
Dan Lustig and the Memory Model TG

Nov. 28, 2017

RISC-V Memory Consistency Model

Status Update

2

WHAT WERE OUR GOALS?

• Define the RISC-V memory consistency model

• Specifies the values that can be returned by loads

• Support a wide range of HW implementations

• Support Linux, C/C++, and lots of other critical SW

3

DECADES MONTHS OF DEBATE

Strong Models
(e.g., x86-TSO)

• Stricter ordering rules

• Simpler for programmers
and for architects

Weak Models
(e.g., ARM, IBM Power)

• More relaxed ordering rules

• Better perf/power/area

• More microarchitectural
freedom

Linux/C/C++/Java/… work either way! That’s not a deciding factor

4

FINDING A COMPROMISE

• First step: narrow choice to two specific models

• RVTSO: as used by SPARC, x86 (strong)

• RVWMO: similar to ARMv8 (weak)

• “RISC-V Weak Memory Ordering”

• Both are “multi-copy atomic” = both are simpler
than the IBM Power and ARMv7 memory models

5

THE RISC-V MEMORY MODEL PLAN

• Base RISC-V memory model: RVWMO

• HW can still be as conservative as it wants to be

• Portable SW must nevertheless assume RVWMO

• New ISA extension “Ztso”: HW which implements
RVTSO can (optionally) choose to expose this to SW

• E.g., a RISC-V core can implement “IMAFD+Ztso”

6

ARCHITECTURAL INTUITION (FOR BOTH)

F
D
X
M
W

Pipelines
(In-order or OoO)

Hart-private
buffering

(values can be forwarded
only to loads from the same
hart that issued that store)

Atomic Memory
(all values globally visible
to all harts, possibly via
a coherence protocol)

F
D
X
M
W

F
D
X
M
W

F
D
X
M
W

$ $$ $

Last-level cache

7

ARCHITECTURAL INTUITION (FOR BOTH)

• RVWMO and RVTSO differ in
the degree of memory access
reordering they permit at the
point of global visibility

• RVTSO: only storeload
reordering can be observed

• RVWMO: unless otherwise
synchronized (e.g., via .aq,
.rl, and/or fences), most
memory accesses can be
reordered freely

F
D
X
M
W

Pipelines
(In-order or OoO)

Hart-private
buffering

(values can be forwarded
only to loads from the same
hart that issued that store)

Atomic Memory
(all values globally visible
to all harts, possibly via
a coherence protocol)

F
D
X
M
W

F
D
X
M
W

F
D
X
M
W

$ $$ $

Last-level cache

8

RVWMO RULES IN A NUTSHELL

• A guaranteed to happen before B only if:

• Each load returns value from most recent store to same address

• No store from another hart can interrupt an AMO or LR/SC

• Available offline: Alloy/herd/operational model, lots of docs

A

BStore

Same addr.

A

B

Fence

with pr/pw/sr/sw
set appropriately

A

B

.aq A

B.rl

A

B.aqrl

.aqrl A

B

Addr/ctrl/
data dep.

except ctrl deps.
where B is a load

A

B
AMO
.aqrl

A

B

AMO
.aqrl

(some last details still being finalized…)

9

RVTSO RULES IN A NUTSHELL

• A guaranteed to happen before B only if:

• Each load returns value from most recent store to same address

• No store from another hart can interrupt an AMO or LR/SC

• To be made available: Alloy/herd/operational model, docs

A

BStore

A

B

Fence

with pw and sr

A

B

Load A

BAMO

A

B

AMO

Strictly stronger

than RVWMO

10

THE RISC-V MEMORY MODEL: SOFTWARE

• Portable SW must assume
RVWMO, but it will run on
both RVWMO HW and Ztso HW

• Linux, gcc, bintools, … will
target RVWMO by default

• RVTSO-only SW can be
written, but it will only run
on HW implementing Ztso

• Object files will use different
magic number

Base HW

(RVWMO)

HW using

Ztso ISA

ext.

Standard

SW

(RVWMO)

OK OK

RVTSO-

only SW

WILL NOT

RUN
OK

11

EVERYONE GETS WHAT THEY WANT

• If you don’t want to think about memory models:
just use the standard OSes and toolchains

• If you care about PPA or flexibility: use RVWMO

• If you have lots of legacy x86 code: use HW
implementing Ztso, so that any SW will work

• If you believe TSO is the future: use HW with Ztso,
and emit code with the “TSO-only” magic number

12

FRAGMENTATION

• Risk: SW will fragment into “RVWMO version” and
“RVTSO version”, double the maintainer burden

• Solution: discourage the 2x model, and encourage
RVWMO SW, since it’s portable across all HW

• Current plan for Linux, gcc, binutils, etc.

• Redundant fences simply become no-ops

• However: can’t stop people from customizing;
RISC-V’s openness is a feature, not a bug

13

OTHER ISA CHANGES

• ld.rl and sd.aq are deprecated

• ld.aqrl and sd.aqrl means RCsc, not fully fenced

• Clarified other subtleties of atomicity and LR/SCs

• Possibly in a future extension:

• Fences may take an address restriction parameter

• Opcodes for “l{b|h|w|d}.aq” and “s{b|h|w|d}.rl”

14

I/O FENCES, FENCE.I, SFENCE.VM

• Informal descriptions given in memory model spec

• No change to I/O channel ordering behavior

• Some clarification to FENCE .pi/.po/.si/.so

• More detail available offline

• Future: V/T/J compatibility as well

15

DOCUMENTATION & TOOLS

• Definitions of RVWMO/RVTSO and Ztso

• A dozen pages explaining the details in
plain English

• Two axiomatic models (Alloy + herd)

• One formal operational model + app

• Lots of litmus tests

• (also to be used to test compliance)

• …and the memory model TG as a
resource to people who have questions

• Come find me or email me!

16

RISC-V MEMORY MODEL ROADMAP

• We’ll discuss this further Thursday at the
members-only meeting

• Or come find me in the meantime

• We’ll aim to release the complete documentation
publicly (on isa-dev) soon after that

• If all goes well, we’ll work with the Technical
Committee to work towards ratification

