60"N 15°25'60"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Los Cristianos 28°02'41"N 16°42'43"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Los Sargos 27°47'05"N 18°00'42"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Mal Paso 28°24'58"N 16°17'55"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Playa Blanca 28°51'00"N 13°49'00"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Playa Melenara 27°59'20"N 15°22'14"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Puerto de Mogan 27°49'40"N 15°47'16"W 
Dynamene edwardsi Atlantic Ocean Canary Islands Rada de Arrieta 29°09'17"N 13°25'43"W 
Dynamene edwardsi Atlantic Ocean Madeira Caniçal 32°44'00"N 16°44'00"W 
Dynamene edwardsi Atlantic Ocean Madeira Funchal 1 32°38'44"N 16°58'30"W 
Dynamene edwardsi Atlantic Ocean Madeira Funchal 2 32°38'38"N 16°52'35"W 
Dynamene edwardsi Atlantic Ocean Madeira Funchal 3 32°38'11"N 16°56'52"W 
Dynamene edwardsi Atlantic Ocean Madeira Ponta da Cruz 32°37'59"N 16°56'37"W 
Dynamene edwardsi Atlantic Ocean Madeira Porto dos Frades 33°04'21"N 16°17'44"W 
Dynamene edwardsi Atlantic Ocean Madeira Reis Magos 32°38'46"N 16°49'27"W 
Dynamene edwardsi Atlantic Ocean Madeira Selvagem Grande 30°08'28"N 15°52'12"W 
Dynamene edwardsi Atlantic Ocean Madeira Selvagem Pequena 30°01'60"N 16°01'00"W 
Dynamene edwardsi Atlantic Ocean Mauritania Nouadhibou 20°56'00"N 17°02'00"W 
Dynamene edwardsi Atlantic Ocean Morocco Arzila 35°27'29"N 06°02'53"W 
Dynamene edwardsi Atlantic Ocean Morocco El Jadida 33°15'51"N 08°30'39"W 
Dynamene edwardsi Atlantic Ocean Morocco Insouane 30°50'21"N 09°49'23"W 
Dynamene edwardsi Atlantic Ocean Morocco Tangiers Harbour 35°52'60"N 05°30'00"W 
Dynamene edwardsi Atlantic Ocean Morocco Tarfaya 27°55'04"N 12°57'40"W 
Dynamene edwardsi Atlantic Ocean Portugal Arrifes 37°04'34"N 08°16'36"W 
Dynamene edwardsi Atlantic Ocean Portugal Berlengas 39°24'42"N 09°30'40"W 
Dynamene edwardsi Atlantic Ocean Portugal Buarcos 40°10'34"N 08°54'02"W 
Dynamene edwardsi Atlantic Ocean Portugal Dona Ana 37°05'13"N 08°40'04"W 
Dynamene edwardsi Atlantic Ocean Portugal Ingrina 37°02'43"N 08°52'41"W 
Dynamene edwardsi Atlantic Ocean Portugal Dona Ana 37°06'00"N 08°40'00"W 
Dynamene edwardsi Atlantic Ocean Portugal Peniche 39°22'21"N 09°22'39"W 
Dynamene edwardsi Atlantic Ocean Portugal Sines 37°57'39"N 08°53'14"W 
Dynamene edwardsi Atlantic Ocean Portugal Vale dos Homens 37°22'17"N 08°50'04"W 
Dynamene edwardsi Atlantic Ocean Portugal Vilamoura 37°04'21"N 08°07'13"W 
Dynamene edwardsi Atlantic Ocean Spain Muxía 43°05'34"N 09°13'24"W 
Dynamene edwardsi Atlantic Ocean Spain Tarifa Island 36°00'00"N 05°36'38"W 
Dynamene edwardsi Mediterranean Sea Algeria Algiers Harbour 36°47'60"N 03°13'00"E 
Dynamene edwardsi Mediterranean Sea Croatia Marina Kornati 43°56'32"N 15°26'44"E 
Dynamene edwardsi Mediterranean Sea Egypt Alexandria 31°11'07"N 29°52'32"E 
Dynamene edwardsi Mediterranean Sea France Banylus-sur-Mer 42°29'14"N 03°07'40"E 
Dynamene edwardsi Mediterranean Sea France Endoume 43°16'21"N 05°21'33"E 
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Dynamene edwardsi Mediterranean Sea France La Grande Motte 43°33'17"N 04°05'10"E 
Dynamene edwardsi Mediterranean Sea France Port Venders 43°17'47"N 03°32'57"E 
Dynamene edwardsi Mediterranean Sea Greece Emborious Bay 38°11'01"N 26°00'60"E 
Dynamene edwardsi Mediterranean Sea Greece Lindos 36°05'00"N 28°04'60"E 
Dynamene edwardsi Mediterranean Sea Greece Rhodes island 36°25'00"N 28°13'00"E 
Dynamene edwardsi Mediterranean Sea Israel Bat-Yam 32°05'42"N 34°46'23"E 
Dynamene edwardsi Mediterranean Sea Israel Haifa 32°54'60"N 35°04'00"E 
Dynamene edwardsi Mediterranean Sea Israel Michmoret 32°24'14"N 34°51'00"E 
Dynamene edwardsi Mediterranean Sea Israel Rosh Hanikva  33°04'56"N 35°06'16"E 
Dynamene edwardsi Mediterranean Sea Italy Castelsardo 40°54'46"N 08°42'00"E 
Dynamene edwardsi Mediterranean Sea Italy Genoa 44°23'57"N 08°55'47"E 
Dynamene edwardsi Mediterranean Sea Italy Harbour of Leghorn 43°33'04"N 10°17'54"E 
Dynamene edwardsi Mediterranean Sea Italy Ischia Island 40°43'56"N 13°57'59"E 
Dynamene edwardsi Mediterranean Sea Italy La Spezia 44°06'35"N 09°50'27"E 
Dynamene edwardsi Mediterranean Sea Italy Mergellina 40°49'00"N 14°13'00"E 
Dynamene edwardsi Mediterranean Sea Italy Porto Rotondo 41°01'43"N 09°32'43"E 
Dynamene edwardsi Mediterranean Sea Italy Santa Margherita  44°20'04"N 09°12'51"E 
Dynamene edwardsi Mediterranean Sea Italy Tiberio 40°32'06"N 14°13'27"E 
Dynamene edwardsi Mediterranean Sea Italy Vado Ligure 44°16'00"N 08°26'00"E 
Dynamene edwardsi Mediterranean Sea Italy Venice 45°26'00"N 12°18'00"E 
Dynamene edwardsi Mediterranean Sea Malta Birzebbugh 35°46'60"N 14°31'00"E 
Dynamene edwardsi Mediterranean Sea Malta Valetta Harbour 35°53'60"N 14°30'00"E 
Dynamene edwardsi Mediterranean Sea Monaco Monaco 43°44'00"N 07°23'00"E 
Dynamene edwardsi Mediterranean Sea Spain Alicante 38°20'00"N 00°29'47"W 
Dynamene edwardsi Mediterranean Sea Spain Cadaqués 42°14'25"N 03°12'18"E 
Dynamene edwardsi Mediterranean Sea Spain Cala Morell 40°02'60"N 03°53'00"E 
Dynamene edwardsi Mediterranean Sea Spain Cala Olivera 38°55'50"N 01°30'04"E 
Dynamene edwardsi Mediterranean Sea Tunisia Tunis Harbour 36°50'00"N 10°13'60"E 
Dynamene edwardsi Mediterranean Sea Turkey Izmir 38°27'09"N 27°05'50"E 
Dynamene edwardsi Red Sea Egypt Dahab 28°30'00"N 34°30'00"E 
Dynamene edwardsi Red Sea Israel Port of Eilat 29°30'60"N 34°55'60"E 
Dynamene edwardsi Suez Canal Egypt Tis'A  30°01'24"N  32°34'43"E 
Dynamene magnitorata Atlantic Ocean Azores Cinco Ribeiras 38°40'31"N 27°19'47"W 
Dynamene magnitorata Atlantic Ocean Azores Faial Island 38°31'00"N 28°36'60"W 
Dynamene magnitorata Atlantic Ocean Azores Flores Island 39°31'00"N 31°12'00"W 
Dynamene magnitorata Atlantic Ocean Azores Pico Island 38°23'60"N 28°15'00"W 
Dynamene magnitorata Atlantic Ocean Azores Porto Martins 38°40'60"N 27°03'27"W 
Dynamene magnitorata Atlantic Ocean Azores Praia Formosa 36°56'59"N 25°05'42"W 
Dynamene magnitorata Atlantic Ocean Azores Ribeira Chã 37°42'00"N 25°29'00"W 
Dynamene magnitorata Atlantic Ocean Azores Santa Maria Island 36°56'53"N 25°07'00"W 
Dynamene magnitorata Atlantic Ocean Azores São Jorge Island 38°37'41"N 27°56'11"W 
Dynamene magnitorata Atlantic Ocean Azores São Miguel island 37°46'00"N 25°29'00"W 
Dynamene magnitorata Atlantic Ocean Canary Islands El Faro 28°27'27"N 17°51'01"W 
Dynamene magnitorata Atlantic Ocean Canary Islands Fuerteventura 28°04'09"N 14°30'15"W 
Dynamene magnitorata Atlantic Ocean Canary Islands La Fajana 28°50'32"N 17°47'40"W 
Dynamene magnitorata Atlantic Ocean Channel Islands Petit Bot Bay 49°25'03"N 02°33'50"W 
Dynamene magnitorata Atlantic Ocean Channel Islands Rocquaine Bay 49°25'60"N 02°38'60"W 
Dynamene magnitorata Atlantic Ocean England Weymouth 50°36'17"N 02°32'12"W 
Dynamene magnitorata Atlantic Ocean France Argenton 48°31'41"N 04°46'41"W 
Dynamene magnitorata Atlantic Ocean France Barfleur 49°40’04"N 01°15'24"W 
Dynamene magnitorata Atlantic Ocean France Brignognan 48°40'20"N 04°18'49"W 
Dynamene magnitorata Atlantic Ocean France Grève Santec 48°41'38"N 03°58'09"W 
Dynamene magnitorata Atlantic Ocean France Isle de Glénans 47°17'37"N 03°12'28"W 
Dynamene magnitorata Atlantic Ocean France Kerfanny 47°47'60"N 03°43'00"W 
Dynamene magnitorata Atlantic Ocean France Roscoff 48°43'40"N 03°58'09"W 
Dynamene magnitorata Atlantic Ocean France Trégaster 48°50'32"N 03°31'06"W 
Dynamene magnitorata Atlantic Ocean France Trénez 47°46'60"N 03°42'00"W 
Dynamene magnitorata Atlantic Ocean Madeira Caniçal 32°44'00"N 16°44'00"W 
Dynamene magnitorata Atlantic Ocean Madeira Porto dos Frades 33°04'21"N 16°17'44"W 
Dynamene magnitorata Atlantic Ocean Madeira Porto Santo 33°04'21"N 16°20'00"W 
Dynamene magnitorata Atlantic Ocean Morocco Arzila 35°27'29"N 06°02'53"W 
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Dynamene magnitorata Atlantic Ocean Morocco Fedhala 33°42'21"N 07°22'38"W 
Dynamene magnitorata Atlantic Ocean Portugal Armação de Pêra 37°06'00"N 08°20'60"W 
Dynamene magnitorata Atlantic Ocean Portugal Arrabida 38°28'10"N 08°59'05"W 
Dynamene magnitorata Atlantic Ocean Portugal Arrifes 37°04'34"N 08°16'36"W 
Dynamene magnitorata Atlantic Ocean Portugal Berlengas 39°24'42"N 09°30'40"W 
Dynamene magnitorata Atlantic Ocean Portugal Buarcos 40°10'34"N 08°54'02"W 
Dynamene magnitorata Atlantic Ocean Portugal Dona Ana 37°05'13"N 08°40'04"W 
Dynamene magnitorata Atlantic Ocean Portugal Peniche 39°22'21"N 09°22'39"W 
Dynamene magnitorata Atlantic Ocean Portugal Praia Norte 41°41'21"N 08°50'52"W 
Dynamene magnitorata Atlantic Ocean Portugal São Pedro de Moel 39°45'29"N 09°01'59"W 
Dynamene magnitorata Atlantic Ocean Spain Arosa 42°32'48"N 08°51'25"W 
Dynamene magnitorata Atlantic Ocean Spain Barizo 43°19'20"N 08°52'22"W 
Dynamene magnitorata Atlantic Ocean Spain Muxía 43°05'34"N 09°13'24"W 
Dynamene magnitorata Atlantic Ocean Spain Pedreira 43°33'22"N 08°16'30"W 
Dynamene magnitorata Atlantic Ocean Spain Puerto Sou 42°43'32"N 08°59'59"W 
Dynamene magnitorata Atlantic Ocean Spain San Vincent 43°23'20"N 04°22'43"W 
Dynamene magnitorata Atlantic Ocean Spain Tarifa Island 36°00'00"N 05°36'38"W 
Dynamene magnitorata Mediterranean Sea Chafarinas Islands Isla del Rey 35°10'60"N 02°24'60"W 
Dynamene magnitorata Mediterranean Sea Egypt Alexandria 31°11'07"N 29°52'32"E 
Dynamene magnitorata Mediterranean Sea Italy Ischia Island 40°43'55"N 13°57'59"E 
Dynamene magnitorata Mediterranean Sea Monaco Fonteville 43°43'00"N 07°25'00"E 
Dynamene magnitorata Mediterranean Sea Spain Alicante 38°20'00"N 00°29'47"W 
Dynamene magnitorata Mediterranean Sea Tunisia Tunis Harbour 36°50'00"N 10°13'60"E 
Dynamene sp. Mediterranean Sea NW Aegean Greece 40°00'00"N 25°00'00"E 
Dynamene tubicauda Mediterranean Sea Italy Brucoli 37°15'60"N 15°11'00"E 
Dynamene tubicauda Mediterranean Sea Italy Calaberdardo 36°51'18"N 15°07'15"E 
Dynamene tubicauda Mediterranean Sea Italy Elba Island 42°47'60"N 10°07'60"E 
Dynamene tubicauda Mediterranean Sea Italy Ischia Island 40°43'56"N 13°57'59"E 
Dynamene tubicauda Mediterranean Sea Italy Isola Lachea 37°32'60"N 15°09'00"E 
Dynamene tubicauda Mediterranean Sea Italy Sorrento 40°37'00"N 14°21'60"E 
Dynamene tubicauda Mediterranean Sea Malta Mellieha Bay 35°58'00"N 14°20'60"E 
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ANNEXES OF CHAPTER 4. 

Annex 4.1. List of sampled locations, location codes, co-ordinates, COI haplotype number, 
number of individuals amplified for each locus in each location, region and MOTU for each 
Dynamene species used in chapter 4. Code labels correspond with those used in the figures 
and texts in chapter 4. For corresponding haplotype numbers, see Fig. 4.1. 

 Locations Code Latitude Longitude Hap nr COI 16S 18S 28S Region MOTUs 

D
yn

am
en

e 
ed

w
ar

ds
i 

Muxia GALI3 43.092831 -9.223431 I1 1 - 1 1 Galicia 

MOTU I 

Peniche PORW3 39.372433 -9.377551 I1 4 - 2 - 
Portugal West 

Sines PORW4 37.960884 -8.887296 I1 1 - - - 
Arrifes PORS1 37.076052 -8.27678 I1 4 1 2 1 

Portugal South Dona Ana PORS2 37.086969 -8.667716 I1 5 - 3 1 
Ingrina PORS3 37.045257 -8.878047 I1-3 5 2 3 2 

Mosteiros SAOM1 37.900153 -25.817875 II1 1 1 1 1 São Miguel 
MOTU II France MEDI1 43.554809 4.086157 II2 1 1 1 1 

Mediterranean 
Croatia MEDI2 43.942178 15.445649 II2 1 1 - - 

Porto Frades PSAN 33.072575 -16.295666 III1 5 3 3 3 Porto Santo MOTU III 
Arzila MORN1 35.458006 -6.047981 IV1 4 1 4 1 

Morocco North 
MOTU IV El Jadida MORN2 33.264036 -8.510717 IV1 1 1 1 1 

Tarfaya MORS 27.917817 -12.961147 IV2-3 4 1 4 1 Morocco South 
Agaete GCAN1 28.163186 -15.699269 V1-4 6 1 3 1 

Gran Canaria MOTU V Playa Melenara GCAN2 27.988891 -15.370485 V5-10 5 - 3 - 
Bañaderos GCAN3 28.149658 -15.54018 V5, 11-12 6 2 5 2 

Selvagem Grande SELV1 30.141158 -15,870064 VI1-3 4 3 3 3 
Selvagens MOTU VI 

Selvagem Pequena SELV2 30.033233 -16.016675 VI4 2 - - - 
Reis Magos MADE1 32.646111 -16.824167 VII1 5 1 4 2 

Madeira 
MOTU VII 

Ponta Cruz MADE2 32.633123 -16.943643 VII1-2 5 2 4 1 
Mal Paso TENE1 28.416147 -16.298656 VII1, 3-6 5 2 4 2 

Tenerife 
Los Cristianos TENE2 28.044714 -16.711856 VII1, 7-8 4 1 2 1 

La Fajana LPAL1 28.842276 -17.794324 VIII1 5 1 3 1 
La Palma MOTU VIII La Salemera LPAL2 28.577985 -17.760556 VIII1-4 5 1 3 1 

El Faro LPAL3 28.457545 -17.85034 VIII1-2, 5-6 6 1 5 1 
Los Sargos HIER1 27.784739 -18.011569 IX1 3 2 3 2 

El Hierro MOTU IX 
Arenas Blancas HIER2 27.767189 -18.121308 IX1-2 3 1 2 1 

D
yn

am
en

e 
bi

de
nt

at
a 

Bellochantuy SCOT1 55.525278 -5.710278 X1 5 1 5 1 
Scotland 

MOTU X 

Carsaig SCOT2 56.319444 -5.965 X1-2 4 1 3 - 
Easdale SCOT3 56.291111 -5.633333 X3 1 - 3 - 
Pedreira GALI1 43.55617 -8.274942 X4-8 5 1 4 1 

Galicia 
Barizo GALI2 43.322113 -8.872784 X9-11 3 - 1 - 

Viana Castelo PORW1 41.689194 -8.84787 X8, 12-14 14 - - - 
Portugal West Buarcos PORW2 40.175976 -8.900572 X8, 15-16 3 1 5 1 

Sines PORW4 37.960884 -8.887296 X17-18 2 - - - 
El Jadida MORN2 33.264036 -8.510717 X19 1 - 6 1 

Morocco North 
Essaouire MORN3 31.515982 -9.771497 X20 1 - 1 - 
Bañaderos GCAN3 28.149658 -15.54018 X21 1 1 1 1 Gran Canaria 

D
yn

am
en

e 
m

ag
ni

to
ra

ta
 

Pedreira GALI1 43.55617 -8.274942 XI1 1 - 1 - 
Galicia 

MOTU XI 

Barizo GALI2 43.322113 -8.872784 XI1-2 2 1 1 2 
Muxía GALI3 43.092831 -9.223431 XI3-4 5 1 3 1 

Viana Castelo PORW1 41.689194 -8.84787 XI4-5 2 - - - 
Portugal West Buarcos PORW2 40.175976 -8.900572 XI4, 6 3 1 3 1 

Peniche PORW3 39.372433 -9.377551 XI3, 7-9 4 - 3 - 
Arrifes PORS1 37.076052 -8.27678 XI10-13 5 - 2 1 

Portugal South 
Dona Ana PORS2 37.086969 -8.667716 XI3, 14-15 3 - 2 - 

Cinco Ribeiras TERC1 38.675414 -27.329717 XI16 1 1 1 1 
Terceira 

Porto Martins TERC2 38.683328 -27.057522 XI16 2 2 3 2 
Ribeira Chã SAOM2 37.715417 -25.486836 XI16-19 6 1 2 1 São Miguel 

Praia Formosa SMAR 36.949917 -25.094989 XI19-20 2 - - - Santa Maria 
La Fajana LPAL1 28.842276 -17.794324 XI21 1 1 1 1 La Palma MOTU XII 
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Annex 4.2. Primer pairs and thermal cycling conditions used in chapter 4. 

 

Fragment Source Primer Direction (5’-3’) PCR termal cycling conditions 

COI 

(Folmer et al. 1994) 
LCO1490 (F) GGTCAACAAATCATAAAGATATTGG 1) 95°C/60s; 2) 35 cycles: 95°C/30s, 51°C/90s, 

HCO2198 (R) TAAACTTCAGGGTGACCAAAAAATCA 72°C/60s; 3) 72°C/5 min 

(Lobo et al. 2013) 
LoboF1 (F) KBTCHACAAAYCAYAARGAYATHGG 1) 95°C/5min; 2) 5 cycles: 95°C/30s, 45°C/90s, 72°C/60s; 3) 45 cycles: 

94°C/30s, 54°C/90s, 72°C/60s; 4) 72°C/5 min LoboR1 (R) TAAACYTCWGGRTGWCCRAARAAYCA 

16S rDNA 

(Palumbi et al. 2002) 
16Sar (F) CGCCTGTTTATCAAAAACAT 

1) 95°C/60s; 2) 35 cycles: 95°C/30s, 46°C/90s, 72°C/60s; 3) 72°C/5 min 
16Sbr (R) CCGGTCTGAACTCAGATCACG 

(Geller et al. 1997) 
D16SAR (F) CGCCTGTTTAHYAAAAACAT 

D16SBR (R) CCGGTCTGAACTCAGMTCAYG 

18S rDNA (Whitting 2002) 
18sAi (F) CCTGAGAAACGGCTACCACATC 

1) 95°C/60s; 2) 35 cycles: 95°C/30s, 45°C/90s, 72°C/60s; 3) 72°C/5 min 
18SBi (R) GAGTCTCGTTCGTTATCGGA 

28S rDNA (Tomikawa et al. 2007) 
AM-28S-H (F) GACGCGCATGAATGGATTAACG 

1) 95°C/60s; 2) 35 cycles: 95°C/30s, 48°C/90s, 72°C/60s; 3) 72°C/5 min 
AM-28S-T (R) TGAACAATCCGACGCTTGGCG 
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Annex 4.3. Substitution models used for phylogenetic reconstructions used in chapter 4. Number of sequences; total, included and excluded characters 
and informative sites for each locus are also displayed. 

 

 Gene  Taxa Total 
Chars. 

Exc. 
Chars. 

Inc. 
Chars. 

Pars. 
Inf. AICc BIC 

All species          

 COI  179 658 0 658 247 GTR+G+I HKY+G+I 

 16S rDNA  43 463 2 461 155 GTR+G TN93+G 

 18S rDNA  120 1145 2 1143 129 TN93+G K2+G 

 28S rDNA  46 812 7 805 86 GTR K2 

 
Concatenated 

(COI+16S+18S+28S)  42 3078 11 3067 610 GTR+G+I TN93+G+I 
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Annex 4.4. Estimates of genetic diversity for each locus for each species used in chapter 4. Also, 
the estimates of genetic diversity of COI for each MOTU is shown (for MOTU definition see 
material and methods section 4.4). 

 Species/MOTU N H S Hd π 
CO

I 
Dynamene edwardsi 101 41 219 0.945 0.12246 

MOTU I 20 3 2 0.205 0.00032 
MOTU II 3 2 9 0.667 0.00912 
MOTU III 5 1 0 0.000 0.00000 
MOTU IV 9 3 2 0.639 0.00118 
MOTU V 17 12 17 0.919 0.00420 
MOTU VI 6 4 6 0.867 0.00375 
MOTU VII 19 8 15 0.719 0.00403 
MOTU VIII 16 6 8 0.733 0.00314 
MOTU IX 6 2 1 0.333 0.00051 

Dynamene bidentata (MOTU X) 40 21 32 0.890 0.00424 
Dynamene magnitorata 38 21 37 0.942 0.00730 

MOTU XI 37 20 27 0.938 0.00644 
MOTU XII 1 1 - - - 

16
S Dynamene edwardsi 30 16 92 0.954 0.07385 

Dynamene bidentata 5 2 2 0.400 0.00175 
Dynamene magnitorata 8 4 3 0.786 0.00272 

18
S Dynamene edwardsi 69 5 32 0.682 0.00899 

Dynamene bidentata 32 2 4 0.063 0.00022 
Dynamene magnitorata 22 3 15 0.481 0.00514 

28
S Dynamene edwardsi 31 5 25 0.712 0.01126 

Dynamene bidentata 5 1 0 0.000 0.00000 
Dynamene magnitorata 10 3 5 0.378 0.00128 

 
N - number of sequences; H - number of haplotypes; S - segregation sites; Hd – haplotype diversity; π – 
nucleotide diversity. 
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Annex 4.5. Results of the AMOVA tests comparing variation in COI sequences for each Dynamene species (10 100 permutations).  

  

Species Source of variation d.f. Sum of 
squares 

Variance 
components 

Percentage 
of variation Fct Fsc Fst P 

Dynamene edwardsi          

 Among regions 11 3854.927 44.17783 98.14 0.98139   0.000 

 Among populations within 
regions 15 18.418 0.15057 0.33  0.17971  0.000 

 Within populations 72 49.483 0.68727 1.53   0.98473 0.000 

 Total 98 3922.828 45.01567 100     

Dynamene bidentata          

 Among regions 3 28.610 1.41875 67.58 0.67582   0.000 

 Among populations within 
regions 

6 7.054 0.17030 8.11  0.25024  0.003 

 Within populations 29 14.798 0.51026 24.31   0.75694 0.000 

 Total 38 50.462 2.09931 100     

Dynamene 
magnitorata 

         

 Among regions 2 37.344 1.93645 55.63 0.55635   0.000 

 Among populations within 
regions 

10 23.572 0.42821 12.30  0.27730  0.001 

 Within populations 25 27.900 1.11600 32.06   0.67937 0.000 

 Total 37 88.816 3.48066 100     
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Annex 4.6. Pairwise Fst values between sampled locations for each Dynamene species, based on 658 bp mitochondrial cytochrome c oxidase subunit I 
gene. Only locations with 3 or more sequences were used. In bold, significant values for P < 0.05 obtained through 1 x 104 permutations.  

Dynamene edwardsi                  
  PORW3 PORS1 PORS2 PORS3 PSAN MORN1 MORS GCAN1 GCAN2 GCAN3 SELV1 MADE1 MADE2 TENE1 TENE2 LPAL1 LPAL2 LPAL3 HIER1 HIER2 
PORW3 0.000                                       
PORS1 0.000 0.000                   

PORS2 0.000 0.000 0.000                                   
PORS3 0.111 0.111 0.189 0.000                 

PSAN 1.000 1.000 1.000 0.996 0.000                               
MORN1 1.000 1.000 1.000 0.996 1.000 0.000               

MORS 0.998 0.998 0.998 0.993 0.998 0.800 0.000                           
GCAN1 0.993 0.993 0.994 0.989 0.994 0.983 0.979 0.000             

GCAN2 0.989 0.989 0.990 0.983 0.990 0.972 0.967 0.361 0.000                       
GCAN3 0.984 0.984 0.985 0.978 0.985 0.961 0.956 0.005 0.270 0.000           

SELV1 0.990 0.990 0.991 0.983 0.991 0.979 0.975 0.977 0.969 0.962 0.000                   
MADE1 0.994 0.994 0.995 0.989 0.995 0.992 0.990 0.986 0.981 0.975 0.979 0.000         

MADE2 1.000 1.000 1.000 0.996 1.000 1.000 0.997 0.992 0.987 0.981 0.987 0.500 0.000               
TENE1 0.984 0.984 0.986 0.977 0.986 0.979 0.976 0.977 0.970 0.965 0.966 0.214 0.000 0.000       

TENE2 0.980 0.980 0.983 0.972 0.983 0.974 0.971 0.972 0.965 0.960 0.958 0.393 0.369 0.145 0.000           
LPAL1 1.000 1.000 1.000 0.996 1.000 1.000 0.998 0.992 0.987 0.981 0.987 0.978 1.000 0.942 0.921 0.000     

LPAL2 0.988 0.988 0.990 0.983 0.989 0.985 0.982 0.980 0.974 0.969 0.971 0.934 0.955 0.897 0.869 0.333 0.000       
LPAL3 0.986 0.986 0.988 0.981 0.987 0.982 0.979 0.979 0.973 0.969 0.970 0.929 0.947 0.896 0.868 0.251 0.116 0.000   

HIER1 1.000 1.000 1.000 0.994 1.000 1.000 0.997 0.990 0.983 0.975 0.983 0.975 1.000 0.934 0.910 1.000 0.938 0.926 0.000   
HIER2 0.998 0.998 0.998 0.991 0.998 0.997 0.994 0.988 0.981 0.973 0.980 0.968 0.993 0.928 0.902 0.991 0.930 0.919 0.000 0.000 

 
 
 
 

Dynamene bidentata      Dynamene magnitorata       
SCOT1 SCOT2 GALI1 GALI2 PORW1    GALI3 PORW2 PORW3 PORS1 PORS2 TERC1 TERC2 

SCOT1 0.000 
 

 
  

  GALI3 0.000       
SCOT2 0.062 0.000  

  
  PORW2 0.320 0.000      

GALI1 0.600 0.653 0.000     PORW3 0.095 0.156 0.000     
GALI2 0.666 0.763 0.000 0.000 

 
  PORS1 0.233 0.382 0.184 0.000    

PORW1 0.832 0.793 0.129 0.242 0.000   PORS2 0.262 0.400 0.247 0.164 0.000   
PORW2 0.825 0.710 0.000 0.000 0.184   TERC1 0.874 0.845 0.670 0.602 0.739 0.000  
        TERC2 0.727 0.712 0.641 0.671 0.618 0.000 0.000 
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Annex 4.7. BI phylogenetic 16S tree of the three Dynamene species. For codes labels, see Annex 
4.1. The dots by respective nodes indicate Bayesian posterior probability and maximum 
likelihood bootstrap values over 0.65. Sphaeroma quoianum with Genbank accession 
KU248333.1 was used as outgroup. 
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Annex 4.8. BI phylogenetic 18S tree of the three Dynamene species. For codes labels, see Annex 
4.1. The dots by respective nodes indicate Bayesian posterior probability and maximum 
likelihood bootstrap values over 0.65. Sphaeroma serratum with Genbank accession 
JF699594.1 was used as outgroup.  
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Annex 4.9. BI phylogenetic 28S tree of the three Dynamene species. For codes labels, see Annex 
4.1. The dots by respective nodes indicate Bayesian posterior probability and maximum 
likelihood bootstrap values over 0.65. Cymodoce waegelei with Genbank accession 
JN247573.1 was used as outgroup. 
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Annex 4.10. ML phylogenetic concatenated tree of the three Dynamene species. For codes 
labels, see Annex 4.1. The dots by respective nodes indicate Bayesian posterior probability and 
maximum likelihood bootstrap values over 0.65. 
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ANNEXES OF CHAPTER 5. 

Annex 5.1. List of sampled locations, co-ordinates, number of individuals (n) sampled in each 
location and region for each Hyalidae species used in chapter 5. Accession numbers of BOLD, 
Haplotypes codes (H) and MOTUs are also shown. 
 

 Locations Latitude Longitude n Accession numbers H MOTUs Country/Island 

A
p

o
h

y
al

e
 p

er
ie

ri
 

Muxia 43.092 -9.223 1 DSHYA006-15 H002 MOTU-1 

Spain 
Pedreira 43.556 -8.275 3 

DSHYA002-15, 
DSHYA003-15, 
DSHYA009-15 

H002 MOTU-1 

Barizo 43.322 -8.873 3 
DSHYA005-15, 
DSHYA011-15,  
DSHYA012-15 

H002 MOTU-1 

Agudela 41.241 -8.728 1 DSHYA018-15 H002 MOTU-1 

Portugal 
Buarcos 40.176 -8.901 2 DSHYA017-15, 

DSHYA013-15 
H002, H006 MOTU-1 

São Pedro 
Moel 

39.758 -9.033 1 DSHYA010-15 H005 MOTU-1 

Arrifes 37.076 -8.276 1 DSHYA001-15 H001 MOTU-1 
Agaete 28.163 -15.699 1 DSHYA014-15 H007 MOTU-3 Gran Canaria 

Ponta Cruz 32.633 -16.943 3 
DSHYA004-15/ 
DSHYA007-15, 
DSHYA117-16 

H002, H003 MOTU-1,2 Madeira 

Ponta 
Ferreirinha 37.861 -25.855 1 DSHYA008-15 H004 MOTU-1 São Miguel 

La Fajana 28.842 -17.794 2 DSHYA016-
15,DSHYA116-16 

H008, H073 MOTU-4 
La Palma 

El Faro 28.457 -17.85 2 DSHYA015-15, 
DSHYA115-16 

H008, H072 MOTU-4 

A
p

o
h

y
al

e
 m

e
d

ia
 

Bañaderos 28.149 -15.54 5 

DSHYA019-15/ 
DSHYA020-15/ 
DSHYA021-15, 
DSHYA023-15, 
DSHYA022-15 

H009,H011 
H010 MOTU-5,6 Gran Canaria 

Los Sargos 27.767 -18.121 1 DSHYA119-16 H074 MOTU-6 El Hierro 

La Salemera 28.577 -17.76 5 

DSHYA024-15/ 
DSHYA025-15/ 
DSHYA026-15/ 
DSHYA027-15/ 
DSHYA118-16 

H012 MOTU-5 La Palma 

Ponta Cruz 32.633 -16.943 1 DSHYA028-15 H012 MOTU-5 Madeira 

Rio de Janeiro -22.957 -43.164 5 

DSHYA120-16, 
DSHYA121-16, 
DSHYA122-16, 

DSHYA123-
16,DSHYA124-16 

H075, H076, 
H077, H078, 

H079 
MOTU-21 Brazil 

A
p

o
h

y
al

e
 p

re
vo

st
ii 

Baloy 60.805 4.806 2 DSHYA029-15/ 
DSHYA037-15 H013 MOTU-7 

Norway Viksoy 60.175 5.042 2 DSHYA030-15/ 
DSHYA041-15 H013 MOTU-7 

Hellesoy 60.663 4.787 1 DSHYA040-15 H013 MOTU-7 

Reykjavik 64.163 -22.009 3 
DSHYA034-15, 
DSHYA032-15/ 
DSHYA033-15 

H013, H015 MOTU-7 
Iceland 

Grindavik 63.826 -22.411 1 DSHYA035-15 H013 MOTU-7 
Strandarkirkja 63.823 -21.66 1 DSHYA036-15 H016 MOTU-7 
Bellochantuy 55.525 -5.711 1 DSHYA038-15 H013 MOTU-7 

Scotland 
Easdale 56.288 -5.635 2 DSHYA039-15, 

DSHYA125-16 H013, H080 MOTU-7 

São Pedro 
Moel 

39.758 -9.033 1 DSHYA031-15 H014 MOTU-7 Portugal 
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 Locations Latitude Longitude n Accession numbers H MOTUs Country/Island 

A
p

o
h

y
al

e
 s

te
b

b
in

g
i 

Carsaig 56.319 -5.965 3 
DSHYA043-15/ 
DSHYA044-15/ 
DSHYA045-15 

H018 MOTU-8 Scotland 

Muxia 43.092 -9.223 1 DSHYA050-15 H023 MOTU-11 

Spain Pedreira 43.556 -8.275 2 DSHYA051-15/ 
DSHYA052-15 

H024 MOTU-8 

Peniche 39.372 -9.378 2 DSHYA053-15, 
DSHYA060-15 

H025, H029 MOTU-8 

São Pedro 
Moel 

39.758 -9.033 2 DSHYA058-15/ 
DSHYA059-15 

H029 MOTU-8 

Portugal 
Arrifes 37.076 -8.276 2 DSHYA042-15, 

DSHYA130-16 
H017, H082 MOTU-8 

Ingrina 37.045 -8.878 1 DSHYA055-15 H027 MOTU-8 
Agudela 41.241 -8.728 1 DSHYA131-16 H083 MOTU-8 

Dona Ana 37.087 -8.668 1 DSHYA049-15 H022 MOTU-8 

Arzila 35.458 -6.048 4 

DSHYA132-16, 
DSHYA133-16, 
DSHYA134-16, 
DSHYA158-16 

H084, H085, 
H086, H106 MOTU-8 

North 
Morocco 

La Salemera 28.578 -17.761 2 DSHYA056-15, 
DSHYA057-15 

H028 MOTU-9 

La Palma 
El Faro 28.457 -17.85 4 

DSHYA046-15, 
DSHYA047-15, 
DSHYA048-15/ 
DSHYA127-16 

H019, H020, 
H021 MOTU-9,10 

Playa 
Melenara 

27.989 -15.37 1 DSHYA065-15 H034 MOTU-12 
Gran Canaria 

Agaete 28.163 -15.699 2 DSHYA061-15, 
DSHYA062-15 H030, H031 MOTU-9,12 

Los Cristianos 28.044 -16.711 2 DSHYA138-16, 
DSHYA139-16 

H088, H089 
MOTU-
23,26 

Tenerife 

Mosteiros 37.9 -25.817 1 DSHYA159-16 H107 MOTU-30 

Sao Miguel Ponta 
Ferreirinha 

37.861 -25.855 3 
DSHYA135-16/ 
DSHYA136-16/ 
DSHYA137-16 

H087 MOTU-30 

Praia 
Formosa 36.949 -25.094 1 DSHYA160-16 H108 MOTU-28 Santa Maria 

Ponta Cruz 32.633 -16.943 4 

DSHYA063-15, 
DSHYA064-15, 
DSHYA128-16, 
DSHYA129-16 

H032, H033, 
H026, H081 

MOTU-
13,14,29,24 Madeira 

Reis Magos 32.646 -16.824 1 DSHYA054-15 H026 MOTU-29 

H
ya

le
 p

o
n

ti
ca

 Easdale 56.288 -5.635 1 DSHYA068-15 H037 MOTU-15 Scotland 

Muxia 43.092 -9.223 3 
DSHYA070-15/ 
DSHYA072-15, 
DSHYA071-15 

H035, H038 MOTU-15 

Spain 

Barizo 43.322 -8.873 2 
DSHYA066-15, 
DSHYA067-15, 
DSHYA085-15 

H035, H036, 
H047 

MOTU-15, 
18 

Agudela 41.241 -8.728 1 DSHYA069-15 H037 MOTU-15 Portugal 
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 Locations Latitude Longitude n Accession numbers H MOTUs Country/Island 
P

ro
to

h
ya

le
 (

P
ro

to
h

ya
le

) 
s

ch
m

id
ti

i 
Muxia 43.092 -9.223 2 DSHYA091-15, DSHYA092-

15 
H043, H052 MOTU-31 

Spain Pedreira 43.556 -8.275 2 DSHYA076-15,  
DSHYA079-15 

H041, H043 MOTU-31 

Barizo 43.322 -8.873 3 
DSHYA078-15/ 

DSHYA080-15, DSHYA085-
15 

H043, H047 
MOTU-31, 

17 

Buarcos 40.176 -8.901 1 DSHYA086-15 H048 MOTU-31 

Portugal 
Peniche 39.372 -9.378 1 DSHYA088-15 H043 MOTU-31 

Arrifes 37.076 -8.276 4 
DSHYA074-15/DSHYA075-

15/ DSHYA081-15, 
DSHYA141-16 

H040, H091 MOTU-31 

Tarfaya 27.918 -12.961 1 DSHYA073-15 H039 MOTU-27 
Morocco 

Akhfenir 28.097 -12.050 2 DSHYA142-16, DSHYA143-
16 

H092, H093 
MOTU-32, 

27 
Ponta Cruz 32.633 -16.943 1 DSHYA087-15 H049 MOTU-18 Madeira 

Porto Frades 33.073 -16.296 1 DSHYA077-15 H042 MOTU-16 Porto Santo 
Ribeira Chã 37.715 -25.487 1 DSHYA145-16 H095 MOTU-18 

São Miguel 
Mosteiros 37.900 -25.817 1 DSHYA144-16 H094 MOTU-18 

São Lourenco 36.988 -25.054 2 DSHYA146-16, DSHYA147-
16 

H096, H097 MOTU-18 
Santa Maria 

Praia Formosa 36.949 -25.094 2 DSHYA148-16, DSHYA149-
16 

H098, H099 MOTU-18 

Bañaderos 28.149 -15.54 3 DSHYA082-15, DSHYA083-
15, DSHYA084-15 

H044, H045, 
H046 MOTU-18 Gran Canaria 

La Salemera 28.578 -17.761 1 DSHYA089-15 H050 MOTU-18 
La Palma El Faro 28.457 -17.85 1 DSHYA090-15 H051 MOTU-18 

La Fajana 28.842 -17.794 1 DSHYA140-16 H090 MOTU-18 
Los Cristianos 28.044 -16.711 1 DSHYA163-16 H110 MOTU-18 

Tenerife 
Mal Paso 28.034 -16.54 2 DSHYA150-16, DSHYA162-

16 H100, H109 MOTU-18 

Los Sargos 27.767 -18.121 1 DSHYA164-16 H111 MOTU-18 El Hierro 

S
e

re
jo

h
y

al
e 

sp
in

id
a

ct
yl

u
s

 

Barizo 43.322 -8.872 2 DSHYA105-15, DSHYA106-
15 

H064, H065 MOTU-19 
Galicia 

Muxía 43.092 -9.223 3 DSHYA108-15, DSHYA109-
15/ DSHYA110-15 

H067, H068 MOTU-19 

Reis Magos 32.646 -16.824 2 DSHYA113-15, DSHYA114-
15 

H070, H071 MOTU-22 
Madeira 

Ponta Cruz 32.633 -16.943 1 DSHYA111-15 H069 MOTU-22 
Selvagem 
Grande 

30.14 -15.86 1 DSHYA165-16 H112 MOTU-22 Selvagens 

Mosteiros 37.9 -25.817 1 DSHYA107-15 H066 MOTU-19 
São Miguel Ponta 

Ferreirinha 
37.861 -25.855 2 DSHYA112-15/ 

DSHYA154-16 
H066 MOTU-19 

Playa 
Melenara 27.989 -15.37 2 DSHYA102-15/ 

DSHYA103-15 
H062 MOTU-17 

Gran Canaria Agaete 28.163 -15.699 1 DSHYA151-16 H101 MOTU-17 

Bañaderos 28.149 -15.54 3 DSHYA096-15, DSHYA097-
15, DSHYA104-15 

H056, H057, 
H063 MOTU-17 

La Fajana 28.842 -17.794 2 DSHYA100-15, DSHYA101-
15 

H060, H061 MOTU-20 

La Palma 
La Salemera 28.578 -17.761 4 

DSHYA098-15/ 
DSHYA153-16, DSHYA099-

15, DSHYA152-16 

H058, H059, 
H102 MOTU-20 

Los Sargos 27.767 -18.121 1 DSHYA155-16 H103 MOTU-25 
El Hierro Arenas 

Blancas 
27.767 -18.121 1 DSHYA156-16 H104 MOTU-25 
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Annex 5.2. Primers, number of successfully amplified specimens and cycling conditions used in 
chapter 5. 

Reference 
(number of 
specimens) 

Primer Primer Direction (5’ – 3’)  PCR thermal cycling 
conditions 

bp 

Folmer et al. 
1994 
(52) 

LCO1490 (F) GGTCAACAAATCATAAAGATATTGG 
1) 94°C (1 min); 2) 5 cycles: 
94°C (30 s), 45°C (1 min 30 

s), 72°C (1 min); 3) 35 cycles: 
94°C (30 s), 51°C (1 min 30 
s), 72°C (1 min); 4) 72°C (5 

min). 

658 
HCO2198 (R) TAAACTTCAGGGTGACCAAAAAATCA 

Gibson et al. 
2014 
(44) 

LoboF1 (F) KBTCHACAAAYCAYAARGAYATHGG 1) 94°C (2 min); 2) 35 cycles: 
94°C (30 s), 46°C (1 min), 
72°C (1 min); 3) 72°C (5 

min). 

550 
ArR5 (R) GTRATIGCICCIGCIARIACIGG 

Lobo et al. 
2013 
(18) 

LoboF1 (F) KBTCHACAAAYCAYAARGAYATHGG 
1) 94°C (1 min); 2) 5 cycles: 
94°C (30 s), 45°C (1 min 30 

s), 72°C (1 min); 3) 45 cycles: 
94°C (30 s), 54°C (1 min 30 
s), 72°C (1 min); 4) 72°C (5 

min). 

658 
LoboR1 (R) TAAACYTCWGGRTGWCCRAARAAYCA 
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Annex 5.3. Density plot of the genetic distances. The black line is the minimum transition 
between intra- and interspecific distances of 5.4%, found with the software R using the 
function ‘localminima’ of the library SPIDER (Brown et al. 2012); the lightest line is the 
maximum distance of 2.2% used for the delimitation of the MOTUs with BINs in BOLD 
(Ratnasingham and Hebert 2013); the middle line is the threshold of 3% proposed by Costa et 
al. (2009) for crustacean species. 
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Annex 5.4. Mean and Max distance within MOTUs, number of specimens per MOTU (Count) 
and distance from the nearest neighbour (NN Dist) used in chapter 5. 

  MOTU Mean Max Count NN Dist 

Apohyale perieri 

MOTU-1 0.0024 0.0109 14 6.74 

MOTU-2 0.0000 0.0000 2 8.56 

MOTU-3 - - 1 8.56 

MOTU-4 0.0030 0.0036 4 6.74 

Apohyale media 
MOTU-5 0.0032 0.0109 10 9.11 

MOTU-6 0.0219 0.0219 2 9.11 

MOTU-21 0.0147 0.0237 5 16.10 

Apohyale prevostii MOTU-7 0.0015 0.0055 14 16.38 

Apohyale stebbingi 

MOTU-8 0.0068 0.0164 18 12.02 

MOTU-9 0.0052 0.0073 4 2.73 

MOTU-10 0.0012 0.0018 3 13.11 

MOTU-11 - - 1 12.02 

MOTU-12 0.0073 0.0073 2 8.56 

MOTU-13 - - 1 8.91 

MOTU-14 - - 1 16.76 

MOTU-23 - - 1 8.91 

MOTU-24 - - 1 2.91 

MOTU-26 - - 1 2.73 

MOTU-28 - - 1 8.56 

MOTU-29 0.0000 0.0000 2 1.64 

MOTU-30 0.0009 0.0018 4 1.64 

Hyale pontica MOTU-15 0.0028 0.0055 7 17.85 

Protohyale (Protohyale) 
schmidtii 

MOTU-16 - - 1 2.55 

MOTU-18 0.0106 0.0255 18 11.11 

MOTU-27 0.0182 0.0182 2 2.19 

MOTU-31 0.0059 0.0237 12 2.19 

MOTU-32 - - 1 2.19 

Serejohyale spinidactylus 

MOTU-17 0.0038 0.0055 6 15.38 

MOTU-19 0.0051 0.0091 8 9.11 

MOTU-20 0.0039 0.0109 6 9.11 

MOTU-22 0.0082 0.0109 4 13.83 

MOTU-25 0.0020 0.0020 2 14.03 
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ANNEX OF CHAPTER 6. 

Annex 6.1. List of peracaridean species used in chapter 6, with respective source, sampling 
location and number of individuals used. For respective co-ordinates of the material 
obtained in this study, see Annex 1.5. 

 
Order Species Source/GenBank accession Country/Island Location n 

Amphipoda Ampithoe helleri* 
KX223984, KX223981, KX223983, 
KX223980, KF369110, KF369108, 

KF369109 
Portugal - 7 

Amphipoda Ampithoe helleri* This study Gran Canaria Bañaderos 3 

Amphipoda Ampithoe helleri* Chapter 2 Spain Barizo 2 

Amphipoda Ampithoe helleri* This study La Palma# El Faro 2 

Amphipoda Ampithoe ramondi* This study Tenerife# Mal Paso 5 

Amphipoda Ampithoe ramondi* Chapter 2 Portugal Ingrina 1 

Amphipoda Ampithoe ramondi* Chapter 2 Portugal Arrifes 1 

Amphipoda Ampithoe ramondi* Chapter 2 Portugal Dona Ana 2 

Amphipoda Ampithoe ramondi* This study Gran Canaria Bañaderos 1 

Amphipoda Ampithoe ramondi* This study Madeira# Ponta Cruz 1 

Amphipoda Ampithoe ramondi* This study Santa Maria Praia Formosa 1 

Amphipoda Ampithoe ramondi* This study Santa Maria São Lourenço 1 

Amphipoda Ampithoe riedli* This study Portugal Ingrina 3 

Amphipoda Ampithoe riedli* This study Morocco# Arzila 3 

Amphipoda Ampithoe riedli* This study Madeira# Ponta Cruz 2 

Amphipoda Ampithoe riedli* This study La Palma# La Fajana 1 

Amphipoda Ampithoe rubricata Chapter 2 Portugal Dona Ana 1 

Amphipoda Ampithoe sp. This study Gran Canaria Playa Melenara 1 

Amphipoda Apohyale media Chapter 5 Gran Canaria Bañaderos 1 

Amphipoda Apohyale perieri * Chapter 5 Gran Canaria Agaete 1 

Amphipoda Apohyale perieri * Chapter 5 La Palma El Faro 3 

Amphipoda Apohyale perieri * Chapter 5 La Palma La Fajana 1 

Amphipoda Apohyale perieri * Chapter 5 Madeira Ponta Cruz 3 

Amphipoda Apohyale perieri * Chapter 5 Portugal Arrifes 1 

Amphipoda Apohyale perieri * Chapter 5 Portugal Buarcos 2 

Amphipoda Apohyale perieri * Chapter 5 Portugal Agudela 1 

Amphipoda Apohyale perieri * Chapter 5 Portugal São Pedro Moel 1 

Amphipoda Apohyale perieri * Chapter 5 São Miguel 
Ponta 

Ferreirinha 1 

Amphipoda Apohyale perieri * Chapter 5 Spain Muxía 1 

Amphipoda Apohyale perieri * Chapter 5 Spain Barizo 3 

Amphipoda Apohyale perieri * Chapter 5 Spain Pedreira 3 

Amphipoda Apohyale prevostii KX223997 Portugal - 1 

Amphipoda Apohyale stebbingi * Chapter 5 Gran Canaria Agaete 2 

Amphipoda Apohyale stebbingi * Chapter 5 Gran Canaria Playa Melenara 1 

Amphipoda Apohyale stebbingi * Chapter 5 La Palma El Faro 4 

Amphipoda Apohyale stebbingi * Chapter 5 La Palma La Salemera 2 

Amphipoda Apohyale stebbingi * Chapter 5 Madeira Ponta Cruz 4 

Amphipoda Apohyale stebbingi * Chapter 5 Madeira Reis Magos 1 

Amphipoda Apohyale stebbingi * Chapter 5 Morocco Arzila 4 
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Order Species Source/GenBank accession Country/Island Location n 
Amphipoda Apohyale stebbingi * Chapter 5 Portugal Ingrina 1 
Amphipoda Apohyale stebbingi * Chapter 5 Portugal Arrifes 2 

Amphipoda Apohyale stebbingi * Chapter 5 Portugal Dona Ana 1 

Amphipoda Apohyale stebbingi * Chapter 5 Portugal Agudela 1 

Amphipoda Apohyale stebbingi * Chapter 5 Portugal Peniche 2 

Amphipoda Apohyale stebbingi * Chapter 5 Portugal São Pedro Moel 2 

Amphipoda Apohyale stebbingi * Chapter 5 Santa Maria Praia Formosa 1 

Amphipoda Apohyale stebbingi * Chapter 5 São Miguel Mosteiros 1 

Amphipoda Apohyale stebbingi * Chapter 5 São Miguel 
Ponta 

Ferreirinha 
3 

Amphipoda Apohyale stebbingi * Chapter 5 Spain Muxía 1 

Amphipoda Apohyale stebbingi * Chapter 5 Spain Pedreira 2 

Amphipoda Apohyale stebbingi * Chapter 5 Tenerife Los Cristianos 1 

Amphipoda Caprella acanthifera* This Study El Hierro# Arenas Blancas 1 

Amphipoda Caprella acanthifera* This Study Gran Canaria Agaete 1 

Amphipoda Caprella acanthifera* This Study La Palma# El Faro 2 

Amphipoda Caprella acanthifera* This Study La Palma# La Salermera 1 

Amphipoda Caprella acanthifera* This Study Madeira Ponta Cruz 2 

Amphipoda Caprella acanthifera* This Study Madeira Reis Magos 1 

Amphipoda Caprella acanthifera* This Study Morocco# El Jadida 2 

Amphipoda Caprella acanthifera* KX224000, KX223999, KX224001 Portugal - 3 

Amphipoda Caprella acanthifera* Chapter 2 Portugal Buarcos 2 

Amphipoda Caprella acanthifera* This Study São Miguel Ribeira Chã 3 

Amphipoda Caprella acanthifera* This Study Tenerife# Los Cristianos 1 

Amphipoda Caprella liparotensis Chapter 2 Portugal Dona Ana 1 

Amphipoda Caprella mutica KT208479 North Sea - 1 

Amphipoda Caprella penantis KF369116 Portugal - 1 

Amphipoda Elasmopus canarius This study Gran Canaria Bañaderos 2 

Amphipoda Elasmopus canarius This study La Palma# El Faro 1 

Amphipoda Elasmopus canarius This study El Hierro# Arenas Blancas 1 

Amphipoda Elasmopus pectenicrus * This study Tenerife# Mal Paso 2 

Amphipoda Elasmopus pectenicrus * This study Porto Santo# Porto Frades 2 

Amphipoda Elasmopus pectenicrus * This study Portugal Arrifes 1 

Amphipoda Elasmopus pectenicrus * Chapter 2 Portugal Dona Ana 2 

Amphipoda Elasmopus pectenicrus * This study Morocco# Akhfenir 3 

Amphipoda Elasmopus pectenicrus * This study Madeira# Ponta Cruz 3 

Amphipoda Elasmopus pectenicrus * This study Madeira# Reis Magos 1 

Amphipoda Elasmopus rapax Chapter 2 Spain Pedreira 1 

Amphipoda Elasmopus vachoni This study La Palma La Fajana 1 

Amphipoda Elasmopus vachoni This study São Miguel Ribeira Chã 2 

Amphipoda Elasmopus vachoni This study Santa Maria São Lourenço 1 

Amphipoda Hyale pontica Chapter 5 Spain Muxía 1 

Amphipoda Hyalinae This study Morocco El Jadida 1 

Amphipoda Jassa falcata Chapter 2 Spain Pedreira 1 

Amphipoda Jassa herdmani * This study Madeira# Ponta Cruz 2 

Amphipoda Jassa herdmani * This study Porto Santo# Porto Frades 1 

Amphipoda Jassa herdmani * KX224053, KF369134 Portugal - 2 



 
Annexes 

 

201 

Order Species Source/GenBank accession Country/Island Location n 
Amphipoda Jassa herdmani * This study Portugal Buarcos 3 

Amphipoda Jassa herdmani * This study São Miguel# Ribeira Chã 3 

Amphipoda Jassa marmorata KT209366 North Sea - 1 

Amphipoda Jassa ocia Chapter 2 Portugal Ingrina 1 

Amphipoda Jassa pusilla KT208423 North Sea - 1 

Amphipoda Jassa slatteryi EU243815 Pacific - 1 

Amphipoda Podocerus variegatus* This study La Palma# El Faro 1 

Amphipoda Podocerus variegatus* This study La Palma# La Fajana 2 

Amphipoda Podocerus variegatus* This study Porto Santo# Porto Frades 1 

Amphipoda Podocerus variegatus* Chapter 2 Spain Muxía 2 

Amphipoda Podocerus variegatus* Chapter 2 Spain Barizo 2 

Amphipoda Podocerus variegatus* Chapter 2 Spain Pedreira 1 

Amphipoda Protohyale schmidtii * Chapter 5 Gran Canaria Bañaderos 3 

Amphipoda Protohyale schmidtii * Chapter 5 La Palma El Faro 1 

Amphipoda Protohyale schmidtii * Chapter 5 La Palma La Salemera 1 

Amphipoda Protohyale schmidtii * Chapter 5 La Palma La Fajana 1 

Amphipoda Protohyale schmidtii * Chapter 5 Madeira Ponta Cruz 1 

Amphipoda Protohyale schmidtii * Chapter 5 Morocco Akhfenir 2 

Amphipoda Protohyale schmidtii * Chapter 5 Morocco Tarfaya 1 

Amphipoda Protohyale schmidtii * Chapter 5 Porto Santo Porto Frades 1 

Amphipoda Protohyale schmidtii * Chapter 5 Portugal Arrifes 4 

Amphipoda Protohyale schmidtii * Chapter 5 Portugal Buarcos 1 

Amphipoda Protohyale schmidtii * Chapter 5 Portugal Peniche 1 

Amphipoda Protohyale schmidtii * Chapter 5 Santa Maria Praia Formosa 2 

Amphipoda Protohyale schmidtii * Chapter 5 Santa Maria São Lourenço 2 

Amphipoda Protohyale schmidtii * Chapter 5 São Miguel Ribeira Chã 1 

Amphipoda Protohyale schmidtii * Chapter 5 São Miguel Mosteiros 1 

Amphipoda Protohyale schmidtii * Chapter 5 El Hierro Los Sargos 1 

Amphipoda Protohyale schmidtii * Chapter 5 Spain Muxía 2 

Amphipoda Protohyale schmidtii * Chapter 5 Spain Barizo 3 

Amphipoda Protohyale schmidtii * Chapter 5 Spain Pedreira 2 

Amphipoda Protohyale schmidtii * Chapter 5 Tenerife Mal Paso 2 

Amphipoda Protohyale schmidtii * Chapter 5 Tenerife Los Cristianos 1 

Amphipoda Quadrimaera inaequipes * 
KX224085, KX224086, KX224087, 
KX224089, KX224090, KX224091, 

KF369148, KF369148 
Portugal - 8 

Amphipoda Quadrimaera inaequipes * This study Gran Canaria# Bañaderos 1 

Amphipoda Quadrimaera inaequipes * This study La Palma# El Faro 1 

Amphipoda Quadrimaera inaequipes * This study La Palma# La Salemera 1 

Amphipoda Quadrimaera inaequipes * This study Madeira# Ponta Cruz 3 

Amphipoda Quadrimaera inaequipes * This study La Palma# La Fajana 1 

Amphipoda Serejohyale spinidactylus* Chapter 5 El Hierro Los Sargos 1 

Amphipoda Serejohyale spinidactylus* Chapter 5 Gran Canaria Bañaderos 3 

Amphipoda Serejohyale spinidactylus* Chapter 5 Gran Canaria Agaete 1 

Amphipoda Serejohyale spinidactylus* Chapter 5 Gran Canaria Playa Melenara 2 

Amphipoda Serejohyale spinidactylus* Chapter 5 La Palma La Salemera 4 
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Order Species Source/GenBank accession Country/Island Location n 
Amphipoda Serejohyale spinidactylus* Chapter 5 La Palma La Fajana 2 

Amphipoda Serejohyale spinidactylus* Chapter 5 Selvagens 
Selvagem 
Grande 1 

Amphipoda Serejohyale spinidactylus* Chapter 5 Madeira Ponta Cruz 1 

Amphipoda Serejohyale spinidactylus* Chapter 5 Madeira Reis Magos 2 

Amphipoda Serejohyale spinidactylus* Chapter 5 São Miguel Mosteiros 1 

Amphipoda Serejohyale spinidactylus* Chapter 5 São Miguel 
Ponta 

Ferreirinha 
2 

Amphipoda Serejohyale spinidactylus* Chapter 5 Spain Muxía 3 

Amphipoda Serejohyale spinidactylus* Chapter 5 Spain Barizo 2 

Amphipoda Stenothoe marina KT209198 North Sea - 1 

Amphipoda Stenothoe monoculoides* 
KT208458, KT209192, KT208446, 

KT209271 North Sea - 4 

Amphipoda Stenothoe monoculoides* This study Tenerife# Mal Paso 3 

Isopoda Anthura gracilis * This study Tenerife# Los Cristianos 1 

Isopoda Anthura gracilis * This study Porto Santo# Porto Frades 1 

Isopoda Anthura gracilis * This study Selvagens# 
Selvagem 
Grande 1 

Isopoda Anthura gracilis * This study Gran Canaria# Agaete 1 

Isopoda Anthura gracilis * Chapter 2 Spain Barizo 1 

Isopoda Anthura gracilis * This study Morocco# Arzila 2 

Isopoda Anthura gracilis * This study Terceira Porto Martins 1 

Isopoda Anthura gracilis * Chapter 2 Portugal Viana Castelo 2 

Isopoda Anthura gracilis * This study São Miguel Ribeira Chã 3 

Isopoda Anthura gracilis * This study La Palma# La Fajana 1 

Isopoda Campecopea hirsuta Chapter 2 Portugal Ingrina 1 

Isopoda Campecopea lusitanica * This study Porto Santo# Porto frades 2 

Isopoda Campecopea lusitanica * This study Gran Canaria# Bañaderos 1 

Isopoda Campecopea lusitanica * Chapter 2 Portugal Peniche 1 

Isopoda Campecopea lusitanica * This study La Palma# El Faro 1 

Isopoda Campecopea lusitanica * Chapter 2 Spain Pedreira 3 

Isopoda Campecopea lusitanica * This study La Palma# La Fajana 1 

Isopoda Cyathura carinata Chapter 2 Portugal Viana Castelo 1 

Isopoda Cymodoce truncata * This study Porto Santo# Porto Frades 2 

Isopoda Cymodoce truncata * Chapter 2 Spain Muxia 1 

Isopoda Cymodoce truncata * This study Portugal Vale dos Homens 1 

Isopoda Cymodoce truncata * Chapter 2 Portugal Peniche 3 

Isopoda Cymodoce truncata * This study Madeira# Ponta Cruz 1 

Isopoda Cymodoce truncata * This study Terceira Porto Martins 1 

Isopoda Cymodoce truncata * This study La Palma# La Fajana 2 

Isopoda Dynamene bidentata * Chapter 4 Gran Canaria Bañaderos 1 

Isopoda Dynamene bidentata * Chapter 4 Morocco El Jadida 1 

Isopoda Dynamene bidentata * Chapter 4 Morocco Essaouire 1 

Isopoda Dynamene bidentata * Chapter 4 Portugal Buarcos 3 

Isopoda Dynamene bidentata * Chapter 4 Portugal Viana Castelo 14 

Isopoda Dynamene bidentata * Chapter 4 Portugal Sines 2 

Isopoda Dynamene bidentata * Chapter 4 Spain Pedreira 5 

Isopoda Dynamene bidentata * Chapter 4 Spain Barizo 3 

Isopoda Dynamene edwardsi * Chapter 4 El Hierro Arenas Blancas 3 
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Order Species Source/GenBank accession Country/Island Location n 
Isopoda Dynamene edwardsi * Chapter 4 El Hierro Los Sargos 3 

Isopoda Dynamene edwardsi * Chapter 4 Gran Canaria Bañaderos 6 

Isopoda Dynamene edwardsi * Chapter 4 Gran Canaria Agaete 6 

Isopoda Dynamene edwardsi * Chapter 4 Gran Canaria Playa Melenara 5 

Isopoda Dynamene edwardsi * Chapter 4 La Palma El Faro 6 

Isopoda Dynamene edwardsi * Chapter 4 La Palma La Salemera 5 

Isopoda Dynamene edwardsi * Chapter 4 La Palma La Fajana 5 

Isopoda Dynamene edwardsi * Chapter 4 Madeira Ponta Cruz 5 

Isopoda Dynamene edwardsi * Chapter 4 Madeira Reis Magos 5 

Isopoda Dynamene edwardsi * Chapter 4 Morocco El Jadida 1 

Isopoda Dynamene edwardsi * Chapter 4 Morocco Arzila 4 

Isopoda Dynamene edwardsi * Chapter 4 Morocco Tarfaya 4 

Isopoda Dynamene edwardsi * Chapter 4 Porto Santo Porto Frades 5 

Isopoda Dynamene edwardsi * Chapter 4 Portugal Ingrina 5 

Isopoda Dynamene edwardsi * Chapter 4 Portugal Arrifes 4 

Isopoda Dynamene edwardsi * Chapter 4 Portugal Dona Ana 5 

Isopoda Dynamene edwardsi * Chapter 4 Portugal Peniche 4 

Isopoda Dynamene edwardsi * Chapter 4 Portugal Sines 1 

Isopoda Dynamene edwardsi * Chapter 4 São Miguel Mosteiros 1 

Isopoda Dynamene edwardsi * Chapter 4 Selvagens 
Selvagem 
Pequena 

2 

Isopoda Dynamene edwardsi * Chapter 4 Selvagens 
Selvagem 
Grande 

4 

Isopoda Dynamene edwardsi * Chapter 4 Spain Muxia 1 

Isopoda Dynamene edwardsi * Chapter 4 Tenerife Los Cristianos 4 

Isopoda Dynamene edwardsi * Chapter 4 Tenerife Mal Paso 5 

Isopoda Dynamene magnitorata * Chapter 4 La Palma La Fajana 1 

Isopoda Dynamene magnitorata * Chapter 4 Portugal Arrifes 5 

Isopoda Dynamene magnitorata * Chapter 4 Portugal Dona Ana 3 

Isopoda Dynamene magnitorata * Chapter 4 Portugal Buarcos 3 

Isopoda Dynamene magnitorata * Chapter 4 Portugal Peniche 5 

Isopoda Dynamene magnitorata * Chapter 4 Portugal Viana Castelo 2 

Isopoda Dynamene magnitorata * Chapter 4 Santa Maria La Fajana 1 

Isopoda Dynamene magnitorata * Chapter 4 Santa Maria Praia Formosa 2 

Isopoda Dynamene magnitorata * Chapter 4 São Miguel Ribeira Chã 6 

Isopoda Dynamene magnitorata * Chapter 4 Spain Pedreira 1 

Isopoda Dynamene magnitorata * Chapter 4 Spain Muxía 5 

Isopoda Dynamene magnitorata * Chapter 4 Spain Barizo 2 

Isopoda Dynamene magnitorata * Chapter 4 Terceira Cinco Ribeiras 1 

Isopoda Dynamene magnitorata * Chapter 4 Terceira Porto Martins 2 

Isopoda Gnathia maxillaris * This study Gran Canaria# Agaete 2 

Isopoda Gnathia maxillaris * This study La Palma# El Faro 1 

Isopoda Gnathia maxillaris * This study La Palma# La Fajana 2 

Isopoda Gnathia maxillaris * This study Porto Santo# Porto Frades 1 

Isopoda Gnathia maxillaris * Chapter 2 Portugal Ingrina 1 

Isopoda Gnathia maxillaris * This study Portugal Buarcos 2 

Isopoda Gnathia maxillaris * Chapter 2 Spain Pedreira 1 
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Order Species Source/GenBank accession Country/Island Location n 
Isopoda Janira maculosa * Chapter 2 Portugal Dona Ana 2 

Isopoda Janira maculosa * Chapter 2 Spain Muxia 1 

Isopoda Janira maculosa * This study La Palma# La Salemera 2 

Isopoda Janira maculosa * This study La Palma# La Fajana 1 

Isopoda Joeropsis brevicornis * This study Tenerife# Los Cristianos 2 

Isopoda Joeropsis brevicornis * This study Portugal Dona Ana 2 

Isopoda Joeropsis brevicornis * Chapter 2 Spain Barizo 1 

Isopoda Joeropsis brevicornis * This study La Palma# El Faro 2 

Isopoda Joeropsis brevicornis * This study Madeira# Reis Magos 2 

Tanaidacea Apseudes talpa JF927715 Portugal - 1 

Tanaidacea Apseudopsis latreillii * This study Porto Santo# Porto Frades 1 

Tanaidacea Apseudopsis latreillii * This study Portugal Dona Ana 3 

Tanaidacea Apseudopsis latreillii * This study Gran Canaria# Agaete 2 

Tanaidacea Tanais dulongii * This study La Palma# El Faro 1 

Tanaidacea Tanais dulongii * This study La Palma# La Salemera 2 

Tanaidacea Tanais dulongii * This study Madeira Ponta Cruz 3 

Tanaidacea Tanais dulongii * This study Morocco# El Jadida 1 

Tanaidacea Tanais dulongii * This study Morocco# Arzila 1 

Tanaidacea Tanais dulongii * HM422239, HM422240 Portugal - 2 

Tanaidacea Tanais dulongii * Chapter 2 Portugal Ingrina 1 

Tanaidacea Tanais dulongii * Chapter 2 Portugal Peniche 1 

Tanaidacea Tanais dulongii * Chapter 2 Portugal Berlengas 1 

Tanaidacea Tanais dulongii * Chapter 2 Spain Barizo 1 

Tanaidacea Tanais grimaldii * This study Selvagens# 
Selvagem 
Pequena 

1 

Tanaidacea Tanais grimaldii * This study Porto Santo# Porto Frades 2 

Tanaidacea Tanais grimaldii * This study Selvagens# 
Selvagem 
Grande 

2 

Tanaidacea Tanais grimaldii * This study Spain Barizo 2 

Tanaidacea Tanais grimaldii * This study São Miguel Ribeira chã 2 

Tanaidacea Tanais sp1 This study Santa Maria Praia Formosa 1 

Tanaidacea Tanais sp2 This study Gran Canaria Playa Melenara 1 

Tanaidacea Tanais sp3 This study Selvagens 
Selvagem 
Pequena 1 

Tanaidacea Zeuxo exsargasso This study Tenerife Mal Paso 1 

Tanaidacea Zeuxo exsargasso This study Porto Santo# Porto Frades 1 

 
* Species used in the molecular species delineation.
# New records obtained in this study. 
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