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A B S T R A C T   

In the past decades, there has been an increasing body of research in vehicle routing problems involving cu-
mulative costs. These problems consider cumulative objective functions such as the sum of arrival times to 
customers or the cumulative costs based on the vehicles’ load throughout the routes. This paper reviews this type 
of routing problem by means of the cumulative vehicle routing problem (Cum-VRP) and cumulative capacitated 
vehicle routing problem (CCVRP). In doing so, we present and discuss all related problem variants with regard to 
the different problem features proposed over time. Moreover, we provide an analysis of related papers con-
cerning solution algorithms and used benchmark instances. Finally, an overview of the trends and promising 
areas for further research are also provided.   

1. Introduction 

Cumulative vehicle routing problems are an extension of the classic 
capacitated vehicle routing problem (VRP, Dantzig & Ramser (1959)) 
aiming to find a set of delivery routes that optimizes a given objective 
function considering cost accumulation in the course of the planning 
realization. The first cumulative VRP, i.e., Cum-VRP, was proposed in 
2008 by Kara, Kara, and Yetiş (2008), as a way to incorporate the flow of 
freights throughout the routes within two applications, namely, energy 
minimizing and school bus routing. In doing so, the authors quantify the 
objective function as the product of the vehicle’s load and the cost of the 
arc traversed to reach the node in which the requested demand is 
delivered/collected. Given that, the objective of the Cum-VRP prefers to 
traverse the most distant arcs as the vehicle gets lighter. Later, that 
approach was extended to consider the arrival of customers as the 
accumulative component in such a way that customers have to wait the 
least time possible (see Ngueveu, Prins, & Wolfler Calvo (2010)). In this 
sense, the authors compute the arrival time to the node is as the total 
distance traveled to reach the incumbent node. That is, the sum of the 
arcs traversed to reach the incumbent node. That variant is known as the 
cumulative capacitated vehicle routing problem (CCVRP) and received 
relevant attention due to several applications on health-care, disaster 
relief operations, maintenance, and customer-centred logistics 
operations. 

Due to the wide spectrum of possible applications, this type of 

routing problem has attracted the interest of researchers and practi-
tioners, resulting in several works continuing and extending these two 
cumulative-oriented routing problems. Recently, Nucamendi-Guillén, 
Flores-Díaz, Olivares-Benitez, and Mendoza (2020) extended the prob-
lem by incorporating priority indexes to cover commercial contexts such 
as the delivery of perishable goods requiring to differentiate between 
orders (based on the preference in the attention of the customers). Liu 
and Jiang (2019) extended the CCVRP proposed in (Ngueveu et al., 
2010) to consider customers’ time windows, they referred to this 
problem as Cum-VRPTW1. Lalla-Ruiz and Voß (2020) considered the 
problem with multiple depots to handle logistics contexts involving 
vehicles departing from different depots. Wang, Choi, Liu, and Yue 
(2018) studied the problem as an emergency transportation problem in a 
disaster relief supply chain where fast response and fairness are of major 
importance. As can be noticed, variants considering practical features 
already known in the VRP literature are also starting to be considered 
with cumulative objectives. In that regard, we can observe that, in some 
cases, the use of acronyms to distinguish the version of the problem is 
not consistently used due to the close relationship between both objec-
tives. Besides this, the increasing number of vehicle routing works with 
cumulative objectives lead to the necessity of a literature study that 
permits positioning and mapping current research on this type of 
problem while also providing insights concerning successful or efficient 
solutions approaches developed so far. 

This work presents a literature review on cumulative vehicle routing 
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problems by means of the CCVRP and Cum-VRP and provides an anal-
ysis of their latest advances and directions with regards to problem 
variants and quantitative approaches. 

To the best of our knowledge, no published work summarizes the 
state-of-the-art of research in cumulative-oriented vehicle routing 
problems. Below, we outline the main contributions:  

• A comprehensive and extensive review of recent cumulative vehicle 
routing problems originated from the CCVRP and Cum-VRP that 
include new features, e.g., time windows, limited duration, multiple 
depots, among others. From the collected works, a scheme of variants 
permitting to map and relate current and future works is provided.  

• An up-to-date literature analysis, including summarizing tables of all 
related cumulative routing approaches. In the case of new problem 
variants, this permits positioning the problem at hand and finding 
the most suitable method based on the problem features.  

• Overview of proposed and used benchmarks in cumulative vehicle 
routing problems as well as analysis of solution methods’ perfor-
mance on most commonly used instances. This serves as a study of 
these methods over time while indicating current challenges 
regarding problem instances. 

1.1. Review methodology 

For conducting this state-of-the-art review, we conducted a system-
atic search to identify the related literature to Cum-VRP and CCVRP by 
employing the SCOPUS and Web of Science (WoS) databases and using 
the following search terms: cumulative capacitated vehicle, latency location 
2, cumulative routing, cumulative vehicle, cumulative VRP, multi-depot cu-
mulative, cumulative VRP, cumulative-oriented routing, cumulative objective 
and latency time. 

After conducting the search and collecting the works, the results 
from both databases were compared and duplicates were manually 
removed. The remaining studies were then screened based on title and 
abstract to identify and exclude those not meeting the selection criteria. 
Namely, the excluded records either belong to a different field of study 
(e.g., medicine, cloud computing), were identified as a non-routing 

vehicle problem or not related to Cum-VRP nor CCVRP. 
A full-text review was performed on the remaining records to iden-

tify the problems’ main features and used objective functions. Since we 
focused our attention on those works studying cumulative vehicle 
routing problems, we limit the collection of works to those addressing 
the CCVRP or Cum-VRP. Thus, we discarded two final records related to 
the Travelling Repairman Problem (TRP), whose features, although 
associated with the CCVRP, do not fit our inclusion criteria. As a com-
plement, Fig. 1 explains the used search strategy and shows the records 
obtained at each step of the process. 

The results obtained from the applied search methodology can be 
found in Table 1. As can be seen, despite the fact that this problem type is 
quite recent, the number of works addressing the CCVRP and Cum-VRP 
over time follows an increasing trend. 

1.2. Organization of this paper 

The rest of this paper is organized as follows. Section 2 describes two 
main cumulative problems (i.e., Cum-VRP and CCVRP) and all those 
variants originated from them. Afterwards, Section 3 reviews and clas-
sifies the solution approaches proposed for these problems. Analysis and 
discussions are provided in Section 4. Finally, Section 5 draws the main 
conclusions extracted from this work and provides some lines and 
challenges for further research. 

2. Cumulative vehicle routing problems 

As discussed in the introduction, two main routing problems address 
the VRP involving cumulative objectives, i.e., Cum-VRP and CCVRP. In 

Fig. 1. Search strategy results.  

Table 1 
Cumulative vehicle routing works over time.  

Publication type 2008–2012 2013–2016 2017–2021 Total 

Journals 3 9 17 29 
Proceedings 1 4 4 9 
Book chapter 1 0 3 4 
Total 5 13 24 42  

2 This term was used for obtaining CCVRP related works 
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the following, the problem description and mathematical formulation 
for each of the above-mentioned problems are provided. 

2.1. Problem definition and mathematical formulation for the Cum-VRP 

The Cum-VRP (Kara et al., 2008) is defined over a graph G = (V,A), 
where V = {0,1, 2,…, n} is the node set, the node 0 corresponds to the 
depot, and A = {(i, j) : i, j ∈ V, i ∕= j} represents the set of arcs. There is a 
fleet of |K| vehicles (where K represents the set of available vehicles), all 
with identical capacity that can be used to serve customers, given that 
each customer i ∈ V \{0} has a demand qi. For each pair of nodes (i,
j) ∈ A, there is a travel time or travel distance (cij) associated. There is a 
parameter Q0 that denotes the initial value of flow from the origin to the 
first node of the tour (e.g., representing the tare of truck), in addition, 
parameter M represents the flow capacity of the arcs of the network 
(maximal value of the flow on any arc of the network, i.e., capacity plus 
tare of the trucks in the case of carrying goods). The objective of the 
problem consists of determining a set of tours, each starting at the depot 
and covering all customers (visiting each node only once and by exactly 
one vehicle) before ending at the depot while minimizing the total cost. 
In this problem, the cost is determined as the product of the distance of 
the selected arc (i, j) and the flow on this arc. This problem can be 
addressed from two different perspectives: collection and delivery. 

The definition of the variables is as follows. Let xij be a binary vari-
able equal to 1 if the arc (i, j) is on the tour of a vehicle, zero otherwise. 
Further, let yij be a variable that denotes the flow arc (i, j) if the vehicle 
travels from i to j, zero otherwise. The definition of the variables yij is key 
for this VRP variant, since they indicate the cumulative load of the 
vehicle after departing from node i either in the collection or delivery 
case (for further information, see Kara et al., 2008). 

The mathematical formulation for the Cum-VRP (for the collection 
case) is defined as follows: 

min
∑n

i=0

∑n

j=0
cij⋅yij (1)  

subject to :
∑n

i=1
x0i = |K|

(2)  

∑n

i=1
xi0 = |K| (3)  

∑n

i=0
xij = 1 ∀j = {0, 1, 2,…, n} (4)  

∑n

j=0
xij = 1 ∀i = {0, 1, 2,…, n} (5)  

∑

j=0
i∕=j

n

yij −
∑

j=0
i∕=j

n

yji = qi ∀i = {1, 2,…, n} (6)  

y0i = Q0⋅x0i ∀i = {1, 2,…, n} (7)  

yij⩽(M − qj)xij ∀(i, j) ∈ A (8)  

yij⩾(Q0 + qi)xij ∀(i, j) ∈ A (9)  

xij ∈ {0, 1} ∀(i, j) ∈ A (10)  

yij⩾0 ∀(i, j) ∈ A (11)  

The objective function given in (1) defines the cumulative cost function 
based on the arc distance and flow. Constraints (2) and (3) ensure that |
K| vehicles are used. Notice that “=” can be replaced by “⩽” to model the 

case where at most |K| vehicles can be used. Constraints (4) and (5) are 
used to estimate the degree of each node. Together with (2) and (3), they 
are called assignment constraints of the formulation. Constraints (6) are 
the classical conservation of flow constraint for balancing inflow and 
outflow at each node. They guarantee that the flow variables of each 
tour perform an increasing step function. Since the formulation operates 
for the collection case, the values of yij will increase in dependency of the 
capacity on the next customer j included in the route. These constraints 
also contribute to avoiding sub-tours. Constraints (7) initialize the flow 
on the first arc of each route. Constraints (8) model the capacity re-
strictions and force yij to zero when the arc (i, j) is not on any route. 
Constraints (9) produce lower bounds for the flow of any arc. The nature 
of the decision variables is defined in (10) and (11). It is important to 
remark that non-negativity constraints for variables yij become redun-
dant because of lower bounds provided in (9). 

The model for the delivery case can be obtained by removing con-
straints (6)–(9) and replacing them by the following: 

∑

j=0
i∕=j

n

yji −
∑

j=0
i∕=j

n

yij = qi ∀i = {1, 2,…, n} (12)  

yi0 = Q0⋅xi0 ∀i = {1, 2,…, n} (13)  

yij⩽(M − qi)xij ∀(i, j) ∈ A (14)  

yij⩾(Q0 + qj)xij ∀(i, j) ∈ A (15)  

where Q0 indicates the final value of flow from the last node of the tour 
to the origin (e.g. tare of the truck). In this delivery approach, con-
straints (12) denote the conservation flow whereas constraints (13) 
define the final flow value on the last node of the tour. Specifically 
constraints (12) work in an opposite way to the collection case, 
decreasing the values of yij in dependency of the demand delivered on 
customer i in the route. Finally, constraints (14) and (15) determine the 
capacity restrictions for the delivery case. Consequently, the formula-
tion for the delivery case is obtained by using constraints (1)–(7) in 
conjunction with constraints (12)–(15), (10), (11). 

2.2. Problem definition and mathematical formulation for the CCVRP 

The CCVRP (Ngueveu et al., 2010) is defined on a graph G = (V,A)
where V = {0,…, n, n+1} is the node set (nodes 0 and n+1 correspond 
to the depot and V′ = V⧹{0, n+1} to the set of customers), A = {(i, j) : i,
j ∈ V, i ∕= j} is the arc set. Each arc (i, j) ∈ A has associated a travel time 
cij between nodes i and j. Parameter Q denotes the vehicle capacity, K 
represents the fleet set, and each customer i ∈ V′ has a demand qi. The 
objective consists of identifying a set of routes so that every customer is 
visited exactly once and the sum of arrival times at customers is 
minimized. 

A route is defined as a cycle, starting and ending at the depot, in 
which the serviced demand does not exceed the vehicle capacity Q. Let tk

i 

be the arrival time of vehicle k at customer i and xk
ij a binary variable 

equal to 1 if vehicle k traverses edge (i, j) going from i to j. 
The mathematical formulation for the CCVRP is defined as follows: 

min
∑|K|

k=1

∑n

i=1
tk
i (16)  

subject to :

∑n+1

i=0
xk

ij =
∑n+1

i=0
xk

ji ∀j = {1,…, n}, ∀k ∈ {1,…, |K|}
(17)  

∑|K|

k=1

∑n

j=1
xk

ij = 1 ∀i = {1,…, n} (18) 
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∑n

i=1

∑n+1

j=0
xk

ijqi⩽Q ∀k ∈ {1,…, |K|} (19)  

∑n+1

j=0
xk

0j = 1 ∀k ∈ {1,…, |K|} (20)  

∑n+1

i=0
xk

i,n+1 = 1 ∀k ∈ {1,…, |K|} (21)  

tk
i +wij − M(1 − xk

ij)⩽tk
j ∀i={0,…,n}, ∀j={0,…,n+1}, ∀k∈{1,…, |K|}

(22)  

tk
i ⩾0∀i = {0,…, n+ 1}, ∀k ∈ {1,…, |K|} (23)  

xk
ij ∈ {0, 1}∀i, j = {0,…, n+ 1}, i ∕= j, ∀k ∈ {1,…, |K|} (24)  

In this model, the objective function (16) minimizes the total latency of 
the customers (i.e., the sum of arrival times at the n customer locations). 
Constraints (17) and (18) specify that each customer is visited by only 
one vehicle. Constraints (19) ensure that the capacity of each vehicle is 
not exceeded. Constraints (20) and (21) force that routes start and end at 
the depot. Constraints (22) compute the arrival times at each node and 
prevent sub-tours (using the big-M technique). Finally, constraints (23) 
and (24) establish the nature of the variables. 

Although both models, Cum-VRP and CCVRP, consider cumulative 
functions, the difference between them relies on what is accumulated. 
With the aim of illustrating that, Fig. 2 shows a solution for the Cum-VRP 
and CCVRP for the case of 5 customers. Regarding the Cum-VRP, it 
considers the relation of the distance (cij) between each pair of nodes (i,
j) and the cumulative load of the vehicle (sum of the demands of 
remaining customers scheduled in the route, yij) at the moment of 
reaching node j (

∑n
i=0

∑n
j=0cij⋅yij), as observed in Fig. (2a). With respect 

to the CCVRP, the objective function 
∑|K|

k=1
∑n

i=1tki calculates the cumu-
lative arrival time of the vehicle k ∈ K to the node i ∈ V′, as can be 
observed in Fig. (2b). Finally, it is relevant to indicate that due to the 
type of accumulation considered in Cum-VRP, both problems also differ 
in the route structure, that is, while in Cum-VRP the routes are closed, in 
the CCVRP they are open. 

With respect to the CCVRP objective function, different variants have 
considered related cumulative functions. For instance, Nucamendi- 
Guillén et al. (2018) proposed the objective function 

∑∑
cijuij, where 

uij denotes the number of remaining nodes in the route after visiting 
node i. That objective quantifies the sum of the arrival times equiva-
lently as Ngueveu et al. (2010). It is worth noting that, since the sum of 
the values of tk

i is minimized, the minimum possible value for the arrival 
time at node i corresponds to the sum of the traveling arcs of the pre-
viously visited nodes (see Fig. 2b). Additionally, in the objective 

∑
tk
i 

presented in Ngueveu et al. (2010), the index k represents the vehicle 

Fig. 2. Comparison of solutions for the CCVRP and Cum-VRP.  
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used, and the only difference with the objective function provided in 
(16) is that the sum of the arrival times is quantified by vehicle. Also, 
notice that if the objective function (16) is changed by (1), we obtain the 
model proposed by Kara et al. (2008), since the feasible region denoted 
by the constraints is the same. 

Other variants of the CCVRP concerning objective functions are:  

•
∑∑

(tki qi). This objective function multiplies the arrival times ti by 
the demand qi of each node i. This objective function might be 
partially similar to 

∑∑
cijyij since it multiplies the cumulative load 

yij by the value of the traversing arc cij.  
•
∑∑

(cijqi). This cumulative objective is expressed as the product of 
the traversing arc between nodes i and j and the demand of node i. 
Even when this objective function is not directly equivalent to those 
proposed in (Kara et al., 2008; Ngueveu et al., 2010), it computes 
weighted arcs, which can be seen, thus, as a weighted objective 
function. 

2.3. Problem variants 

Several variants of the CVRP involving cumulative costs (i.e., Cum- 
VRP and CCVRP) have been studied in the related literature. Fig. 3 
shows the evolution of the problem approaches based on the addition of 
different problem features. The figure shows with green lines all related 
Cum-VRPs, while CCVRP related ones are delimited with blue ones. The 
features necessary to add to the originating problems are provided near 
the arcs. This way Cum-VRP with limited duration leads to the CumVRP- 
LD. Similarly, if we add a limited duration to the Cum-VRP, then the 
Cum-VRPLD variant is obtained. From this scheme, it can be observed 
that Cum-VRP and CCVRP have similar variants as the same feature was 
added to their corresponding problem, e.g., CCVRP-TW and Cum- 
VRPTW, MDCCVRP and Cum-MDVRP, etc. Lastly, as all variants 

consider vehicle’s capacity restrictions, that feature is not explicitly 
shown in the figure. 

Table 2 summarizes the different contributions addressed and their 
defining components (e.g, objective function, additional constraints, 
fleet type, etc.). In the table, column 1 indicates the reference of the 
cumulative routing-related work. Columns 2, 3, 4, and 5 display the type 
of objective function conducted (either for the Cum-VRP or CCVRP). If 
the study has more than one objective, columns 6 and 7 indicate if the 
study conducts a bi-objective or multi-objective approach. Columns 8 
and 9 are used to denote the type of sources considered, whereas the 
following two columns indicate the type of fleet addressed. Columns 12 
to 16 indicate the type of specific constraints addressed, such as time 
windows, prioritization, limited duration, or multiple trips. Finally, the 
last two columns indicate the type of solution approach considered for 
each problem variant. 

From the information shown in Table 2, it can be observed that both 
main problems (i.e., Cum-VRP and CCVRP) have been continuously 
studied over the years. Moreover, there is a slight preference of re-
searchers for studying the problem proposed by Ngueveu et al. (2010) 
since around 71% of the total papers (30 out of 42) directly addressed 
the CCVRP or proposed a related variant. In the case of the Cum-VRP 
introduced by Kara et al. (2008), it can be noticed that it was mainly 
continued by researchers: Cinar, Gakis, and Pardalos (2016), Cinar, 
Cayir Ervural, Gakis, and Pardalos (2017) and Gaur, Mudgal, and Singh 
(2013), Gaur, Mudgal, and Singh (2020), Gaur and Singh (2015), Gaur 
and Singh (2017). It can also be observed from the works that incor-
porate a MILP technique that 13 out of 15 formulations were developed 
for the CCVRP. 

New variants incorporating time windows (Monsreal-Barrera, Cruz- 
Mejia, & Marmolejo-Saucedo, 2020) and a sustainability perspective 
(Fernández Gil, Gómez Sánchez, Lalla-Ruiz, & Castro, 2020) have been 
recently proposed. Monsreal-Barrera et al. (2020) analyzed the 

Fig. 3. CCVRP and Cum-VRP variants scheme.  
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Table 2 
Taxonomic review of the Cum-VRP and CCVRP works.  

Reference Objective functions Multi- 
Objective 

# Depots Fleet 
Type 

TW Additional Constraints Solution 
Method  

∑∑
tki 

∑∑
cijyij 

∑
maxtki 

∑∑∑
dij(ak) +

∑
(bkqijk)

Bi Multi Single Multi Ho Ht Hard Soft Priorities Route 
Duration 

Multiple 
Trips 

Exact Approx 

Kara et al. (2008)  • • • •

Ngueveu et al. (2009) • • • •

Ngueveu et al. (2010) • • • • •

Chen et al. (2012) • • • •

Mattos-Ribeiro and Laporte 
(2012) 

• • • •

Gaur et al. (2013)  • • • • •

Ke and Feng (2013) • • • •

Ozsoydan and Sipahioglu (2013) • • • •

Lysgaard and Wøhlk (2014) • • • •

Rivera et al. (2014) • • • • • •

Gaur and Singh (2015)    • • • •

Martínez-Salazar et al. (2015) • • • • • •

Rivera et al. (2015) • • • • • •

Cinar et al. (2016)    • • • • •

Gaur et al. (2016)    • • • • •

Moshref-Javadi and Lee (2016) • • • • •

Rivera et al. (2016) • • • • • •

Victoria et al. (2016) • • • • • •

Cinar et al. (2017)    • • • • •

Flores-Garza et al. (2017) • • • • • •

Gaur and Singh (2017)    • • • • •

Singh and Gaur (2017)    • • •

Sze et al. (2017) • • • • •

Ke (2018) • • • •

Lenis and Rivera (2018)  • • • •

Molina et al. (2018) • • • • • •

Nucamendi-Guillén et al. (2018) • • • • •

Wang et al. (2018)  • • • •

Bruni et al. (2019) • • • • • •

Liu and Jiang (2019) • • • • •

Ramadhan and Imran (2019) • • • •

Fernández Gil et al. (2020)  • • • • • • • •

Gaur et al. (2020)    • • • •

Lalla-Ruiz and Voß (2020) • • • • •

Monsreal-Barrera et al. (2020) • • • • • • • •

Nucamendi-Guillén et al. (2020) • • • • • • •

Smiti et al. (2020) • • • •

Wang et al. (2020) • • • •

Damião et al. (2021) • • • • •

Kyriakakis et al. (2021) • • • •

Niu et al. (2021) • • • •

Osorio-Mora et al. (2021) • • • •

K. Corona-G
utiérrez et al.                                                                                                                                                                                                                     



Computers & Industrial Engineering 169 (2022) 108054

7

processes of collecting used non-returnable beverage packaging to 
improve the recycling of material. A reverse logistics network was 
determined according to the current situation and packaging reverse 
flows. The packaging collection was designed using routing algorithms 
to identify how it can be carried out while determining the involved cost. 
Afterwards, the recovery center’s required processes were analyzed for 
conditioning the materials before transferring them to the recycler. 
Osorio-Mora, Soto-Bustos, Gatica, Palominos, and Linfati (2021) 
considered mandatory visit times and introduced the concept of delayed 
latency related to the overtime hours in which the patients are visited. 
The overtime is computed when the arrival time to customers exceeds 
the maximum desirable quota by which vehicles can visit clients before 
being penalized. The penalized overtimes becomes the criterion to 
minimize. Previously, Fernández Gil et al. (2020) investigated the Cum- 
VRP with hard and soft time windows in order to analyze the trade-off 
between environmental costs and customer dissatisfaction. 

The first variant considered for the CCVRP involved multiple trips 
(Rivera, Afsar, & Prins, 2014; Rivera, Afsar, & Prins, 2015; Monsreal- 
Barrera et al., 2020), this extension was proposed in the context of 
disaster relief where arrival times have a critical impact (Campbell, 
Vandenbussche, & Hermann, 2008). Similarly, the CCVRP was gener-
alized to multiple depots (Lalla-Ruiz & Voß, 2020; Wang, Choi, Li, & 
Shao, 2020). In Moshref-Javadi and Lee (2016) the location routing 
version was introduced. Concerning additional physical constraints, the 
problem has been addressed for cases where a limited travel duration 
has to be considered (Victoria, Afsar, & Prins, 2016; Flores-Garza, Sal-
azar-Aguilar, Ngueveu, & Laporte, 2017; Monsreal-Barrera et al., 2020) 
as well as time windows (Liu & Jiang, 2019; Monsreal-Barrera et al., 
2020). Another point to highlight related to the previous point as well as 
to vehicles’ capacity is the consideration of heterogeneous fleet (Mon-
sreal-Barrera et al., 2020; Nucamendi-Guillén et al., 2020). In particular, 
Monsreal-Barrera et al. (2020) considered two types of vehicles for 
transporting glass and aluminium containers for recycling. 

Concerning the Cum-VRP, Cinar et al. (2016) and Cinar et al. (2017) 
considered the case of total load transported per vehicle and incorpo-
rated coefficients per load and distance in the objective function. The 
authors proposed a heterogenous variant, however, their computational 

experiments were conducted using instances that involved identical 
vehicles (i.e., homogeneous fleet). Lenis and Rivera (2018) considered a 
Cum-VRP with an objective function that incorporates the vehicle 
weight times the traveled distance, the cumulative load of the vehicle, 
and the cost related to demand of the edges being traversed. 

As can be observed in Table 2, different related objective functions 
have been used for the CCVRP and Cum-VRP. They can be classified into 
four groups:  

•
∑∑

tki : Quantifies the sum of arrival times to customer locations for 
all routes.  

•
∑∑

cijyij: Quantifies the sum of the product between the cost and 
flow on the traversed arcs.  

•
∑

max tki : Quantifies the sum of the maximum (i..e, latest) arrival 
time to each customer in each route. 

•
∑∑∑

dij(ak)+
∑

(bkqijk): Quantifies the weighted sum of the dis-
tance traveled and the load transported multiplied by weight pa-
rameters, i.e., ak and bk. 

Table 3 shows the distribution in the literature of the aforementioned 
cumulative objective functions. It can be observed that the objective 
function related to the CCVRP is the most used one, followed by that 
same function but involving the incorporation of weights. 

Concerning multiple objective functions, three studies developed 
multi-objective variants, namely, multi-objective multi-trip cumulative 
capacitated vehicle routing problem (MO-MTCCVRP) (Molina et al., 
2018), the bi-objective cumulative capacitated vehicle routing problem 
including priority indexes (BCCVRP-Pr) (Nucamendi-Guillén et al., 
2020), and the cumulative vehicle routing problem with time windows 
(Cum-VRPTW) (Fernández Gil et al., 2020). In the MO-MTCCVRP, the 
objectives under consideration are the minimization of used vehicles, 
total travel cost, and maximum latency. In this situation, the authors 
considered maximum latency to be more appropriate than classic la-
tency criteria since reducing the last affected waiting time is critical for 
survival when any disaster strikes. Regarding the bi-objective CCVRP 
including priority indexes (BCCVRP-Pr), the authors proposed a bi- 
objective approach to model the case when an importance index 
(weight) is associated with each customer. This way, the weights were 
used for denoting the customer importance (i.e., the higher, the more 
critical). The application of this variant arises in situations such as 
affected zones after a natural disaster, where the indices can indicate the 
critical level of the affected zones’. That problem, therefore, aims at 
serving demand points by following their priorities but procuring, at the 
same time, to minimize the sum of the arrival times to the customers. 
Lastly, the Cum-VRPTW incorporates soft and hard time windows into 
the Cum-VRP and considers objectives related to cumulative costs and 

Table 3 
Summary of papers that addressed each objective function.  

Objective Function Number of 
articles 

References 

∑∑
tki 30 (Ngueveu et al., 2009; Ngueveu et al., 

2010; Chen et al., 2012; Mattos-Ribeiro 
and Laporte, 2012; Ozsoydan & 

Sipahioglu, 2013; Ke & Feng, 2013; 
Lysgaard & Wøhlk, 2014; Rivera et al., 

2014; Rivera et al., 2015; Martínez-Salazar 
et al., 2015; Victoria et al., 2016; Moshref- 
Javadi & Lee, 2016; Rivera et al., 2016; 

Flores-Garza et al., 2017; Sze et al., 2017; 
Ke, 2018; Molina et al., 2018; Nucamendi- 
Guillén et al., 2018; Bruni et al., 2019; Liu 
& Jiang, 2019; Ramadhan & Imran, 2019; 
Nucamendi-Guillén et al., 2020; Lalla-Ruiz 
& Voß, 2020; Smiti et al., 2020; Monsreal- 

Barrera et al., 2020; Wang et al., 2020; 
Damião et al., 2021; Kyriakakis et al., 

2021; Niu et al., 2021; Osorio-Mora et al., 
2021) 

∑∑∑
dij(ak) +

∑
(bkqijk)

8 (Gaur et al., 2013; Gaur and Singh, 2015; 
Cinar et al., 2016; Gaur et al., 2016; Cinar 
et al., 2017; Gaur and Singh, 2017; Singh 

and Gaur, 2017; Gaur et al., 2020) 
∑∑

cijyij 5 (Kara et al., 2008; Gaur et al., 2013; Lenis 
& Rivera, 2018; Wang et al., 2018; 

Fernández Gil et al., 2020) 
∑

maxtki 1 (Sze et al., 2017)  

Table 4 
Most relevant problem variants addressed during the last 5 years.  

Variant Number of 
articles 

References 

Multi-Depot 7 (Moshref-Javadi & Lee, 2016; Wang et al., 
2018; Lalla-Ruiz & Voß, 2020; Wang et al., 
2020; Damião et al., 2021; Niu et al., 2021; 
Osorio-Mora et al., 2021) 

Multiple Trips 5 (Gaur et al., 2016; Rivera et al., 2016; Gaur & 
Singh, 2017; Molina et al., 2018; Monsreal- 
Barrera et al., 2020) 

Limited Duration 5 (Cinar et al., 2016; Victoria et al., 2016; Cinar 
et al., 2017; Flores-Garza et al., 2017; 
Monsreal-Barrera et al., 2020) 

Heterogeneous 
Fleet 

4 (Cinar et al., 2016; Cinar et al., 2017; 
Monsreal-Barrera et al., 2020; Nucamendi- 
Guillén et al., 2020) 

Time Windows 3 (Liu & Jiang, 2019; Fernández Gil et al., 2020; 
Monsreal-Barrera et al., 2020) 

Priorities 3 (Bruni et al., 2019; Monsreal-Barrera et al., 
2020; Nucamendi-Guillén et al., 2020)  
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Table 5 
Compilation of solution methods proposed for the Cum-VRP and CCVRP.  

Reference Type Exact Methods Approximate Methods   
Approximation Heuristic Metaheuristic Algorithms Matheuristics       

Population-based Single-solution based     
MILP B&C&P Solver CFAA CG PVA NNH GA PSO MA BSO ACO ALNS VNS TS IG ILS PLS GRASP TPH MS- 

ELS 
RGA SA MS- 

INS 
RRT SVNS GRASP- 

MILP 
POPMUSIC 

Kara et al. (2008) Cum-VRP • CPLEX 8.1                          
Ngueveu et al. (2010) CCVRP • No results       •

Chen et al. (2012) CCVRP                 •

Mattos-Ribeiro and 
Laporte (2012) 

CCVRP             •

Gaur et al. (2013) Cum-VRP    •

Ke and Feng (2013) CCVRP                    •

Ozsoydan and 
Sipahioglu (2013) 

CCVRP        • • •

Lysgaard and Wøhlk 
(2014) 

CCVRP  • CPLEX 12.2                          

Rivera et al. (2014) CCVRP • CPLEX 12.4                  •

Gaur and Singh (2015) Cum-VRP     •

Martínez-Salazar et al. 
(2015) 

CCVRP • CPLEX 12.4                •

Rivera et al. (2015) CCVRP • CPLEX 12.4              • •

Cinar et al. (2016) Cum-VRP                    •

Gaur et al. (2016) Cum-VRP    •

Moshref-Javadi and 
Lee (2016) 

CCVRP • No results       • •

Rivera et al. (2016) CCVRP • CPLEX 12.5                          
Victoria et al. (2016) CCVRP • CPLEX 12.5                 •

Cinar et al. (2017) Cum-VRP        • •

Flores-Garza et al. 
(2017) 

CCVRP • CPLEX 12.6                •

Gaur and Singh (2017) Cum-VRP     •

Sze et al. (2017) CCVRP              •

Ke (2018) CCVRP           •

Lenis and Rivera 
(2018) 

Cum-VRP                   •

Molina et al. (2018) CCVRP                        •

Nucamendi-Guillén 
et al. (2018) 

CCVRP • CPLEX 12.4             •

Wang et al. (2018) Cum-VRP            •

Bruni et al. (2019) CCVRP • SCIP 3.2.0             •

Liu and Jiang (2019) CCVRP        • •

Ramadhan and Imran 
(2019) 

CCVRP                         •

Fernández Gil et al. 
(2020) 

Cum-VRP • CPLEX 12.9                        •

Gaur et al. (2020) Cum-VRP    •

Lalla-Ruiz and Voß 
(2020) 

CCVRP • CPLEX 12.6                         •

Monsreal-Barrera et al. 
(2020) 

CCVRP      • •

Nucamendi-Guillén 
et al. (2020) 

CCVRP • Gurobi 9.0       •

Smiti et al. (2020) CCVRP                          •

Wang et al. (2020) CCVRP                  •

Damião et al. (2021) CCVRP  • CPLEX 12.9                          
Kyriakakis et al. 

(2021) 
CCVRP            •

Niu et al. (2021) CCVRP            •

Osorio-Mora et al. 
(2021) 

CCVRP • CPLEX 12.9; 
Gurobi 8.1.0                           
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the number of used vehicles as well as penalties for the service delay in 
the case of soft time windows. 

With regards to practical cases, the works of Kara et al. (2008), 
Molina et al. (2018) and Monsreal-Barrera et al. (2020) addressed real- 
world applications in their studies. Kara et al. (2008) implemented their 
model focusing on the collection case of the energy minimizing and 
testing realistic instances by using the data from the Turkish highway 
map. Molina et al. (2018) analyzed the real case of a flood in Villa-
hermosa (México) in 2007 that affected a large part of its territory 
(65%). The water reached unexpected levels of more than four meters, 
challenging authorities by the magnitude of the humanitarian logistics 
required. The authors developed a model able to define evacuation 
routes for the victims procuring the minimization of the waiting time for 
evacuation. The fleet size and capacity of the vehicles was limited, 
justifying the need for performing multiple trips per vehicle. However, 
their experimentation was conducted over benchmark instances from 
the literature and no data about the case study was provided. Recently, 
Monsreal-Barrera et al. (2020) considered the CCVRP by incorporating 
multiple trips with time windows (CCVRPMTW) to optimize recycling 
networks, achieve higher volumes of recycled material, and decrease the 
total cost of collection. In this variant, a profit was associated with each 
node in terms of a specified threshold or break-even point. 

Table 4 shows the most studied problem features of the CCVRP and 
Cum-VRP in terms of number of works from the last 5 years (period 
2016–2021). Based on this, we can observe that variants incorpating 
features such as allowing multiple depots, multiple trips per vehicle, 
establishing a travel limit, considering heterogeneous fleet, or setting 
time windows raised relevant attention with regards to the number of 
works. These features are generally used in VRPs, thus their proposition 
goes in line with its related literature. 

3. Solution Methods 

This section is devoted to listing, classifying, and discussing all so-
lution methods proposed for cumulative VRPs. Considering the classi-
fication of methods provided in Talbi (2009), Table 5 shows the different 
approaches classified by type, i.e., exact or approximate, and the main 
base problem addressed (i.e., Cum-VRP and CCVRP). Complementary, 
Fig. 4 illustrates the distribution of works based on such classification. 
After the research methods are classified, analysis and discussion for 
each category (i.e., exact and approximate) are provided in Sections 3.1 
and 3.2. This section finalizes providing an overall figure concerning the 
different approximate approaches per type of problem. The notation 
used to list the different solutions methods is provided in Appendix A. 

As shown in Table 5, 17 out of 42 papers used exact methods (i.e., 15 
MILP and 2 B&C&P). In the majority of those papers, it coincides that 
the MILP model is provided when a new variant of either CCVRP and 
Cum-VRP is introduced. Among the 37 papers that proposed approxi-
mation procedures, 2 heuristic algorithms, 33 metaheuristic methods 
and 2 matheuristic methods were developed. To better illustrate this, 
Fig. 4 displays the distribution per type of solution method. 

Exact approaches for solving these problems are mainly MILP 

formulations using CPLEX as the main engine. Only two works used 
other optimization engines, i.e., Gurobi and SCIP. Another aspect to 
highlight is that, from these papers, nine of them also proposed 
approximate procedures due to the limitations of the solvers when 
addressing medium or large scenarios. 

3.1. Formulations and exact approaches 

The exact methods proposed for the Cum-VRP were those related to 
the MILP formulations. Kara et al. (2008) proposed the first two for-
mulations, one for dealing with the collection case and the other related 
to the delivery case. The proposed formulations were tested over real-
istic instances using data from the Turkish highway map and analyzing 
the effect of energy consumption compared to the number of vehicles 
used. Instances involving 24 and 31 cities were tested, varying the 
number of trucks between 4 and 9. The results indicated that increasing 
the number of vehicles decreases the total energy used. This goes in line 
with what it was demonstrated for the CCVRP and MDCCVRP with 
regards to the number of vehicles. Since the proposal of Cum-VRP, 
further contributions to this topic have been made in the context of 
approximation procedures (i.e., analytical methods that provide prov-
able solution quality and provable run-time bounds). 

Concerning the CCVRP, the first mathematical formulation for this 
problem was introduced by Ngueveu, Prins, and Wolfler-Calvo (2009) 
and further discussed in Ngueveu et al. (2010). Together with the 
formulation, the authors provided some problem properties such as (i) 
the traveling repairman problem does not provide a lower bound for the 
CCVRP, (ii) optimal CCVRP use exactly min{|K|,n}, and (iii) a route get a 
different cost when reversed. The authors also provided two lower 
bounds for the problem, one based on unrestricted vehicle fleet size and 
the other by approximating the edge costs and customers coefficients. 
Although those lower bounds were used to evaluate the approximate 
solutions, there is no numerical experimentation on the models’ per-
formance. Later, Rivera et al. (2015) proposed a mixed-integer formu-
lation based on replenishment arcs (Boland, Clarke, & Nemhauser, 
2000; Mak & Boland, 2000) to deal with the multi-trip variant, i.e., mt- 
CCVRP. The replenishment arcs were used to replace the trips of a multi- 
trip with a single trip (see Rivera et al. (2015) for details). The authors 
also proposed valid inequalities for the formulation which were shown 
useful to reduce running time when the model was solved by a com-
mercial solver. The model without valid inequalities solved 6 instances 
with up to 15 nodes, whereas the one with those inequalities led to 8 
instances while reducing computational times. In a follow-up paper, for 
that same variant, Rivera, Murat Afsar, and Prins (2016) presented two 
improved formulations, one flow-based and another based on set- 
partitioning. In addition, the authors developed valid inequalities to 
enhance the performance of the models and an exact procedure based on 
a resource-constrained shortest path approach. The resulting problem 
was solved via an adaptation of the Bellman-Ford algorithm. The results 
indicated that the formulation solved a minority of instances for 20 lo-
cations. In contrast, the improved formulation could tackle instances 
with up to 40 locations, proving that good initial solutions, dominance 
rules, and lower bounds enhance the solution procedure. 

Two tractable formulations for the CCVRP were proposed by Nuca-
mendi-Guillén et al. (2018). The first formulation is based on the flow- 
based model for the m-TSP (Gavish and Graves, 1978) and further 
adapted to the related Multiple minimum latency problem (mMLP) 
(Angel-Bello, Cardona-Valdés, & Álvarez, 2019). It consists of adding 
new integer variables yij to indicate the amount of flow on arc (i, j). The 
variable yij is equal to the number of nodes in a path after node i when 
xij = 1 and it is equal to 0 when xij = 0. In addition, the classical MTZ 
constraints were incorporated to prevent subtours. Consequently, the 
objective function was reformulated based on these flow variables (in 
addition, a similar definition of the variables and constraints that esti-
mate the cumulative load of a vehicle was provided). The main benefit of 

Fig. 4. Summary of the different solution methods proposed in the literature.  
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the proposed formulation is that it avoids the use of the big M method 
and provides tight linear bounds. The computational experiments 
showed that the model was able to solve instances of up to 25 nodes. In 
the same work, the authors proposed a second formulation based on a 
time-dependent approach for the traveling salesman problem and its 
relation to the tardiness problem in one-machine scheduling (see Picard 
& Queyranne, 1978) together with a multilevel network scheme as 
shown in (Angel-Bello, Alvarez, & García, 2013). In this way, level 
activation and linking variables were defined and assignment con-
straints were reformulated to avoid sub-tours. Moreover, another aspect 
to highlight is that, as in Angel-Bello et al. (2013), only the variables 
associated with the nodes on each level were preserved as binary 
whereas the linking variables were relaxed to be continuous (non- 
negative). These improvements reduced the number of binary variables 
significantly and allowed their formulation to solve instances up to 44 
nodes. 

Victoria et al. (2016) developed a mathematical formulation to solve 
the problem of CCVRP considering time-dependent demands (CCVRP- 
TDD) in the context of humanitarian logistics. The authors also 
considered that demand was dynamic and nodes were divided into 
critical and non-critical nodes. In addition, a demand variation was also 
considered for the arcs from critical nodes to non-critical nodes. This 
variation corresponded to the number of people per time unit who flee 
from a critical city before the arrival of relief of goods. This problem 
variant aimed to minimize the sum of arrival times at critical nodes. The 
formulation was able to solve some instances of up to 17 nodes. On the 
other hand, Flores-Garza et al. (2017) presented a mixed-integer linear 
formulation for the multi-vehicle cumulative covering tour problem for 
efficient distribution of humanitarian aid and when damage to the 
communication infrastructure make some locations unreachable. This 
problem was treated as CCVRP where not necessarily all locations have 
to be visited. This way, the problem aims at determining a set of tours 
such that the sum of arrival times is minimized, where mandatory lo-
cations must be included and optional ones can be included if and only if 
they are required to cover unreachable locations. This way, each un-
reachable location must be covered by at least one optional one. The 
model provided feasible solutions for some instances up to 200 nodes 
but reported large gaps depending on the characteristics of the instance, 
especially when the number of vehicles increases. 

Recently, Lalla-Ruiz and Voß (2020) developed a mixed-integer 
formulation for the multi-depot CCVRP, i.e., MDCCVRP, and proposed 
lower bound inequalities to solve instances up to 10 nodes while 
providing feasible solutions for instances up to 100 customers. Consid-
ering the topology of the problem (i.e., multiple depots), the authors 
proposed a matheuristic decomposition approach that utilizes the 
existing formulation. Osorio-Mora et al. (2021) proposed a mixed- 
integer linear programming model for a variant of the MDCCVRP that 
incorporates mandatory visit times (MDCCVRmvt). The problem aims to 
minimize the total delayed latency. To evaluate the performance of the 
proposed formulation, the authors generated 165 test instances of size 
ranging from 10–50 nodes and from 2 to 4 depots. The model could solve 
instances with 10 and 20 nodes with relative ease, but in the case of 
instances over 40 nodes, the solver reached the time limit without 
finding the optimal solution in most cases. 

Considering the CCVRP involving priorities, Bruni et al. (2019) 
presented a mixed-integer formulation for the CCVRP-Pr that, in the first 
component of the objective function, maximizes a stochastic revenue, 
expressed as the sum of the profits collected at visited nodes minus the 
expected arrival time at those nodes, whereas the second component 
accounts for the standard deviation of the total arrival time. The model 
is implemented using the sum-weighted method. The formulation was 
solved using SCIP 3.2.0 and reported solutions for instances up to 23 
nodes. On the other hand, Nucamendi-Guillén et al. (2020) introduced a 
variant of the CCVRP that considers an importance index (weight), 
associated with each node. Those weights denote the priority of each 
customer to be served. However, since the purpose of the CCVRP is to 

minimize the sum of arrival times to customers, this variant defines a 
second objective based on a tardiness measure. This measure is 
computed for each pair of nodes (i, j) as max{0, tj − ti}, where ti and tj 
represent the arrival times to the nodes i and j, being node j the one with 
the highest weight. For this variant, the authors developed a bi-objective 
formulation that seeks for the trade-off between the total latency and 
tardiness of the system. The model is based on the single flow perspec-
tive proposed in Nucamendi-Guillén et al. (2018) and incorporates the 
constraints to compute the tardiness. The formulation was implemented 
following the AUGMECON-2 method (Mavrotas and Florios, 2013), 
preserving the latency of the system into the objective function and 
moving the tardiness objective into the set of the constraints (as 
∊-constraint). The model solved instances up to 15 customers but 
required computational times of around 4 h. 

Apart from MILP related developments discussed above, Lysgaard 
and Wøhlk (2014) proposed a B&C&P to deal with the CCVRP. The 
authors also included the analysis to investigate the effect of including 
an extra route (i.e., increasing vehicles’ availability by one unit) over the 
savings in the total objective. Their method followed the modeling 
approach of Fukasawa et al. (2006) for the CVRP. However, to assess the 
cost of traversing an edge (i, j), besides knowing the traveling time (tij) 
along with (i, j), it is also needed to know the number of customers 
remaining to visit. Since this information is unavailable when creating a 
route from the source vertex, the authors used a backward labeling al-
gorithm to solve the pricing problem. In this way, the customers 
remaining to be serviced after traversing an edge are the ones that have 
been visited in the current backward path. Thus, the reduced cost of 
traversing an edge can easily be computed. The method solved up to 70 
customers’ instances for the traditional approach in reasonable 
computational times. In contrast, the solved instances’ size increased to 
up to 100 nodes with the additional vehicle consideration. This empir-
ically shows the importance of the number of vehicles on the solving 
times as also later reported for the multi-depot version (Lalla-Ruiz and 
Voß, 2020). More recently, Damião, Silva, and Uchoa (2021) proposed a 
B&C&P using a VRPSolver package (see Pessoa, Sadykov, Uchoa, & 
Vanderbeck, 2020) for both the CCVRP and MDCCVRP. The authors 
compared their results with those from Lysgaard and Wøhlk (2014) 
showing computational superiority with previous results. Similarly, the 
authors provided optimal values for several instances proposed in the 
MDCCVRP benchmark set proposed in Lalla-Ruiz and Voß (2020). 

3.2. Approximate and Approximation Methods 

As previously reported in Table 2, around 88% of the papers (37 out 
of 42) included a heuristic or metaheuristic procedure in their study. 
From those, five papers conducted approximation methods to address 
the Cum-VRP, while the rest of the works developed approximate 
methods for the CCVRP (see Table 5). Regarding the approximated 
procedures’ classification, several approaches, such as constant factor 
approximation procedures, heuristic, metaheuristic algorithms, and 
matheuristic procedures have been proposed. A detailed description and 
analysis are provided next. 

Fig. 5 shows the distribution of the type of approximate method. As 

Fig. 5. Distribution of the type of approximate methods (incl. approximation).  
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can be observed, there is a relevant percentage of the studies that 
contribute via metaheuristic algorithms. Concerning the other types of 
approaches (i.e., constant factor approximations, heuristics and math-
euristics) heuristics and matheuristics show a similar percentage of pa-
pers, while approximation approaches stand out. A detailed description 
of each solution method is presented next. 

Concerning constant factor approximation algorithms, in Gaur et al. 
(2013) the authors developed approximation factors based on the iter-
ated tour partitioning technique of Haimovich and Rinnooy Kan (1985) 
where the travel schedule for the vehicle was computed using a variation 
of dynamic programming on a traveling salesperson tour (Beasley, 1983, 
Mole, Johnson, & Wells, 1983). They evaluated four different Cum-VRP 
cases obtained by varying the vehicles capacity and the distribution of 
demand: (1) each vehicle has infinite capacity and all customers have 
equal demands, (2) each vehicle has infinite capacity and the customers 
have unequal demands, (3) each vehicle has a capacity Q and the cus-
tomers have equal demands and (4) each vehicle has a capacity Q and 
the customers have unequal demands. For the above four cases, the 
authors obtained approximation algorithms with factors 2.5, 2.5, 3.186, 
and 4, respectively. Gaur, Mudgal, and Singh (2016) studied the Cum- 
VRP considering stochastic demands (Cum-VRPSD) and split and un-
split deliveries. For these two variants, the authors adapted the algo-
rithm presented in Gupta, Nagarajan, and Ravi (2012) and developed 
constant factor approximation algorithms for the metric version of the 
problem (i.e., where the edge matrix respect the triangle inequality). For 
the Cum-VRPSD without split deliveries, the algorithm obtained a bound 
of 7 on the approximation ratio, whereas a ratio of 4 was provided for 

the Cum-VRPSD with split deliveries. Four years later, Gaur et al. (2020) 
improved their algorithms proposed in Gaur et al. (2016), mainly by 
incorporating computable a priori tours and revising the methods to 
estimate lower and upper bounds for the cumulative vehicle routing 
problem with stochastic demands, considering split and unsplit de-
liveries. The results of that paper proved that the improved randomized 
algorithm provides an approximation ratio of max{1 + 1.5α, 3} for split 
delivery Cum-VRPSD (where α represents the approximation ratio to the 
TSP tour obtained by Christofides (1976). For the case of unsplit de-
liveries, the authors provided a bound of 6 on the approximation ratio. A 
second approximation approach was proposed by Gaur et al. (2016) and 
Gaur and Singh (2017) by means of a column-generation-based 
approximation algorithm. The numerical experiments indicated that 
their results were better than the worst-case bounds provided by the tour 
partitioning technique. 

The only study that presents heuristic algorithms as the main 
contribution is the one proposed by Monsreal-Barrera et al. (2020) who 
developed two algorithms based on the nearest neighborhood strategy: 
nearest-neighbor heuristic (NNH) and a profitable visit algorithm (PVA). 
The PVA uses the nearest neighbor algorithm to calculate an initial so-
lution. Thus, a vehicle is assigned to the closest client and, successively, 
visits the nearest neighbor procuring each time not to exceed the 
transport capacity of the vehicle nor the route limit (including the time 
to return to the depot). Then, the initial solution is improved by 
employing the shift-and-route reduction algorithm. One important 
remark reported by the authors is that this type of algorithm lacks a 
sense of direction since the nearest neighbor is chosen exclusively based 

Fig. 6. Distribution of the diverse metaheuristic approaches implemented.  
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on distances. The effectiveness of the proposed approach was assessed 
via a case study on beverage package recycling. The results indicated 
that the PVA outperforms the NNH in objective value. 

With respect to metaheuristic algorithms, these were the first type of 
methods developed to deal with large size instances. Fig. 6 summarizes 
the results per type of approach. In total, 11 (33%) contributions were 
presented in the field of population-based algorithms whereas 22 (67%) 
of the contributions were developed following single-solution based 
schemes (see Fig. 6a). 

As it can be observed in Fig. 6b, within population-based algorithms, 
55% of the studies implemented solution approaches based on genetic 
algorithms. Namely, 28% implemented genetic algorithms (GA) 
whereas 27% concerned memetic algorithms (MA). The other 45% 
contributed with particle swarm optimization (PSO), ant colony opti-
mization (ACO) and brain storm optimization (BSO) algorithms. 
Regarding single solution-based algorithms, we can highlight that many 
more approaches have been developed for cumulative vehicle routing 
problems. From there, it can be observed a preference for greedy ran-
domized adaptive search procedure (GRASP) and the two-phase heu-
ristics (TPH) (see Fig. 6c). It is important to remark that, in the case of 
TPH approaches, several two-phase versions have been developed by 
implementing different perturbations and local search procedures, but 
preserving the overall two-phase structure. 

Several metaheuristics have been proposed for the Cum-VRP. For 
instance, Cinar et al. (2016) proposed a modified Clarke & Wright al-
gorithm (mC&W) and also proposed a two-phase heuristic to deal with 
the cumulative VRP with a limited duration (Cum-VRPLD). In the 
mC&W algorithm, the savings depend on the distances between vertices 
and the load of the tours based on the demands of the corresponding 
assigned vertices. On the other hand, for the two-phase heuristic, the 
constructive procedure is based on a one-dimensional K-means clus-
tering mechanism, while the mC&W algorithm is used to create routes. 
The computational experiments performed on data sets from the liter-
ature showed that the two-phase heuristic improved the C&W algorithm 
by reducing the computational time by 89% on average, with only a 
0.89% loss in solution quality. One year later, Cinar et al. (2017) 
incorporated simulated annealing (SA) and a genetic algorithm (GA) 
into the improvement phase to enhance the performance of the previ-
ously developed approaches. The experimental analysis conducted over 
instances up to 483 nodes showed an improvement when considering 
previous results. In this sense, the results indicated that the performance 
of SA was significantly affected by the initial solution generator, 
whereas the GA was less affected. In general, the SA observed the best 
performance when the initial solution was generated through the 
mC&W algorithm. Wang et al. (2018) proposed a hybrid ant colony 
optimization with multiple rounds (ACOMR) algorithm for the multi- 
depot Cum-VRP (Cum-MDVRP). In their proposed algorithm, ants 
were allowed to go in and out of the virtual central depot multiple times 
so that the path of each could be easily converted to a feasible solution. 
In addition, the algorithm incorporated a tabu list during the construc-
tive procedure in pursuit of diversifying the search space. The obtained 
solution was further updated via a two steps 2-opt mechanism. 
Computational experiments on standard benchmark instances (up to 
360 nodes) revealed that the Cum-MDVRP for emergency transportation 
was more effective than the standard MDVRP and that ACOMR yielded 
more stable solutions with regards to their standard deviation when 
compared to existing heuristics. In addition, two different algorithms 
from the literature were adapted to solve this problem. Namely, the TPH 
proposed in (Ke & Feng, 2013) adds the multi-depot restriction and the 
parallel improved ant colony optimization (PIACO) (Yu, Yang, & Xie, 
2011) considering the objective function modified. The experimental 
results indicated that the ACOMR outperformed the two adapted algo-
rithms by yielding the best solutions for 29 out of 33 instances, whereas 

from the two adapted methods, the PIACO performed better than TPH 
since it was already prepared to deal with the multi-depot feature. Lenis 
and Rivera (2018) proposed a GRASP + VND algorithm with a post- 
optimization procedure. For the constructive phase of the algorithm, 
three different procedures were designed (two based on route-first 
cluster-second and one that operates randomly). Regarding the local 
search procedure, 4 different local search strategies, i.e., pick-up in last 
repeated age, reverse loops, edge exchange, and path reconstruction, 
were implemented under a VND scheme. Finally, a post-optimization 
procedure based on a set-covering mathematical model was imple-
mented. Since the approach is relatively new, there were no benchmark 
solutions to compare with. 

With respect to the CCVRP, Ozsoydan and Sipahioglu (2013) pre-
sented the first two population-based metaheuristics (i.e., GA and PSO) 
and a third one that considered a tabu search (TS) scheme. The authors 
conducted a comparative analysis with 39 benchmark instances taken 
from the literature. Their results indicated that the procedure based on 
the PSO approach remarkably outperformed those from the GA, whereas 
the TS was more successful in obtaining the best results. Rivera et al. 
(2016) developed a hybrid metaheuristic based on a multi-start evolu-
tionary local search (MS-ELS) that incorporated a constructive strategy 
based on a splitting procedure and used an improvement strategy based 
on a variable neighborhood approach. The algorithm was capable of 
obtaining high-quality solutions for instances up to 480 nodes. An 
improved version of both the formulation and the metaheuristic pro-
cedure was presented in Rivera et al. (2015). 

Martínez-Salazar, Angel-Bello, and Alvarez (2015) proposed a 
greedy randomized adaptive search procedure (GRASP) algorithm for 
the mt-CCVRP. The metaheuristic algorithm provided high-quality so-
lutions in short computational times for instances up to 480 nodes, 
reporting solutions that improved their implemented model’s values up 
to 37.68%. Victoria et al. (2016) presented a two-phase metaheuristic 
(TPH) for the CCVRP considering time-dependent demands (CCVRP- 
TDD). The procedure starts by creating an initial solution considering 
only the critical nodes. After that, a local search procedure (based on 
swap, 2-opt, and 3-opt moves) is applied to improve the initial routes 
before trying to insert the non-critical nodes, preferably preserving 
feasibility in terms of capacity and route duration. In case of infeasi-
bility, a repair procedure is executed. On the other hand, Flores-Garza 
et al. (2017) presented a GRASP for the multi-vehicle cumulative 
covering tour problem. To evaluate the efficiency of the proposed al-
gorithm, it was assessed over instances up to 150 nodes and reported 
solutions that improved the best solution reported by their model by at 
least 0.54% by spending less than 15 min, in comparison with the model 
that required up to 6 h. Sze, Salhi, and Wassan (2017) developed a two- 
stage adaptive variable neighborhood search (AVNS) with a large 
neighborhood search (LNS) as a guided diversification for the CCVRP 
with min–max objective. The authors also validates the algorithm’s ef-
ficiency by adapting it to consider the min-sum objective and comparing 
it with the best-known results so far. The authors adapted the meta-
heuristic to consider a min–max objective. This adaptation provided the 
first results on this approach and showed the flexibility and effectiveness 
of the proposed metaheuristic. It is relevant to highlight that this was the 
first work that provided new best-known results for instances ranging 
from 560 to 1200 nodes. 

One year later, Nucamendi-Guillén et al. (2018) proposed an iterated 
greedy approach that incorporated a random variable neighborhood 
descent (RVND) during the improvement procedure for the classical 
CCVRP. For the constructive procedure, two different strategies were 
considered: a parallel route building strategy (Potvin & Rousseau, 1993) 
and a clustering strategy based mechanism (Mulvey & Beck, 1984). 
Regarding the improvement phase, the RVND strategy was implemented 
(Subramanian, Drummond, Bentes, Ochi, & Farias, 2010). According to 
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their results, the algorithm was able to find all the best-known solutions 
at that time for the small size instances within shorter times. Also, they 
reported competitive results for large-size instances. Subsequently, Ke 
(2018) presented a brain storm optimization (BSO) approach to solve 
the CCVRP. His procedure consists of a constructive mechanism, based 
on the strategy presented by Mattos-Ribeiro and Laporte (2012) and a 
single route local search procedure based on 2-opt, 3-opt, and 4-opt op-
erators for the improvement phase. After that, convergent and divergent 
procedures were applied. During the convergent procedure, the best-so- 
far solution was perturbed via a partial destruction-reconstruction 
mechanism to intensify the search. Concerning the divergent proced-
ure, it was based on implementing problem-dependent operators to 
generate new partial solutions that were further improved separately 
and then reassembled into a new global solution. As a result, the algo-
rithm was able to report new best solutions for large-size benchmark 
instances (larger than 199 nodes) in competitive execution times. Bruni 
et al. (2019) proposed an iterated local search procedure considering 
profits and stochastic travel times. the metaheuristic approach in-
tegrates a constructive procedure based on a regret cost insertion and a 
local search mechanism considering well-known neighborhood struc-
tures to evaluate changes of nodes inside the route and between routes. 
Finally, a diversification procedure is implemented by decreasing the 
number of customers to visit in pursuit to minimize the deviation in the 
arrival time (and therefore, maximizing the global revenue). Further-
more, Ramadhan and Imran (2019) developed a record-to-record travel 
(RRT) algorithm. Their procedure operates in three main steps: (i) a 
constructive procedure based on the least cost insertion mechanism, (ii) 
an up-hill move to perturb the solution in order to expand the search in 
the solution space. The algorithm allows to temporarily accept poor 
solutions within a maximum allowed threshold based on the best solu-
tion obtained so far, (iii) a down-hill move by using local search, in order 
to reach the best possible solution. Smiti, Dhiaf, Jarboui, and Hanafi 
(2020), presented a skewed variable neighborhood search procedure 
composed of two heuristics. The first consisted of a constructive heu-
ristic to generate an initial solution, whereas the second was the skewed 
variable neighborhood search (SVNS) heuristic. The SVNS considered 
three phases to improve the solution of the CCVRP: (i) a perturbation 
phase with three movement procedures to generate a random neighbor, 
(ii) a local search phase that proposed three neighborhood structures in 
descent neighborhood search to generate a local optimum and (iii) an 
acceptance criteria phase (skewed move) using a distance function to 
improve the exploration of the solution space. 

Recently, Kyriakakis, Marinaki, and Marinakis (2021) proposed two 
metaheuristic algorithms based on the ACO for the CCVRP. Their algo-
rithms hybridize the well-known ant colony approach with the VND 
procedure in order to develop swarm intelligence algorithms. The first 
algorithm was based on an ant colony system, whereas the second one 
considered the max–min ant system. Both algorithms used memory- 
based operators to construct the solutions and a common improve-
ment procedure based on a VND strategy that incorporates 7 local search 
operators (2 intra-route and 5 inter-route operators) based on relocation 
and swap mechanisms. The experimental results indicate that, in gen-
eral, the ACO-VND algorithms were able to obtain the best-known so-
lutions for 92 of them, reporting an average deviation of 0.35% from the 
best solutions obtained so far and a maximum deviation of 0.98%. 
Additionally, the algorithms outperform 4 of the approaches already 
presented in the literature (MA, (Ngueveu et al., 2010); ALNS, (Mattos- 
Ribeiro & Laporte, 2012); TPH, (Ke & Feng, 2013); IG, (Nucamendi, 
Cardona-Valdes, & Angel-Bello Acosta, 2015) and report two new best 
solutions for benchmark instances. 

Regarding multi-objective variants for the CCVRP, Molina et al. 
(2018) developed a multi-start algorithm with intelligent neighborhood 
selection (MS-INS). The algorithm operates in two phases. The first 
phase generates feasible solutions, whereas the second phase improves 
them via an intelligent local search scheme, in which the neighborhood 
to be used is selected according to its performance (according to 

predefined success indicators). In addition, a selection mechanism was 
designed to ensure that each neighborhood is used at least once in each 
local search in such a way the local search process is not finished until all 
the neighborhood structures have been discarded. The metaheuristic 
was compared against the well-known NSGA-II procedure and the re-
sults indicated that the proposed algorithm performed better regarding 
multi-objective metrics. Nucamendi-Guillén et al. (2020) proposed two 
versions of a memetic algorithm with random keys to deal with the 
problem. In both versions, the construction of the initial population was 
performed via random key genetic algorithms (RKGA). However, the 
difference between the two versions lies in the improvement phase. In 
the first version, all of the chromosomes created by the RKGA are sent to 
the local search improvement procedure, while the second version ap-
plies a selecting mechanism to send only a percentage of them. The 
computational experiments were performed on instances up to 100 
nodes and revealed that the elitist version of the memetic algorithm 
outperformed the first version in both the quality of the obtained solu-
tions and computational time. 

Only three approximate approaches have been proposed for the 
MDCCVRP. Lalla-Ruiz and Voß (2020) proposed and applied the math-
euristc version of POPMUSIC 3 proposed in (Lalla-Ruiz & Voß, 2016) for 
the MDCCVRP. The proposed solution procedure decomposes the 
problem into reduced versions of it in order to solve the overall problem. 
The matheuristic POPMUSIC version solves those reduced problems by 
means of an exact approach (Lalla-Ruiz & Voß, 2016). Different con-
figurations for building the sub-problems were proposed (i.e., lexico-
graphic and based on distance). This way, once the problem is 
decomposed into sub-problems, they were solved by means of an exact 
algorithm, in (Lalla-Ruiz & Voß, 2020) that was performed through the 
optimization model. Wang et al. (2020) proposed a perturbation local 
search heuristic, a fast algorithm designed to handle large size problems. 
The algorithm starts by constructing virtual tours based on a regret 
insertion cost. Then, the initial tours are subsequently improved by local 
search operators: reallocation, exchange, 2-opt, arc-node exchange, or- 
opt move and cross-exchange. To extend the search space, perturbation 
operators (based on random reallocation) are applied. For comparison, 
the authors adapted a VNS originally developed for the multi-depot 
vehicle routing problem with loading cost (Kuo & Wang, 2012) and 
also used a POPMUSIC approach to compare with. Their results indi-
cated that PLS outperformed the previous solutions presented in (Lalla- 
Ruiz & Voß, 2020) by providing new best solutions. Finally, Fernández 
Gil et al. (2020) proposed a matheuristic approach for solving a multi- 
objective Cum-VRP with soft and hard time windows. Their algorithm 
proposal was based on combining the MILP model with a GRASP. In 
their method, a feasible solution was built within the constructive part of 
the GRASP and optimized by using the MILP model. That is, the opti-
mization model was applied for solving a set of sub-instances defined by 
each vehicle tour. After the constructive part, a local search method 
based on hill-climbing with the first improvement strategy was applied. 

Based on the information shown in Fig. 7, it can be observed that, 
concerning the single-solution based algorithms, the most preferred al-
gorithms are those that incorporate constructive and local search 
improve mechanisms (such as GRASP, ILS or TPH), followed by algo-
rithms that incorporate variable neighborhood searches during the 
improvement phase (VNS and ALNS). On the other hand, regarding the 
population-based metaheuristics, the most implemented procedures are 
those based on evolutionary approaches, such as genetic or memetic 
algorithms (GA and MA), relegating bio-inspired procedures to the 
second place. 

3 The acronym stands for Partial OPtimization Metaheuristic Under Specific 
Intensification Conditions, Taillard (1993) 
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4. Instances and best-known results 

As part of the analysis of solution methods in the related literature, in 
the following, we provide a detailed review of all instance sets proposed 
so far for evaluating the performance of the different approaches 
developed for solving cumulative routing problems. 

Table 6 provides an overview of proposed benchmark suites. The first 
column of the table corresponds to the work where the instances were 
proposed and the second column indicates the corresponding CCVRP or 
Cum-VRP variant in which the instance set has been used. Columns 3 
and 4 indicate the number of instances and the range in terms of the 
number of nodes, respectively. Finally, a cross-reference between the 
instance sets and the works using them is shown in the rest of the col-
umns, except for the last one that provides the sum of all works using 
each instance set. 

From the information displayed in Table 6, it can be observed that 
some instances are from classic VRP works and, thus, have been widely 
used like Christofides et al., (1979), Gillet and Johnson (1976), Taillard 
(1993), Golden et al., (1998), etc., while others have been used by fewer 
authors, mainly because some of them were generated for the specific 
variant, e.g., CCVRP with time windows or mt-CCVRP. In the following, 
we refer to the sets proposed by Christofides et al. (1979) (i.e., CMT) and 
Golden et al. (1998) (GWKC) as the Legacy instances given that they have 
been frequently used in cumulative VRPs, especially in the CCVRP. This 
legacy instance set is used as a reference point to analyze the different 
solution methods collected in this review. 

Focusing the attention on the mentioned Legacy instances, they have 
been mainly used in numerical experiments related to the CCVRP and 
some of its variants. This can be explained by the fact that those in-
stances were the first to be used by the two first articles addressing the 
CCVRP. Another aspect to highlight is that the set of instances proposed 
by Augerat et al. (1995) have been also used by the papers addressing 
both the CCVRP and the CumVRP. 

Table 7 reports the best-known solution (BKS) obtained so far for the 
legacy instances. Columns 1, 2, and 3 of the table denote the name of the 
instance, the number of customers, and the number of vehicles involved, 
respectively. Column 4 reports the best-known solution value for each 
instance. The rest of the columns display the works that have used the 
instances and whether they could report the best-known solution. 

Regarding the CMT dataset, most of the authors have reported the 
BKS. From the information shown in Table 7, it can be observed that all 
the referenced authors at least reported one BKS for the CMT bench-
marks. Three works, in particular, Sze et al. (2017), Ke (2018) and 
Kyriakakis et al. (2021), found all the BKSs for all considered cases. For 
most of the instances, the BKS has been preserved since 2012 (some of 
them since 2010), except for the instances CMT11 and CMT5 where the 
BKS were reported in 2013 and 2018, respectively. For the GKWC in-
stances, only a few works have reported the BKSs. Most of them are 
distributed between the works of Sze et al. (2017), Ke (2018), and Smiti 
et al. (2020). With respect to exact methods, only one of the works, i.e., 
Lysgaard and Wøhlk (2014), used an exact method (branch-and-cut-and- 
price) to solve the sets. The rest of the authors utilized an approximation 
approach, where 75% correspond to population-based methods and 
25% to single solution-based ones. Regarding the methods that provided 
all BKSs, Ke (2018) developed a population-based algorithm (i.e., BSO), 
whereas Smiti et al. (2020) implemented a single-solution metaheuristic 
(i.e., SVNS). 

From the analysis of works using the GWKC instances, 7 out of 9 
approaches (77.8%) belong to single-solution based algorithms, i.e., 
(Mattos-Ribeiro & Laporte, 2012; Ke & Feng, 2013; Rivera et al., 2015; 
Sze et al., 2017; Nucamendi-Guillén et al., 2018; Ke, 2018; Smiti et al., 
2020), and two studies addressed population-based procedures, (Ke, 
2018; Kyriakakis et al., 2021). Moreover, 5 out of those 9 works provide 
the current best-known results (Ke & Feng, 2013; Sze et al., 2017; Ke, 
2018; Smiti et al., 2020; Kyriakakis et al., 2021). Three of them corre-
spond to metaheuristic methods using a single-solution based approach 

Fig. 7. Distribution of approximate approaches for the CCVRP and Cum-VRP.  
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(TPH (Ke & Feng, 2013), VNS/ALNS (Sze et al., 2017), and SVNS (Smiti 
et al., 2020)). On the other hand, the population-based approaches that 
provided some BKS are the BSO (Ke, 2018) and the ACO (Kyriakakis 
et al., 2021). In particular, there are four recent algorithms that report 
recent BKS for instances greater than or equal to 200 nodes (Sze et al., 

2017; Ke, 2018; Smiti et al., 2020; Kyriakakis et al., 2021), where two of 
them belong to the category of single-solution algorithms (Sze et al., 
2017; Smiti et al., 2020) and two to the category of population-based 
ones, i.e., (Ke, 2018) and Kyriakakis et al. (2021). It is important to 
highlight that, except for the instance GKWC5, where Kyriakakis et al. 

Table 6 
Compilation of instances used in the reviewed literature. (See below-mentioned references for further information)  
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Table 7 
Best-known values for the legacy instances.  

Instance n k Best-known 
solution 

Ngueveu 
et al. 

(2010) 

Mattos- 
Ribeiro and 

Laporte 
(2012) 

Chen 
et al. 

(2012) 

Ke and 
Feng 

(2013) 

Lysgaard 
and Wøhlk 

(2014) 

Rivera 
et al. 

(2015) 

Sze 
et al. 

(2017) 

Ke 
(2018) 

Nucamendi- 
Guillén et al. 

(2018) 

Liu and 
Jiang 

(2019) 

Ramadhan 
and Imran 

(2019) 

Smiti 
et al. 

(2020) 

Kyriakakis 
et al. (2021) 

Damião 
et al. 

(2021) 

CMT1 50 5 2,230.35 • • • • • • • • • • • • • •

CMT2 75 10 2,391.63  • • • • • • • • • • • •

CMT3 100 8 4,045.42 • • • • • • • • • • • • •

CMT4 150 12 4,987.52 • • • • • • • • • • • • •

CMT5 199 17 5,806.02       • • • •

CMT11 120 7 7,314.55    • • • • • • • • •

CMT12 100 10 3,558.92 • • • • • • • • • • • • •

GWKC1 240 9 54,672.49 -  -  -   • -   - 
GWKC2 320 10 100,560.00 -  -  -  • -   - 
GWKC3 400 10 170,923.55 -  -  -   • -   - 
GWKC4 480 10 261,993.00 -  -  -  • -   - 
GWKC5 200 5 114,163.64 -  - • -  • • -  • - 
GWKC6 280 7 139,384.46 -  -  -      - • - 
GWKC7 360 8 179,388.00 -  -  -  • -   - 
GWKC8 440 10 193,698.00 -  -  -  • -   - 
GWKC9 255 14 4,721.39 -  -  -   • -   - 
GWKC10 323 16 6,578.75 -  -  -      - • - 
GWKC11 399 18 9,210.45 -  -  -  • -   - 
GWKC12 483 19 12,495.60 -  -  -   • -   - 
GWKC13 252 26 3,605.57 -  -  -      - • - 
GWKC14 320 29 5,107.02 -  -  -      - • - 
GWKC15 396 33 6,943.41 -  -  -      - • - 
GWKC16 480 37 9,183.58 -  -  -      - • - 
GWKC17 240 22 3,060.50 -  -  -   • -   - 
GWKC18 300 27 4,216.01 -  -  -  • -   - 
GWKC19 360 33 5,502.08 -  -  -  • -   - 
GWKC20 420 38 7,015.83 -  -  -      - • - 

• Indicates that best-known solution was reported. 
- Indicates that the instance was not considered in their experiments. 
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(2021) reported also the BKS, the other three algorithms reported the 
BKS for different instances. Particularly, in the case of Smiti et al. 
(2020), this is the most recent study that provided new BKS in the 
literature, finding 14 of them and specifically improving 7 out of 20 BKS 
for the GWKC instances. 

5. Conclusions 

In this paper, a review of vehicle routing problems with cumulative 
objectives by means of CCVRP and Cum-VRP is presented. A review 
search strategy was designed and conducted to find the existing litera-
ture for the mentioned problems and their variants. Then, we introduced 
a classification analysis resuming the distinct features of the reviewed 
problems and the solution approaches found. From it, interested 
scholars and practitioners can obtain the current map of problem vari-
ants and position their current problem or find out appropriate ap-
proaches for their cumulative vehicle routing at hand. In addition, 
several problem variants, as well as relevant practical applications and 
cases, have been identified and listed. Secondly, a detailed discussion of 
the solution contributions concerning the solution methods is presented. 
In addition, we listed the main problem instance sets used in the liter-
ature and identified those used the most by the authors. Finally, an 
analysis of the best-known results for these instances is presented, 
showing the most effective solution approaches to deal with small and 
large-size instances. 

From the conducted literature analysis, we can conclude that the 
mathematical models and exact approaches developed for this type of 
problems are limited as the size of the instances grow. In particular, the 
largest instance size solved to optimality is around 40 nodes. This jus-
tifies and explains the development of heuristics and metaheuristics to 
tackle large-size instances. Regarding these procedures, there is a slight 
preference for developing single-based solution algorithms since these 
approaches have shown their effectiveness by finding the BKS for almost 
all legacy instances. In summary, the algorithms based on variable 
neighborhood search are the ones that have reported the BKS over all 
instances. It is important to remark that, as recent metaheuristics are 
presented over time, the best-known solutions have been updated. This 
improvement is more evident in the GWKC instances in comparison with 
the CMT ones. Recently, the use of decomposition matheuristics started 
to have more presence as they provide an attractive combination of 
metaheuristics and mathematical models by partially solving reduced 
versions of the problem at hand (relaxed version of the global problem), 
whereas the metaheuristic algorithm is used to accomplish the 
remaining restrictions of the problem. The advantage of these ap-
proaches is that subproblems are solved to optimality. 

Considering the rich VRP literature, some relevant research di-
rections and trends can be incorporated or addressed considering cu-
mulative objectives:  

• Split Deliveries: This perspective, studied in other VRPs, can be 
extended in current cumulative problems involving time-sensitive 
freight delivery as well as in humanitarian environments where 
partial delivery becomes crucial. This becomes relevant in emer-
gency relief situations, given the need of maximizing the rescue 
response in affected areas. For instance, in the supply of medical aid, 
where damaged zones’ demands exceed single-vehicle capacity and 
for which accelerating to start attending severely affected areas is 
essential to reduce casualties and economic losses (Bodaghi et al., 
2020). This might result in the need for splitting to provide at least 
one part of the total delivery as soon as possible and the rest before 
the end of the shift (Alarcon Ortega, Schilde, & Doerner, 2020). A 
relevant application of this type of problem variant can be found in 

contexts such as the supply of vaccines (Xing et al., 2020), where 
prompt delivery is essential to maximize the number of people to be 
immunized. On the other hand, in commercial contexts, this type of 
delivery approach might increase customer satisfaction as long as the 
receiving nodes agree with the split delivery policy. A side benefit 
can be obtained in the reduction of the number of required vehicles 
to serve all customers. (Archetti & Speranza, 2012).  

• Pick-up and delivery: In recent years, companies are ever more 
mindful of the savings that can be made by combining deliveries and 
pick-ups. The cumulative vehicle routing problem variants consid-
ering pick-ups and deliveries would be interesting to be addressed in 
environments such as meal deliveries, distribution of medical supply, 
postal deliveries, industrial refuse collection, recycling services, 
school bus routing, industrial gases delivery, or JIT (just in time) 
manufacturing Wassan and Nagy (2014). In this regard, simulta-
neous pick-ups and deliveries can also be considered similarly as in 
Koç, Laporte, and Tükenmez (2020). 

• Stochastic and Dynamic environments: In almost all real-world appli-
cations, uncertainty and dynamism are inherent characteristics in 
their involved routing problems. For instance, in these environments, 
new customers can appear during the realization of planning (Rit-
zinger, Puchinger, & Hartl, 2016), demand might be uncertain 
(Zhong et al., 2020), or stochastic service/travel times need to be 
considered. Still, this research direction has to be further explored in 
the literature for cumulative vehicle routing problems, even when 
these parameters are frequently used to describe dynamic environ-
ments (Oyola, Arntzen, & Woodruff, 2018). In this regard, incorpo-
rating geospatial information such as in Žunić, Hindija, Beširević, 
Hodžić, and Delalić (2018) can be a relevant addition in cumulative 
routing problems so to identify and include, for example, critical 
traffic areas and design policies to reduce the impact of disruptive 
traffic events (e.g., crashes, failures in road, bottlenecks, protests) in 
a predefined logistics network.  

• Green Logistics: Nowadays, the growing vehicle traffic levels in cities 
and relevant supply chain nodes lead to congestion and environ-
mental pollution, impacting on logistics costs/profits (Simeonova, 
Wassan, Wassan, & Salhi, 2020; Schulte, Lalla-Ruiz, González- 
Ramírez, & Voß, 2017). In time-dependent approaches, the cost 
structure may be viewed as the cost per distance unit across an arc 
proportional to the vehicle’s load when traversing that arc, provided 
that the sum of the customers’ demands is on-board in the vehicle 
when departing from the depot. Particularly, fuel consumption and 
CO2 emissions do not depend entirely on the distance but are also 
determined by factors such as type of vehicle and engine, speed, 
street surface, and vehicle load (Lysgaard & Wøhlk, 2014; Mene-
ghetti & Ceschia, 2020; Fernández Gil et al., 2020). Lastly, the ac-
curate consideration of the weight along routes becomes essential in 
the context of electric vehicles, where energy depends on speed and 
weight (Tahami, Rabadi, & Haouari, 2020; Murakami, 2017). 
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Angel-Bello, F., Cardona-Valdés, Y., & Álvarez, A. (2019). Mixed integer formulations for 
the multiple minimum latency problem. Operational Research, 19, 369–398. 

Archetti, C., & Speranza, M. G. (2012). Vehicle routing problems with split deliveries. 
International Transactions in Operational Research, 19, 3–22. 

Augerat, P., Belenguer, J. M., Benavent, E., Corberán, A., Naddef, D., & Rinaldi, G. 
(1995). Computational results with a branch and cut code for the capacitated vehicle 
routing problem. URL: https://www.osti.gov/etdeweb/biblio/289002. 

Beasley, J. (1983). Route first-cluster second methods for vehicle routing. Omega, 11, 
403–408. 

Bodaghi, B., Shahparvari, S., Fadaki, M., Lau, K. H., Ekambaram, P., & Chhetri, P. (2020). 
Multi-resource scheduling and routing for emergency recovery operations. 
International Journal of Disaster Risk Reduction, 50, 101780. https://doi.org/10.1016/ 
j.ijdrr.2020.101780. URL: https://www.sciencedirect.com/science/article/pii/ 
S2212420920312826. 

Boland, N. L., Clarke, L. W., & Nemhauser, G. L. (2000). The asymmetric traveling 
salesman problem with replenishment arcs. European Journal of Operational Research, 
123, 408–427. 

Bruni, M. E., Nucamendi-Guillén, S., Khodaparasti, S., & Beraldi, P. (2019). The 
cumulative capacitated vehicle routing problem with profits under uncertainty. In 
Advances in Optimization and Decision Science for Society, Services and Enterprises 
(pp. 311–322). 

Campbell, A. M., Vandenbussche, D., & Hermann, W. (2008). Routing for relief efforts. 
Transportation Science, 42, 127–145. 

Chen, P., Dong, X., & Niu, Y. (2012). An iterated local search algorithm for the 
cumulative capacitated vehicle routing problem volume 136 of Advances in 
Intelligent and Soft Computing. 

Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman 
problem. Technical Report Carnegie-Mellon Univ Pittsburgh Pa Management 
Sciences Research Group. 

Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle-dispatching problem. 
OR, 20, 309–318. 

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In 
N. Christofides, A. Mingozzi, & P. Toth (Eds.), Combinatorial Optimization (pp. 
315–338). John Wiley & Sons.  

Chunyu, R., & Xiaobo, W. (2010). Research on multi-vehicle and multi-depot vehicle 
routing problem with time windows for electronic commerce. In Proceedings - 
International Conference on Artificial Intelligence and Computational Intelligence, 
AICI 2010 (pp. 552–555). volume 1. 

Cinar, D., Cayir Ervural, B., Gakis, K., & Pardalos, P. M. (2017). Constructive algorithms 
for the cumulative vehicle routing problem with limited duration volume 129 of 
Springer Optimization and Its Applications. 

Cinar, D., Gakis, K., & Pardalos, P. M. (2016). A 2-phase constructive algorithm for 
cumulative vehicle routing problems with limited duration. Expert Systems with 
Applications, 56, 48–58. 

Cordeau, J., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and 
multi-depot vehicle routing problems. Networks, 30, 105–119. 

Damião, C. M., Silva, J.M. P., & Uchoa, E. (2021). A branch-cut-and-price algorithm for 
the cumulative capacitated vehicle routing problem. 4OR, doi:10.1007/s10288-021- 
00498-7. 

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management 
science, 6, 80–91. 

Demir, E., Bektas, T., & Laporte, G. (2012). An adaptive large neighborhood search 
heuristic for the pollution-routing problem. European Journal of Operational Research, 
223, 346–359. 
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Table 8 
Acronyms table related to approaches.  

ACO Ant Colony Optimization 
ACOMR Ant Colony Optimization with Multiple Rounds 
ALNS Adaptive Large Neighborhood Search 
AVNS Adaptive Variable Neighborhood Search 
Bi Bi-objective 
BSO Brain Storm Optimization 
B&C&P Branch-and-Cut-and-Price 
CCARP Cumulative Capacitated Arc Routing Problem 
CCVRP Cumulative Capacitated Vehicle Routing Problem 
CFAA Constant Factor Approximation Algorithm 
CG Column Generation 
Cum-VRP Cumulative Vehicle Routing Problem 
GA Genetic Algorithm 
GRASP Greedy Randomized Adaptive Search Procedure 
GRASP-MILP Hybrid algorithm using GRASP and the MILP model 
Hard Time windows constraints must be satisfied 
Ho Homogeneous fleet 
Ht Heterogeneous fleet 
IG Iterated Greedy 
ILS Iterated Local Search 
MA Memetic Algorithm 
mC&W Modified Clarke & Wright 
MS-ELS Multi-Start Evolutionary Local Search 
MS-INS Multi-start algorithm with Intelligent Neighborhood Selection 
Multi Multi-objective approach 
Multiple trips When more than one trip is allowed per vehicle 
NNH Nearest Neighborhood Heuristic 
NSGA Non-dominated Sorting Genetic Algorithm 
PIACO Parallel Improved Ant Colony Optimization 
PLS Perturb-based Local Search 
POPMUSIC Partial Optimization Metaheuristic under Special Intensification 

Conditions 
Priority Indicates if the approach incorporates priorities associated with 

customers 
PSO Particle Swarm Optimization 
PVA Profitable Visit Algorithm 
RGA Recursive Granular Algorithm 
Route 
duration 

Routes are limited by a predefined parameter (e.g., distance, time, 
etc.) 

RRT Record-to-Record Travel 
SA Simulate Annealing 
Soft Time windows can be violated but involving a penalty cost 
SVNS Skewed Variable Neighborhood Search 
TPH Two-phase Heuristic 
TS Tabu Search 
VND Variable Neighborhood Descent 
VNS Variable Neighborhood Search  
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