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Executive summary 

As part of the Federal Aviation Administration’s (FAA) Aircraft Catastrophic Failure Prevention 
Program, the Uncontained Engine Debris Damage Assessment Model (UEDDAM) was 
developed to provide a standardized tool for uncontained engine rotor failure analysis. 
UEDDAM is both a design tool capable of conducting aircraft configuration trade studies as well 
as a certification tool which can aid in showing compliance with Title 14 Code of Federal 
Regulations (CFR) 25.903(d)(1). The focus of this report is on the recommended process to be 
employed to assess an aircraft’s risk to uncontained engine debris during the design and 
certification phases of its development life cycle. The process is illustrated by a case study, the 
subject of which is a generic twin-engine aircraft. 
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1 Introduction 

1.1 Purpose  
This report demonstrates the capabilities of the software tool UEDDAM, which can be used to 
perform a rotor burst analysis following the methodology defined in AC20-128A to satisfy the 
requirements of 23.901(f), 23.903(b)(1), 25.901(d) and 25.903(d)(1) of the Federal Aviation 
Regulations (FAR) pertaining to design precautions taken to minimize the hazards to an airplane 
in the event of uncontained engine or auxiliary power unit (APU) rotor failure. However, as 
stated in FAA Order 8110.4C, Type Certification (U.S. Department of Transportation Federal 
Aviation Administration, 2017), the FAA approves the data, not the analytical technique, so the 
FAA holds no list of acceptable analyses, approved computer codes, or standard formulas. Use 
of a well-established analysis technique is not enough to guarantee the validity of the result. The 
applicant must show the data are valid. Consequently, the Aircraft Certification Office (ACO) 
and its representatives are responsible for finding the data accurate, and applicable, and that the 
analysis does not violate the assumptions of the problem. 

This effort was conducted under the Federal Aviation Administration (FAA) Aircraft 
Catastrophic Failure Prevention Program. Under the same program, the Naval Air Warfare 
Center Weapons Division (NAWCWD) at China Lake, CA was tasked with developing an 
analysis tool to evaluate the probability of hazard to an aircraft given engine rotor failure. To 
address this tasking, NAWCWD teamed with SURVICE Engineering to develop a computer 
program called the Uncontained Engine Debris Damage Assessment Model (UEDDAM). The 
model is intended to aid the design and certification of aircraft, providing a standardized tool 
(methodology) to conduct rotor burst assessments. As part of that effort, a generic twin-engine 
aircraft (GT) has been evaluated for engine rotor burst using UEDDAM. This case study, as 
presented herein, clearly illustrates the potential uses and benefits of UEDDAM in assessing 
rotor burst events and it is intended to provide a step-by-step process to be followed during the 
design and certification phases of an aircraft’s development life cycle. 

1.2 Background 
The UEDDAM code was developed to address an industry/FAA need for an analytical tool 
capable of conducting rotor burst assessment that incorporates single and multiple fragment 
penetration to assess system-level hazards. UEDDAM was developed as a design tool capable of 
conducting aircraft configuration trade studies and as a certification tool to aid in showing 
compliance with the aforementioned Title 14 Code of Federal Regulations (CFR) requirements. 
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UEDDAM is based on vulnerability assessment codes used in industry during aircraft design and 
development to minimize the vulnerability of military aircraft to ballistic threats. 

It is well understood that a rotor burst analysis is a complex one. UEDDAM was developed to 
provide useful tools to aide in conducting the analysis and presenting the results. A visualizer 
was developed, which provides visualization of the complex data and information generated 
from a UEDDAM run. It allows visualization of the aircraft geometry, debris hazard zones, 
debris trajectories, probability plots of the hazard levels, and translation risk angles. 

Initial development of UEDDAM was performed in conjunction with the Aviation Rulemaking 
Advisory Committee (ARAC), Transport Airplane Engine Installation Group, Power Plant 
Installation Harmonization Working Group. This group initially revised Advisory Circular (AC) 
20-128 to AC 20-128A in 1997. A follow-on effort to develop an analysis method to account for 
multiple small fragments was under way until it was placed in moratorium in 2003. The recent 
National Transportation Safety Board (NTSB) hearing on the 2016 Chicago O’Hare 767 
uncontained engine failure and subsequent fire hull loss included criticism of the FAA for not 
completing that work, along with a recommendation that the effort be finalized. Further, the 
Australian Transportation Safety Board investigating the 2010 A380 uncontained engine failure 
in Singapore found that multiple small fragments disabled redundant safety systems for the 
outboard engine. The engine thrust setting could no longer be controlled after the inboard engine 
failed. FAA efforts in collaboration with Department of Defense (DoD) have continued to 
improve UEDDAM during the moratorium and this updated report highlights those 
improvements. 

1.3 Related documents 
The following documents (all downloadable from the FAA’s Technical Library, accessed from 
https://www.faa.gov/about/office_org/headquarters_offices/ang/library/) relate to this report: 

 “Design Considerations for Minimizing Hazards Caused by Uncontained Turbine Engine 
and Auxiliary Power Unit Rotor Failure,” AC 20-128A 

 “Small Engine Uncontained Debris Analysis,” DOT/FAA/AR-99/7 (Frankenberger, 
Small Engine Uncontained Debris Analysis, 1999) 

 “Large Engine Uncontained Debris Analysis,” DOT/FAA/AR-99/11 (Frankenberger, 
Large Engine Uncontained Debris Analysis, 1999) 
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 “Large Engine Uncontained Debris Analysis – High-Bypass Ratio Engine Update,” 
DOT/FAA/TC-19/10 (Frankenberger, Large Engine Uncontained Debris Analysis - 
High-Bypass Ratio Engine Update, 2019) 

 “Engine Debris Penetration Testing,” DOT/FAA/AR-99/19 (Manchor & Frankenberger, 
1999) 

 “Engine Debris Fuselage Penetration Testing, Phase I,” DOT/FAA/AR-01/27 (Lundin, 
Engine Debris Fuselage Penetration Testing, Phase I, 2001) 

 “Engine Debris Fuselage Penetration Testing, Phase II,” DOT/FAA/AR-01/27, II 
(Lundin, Engine Debris Fuselage Penetration Testing, Phase II, 2002) 

 “Advanced Aircraft Materials, Engine Debris Penetration Testing,” DOT/FAA/AR-03/37 
(Lundin & Mueller, Advanced Aircraft Materials, Engine Debris Penetration Testing, 
2005) 

 “Uncontained Engine Debris Analysis Using the Uncontained Engine Debris Damage 
Assessment Model,” DOT/FAA/AR-04/16 (Seng, Manion, & Frankenberger, 2004) 

1.4 Integration of hazard analysis within the aircraft development 
cycle 
As a design tool, UEDDAM can provide early insight to the rotor burst hazard for a given 
aircraft configuration. Early in the aircraft development cycle a simple aircraft geometry can be 
developed. Aircraft skin, major structural elements, and flight critical components are easily 
modeled to provide a reasonable representation of the aircraft configuration. During this phase of 
an aircraft development program, the design is very fluid. A simple approach should be taken to 
model the configuration so that design trade studies can be conducted quickly. The use of very 
detailed models during the early development phase will significantly hamper the analyst’s 
ability to respond to configuration changes and provide meaningful recommendations to improve 
the design. Keeping the aircraft model simple, the analyst can conduct design trade studies to 
address rotor burst hazard minimization. Additional detail should be added to components 
showing high hazard contribution to refine the analysis. As the aircraft design matures, the model 
fidelity can be increased as detailed component information becomes available and as further 
analysis warrants. 

As a certification tool, UEDDAM provides a standardized approach to conduct rotor burst hazard 
assessment. UEDDAM output provides insight to the rotor burst hazard in several ways. 
UEDDAM output can be used to develop a top-level 1-in-20 analysis to address compliance to 
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CFRs in accordance with the recommended methodology defined in AC20-128A. It also 
provides specific details at the system and component level. The output can be categorized by 
rotor or debris category, providing a high level of flexibility in viewing analysis results.  

The benefits of performing a rotor burst hazard analysis at different times within the aircraft 
development cycle are significant. A rotor burst hazard analysis conducted during preliminary 
design can provide early insight into problem areas, or critical system placement concerns that 
can best be addressed early in the design process through the relocation of individual 
components. As the design matures, additional detail is added to the hazard analysis to refine the 
result and continue to monitor the status of the design. A final analysis is used to establish the 
aircraft performance to FAR requirements. Documentation of this process and the ability to show 
changes made to the aircraft design to improve the hazard probability can be used to illustrate 
means of minimization. 

2 Implementation of a multi-fragment analysis for rotor burst 
assessments 
The 2010 and 2016 incidents described briefly in section 1 are only two recent examples of why 
the FAA is highly concerned with the protection of aircraft from multiple fragment releases. To 
better understand the characteristics of the debris associated with uncontained failures, the FAA 
has collaborated with NAWCWD to develop a database containing detailed damage information 
of ~75 uncontained events obtained from individual contractors and agencies, as well as from 
incident sites (through coordination with the NTSB). From the ~700 data points collected, the 
average number of damages1 observed per event is approximately 12, which speaks to the multi-
fragment nature of uncontained events.  

In addition to data collection and database development, NAWCWD conducted analysis of the 
data to define uncontained debris characteristics such as size, weight, velocity (energy), 
trajectory, and quantity of fragments for a given event. From this analysis arose the Debris 
Fragment Model (DFM). The DFM defines generic fragment characterizations for different types 
of events (e.g. compressor disk event, high-pressure turbine spacer – rim event, and fan blade 
event) and for different types of engines (i.e., high bypass ratio, low bypass ratio, and turboprop). 
For example, a fan blade event that emanates from a high bypass ratio engine is described in the 
DFM by the release and impact of not one single fragment measuring 1/3 blade length, but 
approximately 7 individual fragments varying in size from 10% to 50% of a blade length.  

                                                 
1 A damage in this case refers to a hole in the aircraft structure or other subsystem injury. 
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Additional information regarding the DFM can be found in section 5.3.2.5 of Appendix A as 
well as in the three debris analysis FAA documents referenced in section 1.3 (Frankenberger, 
Small Engine Uncontained Debris Analysis, 1999) (Frankenberger, Large Engine Uncontained 
Debris Analysis, 1999) (Frankenberger, Large Engine Uncontained Debris Analysis - High-
Bypass Ratio Engine Update, 2019). 

The initial development of UEDDAM stemmed from the need for a tool that could more easily 
assess the multi-fragment failure scenarios defined in the DFM. Not only did the tool need to be 
able to handle the simultaneous release of multiple individually sized fragments with varying 
trajectories, but it also needed to perform numerous Monte Carlo iterations of each release. At 
the same time the DFM was being developed, a series of tests was conducted to develop a set of 
penetration equations and constants to model the impacts of engine debris to aircraft skin and 
components. These test series have been documented in the four engine debris penetration testing 
FAA documents referenced in section 1.3 (Manchor & Frankenberger, 1999) (Lundin, Engine 
Debris Fuselage Penetration Testing, Phase I, 2001) (Lundin, Engine Debris Fuselage 
Penetration Testing, Phase II, 2002) (Lundin & Mueller, Advanced Aircraft Materials, Engine 
Debris Penetration Testing, 2005). The result of these test series are the ballistic limit and 
residual velocity equations coded in UEDDAM along with empirically derived values for the 
shear constant (Cs) for five materials (Aluminum 2024, steel [Brinell Hardness Number  
(BHN) = 300], Titanium [BHN = 285], Inconel 625 LCF, and general composite). 

3 UEDDAM analysis approach 
As laid out in the AC 20-128A User’s Manual, there are five steps in performing a complete 
safety and risk analysis of an aircraft. The steps are summarized as follows: 

1. Establish (at the design definition) the functional hazards that can arise. 

2. Establish a functional hazard tree. 

3. Establish the aircraft geometry and fragment model. 

4. Apply risk factors, such as phase of flight, and calculate the risk for each threat (i.e., 
hazardous combination as per the functional hazard tree) for each rotor stage. 

5. Tabulate, summarize, and average all cases. 

UEDDAM, in conjunction with its post-processors, helps an analyst perform steps 3 thru 5 of 
this process, thereby reducing his or her workload. The particular process used to perform a 
UEDDAM safety and risk assessment of an aircraft can be seen in Figure 1. Note that the first 
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two steps in the UEDDAM process (i.e., establish and assess) and the last two steps (i.e., post-
process and analyze) correlate directly to steps 1 & 2 and 4 & 5, respectively, as laid out in the 
AC 20-128A User’s Manual. Step 3 in the AC 20-128A has been expanded into four steps in the 
UEDDAM process (i.e., define, build, verify, and execute). It is this central step where the bulk 
of the analysis occurs and that UEDDAM was designed to help simplify and standardize. 

 

 
Figure 1. UEDDAM analysis process 

In addition to the direct correlation between the UEDDAM analysis process and the steps 
identified in the appendix to the AC 20-128A, the UEDDAM analysis process highlights design 
optimization as a key element. Because 14 CFR 25.903(d) requires that the hazard from an 
uncontained engine debris release be minimized, it is important that this process be followed 
early in the aircraft development cycle and iterated upon during the various phases of the design. 
For example, when this process is introduced early on, different configurations of critical 
systems can be assessed and compared so that those configurations that perform best when faced 
with an uncontained debris release can be identified for the final design.  

It is important to note that at each step in the UEDDAM analysis process fundamental 
assumptions will have to be made by the analyst. These assumptions should be documented 
clearly and accompanied by adequate rationale. By employing general design guidelines (i.e., 
critical system separation, redundancy, and shielding) up front, iterating the uncontained rotor 
analysis throughout the evolution of the design, and documenting all assumptions and rationale, 
a manufacturer can clearly illustrate their understanding of and adherence to the minimization 
requirement in the CFR. 
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The following sections will provide general guidance for how to step through the analysis 
process laid out in Figure 1 using the GT case study as an example. The intent of approaching 
the document in this way is to focus on the analysis process rather than getting into the specifics 
of how to build individual input files or the use of explicit keywords, thereby limiting the 
discussion to top-level concepts, approaches, and practices, keeping the document more succinct 
and manageable. For detailed or more in-depth discussions, the analyst will be pointed to the 
applicable section(s) in the UEDDAM User’s Manual (included as Appendix A to this 
document) for reference. 

3.1 Establish 
The first step of the UEDDAM analysis process is to establish the analysis objective (i.e., the 
particular flight phase(s) of interest, the functional hazard(s), and the debris category(ies) to be 
assessed). 

3.1.1 Flight phases 

The flight phases identified in the AC 20-128A (along with their associated failure distributions 
[Dp]) are provided in Table 1. Based on an average of all non-containments occurring in the US 
and UK, spanning the years 1966-1976, the Dp values in are the industry-accepted standards for 
the percentage of engine failures occurring within each phase of flight. 

Table 1. Flight phases identified in AC 20-128A 

Flight 
Phase 

Phase Identification Phase Failure 
Distribution (Dp) 

1 Take-off before V1 35% 
2 V1 to first power reduction (+30s) 20% 
3 Climb 22% 
4 Cruise 14% 
5 Descent 3% 
6 Approach thru landing 2% 
7 Landing/Reverse 4% 

 
These seven flight phases and associated failure distributions were assessed in the GT case study. 

3.1.2 Functional hazard 

In the context of performing an uncontained rotor burst analysis as part of design and 
certification of an aircraft, more often than not this means evaluating an aircraft for a single 
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functional hazard across multiple flight phases. The functional hazard considered in the GT case 
study was catastrophic failure, defined as the inability of the aircraft to continue safe flight and 
land. According to the AC 20-128A, “continued safe flight and landing means the airplane is 
capable of continued controlled flight and landing, possibly using emergency procedures and 
without exceptional pilot skill or strength, with conditions of considerably increased flightcrew 
workload and degraded flight characteristics of the airplane.” By focusing hazard minimization 
efforts on those components/systems whose loss would result in a catastrophic failure as opposed 
to attempting to minimize all functional hazards, resources can be more judiciously expended 
and the intent of the CFR is met. 

3.1.3 Debris fragment definition 

The final phase of establishing the analysis objective is to define the debris types that will be 
assessed. Again, the AC can (and should) be referenced. To satisfy the safety analysis 
recommended, the AC 20-128A requires use of the following engine failure model (“unless for 
the particular engine type concerned, relevant service experience, design data, test results or 
other evidence justify the use of a different model”):  

 Single one-third disk fragment with a maximum dimension corresponding to one-third of 
the disk with one-third blade height and a fragment spread angle of ±3°;  

 Intermediate fragment with a maximum dimension corresponding to one-third of the 
bladed disk radius and a fragment spread angle of ±5°;  

 Small fragments with a maximum dimension corresponding to the tip half of the blade 
airfoil and a fragment spread angle of ±15°; and  

 Fan blade fragment with a maximum dimension corresponding to the blade tip with one-
third the blade airfoil height and a fragment spread angle of ±15°. 

Because an airframe manufacturer will have ready access to specific engine element dimensions, 
these debris models can be developed in a relatively straightforward manner. For the GT case 
study, a generic multi-debris model was developed based on historical data collected from actual 
uncontained events and populated in a database (referred to as the DFM). As discussed in section 
2, this model provides a multiple fragment definition by engine component and failure mode 
(e.g., fan disk failure). For the GT case study, the three debris models are referred to as DISK, 
MFRAG, and SINGL (where SINGL includes small blade fragments from a partial turbine blade 
fragment up to a 1/3 fan blade fragment). Table 2 provides a generalized comparison of AC 20-
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128A requirements and the GT case study DFM-based characteristics (in terms of fragment 
spread angles). 

Table 2. Debris model characteristics comparison 

Debris Model Fragment Spread Angle 
AC 20-128A GT AC 20-128A DFM 

Single One-Third Disk 
Fragment 

DISK ±3° for all engine stages variable within +5° to 
-11°* 

Intermediate Fragment MFRAG ±5° for all engine stages variable within +15° 
to -25°* 

Small Fragment SINGL ±15° for all engine stages variable within +20° 
to -60°* 

Fan Blade Fragment ±15° +20° to -30° 
* Depending on engine stage. The DFM defines the number, size, velocity, and trajectory 

of fragments per stage by failure mode. 

In addition to the standard set of debris characteristics normally considered as part of an 
uncontained engine debris analysis, for the GT case study, an additional three debris models 
were selected. The first two (debris types MULTI and MULTI2) were developed from the 
DFM’s characterization to represent a disk failure and blade failure, respectively. Rather than 
assessing a single one-third disk fragment, intermediate fragment, and small fragment 
independently of one another, the MULTI debris type combines all three fragment types into a 
single analysis and the MULTI2 debris type combines intermediate and small fragments into a 
single analysis. The third type of fragment that was examined is one that, no matter which rotor 
stage it originates from, impacts with a standard amount of kinetic energy. For the GT case 
study, a kinetic energy of 3,000 ft.-lb., which correlates to a 0.25-lb. fragment traveling at 900 
fps, was selected as representative. This type of fragment, given the STNDRD nomenclature for 
the GT case study, can be used as a benchmark to assess the level of protection provided by the 
aircraft skin and structure or as a basis of comparison to assess one aircraft with another or to 
compare against other debris types. The characteristics for the three non-standard debris types 
are detailed in Table 3. 
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Table 3. Additional debris types considered 

Debris Type # of Fragments Fragment Spread 
Angle 

MULTI 1–2 disk segments & 
5–21 fragments* 

variable within 
+15° to -60°* 

MULTI2 7–10 fragments* variable within 
+35° to -50°* 

STNDRD 1 fragment +15° to -15° 
* Depending on engine stage. The DFM defines the number, size, velocity, and trajectory 

of fragments per stage by failure mode. 

3.2 Assess 
The second step in the UEDDAM analysis process is to perform a flight phase criticality analysis 
of the total aircraft system, to include developing a damage modes and effects analysis (DMEA) 
and hazard trees. 

3.2.1 Damage modes and effects analysis 

A DMEA consists of identifying critical components, their function, and the impact of their 
damage-caused failures on the total aircraft system at each of the assessed flight phases. Critical 
components are those components that, when defeated either individually or jointly with other 
components, result in the loss of an essential aircraft function which would prevent continuous 
safe flight and landing. Both redundant and non-redundant critical components should be 
considered in a DMEA. Generally speaking, the following damage modes are typically 
considered: penetration, severance, jamming, cracking, deformation, etc. Obviously, the 
identification of critical components, their failures, and their impacts on the total aircraft system 
will depend on the objective established in the first step of the UEDDAM analysis process. 
Typical sources of information an analyst can consult to develop a DMEA include structural 
safety analyses, failure modes and effects analyses (FMEA), and system breakdown structures. 

For the GT case study, a DMEA was developed using input from industry and general 
knowledge of the components, operations, and functions required of typical fixed-wing aircraft 
platforms. Figure 2 illustrates a portion of the flight phase criticality analysis developed in 
Microsoft Excel for the GT case study, where the redundancy columns indicate whether a 
component is redundant (R), non-redundant (NR), or not critical (blank) with respect to 
maintaining continued safe flight and/or landing during that particular phase of flight.  
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Figure 2. Portion of GT DMEA 

3.2.2 Hazard tree analysis 

The second step in the UEDDAM analysis process also suggests the development of hazard 
trees, which are visual representations of the critical components and their redundancies. An 
aircraft system in this representation is defeated when the tree is completely “cut.” An analyst 
can construct these trees directly from a completed DMEA, but might also be able to reference 
fault tree analysis diagrams developed by safety and/or reliability analysts within their 
organization. 

For the GT case study, hazard trees were developed directly from the DMEA and verified 
through industry review. An example hazard tree from the GT analysis is illustrated in Figure 3. 
In this example, it is clear that defeat or loss of fuel from a single wing tank is insufficient to 
result in uncontrolled flight or inability to land during flight phases 2, 3, 6, and 7; however, 
couple that loss with the defeat or loss of both primary and secondary pumps from the opposite 
tank, and the aircraft would suffer a catastrophic hazard. 
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Figure 3. GT fuel system hazard tree for flight phases 2, 3, 6, and 7 

Viewed another way, the same hazard tree was generated using a fault tree development and 
visualization utility developed for use with UEDDAM called the Fault Tree Development Tool 
(FTDT). This hazard tree, shown in Figure 4, conveys the same information as that illustrated in 
Figure 3, but follows a format that was devised to be more familiar to people in the aircraft 
design and manufacturing industry. In addition, the FTDT can be used to graphically develop 
hazard trees that can then be exported to a file format compatible with the UEDDAM code. 
Additional information regarding the FTDT utility can be found later in section 3.4 as well as in 
Appendix B. 

 

 
Figure 4. GT fuel system hazard tree developed using FTDT 

It is important to note that as the design of the aircraft grows in complexity, so too will the 
DMEA and hazard trees. For example, early on in the design, there may only be a sense that 
there will be two redundant systems providing fuel to a twin-engine aircraft, but the intricacies of 
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fuel routing, crossfeed, pumping, etc. have yet to be defined. A UEDDAM rotor burst analysis 
can still be performed at this early stage, however. The DMEA and hazard trees will merely be 
simpler in nature. In this case, the fuel system hazard tree might look something akin to what is 
illustrated in Figure 5 as opposed to what was shown in Figures 3 and 4.  

 

 
Figure 5. Early design fuel system hazard trees 

3.3 Define 
The third step in the UEDDAM analysis process is to define the aircraft geometry in terms of 
critical systems and major structure. Critical systems were defined in the previous step through 
development of the DMEA and hazard trees. However, in this step, the aircraft geometry 
definition should begin to consider not only all critical components within the rotor disk debris 
zone, but all shielding and air vehicle surface components as well. In the case of the GT, for 
example, this means that in addition to all flight control, propulsion, fuel, and structural elements 
identified in the DMEA, the fuselage and wing skin, engine nacelles and pylons, and floor 
structure need to be defined.  

It is important to note that as the complexity of the design increases over time, the complexity of 
the aircraft geometry will also increase (see Figure 6). As was discussed in the previous section, 
the lack of complexity does not preclude execution of a UEDDAM rotor burst analysis early in 
the design process. On the contrary, establishing early definition of critical systems and 
shielding/air vehicle surface components from the point of view of an uncontained rotor burst 
event can only help to minimize the overall hazard. 
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Figure 6. Aircraft geometry definition transition from early design to final concept 

3.4 Build 
The fourth step in the UEDDAM analysis process is to build the necessary input files for a 
UEDDAM assessment. The format and content of each is covered in Appendix A (beginning in 
section 5), but for completeness, a brief description of the various input files has been included 
here: 

 TARGET FILE – A three-dimensional representation of the air vehicle in the geometry 
format known as FASTGEN (Fast Shotline Generator). The data used to develop this 
input file is gathered in step three of the UEDDAM analysis process. 

 JTYPE FILE – An input file assigning properties (i.e., name, material type, density, and 
criticality) to individual components. Note that portions of this input file are derived from 
information contained in the DMEA, which is developed in step two of the UEDDAM 
analysis process. 

 PK FILE – An input file containing probability of aircraft hazard, given component hit 
tables for all critical components. 

 MV FILE – A textual representation of the hazard trees developed in step two of the 
UEDDAM analysis process. 

 Control File – An input file containing run specifications for the main UEDDAM code. 

 DEBRIS FILE – An input file containing the information characterizing the specific 
debris for use in a UEDDAM assessment. The data used to populate this input file is 
established in step one of the UEDDAM analysis process. 

 NEARFIELD FILE – A listing of geometric components that are treated as so-called 
“near-field” components (i.e., the small, non-shielding components internal to an engine 
nacelle). 

 AUTOFAIL FILE – A listing of geometric components and systems that are driven by an 
engine and that should therefore automatically fail given an uncontained event. 
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 MATERIAL FILE – An input file identifying material names and associated properties 
required for penetration calculations. 

 HOLEGRP FILE – A listing of geometric components for which UEDDAM will 
generate hole size statistics. 

3.4.1 TARGET FILE 

The aircraft geometry illustrated in Figure 7 was developed for the GT case study. The TARGET 
FILE consists of individual components grouped by system into nine standard assemblies: skin, 
propulsion, personnel, flight controls, fuel, landing gear, structure, electrical, and miscellaneous. 
While the majority of the components in the TARGET FILE were modeled using FASTGEN 
primitives, some of the more intricate components in terms of contour (e.g., skin) were modeled 
with a computer-aided design (CAD) package and then converted. To aid aircraft manufacturers 
in development of the TARGET FILE, two utilities are included with UEDDAM – a 
stereolithography (STL) converter and a NASTRAN converter (specifically Patran). Both 
utilities convert geometric entities existing in another format to FASTGEN (see section 5.1.2 of 
Appendix A for more information).  

 



 

 16 

 
Figure 7. GT Aircraft geometry 

3.4.2 JTYPE FILE 

The component properties file, otherwise known as the JTYPE FILE, describes component 
information such as material type, density (or normal thickness), and criticality. For the GT case 
study, most of the components were modeled as either aluminum or steel, with the occasional 
component denoted as either titanium, composite, or some sort of fluid (e.g., water). Similarly, 
most of the components were modeled true to their form and thus have an assigned density of 
100% (indicating that UEDDAM should perform penetration calculations through the component 
without adjusting the observed thickness). The final section of the JTYPE FILE for the GT case 
study attributes a marker to each phase of flight in which a component is considered critical. The 
marker points to a table in the next input file to be discussed, the PK FILE. 
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3.4.3 PK FILE 

For the GT case study, only two tables were used to quantify probability of aircraft hazard given 
component hit in the PK FILE. The first table was used for critical components that were 
considered “soft” (i.e., if struck by any debris larger than 10 grains [where 7,000 grains is 
equivalent to 1 pound], the component would be considered to have been defeated). The second 
table was used for critical components that were considered “hard” (i.e., failure of the component 
would only occur if the mass of the striking debris were greater than 7,000 grains). Using generic 
inputs such as these allow an analyst to look at worst-case scenarios and limit the amount of 
detailed modeling and/or testing necessary. 

3.4.4 MV FILE 

The MV FILE contains the hazard trees and is likely the most complicated file for an analyst to 
build due to its textual nature and formatting restrictions. Thus, to help with the development of 
this file, two tools are included with the distribution of UEDDAM: the MAC tool and a tool 
called FTDT. Usage of the MAC tool is described in section 5.2.3 of Appendix A, while FTDT 
is covered separately in Appendix B and was discussed briefly in section 3.2. Figure 8 shows an 
example of what the MV FILE for the GT case study looks like when viewed in FTDT, where 
the black outlined systems have been collapsed for ease of visualization. 
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Figure 8. FTDT visualization of the MV FILE for the GT case study 

3.4.5 Control File 

As stated previously, the Control File provides the run specifications necessary for execution of 
the main UEDDAM code. It includes entries to define the name and location of the input files to 
use, the specific parameters of an event (e.g., geometric location of the undamaged disk origin, 
number of and angular spacing between adjacent release points, and number of Monte Carlo 
iterations to perform at each release point), the name of the output files to generate, and a host of 
optional run-time controls. Only two of the optional run-time controls were specified for use in 
the GT case study: the multiple processor flag and the resource estimation flag. The first of these 
two controls specifies among how many processors a UEDDAM analysis can be split, allowing 
the user to take advantage of a multi-processor computer and thereby decreasing overall run 
times. The second control indicates whether UEDDAM should provide a rough estimate of the 
anticipated run time and approximate disk space usage prior to beginning a run. Other run-time 
control options of note include the target reduction flag, small component hypersampling, high-
performance computer (HPC) cluster flag, and gamma flag. Each of these controls is described in 
detail in section 5.3.1 of Appendix A. 



 

 19 

3.4.6 DEBRIS FILE 

The DEBRIS FILE contains information describing the specific debris (the characteristics of 
which were defined in the first step of the process) for use in a UEDDAM assessment. One of 
the inputs in this file is the debris characterization record, which, among other things, specifies a 
variance angle to be used for the debris. The variance is a delta angle in the plane of rotation 
around the nominal release angle in which a random number draw will be used to determine the 
actual release angle used for analysis. The diagram on the left of Figure 9 illustrates what is 
meant by variance in the context of a UEDDAM analysis, where the view is down the centerline 
of an engine. The illustration on the right of Figure 9 demonstrates how the variance angle input 
relates to fuselage exposure in a nominal, wing-mounted twin-engine aircraft. Fan and 
compressor events for these types of aircraft have historically demonstrated fuselage exposure 
angles of ~40°. Thus, for the GT case study, a variance angle of 20° was used for all 
fan/compressor debris characterizations. However, because turbine events have exhibited 
exposure angles of over 70° (i.e., debris from a single event has impacted the fuselage as well as 
the wing), for the GT case study, a variance angle of 35° was used for all turbine events.  

 

 
Figure 9. Variance and the relationship to exposure 

3.4.7 NEARFIELD FILE 

The NEARFIELD FILE for the GT case study consisted of those components (both critical and 
non-critical alike) internal to the engine nacelles. The following types of components were 
included as nearfield for each engine: engine disks and blades, digital electronic control, 
accessory gearbox, engine case, thrust reverser actuator, hydraulic pump, fuel pump, and 
electrical generator. 
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3.4.8 AUTOFAIL FILE 

The AUTOFAIL FILE for the GT case study included those critical components and systems 
that would cease to function given an uncontained release. For each engine, these components 
included modeled internal components (i.e., disks and blades), engine casing, hydraulic systems, 
digital electronic control, accessory gearbox, fuel pump, and electrical cabling. 

3.4.9 MATERIAL FILE 

For the GT case study, the standard MATERIAL FILE distributed with UEDDAM and 
consisting of the five basic material types discussed in section 2 (i.e., steel, titanium, aluminum, 
composite, and Inconel) was used without modification.  

3.4.10 HOLEGRP FILE 

As stated previously, the HOLEGRP FILE contains a list of geometric components for which 
UEDDAM will generate hole size statistics (e.g., maximum hole area in square inches). For the 
baseline GT case study described herein, this input file was not used. An excursion using this 
input file is presented in Section 4. 

3.5 Verify 
The fifth step of the UEDDAM analysis process is to perform a verification of the various input 
files created. Setting up a simplified UEDDAM execution and troubleshooting the resulting 
output until the run is successful can accomplish the first half of this step in the process 
(troubleshooting is discussed in section 6.3 of Appendix A). The second half is accomplished by 
analyzing the results from this execution.  

It is during this step in the analysis process that the UEDDAM Visualizer (a utility developed to 
allow visualization of the complex data and information generated from a UEDDAM run) can be 
most useful for an analyst. The utility (the user’s manual for which is included as Appendix C) 
allows visualization of the aircraft geometry, debris hazard zones, debris trajectories, probability 
plots of the hazard levels, and translational risk angles, all of which can help detect logic and/or 
typing errors. For example, Figure 10 illustrates the display of the debris trajectories associated 
with a single release of the DISK debris type from the GT’s left engine fan section. A single 
element of the bundle that makes up the debris is highlighted in blue and the specific components 
that the ray passes through are listed in the box labeled Shotline Data. By cycling through the 
individual elements of the debris bundle, an analyst would be able to determine that while 
multiple structural and hydraulic system components were damaged by this event, the logic 
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dictated by the hazard trees is coded correctly such that this event results in a probability of 
hazard of 0.0.  

 

 
Figure 10. Use of the UEDDAM Visualizer in verification 

Similarly, an analyst might discover during this investigation that a component that should have 
been impacted by this event was being missed due to its size relative to the debris bundle 
element spacing. In this case, the analyst can add a run-time option to the Control File that 
instructs UEDDAM to generate one or more additional debris bundle elements to ensure all 
components that should be impacted by a debris event actually are. Figure 11 illustrates this 
process, referred to as hypersampling. For additional information regarding hypersampling, see 
sections 5.3.1.5 and 9.10 in Appendix A. Note that the baseline GT case study did not implement 
this run-time control option as it was deemed unnecessary due to the debris bundle element 
spacing used. An excursion that examines the effect of its use (on both run times and results) is 
presented in Section 4. 
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Figure 11. Small component hypersampling 

In addition to verifying the correctness of the input files and because UEDDAM uses a Monte 
Carlo approach to debris releases, this step in the UEDDAM analysis process is also when an 
analyst should determine the appropriate number of UEDDAM iterations of each release point 
necessary for a stable solution. For the GT case study, this determination was made by 
examining the resultant total aircraft-level probability of hazard due to debris being released 
from one of the engines’ fans across two flight phases. The resulting analysis (see Figure 12) 
determined that for large debris types (e.g., DISK), the necessary number of iterations was ~100 
whereas for smaller debris types (e.g., MFRAG and SINGL), the required number of iterations 
was larger (i.e., ~170). 

 

 
Figure 12. Probability of hazard versus number of iterations for six debris types 

3.6 Execute 
The sixth step of the UEDDAM analysis process is to set up and execute a complete set of 
production runs for post-processing and analysis. Recall that step 4 of the AC 20-128A safety 
and risk analysis process, outlined at the beginning of section 2, indicates that a complete 
analysis must consist of an assessment of the risk for each debris type and for each rotor stage 
across all phases of flight. Therefore, once step five (verify) is complete, a rotor burst analyst 
must assemble all the necessary inputs and execute the analysis for a minimum of # debris types 
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× # engines × # rotor stages separate instantiations. For the GT case study, a total of 108 separate 
executions of UEDDAM were required (3 × 2 × 18). This process has been made simpler for a 
UEDDAM analyst through the development of a Microsoft Excel utility called Run_Setup.xls. 
The spreadsheet with embedded macro assists an analyst in setting up a file structure and series 
of UEDDAM Control Files with user-defined options and output file specifications. Additional 
information regarding the run setup utility can be found in sections 6.4 and 9.11 of Appendix A. 

One other important UEDDAM feature to note as part of this step in the analysis process is the 
ability of UEDDAM to take advantage of multi-processor and high-performance computers 
(HPC). Coupled with the simple advance and availability of computing technology over the past 
decade, these multi-threading capabilities have reduced UEDDAM run times on standard PCs 
significantly (i.e., from days/weeks to minutes/hours). For example, the entire set of DISK debris 
runs performed for the GT case study was executed on a Dell Precision 7720 laptop with eight 
2.90 GHz processors (6 of which were used for execution) and 64.0 GB RAM in a matter of 12.5 
hours. Using the HPC option (4 nodes, 112 cores), this same analysis was executed in just under 
6 hours. Additional information regarding the multi-threading and HPC options available to the 
UEDDAM analyst can be found in sections 5.3.1.6 and 5.3.1.7 of Appendix A. 

3.7 Post-process 
Step seven in the UEDDAM analysis process is post-processing the results obtained from step 
six. UEDDAM, upon successful completion, supplies the user with information that can be used 
to aid in showing compliance with the AC 20-128A requirements (and more). Recall that 
UEDDAM and its post-processors assist a rotor burst analyst with accomplishing steps 3 through 
5 of the AC 20-128A process, as outlined at the beginning of section 2. Steps 3 through 5 can be 
more explicitly written as: 

a) For each rotor stage, establish the threat windows (i.e., the translational and spread 
risk angles) where, due to a combination of individual damages, a catastrophic risk 
exists. 

b) For each rotor stage, calculate the risk factor for all critical hazards. 

c) For each rotor stage, calculate the combined risk factor (Crf) for the phase of flight 
and average over 360°. 

d) Calculate the overall rotor stage risk (CR) for each stage over all n flight phases 
(incorporating Dp). 

CR = �Dp1 × Crf1� + �Dp2 × Crf2� + ⋯+ �Dpn × Crfn� 
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e) Average all m rotor stages to obtain the mean engine risk (CE). 

CE =  
CR1 + CR2 + ⋯+ CRm

m
 

f) Average all k engines to obtain the mean aircraft risk (CA). 

𝐶𝐶𝐴𝐴 =
𝐶𝐶𝐸𝐸1 + 𝐶𝐶𝐸𝐸2 + ⋯+ 𝐶𝐶𝐸𝐸𝐸𝐸

𝑘𝑘
 

UEDDAM internally performs the calculations in steps a) through c); in particular, Crf can be 
taken directly from the SUMMARY FILE (one of the UEDDAM output files2 available to an 
analyst). Thru simple post-processing (i.e., applying the phase failure distributions [Dp] 
identified in Table 1 and then performing a series of averages), steps d) thru f) can be calculated, 
resulting in a mean aircraft risk for the particular debris category of interest. 

For the GT case study, steps d) thru f) were calculated for each of the six debris categories of 
interest (DISK, MFRAG, SINGL, MULTI, MULTI2, and STNDRD) as illustrated in Figure 13. 
Mean engine and aircraft risks for all six debris categories assessed in the GT case study are 
provided in Table 4. 

Table 4. GT mean engine and aircraft risks 

Risk 
Debris Category 

SINGL MFRAG DISK MULTI MULTI2 STNDRD 
CE1 0.001 0.018 0.049 0.068 0.019 0.004 
CE2 0.003 0.021 0.050 0.066 0.022 0.005 
CA 0.002 0.020 0.050 0.067 0.021 0.004 

 

                                                 
2 UEDDAM output files are discussed in more detail in section 7 of Appendix A. 
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Figure 13. Calculation of CR, CE, and CA for the GT (MFRAG debris category) 

Because it is equally important to know the various system and component contributions to 
aircraft risk, a Java-based post-processing tool called Analysis_Tool has been developed for use 
with UEDDAM. This utility summarizes and provides averages for multiple UEDDAM output 
files using the same d) thru f) calculations described previously, thereby further simplifying an 
analyst’s workload. An example of the data obtained using this utility is shown in Figure 14, 
which illustrates the various system contributions to mean aircraft risk from an MFRAG event, 
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for which the largest contributors can be seen to be structural and propulsion related. Additional 
details regarding Analysis_Tool can be found in section 8 of Appendix A. 

 

 
Figure 14. GT case study normalized average system contributions to mean aircraft risk 

(MFRAG debris category) 

3.8 Analyze 
Step eight of the UEDDAM analysis process is detailed examination of the post-processed 
results. One metric that can be investigated is the comparison of CA values with the certification 
requirements in the AC 20-128A. For the GT case study, the acceptable risk level criteria from 
the AC 20-128A can be summarized as CA_DISK ≤ 0.05 (1-in-20), CA_MFRAG ≤ 0.025 (1-in-40), 
and CA_SINGL ≤ 0.05 (2 × corresponding average criterion). Comparing these requirements to the 
results in Table 4 illustrate that the GT aircraft, as modeled and analyzed, is just capable of 
meeting the requirements. However, rather than rest on these numbers, it would also be prudent 
to investigate the major contributors to the mean aircraft risk and establish whether or not 
anything can be done in terms of design or mitigation to minimize the risk even further. An 
example of this type of analysis is illustrated in Figure 15. The graph in this figure is of the 
overall stage risk (CR) determined for each rotor stage and each engine for the DISK debris type. 
From this graph, it is clear that the largest contributors to mean aircraft risk are the number one 
engine low-pressure turbine stages, at least for the release of a single, one-third disk fragment.  
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Figure 15. GT case study overall rotor stage risk (DISK debris category) 

Delving even further into the results from the GT case study, a step that is most important early 
on in the design cycle, Figure 16 highlights the individual system contributions that are leading 
to catastrophic losses for these rotor stages. From these graphs, as well as examination of the 
geometry, DMEA, and hazard trees associated with the GT case study, it can be determined that 
the largest contributor to failure is loss of consecutive load-bearing structural members in the 
fuselage. Armed with this knowledge, a design team can investigate potential mitigation 
techniques to further reduce the risks associated with an uncontained release. 
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Figure 16. GT case study system contributions (DISK debris category) 

The results of the more realistic assessments of a disk and a blade failure (i.e., the MULTI and 
MULTI2 debris categories, respectively) were shown side-by-side with the AC 20-128A baseline 
debris type results for the GT case study in Table 4. As evidenced by the CA values observed, the 
MULTI debris type is definitely more taxing on the GT aircraft than any of the three individual 
categories are alone, but the MULTI2 debris type appears to be on par with the MFRAG 
category. 

To further help an analyst pinpoint system- and component-level contributors, UEDDAM has 
been developed with a feature that captures the specific iterations that meet a user-defined 
criterion. For example, in the GT case study, the next step of analysis that might be undertaken is 
to determine which release points (and associated iterations) result in high probabilities of 
catastrophic hazard, so that the specific release trajectories can be investigated and failures better 
understood. Additional information regarding significant iteration capture and usage can be 
found in sections 5.3.1.10, 7.7, and 9.4 of Appendix A. 

Finally, another type of analysis that can be performed with the output obtained from a 
UEDDAM assessment is an examination of critical component translational and fore/aft risk 
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angles, as defined in the AC 20-128A. The UEDDAM Visualizer has a built-in utility to display 
these angles graphically for ease of review and presentation. Figure 17 illustrates a sample of a 
translational risk angle plot from the GT case study (DISK debris having been released from the 
number one engine fan). This graphic highlights that the majority of the critical hydraulic system 
components can only be impacted by an uncontained fan disk release over a very narrow range 
of trajectories, nominally between 330° and 10°. Section 3.2 of Appendix C provides additional 
information regarding how these plots can be obtained. 

 

 
Figure 17. GT case study translational risk angle plot (DISK debris category) 
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3.9 Design optimization 
The final step in the UEDDAM analysis process is optimization. As touched on throughout this 
discussion, the ultimate goal of performing an uncontained rotor debris assessment is to 
minimize/demonstrate minimization of the risk in such an occurrence. The only way to truly 
minimize the risk is to iterate the design of the aircraft through a series of refinements. For the 
GT case study, one type of design optimization that might be considered is one that works to 
enhance the structural integrity of the longerons, such that even more need to be damaged before 
a catastrophic loss is realized. Another option might be to consider the addition of an electrical 
backup to the hydraulically actuated flight control systems thereby incorporating an additional 
redundancy. One final example would be to incorporate additional material into the engine 
nacelles themselves, which would act to shield flight critical components from the effects of 
debris. Assessing an improved design, such as any one of these, using the UEDDAM analysis 
process would require circling back to step 3 (if the modification is geometric) or step 4 to 
update the appropriate inputs and then repeating steps 5–8.  

Consider the incorporation of additional material to each GT engine nacelle, for example. In the 
analysis documented in DOT/FAA/AR-04/16 (Seng, Manion, & Frankenberger, 2004), the 
nacelle thickness was increased from a nominal 0.04 in. to 1.1 in. of aluminum in three 
increments (0.12 in., 0.48 in., and 1.1 in.). Analysis results from these trade studies indicated that 
the GT could meet a 1-in-20 requirement to a more damaging debris field by increasing the 
aluminum thickness to a value somewhere between 0.12 in. and 0.48 in. Performing a similar 
analysis on the current model results in a parallel trend. For this design optimization, rather than 
altering the geometry, the JTYPE FILE was modified to virtually increase the thickness of the 
engine nacelle components by changing their thickness descriptor from a density factory to a 
normal thickness. With that simple change made, steps 5-8 were repeated twice for the MULTI 
debris type; the first execution considered an increase in GT engine nacelle thickness to 0.15 in. 
and the second to 0.25 in. In both instances, a decrease of mean aircraft risk was observed (18% 
and 39% decrease for the 0.15-in. and 0.25-in. thick skins, respectively) (see Figure 18).  
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Figure 18. GT mean aircraft risk (MULTI debris category) as a function of engine nacelle 

thickness 

While a simple example, the aforementioned assessment illustrates the UEDDAM analysis 
process’ ability to concretely and quantitatively demonstrate minimization of risk. Upon further 
analysis of results, additional recommendations can be made, and the steps repeated until the 
design has truly been optimized to minimize the risk associated with an uncontained engine 
failure. 

4 Excursions 
Whereas the prior section of this document focused on the use of UEDDAM to perform a safety 
and risk analysis of an aircraft as defined in the AC 20-128A, the remainder will explore 
additional uses of the model within the overarching domain of aircraft safety. 

4.1 Penetration adjustments 
The penetration equations embedded within UEDDAM are based on those used by the military 
and civilian vulnerability communities, the goal being to rapidly estimate the residual velocity of 
various engine blade and disk debris into aircraft structures. There are two equations. The first, 
referred to as the V50 equation, is used to determine whether or not the debris penetrates a given 
material, where V50 is the limit velocity and is defined as the velocity at which a fragment has 
zero energy after penetrating a target. Given penetration, the second equation determines how 
much residual velocity (Vr) the debris carries forward.  
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The basis for the development of the baseline V50 equation is the assumption that the normal 
component of the impact velocity is the only contributor to the kinetic energy required for 
penetration of a material. In light of more recent studies into the penetration of launch and 
reentry debris by the FAA (Wilde & Draper, 2010), however, this assumption has been shown to 
be non-conservative at high obliquities, allowing for predictions of no penetration under 
conditions for which the data indicate penetration. Thus, the V50 equation has been amended 
since initial development of UEDDAM to allow the user more flexibility to better correlate 
results with existing test data. One such modification is the introduction of an obliquity 
adjustment factor, gamma (0 ≤ γ ≤ 1), which indicates that more than just the normal component 
of the impact velocity contributes to the kinetic energy required to penetrate the impacted 
material. The adjustment factor is introduced to the denominator of the V50 equation such that a 
value of γ=1 returns the updated V50 equation to its original form and a value of γ=0 treats every 
impact as perpendicular. Because matching penetration test data from different obliquity angles 
could potentially require different values of gamma, the user is also permitted the flexibility of 
entering a value of gamma for each of five obliquity angle bins (i.e., 0°–30°, 30°–45°, 45°–60°, 
60°–75°, and 75°–90°). 

As an excursion to the baseline GT analysis described in Section 3, the same analysis was 
repeated keeping all inputs the same but modifying the value of gamma. In the case of launch 
and reentry debris, analysis indicates that the optimized gamma value of 0.707 (Wilde & Draper, 
2010) is the least conservative value required to ensure the modified V50 equation remains 
conservative when compared to a limited data set. With the aforementioned research as a data 
point, gamma was set equal to 0.707 across all obliquity angle bins for this excursion. Upon 
execution and analysis of the excursion results, the mean aircraft risk (CA) across the various 
debris types increased by between 4 and 18%, with the largest nominal increase of 0.005 
observed for the MULTI debris type (see Figure 19). Because this excursion decreased the value 
of gamma assumed in the GT case study from 1.0 to 0.707, an across-the-board increase in mean 
aircraft risk was anticipated. However, the magnitude of the increase was unknown and it 
appears to have had a greater impact on the penetration capability of a disk segment over that of 
small and/or large fragments. 
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Figure 19. Increase in mean aircraft risk across debris types for γ=0.707 

Note that as with any deviation from the standard AC 20-128A process, sufficient justification 
and evidence must accompany any UEDDAM certification analysis results using a modified 
version of the V50 equation. Additional information regarding the UEDDAM penetration 
equations can be found in sections 3.7 and 5.3.5 of Appendix A. 

4.2 Hole size calculations 
Given an uncontained engine failure, another metric UEDDAM generates that will likely be of 
interest to users is the cumulative hole size made in a group of components by a particular debris 
release3. Currently, it is envisioned that this metric could be used in support of decompression 
analyses (in accordance with 14 CFR 25.841) as well as Extended-range Twin-engine 
Operational Performance Standards (ETOPS) assessments. Because UEDDAM determines both 
the locations and associated areas of the holes formed by impacting rotor debris, a manufacturer 
can use this information to anticipate the potential for a decompression scenario and develop 
mitigation tactics (either structural or through modification of the flight envelope) as required for 
occupant safety. Additionally, this same damage information could be used by a manufacturer to 

                                                 
3 Additional information on hole size calculations in UEDDAM can be found in sections 3.8, 5.3.6, and 7.6 of 
Appendix A. 
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ensure extended operations diversion is available after an uncontained event. For example, an 
uncontained rotor burst assessment might point to the need for the installation of one or more 
fuel isolation systems if it is determined that holes of sufficient area to completely drain a wing 
tank of all fuel are highly probable in this occurrence. To meet the intent of the ETOPS 
regulations, a manufacturer would need to provide assurances that the remaining fuel (given 
isolation systems are in place) is sufficient to allow the aircraft to continue to operate (albeit at a 
reduced capacity) and land at an adequate airport. 

To illustrate use of the hole size metrics obtained from a UEDDAM analysis, an excursion to the 
baseline GT analysis described in Section 3 was performed, keeping all inputs the same except 
for the inclusion of the optional holesize input file. Contained within the file is a listing of 17 
skin and structural components that make up the pressure vessel of the GT, to include the 
forward and aft pressure bulkheads. The optional input file and associated components 
(highlighted in purple) are illustrated in Figure 20. 

 

 
Figure 20. Holesize input file for decompression analysis of the GT 

Upon execution of UEDDAM and analysis of the outputs generated for each debris type, it can 
be observed that the STNDRD debris type resulted in the smallest cumulative hole sizes in the 
pressure vessel, with maximum cumulative hole areas nearing 25 in2 and average cumulative 
hole areas staying below 5 in2. At the opposite end of the spectrum, the MULTI debris type 
resulted in the largest cumulative hole sizes, with maximum cumulative hole areas reaching 4300 
in2 (29.9 ft2). The graphic depicted in Figure 21 illustrates the maximum and average cumulative 
hole areas per engine stage and rotational release angle for the STNDRD and MULTI debris 
types. 
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Figure 21. Maximum and average decompression cumulative hole size data 

To fully characterize the cumulative hole size data, UEDDAM also outputs the average number 
of fragment impacts on and penetrations to the components of interest. In the case of the pressure 
vessel of the GT, this data was examined to determine the average number of fragment 
intersections contributing to the large cumulative hole areas. Examining the MULTI debris 
penetration data indicates that the largest cumulative hole sizes (from the Engine 1 and Engine 2 
Fan sections) are realized due to approximately 10‒40 individual debris impacts across the 
pressure vessel, depending on release angle. The image in Figure 22 illustrates a specific 
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iteration (no. 4) of the 220° release of debris from the Engine 2 Fan section. In this iteration, a 
cumulative hole size of 3874.12 in2 is calculated from 40 individual penetrations of 14 large 
fragments (pale blue bundles), 7 small fragments (dark blue lines), and 1 one-third disk segment 
(yellow bundle) across the pressure vessel. With a better understanding of both the type and 
number of impacts leading to a decompression event, different mitigation techniques can be 
investigated. 

 

 
Figure 22. Illustration of number of fragment penetrations 

4.3 Small component contributions 
As discussed in Section 3.5, because of the way debris is modeled in UEDDAM, it is possible for 
components that should be impacted by an event to be missed entirely due to their size relative to 
the debris bundle element spacing. In this case, the analyst can add a run-time option to the 
Control File that instructs UEDDAM to generate one or more additional debris bundle elements 
to ensure all components that should be impacted by a debris event actually are (this process is 
referred to as hypersampling). While the baseline GT case study did not implement this run-time 
control option (it was deemed unnecessary due to the debris bundle element spacing used), an 
excursion was undertaken to determine the effects of implementing the hypersampling option on 
both run times and results.  
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Implementation of the hypersampling run control option is done through three UEDDAM control 
file keywords (one for each fragment type) that specify the subgrid that should be used to 
generate additional debris bundle elements. For this excursion, the baseline GT analysis 
described in Section 3 was repeated keeping all inputs the same except for the inclusion of the 
hypersampling run control option. All debris types were modified similarly, such that the subgrid 
selected for each was one-third the size of the original debris grid (e.g., the baseline disk segment 
released from the fan section of each engine had a specified grid size of 0.75 in.; thus, the 
hypersampling run control option indicated the use of a 0.25-in. subgrid for the analysis). The 
first observation from this excursion was the large increase in computational run times, most 
notably for the MULTI debris type, which saw a 16+-fold increase over that of the baseline 
analysis (Figure 23). While the increase in run times was anticipated (although, perhaps not this 
great a degree), the more important observations can be garnered from the numerical results 
themselves. 

 

 
Figure 23. Computational run time comparisons 

Upon execution and analysis of the excursion results, the mean aircraft risk (CA) across the 
various debris types increased by between 4 and 39%, with the largest nominal increase of 0.008 
observed for the MULTI debris type (Figure 24).  
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Figure 24. Increase in mean aircraft risk across debris types using hypersampling run control 

option 

As an example of a scenario in which components could potentially be missed by a debris 
bundle, Figure 25 illustrates several small control cables and a frame in the path of a disk 
segment released from the fan section of the port engine. Due to the modeling and positioning of 
the components in relation to the debris bundle spacing (in addition to the fact that each ray in 
the bundle is treated as infinitely thin), it is easy to see how even a relatively small debris grid 
size could result in a potentially misinformed evaluation.  
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Figure 25. Example of potentially missed components 

Further investigations into the specific system failures contributing to the CA for the DISK, 
MFRAG, MULTI, and MULTI2 debris types show the largest nominal increases in flight 
controls (lateral, rudder, and elevator), hydraulics, structural members (longerons and frames), 
and engines (namely, fuel feed lines), all of which consist of components that are smaller in one 
or more dimension when looked at from the view of the rotor burst (see Figure 26). By 
incorporating the hypersampling run control option, for example, both the DISK and MULTI 
analysis results point to an increased importance of the lateral flight control system in terms of a 
focal point for potential design changes. 
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Figure 26. System contributions to DISK and MULTI debris probability of catastrophic hazard, 

with and without hypersampling run control option 
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4.4 Debris Characterizations 
As a final excursion to the baseline GT analysis, we revisit the debris characterization data. 
Recall that for the GT case study, a generic multi-debris model was developed based on 
historical data collected from actual uncontained events and populated in a database. Because the 
DFM considers historical data, the model evolves as additional data are incorporated. Thus, if we 
take a snapshot of the DFM prior to 2020, the characterizations appear different. When a similar 
generic analysis was conducted in the early 2000’s (Seng, Manion, & Frankenberger, 2004), for 
example, the DISK, MFRAG, MULTI, and SINGL characterizations were different from those 
used in the current GT Baseline case study and the STNDRD and MULTI2 debris types were not 
studied. One difference is the change in variance angles considered (2.5° or 10°, depending on 
debris type, versus 20° or 35°, depending on engine stage). This change in variance results in a 
change in number of release angles as well as a change in number of iterations required for a 
stable result (see Table 5). 

Table 5. Debris types considered in DOT/FAA/AR-04/16 

Debris 
Type Description Fan Compressor Turbine Iterations 

DISK Single 1/3rd 
disk segment 

2.5° variance, 
0.5-in. grid 

2.5° variance, 
0.5-in. grid 

2.5° variance, 
0.5-in. grid 

30 

MFRAG Single large 
fragment 

2.5° variance, 
0.5-in. grid 

2.5° variance, 
0.5-in. grid 

2.5° variance, 
0.5-in. grid 

30 

MULTI Single 1/3rd 
disk segment 
with multiple 
small and/or 
large fragments 

Disk: 2.5° 
variance, 0.85-
in. grid; 
Fragments: 10° 
variance, 0.5-
in. grid 

Disk: 2.5° 
variance, 0.5-
in. grid; 
Fragments: 10° 
variance, 0.5-
in. grid 

Disk: 2.5° 
variance, 0.5-
in. grid; 
Fragments: 10° 
variance, 0.5-
in. grid 

30 

SINGL Single small 
fragment 

10° variance 10° variance 10° variance 100 

 
Another difference is observed in the characterizations themselves. The masses, velocities, and 
dimensions of individual fragments are not consistent between the two sets of debris. As an 
example, consider the MFRAG debris type. For the baseline GT analysis, the fan fragment 
weighs 3.75 lbs., travels at a velocity of 894 fps, and has length, width, and thickness dimensions 
of 9.6 in., 8 in., and 0.3 in., respectively. In the early 2000’s assessment, however, the fan 
fragment weighed only 1.8 lbs., traveled at a velocity of 813 fps, and had length, width, and 
thickness dimensions of 8 in., 8 in., and 0.2 in, respectively. MFRAG debris type 
characterization data comparisons across all engine sections are provided in Table 6. The data in 
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the table indicates that for all engine sections except for the fan, the mass of the considered 
debris for this debris type decreased from that assessed in the early 2000’s. 

Table 6. MFRAG characterization data comparison 

Engine 
Section DFM Mass 

(lbs.) 
Velocity 

(fps) 
Length 

(in.) 
Width 
(in.) 

Thickness 
(in.) 

Fan 
Excursion 1.8 813 8 8 0.2 
GT 
Baseline 3.75 894 9.6 8 0.3 

Low 
Pressure 
Compressor 

Excursion 6 523 13.5 7 1 
GT 
Baseline 4.4 523 16 4 1 

High 
Pressure 
Compressor 

Excursion 6 523 13.5 7 1 
GT 
Baseline 4.4 523 16 4 1 

Low 
Pressure 
Turbine 

Excursion 11.3 505 18.3 1.7 1.3 
GT 
Baseline 3.8 505 6 4 1 

High 
Pressure 
Turbine 

Excursion 10 967 22 1.5 1.5 
GT 
Baseline 8.3 967 13.5 8 2 

 

For this final excursion, the baseline GT analysis was reassessed keeping all inputs the same 
except for the debris characterization data, number of release angles, and number of iterations. 
The change in mean aircraft risk for the four debris types under consideration is illustrated in 
Figure 27, with the greatest percent change observed for the MFRAG debris type (an increase of 
17%) and the greatest nominal change observed for the MULTI debris type (a decrease of 0.0045 
in probability of catastrophic hazard). Note that the results are neither consistently lower nor 
higher than those of the baseline GT analysis, as the effects of debris modification are not as 
straightforward as the other excursions discussed in the previous three sections. For example, 
referring back to Table 6, the fragment emanating from the Fan section in the baseline GT 
analysis has a higher mass than that in the excursion, but the opposite is true for all other engine 
sections. 
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Figure 27. Change in mean aircraft risk across debris types using different debris characterization 

parameters 

A further examination of the MFRAG results indicates the system contributions that are driving 
the 17% increase. Significant increases are observed in structure (specifically, longerons) and 
hydraulics components and are mainly due to debris emanating from the high- and low-pressure 
turbine stages (see Figure 28).  
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Figure 28. MFRAG system contribution comparison using different debris characterization 

parameters 

5 Conclusion 
Uncontained rotor failures are a risk that must be addressed by airframe manufacturers 
worldwide. While manual methods to assess this risk exist, the analysis process and automation 
afforded by UEDDAM reduces errors, permits standardization, allows for ease of trade studies, 
and introduces a manageable means of evaluating uncontained engine events stochastically.  

UEDDAM provides a standardized approach to conduct single or multi fragment rotor burst 
hazard analysis. Multi fragment debris models have been developed to characterize in-service 
aircraft rotor burst events. The UEDDAM process provides a better analytical representation of 
these in-service events and a better representation of the true aircraft hazard.  

UEDDAM as a design tool can provide early insight to the rotor burst hazard for a given aircraft 
configuration. Additionally, trade studies can be performed to conduct cost/benefit analyses of 
component relocation or shielding showing minimization of the rotor burst hazard.  

As a certification tool, UEDDAM provides a standardized approach to conducting rotor burst 
safety and risk assessments as defined in the AC 20-128A. UEDDAM output provides insight to 
the rotor burst hazard and can be used to develop a top-level 1-in-20 analysis to address 
compliance to CFR in accordance with the recommended methodology defined in AC20-128A. 
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As evidenced by the GT case study, UEDDAM outputs data that allows determination of what 
engine sections are the major contributors to damage and, in addition, allows determination of 
what systems and components are responsible for the hazard. 
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ABSTRACT 

 

The Uncontained Engine Debris Damage Assessment Model (UEDDAM) performs disk burst 

assessments using a modified, unlimited distribution of COVART 6.9 (FAA).  COVART 

(distributed through the Defense Systems Information Analysis Center [DSIAC]) has long been 

used in the evaluation of aircraft vulnerability to kinetic energy threats (fragments and 

projectiles).  For engine debris containment studies, COVART is used to generate line-of-sight 

data (representing the trajectories of uncontained engine debris originating from within vehicle 

engines through aircraft components) and estimate fragment penetration characteristics, 

component damage, and resultant hazard level evaluations for each trajectory.  UEDDAM 

provides a reduced user workload by automatically formatting the data required to run 

COVART, executing it over many iterations, and accumulating/formatting the output to generate 

average hazard levels over multiple debris origins for the entire aircraft under evaluation.   

 

UEDDAM v6.0 expands on the capabilities of previous versions to include the following 

updates: 1) enhancements to the parallel computing performance of UEDDAM on computing 

clusters with distributed memory architecture and network file systems and 2) incorporation of a 

standalone fault tree tool capable of development, analysis, and file conversion. 
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PREFACE 

 

 

This manual was prepared for the Naval Air Warfare Center Weapons Division under contract 

N68936-17-D-0028, Task Order 0007.  All questions and comments regarding the content 

contained herein may be directed as follows: 

 

SURVICE Engineering Company 

Applied Technology Operation 

ATTN: Mr. Doug Howard 

3538 Aldino Road 

Hangar #6 

Churchville, MD 21028 

410.273.7722 

doug.howard@survice.com 

 

Note:  Throughout the UEDDAM User’s Manual, there are terms used that may be unfamiliar to 

the reader.  In order to provide additional insight and/or background information, some of the 

more important terms are defined in the glossary.  These terms are formatted in bold, italicized 

font in this manual. 
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1 INTRODUCTION 

 

1.1 BACKGROUND 

 

An event resulting in the release of uncontained debris from an aircraft engine can have 

devastating effects on and can potentially result in a catastrophic loss of the aircraft.  The 

Federal Aviation Administration (FAA), under the Aircraft Catastrophic Failure 

Prevention Program, has initiated several activities to address the uncontained engine 

debris problem.  For one of these activities, the Naval Air Warfare Center Weapons 

Division (NAWC-WD) Survivability Division, Code 418000D, was tasked by the FAA 

to characterize the uncontained engine debris and develop an uncontained engine debris 

analysis tool.  Accordingly, the SURVICE Engineering Company, under the direction of 

NAWC-WD, was tasked to develop and code this tool, named the Uncontained Engine 

Debris Damage Assessment Model (UEDDAM).  This tool assesses the effects of 

uncontained engine debris on the aircraft and is useful for aircraft design, assessment, and 

certification.  It models multiple disk segment, large fragment, and small fragment debris 

trajectories and their end effects on the aircraft system. 

 

The process of the UEDDAM development was divided into three phases.  Phase I 

emphasized the collection of data, the definition of the problems, and the selection of 

existing computer codes to solve the problems [1].  Under Phase I, the selected computer 

codes (FASTGEN [FAST shotline GENerator] and COVART [Computation Of 

Vulnerable ARea Tool]) were modified to address issues specific to uncontained engine 

debris damage assessments.  The modified tools were named FASTGEN 3.2 DB (Disk 

Burst) and COVART 4.1 DB [2, 3].  Phase I was completed in FY97.  Phase II’s 

emphasis was on applying the data gathered and tools developed during Phase I to 

representative airframes, assessing the tools’ adequacy in addressing the problem, and 

determining any changes necessary to improve the tools [4].  Phase II, which included 

McDonnell Douglas and Boeing – Seattle testing of UEDDAM and feedback for 

UEDDAM improvements, was completed in FY98.  Phase III’s goal was to integrate the 

feedback from Phase II into tool improvements and to produce a releasable version of the 

tools.  Under Phase III, the newest version of FASTGEN (Version 5 Alpha) without 

modifications was used in UEDDAM.  Additionally, COVART’s external bursting 

algorithm was used to minimize modifications required to COVART.  Phase III was 

initiated in FY99 and completed at the end of CY99 resulting in UEDDAM v1.0. 

 

Once developed, the SURVICE Engineering Company and NAWC-WD undertook a 

study using UEDDAM to assess the probability of catastrophic hazard for generic 

aircraft for various uncontained engine debris events.  During the course of this study, 

improvements to UEDDAM were made and the sample cases were updated resulting in 

UEDDAM v1.1 and, subsequently v1.2.  Based on the lessons learned from two generic 

aircraft studies, which included a generic twin-engine commercial aircraft and a generic 

business jet [5], additional updates were made to the UEDDAM code resulting in 

UEDDAM v2.0.  As Aviation Rulemaking Advisory Committee (ARAC) participants use 

the tool in their analyses, feedback regarding the intended function and requests for 

changes are constantly reviewed for use in the next phases of development.  For example, 

industry input indicated a need for an intermediate step between the failure analyses 
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commercial manufacturers do as part of their reliability and system safety assessments 

and the failure analysis trees required as input into UEDDAM.  Accordingly, as part of 

UEDDAM v3.0 development efforts, an optional input file, LOGIC FILE, and the code 

required to convert it to a format suitable for COVART was implemented.  Additionally, 

the ability to obtain hole size statistics from a UEDDAM analysis was implemented in 

UEDDAM v3.0 based on an industry-identified need for data that could support 

decompression analyses.  Another example of industry involvement in UEDDAM 

development is the 2008 effort to include a FASTGEN conversion tool that could be used 

from within Patran® (a CAE modeling and pre-/post-processing software).  As it is 

common for airframe manufacturers to have a finite element model (FEM) of their 

aircraft to support structural analyses, a conversion utility for Patran models makes 

building the geometric model for a UEDDAM analysis simpler (at least for structural 

components).  Finally, several other pre/post processing tools (e.g., Analysis_Tool, 

FTDT, Run_Setup, mac, and stl2fast4) have been developed over the years as the need 

arose.   

 

This user’s guide documents the input requirements, usage, and outputs of UEDDAM 

v6.0 and its associated tools and utilities. 

 

 

1.2 PURPOSE 

 

This guide not only defines the file requirements and outlines UEDDAM methodology, 

but also acts as a tutorial, illustrating step-by-step how to perform an aircraft engine rotor 

burst analysis with UEDDAM – from establishing the analysis objectives and performing 

a criticality analysis to executing the program and post processing the results.  Excerpts 

from the documentation for COVART6 [6, 7] are provided in the appendices to support 

construction of the geometric target description and other required input files that are not 

generated by UEDDAM.  Additionally, sample cases are provided for the user to verify 

that the program is working correctly and serve as examples for developing new 

assessments. 
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2 MODEL OVERVIEW 

 

2.1 UEDDAM ANALYSIS PROCESS 

 

As laid out in the Advisory Circular (AC) 20-128A User’s Manual [8], there are five 

steps in performing a complete safety and risk analysis of an aircraft.  These steps are 

summarized as follows: 

1. Establish (at the design definition) the functional hazards that can arise. 

2. Establish a functional hazard tree. 

3. Establish the aircraft geometry, fragment trajectories, and trajectory ranges 

both for translational and spread risk angles  (see Figures 2-2 and 2-3) for 

each damage.   

4. Apply risk factors, such as phase of flight, and calculate the risk for each 

threat (i.e., hazardous combination as per the functional hazard tree) for each 

rotor stage. 

5. Tabulate, summarize, and average all cases. 

 

UEDDAM, in conjunction with its post processors, helps perform steps 3 thru 5 listed 

above, thereby reducing the workload of the analyst.  Note also that because 14 CFR 

(Code of Federal Regulations) 25.903(d) requires that the hazard from an uncontained 

engine debris release be minimized, this process (specifically steps 3 thru 5) can and 

should be iterated upon during the design phase (e.g., different configurations of critical 

systems can be assessed and compared so that those configurations that perform best 

when faced with an uncontained debris release can be identified for the final design). 

 

The particular process used to perform a UEDDAM safety and risk assessment of an 

aircraft can be seen in Figure 2-1.  Note the correspondence to the AC 20-128A process 

steps, 1 through 5.  One of the purposes of this manual is to guide a user through this 

process.  Thus, periodically throughout this user’s manual, Figure 2-1 will be referenced 

in order to highlight the current location in the UEDDAM analysis process. 
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Figure 2-1.  UEDDAM Analysis Process. 

 

 

The first step in performing a UEDDAM analysis is to establish the analysis objectives 

(i.e., the particular flight phase(s) of interest, the functional hazard(s) , and the debris 

category(ies) to be assessed).  Second, and most important, is to perform a system flight 

phase criticality analysis thru the use of a DMEA (Damage Modes and Effects Analysis) 

and associated hazard trees.  The purpose of this step is to identify critical systems and 

components as well as their redundancies and damage modes.  Next, using the 

information developed in the second step, define the aircraft geometry, making sure not 

only to include components of critical systems, but major structural components as well 

as those components that provide significant shielding.  The next step involves input file 

generation – specifically, construction of a geometric model and other necessary 

UEDDAM input files based on the specifications laid out in the first three steps.  The 

fifth step is to verify the input files by performing a “simple” UEDDAM run and 

observing the results.  (Selecting a narrow release angle where the tangent impacts the 

fuselage can provide the most insight.)  Once the input files have been verified, all that 

remains is to execute UEDDAM, post process the output data, and analyze the results. 

 

Each of the aforementioned steps will be discussed, in detail, in the context of this user’s 

guide. 
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2.2 GENERAL DESCRIPTION 

 

The main UEDDAM program is written in the C++ programming language and performs 

file input and output control, data checking, run control of the COVART6 program, and 

hazard level result summation and averaging.  Inputs define the aircraft geometry, debris 

characterizations, Monte-Carlo iteration control, and hazard level(s).  Outputs may be 

generated for each engine disk in summary format, for each critical component 

contribution per Monte-Carlo iteration, or as a tabulation of risk angles for each critical 

component per disk. 

 

The purpose of running FASTGEN* is to develop line-of-sight (LOS)  data for use in the 

subsequent analysis model, COVART.  The LOS data consists of the following specific 

vehicle component data:  1) identification number, 2) impact coordinate location,  

3) thickness, and 4) impact obliquity angle.  These data are calculated from a three-

dimensional geometric description along one or more straight-line paths (shotlines)  

defined by a set of input controls.  These shotlines are generated for each release origin 

defined by the user in the UEDDAM input file. 

 

UEDDAM models multiple disk segment, large fragment, and small fragment debris 

effects on an aircraft system.  Debris types may be assessed independently or together as 

a single evaluation of the hazard for specified debris release events (called debris 

categories).  COVART performs penetration assessment for the disk debris 

characterizations, considering component criticality and redundancy, and summarizes the 

component contribution to aircraft hazard level for a given release origin.  The results 

from COVART are accumulated by UEDDAM for multiple iterations of fragment 

trajectories from a release origin, multiple release origins about the circumference of the 

rotor disk, multiple rotor assemblies, and multiple engines. 

 

 

2.3 UEDDAM METRICS 

 

UEDDAM provides the analyst with a probability of hazard (PHAZ), which is defined as 

the probability of an event causing sufficient damage to result in a predefined hazard 

level (e.g., catastrophic damage) to the aircraft.  Not only is the user provided with a total 

system level PHAZ, but additionally, UEDDAM calculates Phaz for the various components 

to illustrate their contributions to PHAZ. 

 

In addition to the shotline-based hazard level assessment, the existing manual method 

defined in AC 20-128A is automated within UEDDAM to provide translational risk 

 
* With the release of COVART Version 6.0, FASTGEN and COVART were integrated into a single model, 

known simply as COVART6.  In order to remain backwards compatible, however, COVART6 allows the 

user to execute the model in one of three different modes:  FASTGEN5 Legacy Mode, COVART5 Legacy 

Mode, and COVART6 Integrated Mode.  Whereas UEDDAM Version 3.1 made use of the FASTGEN and 

COVART legacy mode options, UEDDAM Version 4.0 and later versions make use of the Integrated Mode 

option.  However, to distinguish the shotlining portion of COVART6 from the penetration and hazard level 

computation portions, throughout this manual, the statements “running FASTGEN” and “running 

COVART”, respectively, are still used. 



 

6 

angles, spread risk angles, and probability of hit ratios.  In the manual assessment, the 

large disk segment (typically 1/3 disk including 1/3 blade height) cuts a rectangular swath 

along its release trajectory tangent to the engine rotation at the point of separation.  Since 

the segment is also rotating about its own center of mass after separation, the height of 

the swath is thus equal to twice the greatest radius measured from the segment center of 

mass (see Figure 2-2).  (Note that UEDDAM approximates the swath by doubling the 

greatest radius measured from the segment centroid.)  For each aircraft critical 

component, the initial and final engine rotation angles that cause the swath to intercept 

the component are determined (see Figure 2-3).  The ratio of the angle between the 

release trajectories bounding an aircraft component (called the translational risk angle) to 

360 degrees subsequently represents the probability of that component being struck by 

the separating disk segment (Ph(t)).  Detailed presentation of the manual method is 

provided in the AC 20-128A.   

 

In addition to the translational risk angles (TRA) , the UEDDAM output table includes 

spread risk angles (SRA) , illustrated in Figure 2-3, as well as the resulting probability of 

hit (Ph) values.  The final Ph value for each component is computed as the product of the 

Ph(t) for translational angles multiplied by the Ph(s) for the spread angles: 
 

𝑃ℎ = 𝑃ℎ(𝑡) × 𝑃ℎ(𝑠), 
 

where Ph(s) is defined similarly to Ph(t) (i.e., the ratio of the SRA to the difference between 

the fore and aft spread limits). 

 

 
Figure 2-2.  Typical Trajectory Plotting [8]. 
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Figure 2-3.  Definition – Threat Window [8]. 
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3 UEDDAM FEATURES AND METHODOLOGY 

 

3.1 UEDDAM PROGRAM FLOW 

 

The following paragraphs outline the general process followed by UEDDAM during an 

assessment run.  Note that it is the user-created control file (see Section 5.3.1) that guides 

the UEDDAM code through the following tasks.  Program data structures within 

UEDDAM are dynamically allocated wherever possible.  Intermediate files are used as 

necessary during execution and deleted when no longer required.  Figure 3-1 illustrates 

the generalized UEDDAM program flow.  

 

 

3.1.1 Load UEDDAM Control Data 

 

A UEDDAM run session is initiated by executing the “ueddam.exe” code located in the 

“bin” directory.  A control file is required for the execution of UEDDAM.  The name of 

the control file may be specified on the command line or omitted.  If the name of the 

control file is omitted on the command line, then UEDDAM will look for the control data 

file named “UEDDAM_Control” in the working directory.  The control file defines 

parameters and identifies external support files containing the required data for the 

session. 

 

 

3.1.1.1 Initialize Structures and Variables 

 

UEDDAM sets the default parameters, clears error flags, and creates data structure 

templates.  This prepares UEDDAM for reading the input files and loading data into 

dynamically allocated memory for processing. 

 

 

3.1.1.2 Read Input Controls and Data 

 

Most input controls and data may be entered in an order convenient to the analyst.  

UEDDAM reads all input data and loads its internal structures prior to processing any 

rotor burst events.  In addition to reading in the input controls and data, it is during this 

step that a fault tree file containing logic statements (if specified in the UEDDAM control 

file) is converted to a COVART6 MV file by a call to the executable mkwgtf.exe.  Refer 

to the input formats (Section 5) for requirements and limitations specific to each input 

record.   

 

 

3.1.1.3 Verify Control and Input Data Completeness 

 

At completion of input loading, UEDDAM verifies that required inputs for a UEDDAM 

run have been entered.  It also performs basic checks that valid inputs have been entered 

within limits specified for the given record.  If errors are found in the input deck, they are 

reported to the error log file specified in the control file, or, if none is specified, to the 
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command window (albeit in less detail).  If fatal errors are found, UEDDAM will 

terminate the run. 

 

 

3.1.1.4 Estimate Resource Usage 

 

Upon successful input verification (and if not disabled by the user), UEDDAM will 

provide a very rough estimate of the run time and disk space needed to perform the run as 

defined by the input files.  The user will then be given the option to terminate or continue 

with the run based on these estimates. 

 

 

3.1.1.5 Generate Static COVART Support Files 

 

The COVART6 HEAD and THREAT files are constant data sets based upon the current 

session parameters.  To avoid looping delays caused by rewriting constant data, these 

files are created prior to entering the main event loop. 

 

 

3.1.2 Remove Engine Near-Field Components from Target Geometry File 

 

Near-Field components are considered to be non-shielding components adjacent and/or 

internal to the engine.  Debris characterizations currently consider these components to 

be part of the debris being released from a rotor burst event and therefore must not be 

considered as part of the remaining aircraft.  UEDDAM removes these components from 

the analysis to eliminate errors in debris penetration predictions.  However, it is important 

to note that if a critical component is included in the near-field list for a target geometry, 

it must also be included in the auto-fail list (see Section 3.1.3) so that its failure is 

appropriately accounted for in the overall hazard of the aircraft. 

 

 

3.1.3 Generate Engine/Event-Dependent COVART Support Files 

 

One role of the COVART6 MASTER file is to reference data source files for a COVART 

run.  For a given event, the records associated with the COVART run within this file are 

constant and are created outside the release point and iteration loops to improve loop 

timing efficiency.   

 

Engine-mounted components fail when the respective engine is lost.  Even though these 

components are not necessarily damaged, they must still be counted as no longer 

functioning when evaluating component redundancy in the aircraft fault tree.  To 

accomplish this, UEDDAM modifies the master COVART6 JTYPE file to include 

automatic failure components by engine reference.   
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The JTYPE is additionally modified to include a list of components for which a hole size 

output is requested as well as entries for material types to be considered in the analysis.  

These records are added to the end of the new JTYPE file for passing to COVART6. 

 

 

3.1.4 Determine Translational and Spread Intercept Angles 

 

These boundaries provide spread and translational angular limits for the target geometry 

components relative to each burst disk center and orientation.  Intercept angle limits 

provide the ability to reduce target geometry file size and compute probabilities of hit for 

comparison with the manual procedure discussed in Reference 8. 

 

 

3.1.5 Perform Geometric Reduction 

 

If specified by the user in the UEDDAM control file, a reduced CBULK target geometry 

file is created for COVART6 processing.  (Note that the original geometry file remains 

unchanged.)  UEDDAM uses the disk debris characterizations, component intercept angle 

limits, and event release point controls to determine which components lie within the 

possible debris trajectories.  The reduced geometry file contains only those components 

that could possibly be hit by debris.  This minimizes the number of components that 

COVART6 must process within each iteration.  Additionally, UEDDAM interrogates the 

fault tree to determine if any combination of failures of the remaining components could 

result in any of the defined hazard levels.  If none of the remaining components meet this 

criterion then no FASTGEN or COVART runs are required and the execution skips to 

Section 3.1.8, reporting a PHAZ of 0.0 for that release point (see Section 5.3.1.4 for 

additional information). 

 

 

3.1.6 Generate CBULK and MASTER Files and Run COVART6 

 

Outside of the iteration loop, the release-dependent CBULK target geometry file is 

converted to binary format in order to decrease disk space requirements and reduce 

processing time.   

 

All of the fragments and disk segments for a given event iteration are represented as 

divergent rays (or shotlines)  in UEDDAM.  Shotlines are specified in the UEDDAM-

generated MASTER file as a combination of UDASPECT and UDAIM records.  It is 

during generation of the iteration-dependent MASTER file that UEDDAM performs 

hypersampling of the target geometry, if specified in the UEDDAM control file.  

Hypersampling allows for the generation of specific shotlines (in addition to those 

comprising the debris swath bundle) used to make sure that the swath does not 

inadvertently miss “small” components in the geometry (see Section 5.3.1.5 for 

additional information).   
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The COVART6 program executes externally to UEDDAM and processes the iteration-

dependent MASTER and release-dependent CBULK files.  If the user specifies in the 

UEDDAM control file that he or she is executing on a multi-processor machine and 

wishes to take advantage of this capability, UEDDAM will divide the COVART6 runs 

among the number of processors specified (see Section 5.3.1.6 for additional 

information). 

 

Output files are read by UEDDAM for summation and averaging by release point and 

rotor burst event.   

 

 

3.1.7 Perform Monte-Carlo Analysis 

 

For each release point specified by the user, random number draws are made within the 

user-defined rotational release point variance, fore/aft spread angle, and fragment 

orientation limits.  When the number of iterations in the corresponding EVENT record is 

greater than 1, each release point is repeated with new random number draws for each 

iteration prior to processing the next release point.  The steps discussed in Section 3.1.6 

are repeated within the multiple-iteration loop.  When the detailed output file is specified, 

component probability-of-hazard, Phaz, values are printed for each iteration. 

 

 

3.1.8 Intermediate-Process Hazard Level Results 

 

Component Phaz is averaged over all iterations for each release point.  When the detailed 

output file (DETAIL FILE) is specified, these average component Phaz values for each 

release point are appended to the data discussed in Section 3.1.7.  When the hazard 

summary output (SUMMARY FILE) is specified, the system (total aircraft, not 

component) average PHAZ is printed to the main summary output file for each release 

point.   

 

In addition to hazard probabilities, when the hole size output file (HOLESIZE FILE) is 

specified, UEDDAM calculates hole size statistics for each group defined in the hole size 

group input file.  For each release point, minimum, maximum, and average cumulative 

hole sizes are recorded for all groups.  Additionally, for each release point, UEDDAM 

prints the average number of fragment impacts and the average number of fragment 

penetrations for each group to the HOLESIZE FILE.   

 

Finally, when any one of the significant iteration output files (SIGITSYS FILE, 

SIGITCRIT FILE, SIGITCHOLE FILE, or SIGITSHOLE FILE) is specified, UEDDAM 

records the iteration number and value (aircraft PHAZ, cumulative or single hole size, or 

number of critical components hit) that meets/exceeds the criterion specified in the 

UEDDAM control data file.   
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3.1.9 Repeat Process for Each Nominal Release Point of a Disk Stage 

 

For each nominal release point, the steps defined in Sections 3.1.4 through 3.1.8 will be 

repeated. 

 

 

3.1.10 Final-Process Hazard Level Results 

 

Component Phaz is averaged over all release points for each event.  When the hits 

summary output (HITSUM FILE) is specified, these average component Phaz values are 

printed for each release point to the HITSUM FILE.  For the hazard summary output, 

system (total aircraft, not component) average PHAZ is appended to the SUMMARY FILE 

for each event. 

 

 

3.1.11 Repeat Process for Each Disk Event of an Engine 

 

For each disk stage within an engine (event), the steps discussed in Sections 3.1.3 

through 3.1.10 will be repeated. 

 

 

3.1.12 Repeat Process for Each Engine 

 

For each engine, the steps described in Sections 3.1.2 through 3.1.11 will be repeated. 
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Figure 3-1.  Generalized UEDDAM Program Flow (Page 1 of 5). 
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Figure 3-1.  Generalized UEDDAM Program Flow (Page 2 of 5). 
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Figure 3-1.  Generalized UEDDAM Program Flow (Page 3 of 5). 
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Figure 3-1.  Generalized UEDDAM Program Flow (Page 4 of 5). 
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Figure 3-1.  Generalized UEDDAM Program Flow (Page 5 of 5). 

 

 

3.2 DEBRIS TYPE ANALYSIS METHODS 

 

In accordance with the AC20-128A, three types of rotor burst debris are considered 

within UEDDAM: 
 

1. Disk segments 

2. Large fragments 

3. Small fragments 

 

Any of these fragments can be generated when an uncontained engine failure occurs and 

it is understood that not all fragments are liberated in every service failure.  However, as 

the regulations require minimization, the worst case event must be considered for each 

engine and rotor stage on the aircraft.  For some stages, this may require a multiple 

fragment analysis, in which more than one fragment (potentially of type 1, 2, and/or 3) is 

released simultaneously.  It is this specific type of analysis (one that was of importance to 

the ARAC PowerPlant Installation Harmonization Working Group [PPIHWG]) that 

drove the development of UEDDAM. 
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3.2.1 Disk Segment Debris Type 

 

The disk segment debris type represents the separation of a large section of disk as a 

single intact segment from the rotor assembly.  The trajectory is primarily in the rotor’s 

plane of revolution but UEDDAM allows for fore or aft deviations from this plane (i.e., 

spread angle) .  UEDDAM can also consider multiple segment releases (i.e., tri-hub rotor 

burst) through user-defined offsets defining the lead/lag angle of subsequent segments 

from the first segment release trajectory.  For each segment released, a parallel grid of 

shotlines is generated to represent the swath cut by the respective segment (see  

Figure 3-2).  Since the disk segment is rotating about its center of mass along the swath, 

the shotlines that represent the outer limits of the swath potentially have different 

penetration characteristics than the shotlines located near the center.  For this reason, 

UEDDAM permits the user to apply a mass weighting factor to shotlines within each grid 

as a function of the distance from the segment center of mass (see Section 5.3.2.4). 

 

 
Figure 3-2.  Debris Segment Swath Gridding. 

 

 

UEDDAM processes multiple iterations and release points with random number draws 

from the fore/aft spread angle and rotational release point variance.  Output options 

permit the printing of individual iteration results and/or an average over all iterations for 

each hazard level for each disk event. 

 

 

3.2.2 Large Fragment Debris Type 

 

Fragment debris is characterized as either large fragments or small fragments (fragment 

size is relative to the size of the engine and aircraft components – see Section 5.3.2.5).  

For the large fragments (i.e., fan blades, first stage fan blade fragments, etc.), a single 

shotline trajectory is inadequate to represent the impact presented area of the fragment.  

In this mode, a grid of parallel shotlines is generated to portray the impacting area of each 

large fragment on the aircraft.  User-defined mass distribution factors may be applied to 

the shotline grid as discussed for the segment debris.  Dimensions of the shotline grid are 

based upon the orientation data of each fragment.  For Monte-Carlo runs, release 

trajectories from multiple large fragments vary in both spread angle and translational 

release angle about a release point.  Fragment orientation is also variable in the Monte-

Carlo runs. 

Segment Centroid 

Disk Centroid 

1/3 Blade Radius 

Disk Radius 

Blade Radius 
Locus of Segment 

Centroids (Release Radius) 

Swath 
Trajectory 

Bundled Grid 
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3.2.3 Small Fragment Debris Type 

 

Small fragments represent the remaining disk and blade fragments and other 

miscellaneous debris exiting the engine case.  For this debris (i.e., compressor and turbine 

blade fragments), individual shotlines are adequate to represent each fragment presented 

area impact on the aircraft.  Each release trajectory is randomly drawn from user-defined 

spread angle limits and translational angle variances about a release point. 

 

 

3.3 NEAR-FIELD FEATURE 

 

The geometric model of an aircraft typically contains detailed internal and external 

engine components.  Since debris trajectories for a UEDDAM analysis initiate inside the 

engine case but engine debris characterization data is often measured external to the 

engine (i.e., the debris slowdown in penetrating the engine has already been taken into 

account), the near-field feature in UEDDAM eliminates these internal components 

(identified in the near-field input file [NEARFIELD FILE]) from the geometric model so 

that the trajectory data remains valid.  For example, all components within and including 

the engine casings (those components shown in red in the simplified engine model in 

Figure 3-3) might be listed in the NEARFIELD FILE for a UEDDAM run on this 

aircraft.  However, the components external to the engine (those components shown in 

blue in Figure 3-3) might be excluded from the NEARFIELD FILE.  Note that depending 

on the engine debris characterization data, all components included within the engine 

nacelle itself may need to be included in the NEARFIELD FILE.   

 

 
Figure 3-3.  Generic Engine Near-Field Example. 

 

 

3.4 GEOMETRY REDUCTION AND FAULT TREE INTERROGATOR 

 

Due to the Monte-Carlo analysis that is performed for every release angle, FASTGEN 

run times can become excessive.  In order to minimize the number of components that 

COVART6 must process within each iteration, UEDDAM, as a first cut, searches 

Near-Field Components

Components Excluded 

from Near-Field

Near-Field Components

Components Excluded 

from Near-Field
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through the geometric model and selects only those components that lie within the 

rotational release and fore/aft spread variances.  (Note that UEDDAM not only considers 

critical components, but all components within the hazard zone so that shielding is 

unaffected.)  UEDDAM then checks to see if failure of any of the remaining components 

can possibly lead to an aircraft hazard.  If no combination of the selected component 

failures can result in a hazardous event, UEDDAM skips the execution of COVART6 and 

assigns a probability of hazard of 0.00 for that release.  As an example, Figure 3-4 shows 

the geometric reduction process and resulting simplified geometry for a generic business 

jet.  All components highlighted in red in the second picture lie within the hazard zone  

(visually represented as a transparent gray pyramid) for that particular release point.  

Note that for this particular engine event and release, COVART6 would have to be run in 

order to generate a probability of hazard, but the number of components it would have to 

process would be greatly reduced.  For example, the pressure bulkhead (shown as a gray 

disk in the first two images of Figure 3-4) is removed from the final geometry due to its 

location forward of the debris zone. 

 

 
 

Figure 3-4.  UEDDAM Geometry Reduction Example. 
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3.5 MONTE-CARLO DEBRIS CHARACTERISTICS 

 

To obtain more informative results, UEDDAM has the capability to average Phaz over 

multiple iterations in which debris trajectories are randomly released within user input 

fore/aft and rotation spread angle limits.  The value for the rotational release angle is 

drawn from a uniform distribution (as prescribed by the AC 20-128A), whereas the 

distribution from which to draw the fore/aft release angle is an option to the user 

(uniform, normal, or skewed†, with uniform being the default) and can be used to more 

accurately represent the likelihood of debris trajectories within the fore/aft angle limits.  

Figure 3-5 shows an example of the three available distributions applied to a generic 

twin-engine aircraft.  The red lines in the pictures on the left indicate the small fragment 

trajectories (released from the High Bypass Ratio Engine number 1 fan at an angle of 0o) 

for five iterations.  The fore and aft angle limits used were 15o and -30o, respectively. 

 

 
Figure 3-5.  Generic Twin Engine Aircraft Monte-Carlo Example. 

 

 

 

 

 
†  Note that the skewed distribution can be skewed either fore or aft.  The particular distribution depicted in 

Figure 3-5 is skewed aft. 
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3.6 AUTO-FAIL FEATURE 

 

Given an uncontained engine failure, the engine from which the debris was released as 

well as all components and systems driven by that engine will no longer be operational.  

In order to correctly interpret the fault tree within the model, then, it is necessary to make 

sure that these components are failed in conjunction with the engine itself even if they are 

not physically damaged by the debris release.  UEDDAM accomplishes this through the 

use of the auto-fail input file (AUTOFAIL FILE).  UEDDAM reads the input file, 

determines which components are associated with the particular engine undergoing the 

uncontained failure, and adds the appropriate AUTOFAIL records to the end of the 

COVART6 JTYPE file.  These records indicate to COVART that the individual 

components should be assigned a Phaz of 1.0 at all applicable hazard levels whether or not 

they appear on any debris shotlines.  As an example, consider the engine-driven hydraulic 

pump (highlighted red in Figure 3-6) along with the associated portion of the fault tree  

(set to a damaged state).  For an uncontained failure of this engine, the engine-driven 

hydraulic pump (Hyd. Pump #1), if included in the AUTOFAIL FILE for this engine, 

would be automatically failed by UEDDAM; thus, if the uncontained engine debris 

managed to defeat Hyd. Pump #2, this branch of the fault tree would be defeated. 

 

 
 

Figure 3-6.  Generic Engine Auto-Fail Example. 

 

 

3.7 PENETRATION EQUATIONS 

 

The current UEDDAM penetration equations are based on those used by the military and 

civilian vulnerability communities, the goal being to rapidly estimate the residual velocity 

of various engine blade and disk debris into aircraft structures.  The first is the V50 

equation, which is originally derived from an energy absorption equation taken from the 

1977 FAA document RD-77-44 [9].  The FAA V50 equation, coded for UEDDAM 

versions 4.0 and earlier, is given by 
 

𝑉50 = √
2LC𝑠𝑡2

mcos2𝜃
. 
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Table 3-1.  List of Parameters Used in V50 Equation 

Symbol Definition Units 

L Debris presented area perimeter meters 

Cs Plate shear constant [10] Pascals 

t Plate thickness meters 

m Debris mass kilograms 

 Obliquity angle degrees 

 

 

Note that the debris presented area perimeter, L, can be calculated as  
 

𝐿 = 2[𝜆cos(𝛿) + 𝜏sin(𝛿)] + 2𝜔, (see Figure 3-7). 

 

 
Figure 3-7.  Description of Fragment Parameters. 

 

 

V50, defined as the velocity at which half the fragments will perforate the target, is treated 

as the ballistic limit velocity (i.e., the velocity at which a fragment has zero energy after 

penetrating a target).  This equation supports the conservative assumption that the normal 

component of the impact velocity is the only contributor to the kinetic energy required for 

penetration of the material.   

 

With the development of UEDDAM v4.1, however, and in light of more recent studies 

into the penetration of launch and reentry debris by the FAA [11], the overly conservative 

normal component assumption in the FAA V50 equation has been removed in favor of the 

inclusion of an adjustment factor, gamma (γ).  This new equation, 
 

𝑉50 = √
2LC𝑠𝑡2

mcos2γ𝜃
, 

 

indicates that more than just the normal component of the impact velocity contributes to 

the kinetic energy required to penetrate the impacted material (note that a value of γ=1 

returns the updated V50 equation to its original form).  In the case of launch and reentry 

debris, analysis indicates that the optimized γ value of 0.707 is the least conservative 

value required to ensure the modified V50 equation is conservative when compared to a 

limited test data set.  However, in order to provide flexibility, the user is requested to 
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supply values of γ (0 ≤ γ ≤ 1) for five obliquity angle bins, empirically derived based on 

examination of non-ideal projectile and compact fragment impact data provided in 

References 12 and 13: 0°–30°, 30°–45°, 45°–60°, 60°–75°, and 75°–90° (see Section 

5.3.1.8 for the control file inputs).   

 

With the development of UEDDAM v4.3, an additional modification has been made to 

the FAA V50 equation.  In addition to the adjustment factor gamma (γ), the equation now 

also considers two values for the shear constant Cs in order to better represent the 

shielding capabilities of materials.  The two values of Cs are referred to as Cs_50 and Cs_0.  

The Cs_50 value is the standard, conservative Cs that has been used in all previous 

versions of UEDDAM and that is provided in the standard material file.  The accepted 

Cs_50 values have shown good correlation in testing for those cases where fragments 

demonstrate moderate to high residual velocities.  For those cases where fragments 

impact at or below the ballistic limit velocity of the material, however, a second, higher 

coefficient is warranted.  The Cs_0 value is a larger Cs calculated by extrapolating 

penetration test data in a different manner. 

 

UEDDAM uses the two values of Cs to calculate the V50 by following the subsequent 

steps: 

1. Calculate V50 using the Cs_0 value 

𝑉50 = √
2LCs_0𝑡2

mcos2γ𝜃
. 

2. Compare the calculated V50 to the impact velocity of the debris. 

a. If the impact velocity is less than the calculated V50, the debris is assumed 

to have been stopped (i.e., residual velocity equals 0). 

b. If the impact velocity is greater than the calculated V50, an updated V50 is 

computed using Cs_50 

𝑉50 = √
2LCs_50𝑡

2

mcos2γ𝜃
. 

 

The updated FAA V50 equation is treated as the ballistic limit velocity in the second 

equation, the residual velocity (Vr) penetration equation: 
 

𝑉𝑟 =
√𝑉2−𝑉50

2

1.0+
ρA𝑝𝑡

Wcosθ

. 

 

This physics-based equation with empirical constants originates from a declassified 

program, called Project Thor run at the Johns Hopkins Ballistic Analysis Laboratory in 

1961.  The empirical constants allow for the equation’s use with non-traditional 

impactors (e.g., fan blade fragments, disk segments, etc.).   
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Table 3-2.  List of Parameters Used in Residual Velocity Equation 

Symbol Definition Units 

V Debris impacting velocity meters per second 

 Target density grains per cubic meter 

Ap Debris presented area square meters 

t Plate thickness meters 

W Debris weight grains 

 Obliquity angle degrees 

 

 

Note that the presented area of the fragment, Ap, can be calculated as  
 

𝐴𝑝 = 𝜛[𝜆 𝑐𝑜𝑠(𝛿) + 𝜏 𝑠𝑖𝑛(𝛿)], (see Figure 3-7). 

 

The methodology used in UEDDAM is supported by four impact test series 

(encompassing 227 test shots) conducted at the Naval Air Warfare Center, China Lake 

[10, 14, 15, 16]. 

 

 

3.8 HOLE SIZE CALCULATIONS 

 

Given an uncontained engine failure, another metric that could potentially be of interest 

to the user is the cumulative hole size made in a group of components by a particular 

debris release.  This feature was incorporated to support decompression analysis in 

accordance with 14 CFR 25.841 with the area and locations of holes predicted by the 

rotor burst analysis.  If a manufacturer can anticipate that a rotor disk burst event could 

potentially result in a decompression scenario, mitigation steps can be taken early on in 

the design process to strengthen or protect those areas of the fuselage subject to concern 

or the flight envelope can be modified accordingly as required for occupant safety.  Note 

that for hole size calculations during decompression analysis, the historical debris model 

(see section 5.3.2.5) is the preferred defined threat; all fragments in a rotor stage failure 

case should be included in the analysis to get a realistic hole size. 

 

To this end, UEDDAM can generate cumulative hole size statistics for specific 

component groupings if requested.  UEDDAM accomplishes this task by modifying the 

COVART6 JTYPE input file to include a list of components for which hole size statistics 

are desired.  These components are passed to COVART6, where hole size calculations 

are performed based on penetration calculations.  After exiting COVART6, UEDDAM 

accumulates the output hole sizes based on the component groupings originally specified 

and writes the appropriate values to the HOLESIZE FILE. 
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4 ANALYSIS OBJECTIVE AND SYSTEM FLIGHT PHASE CRITICALITY 
ANALYSIS 

 

 
Figure 4-1.  Current Location in the UEDDAM Analysis Process:  Analysis 

Objective and Criticality Analysis. 

 

 

4.1 ESTABLISH OBJECTIVE 

 

The first step in performing a UEDDAM analysis of a particular aircraft is to establish 

the analysis objective, which will vary depending on the goal of the assessment.  This 

consists not only of determining the particular flight phase(s) and functional hazard(s)  of 

interest, but also establishing the necessary debris characteristics under consideration.   

 

UEDDAM inputs allow for a wide variety of possible assessments.  The one most 

commonly employed is evaluating an aircraft for a single functional hazard over multiple 

flight phases.  As an example of this type of assessment, consider analyzing an aircraft’s 

risk for catastrophic failure (i.e., damage and failures resulting in major structural failure 

of the aircraft, loss of control, or the potential for major loss of life).  In this case, the  

AC 20-128A identifies seven‡ flight phases (see Table 4-1), each assigned a specific 

phase failure distribution (Dp).  Based on an average of all non-containments occurring in 

the US and UK, spanning the years 1966–1976, the Dp values in Table 4-1 are the 

industry-accepted standards for the percentage of engine failures occurring within each 

flight phase. 

 

 

 

 
‡ With the update to COVART6, UEDDAM is now able to accept up to 15 different flight phases in a 

single analysis. 
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Table 4-1.  Flight Phases Identified in AC 20-128A 

 

Flight 

Phase 

 

Phase  

Identification 

Phase 

Failure 

Distribution 

(Dp) 

1 Take-off before V1 35% 

2 V1 to first power reduction (+30s) 20% 

3 Climb 22% 

4 Cruise 14% 

5 Descent 3% 

6 Approach thru landing 2% 

7 Landing/Reverse 4% 

 

 

As stated previously, another aspect of establishing the objective of a UEDDAM analysis 

is to determine the types and characteristics of the debris to assess.  At this phase in the 

analysis process, it is not necessary to completely describe all characteristics of the debris 

(see Section 5.3.2), but rather to generalize the debris of interest.  For example, consider 

the goal described previously (i.e., analyzing an aircraft’s risk for catastrophic failure).  

With this goal in mind, it might be pertinent to assess the aircraft’s risk against an 

average 1/3 disk segment.  Taking into account that there are multiple engine stages and 

each disk stage has slightly different characteristics (such as material, thickness, 

diameter, rotation speed, etc.), the final debris file for this assessment would consist of no 

more than N different debris descriptions (where N is the number of engine stages).  For 

each engine and each engine section, and thereby each debris description, UEDDAM 

would average the resulting PHAZ values to provide the aircraft’s risk against an average 

1/3 disk segment. 

 

 

4.2 PERFORM CRITICALITY ANALYSIS 

 

The second step in performing a UEDDAM assessment of a particular aircraft is to 

perform a criticality analysis.  This step includes developing a DMEA as well as hazard 

trees to describe the total aircraft system. 

 

 

4.2.1 Damage Modes and Effects Analysis (DMEA) 

 

A DMEA consists of identifying critical components, their function, and the impact of 

their damage-caused failures on the total aircraft system.  Critical components are those 

components that, when defeated either individually or jointly with other components, 

result in the loss of an essential aircraft function.  Both redundant (or multiply vulnerable 

[MV]) and non-redundant (or singly vulnerable [SV]) critical components should be 

considered in a DMEA.  Generally speaking, the following damage modes are typically 

considered: penetration, severance, jamming, cracking, deforming, etc.  Critical 
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components, their failures, and their impacts on the total aircraft system depend on the 

objective established in the first step of the UEDDAM analysis process. 

 

As an example, consider a hydraulic pressure line in a generic twin-engine aircraft, as 

seen in Figure 4-2, highlighted in red.  Its function is to transfer pressurized hydraulic 

fluid from the pumps to hydraulic actuators in the tail.  If uncontained engine debris 

penetrates this line, there is now a leak in hydraulic system one.  Assuming no isolation 

capability along this particular hydraulic line, a leak results in an immediate loss of 

pressure in and eventual loss of hydraulic system one.  Suppose the objective of this 

assessment (as discussed in step one above) is to analyze a generic twin-engine aircraft 

for catastrophic damage from an average 1/3 disk segment during cruise.  Since an 

essential function of the aircraft in cruise is flight control and the loss of hydraulics 

equates to the loss of flight control, the loss of hydraulic system one results in a partial 

loss of hydraulic capability (i.e., a loss of redundancy) and thus a diminished flight 

control capacity. 

 

 
 

Figure 4-2.  Hydraulic Pressure Line in a Generic Twin-Engine Aircraft. 

 

 

Generally, the format for a DMEA is tabular; listing, component by component, the 

component’s function, damage mode, and transient and end effects of the component’s 

damage.  For the particular hydraulic line discussed above, the DMEA entry would be as 

seen in Table 4-2. 
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Table 4-2.  DMEA Entry for Generic Twin-Engine Aircraft Hydraulic Pressure Line 

 

Component 

 

Function 

Damage 

Mode 

Local 

Effects 

Next Higher 

Effects 

End 

Effects 

Hydraulic 

pressure line 

Delivers 

pressurized 

hydraulic fluid 

from the 

pumps to 

actuators in the 

tail; part of 

hydraulic 

system one 

Penetration Leak causes 

loss of 

pressure in 

hydraulic 

system one 

Reduced 

authority in 

associated 

hydraulic 

actuators 

Loss of 

aircraft 

hydraulic 

system 

redundancy 

and 

reduction 

in control 

 

 

4.2.2 Hazard Trees 

 

Hazard trees are visual representations of the critical components and their redundancies.  

An aircraft system is defeated when the tree is completely “cut.”  Since critical 

components and their redundancies can vary between hazard levels and flight phases, 

there can be many different hazard trees depending on the complexity of the analysis. 

 

For example, consider the hydraulic system of a generic twin-engine aircraft, part of 

which was discussed in the preceding section.  The hazard tree for this system is shown 

(along with the geometric representation of the critical components) in Figure 4-3.  By 

defeating the hydraulic pressure line supplying fluid to the tail of the aircraft (part of 

HYDSYS1 in Figure 4-3), only the left-most branch of the tree would be cut.  Hydraulic 

systems two and three would continue to provide enough hydraulic power to support 

flight control of the aircraft.  If, however, the uncontained engine debris not only 

penetrated a pressure line from hydraulic system one, but in addition one from each of the 

remaining systems, the entire tree would be cut, resulting in defeat of the hydraulic 

system and therefore catastrophic damage to the aircraft. 
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Figure 4-3.  Generic Twin-Engine Aircraft Hydraulic System Hazard Tree. 
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5 AIRCRAFT GEOMETRY DEFINITION AND UEDDAM  
INPUT GENERATION 

 

With the analysis objective established and the criticality analysis complete, the next step 

in the UEDDAM analysis process is to develop the various input files for UEDDAM 

execution.  These consist of the following files (with their associated UEDDAM control 

file keyword designators included in parentheses):  a geometric model (TARGET FILE), 

component properties (JTYPE FILE), probabilities of hazard given a hit (PK FILE), 

multiply vulnerable groupings (MV FILE or LOGIC FILE), debris characterizations 

(DEBRIS FILE), near-field components (NEARFIELD FILE), auto-fail components 

(AUTOFAIL FILE), material type definitions (MATERIAL FILE), and hole size 

groupings (HOLEGRP FILE). 

 

 
Figure 5-1.  Current Location in the UEDDAM Analysis Process:  Aircraft Geometry 

Definition and UEDDAM Input Generation. 

 

 

5.1 GEOMETRIC DESCRIPTION (TARGET FILE) 

 

The geometric model created for a UEDDAM analysis is a three-dimensional 

representation of the air vehicle.  The aircraft geometry definition should include not only 

all critical components within the rotor disk debris zone  (as identified in the DMEA 

described in Section 4.2.1), but all shielding and air vehicle surface components as well.  

In the case of the generic twin-engine aircraft, for example, this means in addition to all 

flight control, propulsion, fuel, and structural elements identified in the DMEA, the 

fuselage and wing skin, engine nacelles and pylons, and floor structure have to be 

modeled as well. 
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5.1.1 FASTGEN Overview 

 

The particular geometry format used by UEDDAM is FASTGEN, a format structured 

around NASTRAN.  Detailed descriptions of all the necessary inputs for FASTGEN can 

be found in Appendix B.  The general structure of the geometric description is shown in 

Figure 5-2.   

 

 
 

Figure 5-2.  FASTGEN Geometric Description Structure. 

 

 

Building a model begins by defining components (e.g., hydraulic pump, engine fan blade, 

trailing edge spar, etc.).  Components are given an identification number between 1 and 

999 and a mode (either plate mode, represented by a 1, or volume mode, represented by a 

2).  They are composed of numbered geometric primitives (or elements), which define 

the surfaces of complex geometric shapes (see Table 5-1).  The primitives, in turn, are 

defined by numbered grid points, which locate points in three-dimensional space.  The 

FASTGEN coordinate system is illustrated in Figure 5-3.   

 

Table 5-1.  Available FASTGEN Primitives 

FASTGEN Keyword Description of Primitive 

CTRI Triangular facet 

CQUAD Quadrilateral facet 

CLINE Line (rod) 

CCONE1 Thin-wall cone/cylinder 

CCONE2 Thick-wall cone/cylinder 

CCONE3 Compound thick-wall cone/cylinder 

CELBOW Bent cylinder/cone 

CHEX1 Hollow hexahedron (box) 

CHEX2 Solid hexahedron (box) 

CBAR Reinforcing member approximation 

CSPHERE Sphere 

Italicized blue text indicates a primitive that users are discouraged from 

employing as it is likely that it will be phased out of future versions of 

FASTGEN. 

Geometric Description

Groups 

Components

Geometric Primitives Grid Points

Geometric Description

Groups 

Components

Geometric Primitives Grid Points
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As an example of the construction of a component, consider a generic hydraulic pump.  

When simplified, this pump can be represented by a single solid cylinder (or cone), 

assigned to be in volume mode and given the ID number 402.  The pump is then 

described by a CCONE2, which requires the definition of two grid points (keyword 

GRID)  and inner and outer radii at each point.  Since the pump is being treated as a 

solid, the inner radii at each point would be zero.   

 

 
Figure 5-3.  FASTGEN Coordinate System. 

 

 

Components are then combined into global regions, called groups, and are assigned a 

group identification number.  Common group identification numbers (see Table 5-2) are 

based on aircraft subsystems and are restricted by FASTGEN to be between 0 and 49.  

Based on these assignments, the aforementioned hydraulic pump would be given a group 

number of 3.  (Note that the component is then typically referred to as component number 

3402).  Figure 5-4 illustrates what the FASTGEN CBULK file for a generic hydraulic 

pump would look like (note that the ‘·’ represents a space). 

 

Table 5-2.  Common Group Identification Numbers 

Legacy Groupings 

Group 

ID 
Description 

0 Skin 

1 Power Plant 

2 Crew 

3 Flight Control System 

4 Fuel System 

5 Ammunition 

6 Armament 

Elevation

Azimuth
+Z

+X

90o

45o

0o

-45o
-90o

-45o

0o

45o

+Y

+X

135o

90o

45o

0o

315o

270o

225o

180o

Elevation

Azimuth
+Z

+X

90o

45o

0o

-45o
-90o

-45o

0o

45o

+Z

+X

90o

45o

0o

-45o
-90o

-45o

0o

45o

+Y

+X

135o

90o

45o

0o

315o

270o

225o

180o

+Y

+X

135o

90o

45o

0o

315o

270o

225o

180o
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Table 5-2.  Common Group Identification Numbers (cont.) 

7 Structural Members 

8 Electrical System/Avionics 

9 Miscellaneous 

Detailed Groupings 

Group 

ID 

Description Group 

ID 

Description 

0 Skin - Forward Fuselage 27 Fuel - Center Fuselage Tank 

1 
Skin - Forward Intermediate 

Fuselage 
28 

Fuel - Aft Intermediate 

Fuselage Tank 

2 Skin - Center Fuselage 29 Fuel - Aft Fuselage Tank 

3 
Skin - Aft Intermediate 

Fuselage 
30 Fuel - Left Wing Tank 

4 Skin - Aft Fuselage 31 Fuel - Right Wing Tank 

5 Skin - Left Wing 32 Fuel Lines 

6 Skin - Right Wing 33 Ammunition 

7 Skin - Horizontal Tail 34 Armament 

8 Skin - Vertical Tail 35 Structure - Forward Fuselage 

9–10 Engine #1 36 
Structure - Forward 

Intermediate Fuselage 

11–12 Engine #2 37 Structure - Center Fuselage 

13–14 Engine #3 38 
Structure - Aft Intermediate 

Fuselage 

15–16 Engine #4 39 Structure - Aft Fuselage 

17 Crew 40 Structure - Left Wing 

18 Flight Control - Pitch 41 Structure - Right Wing 

19 Flight Control - Yaw 42 Structure - Horizontal Tail 

20 Flight Control - Roll 43 Structure Vertical Tail 

21 Hydraulic System #1 44 Electrical Boxes 

22 Hydraulic System #2 45 Electrical Lines 

23 Hydraulic System #3 46 Electrical PAO Lines 

24 Hydraulic System #4 47 Electrical Antenna/Radar/ECM 

25 Fuel - Forward Tank 48–49 Miscellaneous 

26 
Fuel - Forward Intermediate 

Fuselage Tank 
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$NAME··········3·····402································Gen. Hyd. Pump 

SECTION········3·····402·······2·······1 

GRID···········1·············0.0·····0.0·····0.0 

GRID···········2·············6.0·····0.0·····0.0 

CCONE2·········1·······1·······1·······2····························2.50C1 

C1··········2.50·····0.0·····0.0 

 

Figure 5-4.  FASTGEN CBULK File of a Generic Hydraulic Pump. 

 

 

The specific format for each entry in the geometry file can be found in Appendix B, 

which contains excerpts from the FASTGEN 6.1 Target Description Document [6]. 

 

 

5.1.2 Conversion to FASTGEN from Other Geometry Formats 

 

Typically, airframe manufacturers have a geometric model either currently in 

development or already developed in a particular geometric modeling package.  Most 

companies performing work for DoD have proprietary codes for generating FASTGEN 

geometric files from these other packages.  At the request of non-DoD aircraft 

companies, two options are included with UEDDAM for the generation of FASTGEN 

from CAD:  a stereolithography (STL) converter and a NASTRAN (Patran specifically) 

converter.  

 

 

5.1.2.1 Stereolithography Conversion 

 

It is possible to convert a file in Stereolithography (STL)  format (which can be created 

by most CAD packages) into FASTGEN format in a fairly straightforward manner.  

Stereolithography format is an ASCII or binary listing of triangular surfaces describing a 

computer generated solid model.  Since one of the available primitives in FASTGEN is a 

triangle (denoted by the keyword CTRI), a component exported in STL format can be 

directly converted into FASTGEN format.  As an example, consider the tetrahedron seen 

and described (in STL format) in Figure 5-5. 
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Figure 5-5.  Solid Tetrahedron Described in Stereolithography Format. 

 

 

First, it is important to note that no component information (e.g., component 

identification number, group number, etc.) appears in the above STL description.  In 

order to generate the FASTGEN version of this tetrahedron, the component information 

must be assigned (e.g., component number 9612 in volume mode), the four grid points 

need to be extracted from the twelve vertices listed in the STL description, and these grid 

points should then be used to create the four triangles identified in Figure 5-6.  The 

completed FASTGEN version of the tetrahedron is illustrated in Figure 5-7. 

 

solid

facet normal 0.00 0.00 -1.00

outer loop

vertex   0.000   0.000   0.000

vertex -10.000   5.000   0.000

vertex -10.000  -5.000   0.000

endloop

endfacet

facet normal 1.00 1.00 1.00

outer loop

vertex   0.000   0.000   0.000

vertex -10.000   5.000   0.000

vertex  -5.000   0.000  10.000

endloop

endfacet

facet normal -1.00 0.00 1.00

outer loop

vertex -10.000   5.000   0.000

vertex -10.000  -5.000   0.000

vertex  -5.000   0.000  10.000

endloop

endfacet

facet normal 1.00 -1.00 1.00

outer loop

vertex   0.000   0.000   0.000

vertex -10.000  -5.000   0.000

vertex  -5.000   0.000  10.000

endloop

endfacet

solid

facet normal 0.00 0.00 -1.00

outer loop

vertex   0.000   0.000   0.000

vertex -10.000   5.000   0.000

vertex -10.000  -5.000   0.000

endloop

endfacet

facet normal 1.00 1.00 1.00

outer loop

vertex   0.000   0.000   0.000

vertex -10.000   5.000   0.000

vertex  -5.000   0.000  10.000

endloop

endfacet

facet normal -1.00 0.00 1.00

outer loop

vertex -10.000   5.000   0.000

vertex -10.000  -5.000   0.000

vertex  -5.000   0.000  10.000

endloop

endfacet

facet normal 1.00 -1.00 1.00

outer loop

vertex   0.000   0.000   0.000

vertex -10.000  -5.000   0.000

vertex  -5.000   0.000  10.000

endloop

endfacet
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Figure 5-6.  Triangles and Grid Points Used to Describe a Tetrahedron. 

 

 

 
Figure 5-7.  Solid Tetrahedron Described in FASTGEN Format. 

 

 

Included in the “tools” directory of the PC UEDDAM installation is an executable 

(stl2fast4.exe) that was written to perform the above described process.  The converter 

accepts an STL file in either binary or ASCII format (containing one or more than one 

component) and outputs a FASTGEN geometry file according to user-specified 

component properties (e.g., component number, material type, normal thickness, etc.).  In 

those cases where an ASCII-formatted STL input file contains more than one component, 

the converter will apply the user-specified component number to the first component in 

the file and number each subsequent component sequentially.  For specific usage 

instructions for the STL-to-FASTGEN converter, see the README file in the “tools” 

directory. 
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4

2
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3

4

2

4

2

1
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3
1

1

2

3
1

1

SECTION        9     612       2

GRID           1           0.000   0.000   0.000

GRID           2         -10.000   5.000   0.000

GRID           3         -10.000  -5.000   0.000

GRID           4          -5.000   0.000  10.000

CTRI           1       1       1       2       3             0.0 2

CTRI           2       1       1       2       4             0.0 2

CTRI           3       1       2       3       4             0.0 2

CTRI           4       1       1       3       4             0.0 2

ENDDATA

SECTION        9     612       2

GRID           1           0.000   0.000   0.000

GRID           2         -10.000   5.000   0.000

GRID           3         -10.000  -5.000   0.000

GRID           4          -5.000   0.000  10.000

CTRI           1       1       1       2       3             0.0 2

CTRI           2       1       1       2       4             0.0 2

CTRI           3       1       2       3       4             0.0 2

CTRI           4       1       1       3       4             0.0 2

ENDDATA
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5.1.2.2 Patran Conversion 

 

FASTGEN is structured around the NASTRAN format.  The main difference between the 

two stems from the fact that the NASTRAN input format is both highly structured and 

flexible, a difficult feature to support.  For example, NASTRAN requires each structural 

element to be connected to another structural element, while FASTGEN does not permit 

connectivity between groups and/or components.  Because of the similarity in element 

definitions between the two formats (see Table 5-3), however, and the fact that most 

commercial airframers have an FEM of their aircraft to support structural analyses, the 

decision to develop a utility to convert NASTRAN-formatted components to FASTGEN-

formatted components was an obvious one. 

 

Table 5-3.  FASTGEN to NASTRAN Element Cross-Reference. 

FASTGEN Records NASTRAN Records 

GRID GRID 

CBAR CBAR 

CLINE CROD, CBAR, CBEAM 

CTRI CTRIA1, CTRIA2, CTRIA4 

CQUAD CQUAD1, CQUAD2, CQUAD4 

CCONE1 None 

CCONE2 None 

CCONE3 None 

CSPHERE None 

CHEX1 CHEXA1 

CHEX2 CHEXA1 

 

 

Such a converter was developed by MSC Software® for the FAA based on Patran release 

version 2007r1a (Build 15.0.036) in 2008 and is included with the UEDDAM 

installation.  In the “tools” directory of the PC installation is a directory called 

“Patran_Preference”.  Within this folder are five files:  fastgen.plb, fastgen_utils.plb, 

fastgen_template.db, p3epilog.pcl, and Patran-to-FASTGEN_Converter.pdf.  The first 

four files are the actual utility, as delivered by MSC Software, and contain the FASTGEN 

analysis and utilities codes, a template including the FASTGEN analysis preference, and 

an example set of start-up commands.  The final file is a user’s manual (to include 

installation instructions) for the tool. 

 

The Patran conversion tool is actually a set of analysis libraries that can be accessed 

directly within Patran.  Once installed, the user can load an existing model, map material 

and property set data to FASTGEN-recognizable data, manage FASTGEN SECTION 

definitions, and export SECTION data in a complete FASTGEN geometric model.   One 

of the advantages of the Patran converter over the STL converter is that material data is 

kept with the component, reducing the manual data entry required to complete the model.  

For specific usage instructions for the Patran converter, see the user’s manual, Patran-to-

FASTGEN_Converter.pdf, in the “tools/Patran_Preference”  directory. 

 



 

39 

5.1.2.3 Model Validation and Completion 

 

To use either converter, each component that is either a critical, shielding, or air vehicle 

surface component needs to be identified and manually edited.  In the case of the STL 

converter, for example, the level of detail of components should be reduced as much as 

possible within the original CAD package.  With the Patran converter, specific element 

groupings into individual components must be made within Patran prior to export. 

 

The FASTGEN files generated using either conversion process must be assembled with 

other components/models, verified (in terms of grouping and properties), and visually 

inspected for errors.  Specifically, as the STL converter results in a separate FASTGEN 

geometry file for each STL file input, unless all components have been saved out into a 

single ASCII STL file, the first step that must typically be performed after conversion is 

to concatenate all the individual files together.  This step can be skipped when using the 

Patran converter if the user exports multiple components simultaneously or selects to 

append components to an existing FASTGEN geometric model.  Once a single model has 

been developed, there are several options available to verify its “correctness.”  One is to 

run COVART6 in legacy FASTGEN mode outside of UEDDAM.  By shotlining the 

geometry over a fine grid and through multiple azimuth/elevation angle combinations, the 

model can be checked for errors (e.g., interferences, warped quads, degenerate triangles, 

etc.).  The FASTGEN model can also be visually inspected, either through direct 

inspection of the text file or graphically through the use of a FASTGEN geometry 

viewer.  The UEDDAM Visualizer (the executable, Uvis.bat, is located in the “bin” 

directory of the PC UEDDAM installation) can be used to assist in this process as the 

visualizer was developed not only as a tool to assist in analyzing UEDDAM outputs, but 

also as a FASTGEN aircraft geometric model development utility.  For more information 

on how to use the UEDDAM Visualizer to inspect a geometric model, see the visualizer 

user’s manual, located in the “doc” directory of the installation. 

 

 

5.1.3 Guidelines/Techniques and Code Limitations (Lessons Learned) 

 

When developing a geometric model, either from scratch or through conversion, it is 

important to observe the following guidelines.  Not doing so could result in errors in the 

analysis and problems in code operation. 

• Do not use blank lines or tabs in the text file, as they are not recognized by 

FASTGEN; however, spaces are permitted and should be used to align the 

data to the appropriate column in the file (see Appendix B for specific 

requirements). 

• Do not repeat grid point or primitive identification numbers within a single 

component. 

• Although available in FASTGEN, it is recommended that CCONE1s and 

CCONE3s not be used in geometric model development as they are being 

phased out in subsequent versions. 

• Do not repeat grid point identification numbers within a single primitive.  

• Avoid component interferences, unless necessary. 
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• Assign logical names to components and use comments (denoted by the 

keywords $NAME and $COMMENT, respectively) to provide internal 

documentation. 

• A component in volume mode should not contain plate mode primitives (e.g., 

CHEX1, CLINE, etc.) and vice versa. 

• Limit the level of component detail to reduce the introduction of errors. 

• A single component should consist of a single SECTION record. 

• Group identification numbers should be kept to between 0 and 49. 

• Keep the number of grid points used in a single component to below 50,000. 

• When converting a geometry, eliminate small subcomponents (e.g., nuts, 

bolts, wire connectors, etc.) within a CAD tool before exporting to STL.  

• When converting a geometry, reduce the level of detail of components (e.g., 

simplify curvatures, eliminate internals, generalize shapes, etc.) within a CAD 

tool before exporting to STL (or use 3rd party software after exporting to 

STL). 

• Grid point coordinates must be real numbers (i.e., they must contain decimal 

points). 

• The first grid point identification number defined in a component should be 

the smallest identification number used in that component. 

 

 

5.2 DESCRIBE COMPONENT AND COMPONENT REDUNDANCIES 

 

The three files discussed in this section include the following:  component properties 

(JTYPE FILE) , probability of hazards given a hit (PK FILE), and multiply vulnerable 

groupings (MV FILE).  Most of the essential information needed to create these files has 

already been gathered in previous steps of the analysis process.  However, it is necessary 

to assemble additional descriptive information for each component (e.g., the specific 

materials—and percentage of each—within each component, how “easy” each 

component is to defeat, etc.) in order to complete these files. 

 

The specific format for each possible entry in the JTYPE, PK, and MV files can be found 

in Appendix C, which contains excerpts from the COVART 6.7 User’s Manual [7]. 

 

 

5.2.1 Component Properties File (JTYPE FILE) 

 

The component properties file, otherwise known as the JTYPE FILE, describes 

component information such as material type, density  (or normal thickness), and 

criticality.  One property that the JTYPE FILE assigns to a component number is an 

identification name.  The name consists of no more than eight alphanumeric characters 

and is also used in both the MV FILE and AUTOFAIL FILE to reference the component, 

as necessary.  As an example, consider the hydraulic pressure line of the generic twin-

engine aircraft previously discussed in Sections 4.2.1 and 4.2.2.  Since the pressure line is 

part of hydraulic system one, a natural name to associate with the line (and, in fact, all 

other components strictly belonging to hydraulic system one) would be HYDSYS1.  Note 
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that it is not necessary for each component to be assigned a unique name, as the previous 

example illustrates.  However, the component name is the lowest level that COVART6, 

and therefore UEDDAM, can output.  In other words, if multiple components are grouped 

into a single name then the contribution of the individual components under that name 

cannot be determined. 

 

In addition to assigning a name to each component, the JTYPE FILE also designates a 

density factor (or normal thickness) and a material type.  A list of available predefined 

material types and their associated identification numbers is provided in Table 5-4.  

Additionally, since there are a large variety of materials in use on aircraft today that are 

not listed in Table 5-4, UEDDAM will accept up to 44 new material types.  For more 

information regarding the definition of additional material types, see Section 5.3.5.  The 

density factor/normal thickness is available to the user as a way to manipulate the 

thickness (for penetration purposes) of a component without modifying that component’s 

description in the geometry file.  This value can be entered either as a percentage (e.g., 65 

would represent 65%) or as a nominal thickness in hundreds of an inch (e.g., -15 would 

represent a normal thickness of 0.15 inches, where the negative sign indicates that this 

value is to be treated as a thickness, rather than a percentage).  The complete description 

of the hydraulic line discussed previously, as it would appear in the JTYPE FILE, is  
 

COMPPHY·····3105HYDSYS1········1·····100·······8 
 

indicating that component 3105 is to be considered 100% Aluminum 2024 for penetration 

purposes (note that a ‘·’ represents a space in this illustration to delineate the format 

clearly). 

 

Table 5-4.  Predefined Material Types 

Material Description 
JTYPE 

FILE ID 

UEDDAM Material 

Name 

Steel (BHN = 300) 5 Steel_300 

Titanium (BHN = 285) 7 Ti_285 

Aluminum 2024 8 Al_2024 

Composite (General) 46 Graphite 

Inconel® 625 LCF 47 Inconel 

Water 51 --- 

Gasoline 52 --- 

Lubrication 53 --- 

JP1 Fuel 54 --- 

JP4 Fuel 55 --- 

JP5 Fuel 56 --- 

JP8 Fuel 57 --- 

 

 

The density factor/normal thickness of a component can be manipulated in order to 

mimic a component’s actual physical characteristics.  As an example, consider an engine 
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control electronics box, represented in a geometric description by a single solid box (i.e., 

the control boards contained within are not modeled as separate components).  In order to 

better approximate the control box’s penetration characteristics without changing its 

geometric description, the density entry in the JTYPE FILE for this component should be 

modified accordingly (most likely reduced to a value less than 50%). 

 

There are certain instances when it becomes necessary to consider multiple failure modes 

of a single component with different redundancy levels.  This is accomplished with an 

alias (denoted in the JTYPE FILE by the keyword COMALIAS).  The alias component is 

assigned a component number, name, material type, and density to distinguish it from the 

aliased component, but does not affect penetration.  As an example of how an alias might 

be used, consider a component that is both redundant and non-redundant during a 

particular flight phase (as determined in the DMEA).  The ‘real’ (i.e., modeled) 

component can be used to represent the non-redundant aspect of the component while the 

alias can be used to represent the redundant aspect of the same component.  Another 

example of the use of aliases is given in Section 5.2.3.   

 

Finally, within the JTYPE FILE, the criticality of each component is considered.  This is 

achieved by assigning probability-of-hazard-given-hit (Phaz/h) tables to each critical 

component  (and any aliases used) for the various flight phases being considered (as 

determined in the analysis objective phase of the UEDDAM analysis process).  The entry 

is denoted by the keyword COMPPK and can be repeated up to six times for each 

component to represent different damage mechanisms.  The Phaz/h tables are discussed 

further in the next section. 

 

 

5.2.2 Probability of Hazard Given Hit File (PK FILE) 

 

The probability of hazard given hit file, referred to simply as the PK FILE, contains all 

probability of aircraft hazard given component hit (Phaz/h)  tables for each and every 

critical component  (and alias) referenced in the JTYPE FILE.  Phaz/h is defined as the 

product of the probability of component damage given a hit on that component (Pcd/h)  

and the probability of the aircraft reaching a certain hazard level given component 

damage (Phaz/cd).  The PK FILE has the capability of assessing many different types of 

damage (including penetration, fire, holes, blast, etc.).  However, for the purposes of a 

UEDDAM assessment, typically only one type of table is used:  the impactor weight 

table (denoted by the keyword WGT).   

 

The impactor weight table relates the probability of defeating the aircraft (by means of 

defeating a component) to certain fragment properties (i.e., mass [measured in grains] 

and velocity [measured in fps]).  Typically, for a UEDDAM assessment, only a few Phaz/h 

tables are necessary.  For example, it may be possible to split all critical components into 

one of two categories: soft or hard, where soft means “easy” to defeat and hard means 

“difficult” to defeat.  A soft component Phaz/h table would say that any projectile weighing 

between 15 and 90000 grains (7000 grains ≡ 1 pound) and striking the component with 

velocities between 2 and 10000 fps (5000 fps for the larger projectile) would defeat the 
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component, resulting in a probability of hazard to the aircraft of 1.0.  On the other 

extreme, a “hard” component Phaz/h table would say that only projectiles weighing a 

minimum of 7050 grains would result in a probability of hazard to the aircraft of 1.0.  

These two Phaz/h tables (as well as their graphical representation) are shown in Figure 5-8. 

 
 

PKTABLE········1WGT···········10·······2···············0··”Soft” ·······W1-1 

W1-1··········15······1.·····0.0······2.·····1.0··10000.·· ··1.0·······1W1-2 

W1-2·······90000······1.·····0.0······2.·····1.0···5000.·· ··1.0·······1 

PKTABLE········2WGT·········7000·······2···············0··”Hard” ·······W2-1 

W2-1········7050······1.·····0.0······2.·····1.0··10000.·· ··1.0·······1W2-2 

W2-2·······90000······1.·····0.0······2.·····1.0···5000.·· ··1.0·······1 

 

 

 
Figure 5-8.  Sample Phaz/h Tables and Graphs. 

 

 

Intuitively, this appears overly simplistic.  However, as the goal of the analysis is to show 

minimization, a conservative Phaz/h function reduces the justification needed to show a 

component can survive an impact.  The current certification requirements (as detailed in 

the AC 20-128A) depend on redundancy and therefore support this approach. 

 

 

5.2.3 Multiply Vulnerable File (MV FILE) 

 

The multiply vulnerable file (MV FILE) provides a means of input for the hazard trees 

created in step two of the UEDDAM analysis process.  Hazard trees for various critical 

aircraft functions (e.g., propulsion, roll control, etc.) are entered as groups (denoted by 

the keyword GRPMULT) by flight phase (denoted by the keyword MVKILL).  Each 

group, in turn, is composed of systems and potentially subsystems (denoted by the 

keyword SYSMULT), representing specific subsets of the hazard tree.  A system may be 

composed of a single component (specified by its identification name from the JTYPE 

FILE)  or a sequence of components and/or subsystems either in series or parallel.  For 

each parallel combination, an input in the MV FILE allows the user to indicate how many 

of the parallel items must be defeated in order to defeat the system. 

 

For example, consider the hazard tree for the hydraulic system of a generic twin-engine 

aircraft as seen in Figure 4-3 (Section 4.2.2) and suppose the particular UEDDAM 
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assessment objective under consideration is to determine the probability of catastrophic 

failure during the first three phases of flight (see Table 4-1 [Section 4.1]).  The group 

HYD_SYS would be constructed of three parallel systems, identified as HYD_1, 

HYD_2, and HYD_3 (all three of which would have to be defeated in order to defeat the 

group), with each system being comprised of a sequence of components in series.  In the 

MV FILE, the first few lines of the definition of the HYD_SYS group would look like 

the following: 

 
GRPMULT·HYD_SYS········3·······3········································c1······ 

c1······HYD_1···HYD_2···HYD_3··················································· 

 

For this analysis, since loss of the entire hydraulic system is considered catastrophic 

during take-off, V1 to V1+30 seconds, and climb, the group HYD_SYS would have to be 

repeated three times within the MV FILE, once for each phase of flight.   

 

As a more complicated example, consider the generic twin-engine aircraft discussed 

previously (and in more detail in Appendix D).  For this analysis, suppose that the loss of 

4 adjacent circumferential frames (of which there are a total of 36) is considered a 

catastrophic event (note that this is different from what is considered catastrophic in the 

analysis presented in Appendix D).  The hazard tree developed in step two of the 

UEDDAM analysis process for the frames can be seen in Figure 5-9.  If the hazard tree 

were input as seen, however, UEDDAM would fail to execute due to limitations within 

COVART.  (Note that frames 4 through 33 each appear 4 separate times within this tree, 

and thus a simplification is required.) 

 

 
Figure 5-9.  Partial Circumferential Frames Hazard Tree. 
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As an attempt at simplifying the above hazard tree, consider dividing the frames into sets 

of six.  The first set would contain frames 1 thru 6, the second, 7 thru 12, etc.  And, 

instead of assessing strictly the loss of four adjacent circumferential frames, consider the 

loss of any four of the six frames in a set (since the most likely occurrence will be the 

loss of four adjacent frames).  Upon consideration, notice that failures could also occur 

between sets (i.e., the loss of frames 4 thru 7 would also result in catastrophic loss of the 

aircraft).  Thus, the hazard tree needs to take these cases into account by including 

overlapping sets (see Figure 5-10).  Therefore, the first 6 sets would include frames 1 thru 

36 in sets of 6 whereas the next 5 sets would include frames 4 thru 33.  A portion of this 

simplified hazard tree can be seen in Figure 5-11. 

 

 
Figure 5-10.  Circumferential Frames in a Generic Twin-Engine Aircraft. 

 

 

 
Figure 5-11.  Partial Simplified Circumferential Frames Hazard Tree. 
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Note that frames 4 thru 33 now only appear twice in the fault tree.  In order to simplify 

this hazard tree even further, the introduction of aliases is required.  By assigning an alias 

in the JTYPE FILE to each of the multiply occurring frames (indicated by the name 

AFRAME#), each frame then only appears once in the hazard tree, as seen in the 

complete hazard tree in Figure 5-12. 

 

 
Figure 5-12.  Complete Further Simplified Circumferential Frames Hazard Tree. 

 

 

Note that the last step in the simplification process described above treats the components 

in the fault tree as if they were independent, as opposed to dependent.  This assumption 

only results in an accurate assessment of the fault tree if the Phaz/h values in the tables 

assigned to both the frames and the aliases of the frames are 0.0 or 1.0; as these values 

approach 0.5, the error increases.  As a simple example of why this occurs, consider the 

more basic fault trees displayed in Figure 5-13.  The tree on the left considers component 
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“A” a dependent component, whereas the tree on the right considers “A” an independent 

component (i.e., makes A′ an alias of A). 

 

  
 

DEPENDENT 
 

INDEPENDENT 
Figure 5-13.  Dependent vs. Independent Fault Trees. 

 

 

From basic probability theory, the analysis of the tree on the left can be written as: 
 

Phaz_dep = [P(A damaged) AND P(B damaged) AND P(C damaged)]  

OR [P(A damaged) AND P(B not damaged) AND P(C damaged)] 
 

Phaz_dep = [Phaz/h_A × Phaz/h_B × Phaz/h_C] + [Phaz/h_A × (1 - Phaz/h_B) × Phaz/h_C] 
 

Phaz_dep = [a × b × c] + [a × (1 - b) × c] 
 

Phaz_dep = abc + ac - abc 
 

Phaz_dep = ac 
 

whereas the tree on the right is analyzed as: 
 

Phaz_ind = [P(A damaged) AND P(A′ damaged) AND P(B not damaged) AND 

P(C damaged)] 

 OR [P(A damaged) AND P(A′ damaged) AND P(B damaged) AND 

P(C damaged)] 

 OR [P(A damaged) AND P(A′ not damaged) AND P(B damaged) 

AND P(C damaged)] 
 

Phaz_ind = [Phaz/h_A × Phaz/h_A′ × (1 - Phaz/h_B) × Phaz/h_C] 

+ [Phaz/h_A × Phaz/h_A′ × Phaz/h_B × Phaz/h_C] 

+ [Phaz/h_A × (1 - Phaz/h_A′) × Phaz/h_B × Phaz/h_C] 
 

Phaz_ind = [a × a′ × (1 - b) × c] + [a × a′ × b × c] + [a × (1 - a′) × b × c] 
 

Phaz_ind = aa′c - aa′bc + aa′bc + abc - aa′bc 
 

Phaz_ind = aa′c + abc - aa′bc 
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Note that Phaz_dep = Phaz_ind if a (= a′) = b = c = 0 or 1, but that Phaz_dep = 0.25 and  

Phaz_ind = 0.1875 if a (= a′) = b = c = 0.5.   

 

 

5.2.3.1 Multiple Adjacent Component Tool 

 

As the process described in the previous section can be somewhat cumbersome, a utility 

has been generated to automate the methodology used to model multiple adjacent aircraft 

structural components and generate an MV FILE.  The utility, mac.exe, is provided with 

the UEDDAM installation and is located in the “tools” directory.  To run the utility, 

double-click on the executable.  Figure 5-14 illustrates the multiple adjacent component 

(MAC) utility as it initially appears.   

 

 
 

Figure 5-14.  Multiple Adjacent Component Utility. 

 

 

To use the MAC tool, open an existing JTYPE FILE using the File→Open selection on 

the menu bar.  The tool loads the component identification numbers included in the 

JTYPE FILE to the leftmost selection box.  Select the component identification numbers 

of the components of interest from this box and click on the >>Add>> button (in the 

generic twin example discussed previously, 36 component identification numbers would 

be selected).  These components then appear in the rightmost selection box.  One thing of 

importance to note is that the selected components must be listed in order of adjacency 

for the tool to work properly.  The up and down arrows on the rightmost side of the tool 

display can be used to reorder components once they have been selected.  Next, enter the 

following information:  the number of adjacent components required for failure (e.g., 4) 

and the type of component redundancies under consideration (i.e., frame or longeron, 
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where type longeron implies that the components wrap around, such that the last 

component and the first component are considered adjacent components). 

 

To execute the tool, choose the Generate→Run selection on the menu bar.  Once 

complete, the MAC tool will open a dialog box notifying the user that it has created two 

new files:  an updated JTYPE FILE containing the COMPPHY, COMPPK, and 

COMALIAS records for the new alias components and an MV FILE containing the 

GRPMULT generated according to the user inputs.  Note that the MAC tool 

automatically assigns alias components to unused component identification numbers in 

the JTYPE FILE and prefixes the beginning of an alias component name with an ‘A’ to 

distinguish it from the real component.   

 

As an example of the usability of the MAC tool, let us return to considering the loss of 4 

adjacent circumferential frames from a generic twin-engine aircraft.  (Recall that there 

were a total of 36 frames modeled in the aircraft and that the loss of 4 adjacent frames 

was considered to be a catastrophic event.)  Rather than walk through the steps identified 

in Figures 5-9, 5-11, and 5-12 at the beginning of this section to create a fault tree and 

subsequently, an MV FILE, we can simply open the MAC tool, load the JTYPE FILE for 

the generic twin-engine aircraft (see sample case 6 distributed with UEDDAM), select 

the component ID numbers of the 36 circumferential frames (ID numbers 7501-7536), 

change the number of adjacent components to 4, and select the Frame type (see  

Figure 5-15).   

 

 
 

Figure 5-15.  Example MAC Tool Usage. 
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To execute the tool, choose Generate→Run from the menu bar.  Upon completion, the 

MAC tool generates a window similar to that displayed in Figure 5-16, letting the user 

know that it has successfully completed and created two new files (in this case, mv1 and 

jtype1) in the same directory as the original JTYPE FILE. 

 

 
 

Figure 5-16.  Completion Window Generated by Successful Execution of MAC Tool. 

 

 

Figure 5-17 contains an image of the MV FILE generated by the MAC tool.  The user 

could take the fault tree from this file and integrate it into an existing MV FILE or use 

this file as a basis from which to generate a new MV FILE.  (Note that the contents of 

this file are exactly what is represented pictorially in Figure 5-12.) 

 

 
Figure 5-17.  MV FILE Generated by MAC Tool. 

 

 

Figure 5-18 compares the original JTYPE FILE (left) with the new JTYPE FILE (right) 

created by the MAC tool.  As is evident by comparing these two files, the MAC tool has 

inserted COMPPHY and COMALIAS records into the original JTYPE FILE for the 
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additional components needed.  Note that as the component ID numbers 1–30 were not 

used in the original JTYPE FILE, the MAC tool assigned these numbers to the alias 

components AFRAME4, AFRAME5, …, AFRAME33. 

 

    
 

Figure 5-18.  Comparison of Original JTYPE FILE (Left) to that Generated by the MAC 

Tool (Right). 

 

 

5.2.3.2 Weighting Factors 

 

A valuable feature in the MV FILE is the ability to apply weighting factors to sets of 

system failures within an MV group.  This is useful if different combinations of failures 

have different probabilities of outcome.  For example, consider the situation of a three 

engine aircraft illustrated in Figure 5-19. 

 

 

Figure 5-19.  Generic Three-Engine Aircraft. 

 

 

For the flight condition of interest, a loss of the number two engine is recoverable, a loss 

of both engines one and three is recoverable 95% of the time (controlled descent for 
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landing), a loss of all three engines is recoverable 60% of the time (engine out landing), 

and the loss of either engine one or engine three alone, or in combination with engine 

two, is recoverable only 20% of the time due to the yaw induced by the differential thrust.  

Table 5-5 summarizes the combinations of failures and their resultant probability of 

catastrophic outcome (= 1 - probability of recovery). 

 

Table 5-5.  Engine Failure Matrix 

Engine #1  

State 

Engine #2  

State 

Engine #3  

State 

Probability of 

Catastrophic 

Outcome (PHAZ) 

Functional Functional Functional 0.00 

Failed Functional Functional 0.80 

Functional Failed Functional 0.00 

Failed Failed Functional 0.80 

Functional Functional Failed 0.80 

Failed Functional Failed 0.05 

Functional Failed Failed 0.80 

Failed Failed Failed 0.40 

 

 

COVART6 allows for consideration of these different combinations of failures through 

the weighting factor input fields in the MV FILE.  A single value of PHAZ is entered for 

each combination of possible failures.  For example, the above matrix would be entered 

in the MV FILE as shown in Figure 5-20 below, given that the MV group has been 

previously defined in the file. 

 

 

Figure 5-20.  MV Entry for Weighting Factors – Engine Failure Example. 

 

 

Note that the PHAZ for each of the combinations of failures must be entered in a particular 

way.  Table 5-5 and Figure 5-20 use this pattern.  To explain this pattern, Table 5-6 was 

constructed by denoting a failure in Table 5-5 as a “1” and a non-failure as a “0”.  Also 

included in Table 5-6 is the binary sequence from 0 to 23. 

 

 

 

 

 

 

 

 

 

 

 

   WGTFACT        1       3                                                WGTFACT1    

   WGTFACT1       0     0.8       0     0.8      0.8    0.05     0.8     0.4           
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Table 5-6.  Entry of PHAZ for Failure Combinations in COVART 

Pattern in 

Table 5-5 

Binary 

Count from 

0 to 23 

000 000 

100 001 

010 010 

110 011 

001 100 

101 101 

011 110 

111 111 
 

 

The entry of PHAZ follows the exact mirror of a binary sequence from 0 to 2N, where N is 

the number of systems in the MV group (3 in this example).  More detail on the 

weighting factor entry fields is discussed in Appendix C of this manual. 

 

We end this discussion with another example.  Consider a UEDDAM analysis for the 

landing roll flight mode where the failure of all three hydraulic systems will result in a 

catastrophic event 5% of the time due to the inability to use the brakes.  Table 5-7 shows 

the combinations of failures and PHAZ for each combination. 

 

Table 5-7.  Hydraulic System Failure Matrix 

Hydraulic System 

#1 State 

Hydraulic System 

#2 State 

Hydraulic System 

#3 State 

Probability of 

Catastrophic 

Outcome (PHAZ) 

Functional Functional Functional 0.00 

Failed Functional Functional 0.00 

Functional Failed Functional 0.00 

Failed Failed Functional 0.00 

Functional Functional Failed 0.00 

Failed Functional Failed 0.00 

Functional Failed Failed 0.00 

Failed Failed Failed 0.05 

 

 

This can be represented in the MV FILE as seen in Figure 5-21. 

 

 

Figure 5-21.  MV Entry for Weighting Factors – Hydraulic System Failure Example. 

 

 

 

   WGTFACT        1       3                                                WGTFACT1 

   WGTFACT1       0       0       0       0       0       0       0    0.05 
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5.2.3.3 Logic Statements 

 

When it comes time to perform an uncontained engine debris analysis, airframe 

manufacturers in the commercial industry have fault trees either currently in development 

or already developed for use in performing risk assessments.  Some manufacturers 

develop fault trees using logic statements.  It is often the case that translating these logic 

statements directly into an MV FILE for a UEDDAM analysis is both difficult and time 

consuming, especially as the use of weighting factors requires specification of 2N values 

(not to mention, in a specific order).  In order to facilitate the process, UEDDAM has the 

capability of reading in AND, OR, and NOT logic statements within an MV FILE.  The 

executable mkwgtf.exe (which is called by UEDDAM upon encounter of the appropriate 

keyword in the UEDDAM input control file) converts these logic statements into 

weighting factors for use by COVART6.  Some time must still be spent in order to 

translate the preexisting logic statements into the proper format for UEDDAM, but much 

of the more tedious work is performed by the code.  

 

As an example, consider the lateral flight control system of a generic commercial aircraft.  

This can be a complicated system, consisting of many different components (e.g., 

pulleys, brackets, control rods, control cables, hydraulic fluid lines, hydraulic actuators, 

etc.).  Suppose that we are provided with a set of 14 logic statements representing the 

specific combinations of component failures required to defeat the lateral flight control 

system.  For each logic statement, we are also provided with the associated probability of 

catastrophic outcome during three different flight phases (MVKILL 1, 2, and 3) given 

that specific combination occurs.  The logic statements (in terms of component 

identification numbers) and associated probabilities are as follows:  

 
LFC1 = [(3364 OR 3365) NOT (3651 OR 3652 OR 3653 OR 3654 OR 3740 OR 3741 OR 

3742 OR 3743 OR 3744 OR 3745 OR 3100 OR 3101)]      

PHAZ(1) = 0.85, PHAZ(2) = 0.1, PHAZ(3) = 0.4 

  

LFC2 = [3101 NOT (3651 OR 3652 OR 3653 OR 3654 OR 3740 OR 3741 OR 3742 OR 3743 

OR 3744 OR 3745 OR 3364 OR 3365 OR 3100)]      

PHAZ(1) = 0.0, PHAZ(2) = 0.2, PHAZ(3) = 0.0 

  

LFC3 = [3100 NOT (3651 OR 3652 OR 3653 OR 3654 OR 3740 OR 3741 OR 3742 OR 3743 

OR 3744 OR 3745 OR 3364 OR 3365 OR 3101)]      

PHAZ(1) = 0.1, PHAZ(2) = 0.0, PHAZ(3) = 0.55 

  

LFC4 = [(3100 AND 3101) NOT (3651 OR 3652 OR 3653 OR 3654 OR 3740 OR 3741 OR 

3742 OR 3743 OR 3744 OR 3745 OR 3364 OR 3365)]      

PHAZ(1) = 0.8, PHAZ(2) = 1.0, PHAZ(3) = 0.6 

  

LFC5 = [{(3364 OR 3365) AND 3101} NOT (3651 OR 3652 OR 3653 OR 3654 OR 3740 OR 

3741 OR 3742 OR 3743 OR 3744 OR 3745 OR 3100)]      

PHAZ(1) = 1.0, PHAZ(2) = 0.0, PHAZ(3) = 0.3 

LFC6 = [{(3364 OR 3365) AND 3100} NOT (3651 OR 3652 OR 3653 OR 3654 OR 3740 OR 

3741 OR 3742 OR 3743 OR 3744 OR 3745 OR 3101)]      

PHAZ(1) = 0.6, PHAZ(2) = 0.25, PHAZ(3) = 0.1 

  

LFC7 = [{(3364 OR 3365) AND (3100 AND 3101)} NOT (3651 OR 3652 OR 3653 OR 3654 

OR 3740 OR 3741 OR 3742 OR 3743 OR 3744 OR 3745)]      

PHAZ(1) = 0.2, PHAZ(2) = 0.0, PHAZ(3) = 0.0 
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LFC8 = [(3651 OR 3652 OR 3653 OR 3654) NOT {(3740 OR 3741 OR 3742 OR 3743 OR 

3744 OR 3745) OR (3100 OR 3101)}]      

PHAZ(1) = 0.15, PHAZ(2) = 0.9, PHAZ(3) = 0.05 

  

LFC9 = [{(3651 OR 3652 OR 3653 OR 3654) AND (3364 OR 3365)} NOT {(3740 OR 3741 

OR 3742 OR 3743 OR 3744 OR 3745) OR 3101}]      

PHAZ(1) = 0.6, PHAZ(2) = 0.2, PHAZ(3) = 0.3 

  

LFC10 = [{(3651 OR 3652 OR 3653 OR 3654) AND 3101} NOT {(3740 OR 3741 OR 3742 

OR 3743 OR 3744 OR 3745) OR (3364 OR 3365 OR 3100)}]      

PHAZ(1) = 0.05, PHAZ(2) = 0.9, PHAZ(3) = 0.9 

  

LFC11 = [{(3651 OR 3652 OR 3653 OR 3654) AND 3100} NOT {(3740 OR 3741 OR 3742 

OR 3743 OR 3744 OR 3745) OR (3364 OR 3365 OR 3101)}]      

PHAZ(1) = 0.75, PHAZ(2) = 0.1, PHAZ(3) = 0.5 

  

LFC12 = [{(3651 OR 3652 OR 3653 OR 3654) AND (3100 AND 3101)} NOT {(3740 OR 

3741 OR 3742 OR 3743 OR 3744 OR 3745) OR (3364 OR 3365)}]      

PHAZ(1) = 0.0, PHAZ(2) = 0.25, PHAZ(3) = 0.8 

  

LFC13 = [{(3740 OR 3741 OR 3742 OR 3743 OR 3744 OR 3745)} NOT {(3651 OR 3652 OR 

3653 OR 3654) OR (3364 OR 3365 OR 3100 OR 3101)}]      

PHAZ(1) = 0.1, PHAZ(2) = 0.1, PHAZ(3) = 0.1 

LFC14 = [(3151 AND 3369 AND 3370) NOT (3651 OR 3652 OR 3653 OR 3654 OR 3740 OR 

3741 OR 3742 OR 3743 OR 3744 OR 3745 OR 3364 OR 3365 OR 3100 OR 3101)]      

PHAZ(1) = 0.0, PHAZ(2) = 0.3, PHAZ(3) = 0.65 

 

The following process details, using the aforementioned logic statements as an example, 

the steps required in order to build a properly formatted fault tree input file: 

1. Define the group of interest. 

Example:  GRPMULT → LAT_FC 

 

2. Define the systems of interest by examining the preexisting logic statements and 

looking for reappearing component groupings. 

Example:  SYSMULT → LAT_1 = 3364 OR 3365 

    SYSMULT → LAT_2 = 3651 OR 3652 OR 3653 OR 3654 

    SYSMULT → LAT_3 = 3740 OR 3741 OR 3742 OR 3743 OR 3744 OR 3745 

    SYSMULT → LAT_4 = 3100 

    SYSMULT → LAT_5 = 3101 

    SYSMULT → LAT_6 = 3151 AND 3369 AND 3370 

 

3. Redefine the logic statements in terms of the newly defined systems. 

Example:  LFC1 = [LAT_1 NOT (LAT_2 OR LAT_3 OR LAT_4 OR LAT_5)] 
    LFC2 = [LAT_5 NOT (LAT_2 OR LAT_3 OR LAT_1 OR LAT_4)] 

    LFC3 = [LAT_4 NOT (LAT_2 OR LAT_3 OR LAT_1 OR LAT_5)] 

    LFC4 = [(LAT_4 AND LAT_5) NOT (LAT_2 OR LAT_3 OR LAT_1)] 

    LFC5 = [(LAT_1 AND LAT_5) NOT (LAT_2 OR LAT_3 OR LAT_4)] 

    LFC6 = [(LAT_1 AND LAT_4) NOT (LAT_2 OR LAT_3 OR LAT_5)] 

    LFC7 = [{LAT_1 AND (LAT_4 AND LAT_5)} NOT (LAT_2 OR LAT_3)] 

    LFC8 = [LAT_2 NOT {LAT_3 OR (LAT_4 OR LAT_5)}] 

    LFC9 = [(LAT_2 AND LAT_1) NOT (LAT_3 OR LAT_5)] 

    LFC10 = [(LAT_2 AND LAT_5) NOT {LAT_3 OR (LAT_1 OR LAT_4)}] 

    LFC11 = [(LAT_2 AND LAT_4) NOT {LAT_3 OR (LAT_1 OR LAT_5)}] 

    LFC12 = [{LAT_2 AND (LAT_4 AND LAT_5)} NOT (LAT_3 OR LAT_1)] 

    LFC13 = [LAT_3 NOT {LAT_2 OR (LAT_1 OR LAT_4 OR LAT_5)}] 

    LFC14 = [LAT_6 NOT (LAT_2 OR LAT_3 OR LAT_1 OR LAT_4 OR LAT_5)] 
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4. Develop the MV FILE (as modified for use with logic statements) for the groups, 

systems, and logic statements developed in steps 1 thru 3. 

Example:   
MVKILL         1                                                         

GRPMULT LAT_FC         6       6                                        C1       

C1      LAT_1   LAT_2   LAT_3   LAT_4   LAT_5   LAT_6                    

SYSMULT LAT_1          1       2                                        C2       

C2      3364    3365                                                     

SYSMULT LAT_2          1       4                                        C3       

C3      3651    3652    3653    3654                                     

SYSMULT LAT_3          1       6                                        C4       

C4      3740    3741    3742    3743    3744    3745                     

SYSMULT LAT_4          1       1                                        C5       

C5      3100                                                             

SYSMULT LAT_5          1       1                                        C6       

C6      3101                                                             

SYSMULT LAT_6          3       3                                        C7       

C7      3151    3369    3370                                             

ENDNAME                                                                  

LOGICST     0.85 LFC1 = LAT_1 .NOT. (LAT_2 .OR. LAT_3 .OR. LAT_4        C8       

C8      .OR. LAT_5)                                                      

LOGICST     0.00 LFC2 = LAT_5 .NOT. (LAT_2 .OR. LAT_3 .OR. LAT_1        C9       

C9      .OR. LAT_4)                                                      

LOGICST     0.10 LFC3 = LAT_4 .NOT. (LAT_2 .OR. LAT_3 .OR. LAT_1        C10      

C10     .OR. LAT_5)                                                      

LOGICST     0.80 LFC4 = (LAT_4 .AND. LAT_5) .NOT. (LAT_2 .OR. LAT_3     C11      

C11     .OR. LAT_1)                                                      

LOGICST     1.00 LFC5 = (LAT_1 .AND. LAT_5) .NOT. (LAT_2 .OR. LAT_3     C12      

C12     .OR. LAT_4)                                                      

LOGICST     0.60 LFC6 = (LAT_1 .AND. LAT_4) .NOT. (LAT_2 .OR. LAT_3     C13      

C13     .OR. LAT_5)                                                      

LOGICST     0.20 LFC7 = (LAT_1 .AND. LAT_4 .AND. LAT_5) .NOT. (LAT_2    C14      

C14     .OR. LAT_3)                                                      

LOGICST     0.15 LFC8 = LAT_2 .NOT. (LAT_3 .OR. LAT_4 .OR. LAT_5)        

LOGICST     0.60 LFC9 = (LAT_2 .AND. LAT_1) .NOT. (LAT_3 .OR. LAT_5)     

LOGICST     0.05 LFC10 = (LAT_2 .AND. LAT_5) .NOT. (LAT_3 .OR. LAT_1    C15      

C15     .OR. LAT_4)                                                      

LOGICST     0.75 LFC11 = (LAT_2 .AND. LAT_4) .NOT. (LAT_3 .OR. LAT_1    C16      

C16     .OR. LAT_5)                                                      

LOGICST     0.00 LFC12 = (LAT_2 .AND. LAT_4 .AND. LAT_5) .NOT.          C17      

C17     (LAT_3 .OR. LAT_1)                                               

LOGICST     0.10 LFC13 = LAT_3 .NOT. (LAT_2 .OR. LAT_1 .OR. LAT_4       C18      

C18     .OR. LAT_5)                                                      

LOGICST     0.00 LFC14 = LAT_6 .NOT. (LAT_2 .OR. LAT_3 .OR. LAT_1       C19      

C19     .OR. LAT_4 .OR. LAT_5)                                           

ENDGROUP                                                                 

ENDDATA 

 

 

The format used for the logic statements within the MV FILE is as follows. 

 

Keyword 

Columns 1-8 

Probability 

Columns 9-16 

Logic Statement 

Columns 17-72 

LOGICST 0.4 LS1 = (SYS1 .AND. SYS4) .NOT. (SYS2 

 

Logic statements for a particular group should be placed between the ENDNAME and 

ENDGROUP entries of the corresponding GRPMULT.  The following connectives can 

be used to describe a logic statement:  .AND., .OR. , and .NOT. .  The equals sign and 
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parentheses are recognized symbols; spaces are used as separators.  If a logic statement is 

longer than 54 characters (including spaces, parentheses, etc.), columns 73-80 can be 

used for a continuation record and the format for the second line is as follows.  Note that 

columns 73-80 on the first line must exactly match columns 1-8 on the second line. 

 
Continuation 

Record 

Columns 1-8 

Logic Statement (cont.) 

Columns 9-72 

C1 .AND. SYS3 .OR. SYS5) 

 

Upon proper execution of UEDDAM, a file named “generated_mv.txt” will be output; it 

will contain, in place of the user-defined logic statements, the utility-computed weighting 

factors as passed to COVART6.   

 

 

5.2.4 Guidelines/Techniques and Code Limitations 

 

When developing the inputs describing components and their redundancies, the following 

guidelines and techniques should be followed: 

 

• All COMPPHY entries for components that are part of a COMALIAS record 

must come before that COMALIAS record in the JTYPE FILE.  

• All COMPPHY entries must come before COMPPK entries in the JTYPE FILE. 

• Assign a material code of water (51) and a density factor of 1 (or a nominal 

thickness of -1) to an alias component in the JTYPE FILE. 

• A component cannot be both aliased and an alias. 

• Component names in the JTYPE FILE should not contain any of the following 

words or symbols:  “ERROR”, “OR”, “AND”, “.”, “/”, “+”, or “-“. 

• Do not use blank lines or tabs in any of the COVART6 input files, as they are not 

recognized; however, spaces are permitted and should be used to align the data to 

the appropriate column in the file (see Appendix C for specific requirements). 

• Each line of internal file documentation should be preceded by $COMMENT; this 

keyword tells COVART6 to ignore all other data on that line. 

• There is a limit to the “size” of a fault tree in the MV FILE depending on the 

redundancy level, the number of groups/systems/components, and the number of 

branches in which a single component exists; fault tree simplification is extremely 

important. 

• The MV FILE limits the fault tree to 24 systems per group, 24 subsystems per 

system, etc. 

• COVART6 has limited the number of weighting factors that can be entered to 220.  

Thus, a valid MV FILE can contain weighting factors for a single group of 20 

systems or a combination of groups with less than 20 systems as long as the 

number of factors entered does not exceed 220. 

• A component can only appear in one group within a single flight phase in the MV 

FILE, although it can appear multiple times in that group. 



 

58 

• Split a single UEDDAM run into multiple runs (based on flight phase) to reduce 

the total size of the MV FILE. 

• The weights and velocities considered in the Phaz/h tables should encompass the 

entire range of uncontained engine debris being assessed. 

 

 

5.3 DEFINE ANALYSIS PARAMETERS 

 

The UEDDAM input files described in this section include the following:  UEDDAM 

control file, debris characterizations (DEBRIS FILE), near-field components 

(NEARFIELD FILE), auto-fail components (AUTOFAIL FILE), material type 

definitions (MATERIAL FILE), and hole size groupings (HOLEGRP FILE) .  These files 

define the specific analysis parameters (e.g., the location and name of the necessary input 

files and executables, the desired output files, the specific debris to be analyzed, etc.) as 

determined in step one of the UEDDAM analysis process. 

 

5.3.1 Control File 

 

The control file provides run specifications for the main UEDDAM code.  The format for 

the input file uses keywords to identify each type of input (note that all inputs are case-

sensitive).  This allows the sequence of inputs to be re-ordered to suit the analyst.  A 

comma separates each element of input; therefore, a comma cannot be used as part of any 

text string entries unless the entire string is enclosed within double quotation marks.  

Whitespace characters (spaces, tabs, and blank lines) may be used to indent data to 

improve human readability of the file without affecting program operation.  The 

“$”character, when used as the first character of a line, indicates a comment line and is 

ignored by the program.  The following paragraphs describe the requirements for each 

input record type and include an accompanying figure to illustrate each record.  

Comments are included within parentheses in the figures and should not be present in the 

actual input record. 

 

 

5.3.1.1 Hazard Level Specification (HAZARD) 

 

The user may enter up to 15 HAZARD records (i.e., flight phases or hazard levels) for an 

assessment.  At least one record must be specified.  See Table 4-1 (Section 4.1) for 

definition of the flight phases.   

 
Keyword Level ID Description 

HAZARD, 1, Take-off to V1 

HAZARD, 3, Initial Climb 

 

The “Level ID” corresponds to the flight phase or hazard level and is the same as that 

used in the JTYPE and MV files.  The “Description” is user defined. 

 

 



 

59 

5.3.1.2 COVART6 Executable File Name 

 

UEDDAM allows the user to provide a path (either relative or absolute) and name to the 

COVART6 executable that will be invoked during an analysis.  If this keyword is not 

provided in the control file, UEDDAM will check the computer’s environment variable 

settings for the location of the required executable (these variables are set during 

installation).  If UEDDAM is unable to locate the COVART6 executable through one of 

these two methods, the user will be prompted to enter the executable’s location. 

 
Keyword File Name 

COVART EXEC, ..\bin\covart_ueddam.exe (COVART6 executable path/name) 

 

 

5.3.1.3 Input File Names 

 

Several files must be accessed by UEDDAM during a run.  Files in the following list 

must already exist prior to beginning a UEDDAM analysis and be similarly listed in the 

control file§.  The file names in the following list are for example only; any name can be 

given to these files.  Note that if any or all of these files lie in a different directory from 

the control file, the path, in addition to the name, must be specified. 

 
Keyword File Name 

TARGET FILE,  geometry.dat (FASTGEN geometric description) 

JTYPE FILE,  comp_crit.dat (component criticality reference) 

PK FILE,  comp_pk.dat (component kill probability tables) 

MV FILE,
§
 

comp_redund.dat (hazard tree – MV data)   

Cannot be used with LOGIC FILE 

LOGIC FILE,
§  

comp_logic.dat (hazard tree – MV data with logic statements)  

Cannot be used with MV FILE 

DEBRIS FILE,  debris.dat (Optional.  Engine debris characterization data) 

NEARFIELD FILE, comp_near.dat (list by engine for automatic deletion) 

AUTOFAIL FILE, comp_fail.dat (list by engine for automatic failure) 

MATERIAL FILE, mat.dat (material type descriptions) 

HOLEGRP FILE, comp_holesz.dat (component groupings for hole size calculations) 

 

 

5.3.1.4 Target Reduction Flag (TARGET REDUCTION) 

 

This flag tells UEDDAM whether or not to reduce the target geometry file so that only 

components within the maximum fore/aft and rotational variance limits are kept for 

further analysis.  Additionally, UEDDAM will then interrogate the fault tree to determine 

whether or not COVART6 runs are even required with the remaining components.  This 

feature reduces the run time requirements for COVART6 but takes some additional time, 

up front, to process.  Thus, for small target geometries with limited debris characteristics 

the preprocessing times may exceed actual run times.  It is recommended that the user 

 
§ Note that either of the two hazard tree data files (i.e., MV FILE and LOGIC FILE) can be present in the 

list of input files, but not both. 
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test the effectiveness of this feature prior to UEDDAM production runs.  If no flag is 

specified, the default is “0,” corresponding to the target reduction feature being turned 

off.  Note that if the target reduction flag is set to “1” and COVART6 runs are skipped, 

random number draws will be different which could potentially result in different results 

than if the target reduction feature were not used. 

 
Keyword Numerical Values 

TARGET REDUCTION, 0 (off) or 1 (on) 

 

 

5.3.1.5 Small Component Hypersampling (SMCOMP FIX) 

 

Because of the way that UEDDAM simulates the penetration of large debris such as disk 

segments and large fragments (i.e., dividing the debris up into a grid of shotlines), it is 

possible for relatively small components in the geometry to be missed even though they 

are directly in the path of the large debris.  In order to ensure that the components that 

should be hit do indeed get hit, only two options were available to the user prior to the 

release of UEDDAM v3.0:  1) decrease the size of the grid used to define the debris 

shotlines or 2) increase the size of any small components (and adjust the 

density/thickness values accordingly) such that they are at least as big as the grid size 

used to define the debris shotlines.  Note that the first option results in exponentially 

greater run times and the second option results in a geometry that must be rebuilt for each 

debris type assessed.  As neither of these options is optimal, UEDDAM now includes a 

feature that allows for the generation of additional shotlines within the swath of the debris 

using a technique referred to as hypersampling. 

 

For the hypersampling routine, UEDDAM employs FastRT, a program developed by 

SURVICE that performs similar tasks to COVART6 but is optimized for speed.  FastRT 

first raytraces the geometry with the original set of gridded shotlines determined by the 

grid size specified in the debris file (see Section 5.3.2).  UEDDAM then divides the 

swath even further into hypersampling subgrids of user-specified size.  The geometry will 

then be interrogated again by FastRT to determine whether the hypersampling rays hit 

any additional components.  If so, the first hypersampling ray that hits an additional 

component is saved and added to the list of shotlines to be fed to COVART6.   

Figure 5-22 illustrates the concept, with the red arrow representing the additional shotline 

that would be added to the gridded shotlines (green arrows) before being fed to 

COVART6. 
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Figure 5-22.  Small Component Hypersampling (Subgrid and Saved Ray 

Highlighted in Red). 

 

 

In order to avoid a similar problem with small components potentially being missed by 

small fragments, beginning with the release of UEDDAM v4.3, a hypersampling option 

has been added for this debris type as well.  Because the small fragment debris type is by 

default represented by a single shotline, it is not possible to simply subdivide an existing 

grid as is the case for the large fragment and disk debris types.  Instead, UEDDAM 

implements small fragment hypersampling as follows:  1) calculate the four corners of 

the small fragment area using the length and width dimensions in the appropriate debris 

characterization recod; 2) add four rays to the existing single shotline based on the 

calculated corners; 3) create a grid of shotlines based on the user-input subgrid size. 

 

The hypersampling routine will only be employed if the appropriate record (denoted by 

the keywords SMCOMP FIX SGMT, SMCOMP FIX LFRG, and SMCOMP FIX SFRG) 

appears in the UEDDAM control file.  The other inputs include the subgrid size (in 

inches) UEDDAM should use for the hypersampling routine as well as the position of the 

shotlines (i.e., either centered or random)  within the subgrid. 

 
Keyword Subgrid Position 

SMCOMP FIX SGMT,  0.28, 0 (center) or 1 (random) 

SMCOMP FIX LFRG, 0.15, 0 (center) or 1 (random) 

SMCOMP FIX SFRG, 0.04, 0 (center) or 1 (random) 

 

It is recommended that the “position” of the shotline be centered and that ~1/3 the width 

of the debris be used for a subgrid size. 

 

 

5.3.1.6 Multiple Processor Flag (THREADS) 

 

This record is optional and allows the user to take advantage of a multi-processor 

computer to improve run times of UEDDAM.  When the keyword THREADS is 

specified in the UEDDAM control file followed by a number greater than 1, UEDDAM 

will divide COVART6 runs and/or component intercept angle computations among that 

number of processors.  It is recommended that the user enter a number of threads equal to 
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one less than the total number of processors available as one of the processors will be tied 

up with the management of the overarching UEDDAM process.  When the user enters a  

-1 after the keyword THREADS, UEDDAM will query the computer to determine the 

number of available processors. 

 
Keyword Number 

THREADS,  4 

 

 

5.3.1.7 High-Performance Computer Cluster Flag (CLUSTER) 

 

Similar to the keyword THREADS, this record is optional and allows the user to take 

advantage of the processing power of a high-performance computer (HPC) cluster.  (Note 

that the assumed cluster design is a network of machines that use some form of shared 

storage system.)  When the keyword CLUSTER is specified in the control file, 

UEDDAM will parse COVART6 runs out to individual nodes of the cluster.  The way in 

which the COVART input and output files are handled depends on the value of the 

parameter entered after the CLUSTER keyword.  If the user enters a value of 0, 

UEDDAM will have the nodes execute any COVART6 runs on the shared storage 

system.  This option could cause run time performance issues, but might be necessary if 

the computational nodes have limited local disk space.  If the user enters a value of 1 or 

2, UEDDAM will have the nodes execute any COVART6 runs in their own local file 

system and copy the outputs back to the shared storage when the run is complete.  The 

difference between these two parameter values is how the COVART input files are 

referenced.  In the case of a 1, the COVART input files are links to their corresponding 

file on the shared storage system.  If the user enters a value of 2, however, the COVART 

input files are copied to the local node.  The default value of the parameter, should one 

not be entered, is 1.  Also, note that the multiple processor flag (keyword THREADS) 

and the high-performance computer cluster flag (keyword CLUSTER) are mutually 

exclusive (i.e., when running UEDDAM on a single computer, a value assigned to the 

keyword CLUSTER will have no effect on execution; likewise, when running UEDDAM 

on an HPC cluster, a value assigned to the keyword THREADS will have no effect on 

execution).   

 
Keyword Number 

CLUSTER,  0 (none), 1 (partial), 

or 2 (full) 

 

 

5.3.1.8 Resource Estimation Flag (RESOURCE ESTIMATOR) 

 

This record is optional and provides the user with a very rough estimate of the anticipated 

run time and approximate disk space usage prior to beginning a run.  Based on this 

information, the user is then given the option to continue with the execution or cancel the 

run altogether.  If not included in the control file, UEDDAM defaults to a value of “1”  
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(on) for the resource estimation flag.  Note that for batch processing, the flag should be 

set to “0” (off).   

 
Keyword Number 

RESOURCE ESTIMATOR,  0 (off) or 1 (on) 

 

 

5.3.1.9 Gamma Flag (PENETRATION) 

 

This flag represents the inclusion of the obliquity angle, gamma (γ), to the modified FAA 

V50 penetration equation available beginning with the release of UEDDAM v4.1.  With 

this keyword, the user is given the option of specifying 5 potentially different values of γ 

corresponding to the following obliquity angle bins:  0°–30°, 30°–45°, 45°–60°, 60°–75°, 

and 75°–90°.  Note that if this keyword is left out of the UEDDAM control file, 

UEDDAM will default to using the original FAA V50 equation (a similar result is 

achieved by entering γ=1.0 for each obliquity angle bin).  See Section 3.7 for further 

definition of gamma and the penetration equations.  

 

Keyword 
Value, 

0°–30° bin 

Value, 

30°–45° bin 

Value, 

45°–60° bin 

Value, 

60°–75° bin 

Value, 

75°–90° bin 

PENETRATION,  0.6, 0.7, 0.8, 0.9, 0.95 

 

 

5.3.1.10 Output File Names 

 

These records are optional and, when listed in the control file, will result in specific 

output files being created during a UEDDAM analysis.  If none of these records is given, 

UEDDAM will create the SUMMARY FILE only and name it “HazSummary”.  Note 

that the file names provided are for example only; any name can be given to these files.   

 

Keyword File Name Options 

SUMMARY FILE, hazard_sum.txt (release point summaries per event) ⎯ 

DETAIL FILE,  hazard_detail.txt (component iteration details) ⎯ 

INTERCEPT FILE, comp_intrcpt.txt (component angle intercept tables), 0.5 

HITSUM FILE,  hits_sum.txt (component release point summaries) ⎯ 

TRAJECTORY FILE, trajectory.txt (individual shotline trajectories) ⎯ 

VISUALIZER FILE,  visfile.txt (visualizer support file), 0 

ERROR FILE, error.txt (errors and warnings), 1 

HOLESIZE FILE,  holesize.txt (component grouping hole sizes) ⎯ 

SIGITSYS FILE, sigitsys.txt (PHAZ significant iteration summaries), 0.99 

SIGITCRIT FILE, sigitcrit.txt (critical component hit summaries) ⎯ 

SIGITCHOLE FILE, sigitchole.txt (cumulative hole area significant iteration summaries), 30 

SIGITSHOLE FILE, sigitshole.txt (hole size significant iteration summaries), 5 

 

Note that several of these files either require or allow for additional options.  The 

INTERCEPT FILE is one; the number that is placed after the file name defines the 

tolerance for subassembly combining in UEDDAM.  In order to perform some of the 
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angle intercept computations, UEDDAM breaks up components into pieces (or 

subassemblies).  The optional tolerance value determines whether or not the user wants to 

see component angle intercept tables for entire components or for subassemblies of these 

components.  If the value after the INTERCEPT FILE is zero or omitted, no combining 

of subassemblies will occur.  However, if a tolerance value is included, subassemblies 

that have bounding box-to-subassembly area ratios greater than or equal to this value will 

be merged into a single assembly for output purposes.   

 

Three of the four significant iteration summary files also require additional input.  The 

SIGITSYS FILE will provide information detailing iterations whose total system-level 

PHAZ exceeds the value entered after the filename.  In a similar fashion, the 

SIGITCHOLE FILE and SIGITSHOLE FILE will provide information detailing 

iterations whose cumulative hole and single hole sizes (in square inches), respectively, 

exceed the values entered after the filenames. 

 

The final two files with additional optional inputs are the ERROR FILE and the 

VISUALIZER FILE.  For the ERROR FILE, after the user-defined output file name, the 

user may enter a value defining the level of detail to include in the output:  1 = only fatal 

errors (this is the default level if none is entered), 2 = standard level of error reporting, 

and 3 = all warning and error messages (note that this file is most useful for debugging 

purposes and should not be generated during production-level runs).  For the 

VISUALIZER FILE, the optional input (either a 0 or a 1) tells UEDDAM whether or not 

to write out information that will be used by the Visualizer to draw critical component 

risk zones.  The default value, if none is enetered, is 0 (i.e., UEDDAM will not write out 

this extra information).  Note also that if the user inputs the value 1 for this option, the 

INTERCEPT FILE must also be selected as an output file (UEDDAM will report an error 

if this file is not present in the list of output files in the control file).  The details and 

content of all output files are discussed in Section 7 of this manual. 

 

 

5.3.1.11 Event Identification (EVENT) 

 

This record is used by UEDDAM to define the parameters of an event.  Note that each 

EVENT record must have a corresponding LOCATION record.  Descriptions of the non-

keyword data elements are provided following the sample record. 

 

Keyword 
Event 

Type 

Engine 

ID 
Engine Type 

Engine 

Section 

Rotor 

Stage 

# of 

Iterations 

Random 

# Seed 

Debug 

Flag 

EVENT, DISK, Engine 1, High Bypass Turbofan, HPC, Stage 5, 100, 9679, 0 

 
Event Type – This is the user-defined identification for the specific event being analyzed.  It identifies the 

appropriate data from the DEBRIS records in the DEBRIS FILE (i.e., the text must appear the same in both 

records).   

 
Engine ID – This is the user-defined identification for the engine.  It identifies the appropriate data from the 

LOCATION and LIMITS records (i.e., the text must appear the same in all records). 
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Engine Type – This is the user-defined identification for the type of engine under investigation.  It 

identifies the appropriate data from the DEBRIS records in the DEBRIS FILE (i.e., the text must appear the 

same in both records). 

 
Engine Section – This is the user-defined identification for the engine section under analysis.  It specifies 

the appropriate data in the LOCATION, LIMITS, and DEBRIS records (i.e., the text must appear the same 

in all records). 

 
Rotor Stage – This is the user-defined identification for the specific stage of the engine section under 

analysis.  It specifies the appropriate data in the LOCATION and LIMITS records (i.e., the text must 

appear the same in all records). 

 
Number of Iterations – This specifies the number of iterations in the Monte-Carlo analysis for each nominal 

release point. 

 
Random Number Seed – This is the random number seed used to initiate the pseudo-random number draws 

used during a UEDDAM analysis.  Note that different compilers use different random number generators 

and thus, analyses performed with the same random number seed on different computers could potentially 

produce different results. 

 
Debug Flag – This field indicates if intermediate output files are kept from the COVART6 runs for later 

use.  Its default setting is 0, or no intermediate output files.  A setting of 1 indicates that all intermediate 

output files produced during a COVART run will be saved, whereas a setting of 2 will result in the same 

output files with the addition of those intermediate output files produced during a FASTGEN run.  See 

Section 6 for additional notes regarding the debug flag. 

 

 

5.3.1.12 Disk Location and Orientation (LOCATION) 

 

This record identifies the x,y,z coordinates of the undamaged disk origin (or centroid) as 

well as the orientation (in azimuth and elevation) of its axis (see Figure 5-23).  

Coordinate values are in units of inches per the geometry file data coordinates.  The 

azimuth and elevation of the axis are in degrees.  Alternatively, the disk axis may be 

oriented using dx/dy/dz direction vectors.  Note that the “up” orientation (which 

corresponds to the 0o debris release angle) is always assumed to be perpendicular to the 

disk axis (rotated toward the +Z-axis).  As an example, consider a tilt-rotor nacelle 

assembly rotated for hover mode.  Since the engine axis is oriented along Az = 0o and  

El = 90o, the “up” orientation will be considered to be along Az = 0o and El = 0o.  If 

multiple “up” orientations are valid, the azimuth aspect of the disk axis will determine the 

“up” orientation used by UEDDAM.  When only two of the last three data fields contain 

data, UEDDAM will assume Az/El orientation data in degrees.  With data in all three of 

the last data fields (i.e., dz not blank), UEDDAM will assume direction vector 

displacement data in inches. 

 

Keyword 
Engine 

ID 

Engine 

Section 

Rotor 

Stage 

Rotation 

Direction 

Centroid 

x-value 

Centroid 

y-value 

Centroid 

z-value 

Az 

(dx) 

El 

(dy) 
(dz) 

LOCATION, Engine 1, HPT, Stage 3, CCW, -330.00, 200.00, 125.00, 0.0, 0.0  

 
Engine ID – This is the user-defined identification for the engine.  It assigns the LOCATION data to the 

appropriate EVENT record (i.e., the text must appear the same in both records). 
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Engine Section – This is the user-defined identification for the engine section under analysis.  It assigns the 

LOCATION data to the appropriate EVENT record (i.e., the text must appear the same in both records). 

 
Rotor Stage – This is the user-defined identification for the stage of the engine section under analysis.  It 

assigns the LOCATION data to the appropriate EVENT record (i.e., the text must appear the same in both 

records). 

 
Rotation Direction – This identifies the direction of engine rotation when standing on the aircraft nose and 

looking aft.  Valid values are “CW” for clockwise and “CCW” for counter-clockwise. 

 
Centroid x, y, and z – The disk origin centroid coordinates (in inches) in the aircraft model. 

 
Az and El or dx, dy, and dz – Engine/disk axis orientation (in degrees or inches). 
 

 
 

Figure 5-23.  Disk Centroid and Orientation Angles. 

 

 

5.3.1.13 Disk Release Limits (LIMITS) 

 

The LIMITS record is optional.  This record specifies the rotational starting position 

(ASTART), extent of rotation (ASIZE), and step increment (AINCR) for which 

UEDDAM will generate shotlines and assessments.  Nominal release points will be 

computed for an integer number of steps within the specified rotation, beginning at 

ASTART (see Figure 5-24).  For example, if the user specifies ASTART = 0o,  

ASIZE = 360o, and AINCR = 15, UEDDAM will assess the entire circumference (with 

nominal release angles every 360/15 = 24o).  If this record is omitted, UEDDAM will 

compute results for the entire circumference of the disk using 72 increments (i.e., 
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nominal release angles every 5o).  If only one release point is desired for a UEDDAM 

run, the value of ASTART must be set to the desired rotational release angle and the 

values of ASIZE and AINCR must be set to 360 and 1, respectively (or 0 and 0, 

respectively). 

 

Keyword Engine ID 
Engine 

Section 

Rotor 

Stage 

Start Value 

(ASTART)  
Size Value 

(ASIZE) 

No. of 

Increments 

(AINCR) 

LIMITS, Engine 1, HPT, Stage 3, 75.0, 115.0, 4 

 
Engine ID – This is the user-defined identification for the engine.  It assigns the rotational LIMITS data to 

the appropriate EVENT record (i.e., the text must appear the same in both records). 

 
Engine Section – This is the user-defined identification for the engine section under analysis.  It assigns the 

rotational LIMITS data to the appropriate EVENT record (i.e., the text must appear the same in both 

records). 

 
Rotor Stage – This is the user-defined identification for the stage of the engine section under analysis.  It 

assigns the LIMITS data to the appropriate EVENT record (i.e., the text must appear the same in both 

records). 

 
Start Value – Specifies the number of degrees of rotation from top-dead-center to the start of the 

assessment rotational zone.  See Figure 5-24, variable ASTART. 

 
Size Value – Specifies the number of degrees of arc through which the assessment is processed.  A value of 

360 (or greater) will always perform a single complete rotation regardless of the starting rotation.  See 

Figure 5-24, variable ASIZE.  (The stop value for a partial analysis is obtained by sweeping through ASIZE 

degrees from ASTART.) 

 
Number of Increments – Specifies the number of step increments to evaluate within the assessment arc.  

The first assessment will use the starting rotation (ASTART) for its nominal release point and assess 

AINCR additional release points subsequently.  If the last release point matches the first (i.e., ASIZE = 

360), that point will not be processed.  See Figure 5-24, variable AINCR. 

 
 

0.0 

ASTART 

90.0 

180.0 

270.0 

AINCR = 4 

Rotation Angle 

Looking Fwd 

ASIZE 

 
Figure 5-24.  Disk Assessment Angles and Step Increments. 
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5.3.1.14 Sample Control File 

 

A sample control file is illustrated in Figure 5-25 for assessing a single event from one 

engine section.  Probability of hazard results are generated for three defined hazard 

levels, and all output files are created.   

 

 

Figure 5-25.  Example of the UEDDAM Control Input File. 

 

 

5.3.2 Debris Characterization File (DEBRIS FILE) 

 

The DEBRIS FILE contains information characterizing the specific debris for use in a 

UEDDAM assessment.  As with the UEDDAM control file, lines beginning with the “$” 

$-----------------Hazard Levels---------------- 

HAZARD, 1, First Level 

HAZARD, 2, Second Level 

HAZARD, 3, Third Level 

$ 

$------------------Executable------------------ 

COVART EXEC, ..\..\bin\covert_ueddam.exe 

$ 

$------------------Input Files----------------- 

TARGET FILE, ..\Geometry\Basic_Aircraft.fg4 

JTYPE FILE, jtype.txt 

PK FILE, pkh.txt 

MV FILE, mv.txt 

NEARFIELD FILE, UEDDAM_Nearfield.txt 

AUTOFAIL FILE, UEDDAM_Autofail.txt 

DEBRIS FILE, ..\Debris\disk.txt 

MATERIAL FILE, material.txt 

HOLEGROUP FILE, hole_groups.txt 

$ 

$-----------------Output Files----------------- 

SUMMARY FILE, Outputs\summary.txt 

DETAIL FILE, Outputs\detail.txt 

INTERCEPT FILE, Outputs\comp_intercept.txt 

HITSUM FILE, Outputs\hitsum.txt 

TRAJECTORY FILE, Outputs\traj.txt 

VISUALIZER FILE, Outputs\visual.txt, 1 

ERROR FILE, Outputs\error.txt, 1 

HOLESIZE FILE, Outputs\hole_sizes.txt 

SIGITSYS FILE, Outputs\system.txt, 0.97 

SIGITCRIT FILE, Outputs\critical.txt 

SIGITCHOLE FILE, Outputs\cumulative.txt, 5.3 

SIGITSHOLE FILE, Outputs\single.txt, 1.2 

$ 

$-----------------Option Flags----------------- 

TARGET REDUCTION, 0 

SMCOMP FIX SGMT, 0.33, 1 

THREADS, 3 

RESOURCE ESTIMATOR, 0 

PENETRATION, 0.6, 0.65, 0.7, 0.75, 0.8 

$ 

$---------------Event Definition--------------- 

EVENT, DISK, Left Engine, High Bypass Turbofan, FAN, Stage 1, 1, 2405, 1 

LOCATION, Left Engine, FAN, Stage 1, CCW, 76.5, 200.0, -57.0, 0, 0 

LIMITS, Left Engine, FAN, Stage 1, 335.0, 12.0, 3 
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symbol are comments and are ignored by the program.  Note that the same records 

described below in sections 5.3.2.1 thru 5.3.2.4 can be included in the UEDDAM control 

file instead of (or in addition to) the debris file.  If these records are in both the DEBRIS 

FILE and in the UEDDAM control file, then the control file data will supersede the 

DEBRIS FILE data.   

 

5.3.2.1 Disk Debris Mode Record (DEBRIS) 

 

The DEBRIS record is the first of a series of records, all of which must occur at least 

once for each EVENT record.  The DEBRIS record relates the subsequent debris 

characterization records to a given event.  This record is associated with one or more 

debris group identifier records (Section 5.3.2.2), one or more debris characterization 

records (Section 5.3.2.3), and zero or more debris mass distribution records (Section 

5.3.2.4). 

 

Keyword Engine Type 
Event 

Type 

Engine 

Section 
Debris Type I Debris Type II 

DEBRIS, High Bypass Turbofan, DISK, LPT, “All” or 

“SEGMENT” or   

“L-FRAGMENT” or 

“S-FRAGMENT”, 

Blank or 

“SEGMENT”  or  

“L-FRAGMENT”  or 

“S-FRAGMENT”,  

 
Engine Type – This is the user-defined identification for the engine.  It assigns the DEBRIS data to the 

appropriate EVENT record in the control file (i.e., the text must appear the same in both records/files). 

 
Event Type – This is the user-defined identification for the type of event that the debris represents.  It 

assigns the DEBRIS data to the appropriate EVENT record in the control file (i.e., the text must appear the 

same in both records/files). 

 
Engine Section – This is the user-defined identification for the engine section under analysis.  It assigns the 

DEBRIS data to the appropriate EVENT record in the control file (i.e., the text must appear the same in 

both records/files). 

 
Debris Type I/II – These fields identify the types of fragments produced in the event to be assessed.  The 

first debris type field can contain the word “All” to indicate that all debris types for this event are to be 

assessed.  When the first debris type field is specified “All,” the second debris type field is blank.  

Individual debris group identifiers (SEGMENT, L-FRAGMENT, and S-FRAGMENT)  indicate that only 

one or two debris types will be assessed (rather than all characterized).  The second debris type field is used 

to specify the second type of debris to be assessed.   

 

 

5.3.2.2 Debris Group Identifiers 

 

The debris group identifier record follows a DEBRIS record and may be one of three 

types identifying whether the debris group is a disk segment (SEGMENT), a large 

fragment (L-FRAGMENT), or a small fragment (S-FRAGMENT) .  One or more of these 

records are required based on the entries in the debris type fields in the DEBRIS record  
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(Section 5.3.2.1).  Figure 5-26 and Figure 5-27 illustrate the parameters defined for the 

debris group identifiers. 

 

Keyword Centroid Radius 
Number of Debris 

Groups 
Grid Size 

Multi-Segment 

Debris 

SEGMENT, 10.0, 3 (must be  10), 1, 1 

(further description for this debris type is described in Sections 5.3.2.3 and 5.3.2.4) 

 

Keyword Centroid Radius 
Number of Debris 

Groups 
Grid Size 

L-FRAGMENT,  12.5, 5 (must be  10), 1 

(further description for this debris type is described in Sections 5.3.2.3 and 5.3.2.4) 

 

Keyword Centroid Radius 
Number of Debris 

Groups 

S-FRAGMENT, 11.0, 2 (must be  10) 

(further description for this debris type is described in Section 5.3.2.3) 

 
Centroid Radius – This field contains the release radius from the disk origin centroid to the debris center of 

mass being thrown from the engine (see Figure 5-26).  The centroid radius is entered in inches to be 

consistent with geometry coordinates.  In the case of a SEGMENT, the centroid radius (Rc)  is calculated as 

follows: 

𝑅𝑐 =
4𝑅 sin(𝜃 2⁄ )

3𝜃
 

 

where R is the disk radius (measured in inches) and  is the degrees of arc (measured in radians) that the 

segment subtends. 

 

Fragment Centroid Radius

Segment Centroid Radius

Rotor Centroid
Trajectory

Swath

 
 

Figure 5-26.  Debris Release Radii. 

 
 

Number of Debris Groups – This field specifies the number of debris characterization records (Section 

5.3.2.3) that must accompany this type of debris for this event.  Note that in the case of S-FRAGMENTs 

and L-FRAGMENTs, each debris group represents a different average mass and thus does not have to be 

equal to the total number of fragments. 
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Grid Size – This field specifies the distance in inches between adjacent shotlines generated for the parallel 

array of grids when assessing segment and large fragment debris types.  Fragment swath dimensions are 

computed from debris characterization dimensions and combined with the grid size to determine shotline 

origins for each grid cell within the swath.  Figure 5-27 illustrates the parallel ray grid relationship to disk 

segment and large fragment dimensions. 

 

 
 

Figure 5-27.  Parallel Ray Grid for Generic Fragment Dimensions. 

 

 
Multi-Segment Debris – This optional field identifies how the user wants to simulate the release of small 

and/or large fragments with each segment being released in a multi-segment analysis.  A value of “0” 

indicates that small and/or large fragments will be released with the first segment only; this is the default 

behavior (which will result if this field is left blank).  A value of “1” indicates that small and/or large 

fragments will be released with all segments.  Note that the small and/or large fragment characterization(s) 

will be the same for each segment release, the offset for small and/or large fragments is controlled by the 

segment offset, and the variance and fore/aft trajectories will be redrawn for each release (see Section 

5.3.2.3). 

 

 

5.3.2.3 Debris Characterizations 

 

This record is repeated “Number of Debris Groups” times (identified on the preceding 

record described in Section 5.3.2.2).  Unlike other records described thus far, this record 

lacks a keyword and must immediately follow its respective debris group identifier record 

(Section 5.3.2.2) or mass distribution record (Section 5.3.2.4) for the same debris type.  A 

maximum of 10 fragment characterization groups may be used within each debris type 

for multiple fragment assessments.  Due to the large masses involved with uncontained 

engine debris, input units for fragment weight are in pounds rather than grains, as in the 

PK FILE.  The remaining inputs are in standard English units (i.e., feet per second, 
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inches, and degrees, as appropriate).  The format for this record varies depending on the 

debris type that it follows. 

 

Following a SEGMENT record: 

 
Group 

ID 

Segment 

Material 

Segment 

Weight 

Release 

Velocity 

Segment 

Arc 

Rotor 

Thickness 

Fwd 

Angle 

Aft 

Angle 

1, Steel, 45.0, 300.0, 120.0, 2.5, 5.0, -7.5, 

 
Variance/ 

Offset 
Distribution Mean Deviation Direction 

10.0, 

“NORMAL”, 

“SKEWED”, 

“UNIFORM”, 

or blank 

-1.0, 0.5, 
“FORE” 

or “AFT” 

 

Group ID – Identifies the ith group number from within “Number of Debris Groups” for the debris type. 

 

Segment Material – This UEDDAM material name is either selected from the predefined material types 

listed in Table 5-4 or is defined in the MATERIAL FILE (see Section 5.3.5). 

 
Segment Weight – Weight of disk segment in pounds. 

 
Release Velocity – Specifies the velocity of the segment at the exterior surface of the engine nacelle (in 

fps).  Note that if the cowl structure is modeled, then the exit velocity should be the fragment initial 

velocity based on the fragment centroid radius and rotor speed minus 25% for frictional effects.  The 

formula to use in this case is: 

 
 Exit Velocity = 0.75 × (/360) × RPM × Rc, 

 where: 

 Rc = centroid radius in inches, and 

 RPM = engine revolutions per minute. 
 
Segment Arc – The number of degrees of arc that the segment contains.  For example, 1/3 of a disk equals 

an arc segment of 120 degrees. 

 
Rotor Thickness – Maximum thickness of the rotor disk in inches (see Figure 5-28).  Segment material 

density is treated uniformly across the thickness. 

 
Forward Angle – This field specifies the forward angle (see Figure 5-28), which represents the maximum 

forward deviation from the disk’s plane of rotation from which the debris could potentially be released.  A 

negative forward angle indicates that all debris is released aft of the plane of rotation. 

 
Aft Angle – This field specifies the aft angle (see Figure 5-28), which represents the maximum aft 

deviation from the disk’s plane of rotation from which the debris could potentially be released.  A positive 

aft angle indicates that all debris is released forward of the plane of rotation. 
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Figure 5-28.  Debris Characterization – Fore/Aft Spread Angles. 

 

 
Variance/Offset – As shown in Figure 5-29, the variance is a delta angle in the plane of rotation around the 

nominal release angle in which a random number draw will be used to determine the actual release angle 

used for shotline generation.  When multiple segments are released from a single disk stage, the 

variance/offset field for subsequent segments specifies an angular offset from the first segment’s nominal 

release angle.  For example, suppose three equally divided segments (120 degrees each) are thrown from an 

engine.  The first segment has a variance of 5 degrees, the second segment has an offset of 90 degrees, and 

the third segment has an offset of 200 degrees.  Given a release point of 50 degrees, the first segment 

trajectory is drawn randomly within the variance for the release point (i.e., 50°±5°); the second segment 

trajectory is drawn randomly within the same variance for the nominal release point plus offset1 (i.e., 

140°±5°); and the third segment trajectory, like the second, is drawn randomly within the same variance for 

the nominal release point plus offset2 (i.e., 250°±5°).  Note that if the user wants to simulate the release of 

more than one segment at a single release point, all but the first segment must be converted to large 

fragments (see L-FRAGMENT debris characterization record). 

 

 
Figure 5-29.  Debris Characterization – Variance. 

 

 
Distribution – During a UEDDAM analysis, a random draw is performed to select the specific angle of 

deviation from the disk’s plane of rotation from which debris will be released.  If the keyword UNIFORM 

appears in the Distribution field, each angle within the fore/aft spread is equally likely to be chosen in the 

random draw (see Figure 5-30).  If the NORMAL distribution is chosen, one particular angle  is more 

likely to be drawn than any other and symmetric angles fore and aft of  are equally likely to be drawn (see 

Figure 5-31).  If the distribution is SKEWED, one particular angle  is again more likely to be drawn than 

any other but symmetric angles fore and aft of  are no longer equally likely to be drawn (see Figure 5-32).  

(Note that the SKEWED distribution is a modification of the statistical Gamma distribution.)  If this field 

remains blank, the default distribution is UNIFORM. 
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Fore Spread 
Angle 

Aft Spread 
Angle 

Probability of Drawing an 
Angle 

 
Figure 5-30.  Debris Characterization – Uniform Distribution. 

 

 
Mean – The angle that is most likely to be chosen in a non-uniform random draw (i.e.,  or , depending on 

the selected distribution).  (See Figure 5-31 and Figure 5-32.)  The mean must lie in the interval between 

the aft spread angle and the fore spread angle.  Note that if the UNIFORM distribution is selected, this 

entry is not required. 

 
Deviation – The rate at which the selected non-uniform distribution falls off on either side of the mean 

(measured in degrees).  For the NORMAL distribution, the deviation is also referred to as the standard 

deviation ().  For the SKEWED distribution, the deviation is also referred to as a scale or stretch 

parameter ().  (See Figure 5-31 and Figure 5-32.)  In either case, the deviation must be greater than zero.  

Note that if the UNIFORM distribution is selected, this entry is not required. 

 

                                                                               
Fore Spread 

Angle 

Aft Spread 
Angle 

Probability of Drawing an 
Angle 

Fore Spread 
Angle 

Aft Spread 
Angle 

Probability of Drawing an 
Angle 

 1  2 > 1 

       

 

Figure 5-31.  Debris Characterization – Normal Distribution. 

 

 
Direction – This field specifies in which direction (either FORE or AFT of the mean) the angles are more 

likely to be drawn from a SKEWED distribution (see Figure 5-32).  Note that if the UNIFORM or 

NORMAL distribution is selected, this entry is not required. 
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                                                                                     Fore Spread 
Angle 

Aft Spread 
Angle 

Probability of Drawing an 
Angle 

Fore Spread 
Angle 

Aft Spread 
Angle 

Probability of Drawing an 
Angle Skewed Aft 

2 > 1 

Skewed Fore 

1 

  

 

Figure 5-32.  Debris Characterization – Skewed Distribution. 

 

 

Following an L-FRAGMENT or S-FRAGMENT record: 

 
Group 

ID 
Count 

Frag. 

Material 
Weight Velocity Length Width Thickness Orientation 

1, 10, Steel, 0.25, 500.0, 4.0, 2.0, 0.3, 45.0, 

 

 

Sigma 
Fwd. 

Angle 

Aft 

Angle 
Variance Distribution Mean Dev.  Dir.  

45.0, 30.0, -70.0, 30.0, 

“NORMAL”, 

“SKEWED”, 

“UNIFORM”, 

or blank 

-25.0, 5.0, 

“FORE”  

or 

“AFT” 

 

Group ID – Identifies the ith group number from within “Number of Debris Groups” for the debris type. 

 
Count – Specifies the number of fragments within the current mass group. 

 

Fragment Material – This UEDDAM material name is either selected from the predefined material types 

listed in Table 5-4 or is defined in the MATERIAL FILE (see Section 5.3.5). 

 
Weight – The average weight of the individual fragments in pounds. 

 
Velocity – Specifies the average exit velocity of the fragments at the exterior surface of the engine nacelle 

in feet per second.  Note that if the cowl structure is modeled, then the exit velocity should be calculated 

using the equations shown in the preceding SEGMENT format discussion. 

 
Length – Specifies the length of the fragment in inches (see Figure 5-33).  If converting a SEGMENT to an 

L-FRAGMENT, length is calculated as follows: 

 

   length = 2Rsin(θ/2), 

 

where R is the disk radius and θ is the segment arc. 

 
Width – Specifies the width of the fragment in inches (see Figure 5-33).  If converting a SEGMENT to an 

L-FRAGMENT, width is set equal to the grid size. 
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Thickness – Specifies the thickness of the fragment in inches (see Figure 5-33).  If converting a SEGMENT 

to an L-FRAGMENT, fragment thickness is the same dimension as rotor thickness. 

 

 
Figure 5-33.  Sample Fragment Dimensions. 

 

 
Orientation – The nominal orientation (tilt) angle between the fragment’s trajectory direction and its 

primary surface normal direction (see Figure 5-34).  If converting a SEGMENT to an L-FRAGMENT, 

orientation should be set to 0. 

 

Orientation Angle

(yaw)

Trajectory

Fragment

Length

Fragment

Width

 
 

Figure 5-34.  Fragment Orientation. 

 

 
Sigma – The maximum delta in fragment orientation angle from the nominal value.  Used in Monte-Carlo 

analysis.  If converting a SEGMENT to an L-FRAGMENT, sigma should be set to 0. 

 
Forward Angle – Forward spread angle as shown in Figure 5-28 and discussed in the preceding SEGMENT 

format discussion. 

 
Aft Angle – Aft spread angle as shown in Figure 5-28 and discussed in the preceding SEGMENT format 

discussion. 

 
Variance – As shown in Figure 5-29, the variance angle is an angle range in the plane of rotation around the 

nominal release angle in which a random number draw determines the actual release angle used for shotline 

generation. 

 
Distribution – As discussed in the preceding SEGMENT format discussion and seen in Figures 5-30, 5-31, 

and 5-32, the distribution from which a random draw is performed to select the specific angle of deviation 

from the disk’s plane of rotation from which debris will be released.  The optional inputs for this field are 

NORMAL, UNIFORM, or SKEWED.  If left blank, the default distribution is UNIFORM. 

 

Length

Width

Thickness

Thickness

Length
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Mean – As shown in Figure 5-31 and Figure 5-32, the angle that is most likely to be chosen in a non-

uniform random draw (i.e.,  or , depending on the selected distribution).  The mean must lie in the 

interval between the aft spread angle and the forward spread angle.  Note that if the UNIFORM distribution 

is selected, this entry is not required. 

 
Deviation – As discussed in the preceding SEGMENT format discussion and seen in Figure 5-31 and 

Figure 5-32, the rate at which the selected non-uniform distribution falls off on either side of the mean (i.e., 

 or , depending on the selected distribution).  The deviation, in both cases, must be greater than zero.  

Note that if the UNIFORM distribution is selected, this entry is not required. 

 
Direction – This field specifies in which direction (either FORE or AFT of the mean) the angles are more 

likely to be drawn from a SKEWED distribution (see Figure 5-32).  Note that if the UNIFORM or 

NORMAL distribution is selected, this entry is not required. 

 

 

5.3.2.4 Debris Mass Distribution 

 

In an attempt to better represent the performance of the disk segments and large 

fragments during penetration, UEDDAM includes an option to vary the mass distribution 

of these debris types.  For example, near the center of mass, the segment/fragment 

realistically retains its full penetration capability, while near its edges, it loses some 

penetration capability (due to rotation, tapered shape, etc.).  It is not intended for the sum 

of the mass distribution to equal the total mass of the fragment.  The intention of this 

feature is to permit the user to adjust the mass profile to better simulate the penetration 

effects of a large fragment on nonhomogeneous structure.  This record must directly 

follow its respective SEGMENT or L-FRAGMENT record. 

 

No. of 

Mass 

Divisions 

(N) 

Dist. 

Fraction 

for 

Mass 1 

Mass 

Fraction 

for Mass 1 

Dist. 

Fraction 

for Mass 

2 

Mass 

Fraction 

for Mass 2 

… 

Dist. 

Fraction 

for Mass N 

Mass 

Fraction for 

Mass N 

10, 0.25, 1.0, 0.50, 1.0, …, 1.0, 0.8, 

 
Number of Mass Divisions – This field specifies the number of distance/mass pairings to be processed for 

the associated debris characterization  (Section 5.3.2.3).  The number of divisions counts from the center of 

the SEGMENT/L-FRAGMENT to one edge of its length.  Each division will be mirrored for the length 

from the center to the opposite edge.  Figure 5-35 illustrates a mass distribution for four divisions. 
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Figure 5-35.  Mass Distribution Fraction. 

 
Distance Fraction – This field specifies the fractional displacement from the debris center to the outer 

boundary for a given mass fraction.  All shotlines in the parallel grid that are located within this distance 

fraction but beyond the previous distance fraction are assigned the paired mass fraction value.  Note that 

the shading of the ranges and the distance parameters in Figure 5-35 are actually the distance fraction 

multiplied by one-half the swath length. 

 
Mass Fraction – This field specifies the percent of the SEGMENT/L-FRAGMENT mass to apply to 

penetration equations within COVART.  For example, components near the center of the swath are 

impacted with the full penetration force of the debris.  As the distance between the component and swath 

centerline increases, the penetration force reduces possibly deflecting the debris rather than penetrating the 

component (i.e., a glancing blow).  Note that the trajectory itself is not altered, this only accounts for 

reduced damage and failure due to a glancing blow.  Distance fraction and mass fraction must be entered as 

pairs.  Be careful not to split the pair across record boundaries for readability (distance on one line and 

mass on the next is an error); continuation lines must start with a distance value and all lines must end with 

a mass value. 

 

 

5.3.2.5 Generic Engine Debris Model 

 

The generic debris model [5] (reproduced in Appendix E) was compiled from multiple 

sources of uncontained engine debris damage data by the NAWCWD, China Lake and 

contains fragment characterizations for turboprop, low bypass ratio, and high bypass ratio 

engine categories. 

 

It is often of interest to develop an engine debris model specifically for an assessment.  In 

order to generate this data, the generic debris fragment model (a database of analyzed and 

compiled historical event data) must be applied to the specific engine disk and blade 

physical characteristics to determine the physical size and weight of uncontained debris 

fragments.  The fragment release velocity used can be either the standard fragment 

velocity (as presented in the generic debris fragment model) or calculated based on 

engine physical speeds, nacelle description, and engine rotor speeds.  As an example, 

consider a steel high pressure turbine (HPT) blade of a high bypass ratio (HBR) engine 

with physical dimensions blade length = 2.25 in., blade width = 1.5 in., blade thick- 



 

79 

ness = 0.1 in., and disk radius = 12 in.  According to the generic debris fragment model 

(see Appendix E), for an HPT blade event, the average number of fragments released per 

event is 10; the normalized size of a blade fragment is 80% (where “normalized size” is 

the fragment length divided by the blade length, in this case); the debris weight is  

0.25 lbs.; the standard velocity of a blade fragment is 337 feet per second; and the spread 

angle is -50o to 20o.  Thus, applying this model to the physical HPT blade, the resulting 

debris has dimension length = 0.80 × 2.25 = 1.8 in., with other dimensions remaining the 

same.  Assuming that the blade debris is released from the disk rim, the centroid radius 

for the S-FRAGMENT is 12 + (1.8/2) = 12.9 in.  In order to complete the debris record 

for this HPT blade event, there are three remaining inputs that cannot be determined from 

the generic engine debris model or the engine physical characteristics:  the fragments’ 

orientation angle, sigma, and release variance.  For these parameters, the values 45o, 0o, 

and 20o are chosen as representative.  The completed debris file entry for this HBR 

engine HPT blade event can be seen in Figure 5-36 in the form of the records described 

in Sections 5.3.2.1 thru 5.3.2.4. 

 
 

$High Bypass Ratio Engine Fragment Characterization 

$ HPT Section 

DEBRIS,High Bypass Ratio,BLADE,HPT,S-FRAGMENT 

S-FRAGMENT,12.9,1 

1,10,Steel_300,0.25,337,1.8,1.5,0.1,45,0,20,-50,20,UNIFORM 

 

Figure 5-36.  Generic Engine Debris Model Example Debris File Entry. 

 

 

5.3.3 Near-Field Components File (NEARFIELD FILE) 

 

The NEARFIELD FILE contains a list of geometric components that are treated as so-

called “near-field” components.  Near-field components are the small, non-shielding 

components internal to each engine nacelle.  This input is required in order to exclude 

these components from the shotline output as they have typically already been considered 

in the debris mass and velocity characterization data.  This list should not, however, 

contain any nearby components that may act as significant shielding to the engine debris.  

There is only one record type for this file (keyword NEARFIELD).  It identifies the 

engine for which the near-field components are assigned and lists all of the associated 

near-field components. 

 

Keyword Engine ID 
Count 

(N) 

Comp. 

ID 1 

Comp. 

ID 2 

Comp. 

ID 3 
… 

Comp. 

ID N 

NEARFIELD,  Engine 1, 10, 1001, 1002, 1003, …, 1010 

 
Engine ID – This is the user-defined identification for the engine.  It assigns the NEARFIELD data to the 

appropriate EVENT record in the control file (i.e., the text must appear the same in both records/files). 

 
Count – The number of near-field components associated with this engine. 
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Component ID # – The component IDs are the component identification numbers (from the TARGET 

FILE) for each near-field component.  The component IDs can wrap over successive lines, and there are no 

restrictions on how many components may be listed per line or on how many lines.  The only requirement 

is that all of the components associated with the engine are entered in succession (i.e., numerical order) and 

separated by a comma space. 

 

Figure 5-37 shows an example of a NEARFIELD FILE for a twin-engine aircraft. 

 
 

NEARFIELD, Engine 1, 10, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010 

NEARFIELD, Engine 2, 15, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061,  

             1062, 1063, 1064, 1065 

 

Figure 5-37.  Example of NEARFIELD FILE. 

 

 

 

5.3.4 Auto-Fail Components File (AUTOFAIL FILE) 

 

The AUTOFAIL FILE is required in order to automatically fail components and systems 

that are driven by the engine experiencing the uncontained debris event.  The so-called 

“auto-fail” components are used during evaluation of component and system redundancy 

for each uncontained engine debris event.  There is only one record type for this file 

(keyword AUTOFAIL).  It identifies the engine for which the automatically failed 

components are to be assigned and lists all of the flight phases or hazard levels to which 

the failure is critical. 

 

Keyword Engine ID 
Comp. ID 

Name 
Hazard Levels of Criticality 

AUTOFAIL, Engine 1, HYD_P1, 1, 2, 3, 4, 5, 6 

 
Engine ID – This is the user-defined identification for the engine.  It assigns the AUTOFAIL data to the 

appropriate EVENT record in the control file (i.e., the text must appear the same in both records/files). 

 
Component ID Name – The component names (as designated in the JTYPE FILE) for each automatically 

failed component. 

 
Hazard Levels of Criticality – The hazard levels of criticality are those flight phases or hazard levels for 

which a failure of the component has a consequence.  Up to 15 hazard levels of criticality can be identified 

per UEDDAM run session. 

 

One record is to be entered for each component related to an engine.  There are no limits 

on the number of components that can be assigned to an engine.  Figure 5-38 shows an 

example of the AUTOFAIL FILE for a twin-engine aircraft. 
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AUTOFAIL, Engine 1, FUEL_P1, 1, 2, 3, 4, 5 

AUTOFAIL, Engine 1, BYPASS1, 2, 3, 4, 5 

AUTOFAIL, Engine 2, HYD_P2, 1, 2, 3, 4, 5 

AUTOFAIL, Engine 2, GEN_2, 2, 3, 4, 5 

AUTOFAIL, Engine 2, FUEL_P2, 4, 5 

AUTOFAIL, Engine 2, BYPASS2, 4, 5 

 

Figure 5-38.  AUTOFAIL FILE Example. 

 

 

5.3.5 Material Properties File (MATERIAL FILE) 

 

Beginning with UEDDAM v4.3, the MATERIAL FILE is now a required input for 

UEDDAM analyses.  This file identifies material names, assigns COVART6 

identification numbers, and defines the material properties required for penetration 

calculations (see Section 3.7).  Due to the large variety of materials in use on aircraft 

today, in addition to the predefined material types available to the user (see Table 5-4), 

the MATERIAL FILE also allows the user to define up to 44 additional material types for 

his or her particular study (for a total of 50 non-liquid materials).  There is only one 

record type for this file (keyword MATPROP). 

 

Keyword 
UEDDAM 

Material Name 

COVART 

Material ID 
Density 

Shear 

Constant 1 

(Cs_50) 

Shear 

Constant  2 

(Cs_0) 

(optional) 

MATPROP,  Aluminum_Other, 33,  372.0, 20029.0, 42000.0 

 
UEDDAM Material Name – User-defined name to be associated with the material type.  This name is used 

in the debris characterization records (see Section 5.3.2.3) associated with L-FRAGMENT,  

S-FRAGMENT, and SEGMENT debris group identifiers. 

 
COVART Material ID – User-selected identification number to be associated with the material.  This 

material ID number is used in the JTYPE FILE to assign a material type to a component.  The selected 

material ID number must be in the range [1,50]. 

 
Density – Density (in grains per cubic inch) of the material type. 

 
Shear Constant 1 (Cs_50) – Standard shear constant (in psi) associated with the material type (see Reference 

10 for more information regarding this parameter).  (Note:  the value entered for shear constant is converted 

from psi to Pascals within the FAA penetration equation module of COVART.) 

 

Shear Constant 2 (Cs_0) – Secondary shear constant (in psi) assocated with the material type (see Section 

3.7 for more information regarding this parameter).  (Note:  the value entered for shear constant is 

converted from psi to Pascals within the FAA penetration equation module of COVART.)  This is an 

optional record intended to provide additional flexibility to the user to better illustrate the shielding 

characteristics of materials. 
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The standard MATERIAL FILE, included in each of the sample case directories as part 

of the UEDDAM installation package, is additionally provided in Figure 5-39 for 

reference. 

 
 

MATPROP, Steel_300, 5, 1980.0, 188500.0 

MATPROP, Ti_285, 7, 1130.0, 130529.4 

MATPROP, Al_2024, 8, 701.0, 40029.0 

MATPROP, Graphite, 46, 390.6, 36403.2 

MATPROP, Inconel, 47, 2135.0, 174039.2 

 

Figure 5-39.  Standard UEDDAM MATERIAL FILE. 

 

 

5.3.6 Hole Size Group File (HOLEGRP FILE) 

 

The HOLEGRP FILE contains a list of geometric components for which UEDDAM will 

generate hole size statistics.  There is only one record type for this file (keyword 

HOLEGRP).  It defines the name of a group for which hole size statistics are desired and 

lists all of the components that are to be considered part of this group.  As this feature 

was developed for decompression analysis, a typical list of components would include 

the pressure vessel structure of the skin, windows, doors, floor, and pressure bulkhead.  

Note that this feature would not be used for rear-mounted engines, where the burst zone 

is behind the pressure bulkhead. 

 

Keyword 
Hole Size Group 

Name 

Count 

(N) 

Comp. 

ID 1 

Comp. 

ID 2 

Comp. 

ID 3 
… 

Comp. 

ID N 

HOLEGRP,  Skin, 10, 351, 352, 353, …, 360 

 

Hole Size Group Name – User-defined name to be associated with the hole size group.  This name will be 

used in the hole size file output. 
 
Count – The number of components associated with the hole size group name. 

 
Component ID # – The component IDs are the TARGET FILE component identification numbers for each 

HOLEGRP component.  The component IDs can wrap over successive lines, and there are no restrictions 

on how many components may be listed per line or on how many lines.  The only requirement is that all of 

the components associated with the group are entered in succession (i.e., numerical order). 

 

Figure 5-40 shows an example of the HOLEGRP FILE for a twin-engine aircraft. 

 
 

HOLEGRP, Port Wing Skin, 16, 900, 902, 904, 906, 908, 910, 912, 914, 916, 918, 920, 922, 924, 

             926, 928, 930 

HOLEGRP, Fuselage Skin, 100, 351-400, 404,408,450-459, 603, 607, 700, 716-750 

HOLEGRP, Starboard Wing Skin, 16, 901, 903, 905, 907, 909, 911, 913, 915, 917, 919, 921, 

             923, 925, 927, 929, 931 

 

Figure 5-40.  HOLEGRP FILE Example. 
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5.3.7 Guidelines/Techniques and Code Limitations 

 

The following are guidelines and known limitations inherent to the UEDDAM code: 

 

• Take care that case, spelling, and spacing is consistent between inputs in the 

various UEDDAM input files.  This is especially true in the case of user-defined 

identifications (see  

• Figure 5-41, which identifies the user-defined engine descriptors associated with 

an individual event along with all the other records/keywords that use these same 

descriptors). 

 

 
 

Figure 5-41.  User-Defined Identifications and Their Use in Multiple Records. 

 

• When performing batch UEDDAM runs, the full executable pathname in the 

control file - including executable - is limited by the command window to 260 

characters.  Additionally, if any of the directory names contain spaces, double 

quotes must be used around the entire pathname in the control file. 

• Do not put blank lines or comment lines between records defining a debris 

category  (i.e., once a record of the type described in Section 5.3.2.1 is entered, no 

blank lines or comments can be entered until after a record of the type described 

in Section 5.3.2.4 has been entered).  Blank lines and comments are acceptable 

elsewhere within the debris file.   
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6 INPUT FILE VERIFICATION AND UEDDAM EXECUTION 

 

After input generation, the next step of the UEDDAM analysis process is to perform a 

verification of the various input files created.  Setting up a “simple” UEDDAM execution 

and troubleshooting the resulting errors until the run is successful can accomplish the first 

half of this step in the process.  The second half of this step is accomplished by analyzing 

the results (as defined in the various UEDDAM output files discussed in Section 7) from 

this “simple” execution.  Upon completion of input file verification, production runs can 

be set up and executed in order to produce results for post processing and analysis. 

 

 
Figure 6-1.  Current Location in the UEDDAM Analysis Process: 

Input File Verification and UEDDAM Execution. 

 

 

6.1 OPERATING SYSTEM REQUIREMENTS 

 

UEDDAM has been successfully tested on PCs** running the Microsoft Windows 10 and 

CentOS v6.8 and v7.5 operating systems.  It is recommended that UEDDAM production 

runs be performed on PCs with no less than 512 MB RAM and with processor speeds no 

less than 1 GHz.   

 

In order to provide the user with example run times, a complete set of events for the 

generic twin-engine aircraft discussed in Appendix D (a single debris type released every 

5° from each of the 18 stages of each engine) was run using UEDDAM v3.1, v5.1, and 

v6.0 on a variety of computers available to SURVICE and the FAA.  Because the three 

PCs had multiple processors, the THREADS keyword was utilized in all cases.  For the 

 
** Note that the hard drive must be NTFS formatted. 
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HPC executions, the “0” option for the CLUSTER keyword was selected.  Run times are 

illustrated in Table 6-1. 

 

Table 6-1.  Sample UEDDAM Run Times 

Computer 
Description 

Computer 
Type 

Dell 
Precision 

T3400 

Dell 
Precision 

7720  

Dell 
Precision 

7720 

Node Cluster of Dell 
R630 & R730 

Servers with 28 
CPUs per Node and 
a 56 Gb/s Infiniband 

Network 
Processor 

Type 
Intel Core 2 

Duo 
Intel Xeon 

E3 
Intel Xeon 

E3 
Intel Xeon E5 

Processor 
Speed 

2.66GHz 2.9GHz 2.9GHz 2.3/2.6 Ghz 

RAM 7.93GB 64GB 64GB 256 GB per node 
Hard 
Drive 

750GB 1TB 1TB N/A 

UEDDAM Version v3.1 v5.1 v6.0 v6.0 

Appendix D 
– SINGL (5 
Iterations) 

Run 
Times 

6 hr 
18 min 

3 hr 
36 min 

3 hr  
46 min 

4 hr 
1 min* 

Appendix D 
– MULTI 

(100 
Iterations) 

6 day 
8 hr 

5 min 

1 day 
7 hr 

55 min 

1 day 
4 hr 

25 min 

0 day 
10 hr 

40 min** 

* 1 Node (28 Cores) 
** 4 Nodes (112 Cores) 
 

 

Of importance to note is that use of the HPC option does not result in runtime 

improvements over standalone systems for the SINGL analysis due to its low number of 

iterations.   Not until the number of iterations is greater than the number of available 

cores does use of the HPC option become a valuable alternative. 

 

 

6.2 RUNNING UEDDAM 

 

UEDDAM execution takes place from a command line.  Therefore, it is necessary to 

open a command prompt or terminal window and change directories to the one 

containing the UEDDAM control file.  Then, from the control window, type “ueddam 

control.ucf”, where control.ucf is the name of the UEDDAM control file to be executed.  

Note that if the UEDDAM executable does not reside in the same directory as the control 

file, in order to execute UEDDAM without typing in the absolute (or relative) path to 

ueddam.exe, it must be properly set in the path environment variable (note that if the 

UEDDAM installation successfully completed, the path variable should already have 

been modified appropriately).   

 

During a UEDDAM execution, the program reports its current status (i.e., the specific 

event and/or release angle being processed) in the control window.  Below/adjacent to the 

status descriptor, a progress bar indicates the percent completion for that specific 
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event/release angle.  Upon successful completion, the program will report the total 

UEDDAM run time. 

 

 

6.3 TROUBLESHOOTING 

 

In order to determine why an execution of UEDDAM might be failing, it is first 

important to know the names and contents of some of the more useful files generated by 

UEDDAM (when the debugging flag is set to 1 or 2).  The three most important of these 

files include: 
 

• O_COVART – This is the COVART printout file.  It includes an echo of all 

COVART input data as well as any COVART error messages. 

• UEDDAM Error File – See Section 5.3.1.5 for defining the UEDDAM error file. 

• LOGIC.ERR – This is the mkwgtf.exe error file.  It includes messages generated 

to provide the user assistance in tracking down input errors in the logic file.   

The following are the most common error messages output by UEDDAM in the error file 

(see Section 7.7 for a description of the error file).  For each error message listed, 

techniques to track down the error are given. 

 

• FATAL ERROR: Cannot open JTYPE (MV, PK) file for reading 

o Solution: In the UEDDAM control file, verify that the path specified for 

the JTYPE (MV, PK) FILE is correct. 

• FATAL ERROR: Could not find one or more of the required files 

o Solution: In the UEDDAM control file, verify that the paths specified for 

the various input files are correct. 

• FATAL ERROR: One or more events without debris 

o Solution: In the UEDDAM control and debris files, verify that the event 

type and engine type are specified correctly. 

• FATAL ERROR: One or more events without locations 

o Solution: In the UEDDAM control and debris files, verify that the engine 

section, engine ID, and rotor stage are specified correctly. 

• FATAL ERROR: No Component for COMPPK record 

o Solution: In the JTYPE file, verify that any component with a COMPPK 

record also has a corresponding geometric representation in the model or 

COMALIAS record. 

• FATAL ERROR: Error in MV file 

o Solution: The problem involves the MV FILE.  If an O_COVART file was 

generated, check it for error messages.   

 

For those times when UEDDAM terminates “ungracefully” (i.e., when a UEDDAM.exe 

– Application Error window appears), the problem most likely involves one of the 

COVART input files, as opposed to one of the UEDDAM-specific inputs.  If an 

O_COVART file was generated, check it for error messages.  Types of problems that 

may exist include, but are not limited, to the following:  mistyped word; incorrect 
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spacing; a PK table ID used in the JTYPE file, but not defined in the PK file; use of an 

undefined material type in the JTYPE file; etc. 

 

Note that when a failed run does occur, it is important that all output files (including any 

debugging folders and files) are deleted before a UEDDAM run is attempted again. 

 

The UEDDAM visualizer can be used to check for non-fatal errors in various UEDDAM 

input files.  The UEDDAM visualizer can display hazard zones, shotlines, probability 

plots, and risk angle plots all of which can help detect logic and/or typing errors.  

However, in order to access the full capability of these features, certain output files from 

a successful UEDDAM execution are required.  To display hazard zones, for example, 

the VISUALIZER file is needed.  To display shotlines, the debugging flag should be set 

to “1” in the control file and the VISUALIZER file is necessary.  To display probability 

plots, the SUMMARY and DETAIL files are needed.  Finally, to view risk angle plots, 

the INTERCEPT file is required.  For more information on any of the visualizer’s 

specific capabilities, see the UEDDAM Visualizer User Manual, included with the 

UEDDAM installation. 

 

 

6.4 PRODUCTION RUNS 

 

Upon completion of input file verification, production runs can begin.  A Microsoft Excel 

spreadsheet (with embedded macro) and Java-based post-processing tool (discussed in 

Section 8) have been developed for the PC to aid in performing the production runs and 

post-processing for a specific type of UEDDAM assessment.  This specific assessment 

consists of analyzing an aircraft’s risk for catastrophic failure against one or more debris 

categories over multiple flight phases.  The particular directory structure that the 

spreadsheet creates can be seen in Figure 6-2.   
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Figure 6-2.  Required Directory Structure for Production Runs and Post-Processing. 

 

The spreadsheet, titled Run_Setup.xls, is provided in the “tools” directory of the PC 

UEDDAM installation package.  It assumes the utilization of the file structure detailed in 

Figure 6-2.  The files and folders within the dashed red boxes are created by the 

Run_Setup.xls macro.  Note that this file structure creates a unique control file for each 

EVENT record.  If multiple EVENTs are specified in a single UEDDAM control file, 

each EVENT output is appended to the output from the first EVENT run.  Thus, a single 

EVENT per control file was used to simplify the search algorithms used in the post-

processing program (see Section 8).  Upon execution, each control file specifies that the 

output files requested be written to the same folder as contains the control file.   

 

The spreadsheet is composed of two parts: a run setup panel and input data tables.  It is 

recommended that the user open the spreadsheet Run_Setup.xls for reference in the 

following sections.  (For a sample illustrating use of the setup macro, see Section 9.11.) 

 

6.4.1 Input Data Tables 

 

Up to six debris types and associated descriptions can be input in the Debris Category 

Data Table.  The entry beneath the last debris type entry should be the word “ALL”, 

which indicates to the embedded macro the end of the data list as well as allows the user 

to select all the debris types in the run setup panel.  The macro assumes that a debris file 

named “UEDDAM_Debris” exists in the “Input_Files” directory and contains all debris 

types listed in the Debris Category Data Table. 
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Similar to the debris types, up to six engine IDs may be entered in the Engine Type Data 

Table with the word “ALL” in the row beneath the last engine ID entry.  As with the 

debris categories, the “ALL” statement indicates to the macro the end of the data list as 

well as allows the user the option (in the run setup panel) to choose that all engines be 

evaluated in UEDDAM. 

 

Up to 15 flight phases may be entered in the Flight Phase Data Table.  The flight phase 

descriptions will be used as titles for the output data and should therefore not contain any 

spaces.  The flight phase failure distribution values (Dp) assign a probability of a rotor 

burst event occurring in each phase of flight (see Table 4-1 for the failure distributions 

defined in the AC 20-128A).  The sum of these probabilities should always equal 1.0.  

Note that although UEDDAM does not utilize the Dp values, they will be used by the 

post-processing program to calculate the full flight profile PHAZ. 

 

The executable location cells allow the user to change the path for the UEDDAM and 

UEDDAM-COVART executables.  The location of the UEDDAM executable file is used 

in the batch file that the macro can create if specified.  The entered UEDDAM-COVART 

executable file path will be specified within each of the control files. 

 

The embedded macro assumes that all stages entered in the Engine Disk Centroid 

Location Data Table are rotating in the same direction and that each engine has the same 

stages.  The centroid of each disk should be entered using the FASTGEN geometry 

coordinates. 

 

 

6.4.2 Run Setup Panel 

 

Once all the control file input data has been entered, the user can use the form at the top 

of the spreadsheet to specify options for control file generation.  The debris type, engine 

name, and component name menus in the set-up panel are populated by the input data 

tables previously discussed.  The user can select a single debris type, engine, and 

component combination, or if “ALL” is selected from the drop-down menu, a control file 

will be generated for each of the items in that menu. 

 

The user can select the desired output files by clicking on the appropriate check boxes on 

the lower central portion of the panel.  Note that if the check box for the HOLESIZE 

output file is selected, the macro assumes that a hole group input file named 

“UEDDAM_Holegrp” exists in the “Input_Files” directory.  For the four output files that 

require additional information (i.e., ERROR, SIGITSYS, SIGITSHOLE, and 

SIGITCHOLE FILEs), the macro will use the value entered in the adjacent input box to 

complete the control file entry.  Due to the size of the output files, it is recommended that 

the DETAIL, INTERCEPT, VISUALIZER, TRAJECTORY, and ERROR files be 

deselected during production runs since the aforementioned files are primarily used for 

debugging and/or investigation of smaller data sets.  The SUMMARY and HITSUM files 

do not appear in the list of available output files, as the embedded macro automatically 

includes them for output in the control files. 
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Both the JTYPE and MV/LOGIC files should be located in the “Input_Files” directory if 

they are the same for all engines being assessed.  If, however, the engines have different 

JTYPE and MV/LOGIC files, copies of the appropriate files should be included in each 

“Engine ID” directory, rather than the “Input_Files” directory.  Selecting the appropriate 

option (i.e., “UNIQUE FOR EACH ENGINE” or “SAME FOR EACH ENGINE”) 

indicates the location of the JTYPE and MV/LOGIC files. 

 

Seven run options are available to the user: “DEBUGGING,” “TARGET REDUCTION,”  

“HYPERSAMPLING,”  “PENETRATION,” “GENERATE BATCH FILE,” “EXECUTE 

ANALYSIS_TOOL,” and “THREADS.”   If the “DEBUGGING” option is selected, a 

value of 1 will be entered for the debugging flag at the end of the EVENT record; 

otherwise, a value of 0 is entered.  It is recommended that debugging not be used for 

production runs as the size of the output files created can be quite large.  Selecting any of 

the “TARGET REDUCTION,”  “HYPERSAMPLING,”  “PENETRATION,”  or 

“THREADS”  options results in the corresponding entry to be written in the control file.  

Note that if the “HYPERSAMPLING,” “PENETRATION,”   and/or “THREADS” 

options are selected, the embedded macro will use the values entered/selected for 

“Hypersampling Options,”  “Gamma Values,” and/or “Multiple Processor Flag,” 

respectively, to complete the control file entry.  The “GENERATE BATCH FILE” option 

writes a Microsoft Windows batch file called “UEDDAM_Runs.bat” to the root 

directory.  This batch file contains an execution statement for each of the control files 

generated by the macro.  Selecting the “EXECUTE ANALYSIS_TOOL” option adds the 

command to execute the post-processing program at the end of the batch file. 

 

A file whose content is specified by the “Summary of Output” options on the lower right-

hand side of the panel controls the data scanned by the post-processor, Analysis_Tool.jar.  

The “ALL OUTPUT FILES” option results in an input file that instructs the post-

processing program to scan the folders for all possible combinations of debris type, 

engine ID, and component.  The “NEW OUTPUT FILES” option will direct the post-

processing program to search only those UEDDAM runs executed by the batch file.  Note 

that if “ALL” is selected for the debris, engine, and component, the “ALL OUTPUT 

FILES” and “NEW OUTPUT FILES” options would result in the same summary tables.  

Finally, if “NONE” is selected, the post-processing program input file will not be created. 

 

The macro is executed by clicking on the button labeled “Set Up UEDDAM Input 

Control Files.”  Note that the macro does not actually execute the batch file if the 

“GENERATE BATCH FILE” option is selected.  This file can be executed either by 

double clicking on it or calling it from a command prompt.  The latter option is preferred 

since if an error occurs during a batch file executed by double clicking, the program 

window will close automatically and the user will be unable to determine the cause of 

failure.  
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7 UEDDAM OUTPUT 

 

All but one of the output files from UEDDAM are in comma-separated text (CSV) 

format.  Up to 12 output files may be created based upon the presence of the respective 

filename record in the UEDDAM control file.  If no output files are specified in the 

control file, UEDDAM will by default output only event level summary information in a 

file named “HazSummary.” 

 

 

7.1 EVENT LEVEL SUMMARY FILE (SUMMARY FILE) 

 

The SUMMARY FILE is designed to give the user a quick and easy reference of event 

impact on the total system, based on release point.  Each event is written as a separate 

summary within the SUMMARY FILE.  The event summary sections are further 

subdivided into two parts. 

 

The first part is the input review (header) section.  This echoes event input data, including 

the EVENT, LOCATION, and LIMITS records used for the event.  The second part is a 

descriptive table (data section) that shows PHAZ of the total system for the event at 

specific release angles.  The release angles will encompass the angles noted as “Start” 

and “Stop” in the header section.  At each release angle, there is a PHAZ given for each of 

the hazard levels the user specified in the UEDDAM control file.  Additionally, for each 

event, UEDDAM prints out an average PHAZ over all release points and an average PHAZ 

over 360o (assuming the release angles not assessed have zero probability of hazard).  

Figure 7-1 provides an example of a SUMMARY FILE, for a single release point of 0o. 
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Figure 7-1.  Sample SUMMARY FILE. 

 

 

7.2 COMPONENT LEVEL SUMMARY FILE (HITSUM FILE) 

 

The HITSUM FILE gives the total average Phaz values of all iterations for each release 

point for each component as well as the PHAZ for the overall system.  The header echoes 

the respective EVENT record from the UEDDAM control input file and provides column 

headers for the Phaz levels.  The subsequent lines identify the component and its Phaz 

contribution for each hazard level.  The first component listed is for the entire aircraft 

(labeled “SYSTEM”) and is also printed in the SUMMARY FILE as the average over all 

release points for each event.  Additionally, when more than one release point is 

considered, UEDDAM provides the total average Phaz values over 360o for each 

component (again, UEDDAM assumes that release angles not assessed result in a zero 

Phaz)  as well as the average over all release angles assessed.  Figure 7-2 provides an 

example of a HITSUM FILE for a single release point. 

 

 

Event Identification:

, Event Type      , BLADE,

, Engine ID       , Engine1,

, Engine Type     , HighBypassRatio,

, Engine Section  , HPT,

, Rotor Stage     , Stage1,

, Engine Parameters:

,     , Rotation Direction    , CCW

,     , x-value of centroid , -1367.70, in,

,     , y-value of centroid , 743.00, in,

,     , z-value of centroid , 183.80, in,

,     , Direction Vectors of Engine Axis:

,     ,     , Dx, 1.00

,     ,     , Dy, 0.00

,     ,     , Dz, 0.00

, Run Parameters:

,     , Start                 , 0.00, deg,

,     , Size                  , 0.00, deg,

,     , Stop                  , 0.00, deg,

,     , # of Release Points   , 1,,

, Statistical Parameters for each release point:

,     , # of Iterations       , 1,,

,     , Random Number Seed    , 9679,,

,     ,   Debris Release Angle,  Serious Damage, Significant Damage,  Minor Damage, 

,     ,                   0.00,     0.0000e+000,        1.0000e+000,   1.0000e+000, 

,     ,                Average,     0.0000e+000,        1.0000e+000,   1.0000e+000, 

,     ,   Average over 360 deg,     0.0000e+000,        2.7778e-003,   2.7778e-003, 
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Figure 7-2.  Sample HITSUM FILE. 

 

 

7.3 DETAILED HAZARD INFORMATION FILE (DETAIL FILE) 

 

The DETAIL FILE  produced by UEDDAM is similar to the HITSUM FILE except for 

the fact that it breaks out the component level Phaz results for the individual iterations for 

each release point.  Following the last iteration for a release point, the average (over all 

iterations) system and component Phaz are printed for the completed release point.  Note 

that UEDDAM eliminates spurious output data due to component redundancies by 

utilizing the built-in fault tree interrogator; UEDDAM only allows for the output of sub-

systems and components with direct impact to the hazard.  For example, consider the 

fault tree for the hydraulic system of a generic twin-engine aircraft considered in  

Figure 4-3 and in Section 5.2.3.  UEDDAM, instead of printing results for each 

individual component in the fault tree, would only print results for HYD_SYS.   

Figure 7-3 provides an example of a DETAIL FILE for a single-iteration assessment.  It 

is recommended that this file only be generated for small runs. 

 

 

Figure 7-3.  Sample DETAIL FILE.  

 

 

EVENT:, DISK, Engine1, HighBypassTurbofan, HPT, Stage1 

 

Average ALL Iterations, 1 Release Points 

  ,NAME            ,          1,          2,          3,          4,          5, 

  ,SYSTEM          ,0.0000e+000,0.0000e+000,0.0000e+000,1.0000e+000,1.0000e+000, 

  ,LeftPl          ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP1         ,0.0000e+000,0.0000e+000,0.0000e+000,8.7330e-001,8.7330e-001, 

  ,RightP2         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP3         ,0.0000e+000,0.0000e+000,0.0000e+000,1.0000e+000,1.0000e+000, 

  ,RightP4         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP5         ,0.0000e+000,0.0000e+000,0.0000e+000,9.9600e-001,9.9600e-001, 

  ,RightP6         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,Engine          ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

 

 

EVENT:, DISK, Engine1, HighBypassTurbofan, HPT, Stage1 

 

Iteration 1, Release Point 1: 

  ,NAME            ,          1,          2,          3,          4,          5, 

  ,SYSTEM          ,0.0000e+000,0.0000e+000,0.0000e+000,1.0000e+000,1.0000e+000, 

  ,LeftPl          ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP1         ,0.0000e+000,0.0000e+000,0.0000e+000,8.7330e-001,8.7330e-001, 

  ,RightP2         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP3         ,0.0000e+000,0.0000e+000,0.0000e+000,1.0000e+000,1.0000e+000, 

  ,RightP4         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP5         ,0.0000e+000,0.0000e+000,0.0000e+000,9.9600e-001,9.9600e-001, 

  ,RightP6         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,Engine          ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

Average Release Point 1: 

  ,NAME            ,          1,          2,          3,          4,          5, 

  ,SYSTEM          ,0.0000e+000,0.0000e+000,0.0000e+000,1.0000e+000,1.0000e+000, 

  ,LeftPl          ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP1         ,0.0000e+000,0.0000e+000,0.0000e+000,8.7330e-001,8.7330e-001, 

  ,RightP2         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP3         ,0.0000e+000,0.0000e+000,0.0000e+000,1.0000e+000,1.0000e+000, 

  ,RightP4         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,RightP5         ,0.0000e+000,0.0000e+000,0.0000e+000,9.9600e-001,9.9600e-001, 

  ,RightP6         ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 

  ,Engine          ,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000,0.0000e+000, 
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7.4 TRANSLATIONAL RISK ANGLE FILE (INTERCEPT FILE) 

 

The output in the INTERCEPT FILE duplicates the results of the manual assessment 

process discussed in the AC 20-128A [8].  It provides the translational rotation angles, 

the fore and aft spread angles, and the probability of hit Ph for each individual 

component.  The header records of the output file echo the respective EVENT entered 

and provide column headers for the data. 

 

The column headers are defined according to the following information: 

• Minimum rotational angle (MIN(t)).  

• Maximum rotational angle (MAX(t)).   

• The percent of the rotational angle window that the component encompasses 

(Ph(t)).  It is computed as: Ph(t) = (Max(t) – Min(t)) / 360.0 

• The maximum fore angle of the component (FORE(s)) .  

• The maximum aft angle of the component (AFT(s)) .  

• The percent of the fore/aft spread angle window that the component encompasses 

(Ph(s)).  It is computed as: Ph(s) = (FORE(s) – AFT(s)) / (Fwd Angle – Aft Angle)  

• The subcomponent Ph is computed as Ph(t) times Ph(s).   

 

Finally, the name of critical components and assemblies (as defined in the JTYPE FILE), 

the respective component numbers that comprise the JTYPE name, and the intercept 

angles for each component are printed.  Figure 7-4 illustrates a simple INTERCEPT FILE 

where each JTYPE name represents a single component. 

 

 

Figure 7-4.  Sample INTERCEPT FILE. 

 

 

 

 

EVENT:, DISK, Engine1, HighBypassTurbofan, HPT, Stage1 

 

 MIN(t),     MAX(t),      Ph(t),    FORE(s),     AFT(s),      Ph(s),         Ph, 

LeftPl, 

 Component Number: 1, 

    131.051,    265.486,      0.373,      5.000,     -5.000,      1.000,      0.373, 

RightP1, 

 Component Number: 2, 

    357.725,      2.306,      0.013,     -2.231,     -5.000,      0.277,      0.004, 

RightP2, 

 Component Number: 3, 

           ,           ,           ,           ,           ,           ,           , 

RightP3, 

 Component Number: 4, 

    357.167,      2.893,      0.016,      2.928,     -2.928,      0.586,      0.009, 

RightP4, 

 Component Number: 5, 

           ,           ,           ,           ,           ,           ,           , 

RightP5, 

 Component Number: 6, 

    357.725,      2.306,      0.013,      5.000,      2.231,      0.277,      0.004, 

RightP6, 

 Component Number: 7, 

      8.165,     12.887,      0.013,      5.000,     -5.000,      1.000,      0.013, 

Engine, 

 Component Number: 1001, 

           ,           ,           ,           ,           ,           ,           , 
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7.5 TRAJECTORY FILE 

 

The output in the TRAJECTORY FILE relays information about individual shotline data 

to the user.  The output clearly displays the different release trajectories with respect to 

nominal and delta release angles, fragment weight and yaw, fore/aft trajectories, etc.  The 

trajectory output is broken into three parts. 

 

The first part is similar to the first part of the SUMMARY FILE in that it echoes the input 

event data for the assessment.  The second part is a reformatted display of the entered 

debris characterization for the given event.  The third is a detailed table of information 

created from the individual shotlines used to simulate the fragment types of the event.  

The text version of this file can be difficult to interpret, and it is recommended that this 

file be viewed using any available spreadsheet software.  Once in a spreadsheet, the data 

contained is self-explanatory.  Also, because this file outputs detailed data for each and 

every ray generated during a UEDDAM run, it can become extremely large.  It is 

recommended that this file only be generated for small runs. 

 

 

7.6 HOLE SIZE FILE (HOLESIZE FILE) 

 

The HOLESIZE FILE contains hole size statistics for the components and groups as 

defined in the HOLEGRP FILE.  For each group of components, UEDDAM will output 

the minimum, maximum, and average hole areas (in square inches) averaged over 

iteration for every release angle.  Additionally, this output file includes the average 

number of fragments that hit and the average number of fragments that penetrate each 

group of components (averaged over iteration) for every release angle.  The header 

records of the HOLESIZE FILE echo the component groupings as entered in the 

HOLEGRP FILE, echo the respective EVENT entered, and provide column headers for 

the data.  Figure 7-5 illustrates a simple HOLESIZE FILE for three release angles of an 

LFRAG event. 
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Figure 7-5.  Sample HOLESIZE FILE. 

 

 

7.7 SIGNIFICANT ITERATION SUMMARY FILES 

 

Because for large runs, the entire output can be too large to be retained (or simply, too 

overwhelming to sift through), the user has the option to specify that significant iteration 

summary files be generated.  These files give the user the ability to focus on those 

particular release points and iterations that result in damage above a certain threshold.  

The output can be summarized according to four different criteria:  total system-level 

PHAZ,  critical components, single impact hole size,  or cumulative hole size.  The header 

portion of each output file is an echo of the EVENT record, details of the specific release 

points evaluated for that event, and an echo of the user-input evaluation criteria.  What 

follows are the release point significant iterations.   

 

 

Group Information: 

     , Port_Skin,  201,  202,  203,  204,  213,  214, 

     , Stbd_Skin,  251,  252,  253,  254,  263,  264, 

     , Port_Wing,  101,  102,  103,  104,  105,  106, 

     ,          ,  107,  108,  109,  110, 

     , Stbd_Wing,  111,  112,  113,  114,  115,  116, 

     ,          ,  117,  118,  119,  120, 

 

EVENT:, LFRAG, Engine1, HighBypassRatio, Fan, Stage1 

 

Release Point 1:, Angle 350.00, 

  ,Group Name, Maximum Hole Area, Minimum Hole Area, Average Hole Area, Fragment Hits, 

Fragment Penetrations, 

  ,Port_Skin,              23.74,              0.00,             10.01,          1.40,                  

1.40, 

  ,Stbd_Skin,              24.37,              0.00,             10.26,          1.60,                  

1.60, 

  ,Port_Wing,             114.68,              9.84,             52.13,          2.80,                  

2.80, 

  ,Stbd_Wing,               0.00,              0.00,              0.00,          0.00,                  

0.00, 

 

Release Point 2:, Angle 0.00, 

  ,Group Name, Maximum Hole Area, Minimum Hole Area, Average Hole Area, Fragment Hits, 

Fragment Penetrations, 

  ,Port_Skin,              27.75,              9.41,             17.06,          2.00,                  

2.00, 

  ,Stbd_Skin,              18.52,              0.00,             10.75,          1.20,                  

1.20, 

  ,Port_Wing,              73.30,             41.06,             53.58,          3.80,                  

3.80, 

  ,Stbd_Wing,              33.36,              0.00,             20.29,          1.60,                  

1.60, 

 

Release Point 3:, Angle 10.00, 

  ,Group Name, Maximum Hole Area, Minimum Hole Area, Average Hole Area, Fragment Hits, 

Fragment Penetrations, 

  ,Port_Skin,              99.21,             75.34,             87.50,          6.40,                  

6.40, 

  ,Stbd_Skin,               0.00,              0.00,              0.00,          0.00,                  

0.00, 

  ,Port_Wing,               0.00,              0.00,              0.00,          0.00,                  

0.00, 

  ,Stbd_Wing,               0.00,              0.00,              0.00,          0.00,                  

0.00, 
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7.7.1 Summary File (SIGITSYS FILE) 

 

The SIGITSYS FILE contains information detailing iterations whose total system-level 

PHAZ exceeds the user-input value in the UEDDAM control file.  For each release angle, 

those iterations that have at least one hazard level meeting the criterion are enumerated.  

Following the iteration identification number is the hazard level ID and associated PHAZ 

value for each of the hazard levels with a total system-level PHAZ exceeding the user-

input value.  Figure 7-6 illustrates a simple SIGITSYS FILE for three release points (five 

iterations each) of a multiple fragment event. 

 

 
Figure 7-6.  Sample SIGITSYS FILE. 

 

 

7.7.2 Critical Component Hit Summary File (SIGITCRIT FILE) 

 

The SIGITCRIT FILE contains information detailing iterations where the uncontained 

engine debris impacts one or more critical components.  For each release angle, those 

iterations that have at least one hazard level meeting the criterion are enumerated.  

Following the iteration identification number is the hazard level ID and associated 

EVENT:, MULTI, Engine1, HighBypassRatio, Fan, Stage1 

 

     ,     , Start                 , 350.00, deg, 

     ,     , Size                  , 20.00, deg, 

     ,     , Stop                  , 10.00, deg, 

     ,     , # of Release Points   , 3,, 

 

     ,     , Random Number Seed    , 9627,, 

 

Criteria:, 1.00, P_HAZ 

Debris Release Angle:, 350.00 

Number of Iterations:, 5 

 

Iteration #, Hazard Level,P_HAZ, Hazard Level,P_HAZ, Hazard Level,P_HAZ, 

          1,            1,1.00 ,  

          2,            2,1.00 ,  

          3,            2,1.00 ,  

          4,            1,1.00 ,  

          5,            3,1.00 ,  

Number of Significant Iterations:, 5 

 

Criteria:, 1.00, P_HAZ 

Debris Release Angle:, 0.00 

Number of Iterations:, 5 

 

Iteration #, Hazard Level,P_HAZ, Hazard Level,P_HAZ, Hazard Level,P_HAZ, 

          1,            1,1.00 ,            2,1.00 ,            3,1.00 , 

          3,            1,1.00 ,            2,1.00 ,            3,1.00 , 

          4,            1,1.00 ,  

          5,            1,1.00 ,  

Number of Significant Iterations:, 4 

 

Criteria:, 1.00, P_HAZ 

Debris Release Angle:, 10.00 

Number of Iterations:, 5 

 

Iteration #, Hazard Level,P_HAZ, Hazard Level,P_HAZ, Hazard Level,P_HAZ, 

          1,            1,1.00 ,            3,1.00 ,  

          2,            2,1.00 ,  

          5,            1,1.00 ,  

Number of Significant Iterations:, 3 
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number of critical components hit for each of the hazard levels with one or more hit on a 

critical component.  Figure 7-7 illustrates a simple SIGITCRIT FILE for three release 

points (five iterations each) of a multiple fragment event. 

 

 
Figure 7-7.  Sample SIGITCRIT FILE. 

 

 

7.7.3 Cumulative Hole Area Summary File (SIGITCHOLE FILE) 

 

The SIGITCHOLE FILE contains information detailing iterations where fragment 

penetrations result in a cumulative hole size exceeding the user-input value in the 

UEDDAM control file.  For each release angle, those iterations that meet the criterion are 

enumerated.  Following the iteration identification number is the cumulative hole size in 

square inches.  Figure 7-8 illustrates a simple SIGITCHOLE FILE for three release points 

(five iterations each) of a multiple fragment event. 

 

EVENT:, MULTI, Engine1, HighBypassRatio, Fan, Stage1 

 

     ,     , Start                 , 350.00, deg, 

     ,     , Size                  , 20.00, deg, 

     ,     , Stop                  , 10.00, deg, 

     ,     , # of Release Points   , 3,, 

 

     ,     , Random Number Seed    , 9627,, 

 

Debris Release Angle:, 350.00 

Number of Iterations:, 5 

 

Iteration #, Hazard Level,# of Crits Hit, Hazard Level,# of Crits Hit, Hazard Level,# 

of Crits Hit,  

          1,            1,12            ,            2,2             ,            3,5             

,  

          2,            1,12            ,            2,2             ,            3,2             

,  

          3,            1,15            ,            2,4             ,            3,5             

,  

          4,            1,11            ,            2,1             ,            3,4             

,  

          5,            1,2             ,            2,1             ,            3,1             

,  

Number of Significant Iterations:, 5 

 

Debris Release Angle:, 0.00 

Number of Iterations:, 5 

 

Iteration #, Hazard Level,# of Crits Hit, Hazard Level,# of Crits Hit, Hazard Level,# 

of Crits Hit,  

          1,            1,13            ,           2,4             , 

          3,            1,19            ,           2,8             ,            3,12            

,  

          4,            1,12            ,           3,5             ,  

Number of Significant Iterations:, 3 

 

Debris Release Angle:, 10.00 

Number of Iterations:, 5 

 

Iteration #, Hazard Level,# of Crits Hit, Hazard Level,# of Crits Hit, Hazard Level,# 

of Crits Hit,  

          1,            1,11            ,            2,3             ,            3,7             

,  

Number of Significant Iterations:, 1 



 

99 

 
Figure 7-8.  Sample SIGITCHOLE FILE. 

 

 

7.7.4 Hole Size Summary File (SIGITSHOLE FILE) 

 

The SIGITSHOLE FILE  contains information detailing iterations where fragment 

penetrations result in a single hole size exceeding the user-input value in the UEDDAM 

control file.  The output contained in this file is identical to that in the SIGITCHOLE 

FILE, but the data represents the single largest hole size generated by fragment 

penetrations, as opposed to the cumulative. 

 

 

7.8 VISUALIZER FILE 

 

The VISUALIZER FILE is a non-human-readable binary output file used solely by the 

UEDDAM visualizer (provided as part of the UEDDAM installation).  The output file 

provides the visualizer with the necessary information to render the trajectories and 

trajectory limit information.  Because this file contains information only useful to the 

visualizer, no discussion of its contents is included here (for additional information, 

EVENT:, MULTI, Engine1, HighBypassRatio, Fan, Stage1 

 

     ,     , Start                 , 350.00, deg, 

     ,     , Size                  , 20.00, deg, 

     ,     , Stop                  , 10.00, deg, 

     ,     , # of Release Points   , 3,, 

 

     ,     , Random Number Seed    , 9627,, 

 

Criteria:, 43.00, in^2  

Debris Release Angle:, 350.00 

Number of Iterations:, 5 

 

Iteration #, Cumulative Holesize 

          1,     43.11 

          2,    162.79 

          4,     82.24 

Number of Significant Iterations:, 3 

 

Criteria:, 43.00, in^2  

Debris Release Angle:, 0.00 

Number of Iterations:, 5 

 

Iteration #, Cumulative Holesize 

          1,     82.23 

          2,    115.58 

          3,    119.72 

          4,    106.65 

          5,     84.20 

Number of Significant Iterations:, 5 

 

Criteria:, 43.00, in^2  

Debris Release Angle:, 10.00 

Number of Iterations:, 5 

 

Iteration #, Cumulative Holesize 

          3,     98.84 

          5,     75.34 

Number of Significant Iterations:, 2 
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please see the UEDDAM Visualizer User Manual, provided as part of the UEDDAM 

installation).  Note that it is recommended that this file only be generated for small runs. 

 

7.9 ERROR FILE 

 

The ERROR FILE contains the warnings and error messages as output by UEDDAM to 

the level of detail requested by the user (e.g., level 1 = fatal errors only).  Generation of 

this file is recommended when in the “Verify” phase of the UEDDAM process as it can 

help the user identify where problems are occurring.  It is important to note that a level 3 

ERROR FILE contains a copious amount of benign warnings that can safely be ignored 

by the user.  As an example, Table 7-1 gives warnings that are typically reported for an 

assessment and that can be safely ignored. 

 

Table 7-1.  UEDDAM Warnings that Can Safely Be Ignored 

UEDDAM WARNING NOTES 

WARNING: NEGATIVE AIRGAP, 

RESET TO 0.0, FOR THESE TWO LOS': 

 

WARNING: Unused Debris, will be 

removed: 

UEDDAM does not remove data from the 

debris file created by the user, but rather 

from an intermediate file created during 

execution if it is not needed for the 

particular event being assessed. 

WARNING: No Component (L_ENG) to 

add data to. 

 

WARNING: Component number 7918: 

Not in CBULK file. 

If component 7918 is an alias component, 

this warning can safely be ignored.  If not, 

there might be an error in either the JTYPE 

or geometry input files.  Note that 

UEDDAM will run to completion in either 

case. 

WARNING: ..\..\..\input_files\DEBRIS1(6) 

-- S-FRAGMENT record SIGMA value 

breaks practical limits of 0 to 90. 

 

WARNING: ASIZE for EVENT greater 

than or equal to 360 deg.  Changed to 

337.5. Decreased number of Increments to 

15. 

 

 

 

UEDDAM errors signal the user that a problem with one or several of the inputs exists.  

The errors reported by UEDDAM are not necessarily fatal.  (Fatal errors are discussed in  
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Section 6.3).  For example, the following is a non-fatal error that may arise out of an 

assessment and would be reported in a level 2 or level 3 ERROR FILE: 
 

• UEDDAM ERROR: There are duplicate element id numbers(1) within a 

component. 

o Note that UEDDAM, in this case, will internally renumber the elements 

and therefore will execute correctly, but the user should correct the error 

for future assessments. 
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8 POST-PROCESSING 

 

At this point in the UEDDAM analysis process, all input files have been created and 

verified and all runs have been successfully completed.  All that remains is to post 

process and analyze the results.  This section will focus on post-processing the results 

from the particular production runs discussed in Section 6.4 (i.e., analyzing an aircraft’s 

risk for catastrophic failure against one or more debris categories over multiple phases of 

flight). 
 

 

Figure 8-1.  Current Location in the UEDDAM Analysis Process: Post-Processing. 

 

 

UEDDAM, upon successful completion, supplies the user with information that can be 

used to show compliance with the AC 20-128A requirements (and more).  Recall that 

UEDDAM and its post processors accomplish steps 3) through 5) of the AC 20-128A 

process, as outlined in Section 2.1.  Steps 3) through 5) can be more explicitly written as: 
 

a) For each rotor stage, establish the threat windows (i.e., the translational and 

spread risk angles) where, due to a combination of individual damages, a 

catastrophic risk exists. 

b) For each rotor stage, calculate the risk factor for all critical hazards. 

c) For each rotor stage, calculate the combined risk factor (Csp)  for the phase of 

flight and average over 360o. 

d) Calculate the overall rotor stage risk (Cs)  for each stage over all n flight 

phases (incorporating Dp). 

 Cs = (Dp1 × Csp_1) + (Dp2 × Csp_2) + ··· + (Dpn × Csp_n) 

e) Average all m rotor stages to obtain the mean engine risk (CE). 

- CE = (Cs1 + Cs2 + ··· + Csm) / m 

f) Average all k engines to obtain the mean aircraft risk (CA). 

- CA = (CE1 + CE2 + ··· + CEk) / k 
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UEDDAM internally performs the calculations in steps a) thru c); in particular, Csp can be 

taken directly from the SUMMARY FILE (see Section 7.1).  Thru simple post-processing 

(i.e., applying the phase failure distributions [Dp] identified in Table 4-1 and then 

performing a series of averages), steps d) thru f) can be calculated, resulting in a mean 

aircraft risk for the particular debris category of interest. 

 

As an example, consider the analysis of a generic twin-engine aircraft’s risk for 

catastrophic failure against a single one-third disk segment over all 7 phases of flight.  

Each engine of the generic twin has 18 rotor stages (i.e., fan, low pressure compressor 

stages 1 thru 3, high pressure compressor stages 1 thru 9, high pressure turbine, and low 

pressure turbine stages 1 thru 4).  For each of the 36 engine rotor stages (18 rotor stages 

per engine and two engines), a separate UEDDAM execution is performed using the 

debris category DISK (a single one-third disk segment).  These runs result in  

7×18×2 = 252 Csp values in 36 separate UEDDAM SUMMARY FILEs.  For a particular 

stage and engine (i.e., engine 1, fan stage), Cs = (Csp1 × Dp1) + (Csp2 × Dp2) + ··· + (Csp7 × 

Dp7).  This calculation directly leads to the mean engine risk for a single engine (i.e., 

engine 1) CE = (Cs1 + Cs2 + ··· + Cs18) / 18 and therefore the mean aircraft risk CA = (CE1 + 

CE2) / 2.   

 

Since it is equally important to know the various system and component contributions to 

aircraft risk, a Java-based post-processing tool called Analysis_Tool.jar has been 

developed for the PC by NAWCWD that summarizes and provides averages for multiple 

UEDDAM output files.  As in the case of the UEDDAM control file, the input to 

Analysis_Tool.jar (which is called Analysis_Tool_Input.txt) follows a {Keyword}, 

{Data} format, as follows. 

 
Keyword Entries 

DEBRIS, Debris category(ies) being assessed; names correspond to Event 

Type in the disk debris mode record in the DEBRIS FILE and in 

the EVENT record in the control file 

ENGINES, Engine(s) being assessed; names correspond to Engine ID in the 

EVENT, LOCATION, and LIMITS records in the control file 

ROTORS, Rotor stage(s) being assessed 

FLIGHT_PHASES, Flight phase(s) being assessed; names correspond to hazard level 

specification description in the control file 

FLIGHT_PHASE_WEIGHTS, Corresponding flight phase failure distribution value(s) 

 

For the example discussed previously, Analysis_Tool_Input.txt would be as shown in 

Figure 8-2. 

 
 

DEBRIS, DISK 

ENGINES, ENGINE1, ENGINE2 

ROTORS, Fan, LPC-1, LPC-2, LPC-3, HPC-1, HPC-2, HPC-3, HPC-4, HPC-5, HPC-6, HPC-7, HPC-8, HPC-9, HPT, LPT-1, LPT-2, LPT-3, LPT-4 

FLIGHT_PHASES, T/O_to_V1, V1_to_V1+30, Initial_Climb, Cruise, Descent, Approach, Landing 

FLIGHT_PHASE_WEIGHTS, 0.35, 0.2, 0.22, 0.14, 0.3, 0.2, 0.4 

 

Figure 8-2.  Analysis_Tool_Input.txt Example. 
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Note that the input file for the post-processing tool is automatically generated when the 

“summary of output” option is selected in the Microsoft Excel spreadsheet, used to create 

the directory structure and necessary UEDDAM control files for production runs (see 

Section 6.4).  Thus, the same directory structure, executable locations, and file names (as 

illustrated in Figure 6-2) are expected in order for the post processor to execute 

successfully. 

 

The executable for the post processor is provided in the “tools” directory of the PC 

UEDDAM installation package.  Upon successful execution, Analysis_Tool.jar provides 

the user with five summary output files:  
 

• PH_Sum.txt (located in the <Root Directory>) – provides an overall summary of 

the results to include the combined risk factor by category of debris, engine, 

rotor section, and flight phase; overall stage risk by category of debris, engine, 

and rotor section; mean engine risk by category of debris and engine; and mean 

aircraft risk by category of debris. 

• Combined_Debris.csv (located in the <Root Directory>) – provides an average 

Phaz value of each contributing component for the various debris categories. 

• Combined_Engine.csv (located in every <Debris ID> directory) – provides an 

average Phaz value of each contributing component for the various engines. 

• Combined_Rotor.csv (located in every <Engine ID> directory) – provides an 

average Phaz value of each contributing component for the various rotor sections. 

• Combined_Flight_Phase.csv (located in every <Stage ID> directory) – provides 

an average Phaz value of each contributing component for the various flight 

phases. 
 

The last four of these files are in comma separated text format that can be read into a 

spreadsheet program for manipulation and plotting purposes.  (For a sample illustrating 

use of the post-processor, see Section 9.11.) 
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9 SAMPLE CASES 

 

Fourteen sample cases have been developed to allow the user to become familiar with 

UEDDAM and its capabilities.  The first three samples involve small fragments, large 

fragments, and segments applied to a simple geometry.  The fourth, fifth, and sixth 

samples each exercise UEDDAM’s treatment of more complicated geometrical 

descriptions (i.e., a partial section of a representative business jet and a generic twin-

engine aircraft) as well as more complicated debris characterizations.  The next four 

sample cases were developed as part of the UEDDAM v3.0 development effort; they 

exercise each of the additional features added as part of the software upgrade.  The final 

four sample cases were developed to illustrate use of the setup macro and post-processing 

tool; how to perform a UEDDAM assessment using the conservative assumptions 

described in the appendix to the AC 20-128A (i.e., infinite energy disk); use of the 

PENETRATION keyword added as part of UEDDAM v4.1 development; and multi-

segment analysis options added as part of UEDDAM v5.0 development.  Actual inputs 

and results for these sample cases are provided in the distribution.  Descriptions of the 

individual samples are given in the following text. 

 

To execute UEDDAM with the sample cases: 
 

 The “bin” directory must be set in the path system variable (if the UEDDAM 

installation was completed successfully, this will have already been done). 

 Change directories to the directory where the UEDDAM control file is for the 

respective sample case. 

 Type the command “ueddam control.ucf”, where control.ucf is the name of the 

UEDDAM control file for the particular sample case to be run. 

 

 

9.1 SAMPLE CASE ONE – S-FRAGMENT 

 

Sample case one demonstrates UEDDAM’s ability to discern which components are 

susceptible to hits.  Only small fragment debris is considered for this case.  A dummy 

engine (cylinder) was constructed and then surrounded by plates at various spread angle 

locations as shown in Figure 9-1.  The cylinder representing the engine geometry was 

included in the NEARFIELD FILE to allow the fragments to exit the dummy engine 

unimpeded. 
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Figure 9-1.  Simple Geometry for Sample Cases One Thru Four. 

 

 

The debris for this sample case consists of small fragments and assesses a single release 

point at 0o rotation (a single iteration is performed about that point).  The rotational 

release variance is 0o (illustrated in Figure 9-2) and the fragment fore/aft spread angle 

limits are 5o (illustrated in Figure 9-3). 

 

 

Figure 9-2.  Front View for Sample Case One. 
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Figure 9-3.  Top View for Sample Case One. 

 

 

In order to verify that UEDDAM was correctly assessing viability, a manual assessment 

was performed to determine the susceptibility to hits (based on Figure 9-2 and  

Figure 9-3).  A component is within the spread angle of the small fragments if at any 

rotational angle about the engine, the component lies no more than 5o either fore or aft of 

the stage releasing the debris.  A component is within the translational angle of the small 

fragments if the component’s extent encompasses 0o (the rotational release of the small 

fragments).  Note that if a component does not lie within the fore/aft spread angle of the 

small fragments, it is not necessary to determine whether it lies within the debris’ 

translational angle.  Figure 9-4 and Table 9-1 show the results from the UEDDAM 

execution and the manual analysis, respectively.  Note that the fore/aft spread and 

translational risk angle results from the UEDDAM execution of sample one provide more 

detail than those seen in Table 9-1, but are in agreement with the manually assessed 

results.   

 

Table 9-1.  Manual Analysis Results for Sample Case One 

Component Within Spread Angle? Within Translational Angle? 

Plate 1 (LeftP1) Yes No 

Plate 2 (RightP1) Yes Yes 

Plate 3 (RightP2) No N/A 

Plate 4 (RightP3) Yes Yes 

Plate 5 (RightP4) No N/A 

Plate 6 (RightP5) Yes Yes 

Plate 7 (RightP6) Yes No 
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Figure 9-4.  UEDDAM Spread and Translational Risk Angles for Sample Case One. 

 

 

9.2 SAMPLE CASE TWO – L-FRAGMENT 

 

Sample case two repeats sample case one using the large fragment debris type.  This 

sample only assesses one release point at 0o rotation and only one iteration about that 

point.  The spread and variance limits are the same as in the first sample.  The primary 

difference in sample two is the addition of the potentially susceptible area cut by the large 

fragment swath.  Figure 9-5 illustrates the swath that is associated with the large 

fragments.  Note that Figure 9-1 and Figure 9-3 also apply. 

 

 

Figure 9-5.  Front View for Sample Case Two. 

 

 

Manually assessed and UEDDAM execution hit susceptibility results are shown in 

Table 9-2 and Figure 9-6, respectively.  It is interesting to note that the HITSUM FILE 

shows variances from sample case one in component contributions to PHAZ due to 
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changes in debris type.  However, the overall system level UEDDAM results are identical 

to those in the first case. 

 

Table 9-2.  Manual Analysis Results for Sample Case Two 

Component Within Spread Angle? Within Translational Angle? 

Plate 1 (LeftP1) Yes No 

Plate 2 (RightP1) Yes Yes 

Plate 3 (RightP2) No N/A 

Plate 4 (RightP3) Yes Yes 

Plate 5 (RightP4) No N/A 

Plate 6 (RightP5) Yes Yes 

Plate 7 (RightP6) Yes Yes 

 

 

 

Figure 9-6.  UEDDAM Spread and Translational Risk Angles for Sample Case Two. 

 

 

9.3 SAMPLE CASE THREE – SEGMENT 

 

Sample case three duplicates cases one and two with the only change being the use of the 

segment debris type rather than the small or large fragment.  The segments were released 

at three rotational angles within 0o rotational release variance and with a spread angle 

variance of 5o fore and aft.  The three rotational release angles were 0, 120, and 240 as 

shown in Figure 9-7.  A single iteration was performed. 
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Figure 9-7.  Front View for Sample Case Three. 

 

 

Manually assessed and UEDDAM execution hit susceptibility results for each plate are 

shown in Table 9-3 and Figure 9-8, respectively. 

 

Table 9-3.  Manual Analysis Results for Sample Case Three 

Component Within Spread Angle? Within Translational Angle? 

Plate 1 (LeftP1) Yes Yes 

Plate 2 (RightP1) Yes Yes 

Plate 3 (RightP2) No N/A 

Plate 4 (RightP3) Yes Yes 

Plate 5 (RightP4) No N/A 

Plate 6 (RightP5) Yes Yes 

Plate 7 (RightP6) Yes Yes 

 

 

In this case, five of the seven plates are hit.  Two plates on the right (namely RightP2 and 

RightP4) are not hit due to the fact that they lie outside the spread limits of the segment 

(see Figure 9-3). 
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Figure 9-8.  UEDDAM Spread and Translational Risk Angles for Sample Case Three. 

 

 

Notice that juast as for the large fragment in sample two, the segment debris in sample 

three hits plate RightP6, whereas the small fragment debris in sample one does not.  This 

illustrates that while RightP6 is outside the rotational variance, it is within the swath 

dimensions of the disk segment and large fragment.   

 

 

9.4 SAMPLE CASE FOUR – SIGNIFICANT ITERATIONS 

 

This sample shows a variety of functions implemented in UEDDAM.  The geometry 

considered is a partial section of a representative business jet.  The sample control file 

implements a single event (MULTI) consisting of both large and small fragment releases 

from the number 2 HBR engine’s HPC, stage 3.  The run was set up with 100 iterations 

of a single release point (180o with 0o variance) in order to better illustrate the advantages 

of the significant iteration feature.  In addition, the aft and fore spread angles for the 

small and large fragments are set to -30/-45o and 10/20o, respectively, and the 

debugging feature is turned on for all of these runs so that the shotlines can be viewed in 

the UEDDAM visualizer. 

 

Figure 9-9 shows one of the output files created for this sample case; namely, the 

SIGITCHOLE FILE.  As indicated in the file, only 22 of the 100 iterations met the 

criteria specified in the UEDDAM control file (i.e., iterations resulting in cumulative hole 

sizes greater than 12 in2).  To investigate these significant iterations further, the 

UEDDAM visualizer can be used to examine only those trajectories that resulted in the 

critical cumulative hole size being exceeded (see Figure 9-10). 



 

112 

 

Figure 9-9.  Sample Case Four – SIGITCHOLE Output. 

 

 

 

Figure 9-10.  Sample Case Four – Significant Iteration Trajectories. 
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Figure 9-11 shows another of the output files created for this sample case; namely, the 

SIGITSYS FILE.  As indicated in this file, 73 of the 100 iterations met the criteria 

specified in the UEDDAM control file (i.e., iterations resulting in total aircraft PHAZ 

greater than 0.90).  Note that most iterations result in a total aircraft PHAZ greater than the 

critical value for all three hazard levels under consideration.  Iterations 3 and 13, on the 

other hand, do not meet the criteria for hazard level 2.  This difference can be examined 

in more detail by looking at the other UEDDAM output files created and/or by using the 

UEDDAM visualizer to load those specific trajectories. 

 

 

Figure 9-11.  Sample Case Four – SIGITSYS Output. 

 

 

Additional significant iteration output files generated for this sample case (but not 

reproduced here) include the SIGITCRIT  and SIGITSHOLE FILEs.  Both can be viewed 

by browsing to the samples directory of the UEDDAM installation directory. 
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9.5 SAMPLE CASE FIVE – DEBRIS DISTRIBUTIONS 

 

Sample case five consists of three parts, which compare the three available distributions 

(uniform, normal, and skewed) in the debris characterization record.  The geometry 

considered is a partial section of a representative business jet.  For all three parts of this 

sample, the debris assessed consists of a single small fragment, which is released from 

the number 2 HBR engine’s HPC, stage 3.  In order to better see the nature of the 

distributions, one hundred iterations of a single rotational release angle of 180 (with 0 

variance) are performed.  In addition, the aft and fore spread angles are set to -30 and 

10, respectively, and the debugging feature is turned on for all of these runs so that the 

shotlines can be viewed using the UEDDAM visualizer.  Note that this sample case also 

makes use of the multi-threaded capability available in UEDDAM.  To turn this 

capability off for use on a computer without multiple processors, simply place a $ before 

the THREADS keyword in each of the three UEDDAM control files. 

 

 

9.5.1 Uniform Distribution 

 

The following debris record was extracted from the UEDDAM control file 

Control_Uniform.ucf, which is included in the directory “sample5:” 

 
DEBRIS, High Bypass Ratio, SINGLE, HPC, S-FRAGMENT 

S-FRAGMENT, 12, 1 

1, 1, Steel_300, 0.19, 609, 4, 2, 0.15, 45, 0, 10, -30, 0, UNIFORM 

 

The results of this run can be seen in Figure 9-12.  The image on the left was generated 

using the UEDDAM visualizer and shows the generated trajectories along with the 

geometry of the representative business jet.  Accompanying the image is a histogram of 

the fore/aft release angles overlaid with a plot of the governing uniform distribution. 

 

 
Figure 9-12.  Sample Case Five – Uniform Distribution for Debris Characterization. 
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9.5.2 Normal Distribution 

 

The debris characterization record for part two of this sample case was modified to make 

the distribution normal with a mean of -10 and a deviation of 5. The following debris 

record was extracted from the UEDDAM control file Control_Normal.ucf: 

 
DEBRIS, High Bypass Ratio, SINGLE, HPC, S-FRAGMENT 

S-FRAGMENT, 12, 1 

1, 1, Steel_300, 0.19, 609, 4, 2, 0.15, 45, 0, 10, -30, 0, NORMAL, -10, 5 

 

The results of this run can be seen in Figure 9-13.  As in part one of sample case five, a 

histogram of the fore/aft release angles overlaid with a plot of the governing normal 

distribution accompanies a UEDDAM visualizer image of the representative business jet 

with generated trajectories.  The distribution of the fore/aft release angles clearly differs 

from that seen in Figure 9-12. 

 
Figure 9-13.  Sample Case Five – Normal Distribution for Debris Characterization. 

 

 

9.5.3 Skewed Distribution 

 

For part three of sample case five, the debris characterization record was again modified 

to make the distribution skewed with a mean of -10 (the same as in part two), a 

deviation of 2, and a direction of AFT.  The following debris record was extracted from 

the UEDDAM control file Control_Skew.ucf: 

 
DEBRIS, High Bypass Ratio, SINGLE, HPC, S-FRAGMENT 

S-FRAGMENT, 12, 1 

1, 1, Steel_300, 0.19, 609, 4, 2, 0.15, 45, 0, 10, -30, 0, SKEWED, -10, 2, AFT 
 

The results of this run can be seen in Figure 9-14.  Again, a histogram of the fore/aft 

release angles overlaid with a plot of the governing “skewed” distribution show how the 

trajectories generated in part three of sample case five differ greatly from those in parts 

one and two. 
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Figure 9-14.  Sample Case Five - Skewed Distribution for Debris Characterization. 

 

 

9.6 SAMPLE CASE SIX – GENERIC TWIN-ENGINE AIRCRAFT 

 

Sample case six exercises UEDDAM’s ability to operate on a complex TARGET FILE 

(that of a generic twin-engine aircraft, as seen in Figure 9-15) along with realistic debris 

characteristics.  In this sample, the debris assessed consists of a single 1/3-disk segment 

plus multiple small fragments.  The event MULTI occurs in the number 1 HBR engine’s 

fan, stage 1.  For comparison purposes, five rotational release angles in the interval from 

330 to 60 were considered (with five iterations apiece).  Due to the complexity of the 

target, the geometry reduction flag was turned on to reduce overall run time and a 

tolerance was specified for the component intercept angle output file to combine some of 

the subassemblies, thereby reducing the size of the INTERCEPT FILE.  In addition, the 

debugging feature was turned on. 

 

 
Figure 9-15.  Generic Twin-Engine Aircraft for Sample Case Six. 

 

 

For this run, three catastrophic hazard levels (take-off to V1, V1 to V1+30, and initial 

climb) were specified.  One of the many results gathered from this execution can be seen 

by examining a plot (generated using the UEDDAM visualizer) of the contents of the 

SUMMARY FILE as shown in Figure 9-16.  The hazard probability summary shows 

that, if the debris is released from 15, the probability that catastrophic damage will be 

incurred during the take-off to V1 phase is 0.0, whereas during the remaining two flight 

phases, catastrophic damage occurs with a probability of 0.2.   
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Figure 9-16.  Hazard Probability Summary for Sample Case Six. 

 

 

9.7 SAMPLE CASE SEVEN – MODIFICATION OF SHEAR CONSTANT 

 

Sample case seven demonstrates a feature new to UEDDAM v4.3:  the capability for a 

user to define/modify two shear constants for a material type for use with the FAA-based 

penetration equations through the MATERIAL FILE.  The geometry used for this sample 

case is shown in Figure 9-17 and consists of a dummy engine surrounded by several 

small plates (highlighted green in the figure) at various angles.  A large Aluminum plate 

(highlighted blue in the figure) is placed between the engine and the smaller plates to 

represent a shielding component.  The engine debris for this sample case is released from 

the top of the representative engine and must penetrate the shielding plate prior to 

impacting any of the smaller critical plates. 

 

 
Figure 9-17.  Sample Case Seven Geometry. 
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There are two separate UEDDAM runs for this sample: “Cs_50” and “Cs_0.”  The 

“Cs_50” portion of this sample case is the baseline scenario, which executes UEDDAM 

for the event shown in Figure 9-17 using the material properties found in the standard 

MATERIAL FILE.  The “Cs_0” portion of this sample case, on the other hand, executes 

UEDDAM for the exact same scenario, except that a second shear constant has been 

added to the material properties for Al_2024 in the MATERIAL FILE.  Upon comparison 

of the SUMMARY FILEs from the two UEDDAM runs, the “Cs_0” scenario results in 

the probabilities of significant and/or minor damage occurring having been completely 

eliminated.  This, of course, is due to the change in penetration assumptions regarding the 

material when fragments impact at or below the ballistic limit velocity (i.e., the inclusion 

of a second, higher Cs_0 value to characterize the shielding plate). 

 

 

9.8 SAMPLE CASE EIGHT – UEDDAM HOLE SIZE ESTIMATION 

 

Sample case eight illustrates the UEDDAM hole size estimation methodology added for 

UEDDAM v3.0.  The data set used is the same as that for sample case six, except that for 

this scenario, the debris consists of 3 large fragments, each released from the number 1 

engine at the same point, but at 3 different release angles (i.e., 340, 350, and 0), as 

illustrated in Figure 9-18. 

 

 
Figure 9-18.  Debris Release Angles for Sample Case Eight. 

 

 

For sample case eight, the hole size component groupings are defined in the HOLEGRP 

FILE and consist of four distinct groups (i.e., Port_Skin, Stbd_Skin, Port_Wing, and 

Stbd_Wing), each of which is made up of either 6 or 10 individual components.  

UEDDAM calculates damage size statistics for each HOLEGRP identified and outputs 

this information to the HOLESIZE FILE.  A portion of the HOLESIZE FILE for sample 

case eight is provided in Figure 9-19.   
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Figure 9-19.  Sample Case Eight HOLESIZE FILE. 

 

 

9.9 SAMPLE CASE NINE – LOGIC STATEMENT INPUTS 

 

Sample case nine demonstrates UEDDAM’s logic statement processing utility, which 

takes a series of logic statements and converts them to MV FILE inputs.  For this sample 

case, the simple geometric setup shown in Figure 9-20 is used.  Additionally, the failure 

combinations of interest (and their equivalent logic statements) are provided in Table 9-4, 

where C# is used in place of CLINE# for simplification.  Note that in Table 9-4, “0” 

represents “not failed” and “1” represents “failed.”  The series of logic statements shown 

in the last column of Table 9-4 are entered in the LOGIC FILE for this sample case. 

 

 
Figure 9-20.  Model Setup for Sample Case Nine. 
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Table 9-4.  Sample Case Nine Failure Combinations 

Probability 

of System 

Failure 

Component Failures 

Equivalent Logic Statement 
C1 C2 C3 C4 

0.00 0 0 0 0 .NOT. (C1 .OR. C2 .OR. C3 .OR. C4) 

0.06 0 0 0 1 C4 .NOT. (C1 .OR. C2 .OR. C3) 

0.12 0 0 1 0 C3 .NOT. (C1 .OR. C2 .OR. C4) 

0.18 0 0 1 1 (C3 .AND. C4) .NOT. (C1 .OR. C2) 

0.24 0 1 0 0 C2 .NOT. (C1 .OR. C3 .OR. C4) 

0.30 0 1 0 1 (C2 .AND. C4) .NOT. (C1 .OR. C3) 

0.36 0 1 1 0 (C2 .AND. C3) .NOT. (C1 .OR. C4) 

0.42 0 1 1 1 (C2 .AND. C3 .AND. C4) .NOT. C1 

0.48 1 0 0 0 C1 .NOT. (C2 .OR. C3 .OR. C4) 

0.54 1 0 0 1 (C1 .AND. C4) .NOT. (C2 .OR. C3) 

0.60 1 0 1 0 (C1 .AND. C3) .NOT. (C2 .OR. C4) 

0.66 1 0 1 1 (C1 .AND. C3 .AND. C4) .NOT. C2 

0.72 1 1 0 0 (C1 .AND. C2) .NOT. (C3 .OR. C4) 

0.78 1 1 0 1 (C1 .AND. C2 .AND. C4) .NOT. C3 

0.84 1 1 1 0 (C1 .AND. C2 .AND. C3) .NOT. C4 

1.00 1 1 1 1 (C1 .AND. C2 .AND. C3 .AND. C4) 

 

 

For this sample, a single release point at 20° was selected to hit and fail three of the four 

components (specifically, CLINE2, CLINE3, and CLINE4, but not CLINE1).  Upon 

successful execution, UEDDAM outputs a probability of hazard value of 0.42 in the 

SUMMARY FILE for this particular release angle.  This result is verified by examining 

the highlighted row in Table 9-4. 

 

 

9.10 SAMPLE CASE TEN – HYPERSAMPLING 

 

Sample case ten illustrates the hypersampling capability added for UEDDAM 3.0.  As 

discussed in Section 5.3.1.5, very small components can potentially be missed by the 

non-dimensional shotlines generated to approximate large fragment and/or segment 

presented areas, as illustrated in Figure 9-21. 
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Figure 9-21.  UEDDAM Approximation of Large Fragment Trajectories for  

Sample Case Ten. 

 

 

There are two separate UEDDAM runs included for this sample case.  The first scenario 

(“No SCF”) does not activate the hypersampling option in UEDDAM and results in the 

shotlines representing the trajectory of the large fragment seen in Figure 9-21.  The 

second scenario (“Uniform SCF”), which activates UEDDAM’s hypersampling option, 

results in an extra shotline being generated to hit the small component (see Figure 9-22).  

The “No SCF” UEDDAM execution results in a hazard probability of 0.00.  This result 

can be potentially misleading, however, if the small component is considered critical 

(which, for this sample case, it is).  The “Uniform SCF” run, due to the additional 

shotline it generates, results in the correct hazard probability of 1.00. 

 

 
Figure 9-22.  UEDDAM Small Component Fix for Sample Case Ten. 
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9.11 SAMPLE CASE ELEVEN – SETUP MACRO AND POST-PROCESSING 

 

Sample case eleven illustrates the use of the setup macro (Run_Setup.xls) and data post-

processor (Analysis_Tool.jar) that come with the UEDDAM installation.  The 

spreadsheet with embedded macro assists the user in setting up a file structure and 

multiple control files for a production-level type analysis.  For this sample case, two 

stages (Fan and LPT) of the engines of a generic twin-engine aircraft are being assessed 

for two debris types (MULTI and SINGL) and three flight phases (take-off to V1, V1 to 

V1+30 seconds, and initial climb).  This information is input in the lower half of the 

setup macro spreadsheet, as shown in Figure 9-23. 

 

 

 
Figure 9-23.  Lower Half of Setup Macro Spreadsheet. 



 

123 

The top half of the setup macro spreadsheet (shown in Figure 9-24) is partially populated 

by the information entered in the lower half; the remaining areas are for user input and 

options (e.g., path to root directory, random number seed, number of iterations, run 

options, output file selection, etc.).   

 

 
Figure 9-24.  Upper Half of Setup Macro Spreadsheet. 

 

 

For sample case 11, debris is released every 30° between 0° and 360° and multiple 

iterations are performed at each release angle (the exact number of iterations is dependent 

upon the debris type being assessed—2 iterations for debris type MULTI, 30 for debris 

type SINGL).  Four of the available ten optional output files are selected for generation, 

the target reduction flag has been toggled on, and segment and large fragment 

hypersampling (with a subgrid of 0.15 inches) has been selected.  When the “Set Up 

UEDDAM Input Control Files” button is pushed, the built-in macro creates the directory 

structure and UEDDAM control files for the desired analysis.  Figure 9-25 shows the 

directory structure and one of the eight control files created.   
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Figure 9-25.  Files Created by Setup Macro. 

 

 

In addition, because the “Generate Batch File” option was selected, an executable file 

called UEDDAM_Runs.bat is created in the root directory.  Finally, the input file 

required to run Analysis_Tool.jar is created in the Input_Files directory (it is called 

Analysis_Tool_Input.txt). 

 

After UEDDAM has been successfully executed for each of the eight debris-engine-stage 

combinations, the user is left with 48 separate output files from which he or she must 

draw conclusions about the aircraft.  The Analysis_Tool.jar post-processing program was 

developed to make this process a little simpler.  To execute this tool, the user must create 

a Bin directory in the sample11 directory and copy the Analysis_Tool.jar executable from 

the tools directory of the UEDDAM installation into the Bin directory of sample11 (recall 

that the tool expects the directory structure illustrated in Figure 6-2).  Once this step is 

complete, simply double-clicking on the Analysis_Tool.jar executable will run the tool, 

which generates 2 top-level summary files (Combined_Debris.csv and PH_sum.txt) and 

14 lower-level summary files (Combined_Engine.csv  [2], Combined_Rotor.csv  [4], and 

Combined_Flight_Phase.csv  [8]).  The two top-level summary files are reproduced in 

Figure 9-26. 
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Figure 9-26.  Sample Case Eleven:  PH_sum.txt and Combined_Debris.csv. 

 

 

From these two summary files, a few observations can be made: (1) the aircraft 

experiences a higher risk when debris is released from ENGINE1 than if it were released 

from ENGINE2; 2) the aircraft experiences a higher risk from the MULTI debris type 

than from the SINGL debris type; and 3) the largest contributing systems to aircraft risk 

from the MULTI debris type are LONGERNS and ENGINES.  By analyzing the other 

summary files created in a similar manner, additional insights can be discovered. 
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9.12 SAMPLE CASE TWELVE – INFINITE ENERGY DISK 

 

Sample case twelve illustrates how to perform a UEDDAM assessment using the 

conservative assumptions detailed in the appendix to the AC 20-128A.  According to the 

risk analysis methodology described, the 1/3 disk fragment (as modeled in paragraph 9(a) 

of AC 20-128A) “is considered to possess infinite energy.”  This statement is further 

explained as follows:  the fragment is “capable of severing lines, wiring, cables, and 

unprotected structure in its path, and to be undeflected from its original trajectory unless 

deflection shields are fitted; however, protective shielding or an engine being impacted 

may be assumed to have sufficient mass to stop even the most energetic fragment.” [8] 

 

UEDDAM as it is coded takes into account the specific penetration capabilities of the 

debris as it interacts with the surrounding aircraft components.  In order to force the 

model to stop calculating penetration of all components in the path of the debris (minus 

any deflection shields and/or a second engine), changes must be made to the material 

properties assigned to these components in the JTYPE FILE.  To build this sample case, 

input files from sample case five (the generic business jet) were copied and modified as 

follows:  all components (minus the components of the left engine since the disk debris is 

being released from the right engine in this sample case) were changed to material type 

51 (i.e., water) with a 1% density factor (see Figure 9-27).   

 

       
ORIGINAL SAMPLE CASE 5 JTYPE FILE                      MODIFIED JTYPE FILE FOR  

       SAMPLE CASE 12 
 

Figure 9-27.  JTYPE FILE Changes for Sample Case Twelve. 

 

 

Because the penetration equations embedded in UEDDAM are only used to calculate 

impacts to solid materials, by making this simple change to the material characteristics of 

the aircraft components, UEDDAM no longer calculates the penetration capabilities of 

the disk debris unless it encounters the opposite engine.  Thus, the disk fragment is now 

considered to have infinite energy. 
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9.13 SAMPLE CASE THIRTEEN – PENETRATION EQUATIONS 

 

Sample case thirteen illustrates use of the PENETRATION control file keyword added 

for UEDDAM v4.1.  This sample case uses a modified version of the simplistic geometry 

and inputs seen in sample cases one through three so that the differences introduced by 

the change in penetration equations can be more readily observed (see Figure 9-28). 

 

 
Figure 9-28.  Sample Case Thirteen Geometry. 

 

 

Two different scenarios are presented in sample case thirteen.  The first does not include 

the PENETRATION keyword in the control file so that the values of gamma for all 

obliquity angle bins default to 1.0.  The second scenario introduces the PENETRATION 

keyword to the control file and defines all values of gamma as 0.1.  In both scenarios, a 

single small fragment is released from the first stage HPT at 180°; the fragment’s 

trajectory is constrained between forward and aft release angles of 25° and 24°, 

respectively; and the fragment is travelling at 1890fps. 

 

Upon successful execution of UEDDAM, a difference in PHAZ can be seen in the resulting 

SUMMARY FILEs.  However, it is not until investigating the resulting DETAIL FILEs 

that the difference between the original and modified penetration equations is better 

understood.  In the first scenario, only the first plate along the fragment’s trajectory (i.e., 

LeftP1 – the green plate in Figure 9-28) is attributed a Phaz at each of the assessed hazard 

levels.  In the second scenario, on the other hand, both the first and second plates along 

the fragment’s trajectory (i.e., LeftP1 and LeftP2 – the green and blue plates in  

Figure 9-28, respectively) receive a Phaz.  This difference is explained by the calculation 

of V50.  Recall that the V50 is inversely proportional to cosγθ, where θ is the impact 

obliquity angle of the debris; thus, all else remaining equal, a larger value of gamma 

corresponds to a larger V50 (since cosθ is constrained to be between 0 and 1) and vice 

versa.  In the first scenario, the V50 calculated for penetration of LeftP1 is approximately 

2040fps, which is greater than the impact velocity of the small fragment and thus the 

debris is stopped by that first plate.  In the second scenario, however, the V50 calculated 
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for penetration of LeftP1 is approximately 1870fps, which is less than the impact velocity 

of the small fragment and thus the debris is allowed to continue on its trajectory (with a 

reduced velocity) to impact LeftP2.  

 

 

9.14 SAMPLE CASE FOURTEEN – MULTI-SEGMENT ANALYSES 

 

Sample case fourteen illustrates the use of multi-segment analysis options added as part 

of UEDDAM v5.0 development.  The sample case is subdivided into two parts.  In the 

first part, UEDDAM is instructed to allow the release of small and large fragments only 

with the release of the first segment (as indicated by a “0” in the debris file on the debris 

group identifier SEGMENT definition record).  The second scenario instructs UEDDAM 

to allow the release of small and large fragments with the release of all three segments (as 

indicated by a “1” in the debris file on the debris group SEGMENT definition record).  

The sample case reuses the input files from sample cases 1, 2, and 3 with the only 

modification being the compilation of the three types of debris into a single debris 

category (MULTI).  The first debris file is shown below. 

 

 
 

The results of sample case fourteen are best observed by examining the debris generated 

in each of the two cases (see Figure 9-29).  In the image on the left, the small (green) and 

large (purple) fragments are released only with the first of the three segments (blue).  In 

the image on the right, the same small and large fragments are released with all three of 

the segment releases. 
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Figure 9-29.  Sample Case Fourteen Debris. 
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11 GLOSSARY 

 

 

CBULK:  a COVART6 input file that defines a target.  A target is composed of complex 

geometric shapes (objects), modeled by using a series of points and simple 

geometric shapes called elements. 

 

debris category:  a combination of disk segments, large fragments, and/or small 

fragments released during an uncontained failure that represent a type of event; 

for example, a debris category called “blade” may consist of multiple large and 

small fragments that represent the debris released from an uncontained failure of a 

rotor blade (the event type). 

 

debris type:  a single rotor disk segment, large fragment, or small fragment released 

during an uncontained engine failure. 

 

event:  an uncontained failure of a turbine engine or any failure which results in the 

escape of rotor fragments from the engine or APU that could result in a hazard. 

 

event type: see debris category. 

 

hazard:  a level of harm resulting in the following consequences to the aircraft or its 

passengers/crew:  (a) Catastrophic – an occurrence resulting in multiple fatalities, 

usually with the loss of the airplane; (b) Severe – an occurrence resulting in a 

forced landing, actual loss of aircraft while occupants were on board, or serious 

injuries or fatalities; (c) Serious – an occurrence resulting in substantial damage to 

the aircraft or second unrelated system, uncontrolled fires, rapid depressurization 

of the cabin, permanent loss of thrust or power greater than one propulsion 

system, temporary or permanent inability to climb and fly 1000 feet above terrain 

along the intended route that results in restricted capability, malfunctions or 

failures that cause smoke or other fumes that result in a serious impairment, or 

any temporary or permanent impairment of aircraft controllability. 

 

hazard zone:  a zone encompassing all potential debris trajectories from a single release 

of an event; rotational and fore/aft release variances about the release point are 

considered 

 

HEAD:  a COVART6 input file that contains titles to be used in various output tables. 

 

hypersampling:  a rapid method of locating potentially missed components due to the 

discrete shotlines representing the debris swath 

 

JTYPE:  a COVART6 input file that describes component information (e.g., component 

number, material code, density ratio, Av storage location, PK table numbers, etc.).  

The components listed must match the target description components defined in 

the CBULK file. 
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LOS:  a sequenced list of components along a shotline.  The COVART6 LOS output file 

contains specific component data for use in vulnerable area models:  1) group and 

component identification number, 2) location, 3) thickness, and 4) shotline 

obliquity angle. 

 

MASTER:  the primary simulation control file for COVART6 in integrated mode; for 

UEDDAM v4.0 and later versions, the MASTER file takes the place of the 

BASIC and CONTROL files in describing the major input files, program options, 

shotline analysis parameters, and data file specifications for program execution 

 

MV:  when two or more critical components must sustain damage before the aircraft is 

damaged, these components are referred to as multiply vulnerable (MV), or 

redundant.  The COVART6 MV input file defines how the multiply vulnerable 

components are combined in a hazard tree, in a form that permits COVART6 to 

compute Phaz of the multiply vulnerable group as a whole. 

 

PK:  a COVART6 input file containing the probabilities that define Phaz given a hit 

 

probability of hazard (Phaz): the probability of an event causing sufficient damage to 

result in a predefined hazard level; capital letters (HAZ) indicate the damage to 

the whole system, whereas lowercase letters (haz) indicate the damage is done on 

a component level. 

 

probability of hit ratio (Ph):  the probability of a component being hit by a rotor disk 

segment during an uncontained failure; Ph = (TRA/360)  (SRA/spread angle)  

 

spread risk angle (SRA) :  the number of degrees of included arc in the plane normal to 

the plane of rotation that intersects a component being analyzed. 

 

THREAT:  a COVART6 input file containing records used to describe the threat; in the 

case of UEDDAM, the threat is uncontained engine debris in the form of 

individual fragments. 

 

translational risk angle (TRA) :  the number of degrees of included arc in the plane of 

rotation that intersects a component being analyzed. 

 

UDAIM:  a COVART6 analysis option defining a shotline aim point location (in target 

x, y, z coordinates); multiple UDAIM records are grouped together by a single 

UDASPECT record 

 

UDASPECT:  a COVART6 analysis option specifying a specific target orientation (in 

terms of azimuth and elevation angles) 
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UEDDAM INTEGRATION WITH COVART 6.X 
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A-1. Final Changes for COVART 6.2.x Integration of UEDDAM 

 

Integration was conducted in several phases: 

 

1) As part of the UEDDAM v4.1 development effort, the FAA penetration 

equation module in COVART 6.1.1 was updated with a new V50 calculation.  

Code modifications were made to the following files:  error_handler.f90, 

read_master.f90, faafrag.f, faafragctl.f, faafrinit.f, faasl.f, and initlib.f.   

 

2) As part of the UEDDAM v4.3 development effort, the FAA penetration 

equation module in COVART 6.1.1 was again updated with a new V50 

calculation methodology.  Code modifcations were made to the following 

files:  faafrag.f, faafragctl.f, faafrinit.f, init_EACA_stub.f, initlib.f, and 

inputi.f. 

 

 

File:  Covart6\error_handler.f90 

 

-modified definition of the local variable parameter iNumMessages1 

 

 
 

-added new error message for UEDDAM gamma value check 

 

 
 

 

File:  Covart6\read_master.f90 

 

-added new common block UDFAAPEN for access to UDGAM  

-added UDGAM to UEDDAM record read statement 

-added checks for UDGAM 

 

 

 

 

        ,'  ERROR: LBP AND UBP CAN NOT BOTH = 0 IF NUMSTP IS > 0 '           &  !511 
          ,'  ERROR: NVIEW ON ENCOUNTER REC MUST = 1 FOR RADIAL ZONES '        &  !512 

          ,'  ERROR: RADIAL ZONES ONLY COMPATIBLE W SINGLE FRAG/RAY APPROACH'  &  !513 

          ,'  ERROR: INPUT FOR UDSHOT FIELD ON UEDDAM RECORD NOT RECOGNIZED '  &  !514 

! emp 22 Aug 2012  New message added for UEDDAM 

          ,'  ERROR: GAMMA VALUES MUST BE BETWEEN 0.0 AND 1.0 '                &  !515 

 

 

! 

! Write the error message to the OERROR file and stop if this is an error. 

 

! emp 22 Aug 2012  Added a new error message, requiring a change to the parameter 

iNumMessages1 

!  INTEGER, PARAMETER :: iNumMessages1 = 514 - 6*iNumMessages   

  INTEGER, PARAMETER :: iNumMessages1 = 515 - 6*iNumMessages 
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File:  libraries\FAAPEN\faafrag.f 

 

-added second array, DYNSHR0, to MTL1UDFAA common block 

-added new common block for UDFAAPEN for access to UDGAM 

-added DYNSHR0, UDGAM, CosObl, and GamExp variables 

 

! emp 6 Aug 2012  Created new common block for UDGAM (penetration 

!                 equation variable input) 

      COMMON /UDFAAPEN/ UDGAM 

      REAL :: UDGAM(5) 

 

 

      integer :: SLT_Level 

    

      CHARACTER * 80 :: CF971, CF975   
                  
! emp 6 Aug 2012  Added UDGAM to UEDDAM record 

!           read(RECORD,'(2A8)') CDRAG, UDSHOT 

           read(RECORD,'(2A8,5F8.2)') CDRAG, UDSHOT,      & 

                                      UDGAM(1), UDGAM(2), & 

                                      UDGAM(3), UDGAM(4), & 

                                      UDGAM(5) 

           call fieldconvert(CDRAG)  

  

! emp 22 Aug 2012  Added checks for UDGAM 

           IF ((UDGAM(1) .LT. 0.0) .OR. (UDGAM(1) .GT. 1.0)) THEN 

             iErrorLevel = elError 

             WRITE(cMessage, '(A)') RECDTA 

             CALL ErrorWrite(515) 

           ELSE IF ((UDGAM(2) .LT. 0.0) .OR. (UDGAM(2) .GT. 1.0)) THEN 

             iErrorLevel = elError 

             WRITE(cMessage, '(A)') RECDTA 

             CALL ErrorWrite(515) 

           ELSE IF ((UDGAM(3) .LT. 0.0) .OR. (UDGAM(3) .GT. 1.0)) THEN 

             iErrorLevel = elError 

             WRITE(cMessage, '(A)') RECDTA 

             CALL ErrorWrite(515) 

           ELSE IF ((UDGAM(4) .LT. 0.0) .OR. (UDGAM(4) .GT. 1.0)) THEN 

             iErrorLevel = elError 

             WRITE(cMessage, '(A)') RECDTA 

             CALL ErrorWrite(515) 

           ELSE IF ((UDGAM(5) .LT. 0.0) .OR. (UDGAM(5) .GT. 1.0)) THEN 

             iErrorLevel = elError 

             WRITE(cMessage, '(A)') RECDTA 

             CALL ErrorWrite(515) 

           END IF 
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-updated penetration equation calculation based on Reference AIAA 2010-1542 

-updated penetration equation calculations to use 2 Cs values 

 

c emp 2015  Added second array, DYNSHR0, to MTL1UDFAA common block 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT), DYNSHR0(MXMT) 

clag 

      COMMON /THRT2FAA/ DIA(MAXWGT,4), LSHAPE(MAXWGT), FL(MAXWGT), 

     &                LF(MAXWGT) 

C emp 22-Aug-2012  Added COMMON UDFAAPEN 

      COMMON /UDFAAPEN/ UDGAM(5) 

 

c emp 6 Aug 2012  Added CosObl to declarations 

c      REAL     RHOt, TlEq, WT, V, AreaP, WR, V50, Vr 

      REAL     RHOt, TlEq, CosObl, WT, V, AreaP, WR, V50, Vr 

 

CLAG  TYPE DECL FOR LABELED COMMON VARS 

      INTEGER  IEXTBP, MTFRAG 

      INTEGER  LF, LSHAPE 

      REAL     WFRAG, VFRAG, RLDFRG, APFRAG, RLFRAG 

c emp 2015  Added second array, DYNSHR0 

      REAL     BHN, RHO, SIGY, SIGU, TAUS, DYNSHR, DYNSHR0 

      REAL     DIA, FL 

C emp 22-Aug-2012  Added UDGAM 

      REAL UDGAM 

 

CLAG  LOCAL VAR DECLARATIONS 

      INTEGER  KF, NRIC, N 

      REAL     VV, RHOF, SIGF, AP 

c emp 2015  Modified local variable rmGd 

      REAL     rmkg, Tm, rmGd50, rmL, V50m, Q4 

c emp 22 Aug 2012 Added local variable GamExp 

c emp 2015  Added new local variable rmGd0 

      REAL GamExp, rmGd0 

 

CLAG  SUBROUTINE ARGUMENT DECLARATIONS 

      INTEGER  FrID, TgtMat 

c emp 6 Aug 2012  Added CosObl to declarations 

c      REAL     RHOt, TlEq, WT, V, AreaP, WR, V50, Vr 

      REAL     RHOt, TlEq, CosObl, WT, V, AreaP, WR, V50, Vr 
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File:  libraries\FAAPEN\faafragctl.f 

 

-added DYNSHR0 to MTL1UDFAA common block and variable declarations 

-added CosObl to subroutine parameters and call 

 

c emp 6 Aug 2012 

c emp  Updated in 2012 based on Reference AIAA 2010-1542 

c emp 

c emp  gam = obliquity modification (unitless) 

c emp 

c emp  V50 = sqrt( (2. * L * Cs * t**2) / (m * (cos(theta))**(2. * gam)) ) 

CLAG 

CLAG  **** NOTE FOR UEDDAM USE ONLY, NOT ADDRESSING COMBINED PLATES **** 

CLAG 

CLAG  Factors used in unit conversion: 

CLAG       7000 grains/pound, 2.205 pounds/kilogram, 39.37 inches/meter, 

CLAG       6894.757 Pascals/psi, 3.281 feet/meter 

 

      rmkg = WT / 7000. / 2.205 

c emp 6 Aug 2012  Changed definition of Tm for updated penetration equations 

c      Tm = TlEq / 39.37 

      Tm = (TlEq * CosObl) / 39.37 

      rmGd50 = DYNSHR(TgtMat) * 6894.757 

      rmGd0 = DYNSHR0(TgtMat) * 6894.757 

      rmL = RLFRAG / 39.37 

c emp 6 Aug 2012  Added check for obliquity angle and assignment of Gamma 

      IF ( CosObl .GE. 0.866 ) THEN 

    GamExp = 2. * UDGAM(1) 

 ELSEIF ( CosObl .GE. 0.707 ) THEN 

    GamExp = 2. * UDGAM(2) 

 ELSEIF ( CosObl .GE. 0.5 ) THEN 

    GamExp = 2. * UDGAM(3) 

 ELSEIF ( CosObl .GE. 0.259 ) THEN 

    GamExp = 2. * UDGAM(4) 

 ELSE 

    GamExp = 2. * UDGAM(5) 

 ENDIF 

 

c emp 22 Aug 2012  Updated calculation of V50 

c      V50m = SQRT(2. * rmL * rmGd * Tm**2. / rmkg)  
c emp 2015  Added IF statements for V50 calculations; the IF statements 

c           check first to see if the two Cs values entered by the user 

c           are the same - if they are, V50 is calculated as before.  If 

c           not, V50 is calculated using Cs_0.  If this new V50 value is 

c           greater than the impact velocity, the debris is stopped (i.e., 

c           Vr = 0); otherwise, V50 is recalculated using Cs_50 and this  

c           V50 is then used in the Vr calculations. 

      IF ( ABS(rmGd50 - rmGd0) .LE. 0.01 ) THEN 

       V50m = SQRT((2. * rmL * rmGd50 * Tm**2.)/(rmkg * CosObl**GamExp)) 

       V50 = V50m * 3.281 

   ELSE 

    V50m = SQRT((2. * rmL * rmGd0 * Tm**2.)/(rmkg * CosObl**GamExp)) 

    V50 = V50m * 3.281 

    IF (VV .GT. V50) THEN 

     V50m = SQRT((2. * rmL * rmGd50 * Tm**2.)/(rmkg * CosObl**GamExp)) 

  V50 = V50m * 3.281 

       END IF 

   END IF 
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File:  libraries\FAAPEN\faafrinit.f 

 

-added DYNSHR0 to MTL1UDFAA common block and variable declarations 

-added common block for new penetration equations 

-added UDGAM and UDGAMP as global and local variables, respectively 

 

c emp 2015  Added second array, DYNSHR0, to MTL1UDFAA common block 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT), DYNSHR0(MXMT) 

CLAG  END CHANGE 

      COMMON /THRT2FAA/ DIA(MAXWGT,4), LSHAPE(MAXWGT), FL(MAXWGT), 

     &                LF(MAXWGT) 

C 

C  Global Variables 

C 

      INTEGER  JRES 

        REAL     CD, FLUI, VMAX 

CLAG  ADDED DYNSHR FOR FAA PENETRATION EQNS 

c emp 2015  Added second array, DYNSHR0 

      REAL     BHN, RHO, SIGY, SIGU, TAUS, DYNSHR, DYNSHR0 

CLAG  END CHANGE 

 

⁞ 

 

c emp 6 Aug 2012  Added CosObl 

c      REAL TlEq, WT, V, AreaP, WR, V50, Vr 

      REAL TlEq, CosObl, WT, V, AreaP, WR, V50, Vr 

 

⁞ 

 
c emp 6 Aug 2012  Added CosObl to call 

c        CALL FAAfrag ( FrID, TgtMat, RHOt, TlEq, WT, V, AreaP, 

        CALL FAAfrag ( FrID, TgtMat, RHOt, TlEq, CosObl, WT, V, AreaP, 

     &                 WR, V50, Vr)  
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-added initialization for DYNSHR0 and UDGAM variables 

 

 
 

 

File:  libraries\FAAPEN\faasl.f 

 

-added FAA penetration equation variables COBL, WR, V50, and VR to FAAFragCtl 

call 

 

        DYNSHR(I) = DYNSHRP(I) 

c emp 2015  Added initialization for DYNSHR0 

        DYNSHR0(I) = DYNSHR0P(I) 

 

⁞ 

 

c emp 22 Aug 2012  Added initialization for UDGAM values 

      DO 400 I = 1, 5 

   UDGAM(I) = UDGAMP(I) 

 400 CONTINUE 

 

c emp 2015  Added second array, DYNSHR0, to MTL1UDFAA common block 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT), DYNSHR0(MXMT) 

 

⁞ 

 

c emp 22 Aug 2012  Added UDFAAPEN COMMON block for new penetration equations 

      COMMON /UDFAAPEN/ UDGAM(5) 

 

C 

C Global Variables 

C 

CLAG  ADDED DYNSHR FOR FAA PENETRATION EQNS 

C      REAL     BHN, RHO, SIGY, SIGU, TAUS 

c emp 2015  Added second array, DYNSHR0 

      REAL     BHN, RHO, SIGY, SIGU, TAUS, DYNSHR, DYNSHR0 

CLAG  END CHANGE 

      REAL     E, BULK, DENAL, RA, U 

      REAL     CCBF, CBF, CH, CCF, FCM 

      REAL     FG, FV, FT, FS, FLUI 

      REAL     PROL, PRON, PROTD, DENRAT 

      REAL     DIA, FL, DIA2, FIRE 

c emp 22 Aug 2012  Added UDGAM for new penetration equations 

c emp      REAL     CD, VMAX, AM, B 

      REAL     CD, VMAX, AM, B, UDGAM 

      INTEGER  LSHAPE, LF 

C 

C Local Variables 

C 

 

CLAG  ADDED DYNSHRP FOR FAA PENETRATION EQNS 

c emp 2015  Added second array, DYNSHR0P 

      REAL      BHNP(MXMT), RHOP(MXMT), SIGYP(MXMT), SIGUP(MXMT), 

     &                TAUSP(MXMT), DYNSHRP(MXMT), DYNSHR0P(MXMT) 

CLAG  END CHANGE 

 

⁞ 

 

c emp 22 Aug 2012  Added UDGAMP for new penetration equations 

c emp      REAL       CDP(MXSHAP) 

      REAL       CDP(MXSHAP), UDGAMP(5)  
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File:  Covart6\init_EACA_stub.f 

 

-modified MTL1UDFAA common block definition 

-added TDYNSHR0 to variable declarations 

 

 
 

-added definition of data for TDYNSHR0 

-modified TRHO data definition 

 

 
 

-added initialization of DYNSHR0 

 

 
 

 

File:  Covart6\initlib.f 

 

-modified definition of MTL1UDFAA common block 

-added common block UDFAAPEN for access to UDGAM 

          DYNSHR(I) = TDYNSHR(I) 

C emp 2015  Added second array, DYNSHR0, initialization 

          DYNSHR0(I) = TDYNSHR0(I) 

CLAG 

601   CONTINUE 

C emp 2015  Added definition of data for new TDYNSHR0 array 

      DATA TDYNSHR0 / 6* 188500.0 , 130529.4 , 8* 40029.0 ,  

     +   5* 188500.0 , 9* 40029.0 , 4* 188500.0 , 3* 40029.0 , 36403.2 ,  

     +   7* 188500.0 ,130529.4 , 36403.2 , 174039.2 , 3* 188500.0 / 

 

⁞ 

 

C emp 2015  Modified TRHO(46) and TRHO(47) for composite and  

C           inconel, respectively; they were previously set  

C           equal to 0.0 

      DATA  TRHO  /   1980.0  , 1980.0  , 1980.0  , 1980.0  , 1980.0  ,  

     5     1980.0  , 1130.0  ,  701.0  ,  672.0  ,  672.0  ,  672.0  ,   

     6      686.0  ,  708.0  ,  693.0  ,  430.0  , 1980.0  , 1800.0  ,   

     7     2240.0  , 2760.0  , 4727.0  ,  188.0  ,  235.0  ,  325.0  ,   

     8      295.0  ,  309.0  ,  485.0  ,  620.0  ,  240.0  , 190.0 ,     

     8      4669.0 , 1980.0 , 1980.0 , 4256.0 , 329.0 , 175.0 ,                

     8       91.0  ,  392.0  ,  380.0  ,  392.0  ,  392.0  , 392.0 ,      

     8      3*4214.0 , 1141.0 , 390.6 , 2135.0 , 3* 0.0/   

C emp 2015  Changed common block name from MATAL1UD to MTL1UDFAA 

C           Added second array, DYNSHR0, to common block 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT), DYNSHR0(MXMT) 

 

⁞ 

 

c emp 2015  Added second array, TDYNSHR0 

      DIMENSION  TDYNSHR(MXMT), TDYNSHR0(MXMT) 

c emp 6 Aug 2012  New call for FAA Fragments 

c        CALL FAAFragCtl ( FrID, TgtMat, LOS, WPs, VPs, AreaP, 

        CALL FAAFragCtl ( FrID, TgtMat, LOS, COBL, WPs, VPs, AreaP, 

     &                    WR, V50, VR) 
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-added UDGAM and DYNSHR0 to FAAFrInit call  

 

 
 

 

File:  Covart6\inputi.f 

 

-modified definition of MATAL1 and MTL1UDFAA common blocks 

 

 
 

-modified MCHECK logic 

 

 
 

-modified read statement for MATPROP record 

 

clag need to check against IFAAF array for UEDDAM materials 

                  IF (ITHSP .NE. 2) THEN 

                    JCHECK = JTCGF(JM) 

                  ELSE 

c emp 2015  Added MCHECK logic for UEDDAM 

                    JCHECK = IFAAF(JM) 

       MCHECK = IFAAF(JM) 

       MCHECK = MCHECK/100 

                  END IF 

clag end change 

c emp 2015  Removed DYNSHR from MATAL1 common block 

c      COMMON /MATAL1/ RHO(MXMT), DYNSHR(MXMT) 

      COMMON /MATAL1/ RHO(MXMT) 

c emp 2015  Added MTL1UDFAA common block; added second array,  

C           DYNSHR0, to common block 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT), DYNSHR0(MXMT) 

      CHARACTER * 8 HER, DER 

           CALL FAAFrInit ( BHN, RHO, SIGY, SIGU, TAUS, 

     &                      DYNSHR, E, BULK, DENAL, RA, U, CF, 

     &                      CCBF, CBF, CH, CCF, FCM, FG, FV, 

     &                      FT, FS, JRES, PROL, PRON, PROTD, 

     &                      DENRAT, DIA, FLUI, CD, 

c emp 22 Aug 2012  Added UDGAM 

c emp 2015  Added DYNSHR0 

c emp      &                      LSHAPE, FL, LF, DIA2, AM ) 

     &                      LSHAPE, FL, LF, DIA2, AM, UDGAM, DYNSHR0 ) 

 

c emp 2015  Changed common block name from MATAL1UD to MTL1UDFAA 

c           Added second array, DYNSHR0, to common block 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT), DYNSHR0(MXMT) 

 

⁞ 

 

c emp 22 Aug 2012  Added UDFAAPEN COMMON block for new penetration equations 

      COMMON /UDFAAPEN/ UDGAM(5) 
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After modifications were made to COVART, SURVICE submitted SCRs to the JASPO 

SCR site (https://www.bahdayton.com/scr/login.aspx):  COVART 6.2.1_11 and 

COVART 6.2.1_28.  These SCRs are detailed below. 

 

SCR COVART 6.2.1_11 

Subject:  

FAA Penetration Equation Library Update 

Deficiency Description: 

As part of the most recent UEDDAM update, a change was made to the FAA 

penetration equations that requires a new set of variables be read in through the 

MASTER file. Additionally, the FAA penetration equation library requires updates. 

Suggested Solution: 

The UEDDAM entry in the MASTER file will need to be modified to include five 

additional parameters: 

 

UEDDAM DRAGOFF SHOT G1 G2 G3 G4 G5 

 

where G1 through G5 are real number constrained to be between 0.0 and 1.0. 

Additionally, the FAA penetration equation library will need to be modified to use 

these new parameters. All required changes have been made in the attached source 

code files (X ). Each change has been prefixed with emp and an August 2012 date 

for ease of location. 

 

SCR COVART 6.2.1_28 

Subject:  

FAA Penetration Equation Module Update 

Deficiency Description: 

An update has been made to the FAA penetration equation module for use by 

UEDDAM.  In addition to the changes made within the module, in order to 

implement the change, it was necessary to make modifications to files outside of the 

FAA penetration equation module itself.  Namely, a change needed to be made to the 

routine that reads in the JTYPE file so that an additional variable could be read in 

from the MATPROP record.  In addition, a few common blocks were found to either 

be named incorrectly or contain incorrect variables, which was preventing the proper 

passage of values between subroutines. 

 

C **** MATPROP input record for UEDDAM                                     **** 

C ****                                                                     **** 

C ****                                                                     ****  

      ELSE IF ( DATTYP .EQ. 'MATPROP' ) THEN 

          READ( RECORD, '(I8)' ) IMAT 

          IF ( ( IMAT .GT. 0 ) .AND. ( IMAT .LT. 50 ) ) THEN 

c emp 2015  Added DYNSHR0 to READ 

              READ( RECORD, '(8X,2A8,3F8.1)' ) HER(IMAT), DER(IMAT), 

     &                         RHO(IMAT), DYNSHR(IMAT), DYNSHR0(IMAT) 

              JTCGF( IMAT ) = 100 * IMAT 

          END IF 

https://www.bahdayton.com/scr/login.aspx
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Suggested Solution: 

All source code files requiring omdifications have been attached to this SCR.  All 

changes are prefixed in the code with "c emp 2015".  Note that some of the requested 

changes are duplicated in SCR COVART 6.2.1_27, but have been provided for 

completeness. 
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A-2. Final Changes for COVART 6.1 Integration of UEDDAM 

 

Integration was conducted in several phases: 

 

1) Integration into COVART 6.1:  ITT integrated the UEDDAM modifications to 

COVART 6.0.1 into COVART 6.1 with documentation of changes (see Section A-2, 

Final Changes for COVART 6.0.1 Integration of UEDDAM).  Additionally, ITT 

developed new UEDDAM-specific modules (UEDDAMSNGL.f90, 

Process_UEDDAM.f90, and SetAutoFailPk.f90), JTYPE records, and MASTER file 

keywords to allow UEDDAM to work with COVART6 in integrated mode (off the 

shelf). 

 

2) Verification of COVART 6.1 (Integrated Mode) for use with UEDDAM:  SURVICE 

Engineering, as part of the UEDDAM 4.0 development effort, discovered several 

problems with the COVART 6.1 code that would not allow it to work properly with 

UEDDAM.  Code modifications were made to the following files:  

UEDDAMSNGL.f90 and Process_UEDDAM.f90.  Details follow. 

 

File:  Covart6\UEDDAMSNGL.f90 

 

All code modifications (minus those implemented solely for debugging purposes) are 

detailed below. 

 

-added access to global variables RMAX and RMIN 

-added local variables necessary for removing components from the shotline that are 

“behind” the release point 

 
! emp Added RMAX and RMIN for UEDDAM v4.0 

 

      use global_data, ONLY : DSAS, DCAS, DSES, DCES, RSA, RCA, RSE,   & 

                              RCE, IF43, RMAX, RMIN 

! emp End of addition 

 
! emp Added following variables for UEDDAM v4.0 

! 

      REAL(Kind=RK2) :: dx1, dx2, entsec, newlos, OrigAimX, OrigAimY  

      REAL(Kind=RK2) :: OrigAimZ, TransAimX, dirvecx, dirvecy, vsinel 

      REAL(Kind=RK2) :: dirvecz, transdirvecx, vcosaz, vsinaz, vcosel 

      integer :: intremove, J, K, empdebug 

      TYPE(ProcShotline_Type) :: temp_sl_data 

! 

! emp End of addition 

 

-added call to TRANSANG function to make the cosine and sine of the view azimuth and 

elevation angles available 

-added initialization of Dir and RTGDEF variables 
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! emp Added debug flag definition for UEDDAM v4.0 (set empdebug = 0 to turn  

!     off all the extra write statements); also added a call to the TRANSANG 

!     function to have the view cos/sin az/el values available; finally, added  

!     initialization of Dir and RTGDEF as in covart6.f90 

! 

       empdebug = 0 

       IF ((empdebug == 1) .AND. (IVCUR == 1)) OPEN (45, FILE='debug_trace.txt') 

 

       CALL TRANSANG(RAZ(IVCUR), REL(IVCUR), vsinaz, vcosaz, vsinel, vcosel) 

       dirvecx = -1.0 * vcosaz * vcosel 

       dirvecy = -1.0 * vcosel * vsinaz 

       dirvecz = -1.0 * vsinel 

       transdirvecx = (((dirvecx * vcosaz) + (dirvecy * vsinaz)) * vcosel) + 

(dirvecz * vsinel) 

 

       Dir%RSA = RSA 

       Dir%RCA = RCA 

       Dir%RSE = RSE 

       Dir%RCE = RCE 

 

       RTGDEF%Xmax = RMIN 

       RTGDEF%Xmin = RMAX 

       RTGDEF%Ymax = RMIN 

       RTGDEF%Ymin = RMAX 

       RTGDEF%Zmax = RMIN 

       RTGDEF%Zmin = RMAX 

 

! emp End of addition 

 

-modified storage allocation and calls to shotline routines to store shotline data in a 

temporary storage variable, as opposed to Shotline_Data 

 
! emp Modified to allocate storage to temp_sl_data rather than Shotline_Data 

! 

         IF (ALLOCATED(temp_sl_data%LOS)) & 

             deallocate (temp_sl_data%LOS) 

! intersection storage 

         allocate (temp_sl_data%LOS(Hits(I)), STAT=iStatus) 

! 

! emp End of modification 

 
! emp Modified to put data in temp_sl_data rather than Shoteline_Data 

!  

          CALL FGRT_SLReturn(I,temp_sl_data, Hits(I), Errors) 

         ELSE 

          CALL BRLCAD_RT_SLReturn(I,temp_sl_data, Hits(I), Errors) 

! 

! emp End of modification 

 

-added an algorithm that removes components from the temporary shotline that are 

“behind” the release point and then stores the resulting shotline information in 

Shotline_Data 
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!emp Added following section of code to remove components on the shotline 

!    that are "behind" the release point - needed for UEDDAM v4.0 

 

         intremove = 0 

         J = 1 

         OrigAimX = RXSHT4(IVCUR, I) 

         OrigAimY = RYSHT4(IVCUR, I) 

         OrigAimZ = RZSHT4(IVCUR, I) 

         TransAimX = (((OrigAimX * vcosaz) + (OrigAimY * vsinaz)) * vcosel) + 

(OrigAimZ * vsinel) 

         DO 

            IF (transdirvecx < 0) THEN 

               dx1 = TransAimX - temp_sl_data%LOS(J)%RX 

               dx2 = TransAimX - temp_sl_data%LOS(J)%RX + 

temp_sl_data%LOS(J)%LOS 

            ELSE 

               dx1 = temp_sl_data%LOS(J)%RX - TransAimX 

               dx2 = temp_sl_data%LOS(J)%RX - temp_sl_data%LOS(J)%LOS - 

TransAimX 

            END IF 

 

! If the difference between the x-value of the entrance and the x-value of the  

! aim point (i.e., dx1) is less than zero, or if the difference between the x- 

! value of the aim point and the x-value of the exit (i.e., dx2) is less than 

! zero, the intersection must either be removed or its LOS must be reduced. 

 

            IF (dx1 <= 0 .OR. dx2 <= 0) THEN 

               IF (dx1 < 0 .AND. dx2 >= 0) THEN 

 

! Shrink the line-of-sight and normal thickness for this component as the 

! release point is inside the component 

 

                  newlos = temp_sl_data%LOS(J)%LOS + dx1 

                  entsec = temp_sl_data%LOS(J)%ISEC1 

                  temp_sl_data%LOS(J)%LOS = newlos 

                  temp_sl_data%LOS(J)%RTH = (1000.0 / entsec) *  newlos 

                  J = J + 1 

                

               ELSE 

 

! Remove the intersection....it's behind the release! 

 

                  intremove = intremove + 1 

                  IF (Hits(I) - intremove < J) EXIT 

                  DO K = J, Hits(I) - intremove 

                     temp_sl_data%LOS(K) = temp_sl_data%LOS(K+1) 

                  END DO 

               END IF 

            ELSE 

               J = J+1 

            END IF 

            IF (J - 1 >= Hits(I) - intremove) EXIT 

             

         ENDDO 

 

! Reduce the number of total intersections for the shotline by the  

! number of components removed. 

 

         Hits(I) = Hits(I) - intremove 

 

! Now allocate the actual shotline array to be used throughout the 

! remaining code 

 

         IF (ALLOCATED(Shotline_Data%LOS)) & 

             deallocate (Shotline_Data%LOS) 

! intersection storage 

         allocate (Shotline_Data%LOS(Hits(I)), STAT=iStatus) 

         IF (iStatus /= 0) THEN 

          iErrorLevel = elError 

          CALL ErrorWrite(124)       ! memory allocation error 

         END IF 
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         DO J = 1, Hits(I) 

            Shotline_Data%LOS(J) = temp_sl_data%LOS(J) 

         END DO 

 
! emp End of addition 

 

-added a deallocation statement for the temporary shotline data storage 

 
! emp Deallocate temporary storage 

! 

       IF (ALLOCATED(temp_sl_data%LOS)) deallocate (temp_sl_data%LOS) 

! 

! emp End of addition 

 

 

File:  Covart6\Process_UEDDAM.f90 

 

All code modifications (minus those implemented solely for debugging purposes) are 

detailed below. 

 

-modified definition of AFACT 

 
        SLFACT = 1.0 

! 

! need to look at 0.25 - may be different for UEDDAM  

! emp It is different for UEDDAM....changed from 0.25 * 144 

!     to 1.0 * 144 (or simply, 144) 

! 

        AFACT = 144.0 ! Area factor  

! emp End of change 

 

-added ISRAY definition for HOLESIZE file 

 
! Process this shotline  

! 

          WFRAG = RMAS(CurView, J) 

          MTFRAG = IMATTP(CurView, J) 

          VFRAG = RVEL(CurView, J) 

          APFRAG = APFRAGUD(CurView, J) 

          RLFRAG = RLFRAGUD(CurView, J) 

          RLDFRG = FL(1) 

          ISHFRG = LSHAPE(1) 

! emp Added ISRAY definition for HOLESIZE file 

          ISRAY = ISRAY + 1 

! emp End of addition 

 

 

3) Submittal of SCRs to repair COVART 6.1:  SURVICE submitted three SCRs to the 

JASPO SCR site (https://www.bahdayton.com/scr/login.aspx):  COVART 6.0.2_30, 

COVART 6.0.2_35, and COVART 6.1.1_4.  The SCRs are detailed below. 

 

SCR COVART 6.0.2_30 

Subject:  

COVART6 Integrated Mode for UEDDAM v4.0 (Note – this applies to COVART 

v6.1) 

https://www.bahdayton.com/scr/login.aspx
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Deficiency Description: 

 1.  Missing variable initializations 

 2.  Missing variable declarations 

 3.  Algorithm needed to remove components on the shotline that are behind the 

release point 

 4.  Target PK not being accumulated over all UDASPECT/UDAIM records in a 

single MASTER file 

Suggested Solution: 

 Attached code (NewUEDDAMSNGL.f90 and NewProcess_UEDDAM.f90) addresses 

the problems identified in 1, 2, and 3 of the deficiency description.  More time would 

be needed to address the problem identified in 4. 

 

SCR COVART 6.0.2_35 

Subject:  

AVDATOUT Record Not Working Properly (COVART 6.1) 

Deficiency Description: 

 COVART does not generate a file with the name specified on the AVDATOUT 

record in the MASTER file. 

Suggested Solution: 

Ron White located the problem:  “it’s the result of a variable in read_master that is 

not getting incremented but that is used as a test to open the AVDAT file.” 

 

SCR COVART 6.1.1_4 

Subject:  

Shotline File Generation for UEDDAM v4.0 

Deficiency Description: 

The UEDDAM Visualizer requires a shotline file for some of its built-in features to 

work properly.  With the upgrade to COVART integrated mode, we no longer have 

the option to output a shotline file if needed (as the RESTART capability does not 

work with UEDDAM mode).  Note that this SCR was communicated to Tim Staley 

in October 2010 as one of the upgrades that needed to take place for UEDDAM 

v4.0. 

Suggested Solution: 

We would like to add a new variable to the UEDDAM line in the MASTER file.  

The additional variable should be added to the end of the line and its options should 

be SHOT or NOSHOT.  For example, the following line could appear in the 

MASTER file: 

 

UEDDAM  DRAGOFF SHOT 

 

The variable needs to be passed to the UEDDAMSNGL.f90 module and will tell the 

code whether or not to generate a Shotline file.  I’ve attached a sample file of what 

the Shotline file could look like – note that the only restrictions on the file are that it 

must contain the following information (i.e., format is not important, as long as we 

know what the format is): 
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Per Fragment (Shotline) ray: 

*  Mass 

*  Velocity 

*  Fragment Material 

*  Impact Count 

 

Per Impact: 

*  Component ID 

*  Air Gap 

*  LOS 

*  Obliquity 

 

4) Integration of Repairs into COVART 6.2:  ITT implemented the code changes 

documented in #2 above, addressed the remaining SCR issues, and debugged a 

couple of newly discovered problems with the Autofail routines. 

 

Development and testing by SURVICE during this iteration were performed on 2.00GHz 

Dell Latitude D620 Microsoft Windows XP Professional platform.  The Windows 

version was built and tested using Microsoft Visual Studio 2005 Professional Edition 

with the integrated Intel Fortran compiler.   
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A-3. Final Changes for COVART 6.0.1 Integration of UEDDAM 

 

Integration was conducted in several phases: 

 

1) Integration into COVART 5:  Integrated the UEDDAM modifications to COVART 

4.2 into COVART 5 with documentation of changes (see Section A-4, 

Correspondence: UEDDAM Appendix A with Annotated COVART 5 Modifications - 

3 October 2008).  ITT reviewed changes, incorporated some into updated source 

code, and provided notes on suggested alternative changes where conflicts existed or 

coding standards needed to be applied (see Section A-3, Correspondence: Summary 

of COVART 6 Changes for UEDDAM Based on COVART 5 Modifications - 12 

January 2009). 

 

2) Verification of documented change requests:  Comparison of the notes provided 

from ITT and the Appendix A documentation of COVART 5 changes showed that 

the two new materials were not added; two dimensioning parameters in the parm.inc 

file were not updated, and the initialization of many parameters had been relocated 

and/or zeroed. 

 

3) Implementation of changes per ITT notes:  Two primary changes were requested.  

First, additional common blocks were utilized rather than altering existing blocks; 

common blocks utilized within the library routines were given modified names.  

Second, storage of the fragment presented area (APFRAG) and fragment mass 

(WFRAG) values were altered in order to avoid a precision change to the EXOB 

variable.  This required changing how the OUNPKA and related ASCII and binary 

shotline files (SHOTLINE and SHOTBIN) were written, as well as how the binary 

SHOTBIN file was interpreted. 

 

4) Updates to flag parameters and variable access:  In order to get the existing code to 

run with the above changes, common blocks had to be added/modified in several 

routines, and flag parameters utilized by the previous version had to be updated to 

reflect the new ITHSP=2 value now used to indicate a UEDDAM run in COVART 

legacy mode. 

 

5) Input reformatting:  Input deck changes for COVART 6 were identified and applied 

to the UEDDAM test cases. 

 

6) Naming convention changes for code builds:  There were naming conflicts that had 

to be resolved in order to satisfy the constructs of the multiple build environments 

being used, particularly to support the Intel FORTRAN compiler for the Windows 

build without altering the Absoft and Linux build capabilities. 
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7) Updates to FASTGEN routines for new SHOT4/VIEW4 processing:  The routines 

for processing these records did not function correctly.  They were iteratively 

modified with ITT to operate correctly and produce datasets identical to the VIEW3 

processing they were intended to replace. 

 

8) Updates for HOLESIZE I/O and processing:  Common blocks and parameter 

declarations were added to upper-level routines to make this data accessible. 

 

Development and testing during this iteration were performed on 2.54GHz Dell Precision 

M6400 Microsoft Windows Vista Business platforms.  The Windows version was built 

and tested using Microsoft Visual Studio 2005 Professional Edition with the integrated 

Intel Fortran compiler.  The Linux version was built and tested using a Fedora 10 32-bit 

Linux virtual machine (using VMware) with the GNU Fortran compiler.  Sets of 

makefiles were created for production and debug builds of both versions. 

 

Listed below on a file-by-file basis are the modifications implemented for UEDDAM 

execution within COVART 6.0.1. 

 

 

File:  Covart6\areach.f 

 

Now storing the number of components on the ray and the fragment weight in grains 

(WFRAG) in the IECO variable in the shotline header.  In the shotline file, IECO will 

have updated WFRAG values in the “high end” of the integer (7 digits), and the number 

of components on the ray value in the “low end” of the integer (last 3 digits).  Assumes 

MAXINT value of 2,147,483,647, which will allow the range of 0 to 2,147,482 for 

WFRAG and 0 to 999 for number of components on the ray.  Fragment presented area 

(APFRAG) value is now stored directly in the single-precision EXOB variable. 

 

-added access to new common blocks EXTBPDUD and END2 for access to APFRAG, 

RLFRAG, and ITHSP variables 

 
clag  added access to APFRAG, RLFRAG 

      COMMON /EXTBPDUD/ APFRAG, RLFRAG 

clag  end change                  

 
clag  added access to ITHSP 

      COMMON /END2  / ITHSP, IUNGRD 

clag  end change                  

 

-added local temp variable IWFTMP for use when converting frag weight from shotline 

file variable IECO 

 
clag  added local temp variable 

      INTEGER  IWFTMP 

clag 
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-added comment info for interpreting UEDDAM ray headers 

 
CLAG 

CLAG  NOTE: FOR UEDDAM RAY HEADER: 

CLAG         IECO = FRAG WEIGHT IN GRAINS X 1000 + 

CLAG                 NUMBER OF COMPONENTS ON RAY 

CLAG         EXOB = FRAGMENT PRESENTED AREA, SQ. INCHES 

CLAG 

 

-added conversion code for new store of fragment weight with number of components on 

ray in IECO variable, store of fragment presented area directly in EXOB variable, and 

conditional for extracting RLFRAG value from CTH shotline variable 

 
clag  for ueddam 

clag  ITN = IECO(LL)                                                     

      IF ( ITHSP .NE. 2 ) THEN 

          ITN = IECO(LL) 

      ELSE 

          IWFTMP = INT(IECO(LL)/1000) 

          ITN = IECO(LL) - (IWFTMP * 1000) 

          APFRAG = EXOB(LL) 

      END IF 

clag  end change 

 
clag  added for ueddam 

clag        DIRX = CTH(LL) 

        IF ( ITHSP .NE. 2 ) THEN 

            DIRX = CTH(LL) 

        ELSE 

          DIRX = 0.0 

          RLFRAG = CTH(LL) 

        END IF 

clag  end change 

 

-updated code for using extracted fragment weight from IECO variable 

 
clag              WFRAG = SOLANG                                             

clag  for ueddam 

              IF ( ITHSP .NE. 2 ) THEN 

                  WFRAG = SOLANG 

              ELSE 

                  WFRAG = FLOAT(IWFTMP) 

              END IF 

clag  end change 

 

 

File:  Covart6\areasb.f 

 

-added access to new common block UEDDAMIO for access to IOHOLE variable 

 
cdrh for UEDDAM 

      COMMON /UEDDAMIO/ IOHOLE 

cdrh 
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-added file open statement for holesize output 

 
cdrh for UEDDAM -- HOLESIZE 

      IF ( NUMVW .EQ. 1 ) THEN 

C         OPEN HOLE SIZE OUTPUT FILE 

          OPEN ( IOHOLE, FILE='HOLESIZES' ) 

      ENDIF 

cdrh 

 

 

File:  Covart6\areasd.f 

 

-added access to new common block END2 for access to ITHSP variable 

 
clag  added access to ITHSP 

      COMMON /END2  / ITHSP, IUNGRD 

clag  end change                  

 

 

File:  Covart6\bploc.f 

 

-added check for valid ITHSP=2 UEDDAM legacy mode processing 

 
clag need to check for ITHSP=2 valid UEDDAM legacy mode processing 

c      IF ( ITHSP .EQ. 0 ) THEN 

      IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN 

clag  end change 

 
clag need to check for ITHSP=2 valid UEDDAM legacy mode processing 

clag   ?? or will ICOVBX value stop entry ?? 

c      IF ( (ICOVBX .EQ. 1) .AND. (ITHSP .EQ. 0) ) THEN                

      IF ( (ICOVBX .EQ. 1) .AND. (ITHSP .EQ. 0 .OR. ITHSP .EQ. 2) ) THEN 

clag  end change                

 

 

File:  Covart6\covart5.f 

 

-added access to new common blocks MATAL1UD, MATUSEUD for access to 

DYNSHR, IFAAF variables 

 
clag  added for UEDDAM 

      COMMON /MATAL1UD/ DYNSHR(MXMT) 

clag  end change                  

 
clag  added for UEDDAM 

      COMMON /MATUSEUD/ IFAAF(MXMTCD) 

clag  end change                  
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File:  Covart6\covart6.f90 

 

-added access to new common block UEDDAMIO for access to IOHOLE variable 

 
! drh for UEDDAM 

      COMMON /UEDDAMIO/ IOHOLE 

! drh 

 

-added type declaration for IOHOLE variable 

 
! drh for UEDDAM 

      integer :: IOHOLE 

! drh 

 

-set value for holesize output file 

 
! drh for UEDDAM 

      IOHOLE = 12 

! drh 

 

 

File:  Covart6\faasl.f 

 

-added access to new common block END2 for access to ITHSP variable 

 
clag  added for UEDDAM 

      COMMON /END2  / ITHSP, IUNGRD 

clag  end change                  

 

-added loop case for UEDDAM last shotline intersection processing 

 
clag Not sure if this mimics old behavior or not, 

clag but would think you should still process last shotline 

clag intersection for UEDDAM run as well 

      ELSE IF((N .EQ. NN) .AND. (ITHSP .EQ. 2)) THEN 

        ICALLV = 1  

clag  end change                  

 

-corrected calls to FAAFragCtl routine 

 
C         CALL AREASV 

CLAG  NEW CALL FOR FAA FRAGS 

 

clag        CALL FAAFragCtl ( FrID, TgtMat, LOS, WPs, VPs, AreaP 

        CALL FAAFragCtl ( FrID, TgtMat, LOS, WPs, VPs, AreaP, 

     &                    WR, V50, Vr) 

 

CLAG  END CHANGE 

 
clag  removed RHOt 

clag               CALL FAAFragCtl (FrID, TgtMat, RHOt, LOS, WPs, VPs, AreaP, 

               CALL FAAFragCtl (FrID, TgtMat, LOS, WPs, VPs, AreaP, 

     &                           WR, V50, Vr) 

CLAG  END CHANGE                  
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File:  Covart6\init_EACA_stub.f 

 

-added alternate code for setting new material string descriptors if changes to init.f are 

not acceptable; requires access to MATHER common block string descriptors HER, DER 

for new materials in positions 46, 47. 

 
clag for ueddam if changes to init.f are not accepted 

c       COMMON /MATHER/ HER(MXMTCD), DER(MXMTCD) 

clag  not sure I need to redeclare type here? 

c       CHARACTER * 8 HER, DER 

clag  end change 

 
clag if material names init here v. in init.f 

c      CHARACTER * 8 THDRUD 

c      DIMENSION  THDRUD(4) 

c      DATA THDRUD / 'COMPOSIT' , 'E       ' , 'INCONEL®' ,' 625 LCF' / 

clag  end change 

 

clag  for ueddam if changes to init.f are not accepted 

c       HER(46) = THDRUD(1) 

c       DER(46) = THDRUD(2) 

c       HER(47) = THDRUD(3) 

c       DER(47) = THDRUD(4) 

clag  end change 

 

-utilized recommended common block naming convention for UEDDAM-specific 

parameters in separate common blocks 

 

-restored material constant initialization values from earlier "approved for release" 

version (using a modified COVART 4.2.3 build) for use in UEDDAM compiled versions 

of COVART 6.x. 

 

{see routine init_EACA_stub.f} 

 

 

File:  Covart6\initlib_u.f 

 

-added access to new common block MATAL1UD for access to DYNSHR variable 

 
clag  added for UEDDAM 

      COMMON /MATAL1UD/ DYNSHR(MXMT) 

clag  end change                  

 

-corrected call to FAAFrInit to include DYNSHR variable 

 
clag added DYNSHR 

clag           CALL FAAFrInit ( BHN, RHO, SIGY, SIGU, 

clag     &                      TAUS, E, BULK, DENAL, RA, U, CF, 

           CALL FAAFrInit ( BHN, RHO, SIGY, SIGU, TAUS, 

     &                      DYNSHR, E, BULK, DENAL, RA, U, CF, 
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File:  Covart6\init.f 

 

-added string descriptors to THER, TDER for new materials in positions 46, 47 

 
clag  for ueddam 

clag  + 'TITANIUM', 5*'        ','WATER   ', 

     + 'TITANIUM','COMPOSIT','INCONEL®',3*'        ','WATER   ', 

clag  end change 

 
clag  for ueddam 

clag  + 5*'        ', 

     + 'E       ',' 625 LCF',3*'        ', 

clag  end change 

 

-may need to revisit variables NPCT, NPKCT settings if used elsewhere for UEDDAM 

 
clag  for ueddam, vals were NPCT 25000, NPKCT 6000 

clag  but if you're no longer using these params because you're 

clag  init'ing to values from parm.inc file instead, then why 

clag  keep them here?  If they're used elsewhere, then I need them 

clag  reset per above for UEDDAM. 

clag 

clag      DATA  NPCT   / 10000/ 

clag      DATA  NPKCT  /  2999/ 

      DATA  NPCT   / 25000/ 

      DATA  NPKCT  /  6000/ 

clag 

 

-may need to add conditional for using alternate init_EACA routine 

 
clag  Either compile in alternate file (current) for this routine when 

clag  making a UEDDAM build, or will need to add conditional here later 

clag 

      CALL init_EACA 

 

 

File:  Covart6\inputd.f 

 

-added check for valid ITHSP=2 UEDDAM legacy mode processing 

 
clag  need to check for ITHSP=2 valid UEDDAM legacy mode processing 

c      IF ( ITHSP .EQ. 0 ) THEN 

      IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN 

clag  end change 
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File:  Covart6\inputi.f 

 

-added access to new common blocks END2, HEPEN, JTYP2H, MATUSEUD for access 

to ITHSP, IHPROJ, JTYPH, and IFAAF variables 

 
clag for UEDDAM 

      COMMON /END2  / ITHSP, IUNGRD 

clag                  

 
clag need this for new MATCODE checks and UEDDAM 

      COMMON /HEPEN / IHPROJ 

clag 

 
cdrh for UEDDAM 

      COMMON /JTYP2H/ JTYPH(MXJTYP) 

cdrh 

 
clag for UEDDAM 

      COMMON /MATUSEUD/ IFAAF(MXMTCD) 

clag                  

 

-added dimension statement for ICHO variable 

 
cdrh for UEDDAM 

      DIMENSION ICHO(8) 

cdrh                  

 

-added parens for clarity and check versus IFAAF array for UEDDAM materials 

 
clag added some parens in this IF block for clarity 

               ELSE IF ( (IPROJ .GE. 2) .AND. (IPROJ .LE. 4) ) THEN 

                MCHECK = IPROJF(JM) 

                MCHECK = MCHECK/100 

                IF (IHPROJ .EQ. 0) THEN 

c                 JCHECK = JTCGF(JM) 

clag need to check against IFAAF array for UEDDAM materials 

                   IF (ITHSP .NE. 2) THEN 

                     JCHECK = JTCGF(JM) 

                   ELSE 

                     JCHECK = IFAAF(JM) 

                   END IF 

clag end change 
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File:  Covart6\parm.inc 

 

-increased baseline values for MXPKTB (per NPKCT) and MXPKLC (per NPCT) 

 
!   MXPKTB - Maximum Number of PK Tables 

! 

!lag  for ueddam 

!lag      PARAMETER (MXPKTB = 2999) 

      PARAMETER (MXPKTB = 6000) 

!lag  end change 

 
!   MXPKLC - Maximum Number of locations for PK table information in the VEL and 

PRK 

!             Arrays. These arrays contain the the number of steps for each 

curve 

!             and the data for each step for each PK table. The average number 

of 

!             curves for all the PK table types is 11 curves. If an assumption 

of an 

!             average number of steps for each curve is 5, and the average 

number 

!             of curves for a table is 11, then the size of these arrays need to 

be 

!             5 * 11 * 2999 = 164,945. Currently 10,000 seems to be doing well 

since 

!             most of the components refer to common PK tables. 

! 

!        ADJUSTED for JSF 

! 

!      PARAMETER (MXPKLC = 10000) 

!lag  for ueddam 

!lag      PARAMETER (MXPKLC = 20000) 

      PARAMETER (MXPKLC = 25000) 

!lag  end change 
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File:  Covart6\read_threat_u.f90 

 

-added check for valid ITHSP=2 UEDDAM legacy mode processing 

 
      CASE(cThrParm) 

 
! lg need to recognize ITHSP=2 as valid for legacy mode processing 

!          IF ( ITHSP .EQ. 0 ) THEN 

          IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN 

 
      CASE(cHeFrag) 

 
! lg need to recognize ITHSP=2 as valid for legacy mode processing 

!            IF ( ITHSP .EQ. 0 ) THEN 

            IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN 

 
!  POST-READ OPERATIONS FOR HE THREATS 

 
! lg need to recognize ITHSP=2 as valid for legacy mode processing 

!        IF ( ITHSP .EQ. 0 ) THEN 

        IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN 

          IF ( .NOT. HEFRGFlg ) THEN 

 
! lg need to recognize ITHSP=2 as valid for legacy mode processing 

!        IF ( ITHSP .EQ. 0 ) THEN 

        IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN 

          DO JJ = 1, NOS 

 
! lg need to recognize ITHSP=2 as valid for legacy mode processing 

!        IF ( ITHSP .EQ. 0 ) THEN 

        IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN 

          DO J = 2, NOS 

 
! lg need to recognize ITHSP=2 as valid for legacy mode processing 

!        IF ( ITHSP .EQ. 0 ) THEN 

        IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN 

 

!         CONVERT ETA TO NUMBER OF FRAGMENTS IF NECESSARY 

 

 

File:  Covart6\runshot4.f90 

 

-changed bounds for allocating BurstPoints array 

 
!LAG      allocate (BurstPoints(INSHT), STAT=iStatus)  

      allocate (BurstPoints(GroupSize), STAT=iStatus)  

 

-eliminated extra WriteEndOfViewMessages 

 
!LAG per RodS 17Jul09 

!LAG              call WriteEndOfViewMessages 

              if (allocated(Shotline_Data%LOS)) deallocate(Shotline_Data%LOS)  
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-changed locations for heading writes & shotline data flush 

 
!7/23/09 DRH: modified as per Rod Stewart's instructions 

           call WriteShotlineViewHeaders(I) 

            if (Hits(I) .NE. 0) then             

 
! 

!   Store the shotline data 

! 

              Flush = 0 

              call Output_Shotline (Shotline_Data, Flush) 

 

! 

!   Output the shotline data 

! 

!7/20/09 DRH: modified as per Rod Stewart's instructions 

              Flush = 0 

              call Output_Shotline (Shotline_Data, Flush) 

 

              if(ALLOCATED(Shotline_Data%LOS)) deallocate(Shotline_Data%LOS)  

               

            end if 

 

!7/23/09 DRH: modified as per Rod Stewart's instructions 

            Flush = 1 

            call Output_Shotline (Shotline_Data, Flush) 

 

          END DO 

 

-moved loop end past cleanup calls 

 
!LAG Moved loop end past cleanup calls  

!        END DO 

! 

! Retain the shotline data storage memory if needed for next view 

 
!LAG relocated loop end here 

        END DO 

 

      END 

 

 

File:  Covart6\sol.f90 

 

-added initialization for IGRIDS 

 
!LAG  added IGRIDS 

      IGRIDS = 0  

 

-added MAX function 

 
!LAG added per RodS 16Jul09 

      IGRIDS = MAX(IGRIDS, INSHT4)  
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File:  Covart6\tables.f 

 

-split CKILL into single- and double-character CKILL1, CKILL2 to eliminate blanks in 

concatenated filenames 

 
clag  To eliminate 'blanks' in concatenated file names, need two types of 

clag  character reps for kill numbers 

clag   CKILL1 - single char for kill numbers 1-9 

clag   CKILL2 - two chars for kill numbers 10-16 

clag      CHARACTER * 2 CKILL 

      CHARACTER * 1 CKILL1 

      CHARACTER * 2 CKILL2 

clag  end change 

 
clag  Updated to eliminate 'blank' chars in filenames 

c             WRITE ( CKILL, 6 ) NKILL(KLV) 

c             JSFILE(KLV) = 'jsem.'//CKILL//'.'//CAZI//'.'//CELE 

             IF ( NKILL(KLV) .LT. 10 ) THEN 

                WRITE ( CKILL1, 5 ) NKILL(KLV) 

                JSFILE(KLV) = 'jsem.'//CKILL1//'.'//CAZI//'.'//CELE 

             ELSE 

                WRITE ( CKILL2, 6 ) NKILL(KLV) 

                JSFILE(KLV) = 'jsem.'//CKILL2//'.'//CAZI//'.'//CELE 

             END IF 

clag  end change 

 
clag  Updated to eliminate 'blank' chars in filenames 

c             WRITE ( CKILL, 6 ) NKILL(KLV) 

C *** FIXED FILE OPENING BUG FOR SHAZAM FILES --- RKS 1/25/08 

C            CKSZFILE(KLV) = 'shazam.'//CKILL//'.'//CAZI//'.'//CELE 

c             SZFILE(KLV) = 'shazam.'//CKILL//'.'//CAZI//'.'//CELE 

             IF ( NKILL(KLV) .LT. 10 ) THEN 

                WRITE ( CKILL1, 5 ) NKILL(KLV) 

                SZFILE(KLV) = 'shazam.'//CKILL1//'.'//CAZI//'.'//CELE 

             ELSE 

                WRITE ( CKILL2, 6 ) NKILL(KLV) 

                SZFILE(KLV) = 'shazam.'//CKILL2//'.'//CAZI//'.'//CELE 

             END IF 

clag  end change 
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File:  Covart6\zondat.f 

 

-added check for valid ITHSP=2 UEDDAM legacy mode processing 

 
clag need to check for ITHSP=2 valid UEDDAM legacy mode processing 

c              IF ( ITHSP .EQ. 0 ) THEN                                           

              IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN                                   

                  CALL FRAGCK( LSHAPE(1), MATFHE )                    

 
clag need to check for ITHSP=2 valid UEDDAM legacy mode processing 

c      IF ( ITHSP .EQ. 0 ) THEN                                           

      IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN                                           

          IF ( .NOT. HFRAG ) THEN                                        

 
clag need to check for ITHSP=2 valid UEDDAM legacy mode processing 

c      IF ( ITHSP .EQ. 0 ) THEN                                           

      IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN                                           

          DO 5025 JJ = 1, NOS                                            

 
clag need to check for ITHSP=2 valid UEDDAM legacy mode processing 

c      IF ( ITHSP .EQ. 0 ) THEN                                           

      IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN                                           

          DO 5027 J = 2, NOS                                             

 
clag need to check for ITHSP=2 valid UEDDAM legacy mode processing 

c      IF ( ITHSP .EQ. 0 ) THEN                                           

      IF ( ITHSP .EQ. 0 .OR. ITHSP .EQ. 2 ) THEN                                           

C                                                                        

C     W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W  

C                                                                     W  

C     CONVERT ETA TO NUMBER OF FRAGMENTS IF NECESSARY                 W 

 

 

File:  libraries\FAAPEN\faafrag.f 

 

-separated DYNSHR into labeled common MTL1UDFAA 

 
clag  separated DYNSHR 

      COMMON /MATL1FAA/ BHN(MXMT), RHO(MXMT), SIGY(MXMT), 

     &                  SIGU(MXMT), TAUS(MXMT) 

c     &                SIGU(MXMT), TAUS(MXMT), DYNSHR(MXMT) 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT) 

clag  end change 

 

-changed case match for consistency in Vr references 

 
clag        VR = 0.0 

        Vr = 0.0 

 

clag      VR = SQRT (VV ** 2 - V50 ** 2) / (1. + Q4) 

      Vr = SQRT (VV ** 2 - V50 ** 2) / (1. + Q4) 
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File:  libraries\FAAPEN\faafragctl.f 

 

-restored MATHE1FAA common block 

 
clag restored MATHE1FAA w/JRES value  

      COMMON /MATHE1FAA/ JRES 

 

-separated DYNSHR into labeled common MTL1UDFAA 

 
CLAG  ADDED DYNSHR FOR FAA PENETRATION EQNS 

      COMMON /MATL1FAA/ BHN(MXMT), RHO(MXMT), SIGY(MXMT), SIGU(MXMT), 

     &                  TAUS(MXMT) 

clag  separated DYNSHR 

c     &                TAUS(MXMT), DYNSHR(MXMT) 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT) 

CLAG  END CHANGE 

 

-removed variable declarations for LL, RlFrag 

 
clag removed LL  

clag      INTEGER  KKPEN, LL 

      INTEGER  KKPEN 

 

clag  removed RlFrag 

clag      REAL TlEq, WT, RlFrag, V, AreaP, WR, V50, Vr 

      REAL TlEq, WT, V, AreaP, WR, V50, Vr 

 

-corrected FAAfrag call by removing RlFrag paramewter 

 
clag  removed RlFrag parameter from call 

clag        CALL FAAfrag ( FrID, TgtMat, RHOt, TlEq, WT, RlFrag, V, AreaP,  

        CALL FAAfrag ( FrID, TgtMat, RHOt, TlEq, WT, V, AreaP,  

 

-changed case match for consistency in Vr references 

 
clag        VR = 0.0 

        Vr = 0.0 

 

clag          VR = V * EXP(-EXPOW) 

          Vr = V * EXP(-EXPOW) 

 

 

File:  libraries\FAAPEN\faafrinit.f 

 

-separated DYNSHR into labeled common MTL1UDFAA 

 
CLAG  ADDED DYNSHR FOR FAA PENETRATION EQNS 

      COMMON /MATL1FAA/ BHN(MXMT), RHO(MXMT), SIGY(MXMT), SIGU(MXMT), 

     &                  TAUS(MXMT) 

clag  separated DYNSHR 

clag     &                TAUS(MXMT), DYNSHR(MXMT) 

      COMMON /MTL1UDFAA/ DYNSHR(MXMT) 

CLAG  END CHANGE 
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Updates Required for Pre-Existing UEDDAM Input Datasets 

 

MASTER File - **New File** 

 

• Required to set run mode to legacy COVART5 operation and provide name of 

BASIC control file 

 
MODE    COVART5 BASIC 

ENDDATA 

 

BASIC File 

 

• Add 3 parameters to TABFLAG record 

 
$COMMENT   IOPKH  IOJSEM  NVAAZI  NVAELE   TGTVA  IOSHZM  IBIGLO IRBURST 

TABFLAG        0       1       1       1       0       0       0       0 

 

THREAT File 

 

• Add 1 parameter to THRPARM record, THSPEC=2 indicates UEDDAM run 

 
$COMMENT---IPROJ----NVEL-----NWT-----YAW----AMU1----AMU2--THSPEC 

THRPARM        2       1       1                               2 

 

• Add 2-3 parameters to HECHAR record (if DSTMAX already present, insert 

WARHDX and WARHDL parameters preceding DSTMAX; otherwise, add all 3 

parameters) 

 
$COMMENT-----NOS------IX---IHALF--CHARGN--FUZTIM--FUZDIS--WARHDX--WARHDL--DSTMAX 

HECHAR         2       1       0 200000.     0.0     6.0      0.      0.       0 

 

JTYPE File 

 

• All COMPPHY records must occur before any COMALIAS records 

• Change material code index (JM) values of ‘37’ to ’46’ for Composite 

• Change material code index (JM) values of ‘38’ to ‘47’ for Inconel® 625 LCF 

 

PKH File 

 

• Add 1 parameter to FIREDATA record (EXCNT=1 default setting for number of 

exit fires that can occur from a single flash/function) 

 
$COMMENT    FIRE   KTANK   EXCNT 

FIREDATA     0.5       2       1 
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A-4. Correspondence:  Summary of COVART6 Changes for UEDDAM Based on 

COVART 5 Modifications - 12 January 2009 

 
Summary of changes made to COVART6 to accommodate the FAA Penetration Library (for 

UEDDAM) based on changes made by SURVICE Engineering to COVART5 as documented in e-

mail dated 10/03/2008. 

Change 1: 

All material data constants have been removed from the init subroutine contained in the init.f file 

in COVART6 main. These material data constants have been placed in the init_EACA subroutine 

in the init_EACA.f file. The init subroutine calls init_EACA. 

A separate file init_EACA_stub.f contains a stubbed copy of init_EACA for use in the UEDDAM 

version of COVART6. All material values in the stubbed version of init-EACA are initialized to 

zero. Makefiles have been updated with two separate build paths: one for UEDDAM and one for a 

regular COVART6 release. The makefile path for the UEDDAM version of COVART6 uses the 

stubbed version of init_EACA. 

Any material constants required by the UEDDAM version of COVART6 will have to be added 

back into the stubbed version of init_EACA. For example, the DYNSHR constants added to the 

init subroutine by SURVICE Engineering for UEDDAM could be added and initialized in the 

stubbed version of the init_EACA subroutine. 

Change 2: 

The MXHOUT parameter for UEDDAM output has been added to the parm.inc file (MXHOUT = 

9999) and this parameter file has been updated for all the COVART libraries. 

Change 3: 

The FAA penetration library subroutines routines faafragctl, faafrag, faafrinit and faaheinit have 

been used to create the FAA Penetration library [a shared-object (.so) file for Linux systems and 

a dynamically loadable library (.dll) file for Windows]. The subroutines were included as provided 

by SURVICE Engineering with only one significant change: a Windows DLLEXPORT command 

was placed at the beginning of the faaheinit, faafrinit, and faafragctl subroutines to flag these 

routines as library entry points for the Windows build process. This command is preceeded by an 

exclamation mark (!) so that it appears to be a FORTRAN 90 comment to the Linux build process.  

Added an additional call to faafragctl in faasl after the unpenetrated combined plates have been 

uncombined for individual plate penetration. The SURVICE Engineering version of faafragctl only 

contained one call to faasl. 

faaheinit is called by the COVART6 herayctl subroutine and faafrinit is called by the COVART6 

initlib subroutine when the variable ITHSP is set to 2. 

An additional subroutine, FAAGetVersion was added to the penetration library to return a 

FORTRAN Character*80 argument, FAAVER, that identifies the library version number. The 

FAAVER variable was added to MODVER, a labeled COMMON block used in the covart5, 

inputc, read_master, and getver subroutines. 
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Change 4: 

Added faasl subroutine to COVART6 makefiles so it can be called by herayctl instead of the 

fragsl subroutine. 

Change 5: 

Changed COVART6 read_threat subroutine to add the ITHSP = 2 condition on the THRPRM 

record and modified if-then-else tests to include ITHSP=2 in the range of possibilities to indicate a 

UEDDAM run. 

Change 6: 

Added named COMMON block END2 containing ITHSP to the herayctl subroutine to make 

ITHSP available for if-then-else test. 

Created named COMMON block EXTBPDUD containing APFRAG and RLFRAG variables rather 

than expanding named COMMON block EXTBPD with those variables. This method is usually 

preferred since the COMMON block EXTBPD is used in several other places in COVART6. 

Included the new COMMON block, EXTBPDUD, in the herayctl and faasl subroutines. 

Created named COMMON block UEDDAMIO containing the IOHOLE variable for the faasl 

subroutine rather than placing IOHOLE into the INOUT7 COMMON that is used in several 

different places in COVART6. 

Change 7: 

Since initial projectile yaw calculations are ITAR restricted, this calculation that was performed in 

several places in COVART5 has been moved into the get_projyaw subroutine in the 

get_projyaw.f file. An ITAR compliant stub that returns a value of 0.0 for PHI (yaw angle) was 

written and can be found in the file get_projyaw_stub.f. Makefiles were updated to use the 

stubbed version when a UEDDAM version of COVART6 is being compiled.  

Change 8: 

All FRAGPEN, PROJPEN, and FATEPEN library routines have been stubbed. The stubbed 

versions are contained in files with subroutine names suffixed with the word stub. 

The following FRAGPEN library routines have been stubbed: 

frag-ctl, fragheinit, fragversion, and jtcgfrinit. 

The following PROJPEN library routines have been stubbed: 

COVART_DATA, COVART_PROJ, jtcgapiinit, proj-ctl, and projversion. 

The following FATEPEN3 library routines have been stubbed: 

cloudhdlr, fatehdlrvers, fatephdlr, heinithdlr, inihdlr, and pkshathdlr. 
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General comment about labeled COMMON:  

COVART6 developer’s have adopted the practice of not using the same names for COMMON 

blocks in the libraries and in the COVART6 main program. For example if the variables A, B, C, 

and D in the labeled COMMON block ABCD in COVART6 main are required for the PROJPEN 

library, they will be passed to the library through the interface to local variables AP, BP, CP, and 

DP then stored in a common block labeled ABCDP with the global variables (to the library) A, B, 

C, and D. 

If these variables are required in the JTCG FRAGPEN library they will passed through the library 

interface to local variables AJ, BJ, CJ, and DJ then stored in a COMMON block labeled ABCDJ 

and with global variables (to the library) A, B, C, and D. 

 

Comment about SURVICE change #3 (packing APFRAG and WFRAG into EXOB and doubling 

precision of EXOB in the ray-header record): 

We would recommend not changing the binary file format of the OUNPKA file by increasing the 

precision of EXOB in the ray-header as this makes the binary file incompatible with current 

pending and future COVART releases. Rather we would recommend packing one of the fragment 

variables in the single-precision EXOB variable and packing the other into the top half of another 

variable in the ray-header. One possibility is to pack the second fragment variable into the top half 

of the variable for number of intersections on a ray.  
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A-5. Correspondence:  UEDDAM Appendix A with Annotated COVART 5 

Modifications - 3 October 2008 

 

Background 

 

A stripped down and modified version of COVART 4.2 was created for use with 

UEDDAM 3.0, as noted: 

 

Significant modifications were made to COVART 4.2 in order to permit implementation 

into UEDDAM.  The most significant modification was performed by KETRON and 

consisted of removing all export-controlled features of COVART 4.2 to permit free 

distribution of UEDDAM throughout the world.  Generally, all armor-piercing 

incendiary (API) threat functioning and penetration algorithms as well as most of the 

high explosive incendiary (HEI) modules were removed.   

 

Following the KETRON modifications, other smaller changes were made to the code by 

SURVICE Engineering to permit accurate data transfer between UEDDAM and 

COVART and to implement the new penetration equations developed by NAWC-WD 

Code 418000D.  

 

The most significant change made by SURVICE Engineering was to implement the new 

penetration equations.  The subroutine "FRAG" was rewritten based on the China Lake 

equations. 

 

It is now desirable to integrate the UEDDAM modifications to COVART back into the 

current, configuration-controlled COVART 5 (and developmental COVART 6) models.  

However, two factors make reintegration of the UEDDAM modifications more difficult 

than simply “plugging in the updates.”  First, COVART 5 was a major upgrade that 

included restructured, modularized code and separate penetration library modules, 

significant changes to the code layout.  Elements changed for UEDDAM are not 

necessarily located within the same files, or are echoed redundantly among separated 

initialization routines within the penetration libraries.  Second, since UEDDAM was 

using a separate, standalone version of COVART 4.2, testing was limited to the HE 

portions used by UEDDAM, without concern for any potential introduction of errors to 

unused fragment and projectile routines.  Care and adequate testing must now be 

performed to make sure that the UEDDAM modifications operate as intended without 

breaking or modifying the other operating modes in COVART 5. 

 

This document reiterates the change information provided in Appendix A of the 

UEDDAM 3.0 User Manual to categorize required changes, and provides suggested 

changes to COVART 5 to implement the desired capabilities for UEDDAM use.  When 

applicable, additional discussion is included to address any caveats or concerns with the 

specific implementation recommended.  A modified version of COVART 5 was 

developed to test the suggested updates; testing is still ongoing. 
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Development and testing were performed on a 1.5GHz Dell Inspiron 8600 Microsoft 

Windows XP Professional platform using Microsoft Visual Studio 2005 Professional 

Edition with the integrated Intel Fortran compiler.  A set of makefiles were created for 

production and debug builds of both the existing and updated COVART 5 versions. 

 

General Discussion 

 

{Expand on following: About built as separate library, dupe of jtcgfrag library; list of 

routines requiring changes; concern w/releasability of a hobbled version if source not 

separated correctly; correlation with other changes since this version5 (more materials); 

might be better implementation to use IHPROJ toggle, add another LOSTAP=20?? type 

for UEDDAM-formatted shotline info v. reusing type 14, and making a unique labeled 

common to use for this versus packing into existing shotline structure with subsequent 

change in EXOB precision; impact of plate combining, and also if all materials 

adequately defined for use across models (diffs w/generalized composite properties, other 

props needed for Inconel), numbered v. embedded format statements; scope mirror of 

labeled common blocks; etc.} 
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Change 1:  Modifications to the (Former) FRAG Routine 

 

In COVART 5, the FRAG routine (and related AREASN routine) was replicated across 

the separate penetration libraries.  In keeping with the JTCG fragment penetration library 

layout, a similar UEDDAM/FAA fragment penetration library was established.  A new 

directory, ‘ueddam-frag’, with subdirectory ‘FAAPEN’ was created in the ‘source code’ 

directory.  The following source files (and related makefiles) were created/modified 

based on those in the JTCG fragment penetration library (in an attempt to ensure that the 

same initializations/processes remained intact): 

 

main\COVART5\faasl.f: Shotline processing routine, calls  FAAFragCtl()  

 

ueddam-frag\FAAPEN\faafrinit.f: Initialization routine for libraries 

ueddam-frag\FAAPEN\faaheinit.f: Initialization routine for HE generated fragments 

ueddam-frag\FAAPEN\faafragctl.f: Fragment penetration routine, calls  FAAfrag() 

ueddam-frag\FAAPEN\faafrag.f: Reworked FRAG routine with FAA V50 

 

Source code for these routines is included at the end of this document. 

 

Control for this type of fragment when used by UEDDAM is handled via the  herayctl.f  

file: 

 
CLAG  ADD /HEPEN / FOR IHPROJ TOGGLE 

      COMMON /HEPEN / IHPROJ 

CLAG  END CHANGE 

 
C 

C Call the proper fragment shotline handling routine 

C 

CLAG  SHOULD TRUE TOGGLE BE IHPROJ?  (0=JTCG, -2|-3|-4=FATE, 1=UEDDAM FAA?) 

CLAG  IPROJ HERE, BUT INITIALLY IPROJ=2 AND GETS CHANGED TO 0 AFTER BURST 

C        IF (IPROJ .EQ. 0) THEN 

C          CALL FRAGHEInit (DIA, LSHAPE, FL,LF, DIA2, PROL, DENRAT) 

C          CALL FRAGSL(POWER) 

CLAG 

        IF ( IHPROJ .EQ. 0 ) THEN 

          CALL FRAGHEInit ( DIA, LSHAPE, FL, LF, DIA2, PROL, DENRAT ) 

          CALL FRAGSL ( POWER ) 

        ELSE IF ( IHPROJ .EQ. 1 ) THEN 

          CALL FAAHEInit ( DIA, LSHAPE, FL, LF, DIA2, PROL, DENRAT ) 

          CALL FAASL ( POWER ) 

CLAG  END CHANGE 

        ELSE 

          CALL FATEHEInit ( DIA, LSHAPE, FL, LF, DIA2, RHOUSE, PROL,  

     &                    DENRAT, IALY ) 

          CALL FATESL ( POWER ) 

        END IF 

 

 

Note that, since the UEDDAM/FAA fragment penetration is only used with HE 

type threats, no faactl.f  control file for this type of fragment as an independent 

threat type is necessary.   
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Change 2: Labeled Common /EXTBPD/ 

 

The common block "EXTBPD" was modified in all relevant subroutines to include the 

presented area of the fragment to be used in the new penetration algorithm.  Figure A-1 

shows the actual change as coded in COVART. 

 

 

Figure A-1.  Changes to EXTBPD 

 

The new variables “MTFRAG”, “APFRAG”, and “RLFRAG” represent the fragment 

material, presented area, and presented area perimeter length, respectively.  The 

presented area and the presented area perimeter of the fragment are calculated in 

UEDDAM and passed to COVART through the shotline file. 

 

In COVART 5, this block already contained an additional variable, RLDFRG.  Variable 

APFRAG, fragment presented area, and variable RLFRAG, fragment presented area 

perimeter length, were added as below: 

 
CLAG   ADDED FRAG PRESENTED AREA PERIMETER LENGTH AND 

CLAG   PRESENTED AREA TO EXTBPD 

C      COMMON /EXTBPD/ IEXTBP, WFRAG, VFRAG, MTFRAG, RLDFRG               

      COMMON /EXTBPD/ IEXTBP, WFRAG, VFRAG, MTFRAG, RLDFRG, 

     &                APFRAG, RLFRAG 

CLAG  END CHANGE            

 

Labeled common /EXTBPD/ was updated in the following existing files: 

 
main\COVART5: areach.f, areas.f, covart.f, fatefgctl.f, fragctl.f, heivam.f, 

heivsl.f, herayctl.f, init.f 

 

Labeled common /EXTBPD/ was also used in the new UEDDAM modules: 

 
ueddam-frag\FAAPEN: faafrag.f 

 

Labeled common /EXTBPD/ had a commented-out reference that was NOT updated in 

the following existing files: 

 
main\COVART5: initlib.f, pkasgn.f   

C JKM 9/14/99 UEDDAM

C      COMMON /EXTBPD/ IEXTBP, WFRAG, VFRAG, MTFRAG             04582000    980915

COMMON /EXTBPD/ IEXTBP, WFRAG, VFRAG, MTFRAG, APFRAG, RLFRAG      04582000    980915

C JKM 9/14/99 UEDDAM
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Change 3:  Labeled Common /SLDAT2/ 

 

The value of fragment presented area is packed in to the variable "EXOB" that is used in 

the ray header record using the formula: 

.1000

APFRAG
WFRAGEXOB += . 

 

In order to give EXOB the precision necessary to store the information, it has been 

changed to a double-precision variable in COVART.  Figure A-2 shows the 

implementation as coded in COVART. 

 

 

Figure A-2.  Changes to EXOB 

 

The value of fragment presented area perimeter is stored in the shotline file in the 

variable “CTH” that is used in the ray header record.  “RLFRAG” is set equal to CTH 

in subroutine AREACH.  {See section A-5, Change 4:  Subroutine AREACH.} 

 

In COVART 5, the array dimension had been changed to a parameter reference, 

NLSFRC = 170, from the  parm.inc  file.  Variable EXOB was changed from a single 

precision (REAL*4) to a DOUBLE PRECISION (REAL*8) variable: 

 
      COMMON /SLDAT2/ EXOB(NLSFRC),ENOB(NLSFRC),MTCODE(NLSFRC)                  

CLAG  EXOB TYPE CHANGED FROM SINGLE (R*4) TO DOUBLE (R*8) PRECISION TO 

CLAG  STORE PACKED PRESENTED AREA DATA FOR UEDDAM APPLICATION 

      DOUBLE PRECISION EXOB 

CLAG  END CHANGE 

 

Variable EXOB in labeled common /SLDAT2/ was updated in the following existing 

files: 

 
main\COVART5: areach.f,  areasc.f, areasd.f, arease.f, burstb.f, burstc.f, 

burstd.f, bursts.f, covart.f, fasgn2.f, fastgn.f, gift.f, 

heivsl.f, pgen.f, shotgn.f, skipbp.f, slchk.f, wcout.f, 

wcout2.f, weob.f, weov.f, weov2.f, wray.f, wshotl.f 

 

Variable EXOB in labeled common /SLDAT2/ was used in the new UEDDAM modules: 

 
ueddam-frag\FAAPEN: NONE 

COMMON /SLDAT2/ EXOB(170), ENOB(170), MTCODE(170)         05625000    960315

C JKM UEDDAM

DOUBLE PRECISION EXOB

C JKM UEDDAM
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Change 4:  Subroutine MVCHK 

 

The UEDDAM code will always create an MV file, even if there are no redundancies.  

This resulted in a problem with the MVCHK subroutine in COVART when it looks in 

arrays related to the MV input.  Since there are no MV groups in the MV file if there are 

no redundancies, the MVCHK routine would attempt to access the 0th element on the 

array JENDS.  To fix this problem, the change shown in Figure A-3 was made to 

subroutine MVCHK. 

 

 

Figure A-3.  Changes to Subroutine MVCHK 

 

C JKM For UEDDAM

C      J = ABS( JENDS( NGROUP ) )                               30246000    960315

C      DO 8000 I = 1, J                                         30247000    960315

C             IF ( MUL(I) .NE. 0 )  THEN                        30248000    960315

C                   L = L + 1                                   30249000    960315

C                   MUL(L) = MUL(I)                             30250000    960315

C                   IF ( JENDS(K) .EQ. I )  THEN                30251000    960315

C                         JENDS(K) = L                          30252000    960315

C                         K = K + 1                             30253000    960315

C                         DO 8010 KK = K, NGROUP                30254000    960315

C                             IF ( JENDS(K) .LT. 0 ) THEN       30255000    960315

C                                 JENDS(K) = -L                          30256000    960315

C                                 K = K + 1                     30257000    960315

C                             ELSE                              30258000    960315

C                                 GO TO 8020                    30259000    960315

C                             END IF                            30260000    960315

C 8010                    CONTINUE                              30261000    960315

C 8020                    CONTINUE                              30262000    960315

C                   END IF                                      30263000    960315

C             END IF                                            30264000    960315

C 8000 CONTINUE                                                 30265000    960315

C

if(ngroup.gt.0) then

J = ABS( JENDS( NGROUP ) )                              30246000    960315

DO 8000 I = 1, J                                        30247000    960315

IF ( MUL(I) .NE. 0 )  THEN                       30248000    960315

L = L + 1                                  30249000    960315

MUL(L) = MUL(I)                            30250000    960315

IF ( JENDS(K) .EQ. I )  THEN               30251000    960315

JENDS(K) = L                         30252000    960315

K = K + 1                            30253000    960315

DO 8010 KK = K, NGROUP               30254000    960315

IF ( JENDS(K) .LT. 0 ) THEN      30255000    960315

JENDS(K) = -L                          30256000    960315

K = K + 1                    30257000    960315

ELSE                             30258000    960315

GO TO 8020                   30259000    960315

END IF                           30260000    960315

8010                      CONTINUE                             30261000    960315

8020                      CONTINUE                             30262000    960315

END IF                                     30263000    960315

END IF                                           30264000    960315

8000   CONTINUE                                                30265000    960315

else

J = 0

end if

C JKM For UEDDAM
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In COVART 5, the source code was identical, so the same wrapping IF-ELSE-ENDIF 

statement was inserted: 

 
CLAG  UEDDAM FIX FOR USE WHEN NGROUP=0 

      IF ( NGROUP.GT.0 ) THEN 

CLAG                                                              

        J = ABS( JENDS( NGROUP ) )                                  

        DO 8000 I = 1, J                                            

               IF ( MUL(I) .NE. 0 )  THEN                           

                     L = L + 1                                      

                     MUL(L) = MUL(I)                                

                     IF ( JENDS(K) .EQ. I )  THEN                   

                           JENDS(K) = L                             

                           K = K + 1                                

                           DO 8010 KK = K, NGROUP                   

                               IF ( JENDS(K) .LT. 0 ) THEN          

                                   JENDS(K) = -L                    

                                   K = K + 1                        

                               ELSE                                 

                                   GO TO 8020                       

                               END IF                               

 8010                      CONTINUE                                 

 8020                      CONTINUE                                 

                     END IF                                         

               END IF                                               

 8000   CONTINUE                                                    

CLAG   

      ELSE 

         J = 0 

      END IF 

CLAG  END UEDDAM FIX 
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Change 5:  Subroutine AREACH 

 

Disable velocity reduction from release to first component due to air drag 

 

The COVART code also degrades the fragment velocity from the release point to the first 

component hit along the ray.  Apparently this is done to account for air drag.  While this 

is desirable, the COVART code does not account for the forward velocity of the aircraft 

in computing fragment velocity.  Also, the rays generated from the burst point through 

the aircraft assume straight-line trajectories.  If the air drag is to be considered, then it 

should be done completely.  That is, consideration for the forward velocity of the aircraft 

and the effects of the wind on the trajectory of the fragments should be included.  Since 

this would be beyond the scope of this phase of the UEDDAM development, the air drag 

effects were eliminated in COVART.  This was done by simply setting the distance from 

the release point to the first component hit to zero in subroutine AREACH.  Figure A-4 

shows the implementation. 

 

 

Figure A-4.  Change to DIRX {in AREACH} 

 

In COVART 5, the source code was identical.  However, the conditional used to evoke 

the change for UEDDAM, (ITHRT .EQ. 3 .AND. IEXTBP .EQ. 1), is not sufficiently 

limiting when operating outside UEDDAM.  Since UEDDAM utilizes the HE threat type 

with the new fragment penetration model, the limiting condition was changed to use the 

IHPROJ variable in labeled common /HEPEN /.  COVART 5 currently indicates the type 

of fragment product threats using values of IHPROJ = 0 for JTCG fragments, and values 

of IHPROJ = {-2 | -3 |-4 } for FATEPEN fragments.  A value of IHPROJ = 1 was used to 

indicate UEDDAM/FAA fragments. 

  

C JKM UEDDAM

C

C   This mod makes the airgap from the release point to the first

C   component on the ray zero inches.  This prevents COVART

C   from reducing the velocity between the release point to the first

C   component on the shotline.

C

C      DIRX = CTH(LL)                                           37420000    960315

IF (ITHRT .EQ. 3 .AND. IEXTBP .EQ. 1) THEN                

DIRX = 0.00                                           37420000    960315       

RLFRAG = CTH(LL)                                      

ELSE                                                     

DIRX = CTH(LL)                                              

END IF                                                   

C JKM UEDDAM
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CLAG   THIS MOD MAKES THE AIRGAP FROM THE RELEASE POINT TO THE FIRST 

CLAG   COMPONENT ON THE RAY ZERO INCHES.  THIS PREVENTS COVART FROM 

CLAG   REDUCING THE VELOCITY BETWEEN THE RELEASE POINT TO THE FIRST 

CLAG   COMPONENT ON THE SHOTLINE. ALSO SETS THE FRAGMENT PRESENTED 

CLAG   AREA PERIMETER VALUE THAT WAS PACKED INTO CTH BY UEDDAM 

CLAG   *** COULD ACHIEVE DIRX=0 BY ADDING DRAGMODL INPUT TO BASIC 

CLAG   *** ‘DRAGMODL    NONE’ 

C      DIRX = CTH(LL)                                                     

      IF ( IHPROJ .EQ. 1 ) THEN 

          DIRX = 0.0 

          RLFRAG = CTH(LL) 

      ELSE 

          DIRX = CTH(LL) 

      END IF 

CLAG   END CHANGE 

 

It was noted that it may be possible to achieve the same effect by utilizing the 

DRAGMODL option in the BASIC file.  Per the documentation, adding the line: 

 
CLAG   *** COULD ACHIEVE DIRX=0 BY ADDING DRAGMODL INPUT TO BASIC 

DRAGMODL    NONE 

 

to the BASIC file should disable air drag reduction for HEI fragments (between the burst 

point and the first component only) for distances greater than 24 inches.  The original 

change was implemented until it can be ascertained that using the DRAGMODL option 

achieves the same effect. 

 

Extract fragment weight, presented area data from shotline file for UEDDAM/FAA 

fragments 

 

In order to extract the fragment weight and presented area, the change shown in Figure 

A-5 was made to subroutine AREACH. 

 

 

Figure A-5.  Change to AREACH 

 

C JKM 9/14/99 for UEDDAM

C              WFRAG = SOLANG                                   37447000    980915

WFRAG = FLOAT(INT(EXOB(LL)))                      37447000    980915

APFRAG = (EXOB(LL)-WFRAG) * 1000.

C JKM 9/14/99 for UEDDAM



 

A-44 

In COVART 5, the source code was identical.  However, the change that was 

implemented needs to be conditional for operation outside UEDDAM.  Again, since 

UEDDAM utilizes the HE threat type with the new fragment penetration model, the 

limiting condition was changed to use the IHPROJ variable in labeled common /HEPEN 

/.  The conditional  ( IHPROJ .NE. 1 )  was used to indicate non-UEDDAM/FAA 

fragments. 

 
CLAG  ADDED ACCESS TO IHPROJ 

      COMMON /HEPEN / IHPROJ                                             

CLAG  END CHANGE 

  

CLAG  FOR UEDDAM 

              IF ( IHPROJ .NE. 1 ) THEN 

                  WFRAG = SOLANG 

              ELSE 

                  WFRAG = FLOAT(INT(EXOB(LL))) 

                  APFRAG = (EXOB(LL)-WFRAG) * 1000. 

              END IF 

CLAG  END CHANGE               
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Change 6:  TDYNSHR Array Added to Subroutine INIT 

 

A new parameter, shear constant, had to be included to utilize the FAA penetration 

equations from which China Lake derived its new equations.  The values of the shear 

constant for the COVART material types were stored in the array “DYNSHR”.  This 

array contains 50 elements, and the values are hard-coded via a FORTRAN “DATA” 

statement in subroutine INIT.  Figure A-6 shows the DATA statement for DYNSHR. 

 

 

Figure A-6.  Changes to Subroutine INIT 

 

Note that “DYNSHR” (as hard-coded in Figure A-6) only contains valid values for steel, 

titanium, aluminum, generalized composite, and Inconel.  If different material types are 

desired and the Cs values for these materials are entered in the MATERIAL file (along 

with all other necessary information), the entered values will overwrite the hard-coded 

values for the corresponding material identification number.  The user-defined values of 

Cs are read into the appropriate array locations in DYNSHR in the subroutine INPUTI.  

{See section A-5, Change 10:  Subroutine INPUTI.} 

 

Material shear constants are utilized by the new UEDDAM/FAA penetration model.  

Since most of the material properties are initialized in the INIT subroutine, the shear 

constants were added to the INIT subroutine, in array TDYNSHR, rather than burying the 

initialization of these constants in the penetration model.  Note that, in COVART 5, a 

distinction was made between the initialized data definitions and the variable arrays used 

in the computation.  Whereas the UEDDAM version used the DYNSHR array to serve 

both purposes, COVART 5 stores the initialized data in the TDYNSHR array, and loads 

those values into the DYNSHR array for use in subsequent computations.   

 

Additionally, in the UEDDAM implementation, two new material types, generalized 

composite and Inconel, were added to the material type arrays at material code index 

(JM) positions 37 and 38, respectively.  However, in COVART 5, two material types had 

already been added in material code index positions 37 and 38: generalized composite 

and BMI composite.  This precluded using those material code index positions for the 

new UEDDAM materials.  Since there might be differences in material property 

characterization for the generalized composite properties defined in COVART 5 and the 

UEDDAM version, the easiest solution was to insert the new UEDDAM materials at 

unused material code index positions 46 and 47.  {See section A-5, Change 14:  Update 

Material Properties for Generalized Composite and Inconel.} 

 

C JKM 11/14/00 UEDDAM 

C JKM Updates 10/21/02 

C      The units of DYNSHR are psi 

C JKM DATA DYNSHR / 7*188500.0, 7*30450.0, 30450.0, 35*188500.0 / 

C JKM                Steel ,  Titanium,  Al,      

      DATA DYNSHR / 6*188500.0, 130529.4, 7*40029.0,40029.0,5*188500.0, 

C JKM                                  Composite,  Inconel 

     +9*40029.0, 4*188500.0, 3*40029.0, 36403.2, 174039.2, 3*40029.0, 

     +9*188500.0 / 

C JKM 11/14/00 UEDDAM 
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Assuming that the two generalized composite characterizations are similar, the material 

shear constant for the UEDDAM generalized composite was also used for the COVART 

5 generalized composite at MATCODE position 37: 

 
CLAG 

CLAG  MATERIAL SHEAR CONSTANTS ADDED FOR FAA PENETRATION EQNS 

CLAG  UNITS OF TDYNSHR ARE PSI 

CLAG                    Steel    , Titanium ,     Al     ,      

      DATA TDYNSHR / 6* 188500.0 , 130529.4 , 8* 40029.0 , 5* 188500.0 , 

     +   9* 40029.0 , 4* 188500.0 , 3* 40029.0 , 36403.2 , 7* 188500.0 , 

     +   130529.4 , 36403.2 , 174039.2 , 3* 188500.0 / 

CLAG              Composite , Inconel 

CLAG  END CHANGE 
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Change 7:  DYNSHR Added to Labeled Common /MATAL1/ 

 

To pass the values of “DYNSHR” between subroutines, “DYNSHR” was added to the 

common block “MATAL1”.  Figure A-8 shows the changes to common block 

“MATAL1”. 

 

 

Figure A-8.  Changes to Common Block MATAL1 

 

In COVART 5, the array dimension had been changed to a parameter reference, MXMT 

= 50, from the  parm.inc  file.  Array DYNSHR, containing material shear constants (in 

psi), was added to labeled common /MATAL1/: 

 
CLAG  ADDED SHEAR CONSTANT, DYNSHR, FOR FAA PENETRATION EQNS 

C      COMMON /MATAL1/ BHN(MXMT), RHO(MXMT), SIGY(MXMT), SIGU(MXMT), 

C     &                TAUS(MXMT)     

      COMMON /MATAL1/ BHN(MXMT), RHO(MXMT), SIGY(MXMT), SIGU(MXMT), 

     &                TAUS(MXMT), DYNSHR(MXMT)     

CLAG  END CHANGE 

 

Labeled common /MATAL1/ was updated in the following existing files: 

 
main\COVART5: areasa.f, areasd.f, arease.f, areasg.f, covart.f, fatefgctl.f, 

fatesl.f, fragctl.f, herayctl.f, init.f, initlib.f, inpute.f, 

inputf.f, inputz.f, thcoff.f, zondat.f 

jtcg-proj\PROJPEN: projhe.f 

 

Labeled common /MATAL1/ has a commented-out reference that was NOT updated in 

the following existing files: 

 
Fatepen2.5\FATEPEN: fluid.f   

 

There are additional name-variant labeled common blocks that track the same material 

parameters but have different scope within the program.  The following lists these blocks 

and the directories and files in which they were updated: 

 
/MTAL1D/ damage\DAMAGE:  gtspft.f, pif2.f, pif3.f, pkinit.f 

/MATL1F/ fatepen2.5\FATEPEN2: (unchanged but commented in fateheinit.f) 
  jtcg-frag\FRAGPEN:  frag-ctl.f, frag.f, jtcgfrinit.f 

      (unchanged but commented in fragheinit.f) 

ueddam-frag\FAAPEN: (new files) faafrag.f, faafragctl.f, faafrinit.f 

/MTAL1J/ jtcg-proj\PROJPEN:  fluid.f, hlfspa.f, incdfu.f, jtcgapiinit.f, 

pltplg.f, 

proj-ctl.f, projdu.f, project.f, pstrai.f, 

ricoch.f 

/MTAL1P/ fatepen2.5\FATEPEN2: debris.f, fatepeninit.f, frag2.f, plate.f, 

C JKM 11/14/00 UEDDAM     COMMON /MATAL1/ BHN(50), RHO(50), SIGY(50), SIGU(50), TAUS(50)         

COMMON /MATAL1/ BHN(50), RHO(50), SIGY(50), SIGU(50), TAUS(50),   06099000    960315       

&                DYNSHR(50)                                

C JKM 11/14/00 UEDDAM
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punch.f (unchanged but commented in 

cloud.f) 

 

 

Change 8:  Subroutine INPUTZ 

 

The materials “generalized composite” and Inconel are new materials for COVART.  

These materials were placed in the material array locations 37 and 38.  These array 

locations are empty in COVART.  COVART actually does a check to see if a material 

“37” has been specified in the inputs.  If so, COVART flags this as an error and 

terminates the run.  To avoid this, Subroutine INPUTZ was modified to remove this 

check.  The lines that perform this check were simply commented out in subroutine 

INPUTZ.  

 

This change was not seen in the  inputz.f  source file from the UEDDAM version, so no 

changes were made in the COVART5 version.  However, any conditionals referencing 

materials “37” and “38” were reviewed (routines areach.f, areash.f, bploc.f, heivam.f) 

to see if they were relevant for this effort. 

 

Conditionals in routines  areach.f  and  areash.f  are relevant for FATEPEN fragment 

penetration only.  However, the following code, from both  bploc.f  and  heivam.f, may 

need to be revisited relative to its use with the UEDDAM “generalized component” 

material: 

 
C The original COVART calls cmpjec for handling Graphite Epoxy 

C  penetration. Projhe uses CTHK for the LOS, but cmpjec uses 

C  TLEQ for the LOS. This creates problems whenever there are 

C  combined plates on the shotline since TLEQ is the equivelant 

C  LOS for the combined plate not the LOS for this specific plate. 

C  This has been implemented for compatabiliy purposes but should 

C  be changed once testing is finished. 

C 

             IF (KK .EQ. 37) THEN 

               CLOS = TLEQ(I) 

               CBL = COSEQ(I) 

             ELSE 

               CLOS = CTHK 

               CBL = COBL 

             END IF 
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Change 9:  New Labeled Common /JTYP2H/ 

 

To incorporate the changes required to output hole size statistics for components, several 

COVART subroutines were modified and two new common blocks were added.  To pass 

the list of components requiring hole size calculations between subroutines, the common 

block JTYP2H was added: 
 

COMMON /JTYP2H/ JTYPH(9999). 

 

New labeled common /JTYP2H/ was declared as below: 

 
CLAG   ADDED BLOCK TO PASS LIST OF COMPONENTS REQUIRING HOLE SIZE CALCULATIONS 

      COMMON /JTYP2H/ JTYPH(MXHOUT) 

CLAG 

 

The array dimension parameter, MXHOUT = 9999 array, was added to the  parm.inc  

file: 

 
CLAG  NEW PARAM MXHOUT FOR UEDDAM HOLESIZE ARRAYS 

C      INTEGER MXDPAL,MXSYGP,PBBLCK,MXMTCD,MXPNCT 

      INTEGER MXDPAL,MXSYGP,PBBLCK,MXMTCD,MXPNCT,MXHOUT 

CLAG  END CHANGE 

 
CLAG  NEW PARAM MXHOUT FOR UEDDAM HOLESIZE ARRAYS 

C   MXHOUT - Maximum Number Components to Output Holesize Statistics 

C 

      PARAMETER (MXHOUT = 9999) 

C 

CLAG  END CHANGE 

 

Labeled common /JTYP2H/ was added in the following existing files: 

 
main\COVART5: covart.f, inputi.f  

 

Labeled common /JTYP2H/ is used in the new UEDDAM module: 

 
main\COVART5: faasl.f 
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Change 10:  New Labeled Common /INOUT7/ 

 

Additionally, the common block INOUT7 was added: 
 

COMMON /INOUT7/ IOHOLE, 

 

where IOHOLE = 12 defines the unit number of the COVART output file to be passed to 

UEDDAM for analysis. 

 

In COVART5, labeled common /INOUT7/ had already been declared.  The IOHOLE 

parameter was added to the existing common block: 

 
CLAG    ADDED HOLE SIZE OUTPUT FILE (IOHOLE) FOR UEDDAM 

C      COMMON /INOUT7/ ICOVBX, IOCOVX                                     

      COMMON /INOUT7/ ICOVBX, IOCOVX, IOHOLE                             

CLAG  END CHANGE 

 

Labeled common /INOUT7/ was modified in the following existing files: 

 
main\COVART5: areasb.f, bploc.f, covart.f, init.f, inputb.f, inputc.f 

 

Labeled common /INOUT7/ was used in the new UEDDAM modules: 

 
main\COVART5: faasl.f 

 

Labeled common /INOUT7/ had a commented-out reference that was NOT updated in 

the following existing files: 

 
main\COVART5: initlib.f   
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Change 11:  Subroutine INPUTI 

 

Hole Size Computation 

 

The particular component identification numbers for which to compute hole sizes are 

read into COVART in the subroutine INPUTI (see Figure A-9).   

 

Figure A-9.  Changes to Subroutine INPUTI for Hole Size Calculations 

 

In COVART 5, the conditional statements above were added into the existing source.  

Numbered FORMAT statements were used in place of the embedded formats for the 

READ and WRITE statements.  The /JTYP2H/ labeled common block was also added to 

the routine. 

  

      ELSE IF ( DATTYP .EQ. ‘HOLEOUT ‘ ) THEN                           15406320CFAA060509 

          IF ( TPHY ) THEN                                              15406340CFAA060509 

              READ( RECORD, ‘(8I8)’ ) ( ICHO(ICH), ICH = 1, 8 )         15406360CFAA060509 

              DO 520 ICH = 1, 8                                         15406380CFAA060509 

                  IF ( ( ICHO(ICH) .GT. 0 ) .AND.  

     &                 ( ICHO(ICH) .LE. JTYP1(I) ) ) THEN 

                      ITOP = I 

                      IBOT = 1 

  530         CONTINUE 

                      IF ( ITOP .GE. IBOT ) THEN 

                          ITEST = ( ITOP + IBOT ) / 2 

                          IF ( ICHO(ICH) .GT. JTYP1(ITEST) ) THEN 

                              IBOT = ITEST + 1 

                          ELSE IF ( ICHO(ICH) .LT. JTYP1(ITEST) ) THEN 

                              ITOP = ITEST – 1 

                          ELSE 

                              JTYPH(ITEST) = 1 

                              GO TO 520 

                          END IF 

                          GO TO 530 

                      END IF 

                  END IF                                                15406500CFAA060509 

                  WRITE( IOP, ‘(5X,A,I8,A)’ )                           15406520CFAA060509 

     &                ‘***** WARNING: UNKNOWN COMPONENT’,               15406540CFAA060509 

     &                 ICHO(ICH), ‘ ON HOLEOUT RECORD.’                 15406560CFAA060509 

                  WRITE( IOP, ‘(A8,A72)’ ) DATTYP, RECORD               15406580CFAA060509 

  520         CONTINUE                                                  15406640CFAA060509 

          ELSE                                                          15406660CFAA060509 

              WRITE( IOP, ‘(5X,A)’ )                                    15406680CFAA060509 

     &         ‘***** WARNING: HOLEOUT RECORD OUT OF PLACE.  THIS ONE:’ 15406700CFAA060509 

              WRITE( IOP, ‘(A8,A72)’ ) DATTYP, RECORD                   15406720CFAA060509 

          END IF                                                        15406740CFAA060509 
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CLAG   ADDED BLOCK TO PASS LIST OF COMPONENTS REQUIRING HOLE SIZE CALCULATIONS 

      COMMON /JTYP2H/ JTYPH(MXHOUT) 

CLAG 

 
CLAG  ADDED UEDDAM MODS FOR READING IN COMPONENT IDS TO COMPUTE HOLE SIZE FOR 

      ELSE IF ( DATTYP .EQ. 'HOLEOUT ' ) THEN                            

          IF ( TPHY ) THEN                                               

              READ( RECORD, 1970 ) ( ICHO(ICH), ICH = 1, 8 )          

              DO 520 ICH = 1, 8                                          

                  IF ( ( ICHO(ICH) .GT. 0 ) .AND.  

     &                 ( ICHO(ICH) .LE. JTYP1(I) ) ) THEN 

                      ITOP = I 

                      IBOT = 1 

  530                 CONTINUE 

                      IF ( ITOP .GE. IBOT ) THEN 

                          ITEST = ( ITOP + IBOT ) / 2 

                          IF ( ICHO(ICH) .GT. JTYP1(ITEST) ) THEN 

                              IBOT = ITEST + 1 

                          ELSE IF ( ICHO(ICH) .LT. JTYP1(ITEST) ) THEN 

                              ITOP = ITEST - 1 

                          ELSE 

                              JTYPH(ITEST) = 1 

                              GO TO 520 

                          END IF 

                          GO TO 530 

                      END IF 

                      WRITE( IOP, 1700 ) ICHO(ICH) 

                      WRITE( IOP, 1710 ) DATTYP, RECORD            

                  ELSE 

                      IF ( ICHO(ICH) .NE. 0 ) THEN 

                          WRITE( IOP, 1720 ) ICHO(ICH) 

                      END IF 

                  END IF 

  520         CONTINUE                                                   

          ELSE                                                           

              WRITE( IOP, 1730 )                                     

              WRITE( IOP, 1710 ) DATTYP, RECORD                    

          END IF                                                         

CLAG  END CHANGE #1 

 
CLAG  ADDED FOR UEDDAM HOLESIZE OUTPUT 

 1700 FORMAT (5X, '***** WARNING: UNKNOWN COMPONENT', I8, 

     +        ' ON HOLEOUT RECORD (IGNORED).') 

 1710 FORMAT (A8, A72) 

 1720 FORMAT (5X, '***** WARNING: OUT-OF-RANGE COMPONENT NUMBER', I8, 

     +        ' ON HOLEOUT RECORD (IGNORED).') 

 1730 FORMAT (5X, '***** WARNING: HOLEOUT RECORD OUT OF PLACE.  THIS ONE:') 

CLAG  END CHANGE 

 
CLAG  ADDED FOR UEDDAM HOLESIZE ARRAY INPUT 

 1970 FORMAT( 8I8 )                                              
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Material Property Definitions 
 

Note that “DYNSHR” (as hard-coded in Figure A-6 {see section, Change 5:  DYNSHR 

Array Added to Subroutine INIT}) only contains valid values for steel, titanium, 

aluminum, generalized composite, and Inconel.  If different material types are desired 

and the Cs values for these materials are entered in the MATERIAL file (along with all 

other necessary information), the entered values will overwrite the hard-coded values for 

the corresponding material identification number.  The user-defined values of Cs are 

read into the appropriate array locations in DYNSHR in the subroutine INPUTI (see 

Figure A-7).   

 

Figure A-7.  Changes to Subroutine INPUTI for Material Properties 

 

In COVART 5, the source code was identical.  However, the change that was 

implemented needs to reflect both the JTCG and UEDDAM/FAA fragment methodology 

settings.  Since UEDDAM utilizes the HE threat type with the new fragment penetration 

model, a conditional was inserted using the IHPROJ variable in labeled common 

/HEPEN /.  The conditional ‘IHPROJ .NE. 1’ was used to indicate the JTCG fragment 

case.  Additionally, the embedded format for the READ statement was replaced with a 

numbered FORMAT statement: 
 

CLAG  ADDED FOR FAA PENETRATION EQNS                                             

      COMMON /HEPEN / IHPROJ 

CLAG  END CHANGE 

 
CLAG  BEGIN CHANGE #2 FOR USER-DEF'D MATPROP TO OVERRIDE DEFAULTS FOR UEDDAM 

      ELSE IF ( DATTYP .EQ. 'MATPROP' ) THEN 

          READ( RECORD, '(I8)' ) IMAT 

          IF ( ( IMAT .GT. 0 ) .AND. ( IMAT .LT. 50 ) ) THEN 

              READ( RECORD, 1980 ) HER(IMAT),  

     &                              DER(IMAT), RHO(IMAT), DYNSHR(IMAT) 

              IF ( IHPROJ. NE. 1 ) THEN 

                  JTCGF( IMAT ) = 100 * IMAT 

              ELSE 

                  IFAAF( IMAT ) = 100 * IMAT 

              END IF 

          END IF 

CLAG  END CHANGE #2 

 
CLAG  ADDED FOR MATERIAL PROPERTY OVERRIDE DATA INPUT 

 1980 FORMAT( 8X, 2A8, F8.0, F16.0 ) 

 

 

      ELSE IF ( DATTYP .EQ. 'MATPROP' ) THEN 

          READ( RECORD, '(I8)' ) IMAT 

          IF ( ( IMAT .GT. 0 ) .AND. ( IMAT .LT. 50 ) ) THEN 

              READ( RECORD, '(8X,2A8,F8.0,F16.0)' ) HER(IMAT),  

     &                              DER(IMAT), RHO(IMAT), DYNSHR(IMAT) 

              JTCGF( IMAT ) = 100 * IMAT 

          END IF 
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Change 12:  Hole Size Computation and Output in (Former) Subroutine AREASN 

 

In the subroutine AREASN, the resulting hole size and penetration information is written 

to a COVART output file for passing to UEDDAM (see Figure A-10). 

 

 Figure A-10.  Changes to Subroutine AREASN for Hole Size Calculations 

 

In COVART 5, the old AREASN routine was replicated across the different penetration 

libraries with modifications relevant to each library.  Since the hole size computation is 

specific to the UEDDAM/FAA penetration library, the changes above were implemented 

there in file  faasl.f.  The embedded format for the WRITE statement was replaced with a 

numbered FORMAT statement: 

 
CLAG   ADDED HOLE SIZE COMPUTATION AND PEN INFO OUTPUT 

      IF ( JTYPH( ICNO(N) ) .EQ. 1 ) THEN 

          IF ( VR .GT. 0.0 ) THEN 

              IPENET = 1 

              AHOLE = APFRAG / COSOBL( N ) 

              AHOLE = MIN( AHOLE, 99999999999.0 ) 

          ELSE 

              IPENET = 0 

              AHOLE = 0.0 

          END IF 

          WRITE( IOHOLE, 2180 ) ISRAY, JCOMP(N), AHOLE, 

     &                          COSOBL(N), IPENET 

      END IF  

CLAG   END CHANGE 

 

 

 

      IF ( JTYPH( ICNO(N) ) .EQ. 1 ) THEN 

          IF ( VR .GT. 0.0 ) THEN 

              IPENET = 1 

              AHOLE = APFRAG / COSOBL( N ) 

              AHOLE = MIN( AHOLE, 99999999999.0 ) 

          ELSE 

              IPENET = 0 

              AHOLE = 0.0 

          END IF 

          WRITE( IOHOLE, '(2I8,F16.3,F8.4,I8)' ) ISRAY, JCOMP(N), AHOLE, 

     &                                          COSOBL(N), IPENET 

      END IF 
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Change 13:  Increased Array Sizes for JTYPE Elements and PK Tables in File 
parm.inc 

 

Other, minor modifications were made to COVART to accommodate larger data sizes, 

handle binary reads with different compilers, and identify new material types (i.e., 

generalized composite and Inconel). 

 

In COVART 5, the maximum number of JTYPE elements was set using parameter 

MXJTYP = 9999 in file  parm.inc.  This value was increased to 40000 to accommodate 

the larger number of unique critical components modeled in current target descriptions. 

 
CLAG  ADJUSTED FOR UEDDAM/FAA FRAG PENETRATION 

C      PARAMETER (MXJTYP = 9999) 

      PARAMETER (MXJTYP = 40000) 

CLAG  END CHANGE 

 

In COVART 5, the maximum number of locations for PK table information for the VEL 

and PRK arrays was set using parameter MXPKLC = 20000 in file  parm.inc.  This value 

was increased to 25000 to accommodate the larger number of tables used with current 

analyses. 

 
CLAG  ADJUSTED for UEDDAM 

C      PARAMETER (MXPKLC = 20000) 

      PARAMETER (MXPKLC = 25000) 

CLAG  END CHANGE 
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Change 14:  Update Material Properties for Generalized Composite and Inconel 

 

Other, minor modifications were made to COVART to accommodate larger data sizes, 

handle binary reads with different compilers, and identify new material types (i.e., 

generalized composite and Inconel). 

 

In COVART 5, labeled common /MATUSE/ contains arrays of flags indicating which 

penetrator and target material types are valid for use with specific penetration 

methodologies.  Array IFAAF was added for use with the UEDDAM/FAA fragments: 

 
CLAG  ADDED IFAAF(MXMTCD) ARRAY FOR FAA PENETRATION EQN. IN UEDDAM (SEE JTCGF) 

C      COMMON /MATUSE/ JTCGF(MXMTCD),IFATEF(MXMTCD),IRODF(MXMTCD), 

C     &                IPROJF(MXMTCD),IALY(MAXWGT) 

      COMMON /MATUSE/ JTCGF(MXMTCD), IFATEF(MXMTCD), IRODF(MXMTCD), 

     &                IPROJF(MXMTCD), IFAAF(MXMTCD), IALY(MAXWGT) 

CLAG  END CHANGE 

 

Labeled common /MATUSE/ was updated in the following existing files: 

 
main\COVART5: covart.f, fasgn2.f, fatefgctl.f, fragck.f, fragctl.f, herayctl.f, 

init.f, initlib.f, inpute.f, inputf.f, inputh.f, inputi.f, inputz.f, 

slchk.f 

 

There was an additional name-variant labeled common block, /MTUSEP/, that tracks the 

same material parameters but has different scope within the program.  /MTUSEP/ was 

updated in the following routines: 

 
fatepen2.5\FATEPEN2: debris.f, fateheinit.f, fatepeninit.f 

 

Note that, in COVART 5, a distinction was made between the initialized data definitions 

and the variable arrays used in the computation.  So values for the IFAAF array are 

initialized in the INIT routine from data contained in new array IFAAT.  Settings in the 

JTCGT array (for use with JTCG fragments) were the basis for the new IFAAT array for 

use with the UEDDAM/FAA fragments.  However, entries were modified to reflect the 

acceptable penetrator materials used in UEDDAM and the relocated entries for the new 

generalized composite and Inconel materials. 

 

Subroutine INIT now contains the following data for IFAAT: 

 
CLAG  ADDED VALID MATERIAL ARRAY INFO FOR FAA PENETRATION EQNS 

CLAG  (JTCGT BASIS, WITH UEDDAM COMPOSITE, INCONEL AT MATCODES 46, 47) 

      DATA IFAAT / 0101, 0202, 0303, 0404, 0505, 0606, 0700, 0800, 

     +             0900, 1000, 1100, 1200, 1300, 1400, 1500, 1600,       

     +             1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400,       

     +             2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200,       

     +                0,    0,    0,    0, 3700, 3800,    0,    0, 

     +                0,    0,    0,    0,    0, 4600, 4700,    0,  

     +                0,    0, 5100, 5200, 5300, 5400, 5500, 5600, 

     +             5700 /                                     

CLAG  END CHANGE 
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Subroutine INIT loads the initialized IFAAT data into the IFAAF array for use in 

subsequent computations: 

 
C --- Initialize Target Material Codes, Text Descriptions 

C --- And Default MATPKTAB Table Values 

C 

C      DO 1620 I = 1, JREST 

      DO 1620 I = 1, MXMTCD                                               

          JTCGF(I)  = JTCGT(I)                                            

          IFATEF(I) = IFATET(I)                                          

          IRODF(I)  = IRODT(I)                                            

          IPROJF(I) = IPROJT(I)                                          

          HER(I)    = THER(I)                                               

          DER(I)    = TDER(I)                                               

          MTPKFC(I) = ITMTPK(I)                                          

CLAG  ADDED FOR FAA PENETRATION EQN 

          IFAAF(I)  = IFAAT(I) 

 1620 CONTINUE                                                           

 

Subroutine INPUTI was updated to use the IFAAF value in lieu of the JTCGF value 

when UEDDAM/FAA penetration (as indicated by the ‘IHPROJ .EQ. 1’ conditional) is 

used: 

 
C     ENSURE THAT THE MATERIAL CODE SPECIFIED IS A VALID                 

C     MATERIAL CODE FOR THE SPECIFIC TYPE OF PENETRATION                 

C     EQUATION THAT WILL BE USED                                         

C                                                                        

              IF ( IPROJ .EQ. 1) THEN                                    

                  MCHECK = IPROJF(JM)                                    

              ELSE IF ( IPROJ .EQ. 0) THEN                               

                  MCHECK = JTCGF(JM)                                     

              ELSE IF ( (IPROJ .LE. -2) .AND. (IPROJ .GE. -4) ) THEN     

                  MCHECK = IFATEF(JM)                                    

              ELSE IF ( IPROJ .EQ. 2) THEN                               

                  MCHECK = IPROJF(JM)                                    

                  MCHECK = MCHECK / 100                                  

CLAG  ADDED CONDITIONAL FOR FAA PENETRATION EQN 

CLAG  USING FLAG IHPROJ = 1 

                  IF ( IHPROJ .EQ. 1 ) THEN 

                      JCHECK = IFAAF(JM) 

                  ELSE                                                        

                      JCHECK = JTCGF(JM)                                     

                  END IF                                                 

CLAG END CHANGE 

                  JCHECK = JCHECK / 100                                  

                  IF ( MCHECK .EQ. 0 .OR. JCHECK .EQ. 0 ) THEN           

                      GO TO 1822                                         

                  ELSE                                                   

                      GO TO 871                                          

                  END IF 
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Updates Required for Pre-Existing UEDDAM Input Data 

 

BASIC File 

 

• Change IHPROJ value from ‘0’ to ‘1’ 

 

JTYPE File 

 

• Change material code index (JM) values of ‘37’ to ’46’ 

• Change material code index (JM) values of ‘38’ to ‘47’ 
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File:  main\COVART5\faasl.f 

 
      SUBROUTINE FAASL(POWER)                                           

CLAG  SHELL OF FRAGSL.F USED TO IMPLEMENT FAA 

C                                                                        

C =============================================================================| 

C      SUBROUTINE FAASL                                                       | 

C =============================================================================| 

C     THIS ROUTINE CONTROLS THE COMPONENT CALCULATION LOOP               

C                                                                        

C =============================================================================| 

C INPUTS:                                                                      | 

C                                                                              | 

C                                                                              | 

C =============================================================================| 

C OUTPUTS:                                                                     | 

C                                                                              | 

C                                                                              | 

C =============================================================================| 

C Revision History:                                                            | 

C                                                                              | 

C Rev.       Date        By   Description                                      | 

C                                                                              | 

C  0.0       22 Feb 2006 RRC  Initial implementation replacing areasn. This    | 

C                             routine implements the jtcg fragment portion of  | 

C                             areasn.                                          | 

C                                                                              | 

C =============================================================================| 

 

      INCLUDE 'parm.inc' 

 

      COMMON /ALIAS / JTYP6(MXJTYP), JALIAS(MXALIS), LALIAS 

      COMMON /AMUS  / AMU, AMU1, AMU2, IAMU1, IAMU2, YAW                 

      COMMON /ANGS2 / IS, SINAMU                                         

      COMMON /AREANQ/ VSL(MXSLCP), WSL(MXSLCP)                                 

      COMMON /AREAPK/ PK(MAXKL)                                              

      COMMON /AREBC3/ IPH, IPL, IPHS, IPLS                               

      COMMON /AREFHZ/ ILO(MAXLO), IPRINT, JLO(MXSLCP)                        

      COMMON /ARERIC/ IRIC, NRIC, RPHE                                   

      COMMON /ARMANY/ NN                                                 

      COMMON /ARMSUN/ JV                                                 

CFIR  FIRE ROUTINE                                                       

CFIR                                                                     

      COMMON /ARNSTO/ FFUNCT(6) 

CFIR                                                                     

CFIR  FIRE ROUTINE                                                       

CVCUT VELOCITY CUTOFF                                                    

CVCUT                                                                    

      COMMON /CUTOFF/ KUTOFF, KJA(MAXKL), KLCUT,  

     &                PRA(MAXVEL,MAXKL), VC(MAXWGT,MAXKL), VCDELT 

CVCUT                                                                    

CVCUT VELOCITY CUTOFF                                                    

      COMMON /DIAM  / DS, IAMU                                           

      COMMON /DRAG2 / ADRAG(MXSHAP+1), RHOAIR, IDRAG                            

      COMMON /END   / ITRGET, IPROJ, JKILL, ITHRT                        

CLAG  EXTERNAL BURST COMMON (FOR UEDDAM) 

      COMMON /EXTBPD/ IEXTBP, WFRAG, VFRAG, MTFRAG, RLDFRG, 

     &                APFRAG, RLFRAG 

CLAG  END CHANGE 

C 

      LOGICAL LHEFIR                                                     

      COMMON /FIRE  / NAL, KTANK, AIRG(MXAGV), YAWAG(MXYAWV),  

     &                FIREDT(MXFIRV), LHEFIR  

C 

      COMMON /FPPKTV/ VPEN                                               

      COMMON /FUELXI/ IXTANK, IFUEL, IOFUNC                              

      COMMON /FUELXR/ DFUEL, DFUNCT, FXTHK, FUNXTK, POFUNC(6)            

      COMMON /HEVRAY/ SOLANG, ISZONE, COSN, DIRX, DIRY, DIRZ, ISRAY      

      COMMON /IAT   / ICOMP, ISW1, LDSKIP, LQS, LSKIP, MAT, NKILL(7)     

      COMMON /INITIA/ ACVEL, FIRE, FUNCT(MXSLCP), XFUNCT(MXSLCP)               
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      COMMON /INITI2/ SFUNCT(4,MXSLCP)                                      

      COMMON /INOUT / IOC, IOP, IOP1, IOP2, IOP3, NLINES                 

CLAG  BLOCK FOR ADDED HOLE SIZE OUTPUT FILE (IOHOLE) FOR UEDDAM 

      COMMON /INOUT7/ ICOVBX, IOCOVX, IOHOLE                             

CLAG  END CHANGE 

      COMMON /JTYPE / NTYPE, JTYP1(MXJTYP), JTYP3(MXJTYP,MAXKL), 

     &                JTSUB(MAXCMP)  

CLAG  COMPONENT LIST FOR HOLESIZE CALCULATIONS 

      COMMON /JTYP2H/ JTYPH(MXHOUT) 

CLAG 

      COMMON /JTYP2I/ LJTYP2(MXJTYP), MJTYP2(MXJTYP)                       

      COMMON /JTYP2R/ DJTYP2(MXJTYP)                                      

      COMMON /LOCCMP/ IFRSTC, NPREVC, NLASTC                             

      COMMON /MAR40 / SLPK(MAXWGT*MAXVEL,MAXKL), PKILO(MAXLO,MAXKL,4) 

      COMMON /MATPKT/ MTPKFC(MXMTCD), NMTPKT, MTPKTN                         

      COMMON /MATS  / ICODES(MXSLMT), SHOTDN(MXSLCP)                           

      COMMON /MPKILS/ NMPK, MPKILL(MXCPPK,MXDMG+1), NMPKDM, NMPKCX              

      COMMON /MUANG / PSH(90), PHISH(20),RMUMIN, RMUMAX, YAWS(20), IS2S  

      COMMON /PKGRP / IPKTYP(MXPKTB)                                       

      COMMON /PROJ1 / PROL(MAXWGT,4), PRON(MAXWGT,4), PROTD(MAXWGT,4), 

     &                DENRAT(MAXWGT)    

C                                                                        

      REAL NSP                                                           

      COMMON /SHATRC/ VVC1, WRSHWR, NSP, DFC1, PHIF, PHIT                

C 

      COMMON /SHOTL1/ JM, KK, N, VR, V, WR, WT, NCOR, Q2, QRSUM          

      COMMON /SHOT40/ ICNO(MXSLCP),TL(MXSLCP),XAIR(MXSLCP), 

     &                COSOBL(MXSLCP),RFLUE(MXSLCP) 

      COMMON /SHOT41/ NOPK(MXSLCP), FRGMIN(MXSLCP,MAXKL),  

     &                JCOMP(MXSLCP), KKS(MXSLCP)     

      COMMON /SHOTQ1/ COSEQ(MXSLCP), TLEQ(MXSLCP), KKSEQ(MXSLCP), 

     &                TLGEQ(MXSLCP)      

      COMMON /SHOTQ2/ KKPREQ, TOLAG, PPCT(MXSLCP), PPCTP(MXSLCP), 

     &                INCOMB(MXSLCP)  

      COMMON /SHOTQ3/ TLG(MXSLCP)                                           

      COMMON /THRET1/ PHI, V50, KF, AREAP                                

      COMMON /THRET2/ DIA(MAXWGT,4), LSHAPE(MAXWGT), FL(MAXWGT), 

     &                LF(MAXWGT)              

      COMMON /DUCOMM/ V50N,T,AP,COSPHI,PLEN,SOBL,ABTP,SINPHI,NSHAPE      

      COMMON /PFRAG2/ PHIR                                               

C 

      DIMENSION PFUNCT(6) 

 

      LOGICAL LCOMBN, LVULLG 

      LOGICAL LUNCOM , LCOMB 

                                                            

      REAL    Vs, WTs, PHIs 

      REAL    Vr, WTr, PHIr 

      REAL    LOS, COSBOL 

                                                                        

      INTEGER TgtMat, FrID, NCOREs, NCOREr, INCMB 

                                                             

      FrID = JM 

      Vs = V 

      Vr = Vs 

      WTs = WT 

      WTr = WTs 

      IStateS = NCOR 

      IStateR = IStateS 

      N = 0                                                              

      VPEN = V                                                           

      WTPEN = WT                                                         

      PHIPEN = PHI                                                       

      NCORPN = NCOR                                                      

      ISHAPP = ISHAPE                                                    

      LCOMBN = .FALSE.                                                   

      LCOMB = .FALSE. 

      DO 200 IFT = 1, 6                                                  

        FFUNCT(IFT) = 0.0                                              

        PFUNCT(IFT) = 0.0                                              

  200 CONTINUE                                                           
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      IFRSTC = 0                                                         

      NPREVC = 0                                                         

      NLASTC = 0                                                         

C                                                                        

      IFUEL = 0                                                          

      IOFUNC = 0                                                         

      IXTANK = 0                                                         

      DFUEL = 0.0                                                        

      DFUNCT = 0.0                                                       

      FUNXTK = 0.0                                                       

      FXTHK = 0.0                                                        

      LUNCOM = .FALSE.                                                   

CLAG  NOTE:  DIRX = 0.0 SET IN AREACH.F FOR UEDDAM ITHRT=3 

      IF (ITHRT .GE. 3) THEN 

        DIST = DIRX 

      ELSE 

        DIST = 0.0 

      END IF 

C 

C     A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A  

C                                                                     A  

C     START HERE FOR EACH COMPONENT ON THE SHOTLINE                   A  

C                                                                     A  

  100 CONTINUE                                                           

 

 

C                                                                        

C     UPDATE N FOR THE NEXT COMPONENT                                    

C                                                                        

      N = N + 1                                                          

 

C 

C Setup the First Last and Next component on the shotline 

C 

      IF ( IFRSTC .EQ. 0 ) THEN                                          

        IF ( JTYP6( ICNO(N) ) .GE. 0 ) THEN                            

          IFRSTC = N                                                 

          NLASTC = N                                                 

        END IF                                                         

      ELSE                                                               

        IF ( JTYP6( ICNO(N) ) .GE. 0 ) THEN                            

          NPREVC = NLASTC                                            

          NLASTC = N                                                 

        ELSE                                                           

          NPREVC = NLASTC                                            

        END IF                                                         

      END IF                                                             

C                                                                        

      DIST = XAIR(N)                                                     

C     C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C  

C                                                                     C  

C     FRAGMENT FLASH OR PROJECTILE FLASH                              C  

C                                                                     C  

CFIR  FIRE ROUTINES                                                      

CFIR                                                                     

 

      IF (LCOMB) THEN 

        VSL(N) = VPs 

        WSL(N) = WPs 

      ELSE 

        VSL(N) = V 

        WSL(N) = WT 

        VSL(N) = Vs 

        WSL(N) = WTs 

      ENDIF 

 

C                                                                        

C     DOES FRAGMENT OR PROJECTILE FLASH OCCUR ON THIS COMPONENT          

C                                                                        

      IF ( MTPKFC( KKS(N) ) .GT. 0 ) THEN                                

C                                                                        
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C          MATERIAL TYPE FLAGGED AS CAUSING SPARK ON FRAGMENT IMPACT     

C                                                                        

        FUNCT(N) = 1.0                                             

        SFUNCT(1,N) = 1.0                                          

        XFUNCT(N) = 1.0                                            

      ELSE                                                               

C                                                                        

C     NON-METAL PLATE                                                    

C                                                                        

        VSL(N) = 0.0                                               

        WSL(N) = 0.0                                               

      END IF                                                             

CFIR                                                                     

CFIR  FIRE ROUTINES                                                      

 

      IF(N .NE. NN) THEN                                                 

        ICALLV = 1                                                     

      ELSE IF(IRIC .GT. 0) THEN                                          

        ICALLV = 1                                                     

      ELSE                                                               

        ICALLV = 0                                                     

        DO 180 LOOP = KLCUT, JKILL                                     

          LP = JTYP3( ICNO(N), NKILL(LOOP) )                         

          IF ( LP .GT. 0 ) THEN                                      

            IF ( IPKTYP(LP) .EQ. 4 .OR. IPKTYP(LP) .EQ. 5 ) THEN   

              ICALLV = 1                                         

              GO TO 1600                                         

            END IF                                                 

          ELSE IF ( LP .LT. 0 ) THEN                                 

            DO 190 JLP = 2, MPKILL( -LP, 1 )                       

              LLP = MPKILL( -LP, JLP )                           

              IF ( IPKTYP( LLP ) .EQ. 4 .OR.                     

     &                     IPKTYP( LLP ) .EQ. 5 ) THEN                   

                ICALLV = 1                                     

                GO TO 1600                                     

              END IF                                             

  190       CONTINUE                                               

          END IF                                                     

  180   CONTINUE                                                       

      END IF                                                             

C                                                                        

 1600 CONTINUE 

C                                                                        

C Based on the plate combining flag, and the LUNCOM flag 

C  either use the combined plate data, or the individual 

C plate data for penetration 

C 

      IF (INCOMB(N) .NE. 0 .AND. LUNCOM) THEN 

        TgtMat = KKS(N) 

        KK = TgtMat 

        LOS = TL(N) 

        COBL = COSOBL(N) 

        XAIR1 = XAIR(N) 

        VPs = Vs 

        WPs = WTs 

        INCMB = 0 

      ELSE 

        TgtMat = KKSEQ(N) 

        KK = TgtMat 

        LOS = TLEQ(N) 

        COBL = COSEQ(N) 

        XAIR1 = XAIR(N) 

        INCMB = INCOMB(N) 

        IF (.NOT. LCOMB) THEN 

          VPs = Vs 

          WPs = WTs 

        ENDIF 

      ENDIF 

      IF (N .EQ. 1 .AND. INCOMB(N) .NE. 0 ) INCMB = 0 
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      IF(ICALLV .EQ. 1 .AND. JTYP6(ICNO(N)) .GE. 0) THEN  

        DF1HSV = DF1HH                                                 

C        CALL AREASV                                                    

CLAG  NEW CALL FOR FAA FRAGS 

        CALL FAAFragCtl ( FrID, TgtMat, LOS, WPs, RLFrag, VPs, AreaP, 

     &                    WR, V50, Vr )  

 

CLAG  END CHANGE 

         

        IF (JTYP6(ICNO(N)) .GE. 0) THEN 

          IF ( (INCOMB(N) .NE. 0) .AND. (.NOT. LUNCOM) .AND. 

     &         (.NOT. LCOMB)) THEN   

            IF ((VR .LT. 1.0) .OR. (WTr .LT. 0.0001)) THEN        

 

C                                                                        

C  IF PENETRATION OF A COMBINED PLATE DOES NOT OCCUR,                    

C  UNCOMBINE THE PLATE, ROLL BACK PENETRATION COMPUTATION                

C  AND PRETEND THE COMBINATION NEVER OCCURRED.                           

C  SEE MDR NUMBER ...                                                    

C  THIS MAY, UNDER CERTAIN CIRCUMSTANCES PERMIT PENETRATION TO OCCUR     

C  THAT OTHERWISE WOULDN'T, BUT USERS OBJECT MORE TO VISIBLE PK          

C  ANOMALIES THAN TO INVISIBLE PENETRATION ANOMALIES                     

C                                                                        

              NRIC = 0                                               

              TgtMat = KKS(N) 

              KK = TgtMat 

              LOS = TL(N) 

              COBL = COSOBL(N) 

              INCMB = 0 

              LUNCOM = .TRUE. 

 

C            V = VPEN                                               

C            WT = WTPEN                                             

C            PHI = PHIPEN                                           

C            NCOR = NCORPN                                          

C            QRSUM = QRSUMP                                         

C            DIA(JM,NCOR) = DIAPEN                                  

C            PROL(JM,NCOR) = PROLPN                                 

C            ISHAPE = ISHAPP                                        

C            CURDIA = CURDPN                                        

C            RLF1 = RLF1PN                                          

C            IAMU = IAMUPN                                          

C            AMU = AMUPEN                                           

C            RNF2 = RNF2PN                                          

C            RMF2 = RMF2PN                                          

C            DF2 = DF2PEN                                           

C            RNF3 = RNF3PN                                          

C            RMF3 = RMF3PN                                          

C            DF3 = DF3PEN                                           

C            RNT = RNTPEN                                           

C            RMT = RMTPEN                                           

C            DT = DTPEN                                             

C            PHIF = PHIFPN                                          

C            PHIT = PHITPN                                          

C            DF1H = DF1HPN                                          

C            STOT = STOTPN                                          

C            Q = QPEN                                               

C            Q2 = Q2PEN                                             

C            KK = KKS(N)                                            

C            T = TL(N) * COSOBL(N)                                  

C            DF1HH = DF1HSV                                         

C            LUNCOM = .TRUE.                                        

C            CEQSV = COSEQ(N)                                       

C            TLEQSV = TLEQ(N)                                       

C            KKSESV = KKSEQ(N)                                      

C            TLGESV = TLGEQ(N)                                      

C            INCMSV = INCOMB(N)                                     

C            PPCTSV = PPCT(N)                                       

C            PPCPSV = PPCTP(N)                                      

C            COSEQ(N) = COSOBL(N)                                   

C            TLEQ(N) = TL(N)                                        
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C            KKSEQ(N) = KKS(N)                                      

C            TLGEQ(N) = TLG(N)                                      

C            INCOMB(N) = 0                                          

C            PPCT(N) = 1.0                                          

C            PPCTP(N) = 1.0                                         

C            CALL AREASV                                            

 

CLAG  CALL IS FOR UEDDAM/FAA PENETRATION 

C              CALL JTCGFragCtl (FrID, IStateS, IStateR, COBL, TgtMat,  

C     &                      Los, WTs, Vs, Vr, WTr, V50, AreaP, INCMB,  

C     &                      COSEQ(N), LUNCOM, KKSEQ(N)) 

               CALL FAAFragCtl ( FrID, TgtMat, LOS, WPs, RLFrag, VPs,  

     &                    AreaP, WR, V50, Vr )  

CLAG  END CHANGE 

              Wr = WTr 

              NCOR = IStateS 

            ELSE 

              VPs = Vs 

              VPr = Vr 

              WPs = WTs 

              WPr = WTr 

              Wr = WTr 

              LCOMB = .TRUE. 

              NCOR = IStateS 

            END IF 

          ELSE IF (LCOMB) THEN 

            Wr = WTr 

            NCOR = IStateS 

          ELSE 

            Wr = WTr 

            NCOR = IStateS 

          END IF                                                     

        END IF                                                         

      ELSE                                                               

        V50 = 0.0                                                      

      END IF                                                             

C                                                                        

      IF ( INCOMB(N) .NE. 0 .AND. LCOMB) THEN          

        IF ( ( IFRSTC .GT. 0 ) .OR. ( JTYP6(ICNO(N)) .GE. 0 ) ) THEN   

C                                                                        

C          USE INTERPOLATED WEIGHTS, SPEEDS AND MOMENTA FOR PK           

C                                                                        

C          WRPEN = WR                                                

C          VRPEN = VR                                                

          WR = WPs + PPCT(N) * ( WPr - WPs ) 

          VR = VPs + PPCT(N) * ( VPr - VPs ) 

C          WR = WT + PPCT(N) * ( WR - WT )                           

C          VR = V + PPCT(N) * ( VR - V )                             

C          PHIRPN = PHI                                          

C          PHIR = PHI                                            

        END IF                                                        

      END IF                                                             

C   

 

C      NCORR = NCOR                                                       

C      NCOR = NCORSV                                                      

C      DIAR = DIA(JM, NCORR)                                              

C      DIA(JM, NCOR) = DIASAV                                             

C      PROLR = PROL(JM, NCORR)                                            

C      PROL(JM, NCOR) = PROLSV                                            

C                                                                        

C          RESTORE IMPACTOR CONFIGURATION FOR PK COMPUTATION             

C                                                                        

C      IF ( INCOMB(N) .NE. 0 ) THEN                                       

C        IF ( ( IFRSTC .GT. 0 ) .OR. ( JTYP6(ICNO(N)) .GE. 0 ) ) THEN   

C          V = VPK                                                    

C          WT = WTPK                                                  

C          PHI = PHIPK                                                

C          IF ( JTYP6(ICNO(N)) .GE. 0 ) THEN                          

C            WTPK = WR                                              

C            VPK = VR                                               
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C            PHIPK = PHIR                                           

C          END IF                                                     

C        END IF                                                         

C      END IF                                                             

 

CLAG   ADDED HOLE SIZE COMPUTATION AND PEN INFO OUTPUT 

      IF ( JTYPH( ICNO(N) ) .EQ. 1 ) THEN 

          IF ( VR .GT. 0.0 ) THEN 

              IPENET = 1 

              AHOLE = APFRAG / COSOBL( N ) 

              AHOLE = MIN( AHOLE, 99999999999.0 ) 

          ELSE 

              IPENET = 0 

              AHOLE = 0.0 

          END IF 

          WRITE( IOHOLE, 2180 ) ISRAY, JCOMP(N), AHOLE, 

     &                          COSOBL(N), IPENET 

      END IF 

CLAG   END CHANGE 

                                                                       

      IF (LUNCOM) THEN 

        TLSAV = TLEQ(N) 

        TLEQ(N) = LOS 

        KKSAV = KKSEQ(N) 

        KKSEQ(N) = TgtMat 

        COBSAV = COSEQ(N) 

        COSEQ(N) = COBL 

      ENDIF 

C ***************************************************************************** 

C                     DAMAGE CALCULATIONS 

C ***************************************************************************** 

 

      CALL PKASGN (2, POWER)  

 

CC                                                                        

CC     SUBROUTINE FUELXO HANDLES EXIT FIRE AND FUNCTION THROUGH FLUID     

CC     PKS                                                                

C      IF ( (IFUEL .GT. 0) .AND. (JTYP6(ICNO(N)) .GE. 0) ) THEN           

C        CALL FUELXO( POWER )                                           

C      END IF                                                             

CC     SUBROUTINE AREASO CONTROLS THE KILL LEVEL LOOP AND COMPUTES        

CC         THE PROBABILITY OF KILL FOR EACH COMPONENT                     

CC                                                                        

C      LO = LJTYP2(ICNO(N))                                               

C      DO 150 KL = KLCUT, JKILL                                           

C        PK(KL) = 0.0                                                 

C        PKILO( N, KL, 4 ) = 0.0                                      

CC           IF ( JTYP3(ICNO(N), NKILL(KL)) .NE. 0 ) THEN                 

CC                                                                        

CC                 NOPK ACCOUNTS FOR DOUBLE-HIT EXCLUSION                 

CC                 AND NON-CRITICAL COMPONENTS ON HEVART RAYS             

CC                 FRGMIN IS THE MINIMUM FRAGMENT SIZE TO EVALUATE        

CC                 (>0.0 FOR CONICAL BLAST VULNERABLE COMPONENTS          

CC                 IN HEIVAM)                                             

CC                                                                        

C        IF ( NOPK(N) .NE. 1 .AND. WT .GE. FRGMIN(N,KL) ) THEN        

C          CALL AREASO( KL, LO, POWER )                             

C        ELSE                                                         

C          IF ( KL .EQ. 1 .AND. IPRINT .EQ. 1 ) THEN                

C            WRITE(IOP1, 2120) 0.0, WT, V, TLEQ(N), COSEQ(N),    

C     +              JCOMP(N), JV, JM, KL, NCOR, IPHS, IPLS,        

C     +              FFUNCT(6), PHI, V50                        

C          END IF                                                   

C        END IF                                                       

CC                                                                        

C  150 CONTINUE                                                           

 

 

 

C                                                                        

C          IF PLATES ARE COMBINED, RESET IMPACTOR CONFIGURATION          
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C          FOR PENETRATION                                               

C                                                                        

C      IF ( ( ( IFRSTC .GT. 0 ) .OR. ( JTYP6( ICNO(N) ) .GE. 0 ) ) .AND.  

C     &     ( INCOMB(N) .NE. 0 )                                  ) THEN  

C        V = VPEN                                                       

C        WT = WTPEN                                                     

C        PHI = PHIPEN                                                   

C        NCOR = NCORPN                                                  

C        QRSUM = QRSUMP                                                 

C        DIA(JM,NCOR) = DIAPEN                                          

C        PROL(JM,NCOR) = PROLPN                                         

C        ISHAPE = ISHAPP                                                

C        CURDIA = CURDPN                                                

C        RLF1 = RLF1PN                                                  

C        IAMU = IAMUPN                                                  

C        AMU = AMUPEN                                                   

C        RNF2 = RNF2PN                                                  

C        RMF2 = RMF2PN                                                  

C        DF2 = DF2PEN                                                   

c        RNF3 = RNF3PN                                                  

c        RMF3 = RMF3PN                                                  

C        DF3 = DF3PEN                                                   

C        RNT = RNTPEN                                                   

C        RMT = RMTPEN                                                   

C        DT = DTPEN                                                     

C        PHIF = PHIFPN                                                  

C        PHIT = PHITPN                                                  

C        DF1H = DF1HPN                                                  

C        STOT = STOTPN                                                  

C        Q = QPEN                                                       

C        Q2 = Q2PEN                                                     

C                                                                        

C        VR = VRPEN                                                     

C        WR = WRPEN                                                     

C        PHIR = PHIRPN                                                  

C      END IF                                                             

CC                                                                        

C      NCOR = NCORR                                                       

C      DIA(JM, NCOR) = DIAR                                               

C      PROL(JM, NCOR) = PROLR                                             

 

      IF (LUNCOM) THEN 

        TLEQ(N) = TLSAV 

        KKSEQ(N) = KKSAV 

        COSEQ(N) = COBSAV 

      ENDIF 

 

C --------------------------------------------------------- 

C Not at the last component or we want ricochet 

C --------------------------------------------------------- 

 

      IF ( ( N .LT. NN ) .OR. ( IRIC .GT. 0 ) )  THEN                  

C 

C No ricochet occured, so continue processing the shotline 

C 

        IF ( NRIC .LE. 0 ) THEN                                        

C                                                                        

C  The fragment has stopped. If this is not a combined plate, exit 

C   Otherwise replace striking with residual and continue working              

C                                                                        

          IF((WR .LE. 0.0) .OR. (VR .LE. 1.0)) THEN              

            IF ( INCOMB(N) .LE. 0 .OR. LUNCOM) THEN                

              GO TO 1776                                         

            END IF                                             

C          ELSE                                                   

C            V = VR                                             

C            WT = WR                                            

          END IF                                                 

CC                                                                        

CC     START NEXT COMPONENT ON SHOTLINE                                   

CC                                                                        
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C          IF ( JTYP6(ICNO(N)) .GE. 0 ) THEN                        

C            XTL = TL(N)                                          

C            IF ( SHOTDN(N) .GT. 0.0 ) THEN                       

C              XTL = XTL / SHOTDN(N)                            

C            END IF                                               

C            IF ( IOFUNC .GT. 0 ) THEN                            

CC                                                                        

CC     IF AIR SPACE OR ULLAGE AFTER PREVIOUS COMPONENT,                   

CC     FUNCTION THROUGH FUEL NO LONGER APPLIES                            

CC                                                                        

C              IF ( ( (KKS(N) .GT. 50) .AND.                    

C     &             (SHOTDN(N) .GT. 0.0) .AND.                

C     &             (SHOTDN(N) .LE. 0.10)     ) .OR.          

C     &             (XAIR(NPREVC)*COSOBL(N).GT. 0.1)    ) THEN  

C                IOFUNC = 0                                   

C                DFUNCT = 0.0                                 

C                FUNXTK = 0.0                                 

C                DO 120 II = 1, 6                             

C                  POFUNC(II) = 0.0                         

C  120           CONTINUE                                     

C              ELSE                                             

C                DFUNCT = DFUNCT + XTL + XAIR(N)              

C                IF ( KKS(N) .LT. 50 ) THEN                   

C                  FUNXTK = FUNXTK + XTL                    

C                END IF                                       

C              END IF                                           

C            END IF                                               

C            IF ( ( IFUEL .GT. 0 ) .AND.                          

C     &           ( IFUEL .LT. N )       ) THEN                   

C              IF ( XFUNCT(NPREVC) .LE. 0.0 ) THEN              

C                DFUEL = DFUEL + XTL + XAIR(N)                

C                IF ( (XAIR(N) .GT. 0.10) .OR.                

C     &               (N .EQ. NN)              ) THEN         

C                  IXTANK = IXTANK + 1                      

C                END IF                                       

C                FXTHK = FXTHK + XTL                          

C              ELSE                                             

CC                                                                        

CC      ALREADY HAVE HAD A FUNCTION AFTER FUEL                            

CC                                                                        

C                IFUEL = 0                                    

C                IXTANK = 0                                   

C                FXTHK = 0.0                                  

C                DFUEL = 0.0                                  

C              END IF                                           

C            END IF                                               

C          END IF                                                 

 

 

 

C --------------------------------------------------------- 

C   Check for the end of the shotline 

C    Go back to 100 and loop again 

C  Otherwise go to 300 and exit 

C --------------------------------------------------------- 

 

          IF ( N .LT. NN ) THEN                                  

            IF ( JTYP6(ICNO(N)) .GE. 0 ) THEN                  

C 

C  If a combined plate and this is the last contributor, reset flags 

C   otherwise update residual and striking and continue 

C 

              IF (LCOMB) THEN 

                IF (INCOMB(N) .LT. 0) THEN 

                  LCOMB = .FALSE. 

                ELSE 

                  Vs = Vr 

                  V = Vr 

                  WTs = Wr 

                  WT = Wr 

                ENDIF 
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              ENDIF 

C              IF ( INCOMB(N) .GT. 0 ) THEN                   

C                LCOMBN = .TRUE.                            

C              ELSE                                           

C                VPEN = V                                   

C                WTPEN = WT                                 

C                PHIPEN = PHI                               

C                NCORPN = NCOR                              

C                QRSUMP = QRSUM                             

C                DIAPEN = DIA(JM,NCOR)                      

C                PROLPN = PROL(JM,NCOR)                     

C                ISHAPP = ISHAPE                            

C                CURDPN = CURDIA                            

C                RLF1PN = RLF1                              

C                IAMUPN = IAMU                              

C                AMUPEN = AMU                               

C                RNF2PN = RNF2                              

C                RMF2PN = RMF2                              

C                DF2PEN = DF2                               

C                RNF3PN = RNF3                              

C                RMF3PN = RMF3                              

C                DF3PEN = DF3                               

C                RNTPEN = RNT                               

C                RMTPEN = RMT                               

C                DTPEN = DT                                 

C                PHIFPN = PHIF                              

C                PHITPN = PHIT                              

C                DF1HPN = DF1H                              

C                STOTPN = STOT                              

C                QPEN = Q                                   

C                Q2PEN = Q2                                 

C                LCOMBN = .FALSE.                           

C                KKPREQ = KKSEQ(N)                          

CC                                                                       

C                WTPK = WT                                  

C                VPK = V                                    

C                PHIPK = PHI                                

C              END IF                                         

C            END IF                                             

 

C  

C  If this is the last plate of combined plates OR 

C  If this combined plate has be UnCombined OR 

C  IF this is a single plate 

C    

              IF (INCOMB(N) .LE.0 .OR. LUNCOM) THEN 

                Vs = Vr 

                V = Vr 

                WT = WTr 

                WTs = WTr 

                IStateS = IStateR 

                NCOR = IStateR 

              ENDIF 

            ENDIF 

            GO TO 100                                          

C          ELSE                                                   

C                                                                        

C  IF PLATE COMBINING HAD TO BE UNWOUND, RESTORE EQ VALUES               

C                                                                        

C            IF ( LUNCOM ) THEN                                 

C              COSEQ(N) = CEQSV                               

C              TLEQ(N) = TLEQSV                               

C              KKSEQ(N) = KKSESV                              

C              TLGEQ(N) = TLGESV                              

C              INCOMB(N) = INCMSV                             

C              PPCT(N) = PPCTSV                               

C              PPCTP(N) = PPCPSV                              

C            END IF                                             

C            GO TO 300                                          

          END IF                                                 

 1776     CONTINUE                                               
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        END IF                                                         

      END IF                                                             

C                                                                        

C  IF PLATE COMBINING HAD TO BE UNWOUND, RESTORE EQ VALUES               

C                                                                        

C      IF ( LUNCOM ) THEN                                                 

C        COSEQ(N) = CEQSV                                               

C        TLEQ(N) = TLEQSV                                               

C        KKSEQ(N) = KKSESV                                              

C        TLGEQ(N) = TLGESV                                              

C        INCOMB(N) = INCMSV                                             

C        PPCT(N) = PPCTSV                                               

C        PPCTP(N) = PPCPSV                                              

C      END IF                                                             

C                                                                        

  300 CONTINUE                                                           

C                                                                        

CVCUT VELOCITY CUTOFF                                                    

CVCUT                                                                    

      IF(KUTOFF .EQ. -1) THEN                                            

        RETURN                                                         

      END IF                                                             

CVCUT                                                                    

CVCUT VELOCITY CUTOFF                                                    

C                                                                        

      IF ( IPRINT .GT. 0 ) THEN                                          

        WRITE ( IOP1, * ) ' '                                          

CRIC  RICOCHET STATISTICS                                                

CRIC                                                                     

        IF ( IRIC .GT. 0 ) THEN                                        

          IF ( NRIC .GT. 0 ) THEN                                    

            WRITE ( IOP1, 2160 ) RPHE, VR, WR                      

          END IF                                                     

        END IF                                                         

CRIC                                                                     

CRIC  RICHOCHET STATISTICS                                               

      END IF                                                             

 

      RETURN                                                             

 

 2120 FORMAT( F10.4, 2F10.2, 2F10.4, 5I8, 2I5, F9.4, F10.4, F10.2 )      

 2130 FORMAT(1X, F5.3, F9.2, F9.1, 3(F9.3, F8.0, 2X), I6, 2I4, I3, I5,   

     + I2, F9.4, F8.3, F10.1)                                            

 2160 FORMAT ( 5X, 'RICOCHET -  RPHE =', F8.2, '  VR =', F8.2,           

     +  '  WR =', F8.2 )                                                 

 2170 FORMAT(1X, 'PASS ', I1, 4X, 'MU ANGLE IN DEGREES =',               

     + F5.1, 4X, 'PROBABILITY =', F6.3)                                  

CLAG  ADDED FOR UEDDAM HOLESIZE OUTPUT 

 2180 FORMAT( 2I8, F16.3, F8.4, I8 ) 

      END                                                                

 



 

A-70 

File:  ueddam-frag\FAAPEN\faafrinit.f 
 

      SUBROUTINE FAAFrInit ( BHNP, RHOP, SIGYP, SIGUP, TAUSP, 

     &                       DYNSHRP, EP, BULKP, DENALP, RAP, UP, CFP,  

     &                       CCBFP, CBFP, CHP, CCFP, FCMP, FGP, FVP,  

     &                       FTP, FSP, JRESP, PROLP, PRONP, PROTDP,  

     &                       DENRATP, DIAP, FLUIP, CDP,  

     &                       LSHAPEP, FLP, LFP, DIA2P, AMP ) 

      

CLAG  SHELL OF JTCGFRINIT.F USED TO IMPLEMENT FAA 

C                                                                        

C =============================================================================| 

C      SUBROUTINE faaFrInit                                                    | 

C =============================================================================| 

C 

C  ********************************************************* 

C  ***  EXPORT RESTRICTED PER ARMS EXPORT CONTROL ACT.   *** 

C  ***  DISSEMINATE IN ACCORDANCE WITH DOD DIR 5230.25.  *** 

C  ********************************************************* 

C     THIS SUBROUTINE INITIALIZES ARRAYS AND CONSTANT VALUES USED        

C     THROUGHOUT THE PROGRAM                                             

C                                                                        

C 

C                                                                        

C =============================================================================| 

C INPUTS:                                                                      | 

C                                                                              | 

C                                                                              | 

C =============================================================================| 

C OUTPUTS:                                                                     | 

C                                                                              | 

C                                                                              | 

C =============================================================================| 

C Revision History:                                                            | 

C                                                                              | 

C Rev.       Date        By   Description                                      | 

C                                                                              | 

C 4.5.001   13 Dec 2005 RRC  Initial implementation. Adapted from the original | 

C                             COVART init subroutine.                          | 

C                                                                              | 

C =============================================================================| 

 

 

      IMPLICIT NONE 

 

      INCLUDE 'parm.inc' 

 

      COMMON /DRAGF / CD(MXSHAP), FLUI(MXFLUT), VMAX 

CLAG  ADDED DYNSHR FOR FAA PENETRATION EQNS 

      COMMON /MATL1F/ BHN(MXMT), RHO(MXMT), SIGY(MXMT), SIGU(MXMT), 

     &                TAUS(MXMT), DYNSHR(MXMT) 

CLAG  END CHANGE 

      COMMON /MATL2F/ E(MXMT), BULK(MXMT), DENAL(MXMT), RA(MXMT), 

     &                U(MXMT), CF 

      COMMON /MTFR1F/ CCBF(MXMT), CBF(MXMT), CH(MXMT), CCF(MXMT), 

     &                FCM(MXMT) 

      COMMON /MTFR2F/ FG(MXMT), FV(MXMT), FT(MXMT), FS(MXMT) 

      COMMON /MTHE1F/ JRES, FIRE 

      COMMON /PRJ1F  / PROL(MAXWGT,4), PRON(MAXWGT,4), PROTD(MAXWGT,4), 

     &                DENRAT(MAXWGT) 

      COMMON /RICDTF/ AM(MXMT), B(MXMT) 

      COMMON /THRT2F/ DIA(MAXWGT,4), LSHAPE(MAXWGT), FL(MAXWGT), 

     &                LF(MAXWGT) 

 

      COMMON /THRT3F/ DIA2(MAXWGT) 

 

C 

C Global Variables 

C 

CLAG  ADDED DYNSHR FOR FAA PENETRATION EQNS 
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C      REAL     BHN, RHO, SIGY, SIGU, TAUS 

      REAL     BHN, RHO, SIGY, SIGU, TAUS, DYNSHR 

CLAG  END CHANGE 

      REAL     E, BULK, DENAL, RA, U 

      REAL     CCBF, CBF, CH, CCF, FCM 

      REAL     FG, FV, FT, FS, FLUI 

      REAL     PROL, PRON, PROTD, DENRAT 

      REAL     DIA, FL, DIA2, FIRE 

      REAL     CD, VMAX, AM, B 

      INTEGER  LSHAPE, LF 

 

C 

C Local Variables 

C 

 

CLAG  ADDED DYNSHRP FOR FAA PENETRATION EQNS 

      REAL      BHNP(MXMT), RHOP(MXMT), SIGYP(MXMT), SIGUP(MXMT), 

     &                TAUSP(MXMT), DYNSHRP(MXMT) 

CLAG  END CHANGE 

      REAL      EP(MXMT), BULKP(MXMT), DENALP(MXMT), RAP(MXMT), 

     &                UP(MXMT) 

      REAL      AMP(MXMT), BP(MXMT) 

      REAL      CCBFP(MXMT), CBFP(MXMT), CHP(MXMT), CCFP(MXMT), 

     &                FCMP(MXMT) 

      REAL      FGP(MXMT), FVP(MXMT), FTP(MXMT), FSP(MXMT) 

      REAL      PROLP(MAXWGT,4), PRONP(MAXWGT,4), PROTDP(MAXWGT,4), 

     &                DENRATP(MAXWGT) 

      REAL      DIA2P(MAXWGT), DIAP(MAXWGT,4), FLP(MAXWGT) 

      INTEGER   LSHAPEP(MAXWGT), LFP(MAXWGT) 

      REAL      CF, CFP, FIREP, FLUIP(MXFLUT) 

      INTEGER   JRES, JRESP, NMTPKT, NMTPKTP, MTPKTN, MTPKTNP 

      INTEGER    I, J 

      REAL       CDP(MXSHAP) 

C 

      CF = CFP 

      JRES = JRESP 

 

      DO 800 I=1, MXFLUT 

        FLUI(I) = FLUIP(I) 

 800  CONTINUE 

 

      DO 810 I=1, MXSHAP 

        CD(I) = CDP(I) 

 810  CONTINUE 

 

      DO 100 I = 1, MXMT 

       

        BHN(I) = BHNP(I) 

        RHO(I) = RHOP(I) 

        SIGY(I) = SIGYP(I) 

        SIGU(I) = SIGUP(I) 

        TAUS(I) = TAUSP(I) 

        E(I) = EP(I) 

        BULK(I) = BULKP(I) 

        DENAL(I) = DENALP(I) 

        RA(I) = RAP(I) 

        U(I) = UP(I) 

        CCBF(I) = CCBFP(I) 

        CBF(I) = CBFP(I) 

        CH(I) = CHP(I) 

        CCF(I) = CCFP(I) 

        FCM(I) = FCMP(I) 

        FG(I) = FGP(I) 

        FV(I) = FVP(I) 

        FT(I) = FTP(I) 

        FS(I) = FSP(I) 

        AM(I) = AMP(I) 

CLAG  ADDED INIT FOR DYNSHR VALUES 

        DYNSHR(I) = DYNSHRP(I) 

CLAG  END CHANGE 
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 100  CONTINUE 

 

      DO 200 I = 1, MAXWGT 

        DO 300 J = 1, 4 

          PROL(I,J) = PROLP(I,J) 

          PRON(I,J) = PRONP(I,J) 

          PROTD(I,J) = PROTDP(I,J) 

          DIA(I,J) = DIAP(I,J) 

 300    CONTINUE 

 

        DIA2(I) = DIA2P(I) 

        DENRAT(I) = DENRATP(I) 

        LSHAPE(I) = LSHAPEP(I) 

        FL(I) = FLP(I) 

        LF(I) = LFP(I) 

 

 200  CONTINUE 

 

      RETURN                                                             

C                                                                        

      END                                                                
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File:  ueddam-frag\FAAPEN\faaheinit.f 
 

      SUBROUTINE FAAHeInit (DIAP, LSHAPEP, FLP, LFP, DIA2P, PROLP,  

     &                       DENRATP) 

 

CLAG  SHELL OF FRAGHEINIT.F USED TO IMPLEMENT FAA 

CLAG  NO CHANGES, SAME INIT OF FRAGMENT PARAMS                                 

C                                                                        

C =============================================================================| 

C      SUBROUTINE FAAHeInit                                                   | 

C =============================================================================| 

C 

C  ********************************************************* 

C  ***  EXPORT RESTRICTED PER ARMS EXPORT CONTROL ACT.   *** 

C  ***  DISSEMINATE IN ACCORDANCE WITH DOD DIR 5230.25.  *** 

C  ********************************************************* 

C     THIS SUBROUTINE INITIALIZES ARRAYS AND CONSTANT VALUES USED        

C     FOR HE Fragments                                             

C                                                                        

C 

C                                                                        

C =============================================================================| 

C INPUTS:                                                                      | 

C                                                                              | 

C                                                                              | 

C =============================================================================| 

C OUTPUTS:                                                                     | 

C                                                                              | 

C                                                                              | 

C =============================================================================| 

C Revision History:                                                            | 

C                                                                              | 

C Rev.       Date        By   Description                                      | 

C                                                                              | 

C 4.5.001   13 Dec 2005 RRC  Initial implementation. Adapted from the original | 

C                             COVART init subroutine.                          | 

C                                                                              | 

C =============================================================================| 

 

      IMPLICIT NONE 

 

      INCLUDE 'parm.inc' 

 

      COMMON /PRJ1F  / PROL(MAXWGT,4), PRON(MAXWGT,4), PROTD(MAXWGT,4), 

     &                DENRAT(MAXWGT) 

      COMMON /THRT2F/ DIA(MAXWGT,4), LSHAPE(MAXWGT), FL(MAXWGT), 

     &                LF(MAXWGT) 

      COMMON /THRT3F/ DIA2(MAXWGT) 

C 

C Global Variables 

C 

      REAL     PROL, PRON, PROTD, DENRAT 

      REAL     DIA, FL, DIA2, FIRE 

      INTEGER  LSHAPE, LF 

C 

C Local Variables 

C 

      REAL      PROLP(MAXWGT,4), PRONP(MAXWGT,4), PROTDP(MAXWGT,4), 

     &                DENRATP(MAXWGT) 

      REAL      DIA2P(MAXWGT), DIAP(MAXWGT,4), FLP(MAXWGT) 

      INTEGER   LSHAPEP(MAXWGT), LFP(MAXWGT) 

      INTEGER   JRES, JRESP, NMTPKT, NMTPKTP, MTPKTN, MTPKTNP 

      INTEGER    I, J 

C 

C 

C 

      DO 200 I = 1, MAXWGT 

        DO 300 J = 1, 4 

          DIA(I,J) = DIAP(I,J) 

          PROL(I,J) = PROLP(I,J) 
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 300    CONTINUE 

 

        DENRAT(I) = DENRATP(I) 

        DIA2(I) = DIA2P(I) 

        LSHAPE(I) = LSHAPEP(I) 

        FL(I) = FLP(I) 

        LF(I) = LFP(I) 

 

 200  CONTINUE 

 

      RETURN                                                             

      END                                                                
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File:  ueddam-frag\FAAPEN\faafragctl.f 

 
      SUBROUTINE FAAFragCtl ( FrID, TgtMat, TlEq, WT, RlFrag, V, AreaP, 

     &                        WR, V50, Vr )  

 

CLAG  SHELL OF FRAG-CTL.F USED TO IMPLEMENT FAA 

C                                                                        

C =============================================================================| 

C      SUBROUTINE AREASV                                                       | 

C =============================================================================| 

C                                                                        

C                                                                        

C =============================================================================| 

C INPUTS:                                                                      | 

C                                                                              | 

C                                                                              | 

C =============================================================================| 

C OUTPUTS:                                                                     | 

C                                                                              | 

C                                                                              | 

C =============================================================================| 

C Revision History:                                                            | 

C                                                                              | 

C Rev.       Date        By   Description                                      | 

C                                                                              | 

C   0.0      22 Feb 2006 RRC  Initial implementation replacing areasv. This    | 

C                             routine implements the JTCG fragment portion of  | 

C                             areasv.                                          | 

C                                                                              | 

C =============================================================================| 

C 

 

      IMPLICIT NONE 

 

      INCLUDE 'parm.inc' 

 

      COMMON /MTHE1F/ JRES                                               

      COMMON /DRAGF / CD(MXSHAP), FLUI(MXFLUT), VMAX 

CLAG  ADDED DYNSHR FOR FAA PENETRATION EQNS 

      COMMON /MATL1F/ BHN(MXMT), RHO(MXMT), SIGY(MXMT), SIGU(MXMT), 

     &                TAUS(MXMT), DYNSHR(MXMT) 

CLAG  END CHANGE 

      COMMON /THRT2F/ DIA(MAXWGT,4), LSHAPE(MAXWGT), FL(MAXWGT), 

     &                LF(MAXWGT) 

C 

C  Global Variables 

C 

      INTEGER  JRES 

   REAL     CD, FLUI, VMAX 

CLAG  ADDED DYNSHR FOR FAA PENETRATION EQNS 

      REAL     BHN, RHO, SIGY, SIGU, TAUS, DYNSHR 

CLAG  END CHANGE 

      REAL     DIA, FL 

      INTEGER  LSHAPE, LF 

C 

C  Local Variables 

C 

      INTEGER  KKPEN, LL 

      REAL     FLU, EXPOW, RHOt 

C 

C  Subroutine parameters 

C 

      INTEGER  FrID, TgtMat 

      REAL     TlEq, WT, RlFrag, V, AreaP, WR, V50, Vr 

 

C ------------------------------------------------------------------- 

C         Fragments through non-fluid materials 

C ------------------------------------------------------------------- 

CLAG  ADDED CODES FOR THE TWO NEW MATERIALS AT 46, 47 

C      IF ( TgtMat .LE. 38 ) THEN  



 

A-76 

      IF ( ( TgtMat .LE. 38 ) .OR.  

     +     ( TgtMat .EQ. 46 ) .OR. ( TgtMat .EQ. 47 ) ) THEN  

CLAG  END CHANGE 

        KKPEN = TgtMat                                                 

        IF ( ( TgtMat .GE. 9 ) .AND. ( TgtMat .LE. 14 ) ) THEN 

          KKPEN = 8                                              

        END IF                                                     

        RHOt = RHO(KKPEN) 

         

        CALL FAAfrag ( FrID, TgtMat, RHOt, TlEq, WT, RlFrag, V, AreaP, 

     &                 WR, V50, Vr ) 

C ------------------------------------------------------------------- 

C          Fragments through Fluid materials 

C ------------------------------------------------------------------- 

      ELSE IF ((TgtMat .GE. 51) .AND. (TgtMat .LE. JRES)) THEN         

        V50 = 0.0 

        VR = 0.0 

        WR = WT 

        FLU = FLUI(TgtMat - 50) 

C 

C     PENETRATION HANDBOOK - EQUATION NUMBER 71 

CLAG  DRAG COEF. = 1.0, SO REMOVED FROM EXPOW EXPRESSION 

        EXPOW = AreaP * FLU * TlEq / ( WT + WT ) 

        IF (EXPOW .LT. 11.5)  THEN 

          VR = V * EXP(-EXPOW) 

        END IF 

      END IF                                                         

C                                                                        

      RETURN                                                             

      END                                                                
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File:  ueddam-frag\FAAPEN\faafrag.f 

 
      SUBROUTINE FAAfrag ( FrID, TgtMat, RHOt, TlEq, WT, V, AreaP, 

     +                     WR, V50, Vr )  

 

CLAG  SHELL OF FRAG.F USED TO IMPLEMENT FAA 

C                                                                        

C =============================================================================| 

C      SUBROUTINE FAAfrag                                                      | 

C =============================================================================| 

C 

C MODIFIED VERSION OF FRAG SUBROUTINE FOR UEDDAM - EXPORT RESTRICTED DATA 

C REMOVED 

C                                                                        

CFRG LARGE FRAGMENT ROUTINES                                             

CFRG                                                                     

C ------------------------------------------------------------------ 

C     UPDATE 11-12-02 TO ADD TITANIUM, COMPOSITE, AND INCONEL 

C     UPDATE 11-12-02 TO IMPROVE AL DYNAMIC SHEAR (SHEAR CONSTANT) 

C ------------------------------------------------------------------ 

C     PENETRATION EQUATIONS FOR LARGE FRAGMENTS CODED FROM NAWCWD  

C     TESTING AND ANALYSIS.  THESE EQUATIONS ARE BASED ON THE 

C     JTCG/ME PENETRATION EQUATIONS HANDBOOK.  MODIFICATIONS HAVE BEEN 

C     MADE FOR THE CONSIDERATION OF LARGE SLOW FRAGMENTS.  NO WEIGHT 

C     LOSS OCCURS AND THE FRAGMENT AP IS CALCULATED OFF LINE IN THE 

C     UEDDAM CODE. 

C                                                                        

C     THIS ROUTINE UTILIZES THE PENETRATION EQUATIONS FOR FRAGMENTS      

C     TO APPROXIMATE CHANGES IN THE MOTION OF A FRAGMENT IMPACTOR  

C     WHICH OCCUR AS A RESULT OF PENETRATION THROUGH SHOTLINE COMPONENT  

C     PLATES.  THIS ROUTINE IS USED ONLY WHEN FRAGMENTS ARE UNDER  

C     CONSIDERATION IN THE MODEL.  

C                                                                        

C     NO FRAGMENT SHATTER OR MASS LOSS 

C 

C     NO FRAGMENT RICOCHET 

C                                                                        

C     RHOF  , R*4,      - A VALUE WHICH IS THE SPECIFIC WEIGHT OF A     

C                         FRAGMENT.                                      

C                                                                        

C     SIGF  , R*4,      - A VALUE WHICH IS THE ULTIMATE STRENGTH OF A   

C                         FRAGMENT. (TENSILE STRENGTH)                   

C                                                                        

C     VV    , R*4,      - A VALUE WHICH IS THE VELOCITY OF AN IMPACTOR  

C                         VV = V                                    

 

CLAG 

C  Subroutine arguments: 

C  INTEGER  FrID       input: fragment index 

C  INTEGER  TgtMat     input: impacted component material index 

C  REAL     RHOt       input: target component specific weight (grains/in**2) 

**check units** 

C  REAL     TlEq       input: equivalent LOS of component (TlEq solids; Tl 

fluids) 

C  REAL     WT         input: fragment weight at impact (assumes no mass loss) 

C  REAL     RlFrag     input: fragment presented area perimeter length 

C  REAL     V          input: fragment velocity at impact 

C  REAL     AreaP      input: fragment presented area 

C  REAL     WR         output: fragment residual weight (= WT, assumes no mass 

loss) 

C  REAL     V50        output: fragment V50 (penetration cutoff limiting 

velocity) 

C  REAL     Vr         output: fragment residual velocity 

C 

C  Local variables: 

C  INTEGER  KF         local: material type index for fragment material 

C  REAL     RHOF       local: fragment specific weight (grains/in**2) 

C  REAL     SIGF       local: fragment ultimate strength aka tensile strength 

(grains/in**2) 

C  REAL     VV         local: fragment velocity at impact (ft/sec) 
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C  REAL     rmkg       local: fragment mass (converted from grains/in**2 to 

kg/cc) 

C  REAL     Tm         local: equivalent LOS thru component (converted from 

inches to meters) 

C  REAL     rmGd       local: shear constant for component material (converted 

from psi to kPa) 

C  REAL     rmL        local: fragment presented area perimeter length 

(converted from inches to meters) 

C  REAL     V50m       local: FAA computed V50 value (in meters per second) 

C  REAL     Q4         local: Computed factor for residual velocity (English 

units) 

 

      IMPLICIT NONE 

 

      INCLUDE 'parm.inc' 

 

      COMMON /EXTBPF/ IEXTBP, WFRAG, VFRAG, MTFRAG, RLDFRG, 

     &                APFRAG, RLFRAG 

      COMMON /MATL1F/ BHN(MXMT), RHO(MXMT), SIGY(MXMT), 

     &                SIGU(MXMT), TAUS(MXMT), DYNSHR(MXMT) 

      COMMON /THRT2F/ DIA(MAXWGT,4), LSHAPE(MAXWGT), FL(MAXWGT), 

     &                LF(MAXWGT) 

 

CLAG  TYPE DECL FOR LABELED COMMON VARS 

      INTEGER  IEXTBP, MTFRAG 

      INTEGER  LF, LSHAPE 

      REAL     WFRAG, VFRAG, RLDFRG, APFRAG, RLFRAG 

      REAL     BHN, RHO, SIGY, SIGU, TAUS, DYNSHR 

      REAL     DIA, FL 

 

CLAG  LOCAL VAR DECLARATIONS 

      INTEGER  KF, NRIC, N 

      REAL     VV, RHOF, SIGF, AP 

      REAL     rmkg, Tm, rmGd, RmL, V50m, Q4 

 

CLAG  SUBROUTINE ARGUMENT DECLARATIONS 

      INTEGER  FrID, TgtMat 

      REAL     RHOt, TlEq, WT, V, AreaP, WR, V50, Vr 

                                                                   

C ************************************************                           

C  Initialize variables used for penetration 

C ************************************************ 

C 

      VV = V                                                             

      WR = WT 

      KF = LF(FrID) 

      RHOF = RHO(KF)                                                     

      SIGF = SIGU(KF)                                                    

CLAG ADDED FROM UEDDAM                                     

      AP   = APFRAG 

      AREAP= AP 

CLAG  END CHANGE 

 

C ************************************* 

C  Calculate the Ballistic Limit (V50) 

CLAG  USING FAA EQUATION 

C ************************************* 

CLAG 

CLAG  Reference 1977 FAA RD-77-44 

CLAG 

CLAG  L = Fragment presented area perimeter (meters) 

CLAG  Cs = Target shear constant (Pascals) 

CLAG  t = Target thickness (meters) 

CLAG  m = Fragment mass (kilograms) 

CLAG  theta = Angle of obliquity of the fragment impact (degrees) 

CLAG 

CLAG  V50 = sqrt( (2. * L * Cs * t**2) / (m * (cos(theta))**2) ) 

CLAG 

CLAG  **** NOTE FOR UEDDAM USE ONLY, NOT ADDRESSING COMBINED PLATES **** 

CLAG 

CLAG  Factors used in unit conversion: 
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CLAG       7000 grains/pound, 2.205 pounds/kilogram, 39.37 inches/meter, 

CLAG       6894.757 Pascals/psi, 3.281 feet/meter 

 

      rmkg = WT / 7000. / 2.205 

      Tm =  TlEq / 39.37 

      rmGd = DYNSHR(TgtMat) * 6894.757 

      rmL = RLFRAG / 39.37 

      V50m = SQRT(2. * rmL * rmGd * Tm**2. / rmkg)  

      V50 = V50m * 3.281 

C 

C ************************************** 

C  ricochet handling - NO RICOCHET 

C ************************************** 

C 

CLAG  Access to these vars commented out 

CLAG  Assume not really used since just stats to echo 

      IF ( VV .LE. V50 )  THEN                                           

CLAG  Assume NRIC, N not really used since no ricochet & only stats echo 

CLAG  but vars/common commented out so might have garbage values... 

        NRIC = N                                                      

CLAG 

        VR = 0.0                                                      

        RETURN                                                   

      END IF                                                        

 

C ********************************** 

C Penetration handling - calc residual vel 

C ********************************** 

C                                                                        

C     PENETRATION HANDBOOK - EQUATION NUMBER 57                          

C 

C  Q4 = p * Ap * T / W * (cosine theta) 

C                                                                        

      Q4 = RHOt * AP * TlEq / WT 

C                                                                        

C     PENETRATION HANDBOOK - EQUATION NUMBER 56                          

C                                                                        

C    Vr = SQRT((V **2) - (V50 **2)) / (1 + Q4) 

C 

      VR = SQRT (VV ** 2 - V50 ** 2) / (1. + Q4)                         

C 

      RETURN                                                             

CFRG                                                                     

CFRG  ALL FRAGMENT ROUTINES                                              

C                                                                        

      END                                                                
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This appendix contains excerpts from FASTGEN 6.1:  Target Description Document and 

is intended to aid the user in developing the aircraft geometric target description.  These 

excerpts are only for the data that is necessary to run UEDDAM. 

 

 

GENERAL DESCRIPTION 

 

INTRODUCTION 

 

Prediction of damage to a target caused by ballistic impact of projectiles has been an 

important long time goal of military analysts.  A number of analytical procedures and 

target description techniques have evolved.  One widely accepted approach to 

vulnerability analysis is the shotline method.  This method involves projecting a number 

of parallel rays through the target from a specified direction and describing the 

encounters along each ray.  The result is a sequential list of components, subsets of the 

target, which are encountered by a shotline. 

 

Fast Shotline Generator (FASTGEN) traces the path of a projectile’s shotline through a 

target.  The target is composed of objects called components.  These components are 

modeled by generating a three-dimensional target database.  The set of components 

encountered along a shotline is arranged in the order of encounter.  This sequenced list of 

components along a shotline is called a line of sight (LOS). 

 

With the release of FASTGEN 6, the target handling, ray generation and ray tracing 

features of the code were modularized in order to integrate with COVART6.  The ray 

tracing functionality of FASTGEN 6 is a library (*.dll or *.so) called by COVART, with 

the other functions being integrated into COVART6.  In spite of this significant change in 

the structure of the code, the FASTGEN target format remains unchanged from 

FASTGEN 5, and with the exception of some deprecated elements, FASTGEN 4 as well. 

 

This document describes the data and format for creating a target file for use by 

FASTGEN.  

 

Items in italicized blue text refer to deprecated features, that is, features supported in the 

current version of the software, but will be removed in future versions of the software and 

as such their use is discouraged.  Items in italicized bold text are important FASTGEN 

requirements that the user must heed in order to produce correct and reliable results using 

FASTGEN and/or COVART. 

 

 

TARGET CONSTRUCTION OVERVIEW 

 

INTRODUCTION 

 

System-level ballistic vulnerability analyses require a user-defined representation of the 

target model.  All software in this category uses the concept of ray tracing to model the 
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interaction between the threat and the target.  The purpose of this manual is to provide an 

easy-to-use resource for the FASTGEN target model builder. 

 

 

COVART6 TERMINOLOGY 

 

With the release of COVART6, there is new terminology that is important for the 

FASTGEN model builder to understand.  With integration of ray tracing into COVART6, 

it is no longer necessary to run FASTGEN separately before running COVART since 

COVART6 performs ray tracing as shotline or ray intersection data is required.  When 

running COVART6 in this integrated mode, a MASTER file is created and used in place 

of the COVART BASIC file that describes the type of analysis to perform (e.g., gridded 

HE threat, single HE threat, gridded KE threat, etc.).  When running COVART6 in this 

integrated mode, the FASTGEN target file simply becomes another input file to 

COVART specified in the MASTER file.  The FASTGEN output files that were formerly 

generated as input to COVART are no longer required and are not generated when 

running in integrated mode. 

 

To maintain backward compatibility with existing FASTGEN and COVART 5 files, 

COVART6 can also be run in a legacy FASTGEN or legacy COVART mode.  In legacy 

FASTGEN mode, the MASTER file simply identifies the mode (FASTGEN) and 

indicates the name of the FASTGEN target file.  The FASTGEN portion of the code is 

run to ray trace the target and FASTGEN output files are generated for use in a 

subsequent COVART legacy run. 

 

In legacy COVART mode, the MASTER file identifies the mode (COVART5) and points 

to the COVART BASIC file.  All other FASTGEN output and COVART input files are 

used as needed in COVART6 legacy mode just as they were used in the 

FASTGEN/COVART5 data processing flow. 

 

 

TARGET CONSTRUCTION PROCESS 

 

A failure modes, effects, and criticality analysis (FMECA) should be accomplished prior 

to preparing a FASTGEN target description. A FMECA is a multidisciplinary (reliability, 

maintainability, safety, survivability, etc.) system design evaluation procedure.  The 

FMECA in itself does not determine the vulnerability characteristics of a target.  The 

FMECA should be used as source data to determine which components are included in a 

FASTGEN target description. 

 

Given a list of components determined by the FMECA, the geometric shape of each 

component is digitized by developing a three-dimensional target database.  The target 

database can be at any level of resolution consistent with FASTGEN constraints.  

Components of the target database should be larger than the several sub-grids, and 

elements of components should be larger than the sub-grid.  The target database includes 

all flight and mission critical components of the operationally configured target.  It also 
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includes all components which effectively degrade the ability of a threat effect to cause 

damage/failure (i.e. providing shielding).  All target surfaces (skin and transparencies) are 

also modeled in detail because they provide some degree of shielding or masking of other 

components. 

 

A FASTGEN target database is based on the paradigm that target surfaces can be 

approximated by a series of adjacent lines, triangles, quadrilaterals, cones, cylinders, 

spheres, and hexahedrons.  This database preparation process is intricate and must be 

accomplished according to inherent FASTGEN logical requirements and limitations. 

 

The source data for the geometric database may be obtained in several forms:  

engineering drawings, CAD/CAM database, NASTRAN internal loads model for 

structural data, and other digitized data.  Using digitized source data greatly reduces the 

database generation task, but not the debugging and error correction.  The use of non-

FASTGEN based data increases the time required to finalize the target description. 

 

 

Target Coordinate System 
 

The FASTGEN model builder constructs a target in the target spatial coordinate system.  

The origin of this Cartesian coordinate system is typically defined to be the target’s 

center of gravity.  However, the origin may be placed at the most forward point (i.e. nose) 

of the target or the target’s geometric center.  Referring to Figure B-1, the positive x-axis 

is oriented forward along the aircraft’s centerline.  The positive y-axis is oriented along 

the aircraft’s left wing (as viewed by the pilot).  The positive z-axis is oriented out the top 

of the aircraft, completing the right-handed coordinate system. 

 

This target orientation is required for any ballistic vulnerability analysis performed 

using FASTGEN and COVART.  Shot line processing algorithms and other 

computations inside FASTGEN and COVART expect this orientation.  Any other 

orientation adopted by the user will produce incorrect analysis results. 

 

 
Figure B-1.  FASTGEN’s Target Spatial Coordinate System. 
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Plate Mode and Volume Mode Components 

 

FASTGEN accommodates two distinct types of geometric components, plate mode and 

volume.  Plate mode components have extents specified by coordinates in two 

dimensions and a constant thickness in the third dimension.  Volume mode components, 

on the other hand, are three dimensional in that they are defined in space by a collection 

of primitives, each having extents defined by coordinates in three dimensions.  However, 

volume mode components have no explicitly defined thicknesses.  The volume mode 

component thickness is defined by virtue of the volume enclosed by the elements 

comprising the component. 

 

 

Geometric Overlaps or Interferences 

 

As stated above, plate mode components are two dimensional with normal thicknesses 

and implied Line-of-Sight (LOS) thicknesses that are dependent upon shotline angles.  

Furthermore, the thicknesses of volume mode components are not explicitly defined so 

the FASTGEN model building task can sometimes be overwhelming to the inexperienced 

user.  The various plate and volume mode components can overlap and interfere, often 

with unanticipated and unintended consequences to the vulnerability analysis. 

 

 

TARGET DATABASE ORGANIZATION 

 

FASTGEN assumes that components are spatially compact (i.e. the absolute 

differences between the coordinate minimums and maximums are small in size) and 

contiguous.  Keeping components small in size decreases the number of times the 

elements in a component must be compared to shot line locations and a component that is 

non-contiguous or physically separated may produce unpredictable or invalid results 

within COVART.  Versions of FASTGEN prior to FASTGEN4 enforced this approach 

by requiring order dependent data.  The FASTGEN4 format assumes the user will build 

the component in a compact form.  Non-spatially compact components will increase the 

execution time of FASTGEN. 

 

The CBULK file records are specified using fixed format lines containing ten fields with 

eight columns per field.  Each field contains an input variable that is a real (R),  

integer (I), or character (C) data type.  The first field in the first line of a record contains a 

character variable that identifies the record, and must be left justified.  Some records 

require two lines to hold all the information.  These records use the tenth column of the 

first line and the first column of the second line as continuation variables.  The 

continuation variables in field ten and one must match in value and digit location.  All 

other input variables will be either real, character, or integer variables, and must fall 

within the required field. 

 

Input records that may appear in the target description file are VEHICLE, HOLE, 

WALL, SECTION, $COMMENT, $NAME, GRID, CBACKING, CBAR, CLINE, 
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CHEX1, CHEX2, CTRI, CQUAD, CCONE1, CCONE2, CCONE3, CSPHERE, 

COMPSPLT, CHGCOMP, SHIELD, and ENDDATA records. 

 

All COMPSPLT, CBACKING, CHGCOMP, SHIELD, HOLE and WALL records 

should precede the first SECTION record.  Each component starts with a SECTION 

record.  GRID records must follow the SECTION record.  The element records CBAR, 

CLINE, CHEX1, CHEX2, CTRI, CQUAD, CCONE1, CCONE2, CCONE3, and 

CSPHERE must follow GRID records. 

 

Most graphics packages require unique grid point and element identification numbers 

throughout the bulk data file.  FASTGEN only requires unique grid point and element 

identification numbers within a component.  It is recommended that unique identification 

numbers be used throughout the bulk data file.  $COMMENT and $NAME records may 

be placed anywhere in the bulk data file.  The ENDDATA record may only be used 

once.  Any data following the ENDDATA record will be ignored. 

 

 

FASTGEN and NASTRAN 

 

The FASTGEN bulk data file is derived from FASTGEN and NASTRAN input 

formatting requirements.  Structural analysts have used NASTRAN since the early 1970s.  

NASTRAN input format is highly structured and flexible.  This flexibility is difficult to 

support.  FASTGEN is structured around the NASTRAN format, but several differences 

exist.  A cross-reference of FASTGEN and NASTRAN elements is shown in Table B-1. 

 

Table B-1.  FASTGEN vs. NASTRAN Format 
FASTGEN Record NASTRAN Record 

GRID GRID 

CBAR CBAR 

CLINE CROD, CBAR, CBEAM 

CTRI CTRIA1, CTRIA2, CTRIA4 

CQUAD CQUAD1, CQUAD2, CQUAD4 

CCONE1 None 

CCONE2 None 

CCONE3 None 

CSPHERE None 

CHEX1 CHEXA1 

CHEX2 CHEXA1 

 

 

The basic difference between FASTGEN and finite element models (FEM), such as 

NASTRAN, is that FEM requires each structural element to be connected to another 

structural element, while FASTGEN does not permit connectivity between groups and/or 

components. 
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TARGET DATABASE KEYWORDS 

 

This section provides a brief overview of the keywords available to the FASTGEN 

database developer during the target construction phase.  

 

The FASTGEN database defines a target composed of complex geometric objects.  These 

objects are modeled with a series of grid points and simple primitives called elements in 

three-dimensional space.  Objects are defined by the user within global regions called 

groups and localized regions called components.  Each component must be initialized by 

the user with a SECTION record. 

 

SECTION Defines the beginning of a new component 

 

A FASTGEN database has hierarchical, relational, and object-oriented features.  Objects 

used to construct a FASTGEN target are classified as a group, a component, or a 

primitive.  A group identification number defines a general class of components.  A 

component identification number defines a specific object.  Element identification 

numbers are used to define portions of a specific component.  Grid point primitives are 

used to establish the location of each element in three-dimensional space.  An example of 

this classification is an engine control unit panel.  The engine is in the power plant group, 

the control unit is a component in the power plant group, and the panel is an element in 

the control unit component. 

 

Grid point primitives are the basis of constructing elements; a Cartesian coordinate 

system is used. 

 

GRID Defines the X, Y, and Z coordinates of a geometric point in Cartesian 

space 

 

Elements define the surfaces of an object.  Elements are defined by connecting a series of 

grid points.  Supported elements in FASTGEN6 are: 

 

CCONE2 Defines a thick wall cone/cylinder shaped element 

CELBOW Defines a torus segment used to join two CLINE or CCONE elements 

CHEX1 Defines a thin wall hexahedron shaped element 

CHEX2 Defines a solid hexahedron shaped element 

CLINE Defines a line-shaped element 

CQUAD Defines a quadrilateral-shaped element 

CSPHERE Defines a sphere-shaped object 

CTRI Defines a triangular-shaped object 

 

As FASTGEN has evolved, it is natural that primitives that receive minimal use or are 

difficult to use will be phased out over time.  The following primitives are still supported 

in FASTGEN6, but the user is strongly discouraged from using these elements to 

construct new target database files.  The continued existence of these primitives supports 
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assessments of legacy targets that would require significant resources to update the target 

model. 

 

CBAR Defines a reinforcing member typically associated with a structural 

component.  Use of this element is discouraged. 

CCONE1 Defines a thin wall cone/cylinder shaped element.  Use of this element is 

discouraged. 

CCONE3 Defines a compound thick wall cone/cylinder shaped element.  Use of this 

element is discouraged. 

 

As discussed previously, components may be modeled in plate more or volume mode.  

The concept of an interference, or geometric overlap, was also discussed previously.  A 

user-defined interference is an intentional intersection of a volume mode component with 

another component to introduce target model simplifications, such as a hydraulic line 

running through a fluid volume.  Typically, FASTGEN will identify all geometric 

overlaps and output this information to its output files.  The WALL record is a keyword 

at the disposal of the user to suppress generation of an intentional interference.  All 

WALL records must precede the first SECTION record in the target database.  WALL 

records do not alter the LOS generated by the FASTGEN ray tracer, they merely 

suppress the generation of warnings regarding the interference of two components. 

 

WALL Defines the intersection of two or more components. 

 

It is important for the user to distinguish between intentional and unintentional 

interferences, which are often produced by the CAD to FASTGEN geometry conversion 

process, or from other user modeling errors. 

 

Volume subtraction is accomplished by defining a HOLE record associated with a 

volume mode component.  All HOLE records must precede the first SECTION record in 

the target database. 

 

HOLE Defines a hole within a surrounding volume.  Subtracts a volume or plate 

from the outer volume. 

 

For HOLE records, the surrounding component must be in volume mode, but the 

interfering components may be in either plate or volume mode.  A typical example of a 

surrounding volume is a fuel tank.  This tank could have bulkheads modeled as plates. 

The bulkhead component identification number would be identified on a WALL record.  

A large channel in this tank could be modeled using volume subtraction.  The channel 

component identification number would be identified on a HOLE record. 

 

In many cases, fuel tanks will be partially full at fuel levels specified for vulnerability 

assessments.  Therefore, a fuel tank contains both fuel and ullage.  A convenient method 

to model the ullage in the fuel tank is available through the use of the COMPSPLT 

record, which defines the fuel/ullage boundary inside the fuel tank. 
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COMPSPLT Defines the fuel level within a fuel tank. 

 

All COMPSPLT records must precede the first SECTION record in the target 

database. 

 

The CHGCOMP feature allows the user to alter the shot line trace history (LOS file) 

without explicitly changing the target description. It is up to the user to decide if the use 

of CHGCOMP is appropriate for their specific analysis. 

 

CHGCOMP Modify the trace history of a shot line without changing the target 

description. 

 

Internal documentation within the FASTGEN database is strongly encouraged.  

Documenting the database as it is being constructed greatly improves its maintainability.  

One or more $COMMENT records should be used by the user to describe each 

component being modeled.  The use of $COMMENT records in the target file is optional. 

 

$COMMENT User-defined comments 

 

The $NAME record is a mechanism that allows the user to associate information with 

specific components.  The $NAME record is used by some target geometry viewers to 

allow display of the associated component information within the viewer. $NAME 

records should contain a group and component identification number.  The contents of a 

$NAME record are usually application and target dependent.  The use of $NAME records 

in the target file is optional. 

 

$NAME Defines analysis specific information for a modeled aircraft component 

 

The name of the target description is defined with the VEHICLE record, but only plays a 

role if COVART6 is executed in FASTGEN legacy mode.  The use of the VEHICLE 

record in the target file is optional. 

 

VEHICLE Defines the vehicle code 

 

The SHIELD record can be placed in the target file by the user to define a component or 

range of components that act as a blast shield.  Since air blast can be a significant damage 

mechanism, extreme caution should be exercised if this record is placed in the target 

database file. 

 

SHIELD Defines a component or range of components that act as a blast shield. 

 

The table below is provided as an example, showing the general structure and order 

dependencies of the records in a FASTGEN target file. 
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VEHICLE  

$COMMENT Optional.  May appear anywhere in the target file. 

HOLE Optional.  Must appear before first SECTION record. 

…  

WALL Optional.  Must appear before first SECTION record. 

…  

CHGCOMP Optional.  May appear anywhere in the target file. 

…  

COMPSPLT Optional.  Must appear before first SECTION record. 

…  

$NAME Optional. 

$COMMENT Optional.  May appear anywhere in the target file. 

SECTION Required.  Must appear before GRID and element records 

for a given component. 

 GRID Required.  Must occur after SECTION record and before 

element records for a given component. 

 …  

 Elements Required.  Examples include CTRI, CQUAD, CLINE, etc.  

Must occur after GRID records for a given component. 

 …  

$NAME Optional. 

$COMMENT Optional.  May appear anywhere in the target file. 

SECTION Required.  Must appear before GRID and element records 

for a given component. 

 GRID Required.  Must occur after SECTION record and before 

element records for a given component. 

 …  

 Elements Required.  Examples include CTRI, CQUAD, CLINE, etc.  

Must occur after GRID records for a given component. 

 …  

ENDDATA Required.  Must be the last record in the target file. 

 

 

TARGET MODELING LIMITATIONS 

 

Internal FASTGEN array sizes limit a single target description to 50 groups per target 

description and 999 components per group.  In contrast to past versions of FASTGEN, 

there are no explicit limits on the number of grid points or elements per component.  

FASTGEN uses dynamic array allocation to reserve required space as needed.  There are 

implicit limits that exist because of the eight-character field width characteristic of 

FASTGEN and COVART database files.  It is possible to alter FASTGEN parameter 

statements in the source code to increase these static array sizes, but the new user is 

strongly discouraged from doing so.  Unguided changes to these parameters may cause 

FASTGEN to produce inconsistent results. 
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TARGET INPUT RECORDS 

 

INTRODUCTION 

 

This section provides a detailed description of each target input file record available to 

the FASTGEN target model builder.  Input record names are listed in alphabetical order 

to make it easier for the model builder to find record names in an efficient manner. 

 

In FASTGEN prior to version 6.0, the target file was required to be named CBULK.  In 

FASTGEN6 the names of the ASCII and binary (voxelized) target are user defined and 

input on the COVART6 MASTER file. 
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INPUT DATA RECORD:  CBACKING 

 

Description:  Defines backing component occurrence. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CBACKING igrp1 icmp1 igrp2 icmp2 rbptn rbppo ibmpt   

CBACKING 0 123 7 123 0.25 0.3 8   

C I I I I R R I   

 

Parameters: Units:  Description: 

igroup1 ------  Group number of a component in the bulk file. 

icmp1  ------  Component number of a component in the bulk file. 

igroup2 ------  Group number of the backing component (not in the bulk 

file). 

icmp2  ------  Component number of the backing component (not in the 

bulk file). 

rbptn  Inches  Normal thickness of the backing component. 

rbppo  ------  Probability of occurrence of the backing component. 

ibmpt  ------  Material type of the backing component. 

 

REMARKS: 

 

1. Used under special circumstances where the effects of increasing modeling fidelity is 

desired without spending the resources in explicitly modeling the additional 

components. 
 

2. Use only in conjunction with plate mode components. 
 

3. Randomly inserts a component behind a known component to capture the effect of a 

non-uniformly placed component. 
 

4. Intended to be used with older target descriptions. 
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INPUT DATA RECORD:  CBAR 

 

Description:  Defines a reinforcing member element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CBAR eid mid g1 g2 igra icoa th r1  

CBAR 55 14 991 992 1 099 0.04 3.0  

C I I I I I I R R  

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1, g2    Grid point identification numbers (g1 and g2>0, no 

repeated grid identification numbers). 

igra    Optional.  Group number for component that element is 

associated with.  See Remark 4.  This is not the same as the 

component this element is part of. 

icoa    Optional.  Component number for component that element 

is associated with.  See Remark 4.  This is not the same as 

the component this element is part of. 

th  Inches  Normal thickness (th>0.0, and th<=r1).  Bar elements 

should be used in plate mode only. 

r1  Inches  Half-width (r1>0.0). 

 

REMARKS: 

 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 

2. The maximum difference between the highest and lowest element identification 

number is parameter ILOS within a component.  ILOS elements are allowed within 

a component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual.  This element counts as one element. 

3. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 
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4. This element is intended to provide an approximate model of reinforcing members 

that may require much effort to treat exactly.  Common cross sectional shapes for 

reinforcing members include L, U, T, and hat.   

5. The input width determines the intersection, using the influence mode computation 

in the same way the CLINE intersections are modeled.  LOS thickness is determined 

using the normal thickness and the obliquity of the adjacent component.  The 

optional input of the associated component affects the exact modeling of the 

intersection with the bar.  If the associated component is not specified, and the 

computed intersection is within one grid spacing of one of the adjacent components 

on the shotline, that intersection is moved to be contiguous with the adjacent 

component and given the same obliquity as the adjacent component.  If the 

associated component is specified and one of the adjacent components on the 

shotline is the associated component, then the same procedure is used, with the bar 

placed contiguous to the associated component.  If no associated component is 

specified and the bar is not near any component, or if the associated component is 

specified, but neither of the adjacent components on the shotline are the associated 

component, then the intersection computed using the CLINE technique is used.  In 

any case, if the computed intersection places the bar component within a volume 

mode component, the bar will be moved to a location outside the volume mode 

component.  Also, if possible, a bar component will not be placed as the first or last 

component on a shotline.  If there is a plate mode component adjacent to a bar at 

the beginning or end of a shotline, the components will be moved so the plate mode 

component (typically aircraft skin) is on the outside. 
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INPUT DATA RECORD:  CCONE1 

 

Description:  Defines a thin wall cone/cylinder shaped element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CCONE1 eid mid g1 g2   th r1 c1 

CCONE1 55 14 981 982   3.0 8.0 55 

C I I I I   R R C 

 

1 2 3 4 5 6 7 8 9 10 

c2 r2 end1 end2       

55 6.5 2 1       

C R I I       

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1, g2    Grid point identification numbers (g1 and g2>0, no 

repeated grid identification numbers). 

th  Inches  Normal wall thickness (th>0.0). 

r1, r2  Inches  Radius at g1 and g2 (r1 and r2>=0.). 

c1, c2    Continuation record flag c1 must equal the value and 

position (left justified) of c2.  This flag allows the user to 

locate misplaced continuation records.  Normally, c1 and 

c2 equal eid. 

end1, end2   End plate closure condition at g1 and g2; 

     1 = open (if radius=0., end is open) [DEFAULT] 

     2 = closed. 

 

REMARKS: 

 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 
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2. The maximum difference between the highest and lowest element identification 

number is parameter ILOS within a component.  ILOS elements are allowed within a 

component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual.  This element counts as one element. 
 

3. The thickness is assumed to be small, i.e., less than 2 inches.  An element thicker than 

2 inches should be modeled with a CCONE2 element. 
 

4. Continuation record must follow parent. 
 

5. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 
 

6. The normal wall thickness is measured perpendicular from the cone wall, which in 

general, is not parallel to the cone’s radial direction.  For a cylinder, the normal wall 

thickness and the wall height are equal.  For a cone, the normal wall thickness and the 

wall height are different.  See Figure B-2 for a more descriptive illustration. 

 

 
Figure B-2.  CCONE1 

 

 

7. End plate thickness is equal to the normal wall thickness.  For very small cone 

lengths, the end plate thickness is set equal to the cone length if one end plate is 

specified, or set equal to the half the cone length if both end plates are active. 
 

8. Special care should be taken when multiple CCONE1 elements are used in sequence 

to construct a complex object to insure that the cone ends match up correctly and that 

interferences are not generated. 
 

9. When building complex objects without end plates, use of the CCONE2 element is 

recommended. 
 

10. Figure B-3 is a schematic of a complex object composed of 3 CCONE1 elements.  

The first two elements (A and C) are identical with specified outer radii and thickness 

ta.  Element B is a transition CCONE1 element between A and C.  The normal wall 
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thickness for element B (tb) is different from the thickness of elements A and C.  Each 

of these thicknesses is designated with red arrows. 

 

 
Figure B-3.  CCONE1 Normal Wall Thicknesses 
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INPUT DATA RECORD:  CCONE2 

 

Description:  Defines a thick wall cone/cylinder shaped element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CCONE2 eid mid g1 g2    ro1 c1 

CCONE2 55 14 981 982    5.0 55 

C I I I I    R C 

 

1 2 3 4 5 6 7 8 9 10 

c2 ro2 ri1 r12       

55 10.0 3.0 7.0       

C R R R       

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1,g2    Grid point identification numbers (g1 and g2>0, no 

repeated grid identification numbers). 

ro1,ro2  Inches  Outer normal radius at g1 and g2  (ro1 and ro2>=0.0). 

ri1,ri2  Inches  Inner normal radius at g1 and g2  (ri1 and ri2>=0.0). 

c1,c2    Continuation record flag c1 must equal the value and 

position (left justified) of c2.  This flag allows the user to 

locate misplaced continuation records.  Normally, c1 and 

c2 equal eid. 

 

REMARKS: 

 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 
 

2. The maximum difference between the highest and lowest element identification 

number is parameter ILOS within a component.  ILOS elements are allowed within a 

component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual.  This element counts as one element. 
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3. Continuation record must follow parent. 
 

4. The CCONE2 elements may only be used in volume mode components. 
 

5. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 

 

 
Figure B-4.  CCONE2 
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INPUT DATA RECORD:  CCONE3 
 

Description:  Defines a compound thick wall cone/cylinder shaped element. 
 

Format, Example, and Data Type: 
 

1 2 3 4 5 6 7 8 9 10 

CCONE3 eid mid g1 g2 g3 g4   c1 

CCONE3 55 14 981 982 983 984   55 

C I I I I I I   C 

 

1 2 3 4 5 6 7 8 9 10 

c2 ro1 ro2 ro3 ro4 ri1 ri2 ri3 ri4  

55 10.0 3.0 7.0 8.0 5.0 2.0 3.0 4.0  

C R R R R R R R R  

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1, g2, g3, g4   Grid point identification numbers (g1, g2, g3, and g4>0, no 

repeated grid identification numbers). 

ro1, ro2, Inches  Outer normal radius at g1, g2, g3, g4 (ro1, ro2, ro3, and 

ro3, ro4   ro4>=0.0) 

ri1, ri2, Inches  Inner normal radius at g1, g2, g3, g4 (ri1, ri2, ri3, and 

ri3, ri4    ri4>=0.0) 

c1, c2    Continuation record flag c1 must equal the value and 

position (left justified) of c2.  This flag allows the user to 

locate misplaced continuation records.  Normally, c1 and 

c2 equal eid. 
 

REMARKS: 
 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 
 

2. The maximum difference between the highest and lowest element identification 

number is parameter ILOS within a component. ILOS elements are allowed within a 

component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual.  This element counts as one element. 
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3. Continuation record must follow parent. 
 

4. The CCONE3 element may only be used in volume mode components. 
 

5. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 
 

6. The CCONE3 element is treated internally as 3 CCONE2 type elements. 
 

7. It is recommended that the grids be input so that points 1 and 4 represent the ends 

and points 2 and 3 are sequential between them.  If this is not done, FASTGEN will 

reorder the points and associated radii so that this is the case, and it will be more 

difficult for the user to understand the target description.  The discussion in the 

following Remarks assumes that the grid pointss are ordered in this way. 
 

8. Points 1 and 2 may coincide and points 3 and 4 may coincide.  Points 2 and 3 may 

coincide as long as points 1 and 4 are distinct.  A warning message is output if 3 of 

the 4 points coincide.    
 

9. It is not necessary to define all of ro1, ro2, ro3, ro4, ri1, ri2, ri3, and ri4.  At least one 

radius must be defined at points 1 and 4; if only one radius is defined, that radius is 

used for both the inner and outer radius at that end.  If ro2 is not defined, its value is 

interpolated between ro1 and ro3 or ro4 (ro4 is used if ro3 is not defined).  If ro3 is 

not defined, its value is interpolated between ro2 or ro1 (ro1 is used if ro2 is not 

defined) and ro4.  An analogous process is used if ri2 or ri3 is not defined.  If two 

points coincide, it doesn't matter which point a radius is assigned to.  For example, if 

points 2 and 3 coincide, ri2 and ro3 could be defined, or ro2 and ri3 could be 

defined; the result would be the same.  If different values are read in for the inner or 

outer radii at coincident grids, the result is undefined and no error is reported. 

 

 
Figure B-5.  CCONE3 Nomenclature 
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INPUT DATA RECORD:  CELBOW 

 

Description:  Defines a torus segment used to join two CLINE or CCONE elements. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CELBOW eid mid g1 g2 g3 g4 Th R1  

CELBOW 55 14 991 992 993 994 0.125 1.0  

C I I I I I I R R  

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1,g2, g3, g4   Grid point identification numbers (g1 through g4>0, no 

    repeated identification numbers). 

Th  Inches  Torus tube thickness (th≥0.0) 

R1  Inches  Torus tube radius 

 

 
Figure B-6.  CELBOW. 

 

REMARKS: 

 

1. CELBOW elements are volume mode elements. 
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2. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 
 

3. The maximum difference between the highest and lowest element identification 

number is parameter ILOS within a component.  ILOW elements are allowed within a 

component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual. 
 

4. Grid points g1 through g4 must be ordered such that g1 and g2 are the defining grid 

points of one of the CLINE/CCONE elements to be connected with a CELBOW and 

g3 and g4 are the defining grid points for the opposite CLINE/CCONE.  The torus 

segment will be constructed to connect g2 and g3. 
 

5. Grid points g1, g2, g3, and g4 must be co-planar or a gap will exist between the 

CELBOW and one of the CLINE/CCONE elements to be joined.  Furthermore, the 

space between the two CLINE/CCONE elements to be joined by the CELBOW must 

be symmetric (i.e., the intersection point of the CLINE/CCONE axes must be equi-

distant from each of the CELBOW endpoints, g2 and g3). 
 

6. If the CELBOW thickness, Th, is zero, the CELBOW is assumed to be a solid and to 

have closed ends.  If Th is greater than zero, the CELBOW is assumed to be open 

inside the wall thickness and have open ends.  For open CELBOW elements  

(Th > 0.0), the tube radius, R1 is the inside tube radius and R1 + Th is the outside 

tube radius. 
 

7. If the CLINE/CCONE elements to be connected are parallel, the CELBOW element 

will be a half-torus in which case G2, Gc, and G3 will be co-linear with the torus in the 

plane defined by G2, Gc, and G3. 
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INPUT DATA RECORD:  CHEX 1 

 

Description:  Defines a thin wall hexahedron shaped element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CHEX1 eid mid g1 g2 g3 g4 g5 g6 c1 

CHEX1 55 14 991 992 993 994 996 997 6 

C I I I I I I I I C 

 

1 2 3 4 5 6 7 8 9 10 

c2 g7 g8     th pos  

6 998 999     0.05 1  

C I I     R I  

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1,g2, g3, g4   Grid point identification numbers (g1 through g8>0, no 

g5, g6, g7, g8   repeated identification numbers). 

th  Inches  Normal thickness (th>0.0) 

pos    Grid point position relative to normal thickness. 

     1 = center 

     2 = front face [DEFAULT] 

c1,c2    Continuation record flag c1 must equal the value and 

position (left justified) of c2.  This flag allows the user to 

locate misplaced continuation records.  Normally, c1 and 

c2 equal eid. 

 

REMARKS: 

 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 
 

2. The maximum difference between the highest and lowest element identification 

number is parameter ILOS within a component.  ILOS elements are allowed within a 
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component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual.  This element counts as four elements. 
 

3. Grid points g1 through g8 must be ordered around the perimeter of the element.  The 

direction of order (clockwise or counterclockwise) is not specified.  Grid points g5 

through g8 must be ordered in the same direction as grid points g1 through g4. 
 

4. Continuation record must follow parent. 
 

5. The software divides a CHEX element into twelve triangles.  Grid points g1, g2, and 

g5 are used to define the first triangle, while g2, g6, and g5 are used for the second 

triangle and so on until each triangle is defined. 

 

Table B-2.  CHEX1 Triangles and Associated Grid Points 

Triangles Grid Identification Numbers 

1 g1 g2 g5 

2 g2 g6 g5 

3 g2 g3 g6 

4 g3 g7 g6 

5 g3 g4 g7 

6 g4 g8 g7 

7 g4 g1 g8 

8 g1 g5 g8 

9 g5 g7 g8 

10 g5 g6 g7 

11 g1 g2 g3 

12 g1 g3 g4 

 

 

6. When a shotline enters and exits the CHEX element no additional triangles are 

analyzed. 
 

7. If two or more points are positioned at the same location, the triangles will degenerate 

into a line or a point.  The CHEX element is sufficiently general to properly account 

for degenerated triangles. 
 

8. The center of an element is well defined.  The front face of an element is orientation 

dependent.  The front face option is supported to simplify the translation of 

FASTGEN 3 target descriptions into FASTGEN 4 target descriptions. 
 

9. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 
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Figure B-7.  CHEX1 
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INPUT DATA RECORD:  CHEX2 

 

Description:  Defines a solid hexahedron shaped element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CHEX2 eid mid g1 g2 g3 g4 g5 g6 c1 

CHEX2 55 14 991 992 993 994 996 997 6 

C I I I I I I I I C 

 

1 2 3 4 5 6 7 8 9 10 

c2 g7 g8        

6 998 999        

C I I        

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1,g2, g3, g4   Grid point identification numbers (g1 through g8>0, no 

g5, g6, g7, g8   repeated identification numbers). 

c1,c2    Continuation record flag c1 must equal the value and 

position (left justified) of c2.  This flag allows the user to 

locate misplaced continuation records.  Normally, c1 and 

c2 equal eid. 

REMARKS: 

 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 

2. The maximum difference between the highest and lowest element identification 

number is parameter ILOS within a component. ILOS elements are allowed within a 

component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual.  This element counts as four elements. 

3. Grid points g1 through g8 must be ordered around the perimeter of the element.  The 

direction of order (clockwise or counterclockwise) is not specified.  Grid points g5 

through g8 must be ordered in the same direction as grid points g1 through g4. 
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4. Continuation record must follow parent. 

5. The software divides a CHEX element into twelve triangles.  Grid points g1, g2, and 

g5 are used to define the first triangle, while g2, g6, and g5 are used for the second 

triangle and so on until each triangle is defined. 

 

Table B-3.  CHEX2 Triangles and Associated Grid Points 

Triangles Grid Identification Numbers 

1 g1 g2 g5 

2 g2 g6 g5 

3 g2 g3 g6 

4 g3 g7 g6 

5 g3 g4 g7 

6 g4 g8 g7 

7 g4 g1 g8 

8 g1 g5 g8 

9 g5 g7 g8 

10 g5 g6 g7 

11 g1 g2 g3 

12 g1 g3 g4 

 

6. The CHEX2 element may only be used in volume mode components. 

7. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 

 

 
Figure B-8.  CHEX2 
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INPUT DATA RECORD:  CLINE 

 

Description:  Defines a line (rod) shaped element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CLINE eid mid g1 g2   th r1  

CLINE 55 14 991 992   0.04 3.0  

C I I I I   R R  

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1, g2    Grid point identification numbers (g1 and g2>0, no 

repeated grid identification numbers). 

th  Inches  Normal thickness (th>=0.0 and th<=r1).  If th equals 0.0, 

then the element must be in a volume mode component.s 

r1  Inches  Normal radius (r1>0.0) 

 

REMARKS: 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 

2. The maximum difference between the highest and lowest element identification 

number is parameter ILOS within a component.  ILOS elements are allowed within a 

component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual.  This element counts as one element. 

3. The radius is assumed to be small, i.e., less than 2 inches. 

4. The zero thickness volume mode option is supported to simplify the translation of 

FASTGEN 3 target descriptions into FASTGEN 4 target descriptions.  New models 

should use volume mode components when modeling solid CLINE elements.   

5. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 
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Figure B-9.  CLINE Geometry Definitions 
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INPUT DATA RECORD:  COMPSPLT 

 

Description: Defines a component to be split by a plane perpendicular to the z-axis. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

COMPSPLT gr co gr1 col z     

COMPSPLT 4 105 4 205 7.5     

C I I I I R     

 

Parameters: Units:  Description: 

gr    Group number of the component in the target description 

that is to be split. 

co    Component identification number of the component in the 

target description that is to be split. 

gr1    Group number of the new component (upper part). 

co1    Component number of the new component (upper part). 

z  Inches  The z-coordinate of the plane which splits the component 

into two parts.  This plane is parallel to the x-y plane in the 

target coordinate system. 

 

REMARKS: 

1. This record is read in with HOLE and WALL records in the CBULK file. 

2. This input is intended to allow easy separation of an entire fuel tank into a fuel region 

and an ullage region with separate component numbers. 
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INPUT DATA RECORD:  CQUAD 

 

Description:  Defines a quadrilateral shaped element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CQUAD eid mid g1 g2 g3 g4 th pos  

CQUAD 55 14 991 992 993 994 0.04 1  

C I I I I I I R I  

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1, g2, g3, g4   Grid point identification numbers (g1 through g4>0, no 

repeated grid identification numbers). 

th  Inches  Normal thickness (th>0.0).   

pos    Grid point position relative to normal thickness. 

 1 = center 

 2 = front face [DEFAULT] 

 

REMARKS: 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 

2. The maximum difference between the highest and lowest element identification 

number is the parameter ILOS within a component.  ILOS elements are allowed 

within a component.  The FORTRAN parameter, ILOS, is further explained in the 

Software Size Limits section of this manual.  This element counts as one element. 

3. Grid points g1 through g4 must be ordered around the perimeter of the element. The 

direction of order (clockwise or counterclockwise) is not specified. 

4. FASTGEN divides a CQUAD element into two triangle elements.  Grid points g1, 

g2, and g3 are used for the first triangle element, while g1, g3, and g4 are used for 

the second triangle element. 
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Table B-4.  CQUAD Triangles and Associated Grid Points 

Triangles Grid Identification Numbers 

1 g1 g2 g5 

2 g1 g3 g4 

 

5. If two or more points are positioned at the same location the triangles will 

degenerate to a line or a point.  The CQUAD element is omitted when the element 

degenerates to a line or a point.  Any CQUAD element with a thickness greater than 

2 inches should be modeled with a CHEX2 element. 

6. The CQUAD is assumed to be nearly planar. For any given shotline, only one 

triangle (of the two triangles that defines the quadrilateral) will be hit. 

7. The center of an element is well defined.  The front face of an element is orientation 

dependent.  The front face option is supported to simplify the translation of 

FASTGEN 3 target descriptions into FASTGEN 4 target descriptions.  New models 

should use the center option. 

8. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 

 

 
Figure B-10.  CQUAD Geometry Definitions 
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INPUT DATA RECORD:  CSPHERE 

 

Description:  Defines a sphere shaped element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CSPHERE eid mid g1    th r1  

CSPHERE 55 14 981    0.125 8.2  

C I I I    R R  

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1    Grid point identification number (g1>0). 

th  Inches  Normal thickness (th>0.0).   

r1    Normal radius (r1>0.0). 

 

REMARKS: 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 

2. The maximum difference between the highest and lowest element identification 

number is the parameter ILOS within a component.  ILOS elements are allowed 

within a component.  The FORTRAN parameter, ILOS, is further explained in the 

Software Size Limits section of this manual.  This element counts as one element. 

3. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 

 

 
Figure B-11.  CSPHERE 
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INPUT DATA RECORD:  CTRI 

 

Description:  Defines a triangular shaped element. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

CTRI eid mid g1 g2 g3  th pos  

CTRI 55 14 991 992 993  0.03 1  

C I I I I I  R I  

 

Parameters: Units:  Description: 

eid    Element identification number (eid>0). 

mid    Material identification number (mid>0). 

g1, g2, g3   Grid point identification numbers (g1 through g3>0, no 

repeated grid identification numbers). 

th  Inches  Normal thickness (th>0.0).   

pos    Grid point position relative to normal thickness. 

 1 = center 

 2 = front face [DEFAULT] 

 

REMARKS: 

1. Element identification numbers must be unique with respect to all other element 

identification numbers within a component. 

2. The maximum difference between the highest and lowest element identification 

number is the parameter ILOS within a component.  ILOS elements are allowed 

within a component.  The FORTRAN parameter, ILOS, is further explained in the 

Software Size Limits section of this manual.  This element counts as one element. 

3. Grid points g1 through g3 must be ordered around the perimeter of the element.  The 

direction of order (clockwise or counterclockwise) is not specified. 

4. The thickness is assumed to be small, i.e., less than 2 inches.  An element thicker than 

2 inches should be modeled with a CHEX2 element. 

5. The center of an element is well defined.  The front face of an element is orientation 

dependent.  The front face option is supported to simplify the translation of 

FASTGEN 3 target descriptions into FASTGEN 4 target descriptions.  New models 

should use the center option. 

6. The material identification numbers for several materials are defined in the 

FASTGEN Materials Chart. 
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Figure B-12.  CTRI Geometry Definitions 
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INPUT DATA RECORD:  ENDDATA 

 

Description:  Defines the end of the Bulk Data File. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

ENDDATA          

ENDDATA          

C          

 

REMARKS: 

1.  Data following the ENDDATA record will not be used. 

2.  The ENDDATA record may be used one time. 
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INPUT DATA RECORD:  GRID 

 

Description:  Defines the location of a 3-D geometric point. 

 

Format, Example and Date Type: 

 

1 2 3 4 5 6 7 8 9 10 

GRID g1  x y z     

GRID 6  10.25 10.25 -10.25     

C I  R R R     

 

Parameters: Units:  Description: 

g1    Grid point identification number (g1>0). 

x, y, z  Inches  Location of the grid point: 

x increasing is toward the front 

x decreasing is toward the aft/back 

y increasing is toward the left from pilot’s view point 

y decreasing is toward the right from pilot’s view point 

z increasing is toward the top 

z decreasing is toward the bottom 

 

REMARKS: 

1. All grid point identification numbers must be unique with respect to all other grid 

point identification numbers within a component. 

2. The maximum difference between the highest and lowest grid identification number 

is parameter ILOS within a component.  ILOS GRID records are allowed within a 

component.  The FORTRAN parameter, ILOS, is further explained in the Software 

Size Limits section of this manual. 

3. GRID records must follow each SECTION record.  The GRID record directly after 

the SECTION record must have the smallest grid identification number of all GRID 

records within a component. 

4. The value of the grid identification number is limited by the field size. 

5. x, y, and z values must include a decimal point. 
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INPUT DATA RECORD:  HOLE 

 

Description:  Defines a hole within a surrounding volume.  This procedure subtracts a 

volume or a plate from the outer volume. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

HOLE gr co gr1 co1 gr2 co2 gr3 co3  

HOLE 3 12 9 111 10 107 14 263  

C I I I I I I I I  

 

Parameters: Units:  Description: 

gr, co    Group and component identification number of the 

surrounding volume (0<=gr<=9, 1<=co<=999). 

gr1, co1,   Group and component identification number of the 

gr2, co2,    subtracted components (0<=gr<=9, 1<=co<=999). 

gr3, co3 

 

REMARKS: 

1. Surrounding components entered on the HOLE record must be in volume mode. 

2. A surrounding component must totally enclose the interfering components. 

3. An interfering component entered on the HOLE record may be either in a volume or a 

plate mode. 

4. All HOLE records should precede the first SECTION record. 

5. IHW records are allowed within the bulk data file.  The FORTRAN parameter IHW 

is further explained in the Software Size Limits section of this manual. 

 

 
Figure B-13.  HOLE Geometry Definitions 
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INPUT DATA RECORD:  SECTION 

 

Description:  Defines the beginning of a new component. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

SECTION gr co mo sp      

SECTION 2 173 1 4      

C I I I I      

 

Parameters: Units:  Description: 

gr    Group identification number (0<=gr<=49).  Table B-5 is a 

suggestion for component groupings for aircraft targets.  

(See remark 5 for older definitions) 

TABLE B-5.  Common Aircraft Organization by Group Number 

Group No. Components Group No. Components 

0 skin forward fuselage 27 fuel center fuselage tank 

1 skin forward intermediate fuselage 28 fuel aft intermediate fuselage tank 

2 skin center fuselage 29 fuel aft fuselage tank 

3 skin aft intermediate fuselage 30 fuel left wing tank 

4 skin aft fuselage 31 fuel right wing tank 

5 skin left wing 32 fuel lines 

6 skin right wing 33 ammunition 

7 skin horizontal tail 34 armament 

8 skin vertical tail 35 structure forward fuselage 

9-10 engine #1 36 structure forward intermediate fuselage 

11-12 engine #2 37 structure center fuselage 

13-14 engine #3 38 structure aft intermediate fuselage 

15-16 engine #4 39 structure aft fuselage 

17 crew 40 structure left wing 

18 flight control pitch 41 structure right wing 

19 flight control yaw 42 structure horizontal tail 

20 flight control roll 43 structure vertical tail 

21 hydraulic system #1 44 electrical boxes 

22 hydraulic system #2 45 electrical lines 

23 hydraulic system #3 46 electrical PAO lines 

24 hydraulic system #4 47 electrical antenna/radar/ECM 

25 fuel forward tank 48-49 miscellaneous 

26 fuel forward intermediate fuselage tank   

 

co    Component identification number (1<=co<=999).  

Components are subsets of groups, i.e., a radar power 
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supply line replaceable unit (LRU) on the right wing is a 

component within the electrical group. 

mo    Plate/volume mode: 

 1 = plate 

 2 = volume 

sp    Space code (0<=sp<=5) [not required] 

Aircraft 

0 = redefinition component 

1 = fuselage/engine pods 

2 = cockpit 

3 = interior of wings 

4 = vertical fins/elevators 

5 = exterior 

 

REMARKS: 

1. $COMMENT and $NAME records should follow each SECTION record.  

Descriptive keywords such as line replaceable unit (LRU) should be used throughout 

the database.  

2. The SECTION record may be used one time per component. 

3. Elements defined in volume mode components should have element thickness set 

equal to 0.0. 

4. Space codes are not used within FASTGEN.  Space codes entered into FASTGEN on 

the SECTION record are passed through the software without error checking or 

modification, except to denote the end of a shotline. 

5. Group identification number (0<=gr<=9) for legacy FASTGEN target descriptions 

are as follows: 

  Aircraft  

  0 = skin  

  1 = power plant 

  2 = crew 

  3 = flight control system 

  4 = fuel system 

  5 = ammunition including bombs 

  6 = armament 

  7 = structural members 

  8 = electrical system/avionics  

  9 = miscellaneous   
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INPUT DATA RECORD:  SHIELD 

 

Description:  Defines a component or range of components as a blast shield. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

SHIELD icomp1 icomp2 rpress       

SHIELD 1005 1250 5000.       

C I I R       

 

Parameters: Units:  Description: 

icomp1   First component number in range. 

icomp2   Second component number in range. 

rpress    Pressure limit for shield effectiveness.  These components 

will completely shield the blast pressures below this limit. 

 

REMARKS: 

1. Multiple SHIELD records can be used.  The component number ranges cannot 

overlap the range in other SHIELD records. 

2. Setting the value of icomp2 is optional.  If this record is omitted, the shield will only 

be for one component as defined in icomp1. 

3. Setting the value of rpress is optional.  If the pressure is not defined, then the shield is 

considered to be 100% effective for any pressure. 

4. No blast rays will be generated through an intact shield. 

5. Therefore, the four following options are allowed: 
 

 SHIELD      1001    1006 

 SHIELD      1001 

 SHIELD      1001    1006   5000. 

 SHIELD      1001           5000. 
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INPUT DATA RECORD:  VEHICLE 

 

Description:  Defines the vehicle code. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

VEHICLE code date iveh       

VEHICLE B-2 9/2/92 65535       

C C C C       

 

Parameters: Units:  Description: 

code    User defined vehicle code. 

date    Date database was last updated. 

iveh    Vehicle code number. 

 

REMARKS: 

1. The VEHICLE record may be used one time. 

2. The vehicle code number is only used for output to a COVART-format burst point 

file.  If no vehicle code number is entered, FASTGEN will calculate one. 
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INPUT DATA RECORD:  WALL 

 

Description:  Defines the intentional intersection of two or more components. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

WALL gr co gr1 co1 gr2 co2 gr3 co3  

WALL 9 123 9 124 3 311 8 097  

C I I I I I I I I  

 

Parameters: Units:  Description: 

gr, co    Group and component identification number of the 

surrounding volume (0<=gr<=9, 1<=co<=999). 

gr1, co1   Group and component identification number of the 

gr2, co2   interfering component (0<=gr<=9, 1<=co<=999). 

gr3, co3 

 

REMARKS: 

1. Surrounding components entered on the WALL record must be in the volume mode. 

2. A surrounding component may have several interfering components. 

3. An interfering component entered on the WALL record may be either in a volume or 

a plate mode. 

4. All WALL records should precede the first SECTION record. 

5. IHW records are allowed within the bulk data file.  The FORTRAN parameter IHW 

is further explained in the Software Size Limits section of this manual. 
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Figure B-14.  WALL Geometry Definitions 
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INPUT DATA RECORD:  $COMMENT 

 

Description:  Defines user comments. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

$COMMENT text 

$COMMENT B-2 target model 

C C 

 

Parameters: Units:  Description: 

text    User defined text. 

 

 

REMARKS: 

1. See SECTION record for group names. 

2. The $COMMENT record may be used any number of times. 
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INPUT DATA RECORD:  $NAME 

 

Description:  Defines names and components. 

 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

$NAME gr co  wuc lcn text 

$NAME 0 172  11  LRU, flight control 

C I I  I C C 

 

Parameters: Units:  Description: 

gr    Group identification number (0<=gr<=9). 

co    Component identification number (0<=co<=999). 

wuc    Work Unit Code (WUC) number (11<=wuc<=99). 

lcn    Logistics Control Number (LCN). 

text    Descriptive name of components. 

 

 

REMARKS: 

1. Group and component identification numbers are defined on the SECTION record. 

2. The $NAME record should be used one time for each component. 
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SOFTWARE SIZE LIMITS 

 

Table B-6 lists some of the current FORTRAN parameters for static array sizes. 

 

TABLE B-6.  FASTGEN Array Names, Sizes, and Descriptions 

Array Size  Description 

ILOS 50000 Number of GRID records within a component. 

IHW 40000 Number of HOLE and WALL records, each. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
APPENDIX C 

 

CRITICAL INPUT DEVELOPMENT REFERENCE:  EXCERPTS FROM 

COVART 6.7 USER’S MANUAL 
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This appendix contains excerpts from COVART 6.7:  User's Manual and is intended to 

aid the user in developing the component properties file (JTYPE FILE), probability of 

hazard given hit file (PK FILE), and multiply vulnerable file (MV FILE).  These excerpts 

are only for the data that is necessary to run UEDDAM.   

 

COVART6 INPUT FILES 

 

JTYPE FILE 

 

INTRODUCTION 

 

The purpose of the JTYPE file is to organize the components/regions of the target in a 

manner that facilitates the assignment of material properties and the assessment of PK.  

To this end, the JTYPE file allows the user to do the following: 

 

• Create NAMs – collections of compontns/regions for which the user would like to 

control material assignments or see in the output. 

o Assign physical properties (material code, density ratio, fluid properties for 

ignition) to components/regions in the target file 

o Define alias components (copies of the component/region that allow for singly 

and multiply vulnerable assignments) 

o Assign Pcd/h tables to the component/region for each kill level 

 

In COVART, the user assigns Pcd/h relationships to individual components/regions, but 

COVART reports results in terms of NAMs the user creates in the JTYPE file.  A NAM 

is a collection of compontns composing a function, a group of parts with the same 

material type, or kill mechanism for a target.  The creation of NAM’s helps the user to 

organize and simplify the output generated by COVART. 

 

The JTYPE file provides information required for other features found in COVART.  The 

MV file references the NAMs defined in the JTYPE file to create multiply-vulnerable 

group and system definitions.  Furthermore, the NAM multiplier feature can also 

reference NAMs from the JTYPE file in applying PK/d corrections during an analysis.  

The JTYPE file, in turn, references the Pcd/h tables the user defines in the Pcd/h input file.  

The JTYPE file is required for every analysis. 

 

DATA TYPES 

 

The JTYPECD data type must be the first input line to ensure that the correct JTYPE file 

is processed.  The program compares the TCODE parameter to CODEJ parameter on the 

JTYPFILE data type in the MASTER file.  If these character strings do not match, 

processing of the JTYPE file is terminated, but the program will continue input validation 

for the remaining files. 

 

Data type COMPDEF defines constants for the JTYPE file:  MAT, the default material 

code for components not listed in the JTYPE array; and LOCHK, an option flag for 
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indicating how vulnerable area storage locations, LO, values are assigned.  LO values are 

either assigned by the program or are user supplied.  IDOUBF is a flag which specifies 

whether to calculate PKs for every hit on a component or just the first hit on the 

component along the shotline.  This must be the second line of data. 

 

If LOCHK is equal to zero the storage location value, LO, is assigned by the program.   

 

The next five data types describe the components.  This file does not have to necessarily 

contain all the components in the target description.  Components not in the JTYPE file 

will be assumed to have the default material type, a relative density of 1.0, and be non-

critical.  The default choice for the default material type is usually Aluminum 2024 

(Material Code 8). 

 

Data type COMPPHY describes component characteristics, including component code 

number, output nomenclature, density, material code, and a flag for determining if the 

presented area is desired.  One line for each component is required, and all COMPPHY 

data types must be input before any other data types are input. 
 

The component number is stored in the JTYP1 array.  The variables LO and NAM are 

used for storage of component vulnerable areas and redundant component calculations.  

NAM is an output label array and there is a one-to-one correspondence between it and the 

LO array.  The output order of the component vulnerable area and PK/H results is 

determined by the order of components in the LO array. 

 

The component density ratio/normal thickness (JD) parameter enables the user to change, 

for penetration purposes, the thickness input from the shotline file without changing the 

actual target description.  This value is either the density times 100 or the plate thickness 

in hundredths of an inch entered as a negative value.  For example, if the target skin was 

described as 0.05 inches thick, then the target skin could be changed to 0.10 inches thick 

by inputting -10 as the value for JD.  For correctly described components that are solids, 

such as a structural beam, a value of 100 is input for JD.  Howeover, for correctly 

described components that are not homogeneous in composition, such as a gear box, a 

scaling factor with a decimal point implied between columns 30 and 31 can be input.  For 

example, 50 could be input as a value for JD.  When wanting to remove a NAM from an 

analysis, such as a piece of armor, the user can accomplish this by inputting a zero for JD.  

These components are sometimes referred to as “phantom” components.  The material 

code must be input and must be a valid code.  (Material codes are listed in Table C-1.)   

 

TABLE C-1.  Component Material Code Numbers 
 

1 Steel (BHN = 100) 26 Doron 

2 Steel (BHN = 150) 27 Bullet resistant glass 

3 Steel (BHN = 200) 28 Hard Rubber 

4 Steel (BHN = 250) 29 Soft Rubber 

5 Steel (BHN = 300)* 30 Depleted Uranium 

6 Steel (BHN = 350) 31 Steel (BHN = 550) 

7 Titanium (BHN = 285)* 32 Steel (BHN = 600) 
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8 Aluminum 2024* 34 Phenolic 

9 Aluminum 5083 35 Oak 

10 Aluminum 5154 36 Pine 

11 Aluminum 5356 37 Graphite/Epoxy 

12 Aluminum 6061 38 BMI Composite 

13 Aluminum 7075 45 Titanium (BHN = 180) 

14 Aluminum 7039 [46] [Composite (General)*] 

15 Magnesium [47] [Inconel 625 LCF*] 

16 Face Hardened Steel 51 Water 

17 Cast Iron 52 Gasoline 

18 Copper 53 Lubrication 

19 Lead 54 JP1 Fuel 

20 Tuballoy 55 JP4 Fuel 

21 Unbonded Nylon 56 JP5 Fuel 

22 Bonded Nylon 57 JP8 Fuel 

23 Lexan 58 DF-2 (Diesel) 

24 Cast Plexiglass 59 MIL-H-56056 (Hydraulic) 

25 Stretched Plexiglass 60 MIL-H-83282 (Hydraulic) 

* Predefined material types within the default UEDDAM MATERIAL FILE. 

 

 

Any components stored in a single LO location are assumed to be singly vulnerable with 

respect to any other component stored in that location.  For components that are part of a 

redundant set (i.e., are multiply vulnerable with respect to each other) the various parts of 

the redundant set must not be stored in the same LO location.  For example, the pilot and 

copilot, if redundant, must be stored in different LO locations and assigned different 

NAM labels. 

 

 

Pcd/h 

 

Data type COMPPK allows the user to assign Pcd/h tables for up to 15 kill levels with up 

to six tables allowed per kill level.  Tables capturing component damage at the most 

severe kill level (e.g., Attrition or KK-kill) are input in the KL1 field.  Tables capturing 

component damage at the second kill level ar input in the KL2 field.  When incusive kill 

levels are computed, a component vulnerable at A-Kill level is also vulnerable at the B-

Kill level, and a Pcd/h table number should be recorded in the fields related to both kill 

levels (even if it is the same Pcd/h table). 

 

For a prevent take-off/prevent mission (PTO/PM) study, tables related to catastrophic on 

ground (COG) kill should be input in the KL1 field.  The KL2 field should hold the Pcd/h 

table assignment related to a PTO24 or PM24.  The KL3 field should hold a table 

assignment that defines damage between PTO24/PM24 and PTO0/PM0.  Finally the KL4 

field should hold a table assignment defining damage for PTO0/PM0.  It should be noted 

thtat the tables assigned for kill levels 2, 3, and 4 in this example do not describe the 
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probability of killing the target given a hit but do define the probability that the target 

requires at least a given time to repair the target (this includes COG damage). 

 

 

JD ADJUSTMENTS IN COVART 

 

In COVART, the line of sight calculated for any target intersection can be modified 

through the use of the density ratio.  This parameter, JD, can be input by the user for 

every target component/region using the COMPPHY record in the JTYPE file.  JD has 

different meanings depending on the sign of its value.  When positive, this parameter is 

either the ratio of material densities or a scaling factor to account for non-homogeneous 

solids.  When negative, the absolute value of this parameter is the normal thickness of the 

entity in hundredths of an inch. 
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Input Data Type:  COMPDEF 

Description:  Defines constants for JTYPE file and default material for all components not  

defined in the JTYPE array. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

COMPDEF MAT LOCHK IDOUBF RAD      

COMPDEF 2 0 1 1.0      

C I I I R      

Parameters Units Description 

MAT ------ Material code for components not listed in JTYPE array.  If 

zero is input, default value is 8 for Aluminum 2024. 

LOCHK ------ Option flag which indicates if vulnerable area storage 

locations (LO) values are computed or input 

0 assigned by COVART (Set to 0 for UEDDAM 

runs) 

1 user input 

IDOUBF ------ Option flag which selects whether to calculate PKs for 

every hit on a component or just the first hit 

0 use the variable IDOUB on data record COMPPHY 

to determine how double hits are treated on a component-

by-component basis 

1 calculate PKs for every hit on a component 

RAD ------ Influence mode radius (Not relevant for UEDDAM). 

 

REMARKS: 
 

1. The COMPDEF data type is required to appear in the JTYPE input database.  If this 

record is omitted, COVART will report an error and stop. 
 

2. The COMPDEF data type must be the second record that appears in the JTYPE file, 

following the JTYPECD input record. 
 

3. Any data that follows the ENDDATA data type in the JTYPE file will not be 

processed by COVART. 
 

4. IDOUBF equal one indicates that every impact on a component with Pcd/h table 

assigned will result in COVART calculating a Pcd/h for the intersection.  This mimics 

the behavior found previously in COVART II and COVART 3.0.  Setting this value 
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equal to zero allows the user to control, at the component level, whether COVART 

calculates a Pcd/h for every intersection or just the first intersection on a particular 

component. 
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Input Data Type:  COMPPHY 

Description:  Defines JTYPE physical component input data. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

COMPPHY KTYP1 NAM JA JD JM IDOUB AZAXIS ELAXIS  

COMPPHY 2005 CABLE 1 100 5 1 90. 0.  

C I C I I I I R R  

Parameters Units Description 

KTYP1 ------ Component code number.  KTYP1 is stored in the JTYP1 

array.  Valid values for KTYP1 are: 1KTYP199999. 

NAM ------ Eight character name used in printed output.  (cannot 

include the characters “.”, “/”, “-“, or “+” ).  Names for 

components included in multiply vulnerable groups may 

not include asterisks “*” or spaces “ “ either. 

JA ------ Not used in UEDDAM.  Set to 1 for UEDDAM runs. 

JD ------ Component density or normal thickness.  If the value is 

negative, then JD contains the normal plate thickness.  

Density is a percentage; normal thickness is in hundredths 

of an inch. 

JM ------ Material code; if the value is zero, the default material code 

specified by MAT on the COMPDEF data type is used.  

Refer to Table C-1 for list of valid plate material codes.   

IDOUB ------ Multi-hit flag; if IDOUB > 0, Pk will be calculated for 

every hit of this component.  If blank or zero, a Pk will be 

calculated for only the first hit.  IDOUB is used only if 

IDOUBF on data type COMPDEF is zero. 

AZAXIS degrees Azimuth angle for the component orientation.  AZAXIS is 

only needed for components which are assigned an axial PK 

table type.  This input is only relevant if axial PK tables are 

being used.  Note:  An entry of 0.0 is interpreted differently 

than a blank entry.  See Remark 7 below. 

ELAXIS degrees Elevation angle for the component orientation.  ELAXIS is 
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only needed for components which are assigned an axial PK 

table type.  This input is only relevant if axial PK tables are 

being used.  Note:  An entry of 0.0 is interpreted differently 

than a blank entry.  See Remark 7 below. 

 

REMARKS: 

1. The COMPPHY data type is required to appear in the JTYPE input database.  If this 

record is omitted, COVART will report an error and stop. 

2. COMPPHY data types must appear in the JTYPE file after the JTYPECD and 

COMPDEF data types. 

3. In order to run the same type of methodology as COVART II and COVART 3.0, set 

IDOUBF on input record COMPDEF to one. 

4. The azimuth and elevation angle for the component defined zero degree angle used in 

the AXIAL2 PK tables. 

5. “Phantom” components, if required, should be assigned zero density (JD). 

6. It is recommended that values for AZAXIS and ELAXIS only be entered for 

components which are assigned AXIAL2 PK tables, and that AZAXIS and ELAXIS 

be left blank for all other components.  This practice will conserve space in the 

internal array used to store data for use with the axial PK tables, and will also reduce 

the number of computations required for each ray in an HE or HEI evaluation. 

7. There is a difference between an explicit entry of 0.0 and a blank entry for AXAXIS 

and ELAXIS.  If both AZAXIS and ELAXIS are left blank, no azimuth and elevation 

are stored for the component.  This is an error if the component is assigned an 

AXIAL2 PK table type.  If an explicit value (even 0.) is entered for AZAXIS and 

ELAXIS, then an azimuth and elevation will be stored for the component. 
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Input Data Type:  COMPPK 

Description:  Defines JTYPE Pcd/h table references. 

Format, Example, and Data Type: 
 

1 2 3 4 5 6 7 8 9 10 

COMPPK KTYP1 KL1 KL2 KL3 KL4 KL5 KL6 KL7 C1 

COMPPK 2005 0 0 12 5 6 7 12 A1 

C I I I I I I I I C 

 

C2 KL8 KL9 KL10 KL11 KL12 KL13 KL14 KL15  

A2 12 5 0 0 12 6 7 5  

C I I I I I I I I  

 

Parameters Units Description 

 

KTYP1 ------ Component code number  KTYP1 is stored in the JTYP1 

array.  Valid values for KTYP1 are: 1≤KTYP1≤99999. 

KLi ------ Pcd/h table number for kill level i 

C1, C2 ------ Continuation line flag, C1, must be identical to the 

character string and position (left-justified) of C2 

 

REMARKS: 
 

1. The term “kill level” represents flight phases or hazard levels for a UEDDAM 

analysis. 
 

2. The COMPPK data type is required to appear in the JTYPE input database.  If this 

record is omitted, COVAT will report an error and stop. 
 

3. COMPPK data types must appear in the JTYPE file after the JTYPECD, COMPDEF, 

and COMPPHY data types. 
 

4. The COMPPK data type is only required for vulnerable components.  A component 

that is not a vulnerable component functions as shielding. 
 

5. For the exclusive kill methodology, COVART requires that the first and most severe 

damage level is entered as KL1.  The second damage level is entered as KL2, etc.  

There is no such requirement for the inclusive kill methodology. 
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6. The COMPPK data type may be repeated for the same component number for up to 

six damage mechanisms per kill level.   
 

7. Continuation records are not necessary when entering table assignment for less than 

seven Pcd/h tables. 
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Input Data Type:  ENDDATA 

Description:  Defines end of file. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

ENDDATA          

ENDDATA          

C          

 

REMARKS: 

 

1. The ENDDATA data type is required to appear in the JTYPE input database.  If this 

record is omitted, COVART will report an error and stop. 
 

2. The ENDDATA data type must be the last record that appears in the JTYPE file. 
 

3. Any data following the ENDDATA data type in the JTYPE file will not be processed 

by COVART. 

 



 

C-13 

Input Data Type:  JTYPECD 

Description:  Defines JTYPE file header code. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

JTYPECD TCODE         

JTYPECD JTYPE         

C C         

Parameters Units Description 

TCODE ------ File code compared to parameter CODEJ on JTYPFILE 

data type in MASTER file to ensure correct JTYPE file is 

processed. 

 

REMARKS: 

1. The JTYPECD data type is required to appear in the JTYPE input database.  If this 

record is omitted, COVART will report an error and stop. 

2. The JTYPECD data type must be the first record that appears in the JTYPE file. 
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Optional Records 

Input Data Type:  COMALIAS 

Description:  Used to define alias components. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

COMALIAS ITDCOM KAL(1) KAL(2) KAL(3) KAL(4) KAL(5) KAL(6) KAL(7) C1 

COMALIAS 8000 8001 8002 8003 8004 8005 8006 8007 MORE 

C I I I I I I I I C 

 

C2  

 

KAL(8) KAL(9) KAL(10) KAL(11) KAL(12) KAL(13) KAL(14) C3 

MORE  8001 8002 8003 8004 8005 8006 8007  

C  I I I I I I I C 

Parameters Units Description 

ITDCOM    ------ Component number of a component in the target database 

file.  This component is referred to as the “aliased” 

component. 

KAL(I)         ------ Component number of the ith component to be inserted 

ahead of each occurrence of component ITDCOM in a 

shotline or HEIVAM ray.  This component is referred to as 

the “alias” component. 

C1,C2...        ------ Continuation line flag, C1 must be identical to the character 

string and position (left-justified) of C2. 

 

REMARKS: 

1. The COMALIAS data type is an optional record that can appear in the JTYPE input 

database. 

2. Alias components are used to model components that are both singly and multiply 

vulnerable for the same kill level. 

3. It is critical that the user realizes that alias components are only a means to assign a 

component to more than one NAM per kill level and should not be used to replace 



 

C-15 

geometry within a target database. 

4. Both the aliased component (ITDCOM) and the alias component(s) (KAL) must have 

COMPPHY and COMPPK records defined in the JTYPE file.  The COMPPHY 

records for both the aliased component and the alias component(s) have to be defined 

before the COMALIAS records. 

5. A component cannot be both aliased, and an alias. 

6. Assign a material code of 51 (water), a density of -1 (0.01 inch normal thickness), and 

an LO number when defining an alias component with record type COMPPHY. 

7. There can be at most 99 alias components assigned to the “real” aliased component. 

8. If an alias is used because a component can be both singly and multiply vulnerable, 

then it is recommended that the singly vulnerable PK tables be assigned to the “real” 

component, and the multiply vulnerable PK tables be assigned to the alias. 

9. Alias information is also output with the JTYPE echo. For a “real” component, at the 

end of the line, a “<” is followed by the numbers of the component‘s aliases.  At the 

end of the lines for an alias component, a “>” is followed by the component number 

of the “real” component it is associated with.  This allows the user to add a 

component in front of a modeled component with no effect on penetration. 

10. Alias components can only be assigned Pcd/h tables of the weight-speed, aspect-

dependent, and yaw angle-dependent types.  This is a departure from the 

implementation found in the code prior to COVART 5.0, where it was possible to 

erroneously assign any Pcd/h table to alias components.  In older versions of 

COVART, the code would attempt to calculate a Pcd/h for alias components under 

these circumstances with unpredictable results.  Starting with COVART 5.0, if any 

Pcd/h table type other than the three listed above is assigned to an alias component, the 

resultant Pcd/h for that component is set equal to zero.  As a result, the vulnerable areas 

resulting from target databases with incorrect alias components can be dramatically 

different between older versions of COVART and COVART 5.0. 
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MULTIPLY VULNERABLE FILE 

 

INTRODUCTION 

 

The components of a target can be divided (for a given threat) into two classes:  critical 

and non-critical.  Critical components are those parts of a platform that, when hit, can 

lead to its defeat at a particular damage level.  Non-critical components are those 

elements whose defeat does not lead to the defeat of the platform but whose presence 

shields critical components.  Critical components of a target can, in turn, be divided into 

two classes:  singly vulnerable (SV) and multiply vulnerable (MV).  A component is 

singly vulnerable if the defeat of that component alone results in the defeat of the 

platform.  When two or more components must be killed simultaneously to defeat the 

platform, analysts refer to these components as multiply vulnerable components.  

Multiply vulnerable components can be grouped into sets of two or more systems.  A kill 

results only if at least a specified number, N > 1, of the systems in the group are defeated 

(for a given kill category). 

 

COVART supports the following features for fault trees:  single-shot defeat assessment 

of a multiply vulnerable group, dependent components (i.e., a component appearing more 

than once in the fault tree for a particular multiply vulnerable group), weighting factors, 

and M of N kills. 

 

Utilizing this feature requires the use of NAMs (i.e., names of singly vulnerable 

components or groups of components).  The user creates and defines the composition of 

NAMs in the JTYPE file.  For more information on the setup of the JTYPE file, please 

refer to the previous section. 

 

This section provides an example of a platform with multiply vulnerable components to 

illustrate how one defines groups, systems, subsystems, and components within 

COVART.  Some examples of groups include crew, propulsion, and flight controls.  

Table C-2 provides the breakdown for a potential aircraft propulsion system.  

 

TABLE C-2.  Multiply Vulnerable System Example 

Group - Propulsion  

System - Rt Engine Left Engine 

Subsystem - Compressor Fuel Manifold and Jets 

Components - Stator Blades Lines 

 - Rotor Blades Jets 

 - Cans  
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MULTIPLY VULNERABLE THEORY 

 

COVART’s features for processing multiply vulnerable components or subsystems allow 

users to model the mitigating effects of redundant components and/or subsystems on 

system/platform defeat.  In processing, COVART calculates the probability of component 

dysfunction given a hit (Pcd/h) for components at the NAM level and then considers 

user-defined multiply vulnerable relationships in determining the probability of kill given 

a hit (Pk/h) for functions featuring redundancy.  Helpful in the assessment of multiply 

vulnerable system performance are fault trees (i.e., deactivation diagrams), as they 

provide the means to visualize the redundancy found in a particular function.  For 

example, for aircraft, it is common to have fault trees to represent such functions as the 

flight controls, propulsion, electrical systems, and the equipment necessary for mission 

completion.  Figure C-1 provides an example of a flight control fault tree.  COVART’s 

multiply vulnerable component processing facilitate the input of fault trees to support 

vulnerability/lethality analyses. 

 

 

Figure C-1.  FLT-C-MV Group. 

 

 

Due to processing concerns, analysts should avoid including singly vulnerable 

components in multiply vulnerable fault trees where possible.  The goal in COVART’s 

handling of multiply vulnerable components and subsystems is to develop a group Pk that 

COVART can then combine with other singly vulnerable elements (via the survival rule) 

to calculate platform Pk.  Singly vulnerable components/subsystems already meet the 

criteria for the survival rule, so no additional processing is necessary for these items.  In 

fact, adding singly vulnerable branches to multiply vulnerable groups increases the 

complexity of the math supporting the assessment of group Pk values, which may have a 

negative impact on very complex fault trees.  It helps to think of the processing for a 
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particular kill category/level as one big kill tree.  Singly vulnerable components already 

lead to the kill of the platform at that level while multiply vulnerable 

components/subsystems need a little processing before one can apply their damage to the 

rest of the platform. 

 

Fault tree descriptions in COVART employ a leveled approach.  The highest level in 

multiply vulnerable processing in the model is the group.  COVART considers the Pk for 

the group as singly vulnerable with respect to the platform although it may include 

redundant systems.  A group includes one or more (up to 24) systems and each system 

may include up to 24 subsystems or components.  Components comprise the lowest level 

of the fault tree hierarchy within COVART, and the user defines these via NAMs in the 

JTYPE file. 

 

The elements within each group, system, or subsystem can have a series or parallel 

relationship with each other.  A series relationship indicates that only one in a chain of 

elements must be defeated in order to defeat the larger subsystem, system, or group.  On 

the other hand, a parallel relationship indicates that more than one element must be 

simultaneously defeated in order to defeat the larger subsystem, system, or group.  

Parallel relationships can require the defeat of all or some subset of its elements.  When 

only a subset needs to be defeated, this case is referred to as an “M of N” relationship, 

where M is the number of elements that must be defeated in the system, and N is the total 

number of elements in the system.  Additionally, the user has the ability to weight the 

defeat of certain combinations of elements when they are more or less lethal than other 

combinations.  This is the weighting factor feature. 

 

COVART’s multiply vulnerable system processing features allow for the definition of 

calcuations that do not follow normal fault tree processing.  These features do not 

influence the calculation of aircraft vulnerable areas but provide users the ability to 

combine the outputs of several components, subsystems, or systems into quantities useful 

for reporting results.  The first is the COMBMV feature.  With this feature, the user can 

ad or subtract the resultant vulnerable areas of systems, subsystems, or components to 

determine other vulnerable areas of interest (e.g., a user could sum individual 

crewmember vulnerable areas to determine a crew vulnerable area).  The second feature 

of this type is the SYSSING feature.  Here, the user can combine groups of singly 

vulnerable components together under the same name for output purposes.  Between the 

features here and in the JTYPE file, COVART provides the means for users to create 

meaningful results supporting their analyses. 

 

 

DATA TYPES 

 

The MVCD data type must be the first record in the Multiply Vulnerable (MV) file to 

ensure COVART processes the file the user truly intends to use.  The program compares 

the TCODE parameter to the CODEMV parameter on the MVFILE data type in the 

MASTER file.  If these character strings do not match, processing of the MV file is 

terminated, but the program will continue input validation of the remaining files.   
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An MV group definition starts with the MVKILL data type and ends with the 

ENDGROUP data type.  COVART supports up to fifteen possible kill categories or 

levels, and each kill category can have a variable number of MV groups.  The user 

specifies the applicable kill category using the MVKILL data type. 

 

Following the MVKILL data type, the user provides the name of the group, NAM; the 

number of systems required for failure, M; and the number of systems, N, in the group.  

The user employs the GRPMULT data type to provide this information. 

 

After the GRPMULT data type, the user can define the remainder of the group.  This 

includes systems defined using the SYSMULT data type and subsystems defined using 

the NAMPRT data type. For subsystem inputs, the user can control the ougput of results 

for a particular subsystem with the PRT field of the NAMPRT record.  At the lowest 

level of the MV group must be components (i.e., NAMs) that the user has defined in the 

JTYPE file.  The user notes the end of inputs for the systems, subsystems, and 

components in the group using the ENDNAME data type. 

 

The COMBMV data type defines mathematical equiations involving the results 

calculated for systems and subsystems defined in a group.  These equations have no 

impact on the total platform vulnerable area and are optional.  COMBMV includes the 

name of the desired result, MNAM, followed by inpouts for the subsystems and systems 

involved in the equation as well as the signs between quantities.  Following any 

COMBMV inputs, the user finally ends a group definition with the ENDGROUP data 

type. 

 

After the user inputs all groups for all kill levels, he or she can then input optional 

weighting factors for groups using the WGTFACT data type.  The user specifies the 

group number (IGROUP, which in an index based on the order of the group definitions in 

the MV file), the number of systems in the group (LSYS), and the weighting factors 

(WGT) associated with each system combination.  The user must input weighting factors 

in a particular order, so pleaes check the remarks on the WGTFACT data type for more 

details. 

 

Special singly vulnerable combinations of components are defined with the SYSSING 

data type.  The user creates a name for the SYSSING definition (ANAM) along with the 

number of components in the system (NUM).  The user identifies members of the 

SYSSING using component numbers (COMP).  This feature differentiates the SYSSING 

data type from the other data types in the MV file.  Most of the other data types in this 

file will reference components by their NAM, but the SYSSING references these 

components by their packed component number (same format as component numbers in 

the JTYPE file).  The user should note that COVART does not store output information 

by component number but rather by NAM.  As a result, assigning a component number to 

a SYSSING defition equates to assigning the corresponding NAM to the SYSSING.  

Also, care must be taken to not assign components to both MV and SYSSING 

definitions.  COVART will check the NAM associated with each component number in a 
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SYSSING and determine if the NAM is part of an MV group as well.  If it is, COVART 

will throw an error and drop the SYSSING from the analysis. 

 

An illustration of how the multiply vulnerable input data is developed for a section of 

flight controls follows.  Figure C-2 shows the section of flight control with the pilot's and 

gunner's system identified. 

 

 
Figure C-2.  Section of Flight Control System. 

PILOT'S

GUNNER'S

11

12 13
15

16

14
10

9
8

4

7

3
6

2

5

1

Figure 4-8   SECTION OF FLIGHT CONTROL
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Table C-3 identifies the sixteen components in this flight control section.  This table lists 

the vulnerable components, their JTYPE numbers, LO numbers, and the associated 

names (NAMs).  The first thirteen form the multiply vulnerable group.  Components 1 

through 10 describe the pilot's system, and components 11, 12, and 13 describe the 

gunner's system.  To defeat the flight control, both systems must be defeated.  On the 

other hand, components 14, 15, and 16 are considered singly vulnerable.  Since the NAM 

names for singly vulnerable components are not used in the definition of a multiply 

vulnerable group, their component numbers are listed instead. 

 

Table C-3.  Flight Control Vulnerable Components 

MULTIPLY VULNERABLE COMPONENTS 

JTYP1 Component Name LO Number NAM Name 

1 T-Bar Tube Member 28 TBAR-F 

2 T-Bar Solid Member 28 TBAR-F 

3 Control Rod 27 ROD-3 

4 T-Bar Solid Member 25 TBAR-A 

5 Control Rod 26 HYDBOOST 

6 Hydraulic Boost Cylinder 26 HYDBOOST 

7 Hydraulic Piston 26 HYDBOOST 

8 T-Bar Tube Member 25 TBAR-A 

9 Bellcrank 24 FLT-P-MV 

10 Control Rod 24 FLT-P-MV 

11 Control Rod 22 GUN-ROD 

12 Bellcrank 23 FLT-G-MV 

13 Control Rod 23 FLT-G-MV 

SINGLY VULNERABLE COMPONENTS 

JTYP1 Component Name LO Number Component Number 

14 Control Rod 22 1001 

15 Pivot 21 1002 

16 Control Rod 20 1003 

 

 

A diagram considering only the multiply vulnerable components from Table C-3 is in 

Figure C-3.  A smaller diagram is then created by combining JTYP1 numbers with the 

same LO numbers (Figure C-4). 
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Figure C-3.  Flight Control System with JTYPE Numbers. 

 

 

 

Figure C-4.  Flight Control System with LO Numbers. 

 

 

The LO numbers are now replaced with the corresponding NAM name.  Moreover, 

systems and subsystems are also assigned names as shown in Figure C-1. 

 

The fault tree pictured in Figure C-1 represents a portion of the flight control system of 

an aircraft.  The whole fault tree corresponds to a multiply vulnerable group named FLT-

C-MV.  (This is just an arbitrary eight character name.)  This group is composed of two 
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systems in parallel.  The system on the left (FLT*P*SY) represents the pilot's flight 

controls.  The system on the right (FLT*G*SY) represents the gunner's flight controls.  

FLT*P*SY is composed of 3 components, TBAR-F, TBAR-A, and FLT-P-MV, which 

are defined in the JTYPE input file, and one subsystem, GMVHYDB.  TBAR-F, TBAR-

A, FLT-P-MV, and GMVHYDB are combined in series to form system FLT*P*SY.  

FLT*G*SY contains components GUN-ROD and FLT-G-MV in series.  GMVHYDB is 

a parallel combination of components HYDBOOST and ROD-3, hence both components 

must be defeated for subsystem GMVHYDB to be defeated.   

 

A detailed description of the input data preparation process along with the required 

values is provided to assist in the generation of the multiply vulnerable database that will 

correspond to the above sample case. 

 

1. The group designation is defined with the GRPMULT data type.  The group 

consists of the pilot and gunner systems; both of which must be defeated to defeat 

the group. 
 

Parameter Value Description 

NAM FLT-C-MV Group name 

M 2 Systems required for failure 

N 2 Systems in the group 

C1 FLT-C-MV Continuation line flag 
 

2. The elements within the group are defined on the continuation of the data type.  

The two systems are identified by name, NAM. 
 

Parameter Value Description 

C2 FLT-C-MV Continuation line flag 

N1 FLT*P*SY System 1 NAM 

N2 FLT*G*SY System 2 NAM 
 

3. The system designations are defined with the SYSMULT data type.  The user 

must describe the composition of each system with a hierarchy of systems that 

ultimately end with components.  First is the description of the pilot flight control 

system. 
 

Parameter Value Description 

NAM FLT*P*SY System name 

M 1 Systems required for failure 

N 4 Subsystems in the system 

C1 FLT*P*SY Continuation line flag 
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4. The elements within the system are defined on the continuation of the data type.  

The four subsystems are identified by name, NAM. 
 

Parameter Value Description 

C2 FLT*P*SY Continuation line flag 

N1 TBAR-F Subsystem 1 NAM 

N2 GMVHYDB Subsystem 2 NAM 

N3 TBAR-A Subsystem 3 NAM 

N4 FLT-P-MV Subsystem 4 NAM 
 

5. Next, the composition of gunner's systems is defined using the SYSMULT data 

type. 
 

Parameter Value Description 

NAM FLT*G*SY System name 

M 1 Systems required for failure 

N 2 Subsystems in the system 

C1 FLT*G*SY Continuation line flag 
 

6. The elements within the system are defined on the continuation of the data type.  

The two subsystems are identified by name, NAM. 
 

Parameter Value Description 

C2 FLT*G*SY Continuation line flag 

N1 GUN-ROD Subsystem 1 NAM 

N2 FLT-G-MV Subsystem 2 NAM 
 

7. The composition of subsystem GMVHYDB is defined on the NAMPRT data 

type. 
 

Parameter Value Description 

NAM GMVHYDB Subsystem name 

M 2 Components required for failure 

N 2 Components in the system 

PRT 0 Printer flag 

C1 GMVHYDB Continuation line flag 
 

8. The elements within the subsystem are defined with the continuation of the data 

type.  The two components are identified by name, NAM. 
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Parameter Value Description 

C2 GMVHYDB Continuation line flag 

N1 HYDBOOST Component 1 NAM 

N2 ROD-3 Component 2 NAM 
 

9. Lastly, the user completes the definition of group elements by inclusing the 

ENDNAME data type. 
 

If other vulnerable areas are desired, they can be specified using the COMBMV data type 

to add or subtract previously defined areas using Boolean algebra.  For example, consider 

the vulnerable area of the pilot's system without the GMVHYDB subsystem which has 

two parallel elements.  This vulnerable area, P*SY*SV, depends on the probability of 

defeating FLT*P*SY but not defeating GMVHYDB.  This result is obtained by using the 

COMBMV data line with the following input parameters. 
 

Parameter Value Description 

MNAM P*SY*SV Multiply vulnerable subdivision name 

NC1 FLT*P*SY Element 1 NAM 

S2 - Sign used to combine elements 

NC2 GMVHYDB Element 2 NAM 
 

This same vulnerable area could have been also defined by adding all the other elements 

in the system except GMVHYDB.  This input on the COMBMV data line is as follows: 
 

Parameter Value Description 

MNAM P*SY*SV Multiply vulnerable subdivision name 

NC1 FLT-P-MV Element 1 NAM 

S2 + Sign used to combine elements 

NC2 TBAR-F Element 2 NAM 

S3 + Sign used to combine elements 

NC3 TBAR-A Element 3 NAM 
 

Lastly, the entire multiply vulnerable group is completed by including an ENDGROUP 

data type line. 

 

As an example of a singly vulnerable system, consider the three singly vulnerable 

components (JTYPE numbers 14, 15, and 16) of the flight control section pictured in 

Figure C-2.  These components with component numbers 1001, 1002, and 1003 (listed in 

Table C-3) can be grouped as a singly vulnerable system.  These data are input using the 

following parameters. 

 



 

C-26 

1. The singly vulnerable combination is defined with the SYSSING data type. 
 

Parameter Value Description 

ANAM FLT-CTRL Singly vulnerable system name 

NUM 3 Number of components 

C1 CONT Continuation line flag 
 

2. The composition of the singly vulnerable system is defined on the continuation of 

the data type.  The user inputs the component number of each part forming the 

singly vulnerable system.  Entering a component number here effectively assigns 

the associated NAM (e.g., NAM, “100”, in this case) to the SYSSING. 
 

Parameter Value Description 

C2 CONT Continuation line flag 

COMP(1) 1001 Component number of 1st component 

COMP(2) 1002 Component number of 2nd component 

COMP(3) 1003 Component number of 3rd component 
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Input Data Type:  COMBMV 

Description:  Defines equations using results found for MV systems. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

COMBMV MNAM NC1 S2 NC2 S3 NC3 S4 NC4 C1 

COMBMV HYDR HYD1 - HYD2      

C C C C C C C C C C 

 

C2 S5 NC5 S6 NC6 S7 NC7 S8 NC8  

          

C C C C C C C C C  

Parameters Units Description 

MNAM      ------   Multiply vulnerable subdivision name 

NC1, …, NC8 ------ NAM names that constitute a multiply vulnerable system 

S2, S3, ..., S8 ------ Signs used to combine NAM names defined by NC1, NC2, 

etc. into the multiply vulnerable equation.  Their values 

may be either a “+” (plus) or “-“ (minus). 

C1, C2 ------ Continuation line flag C1 must be identical to the character 

string and position (left-justified) of C2.  It is recommended 

that C1 and C2 equal the character string of NAM. 

 

REMARKS: 

1. The COMBMV data type is optional.  It must come after the ENDNAME data 

type and before the ENDGROUP data type. 

2. If an equation includes less than four elements, a continuation record should not 

be used.  However, if more than four items are included in an equation, the user 

must add a continuation record. 

3. No equation can use more than eight items. 
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Input Data Type:  ENDDATA 

Description:  Defines end of file. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

ENDDATA          

ENDDATA          

C          

REMARKS: 

1. The ENDDATA data type is required any time the user inputs an MV database.  If 

this record is omitted, COVART will report an error and stop. 

2. The ENDDATA data type is required to be the last record in the optional MV 

database. 
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Input Data Type:  ENDGROUP 

Description:  Specifies the end of a multiply vulnerable group. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

ENDGROUP          

ENDGROUP          

C          

REMARKS: 

1. The ENDGROUP data type is required any time the user inputs an MV database.  

If this record is omitted, COVART will report an error and stop. 

2. The ENDGROUP data type is required to be the last line in the specification of a 

multiply vulnerable group. 

3. The user will next input another MVKILL record or continue to the end of file 

data types. 
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Input Data Type:  ENDNAME 

Description:  Specifies the end of the formal MV group definition. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

ENDNAME          

ENDNAME          

C          

REMARKS: 

1. The ENDNAME data type is required any time the user inputs an MV database.  If 

this record is omitted, COVART will report an error and stop. 

2. The ENDNAME data type is one of the last lines input for a particular multiply 

vulnerable group.  Only the COMBMV or ENDGROUP data types can follow this 

data type. 
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Input Data Type:  GRPMULT 

Description:  Defines composition of an MV group. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

GRPMULT NAM M N      C1 

GRPMULT G 16 20      G1 

C C I I      C 

 

C2 N(1) N(2) N(3) N(4) N(5) N(6) N(7) N(8) C3 

G1 SYS1 SYS2 SYS3 SYS4 SYS5 SYS6 SYS7 SYS8 G2 

C C C C C C C C C C 

 

C4 N(9) N(10) N(11) N(12) N(13) N(14) N(15) N(16) C5 

G2 SYS9 SYS10 SYS11 SYS12 SYS13 SYS14 SYS15 SYS16 G3 

C C C C C C C C C C 

 

C6 N(17) N(18) N(19) N(20) N(21) N(22) N(23) N(24)  

G3 SYS17 SYS18 SYS19 SYS20      

C C C C C C C C C  

Parameters Units Description 

NAM ------ Group name. 

M ------ Number of systems required for failure. 

N ------ Number of systems in the group (maximum of 24). 

C1, C2, C3, ------ Continuation records.  It is recommended that they equal 

C4, C5, C6  the character string of NAM. 

N(i) ------ System or component NAM names on the right-hand side 

of the MV equation.  These elements are combined to form 
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the group. 

REMARKS: 

1. The GRPMULT data type is required any time the user inputs an MV database.  If 

this record is omitted, COVART will report an error and stop. 

2. To illustrate, consider a group, G, comprised of three systems, S1, S2 and S3, where 

all three systems must be defeated to defeat the group.  The logical “equation” to 

define this group is G=S1.AND.S2.AND.S3 (3/3), and the inputs associated with a 

definition like this would look like: 

 

1 2 3 4 5 6 7 8 9 10 

GRPMULT NAM M N      C1 

GRPMULT G 3 3      GCONT 

C C I I       

 

C2 N1 N2 N3 N4 N5 N6 N7 N8  

GCONT S1 S2 S3       

C C C C       

If the same group had a serial relationship, only one system in the group needs to be 

defeated to defeat the vehicle.  The logical equation in this case would be:  G=S1 .OR. S2 

.OR. S3.  The inputs necessary to model this would look like: 

 

1 2 3 4 5 6 7 8 9 10 

GRPMULT NAM M N      C1 

GRPMULT G 1 3      GCONT 

C C I I       

 

C2 N1 N2 N3 N4 N5 N6 N7 N8  

GCONT S1 S2 S3       

C C C C       

 

3. System or component names should not contain the characters ".", "/", "OR", 
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"AND", "+", or "-". 

4. COVART will always print results for the group under the given name in the output 

section labeled, “Single Shot Vulnerable Areas of Multiply Vulnerable Groups”. 
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Input Data Type:  MVCD 

Description:  Specifies MV file code for comparison to MASTER file value. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

MVCD TCODE         

MVCD MV         

C C         

Parameters Units Description 

TCODE ------ File code compared to CODEMV from MVFILE data type 

in the MASTER file to ensure that the correct Multiply 

Vulnerable (MV) file is processed. 

 

REMARKS: 

1. The MVCD data type is required any time the user inputs an MV database.  If this 

record is omitted, COVART will report an error and stop. 

2. The MVCD data type must be the first record that appears in the MV file. 
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Input Data Type:  MVKILL 

Description:  Specifies beginning of new MV group and defines the applicable kill category (Flight 

Phase for UEDDAM). 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

MVKILL KILLG         

MVKILL 3         

C I         

Parameters Units Description 

KILLG ------ Kill category (flight phase for UEDDAM) code for 

multiply vulnerable groups.  Since COVART6 allows the 

definition of up to 15 kill levels, any integer value from 1 

to 15 is permissible. 

REMARKS: 

1. The MVKILL data type is required any time the user inputs an MV database.  It is 

the starting record for every MV group definition. 
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INPUT DATA TYPE:  NAMPRT 

 

Description:  Defines composition of a subsystem.  The user can control whether 

COVART prints the results for this subsystem in Av tables. 

 

Format, Example, and Data Type: 
 

1 2 3 4 5 6 7 8 9 10 

NAMPRT NAM M N PRT     C1 

NAMPRT CNTRL 2 2 1     V1 

C C I I I     C 

 

C2 N1 N2 N3 N4 N5 N6 N7 N8  

V1 STICK PEDAL        

C C C C C C C C C  

Parameters Units Description 

NAM ------ Component or subsystem name 

M ------ Number of subsystems (or components) required for 

failure.  A value of “1” implies that the components are 

combined in series. 

N ------ Number of subsystems (or components) in the NAM 

PRT ------ Print vulnerable area table flag: 

0 Do not print vulnerable area table 

1 Print vulnerable area table 

C1, C2 ------ Continuation line flag C1 must be identical to the character 

string and position (left-justified) of C2.  It is recommended 

that C1 and C2 equal the character string of NAM. 

N1, N2, ..., N8 ------ Subsystem of component NAM names on the right-hand 

side of the MV equation.  These elements are combined to 

form the system. 
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REMARKS: 

1. The NAMPRT data type is an optional record in the MV database file. 

2. The NAMPRT record may include up to 24 components or subsystems.  

Component names should come from the JTYPE while the user should use 

NAMPRT records to define the composition of other subsystems. 

3. Component and subsystem names should not contain the strings “.”, “/”, “OR”, 

“AND”, “+”, or “-“. 
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INPUT DATA TYPE: SYSMULT 

Description:  Defines composition of a system. 

Format, Example, and Data Type: 
 

1 2 3 4 5 6 7 8 9 10 

SYSMULT NAM M N      C1 

SYSMULT BLADE 1 20      S1 

C C I I      C 

 

C2 N(1) N(2) N(3) N(4) N(5) N(6) N(7) N(8) C3 

S1 SYS1 SYS2 SYS3 SYS4 SYS5 SYS6 SYS7 SYS8 S2 

C C C C C C C C C C 

 

C4 N(9) N(10) N(11) N(12) N(13) N(14) N(15) N(16) C5 

S2 SYS9 SYS10 SYS11 SYS12 SYS13 SYS14 SYS15 SYS16 S3 

C C C C C C C C C C 

 

C6 N17) N(18) N(19) N(20) N(21) N(22) N(23) N(24)  

S3 SYS17 SYS18 SYS19 SYS20      

C C C C C C C C C  

Parameters Units Description 

NAM ------ System name 

 

M ------ Number of subsystems (or components) required for 

failure.  A value of “1” implies that the components are 

combined in series. 

 

N ------ Number of subsystems (or components) in the system 

(1≤N≤24) 

 

C1, C2, C3 ------ Continuation records.  It is recommended that they equal  

C4, C5, C6  the character string of NAM. 

N(i) ------ System or component NAM names on the right-hand side 
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of the MV equation.  These elements are combined to form 

the group. 

 

REMARKS: 

1. The SYSMULT data type is a required record any time the user inputs an MV 

database. 

2. System, subsystem, or component names should not contain the characters “.”, “/”, 

“OR”, “AND”, “+”, or “-“. 

3. COVART will always print results for the group under the given name in the output 

section labeled, "Single Shot Vulnerable Areas of Multiply Vulnerable Groups". 
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INPUT DATA TYPE:  SYSSING 

Description:  Defines singly vulnerable components to be combined into a singly 

vulnerable system NAM name. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

SYSSING ANAM NUM       C1 

SYSSING ENGINE 10       V1 

C C I       C 

 

C2 CMP(1) CMP(2) CMP(3) CMP(4) CMP(5) CMP(6) CMP(7) CMP(8) C3 

V1 1001 1002 1003 1004 1005 1006 1007 1008 V2 

C I I I I I I I I C 

 

C4 CMP(9) CMP(10) CMP(11) CMP(12) CMP(13) CMP(14) CMP(15) CMP(16)  

V2 1009 1010        

C I I I I I I I I  

Parameters Units Description 

ANAM ------ Singly vulnerable system name. 

NUM ------ Number of components to form the singly vulnerable 

system ANAM 

C1–C4 ------ Continuation line flag C1 must be identical to the character 

string and position (left-justified) of C2; C3 must also equal 

C4. 

CMP(i) ------ ith component number that forms the singly vulnerable 

system ANAM.  Only one component for each NAM name 

is required. 

REMARKS: 

1. The SYSSING data type is optional. 
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2. SYSSING records must appear outside the definition of a group (i.e., after a record 

of type ENDGROUP).  It is preferable that the SYSSING records appear at the end 

of the MV file to make it more understandable. 

3. The total number of all components combined to form all ANAMs and twice the 

number of ANAMs must be less than 1000. 

4. If there are more than eight components specified on the SYSSING record, input 

continues on a continuation line, and C1 and C2 must be specified and agree in 

character string and position. 

5. It is important to note that adding a component number to a SYSSING effectively 

assigns the NAM in the JTYPE file via COMPPHY records.  The presented and 

vulnerable areas reported by COVART for the SYSSING will reflect the results 

calculated for the corresponding NAM’s and not the individual components entered 

here. 

6. Components cannot be assigned to both MV and SYSSING groups.  When 

COVART detects that a SYSSING component is part of an MV definition, the 

program will throw an error and drop the SYSSING associated with the component. 
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INPUT DATA TYPE:  WGTFACT 

Description:  Defines weighting factors. 

Format, Example, and Data Type: 

1 2 3 4 5 6 7 8 9 10 

WGTFACT IGROUP LSYS       C1 

WGTFACT 1 2       V1 

C I I       C 

 

C2 WGT(1) WGT(2) WGT(3) WGT(4) WGT(5) WGT(6) WGT(7) WGT(8) C4 

V1 .2 .3 .05 .45      

C R R R R R R R R C 

Parameters Units Description 

IGROUP ------ Group number for which multiply vulnerable weighting 

factors must be read.  Groups are numbered in the order of 

the GRPMULT data types that define the groups. 

LSYS ------ Number of systems in the group IGROUP (maximum of 

eight systems in a group) 

C1, C2 ------ Continuation line flag C1 must be identical to the character 

string and position (left-justified) of C2.   

WGT(1) ------ Weighting factor for the 1st term (Q1 Q2 Q3 . . . QLSYS) 

WGT(2) ------ Weighting factor for the 2nd term (P1 Q2 Q3 . . . QLSYS), 

where Pi is the probability of kill given a hit on the ith 

component and Qi = 1 - Pi. 

WGT(3) ------ Weighting factor for the 3rd term (Q1 P2 Q3 . . . QLSYS) 

WGT(4) ------ Weighting factor for the 4th term (P1 P2 Q3 . . . QLSYS) 

WGT(5) ------ Weighting factor for the 5th term (Q1 Q2 P3 . . . QLSYS) 

WGT(6) ------ Weighting factor for the 6th term 

WGT(7) ------ Weighting factor for the 7th term 
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WGT(8) ------ Weighting factor for the 8th term (P1 P2 P3 . . . QLSYS) 

 

 

REMARKS: 

1. The WGTFACT data type is an optional record. 

2. The WGTFACT data type should come after the last ENDGROUP record in the 

MV file. 

3. IGROUP is an index of the group within the context of the MV file.  The group 

associated with the first GRPMULT record in the file is IGROUP = 1.  It may help 

the user to track IGROUP in a comment before the MVKILL record for a particular 

group when they desire to use weighting factors. 

4. Pi implies that the ith component is killed, and Qi implies that the ith component 

survives. 

5. 2LSYS = number of weighting factors to be read in.  If the value of LSYS is three or 

less, only one continuation line with the eight weighting factors is required.  

Otherwise, additional continuation lines are required according to the list below: 

 

LSYS 
Continuation  

Lines 

        3           1 

        4           2 

        5           4 

        6           8 

        7         16 

        8         32 

6. Weighting factors must be input in a specific order.  The first weighting factor input 

applies to the state of the multiply vulnerable group in which none of its systems 

have been killed (Q1, Q2, Q3 . . . QLSYS).  The second weighting factor input applies 

to the state of the group in which only system number 1 has been killed (P1, Q2, Q3 . 

. . QLSYS).  The third weighting factor input applies to the state of the group in 

which only system number 2 has been killed (Q1, P2, Q3 . . . QLSYS).  The systems 

are numbered in the order in which their names are entered on the GRPMULT data 

type.  That is, system number 1 is the first system named on the second record of 

the GRPMULT data type, system number 2 is the second system named, and so on.  

The value of LSYS entered on the WGTFACT data type must match the number of 

systems actually entered on the GRPMULT data type for the group. 
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PCD/H FILE 

 

INTRODUCTION 

 

One required input file for every COVART analysis is a probability of component 

dysfunction given a hit (Pcd/h) database file.  The contents of this file are a series of tables 

and curves that estimate component “damage” resulting from the damage modes of 

kinetic energy or high-explosive weapons.  Historically, COVART interpreted the 

probabilities defined in this database as probabilities of kill given a hit (Pk/h).  Pk/h is the 

product of Pcd/h and the probability of system kill given component damage (Pk/d) as 

shown in the equation below. 

 

Pk/h  =  Pcd/hPk/d 
 

In prior versions of COVART, the user created a Pk/h database file.  In this file, the user 

had to combine Pcd/h and Pk/d into a single table that only applied to a particular modeling 

situation.  In COVART6, Pcd/h and Pk/d are now separate with the user defining Pcd/h 

through a series of curves and Pk/d with a constant value.  The Pcd/h tables reflect the Pk/h 

tables historically input into COVART while a new file supports the input of Pk/d values.  

This new paradigm allows the user to create curves based solely on component 

dysfunction and modify the effects of placing the component in different contexts. 

 

 

DATA TYPES 

 

In the Pcd/h file, the PKCD data type must come first.  The program compares the 

TCODE parameter to CODEP parameter on the PKFILE data type in the MASTER file.  

If these character strings do not match, processing of the Pcd/h file is terminated, but the 

program will continue input validation of remaining files. 

 

The next three record types (FIREDATA, AIRGAP, and YAW) are required for 

COVART but not used in UEDDAM.  For UEDDAM runs, use the following default 

settings (where “·” indicates a space): 

 
FIREDATA·····0.5·······2 

AIRGAP·······1.0·····3.0·····6.0····12.0····18.0····24.0 

FIRETHK····100.0 

YAW·········10.0····20.0····30.0····40.0····50.0····60.0 

 

The most numerous record in the Pcd/h file is the PKTABLE record.  The first line of this 

data type defines the kind of Pcd/h table, the number of curves composing the table, and 

parameters defining the applicability of the table.  After this, the remaining lines of the 

data type define the associated curves.  The first input on a PKTABLE record is the Pcd/h 

table number, K, followed by the identification label, PKTYPE.  Following the label, the 

user provides one or more of the following pieces of information depending on the type 

of table under consideration: 

• WCUT – the smallest mass that will cause damage 
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• DCUT – the smallest gap in front of a component that will result in a front-face 

fire 

• NM – the number of mass curves 

• INFL – a flag for influence mode 

• MFLG – a flag to indicate whether a CMHITS table is in penetration or impact 

mode 

• IANYDB – a flag for determining the applicability of the table 

• LAB1, LAB2 – eight-character labels for the table when it is echoed to the output 

 

The PKTABLE data type is used to input all the Pcd/h tables.  The format of each type of 

kill table is similar; however, the data used to define the actual curves may differ. 

 

 

PCD/H TABLES 

 

The Pcd/h table format used for UEDDAM is the piecewise linear impactor weight table 

format (WGT). 

 

The two basic forms for Pcd/h input are a piecewise linear table or an exponential curve.  

Piecewise linear tables can be input as a single table or as multiple sets of tables.  The 

exponential function is included but is rarely used.  Each PKTABLE type requires 

different numbers of tables and curves within each table. 

 

A piecewise linear Pcd/h table is described by a series of up to seven straight lines (i.e., 8 

velocity versus Pcd/h points) per mass curve.  Several mass curves can be entered for one 

Pcd/h table.  An example of piecewise linear Pcd/h curves is shown in Figure C-5. 

 

 
Figure C-5.  PCD/H Curves. 
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Input Data Type:  ENDDATA 

Description:  Defines end of file. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

ENDDATA          

ENDDATA          

C          

 

REMARKS: 

1. The ENDDATA data type is required in the Pcd/h database.  If this record is omitted, 

COVART will report an error and stop. 

2. The ENDDATA data type must be the last record that appears in the Pcd/h file. 

3. Any data that follows the ENDDATA data type in the Pcd/h file will not be 

processed by COVART. 
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Input Data Type:  PKCD 

 

Description:  Defines Pcd/h file code. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

PKCD TCODE         

PKCD PK         

C C         

Parameters Units Description 

TCODE ------ File code compared to CODEP from PKFILE data type in 

MASTER file to ensure correct Pcd/h file is processed 

 

REMARKS: 

1. The PKCD data type is required to appear in the Pcd/h database.  If this record is 

omitted, COVART will report an error and stop. 

2. The PKCD data type must be the first record that appears in the Pcd/h file. 
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Input Data Type:  PKTABLE – WGT 

Description:  Defines piecewise linear Pcd/h table that depends on impactor mass. 

Format, Example, and Data Type: 

 

1 2 3 4 5 6 7 8 9 10 

PKTABLE K PKTYPE(K) WCUT(K) NM  IANYDB(K) LAB1 LAB2 C1 

PKTABLE 12 WGT 10. 10  0 TEST WGT P1 

C I C R I  I C C C 

 

C2 RWT(J) VEL(1) PRK(1) VEL(2) PRK(2) VEL(3) PRK(3) IFLPK C3 

P1 720. 1800. .05 2000. .07 3000. 0.1 0 P2 

C R R R R R R R I C 

 

C4  VEL(4) PRK(4) VEL(5) PRK(5) VEL(6) PRK(6) IFLPK C5 

P2  4050. 0.25 6500. 0.3 7000. 0.48 0 P3 

C  R R R R R R I C 

 

C6  VEL(7) PRK(7) VEL(8) PRK(8)   IFLPK C7 

P3  7500. 0.9 9000. 1.0   1  

C  R R R R   I C 

Parameters Units Description 

K ------ Pcd/h table number 

PKTYPE ------ WGT label identifying the Pcd/h curve 

WCUT grains Smallest mass that will cause damage in the kth Pcd/h table.  

This mass should be as large as possible to reduce the 

computer processing time and to produce Pcd/h values when 

interpolation occurs. 

NM ------ Number of mass curves (maximum of 15 curves) 
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IANYDB ------ Flag for plate debris (Set to 0 for UEDDAM) 

LAB1 ------ Label printed on the first line at the right-hand side of the 

Pcd/h table in the echo file 

LAB2 ------ Label printed on the second line at the right-hand side of 

the Pcd/h table in the echo file 

RWT(J) grains Mass associated with the jth Pcd/h curve 

VEL(I) ft/sec ith impact speed for the jth Pcd/h curve 

PRK(I) ------ ith Pcd/h value for the jth Pcd/h curve 

IFLPK  ------ Flag that indicates whether this line continues or ends a 

Pcd/h curve  

0 continues the Pcd/h curve 

1 ends the Pcd/h curve 

C1 - C6 ------ Continuation line flag C1 must be identical to the character 

string and position (left-justified) of C2, C3 should be 

identical to C4, and C5 should be identical to C6. 

REMARKS: 

1. The impact speeds must be input as increasing values for proper interpolation 

between points in the curve, and no two impact speeds may be the same for any one 

curve. 

2. The impact masses must be input as increasing values for proper interpolation 

between points. 

3. Each new mass index starts on a new data line.  This represents the beginning of a 

new curve. 

4. There must be at least two, but not more than eight, pairs of values for VEL and 

PRK for each mass curve. 

5. If more than three pairs of speed and Pcd/h combinations are input, additional lines 

are required. 

6. Parameters PKTYPE, WCUT, INFL, and IANYDB are each stored in an array 

subscripted by the Pcd/h table number K. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
APPENDIX D 

 

EXCERPTS FROM THE REPORT “UNCONTAINED ENGINE DEBRIS 

ANALYSIS USING THE UNCONTAINED ENGINE DEBRIS DAMAGE 

ASSESSMENT MODEL” 
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The following is an excerpt from the following report:  Seng, Silvia, John Manion, and 

Chuck Frankenberger, Uncontained Engine Debris Analysis Using the Uncontained 

Engine Debris Damage Assessment Model, DOT/FAA/AR-04/16, NAWC-WD, China 

Lake, California, September 2004.  Included are the results from two generalized 

UEDDAM analyses:  one for a generic business jet and one for a generic twin-engine 

aircraft. 

 

DISCUSSION 

 

OBJECTIVE 

 

The objective for this study was to demonstrate the capabilities of the UEDDAM code.  

Through this process, an analysis was conducted that illustrates how UEDDAM can be 

used to address current Advisory Circular (AC) 20-128A methodologies, in addition to 

providing a design tool to conduct trade studies aimed at mitigating the uncontained 

engine debris hazard.  Two generic aircraft models were defined:  a generic twin-engine 

aircraft and a generic business jet.  To ensure that the generic aircraft were representative, 

industry input was used in the construction of the FASTGEN geometric target models, 

fault trees, and multiply vulnerable component list. 

 

 

DEFINITIONS AND NOMENCLATURE 

 

Several terms are used in this report to describe the analysis that are not self-explanatory.  

This section will discuss what is meant by these terms.   

 

A rotor burst analysis is conducted using several debris scenarios:  a single disk segment, 

single blade fragment, or multiple fragments.  The debris category is a name used to 

define the type of analysis being conducted (i.e., for a single disk analysis the debris 

category used is DISK1, for multiple fragments, the debris category is MULTI).  The 

debris types are a description used by UEDDAM to distinguish how the fragment will be 

defined.  There are three debris types:  small fragments, large fragments, and sections.  

So, a single small fragment debris category (SINGL) may consist of a single small 

fragment, and a multiple fragment debris category (MULTI) may consist of a 1/3 disk 

section and 12 small fragments. 

 

The small fragment debris type refers to fragments that are small enough to be 

sufficiently defined by a single shotline.  The size of these fragments are described by 

height, width, and thickness.  The large fragments are also described by height, width, 

and thickness, but are too large to for a single shotline to represent the path of the debris.  

Therefore, a grid is constructed within the fragment presented area.  The grid spacing is 

defined by the user in the debris record.  The center of the grid is the centroid of the 

presented area.  The grid lines are parallel lines mapped relative to the fragment centroid.  

A shotline will originate at each point on the resulting grid.  The shape of the section 

debris type is defined by the arc of the segment (in degrees) and the inner and outer radii.  
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The grid spacing is defined in the debris record and are mapped as parallel gridlines and 

drawn outward from the centroid (Figure D-1). 

 

UEDDAM was run for each combination of flight phase, aircraft engine, rotor stage, and 

uncontained debris category.  Each of the individual runs will be referred to as a case.  A 

run will refer to a single execution of UEDDAM whereas a production run will indicate 

all the runs required to produce the output for all combinations of flight phase, rotor, 

engine, and debris category for a given aircraft configuration.   

 

 
Figure D-1.  Shotline Grid Definition. 

 

 

The probability of catastrophic hazard to the aircraft will be denoted as PHAZ.  PHAZ is the 

1-in-20 value specified in the AC 20-128A and is specific to a particular debris category.  

The rotor, flight phase, or engine average probability of hazard will be identified by 

describing the level of averaging and Phaz (lowercase subscript), for example Engine 1 

average Phaz. 

 

 

ANALYSIS APPROACH 

 

ANALYSIS OBJECTIVES 

 

The objectives for the analysis for the two generic aircraft were to determine the 

probability of catastrophic hazard given an uncontained engine event (PHAZ) for each 

aircraft, determine the major contributors to the PHAZ, and perform trade studies to 

minimize the contributions of those components to the PHAZ. 

 

 

TARGET DESCRIPTIONS 

 

The aircraft geometric representations are called the geometric target models and were 

created using FASTGEN4.  Some of the components were excluded from the geometric 

target models because the component was noncritical and did not significantly reduce the 

fragment velocity, such as the interior wall panels. 
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Generic Business Jet 

 

The geometric target for the GBJ comprises 11.5 ft behind the aft pressure bulkhead 

(Figure D-2) of the aircraft.  The engines are small, high-bypass ratio turbofan engines 

mounted on the aft fuselage.  Each engine consists of nine rotors: the fan and low-

pressure compressor (LPC1 and LPC2); three-stage, high-pressure compressor (HPC1, 

HPC2, and HPC3); one-stage, high-pressure turbine (HPT1); and a three-stage, low-

pressure turbine (TLP1, TLP2, and TLP3—the nomenclature was changed because LPT 

is a computer-reserved word).  Some of the components included in the target model are 

the fuselage frames, longerons, skin, engine beams, fuel supply lines, fuel motive lines, 

control cables, nacelles, engine case, and the aft pressure bulkhead.  The forward fuselage 

was not included because the forward-most spread angle did not intersect any 

components forward of the aft pressure bulkhead. 
 

 
Figure D-2.  Generic Business Jet Target Geometry. 

 

 

Generic Twin-Engine Aircraft 

 

The GT geometric target consisted of the fuselage of a wing-mounted twin-engine 

aircraft (Figure D-3).  The engines are large, high-bypass ratio turbofans.  Each engine 

consisted of 18 rotors.  The systems included in the geometric target model are the fuel, 

hydraulic, and flight control systems, including pumps, actuators, mixers, cables, and 

supply and return lines.  Fuselage and wing fuel tanks were included as well as the fuel 

motive lines.  The aircraft structure included frames and longerons in the fuselage and a 

Control Cables

Fuel Lines

Engine Case

Nacelle

Engine Rotors (Fan)
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more complex wing structure.  Because damage to a spar web did not result in failure of 

the spar unless several other components were damaged as well, the spars were split into 

the upper spar cap, web, and lower spar cap.  Although seating and main cabin furniture 

and fixtures were not included, the cabin floor was included. 

 

The fuselage skin was created in a three-dimensional computer-aided design (CAD) 

program.  Small triangles were used to provide the contours of the skin when converting 

the skin from the CAD program to FASTGEN4 geometry.  The number of elements 

(triangles) generated by the conversion often result in large file sizes of as much as two 

orders of magnitude greater than those constructed using the simple geometric shapes 

available in FASTGEN such as cylinders, cones, and rectangular boxes.  Therefore, many 

of the components for the GT were created using the FASTGEN4 primitives. 

 

 
Figure D-3.  Generic Twin Target Geometry. 

 

 

ANALYSIS PARAMETERS 

 

The following input parameters and assumptions were used for both the GBJ and GT 

aircraft UEDDAM analyses.   

 

 

Flight Phase Probability of Failure 

 

Rotor burst analyses were conducted for catastrophic hazards to the aircraft.  Because 

component criticalities can vary with flight phase, the criticality of each component was 

defined for each flight phase.  The breakdown of flight phases was based on the accepted 
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industry standards for a commercial aircraft flight profile but reduced to six phases (a 

COVART limitation).  The modified phase grouping was based on common component 

phase criticalities and is slightly different for the GBJ and GT.  Table D-1 describes the 

phases of flight and flight phase probability of failure. 

 

TABLE D-1.  Flight Phases and Flight Phase Failure Distribution 

Generic Business Jet Generic Twin-Engine Jet 

Phase of Flight 

Flight Phase Failure 

Distribution Phase of Flight 

Flight Phase Failure 

Distribution 

Takeoff to before V1 35% Takeoff to before V1 35% 

V1 to First Power 

Reduction 

20% V1 to First Power 

Reduction 

20% 

Initial Climb 22% Climb 22% 

Final Climb, Cruise, and 

Initial Descent 

14% Cruise 14% 

Approach and Landing 7% Descent 3% 

Landing Roll 2% Approach, Landing, 

and Reverse 

6% 

 

 

 

Debris Characteristics 

 

The Debris Fragment Model (DFM) for high-bypass ratio turbofan engines (Table D-2) 

was developed by NAWC-WD during previous Aviation Rulemaking Advisory 

Committee (ARAC) activities and was used to determine debris characteristics for both 

the GBJ and GT engines in this report.  The DFM is based on historical data from in-

service rotor burst events.  In most cases the DFM trajectory spread angles exceeded the 

minimum requirements of the AC 20-128A.  A comparison of the DFM and AC 20-128A 

fragment characteristics was conducted using the GBJ model geometry.  The results are 

discussed later in this report.  The latest version of the debris fragment model is included 

in Appendix E. 
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TABLE D-2.  High-Bypass Ratio Engine Fragment Characterization 

Component 

Number of 

Fragments 

(Average/Event) 

Normalized 

Size 

Weight lbs 

(% of total) 

Velocity 

(ft/sec)at 

0o plane 

Spread Angle 

Degrees 

Fan      

Blade Event (Helical) 5.25 25% 1.8 (20%) 713 +21 to -35 

Disk Event      

Blades 27.7 25% 1.8 (20%) 813 +15 to -30 

Disks 3 100% 45 (38%) 303 +2 to -3 

      

Compressor      

Blade Event      

Spacer – Rim      

Blades 6.5 100% 0.25 (100%) 642 +15 to -3 

Rim 2 80% 6.0 (30%) 523 +15 to 0 

Disk Event      

Blades 4.5 50% 0.19 (76%) 609 +5 to -25 

Disk (Large 

Fragment) 

1 85% 9 (45%) 380 +5 to -5 

Disk (Intermediate 

Fragment) 

1 30% 4 (20%) 385 +10 to -5 

      

HP Turbine      

Blade Event 10 80% 0.25 (100%) 337 +20 to -50 

Spacer- Rim      

Blades 11 85% .25 (100% 871 +15 to -40 

Rim 1 50% 10 (83%) 967 0 to -12 

     Spacer 1 50% 2 (16% ) 781 +20 to -37  

Disk Event      

Blades 12 70% .25 (100%) 871 +15 to -60 

Disk 1 30% 10 (8%) 967 +3 to -11 

      

LP Turbine      

Blade Event 6.5 50% .25 (37%) 212 +20 to -45 

Blade Event Last Stage 6.5 50% .25 (37%) 200 0 to -75 

Spacer- Rim      

Blades 5 15% 0.05 (7%) 326 +6 to -20 

Rim 1 20% 11.3 (9%) 505 +5 to -5 

Disk Event      

Blades 5 28% 0.25 (20%) 313 +5 to -40 

Disk 1 20% 18 (15%) 535 +3 to -5 

+ angles are forward, - angles are aft of the rotor plane of rotation 

Note:  See Appendix F for the latest fragment model, this table has been superseded. 

 

 

The DFM describes the debris fragments in nondimensional terms for each engine 

section, such as fan blade size as a percentage of the full blade length.  These 

nondimensional values were applied to each rotor to determine the size and mass of the 

fragments used in this analysis.   
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The following debris categories were used in the analysis of the GBJ and GT.   

 

• DISK1—a single 1/3 disk section of the rotor representing a disk event 

 

• MFRAG—an intermediate sized fragment representing a rim event 

 

• MULTI—a single 1/3 disk section and multiple small fragments representing a 

disk event 

 

• SINGL—a single small fragment, representing a blade event 

 

• DSKFR—a single small fragment and a single 1/3 disk section 

 

• MULTI3—three 1/3 disk fragments and associated small fragments for 1 of the 1/3 

sections 

 

At the recommendation of the 28th ARAC, Power Plant Installation Harmonization 

Working Group (PPIHWG) meeting participants, the last two debris categories were not 

used for the trade studies.  This reduction in debris categories was made to reduce the 

number of analysis cases. 

 

The debris characterization for the AC 20-128A suggested debris categories uses the 

same spread angles for all engine sections.  (Figures D-4 and D-5 show the spread and 

release angle definitions.)  The AC 20-128A recommends that spread angles of 3º be 

used for 1/3 disk cases, 5º for intermediate sized fragments (rim events) and 15º for 

small fragments (blade events).  The DFM spread angles are defined by engine section 

for each debris category.  Table D-3 shows a comparison of the DFM-recommended 

debris characterization and the AC 20-128A recommended values.  In most cases, the 

DFM spread angles are larger than the FAA recommendations; however, the three boxes 

highlighted in table D-3 (1/3 disk and intermediate fragment events for the fan and the 

small fragments from the compressors spread angles) indicate spread angles lower than 

those suggested by the AC 20-128A.  Also, in some cases, the DFM suggested angles are 

shifted forward or aft of the existing AC 20-128A values.  However, because of the 

overlap in the hazard zones of multiple rotors, the overall coverage for the DFM spread 

angles is greater than that of the AC.   
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Figure D-4.  Forward and Aft Spread Angle Definition. 

 

 

 

Figure D-5.  Translational Angle Limits Definition. 
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TABLE D-3.  Comparison of DFM and AC 20-128A Spread Angles 

 Disk Event 

(1/3 Disk) 

Rim Event 

(Intermediate Fragment) 

Blade Event 

(Small Fragment) 

DFM AC20-128 DFM AC20-128 DFM AC20-128 

FAN +2o/-3o 

+3o/-3o 

+2o/-3o 

+5o/-5o 

+21o/-35o 

+15o/-15o 
LPC 

+5o/-5o +10o/-0o +15o/-3o 
HPC 

HPT +3o/-11o +0o/-12o +20o/-50o 

LPT +3o/-5o +5o/-30o +20o/-45o 

 

 

Near-Field Components 

 

UEDDAM uses the near-field file to list event-engine specific components that are close 

to the engine (within the nacelle).  The DFM defines fragment velocities after exiting the 

nacelle; therefore, the nacelles, engine case, and engine-mounted accessories were placed 

in the near-filed file.  Thus, those components defined in the near-field file do not reduce 

the energy of the debris fragments.   

 

 

Auto-Fail Components 

 

UEDDAM uses the autofail file to define an event-engine specific list of components that 

would be nonfunctional as a result of an uncontained engine event.  For example, 

generators that are run by the engine or other accessories dependent on bleed air may not 

function following a rotor burst, even if they were not hit by debris.  The rotors and 

critical engine-mounted accessories for each aircraft were listed in the autofail file. 

 

 

Probability of Catastrophic Hazard Given a Hit (Phaz/h) 

 

A Failure Modes and Effects Analysis was used to identify critical components and aid in 

a fault tree analysis.  The fault tree analysis was then used to aid the definition of 

multiply vulnerable groups.  The fault tree in Figure D-6 reflects a single phase of flight 

of the GBJ.  This type of analysis was repeated for each phase of flight for both aircraft 

examined in this analysis.   

 

Critical components were listed in the JTYPE file and assigned to PK tables.  The PK 

tables, specified in the PK file, define the probabilities of catastrophic hazard, given a hit 

(Phaz/h).  The PK tables consist of several curves that define the component Phaz/h, given 

velocity for fragments of different sizes.  Each critical component is assigned a PK table; 

however, each PK table can be used to describe multiple components.  Using these tables, 

COVART interpolates the Phaz/h of a component for fragments of any size and velocity.  

The Phaz/h combines the probability of component dysfunction, given a hit (Pd/h), and the 

probability of catastrophic hazard, given component dysfunction (Phaz/d). 
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Figure D-6.  Sample Fault Tree (GBJ for V1 to V1 + 30 seconds). 

 

 

A conservative approach was taken for these analyses, and most critical components hit 

by fragments with a velocity greater than 2 ft/s were considered dysfunctional  

(Phaz/h = 1.0).  Larger structural components that were unlikely to be damaged by small 

fragments were defined in a second PK table that specified that only debris fragments of 

7000 grains (1 lb) or larger would result in component dysfunction (Phaz/h = 1.0).   

 

 

OUTPUT 

 

UEDDAM allows the user to select up to eight output files, as listed below. 

 

1. Hazard Summary—The hazard summary file contains the average Phaz of 

all the iterations for each release angle and hazard level (or flight phase), 

the average Phaz for all the release angles swept by UEDDAM, and the 

average Phaz over 360º of sweep of the release angles.  Any angle not 

swept by UEDDAM is considered to have a Phaz of 0.  The two averages 

will be the same if all 360o of possible release angles are swept.   

 

2. Hit Summary—The hit summary file contains the component 

contributions to PHAZ.  The summary contains two averages.  The first set 

of component contribution to Phaz values are for the release angles swept 

by UEDDAM.  The second set of values assume that any angles not swept 

by UEDDAM have a PHAZ of zero and calculate the component 

contributions for a 360º release angle sweep.   
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3. Detail File—The detail file is similar to the hit summary file in that it 

contains the component contributions to PHAZ.  However, the component 

contributions to PHAZ for each iteration are written to this file. 

 

4. Visualizer File—This file is used internally by the UEDDAM Visualizer 

V1.0 and contains shotline information.   

 

5. Intercept File—This file contains component translational and forward and 

aft spread risk angles for each component.  The file contains comma-

separated values and is easiest to understand if opened in Excel.  These 

intercept angles are calculated independently of any of the shotlines. 

 

6. Trajectory File—This file contains fragment release and shotline 

orientation data.  The file also lists the release point (x,y, and z-location), 

and ray orientation (yaw and roll) for each shotline. 

 

7. Error File—The error file contains warnings and errors output by 

UEDDAM. 

 

8. Debugging File—The debugging file contains all the temporary files 

generated by UEDDAM during a run.  This file was intended to be used 

only for troubleshooting. 

 

Because of the number of individual runs required to complete a performance run, only 

the hazard summary and hit summary files are output in these cases.  The other output 

files are useful in troubleshooting and for closer inspection of specific cases.   

 

Each individual run will result in a hazard and hit summary file.  Each of the hazard 

summary files contains a Phaz for that combination of rotor, flight phase, engine, and 

debris type.  At the end of each hazard summary is the average Phaz over a 360º sweep of 

release angles for each flight phase.  A flight phase failure distribution weighted average 

of the flight phase Phaz was calculated for each run resulting in the average Phaz for a 

given rotor and debris type over a full flight envelope.  This was then averaged for each 

engine, and finally, the two engine averages were combined to produce the aircraft  

1-in-20 values.   

 

The hit summary contains a list of components and multiply vulnerable groups (systems 

of redundant components), the average Phaz for each of those components or groups, and 

the SYSTEM Phaz for each run.  The Phaz for each component or group is referred to as 

the component contribution to the SYSTEM Phaz.  The SYSTEM Phaz is the probability of 

catastrophic hazard for the run, the same as the Phaz over 360º release that is reported in 

the hazard summary file.  The sum of all of the component contributions to the Phaz can 

sometimes be greater than the SYSTEM Phaz.  This difference occurs because UEDDAM 

uses the incremental method for determining Phaz along a shotline.  This means that the 

Phaz along a shotline will not exceed 1.0 even if more than one critical component is 

intersected by that shotline.  However, each of the critical components intersected by the 
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shotline will be assigned a Phaz.  So, if two or more critical components lie on the 

shotline, the sum component contributions may exceed the calculated SYSTEM Phaz. 

 

For the purposes of this analysis (and to be consistent with AC 20-128A guidance), the 

component dysfunction, given a hit, for all components was 1.0.  Therefore, the 

SYSTEM Phaz for that iteration will only be affected if that component was the only other 

critical component on that shotline.  Therefore, it is important to look at both the system 

(overall) PHAZ and component Phaz for each configuration. 

 

 

INPUT AND OUTPUT FORMATTING 

 

In addition to UEDDAM, several other programs were used to reduce the user workload.  

Input and output formatting programs were created to automate the process of creating 

the UEDDAM control files and to collect the data from the various output files.  These 

input and output programs were required due to the number of cases that needed to be 

executed for a production run.  For the GBJ, three programs were used.  The first 

program was an input generation program that created all the file structure and control 

files required for a production run as well as input decks for the output program.  The 

second program was a batch file that was created by the input generation program to 

execute UEDDAM for each of the control files it created.  The third program used an 

input deck created by the file generation program to open each output file and copy the 

probability of hazard for each combination of flight phase, debris category, engine, and 

rotor, and write it to a table.  The values from the completed tables were then used to 

perform the 1-in-20 analysis, as specified in the AC 20-128A, appendix 1.  A similar 

process was also used for the GT analysis. 

 

 

ANALYSIS RESULTS 

 

The following section discusses the results of the UEDDAM analysis.  Due to the 

increased size and complexity, fewer trade studies and investigations were performed on 

the GT than the GBJ. 
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GENERIC TWIN 

 

Analysis Results 
 

The results of the first analysis (called original) were presented at the 28th PPIHWG 

meeting.  The participants recommended a series of modifications to the GT to highlight 

specific failure characteristics and better represent in-service aircraft.  The primary 

changes in the model geometry were to lower the engines relative to the fuselage to 

address cross engine debris, and to modify the wing spar criticality to include the damage 

tolerance built into the wing spar and stringer structure.  In addition to aircraft 

modifications, the PPIHWG participants recommended a change in the debris categories 

assessed and the resulting analysis was referred to as the updated baseline analysis.  A 

comparison by debris type of the 1-in-20 results for the original and baseline analyses can 

be seen in Figure D-7.   

 

 
Figure D-7.  Comparison of Overall Averages between Original and Baseline Results. 

 
 

Note that for both the DISK1 and MFRAG debris categories, the original overall 

averages exceed the AC 20-128A criteria for acceptable risk levels for similar debris 

types (see Table D-4), shown as red lines in Figure D-7.  After modifications were made 

to the generic twin engine aircraft, the baseline overall averages of the aforementioned 

debris categories decreased to below the acceptable risk level.  The specific reason for 

this reduction is discussed further on. 
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TABLE D-4.  Summary of Acceptable Risk Level Criteria 
(Extraction of table 1, AC 20-128A) 

 

Requirement Criteria 

Average 1/3 Disk Fragment 1 in 20 (0.050) 

Average Intermediate Fragment 1 in 40 (0.025) 

Average Alternate Model 1 in 20 @  5 Spread Angle (0.050) 

Multiple Disk Fragments 1 in 10 (0.100) 

Any Single Fragment 

(Except for Structural Damage) 
2  corresponding average criterion 

 

Figures D-8 through D-19 provide additional details of the results organized by debris 

category—the odd numbered figures show the results by engine section (averaged over 

both engines), whereas the even numbered figures show the main contributors to 

catastrophic damage (averaged over all engine sections and both engines).  It is important 

to note that for the debris categories DISK1, MFRAG, DSKFR, and MULTI3 (see 

Figures D-8, D-10, D-14, and D-16), the turbine section of the engine contributes the 

most to the overall probability of catastrophic damage in the original analysis due to the 

location of the turbine section with respect to the leading-edge spar.  The debris zone of 

the turbine section intersects the wing leading-edge spar (the original analysis had the 

wing leading-edge spar as critical and singularly vulnerable).  This also explains the 

dramatic drop in the turbine section contribution between the original and baseline results 

for the DISK1 and MFRAG debris categories.  The increased redundancy of the wing 

structure greatly reduces the impact of the turbine section debris.  For the debris 

categories SINGL and MULTI1, it is the fan section that makes the largest contribution 

(see Figures D-11 and D-17).  In fact, for both the original and the baseline analyses, the 

only significant contributor to SINGL debris damage is from the fan section.  This is 

because the fan section is the only section that can produce a large enough fragment to 

defeat critical components. 
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Figure D-8.  Comparison between Original and Baseline Results by  

Engine Section for DISK1. 

 

 

 
Figure D-9.  System Contribution Comparison between Original and  

Baseline Results for DISK1. 
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Figure D-10.  Comparison between Original and Baseline Results by 

Engine Section for MFRAG. 

 

 

 
Figure D-11.  System Contribution Comparison between Original and 

Baseline Results for MFRAG. 
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Figure D-12.  Comparison between Original and Baseline Results by 

Engine Section for SINGL. 

 

 

 
Figure D-13.  System Contribution Comparison between Original and 

Baseline Results for SINGL. 
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Figure D-14.  Original Results by Engine Section for DSKFR. 

 

 

 
Figure D-15.  Original System Contribution Results for DSKFR.  
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Figure D-16.  Original Results by Engine Section for MULTI3. 

 

 

 
Figure D-17.  Original System Contribution Results for MULTI3.  
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Figure D-18.  Baseline Results by Engine Section for MULTI1. 

 

 

 
Figure D-19.  Baseline System Contribution Results for MULTI1. 

 

 

For the three comparable debris categories (DISK1, MFRAG, and SINGL), the decline 

from the original to the baseline results can be explained by the change in wing spar 

criticality (see Figures D-8, D-10, and D-12).  In the original analysis, the left and right 

forward spars were defeated when a large fragment penetrated either the leading-edge or 

trailing-edge spar web.  In the baseline analysis, however, for the left and right forward 
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spars to be defeated, not only would the spar web have to be penetrated, but the top and 

bottom spar caps as well.  In addition, certain combinations of failures of upper and lower 

stringers could cause catastrophic damage.  Thus, by increasing the redundancy of the 

wing spar (and thereby changing its criticality), the overall probability of catastrophic 

damage was reduced. 

 

Note also from Figures D-8, D-10, and D-12 that the rudder shows an increase in 

contribution to catastrophic damage.  This is due to the fact that for the baseline 

condition, the loss of primary rudder control alone on takeoff would be sufficient to result 

in catastrophic damage whereas in the original analysis, it was assumed that, on takeoff, a 

loss of both primary and trim rudder control would be required for a catastrophic event.  

Also note that even though the wing fuel tanks became critical in the baseline analysis, no 

change resulted in their contribution.  This results from the engines being far enough 

forward of the wing fuel tanks that the debris misses the tanks in almost all cases.  Also, 

the impact of any potential hits on the wing fuel tanks are further diminished by the phase 

failure distribution of the descent phase (3%). 

 

In addition to the modifications from the original configuration to the baseline 

configuration, a parametric study (referred to as the alternate analysis) in which the 

engines were lowered from the baseline configuration such that the engine centerline was 

level with the bottom of the aircraft skin was performed to address cross engine debris 

under the fuselage.  This adjustment was made to achieve a GT that represents a broader 

group of in-service aircraft.  A comparison by debris category of the results from the 

baseline and alternate analyses can be seen in Figure D-20.   

 

 
Figure D-20.  Comparison of Overall Averages between Baseline and Alternate Results 

 

 

The red lines in Figure D-20 again represent the AC 20-128A levels of maximum 

allowable probability of catastrophic hazard (see Table D-4) for the debris categories 

DISK1 and MFRAG.  Note that lowering the engines increases the overall probability of 
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catastrophic damage for each debris category assessed, but not enough to raise the 

probabilities to an unacceptable risk level. 

 

As before, Figures D-21 through D-28 provide further details of the results organized by 

debris category; the even figures show the results by engine section (averaged over both 

engines), whereas the odd figures show the main contributors to catastrophic damage 

(averaged over all engine sections and both engines).  Since all debris categories assessed 

were identical, the results for the baseline and alternate analyses are always displayed on 

the same graph.  It is important to note that for the debris categories DISK1 and MFRAG, 

the turbine section of the engine (specifically, the low-pressure turbine for DISK1 and the 

high-pressure turbine for MFRAG) contributes the most to the overall probability of 

catastrophic damage.  For the DISK1 debris categories, the low-pressure turbine section 

debris is large enough to defeat the leading-edge spar in some cases.  For the MFRAG 

debris category (and the DISK1), the high-pressure turbine section debris has enough size 

and energy to defeat redundant structure.  For the debris categories SINGL and MULTI1, 

it is the fan section that makes the largest contribution (see Figures D-22, D-24, D-26, 

and D-28).  However, contrary to the original and baseline analyses, in the alternate 

analysis, the fan section is not the only significant contributor to SINGL debris damage—

the compressor section (including both the high- and low-pressure sections) and the high-

pressure turbine play a nontrivial part as well due to the cross-engine debris effects.   

 

 
Figure D-21.  Comparison between Baseline and Alternate Results by 

Engine Section for DISK1. 
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Figure D-22.  System Contribution Comparison between Baseline and 

Alternate Results for DISK1. 

 

 

 
Figure D-23.  Comparison between Baseline and Alternate Results by 

Engine Section for MFRAG. 
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Figure D-24.  System Contribution Comparison between Baseline and 

Alternate Results for MFRAG.  

 

 

 
Figure D-25.  Comparison between Baseline and Alternate Results by 

Engine Section for MULTI1. 
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Figure D-26.  System Contribution Comparison between Baseline and 

Alternate Results for MULTI1.  

 

 

 
Figure D-27.  Comparison between Baseline and Alternate Results by 

Engine Section for SINGL. 
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Figure D-28.  System Contribution Comparison between Baseline and 

Alternate Results for SINGL. 

 

 

Figures D-22, D-24, D-26, and D-28 show the baseline and alternate system contributions 

to catastrophic damage for the DISK1, MFRAG, MULTI, and SINGL debris categories.  

The DISK1, MFRAG, and MULTI system contributions are very similar.  Specifically, 

the top three contributors for all three debris types are the LONGERNS (defeat of five 

adjacent fuselage structural longerons), ENGINES (defeat of opposite engine via cross 

engine debris), and HYD_SYS (defeat of redundant components in the hydraulic 

systems).  With LONGERNS being the leading contributor to catastrophic damage, a 

thorough investigation of this assumption is warranted.  The results indicate that for the 

larger debris fragments, the aircraft fuselage structural defeat is a major issue.  Note that 

this contribution is based on the assumption that defeat of five adjacent fuselage 

structural longerons would result in catastrophic damage in all flight modes.  The second 

leading contributor for the DISK1, MFRAG, and MULTI debris categories is the defeat 

of the opposite engine via cross engine debris.  The contribution of ENGINES changes 

little from the baseline to the alternate aircraft configuration because the larger fragments 

have sufficient energy to penetrate through fuselage and damage opposite engine.  The 

hydraulics system (HYD_SYS) was the third highest contributor to PHAZ.  This indicates 

that the arrangements of the hydraulic system components align with respect to some of 

the debris trajectories.  For the SINGL debris category (see Figure D-28) the leading 

contributors are the MLG_ACT (critical elements of the main landing gear actuator), 

ENGINES, and HYD_SYS.  For the alternate configuration, the ENGINES become the 

leading contributor revealing the sensitivity of cross engine defeat based on engine 

location for the small fragments. 

 

The increase from the baseline to the alternate results is manifested as increases in 

different system contributions, depending on the debris category considered (see Figures 

D-22, D-24, D-26, and D-28).  For instance, when considering the debris category 
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MFRAG, increases in every system (excluding the fuel and lateral flight control systems) 

contribute to the overall increase in PHAZ from baseline to alternate results.  The debris 

category DISK1, on the other hand, shows a primary increase in contribution from the 

hydraulic system, but is offset by a decrease in the fuselage structure contribution from 

baseline to alternate results.  Similarly, the MULTI1 debris category follows the DISK1 

trend with the exception that the small fragments released in the MULTI1 case 

additionally increase the cross engine defeat probability (ENGINES) for the alternate 

configuration.  Lastly, for the debris category SINGL, the overall probability of 

catastrophic damage increase is concentrated in a nearly eight-fold increase in the engine 

system’s contribution, which is a direct result of exposing the engines to cross-engine 

debris.  The reason that there is not a dramatic increase for the other debris types is that 

the other debris types have enough energy to penetrate through the aircraft body and 

defeat the other engine in the baseline configuration, whereas the SINGL debris does not.  

Exposing the opposite engine has little impact for the other debris types, but allows the 

smaller and lower energy fragments of the SINGL debris category to reach and damage 

the opposite engine.  The turbine blades (in the SINGL debris category) do not contribute 

much to the overall PHAZ of the system for several reasons (see Figure D-27).  This is 

primarily because the relatively small size and energy of the turbine blade fragments.  

Also, the turbines are located in the aft section of the engine and the aft spread angle 

tends to be further aft than other sections increasing the likelihood of the fragments 

missing the opposite engine. 

 

 

Sensitivity Study 

 

The purpose of the sensitivity study was to assess the responsiveness of the PHAZ to an 

increase in engine nacelle thickness using UEDDAM.  The study was performed with the 

alternate geometric configuration and took into consideration three debris categories 

(MULTI1, DISK1, and SINGL).  The nacelle thickness considered in this study were 

selected by estimating the thickness of aluminum required to stop all the large and small 

fragments making up the debris categories MULTI1 and SINGL and applying these skin 

thicknesses to the areas indicated in red in Figure D-29.  The equation used in estimating 

these thicknesses was the COVART fragment penetration equation, which is founded on 

FAA equations that have been modified by China Lake (based on engine debris 

penetration testing).  For example, using the fragment penetration model, the residual 

velocity of the large fan fragment in the debris category MULTI1 can be found to be 

equal to zero after it penetrates a 0.48″ aluminum plate.  Thus, in addition to the original 

0.04″ thickness, the sensitivity study included both the upper and lower limits of 1.1″ 

(corresponding to the large HPT fragment) and 0.12″ (corresponding to the small LPT 

fragment) as well as a midpoint thickness of 0.48″.   
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Figure D-29.  Alternate Geometric Configuration with Engine Nacelles  

Highlighted in Red. 

 

 

Analysis 

 

A summary of the results of the sensitivity study can be seen in Figure D-30.  As 

expected, by increasing the engine nacelle thickness, the probability of catastrophic 

damage is reduced, but the decrease does not occur in a linear fashion.  An increase 0.09″ 

from the original 0.04″ thick aluminum was seen to have a limited effect in reducing the 

probability of catastrophic damage due to MULTI1, however, the increase in nacelle 

thickness to 0.48″ reduces the PHAZ to 0.6%, well below the AC 20-128A 1-in-20 

requirement for a single 1/3 disk segment (see Table D-4).  Although the MULTI1 debris 

category contains multiple fragments in addition to a disk segment, this analysis shows 

that the GT can meet a 1-in-20 requirement to a more damaging debris field.  Because the 

effects of increasing the skin thickness are nonlinear, more data points between these two 

nacelle thickness should be performed for a better evaluation of the optimum nacelle 

thickness to reduce damage from larger fragments.   

 

 
Figure D-30.  Probability of Catastrophic Damage (PHAZ) Vs. Nacelle Skin 

Thickness for Three Debris Types. 
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One notable result was seen for the HPT section of the 1.1″ nacelle thickness case.  The 

DISK1 probabilities for catastrophic damage for the HPTs of engines 1 and 2 were equal 

to zero, but the same probabilities for the debris category MULTI1 were slightly greater 

than zero.  At first this appears counterintuitive because the only difference between the 

two debris types is the addition of small fragments, which should not be able to perforate 

the 1.1″ engine nacelle.  However, upon closer inspection, it was determined that the 

HPT hazard zone for the debris category MULTI1 (highlighted in blue in Figure D-31) 

extends beyond the aft end of the engine nacelle and therefore, the shotlines for some of 

the small fragments were not shielded by the thickened nacelle skin.  Note that had the 

SINGL UEDDAM runs been performed for the 0.48″ and 1.1″ thicknesses, the same 

phenomenon would have been noticed since the fore and aft spread angles for the HPT 

small fragments are the same (+15º and -60º) in both the SINGL and MULTI1 debris 

categories; however, because the values for the SINGL debris case are almost an order of 

magnitude smaller than those of the other debris categories, this phenomenon would be 

insignificant at the scale shown in Figure D-30. 

 

 

Figure D-31.  Engine 1 HPT Hazard Zone for the Debris Type MULTI1 

 

 

As part of the analysis, a rough estimate of the weight of shielding (i.e. the portion of the 

engine nacelles that would be thickened) required to protect the critical components of 

the aircraft from all of the debris categories was calculated.  To do this, it was assumed 

that the engine nacelle could be modeled as a cylinder with a radius of approximately 38 

inches and a uniform thickness.  

 

These rough estimates assumed a single thickness of aluminum along the entire length of 

the engine nacelle.  However, tailoring the nacelle thickness to each engine section and/or 

using more advanced materials (i.e., Titanium, Kevlar, Spectra, S-glass, etc.) could 

dramatically reduce the weights listed in Table D-5.  For example, Table D-6 shows the 

thickness and weights of titanium (density = 0.163 lb./in3) that would give the same level 

of protection as those thicknesses of aluminum in Table D-5 against a 1.8 lb fan blade 

fragment of the MULTI1 debris category.  Note that to estimate the net weight increase 

of each thickness of titanium, you must subtract the weight of the corresponding 

thickness by the weight of the 0.04″ of aluminum and then multiply by 2.  For example, 

the net weight increase for the 0.064″ thickness of titanium is 2*(52-20) = 64 lbs. 
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TABLE D-5.  Volumes and Weights for Each Engine of Required Shielding for 

Different Engine Nacelle Thicknesses 
 

Thickness of Al 0.04 in. 0.12 in. 0.14 in. 0.48 in. 1.1 in. 

Volume (in3) 200 600 700 2400 5500 

Weight (lb.) 20 59 69 235 538 

 

 

TABLE D-6.  Equivalent Volumes and Weights of Titanium for each Engine 
 

Thickness Al 0.04 in. 0.12 in. 0.14 in. 0.48 in. 1.1 in. 

Weight Al (lb.) 20 59 69 235 538 

Thickness Ti 0.02 in. 0.055 in. 0.064 in. 0.22 in. 0.51 in. 

Weight Ti (lb.) 15 45 52 180 412 

 

 

Figure D-32 shows how the system contributions change based on engine nacelle 

thickness.  The analysis results indicate that the contribution to PHAZ from cross-engine 

debris damage (ENGINES) is slightly minimized by a nacelle thickness of 0.12″ but is 

almost eliminated at 0.48″.  Somewhere between a nacelle thickness of 0.12″ to 0.48″ the 

ENGINES contribution is significantly impacted.  This equates to a weight of aluminum 

of somewhere between 78 and 430 lbs (50 and 320 lbs of titanium, respectively).  

 

 
Figure D-32.  System Contribution Vs. Engine Nacelle Thickness. 
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Generic Twin Conclusions 

 

The UEDDAM analysis of the GT shows that the aircraft has an overall average PHAZ due 

to the single disk segment debris category (DISK1) of 0.043 for the baseline 

configuration and 0.044 for the alternate (engines lowered) configuration.  This is below 

the AC 20-128A acceptable value of 0.050 (1-in-20) for the single 1/3 disk fragment and 

for the average alternate model.  Note that the DISK1 debris model (see Table D-2) 

varies the fore/aft spread angle based on the engine section of the release, which is more 

representative of actual debris distributions than the AC 20-128A models.  Also note that 

the DISK1 debris model covers a larger fore/aft spread than either the single 1/3 segment 

or the alternate models of AC 20-128A.  While the UEDDAM DISK1 model differs 

slightly from the AC 20-128A models, it is more representative of a real 1/3 disk segment 

event and addresses the intent of the AC 20-128A models.  Therefore, based on the 

assumptions of this analysis, the GT meets the FAA requirements for the uncontained 

engine debris risk for the single 1/3 disk fragment and the alternate debris model. 

 

The UEDDAM analysis of the intermediate fragment (MFRAG) shows an overall PHAZ 

of 0.013 and 0.016 for the baseline and alternate aircraft configurations, respectively.  

This is well below the AC 20-128A acceptable value of 0.025 (1-in-40) for the 

intermediate fragment.  Note that the MFRAG debris model (see Table D-2) also varies 

the fore/aft spread angle based on the engine section of the release, which is more 

representative of actual debris distributions and covers a larger fore/aft spread than the 

intermediate fragment model of AC 20-128A.  In addition, the MFRAG masses exceed 

1/30 of the corresponding bladed disk masses, which is the AC 20-128A required size for 

intermediate fragments.  While the UEDDAM MFRAG model differs slightly from the 

AC 20-128A model, it is more representative of a real intermediate fragment event and 

addresses the intent of the AC 20-128A model.  Therefore, based on the assumptions of 

this analysis, the GT meets the FAA uncontained engine debris risk requirements for the 

intermediate fragment. 

 

This study did not investigate the multiple disk fragment model discussed in AC 20-

128A; therefore, conclusions as to the ability of the GT to meet the AC 20-128A 

requirements cannot be drawn without further analysis.   

 

The alternate aircraft configuration (engines lowered) increased the catastrophic risk 

probabilities for all four debris categories assessed and is, therefore, a less preferred 

option, although this increase did not exceed any AC 20-128A requirements.   

 

Although the design meets the AC 20-128A requirements, there are some trends in the 

data that identify areas for improvement to reduce the risk of uncontained engine events.  

For the DISK1, MULTI, and the MFRAG debris categories, the three leading 

contributors to catastrophic damage are, the fuselage longerons, engines, and hydraulic 

system.  By toughening the fuselage structure, a great reduction in risk can be achieved.  

While the engines are the second leading contributor, other than moving the engines 

farther apart or adding shielding, not much else can be done to reduce their contributions.  

Rerouting the hydraulic system and adding additional redundancies can achieve a 
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moderate reduction in risk.  The SINGL debris category risk values are extremely low 

and can be further reduced through shielding.  In fact, shielding can potentially lower the 

risk values for all debris categories, but imposes a cost in terms of weight.   

 

The nacelle skin thickness sensitivity study showed a significant reduction in risk to 

uncontained engine debris could be achieved through shielding alone.  For example, by 

increasing the engine nacelle thickness from 0.04 to 0.14 inch, even the MULTI1 debris 

type catastrophic risk value is expected to decrease to the 1-in-20 value.  A rough 

estimate shows that the increase in weight for this reduction would be approximately 100 

lbs using aluminum to provide the shielding.  By optimizing the nacelle thickness based 

on engine section, and using advanced armor materials, the weight penalty could be 

reduced. 

 

 

GENERIC BUSINESS JET 

 

Convergence 

 

Two approaches were taken in examining the convergence for the GBJ runs.  The first 

examined only the 1-in-20 analysis values.  However, as stated previously, the individual 

results for each case are also significant.  Therefore, the fan Phaz convergence was also 

examined.   

 

A random seed is specified by the user in the control file.  This seed is used by 

UEDDAM to generate the shotline trajectories and to allow for repeatability by using the 

same random numbers to generate the shotlines for various runs.  The number of 

shotlines required to conduct an analysis will vary, depending on the size of the hazard 

zone and the target size.  The variance of the Phaz for a given number of iterations 

selected was examined based on three production runs, all of which utilized the same 

configuration and input files, but different random seeds.  The random seeds (A) 2501, 

(B) 7406, and (C) 0003 were used for this comparison.  The random seed 2501 was used 

for all other cases in this analysis and trade study.   

 

The three runs with all parameters except for the random seeds were compared before 

and after the 1-in-20 averaging was performed.  The majority of the cases were within 

20%–30% of an equivalent case.  A few cases resulted in percent differences as high as 

130%–200%.  However, the 1-in-20 average (absolute value) percent difference for the 

aircraft PHAZ was 2.2%, with the largest percent difference in the aircraft PHAZ values for 

the three cases run being 5.6% (see Table D-7).  The percent difference equation used for 

these comparisons was the difference between the two values divided by the average of 

the two values.  Therefore, the large percent difference in the small fragment cases may 

be caused by small changes to the PHAZ being more amplified by the percent difference 

equation than those debris categories with higher PHAZ.   
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TABLE D-7.  Percent Difference for in Aircraft PH for Runs with Three Different  

Random Seeds (A, B, and C) 
 

 Seeds A-B Seeds B-C Seeds A-C 

DISK1 -4.58% -0.70% -3.88% 

MULTI -1.14% -2.20% 1.06% 

MFRAG 3.97% 5.57% -1.60% 

SINGL 1.30% -2.20% 3.50% 

 

 

Due to the large differences in the rotor level Phaz for runs where different random seeds 

were used, a closer examination was done for a single case.  The fan was examined at the 

V1 to V1+30 phase of flight over 360º (72 release angles), specifying only five iterations 

per release angle for each DISK1, MULTI, and MFRAG debris category.  The results for 

the 25 iterations (per release angle) runs for the three random seeds used above were also 

incorporated into the convergence data.  The results for the smaller test case to examine 

convergence matched those of the production run comparison.  Twenty-five iterations 

resulted in a variance of approximately ±20%.  The results of the fan-only comparisons 

indicate that 50 iterations or more result in a variation of less than ±2% for the 1/3-fan 

disk section and intermediate fragment cases (see Figure D-33).   

 

Because the UEDDAM small fragment debris type was used for the SINGL debris 

category, the results were examined separately.  The runs were performed using the same 

configuration as the other debris categories, but 20 iterations were specified since the 

small fragment debris type only uses a single shotline to represent the fragment.  The 

results show that for 120 or more iterations, the variation is less than ±2% (Figure D-34). 
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Figure D-33.  Convergence for Rotor Phaz (Left Engine Fan, V1 to V1+30, 72  

Release Angles) 

 

 

 
Figure D-34.  Convergence for Rotor Phaz (Left Engine Fan, V1 to V1+30, SINGL  

Debris Case, 72 Release Angles) 

 

 

The test for convergence should be run for each rotor of new target model because the 

size of the hazard zones will change, thus changing the number of iterations required to 

fully represent the possible shotlines. 

 

Though the 1-in-20 values were within ± 6% percent difference, the analysis of the fan 

Phaz convergence indicated that the number of iterations used in the analyses were 

insufficient.  Despite these results, only 25 iterations (and 100 for the single small 
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fragment) were used to reduce the run time.  This results in 194,400 iterations for a full 

run on a single configuration.  The number of shotlines for these cases will depend on the 

number of nodes on the shotline grid specified by the debris characterization record for 

segment and large fragment debris types.  Because the purpose of these analyses was 

aimed more towards exercising the code and examining the capabilities, representative, 

but not necessarily certification level, values were needed.  Also the same random seed 

was used for each of the cases for all of the production runs, so the shotlines for each case 

were identical. 

 

 

Baselines 

 

The relative contribution of each component to the overall PHAZ of the system was 

consistent for all of the baseline runs (Figures D-35 through D-37).  Damage to the 

opposite (nonevent) engine was the largest contributor to the aircraft PHAZ for both 1/3 

disk section and single small fragment debris categories.  The engines and the structure 

were the next most vulnerable to catastrophic damage from 1/3 disk sections from the 

first five rotors (Fan, LPC2, HPC1, HPC2, and HPC3).  Debris from the four aft rotors 

(HPT and LPT sections) primarily affect the Phaz contribution of the opposite engine, aft 

engine beam, and structure.  Catastrophic damage from severed fuel supply and fuel 

motive lines (resulting in fire) was also a major contributor to the fan Phaz (rotor) for the 

1/3 disk section debris category. 

 

 
Figure D-35.  One-Third Disk Section Component Contribution to Phaz 

(Left Engine Baseline, V1 to V1+30 Seconds). 
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Figure D-36.  Single Small Fragment Component Contribution to Phaz 

(Left Engine Baseline, V1 to V1+30 Seconds). 

 

 

 
Figure D-37.  Hazard Zone for Fan (Single Small Fragment Debris Category). 

 

 

The turbine section is aft of the fuel supply and motive lines, thus the small fragments 

from the turbine section do not endanger the fuel lines as much as the forward 

(fan/compressor) rotors.  The major contributor to PHAZ for the single small fragment 

cases was damage to the opposite engine.   

 

The fan (LPC1) and HPC3 were two of the largest and heaviest of the engine rotors.  The 

size and positioning of these two rotors make them the large contributors to the overall 

PHAZ.  Although the HPT1 is heavier than the HPC3, it is located aft of the fuel lines and 

does not contribute as much to the engine Phaz. 
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DFM vs. FAA AC 20-128 Spread Angle Specifications 

 

A comparison was conducted between the spread angles for uncontained engine debris 

specified by the AC 20-128 and the DFM.  Because it was used as a baseline for the 

analysis, the DFM was also used as the baseline for this comparison. 

 

In some instances the hazard zone became smaller when the AC 20-128A values were 

used (Table D-8).  For example, the small fragment spread angles for the HTP1 changed 

from 20° forward and -50°aft to ±15° from the plane of rotation (specified by the DFM 

and FAA AC 20-128A, respectively).  The major contributors to the single small 

fragment PHAZ were the fuel lines and the opposite engine.  Reducing the spread angles 

by 40º drastically changed the ratio of critical components to hazard zone area by 

focusing the hazard zone on the two most vulnerable components in the aft fuselage, the 

opposite engine and the fuel lines.  The AC 20-128A suggested spread angles for turbine 

the resulted in a PHAZ of almost double that of the DFM for the both the left and right 

engines.   

 

TABLE D-8.  Debris Spread Angles Comparison 
 

COMP 

SINGL MFRAG DISK1 

Generic 

Uncontained 

Engine Debris 

Fragment 

Model 

AC 20-128 

Generic 

Uncontained 

Engine Debris 

Fragment 

Model 

AC 20-128 

Generic 

Uncontained 

Engine Debris 

Fragment 

Model 

AC 20-128 

Fwd 

Spread 

Aft 

Spread 

Fwd 

Spread 

Aft 

Spread 

Fwd 

Spread 

Aft 

Spread 

Fwd 

Spread 

Aft 

Spread 

Fwd 

Spread 

Aft 

Spread 

Fwd 

Spread 

Aft 

Spread 

LPC1 21 -35 15 -15 2 -3 5 -5 2 -3 3 -3 

LPC2 15 -3 15 -15 10 0 5 -5 5 -5 3 -3 

HPC1 15 -3 15 -15 10 0 5 -5 5 -5 3 -3 

HPC2 15 -3 15 -15 10 0 5 -5 5 -5 3 -3 

HPC3 15 -3 15 -15 10 0 5 -5 5 -5 3 -3 

HPT1 20 -50 15 -15 0 -12 5 -5 3 -11 3 -3 

LPT1 20 -45 15 -15 5 -30 5 -5 3 -5 3 -3 

LPT2 20 -45 15 -15 5 -30 5 -5 3 -5 3 -3 

LPT3 0 -75 15 -15 5 -30 5 -5 3 -5 3 -3 

 

 

The AC 20-128A debris characterization resulted in a larger hazard zone and higher PHAZ 

from damage to the opposite engines and adjacent fuel lines for the LPC section.  The fan 

disk spread angles increased from 2° forward and -3° aft to ±3° and resulted in an 

increase of approximately 15% in the left engine fan Phaz and 5% for the right engine fan 
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Phaz.  Most of the intermediate fragment hazard zones shifted aft or increased in size.  

This shift or increase in hazard zone reduced ratio of presented area of critical 

components to noncritical area resulting in lower PHAZ. 

 

The shotline density and probabilistic nature of the analysis might also have contributed 

to the differences in both the individual run Phaz and aircraft PHAZ variations.  Because the 

spread angle changed, the trajectories generated by UEDDAM are different despite the 

same random seed having been used.  The overall changes for the aircraft PHAZ ranged 

from a 3.1% increase for the 1/3 disk sections to a 25% decrease for the intermediate 

sized fragments.   

 

 

Changes to the Debris Characterization 

 

A second change in the debris file was made to the MULTI debris category.  The original 

debris file using the DFM specified a single small fragment (25% of the blade) associated 

with the disk burst.  Based on the events used to produce the DFM, the events were re-

examined to produce a modified debris model.  The small fragment size was changed to 

two sizes of fragments and fore/aft spread angles (Table D-9).  The number of fragments 

remained the same, but the sizes better represented the historical data. 

 

The larger sized small fragments associated with the compressor disk burst in the 

modified debris file had a smaller spread angle than those in the original debris file.  The 

new hazard zone focused more of the fragments into the area where many critical 

components are located, resulting in a higher PHAZ.  The fan fragments changed in size, 

but not spread angles, and resulted in lower component Phaz. 

 

The two sizes of low-pressure turbine small fragments also resulted in lower component 

Phaz.  The overall result was a 0.0021 (or 3.6%) increase in the overall aircraft PHAZ for 

the new MULTI debris category compared to the run where only one size small fragment 

was used.  Because only the MULTI debris category was modified, all other debris 

category results were unchanged.   
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TABLE D-9.  Changes to MULTI Debris Characterization 
 

Debris 

Category 
Comp 

DFM Modified DFM 

No. of 

Fragments 

Weight 

(lb) 

Forward 

Spread 

Angle 

Aft 

Spread 

Angle 

No. of 

Fragments 

Weight 

(lb) 

Forward 

Spread 

Angle 

Aft 

Spread 

Angle 

MULTI 

LPC1 

1 9.850 2 -3 1 9.850 2 -3 

27.7 0.123 15 -30 
17.7 0.079 15 -30 

10 0.246 15 -30 

LPC2 

1 3.130 5 -5 1 3.130 5 -5 

5 0.044 5 -25 
3 0.040 5 -25 

2 0.048 5 -5 

HPC1 

1 1.970 5 -5 1 1.970 5 -5 

5 0.025 5 -25 
3 0.023 5 -25 

2 0.028 5 -5 

HPC2 

1 1.060 5 -5 1 1.060 5 -5 

5 0.017 5 -25 
3 0.015 5 -25 

2 0.019 5 -5 

HPC3 

1 8.420 5 -5 1 8.420 5 -5 

5 0.204 5 -25 
3 0.367 5 -25 

2 0.448 5 -5 

HPT1 

1 10.470 3 -11 1 10.470 3 -11 

12 0.074 15 -60 
7 0.033 15 -60 

5 0.127 15 -60 

LPT1 

1 2.680 3 -5 1 2.680 3 -5 

5 0.051 5 -40 
3 0.020 5 -40 

2 0.036 5 -40 

LPT2 

1 3.220 3 -5 1 3.220 3 -5 

5 0.071 5 -40 
3 0.028 5 -40 

2 0.050 5 -40 

LPT3 

1 6.710 3 -5 1 6.710 3 -5 

5 0.091 5 -40 
3 0.036 5 -40 

2 0.063 5 -40 

 

 

Pressure Bulkhead Criticality 

 

An investigation was conducted to examine the consequences of making the aft pressure 

bulkhead critical during cruise.  This run emphasized the importance of the debris 

characterization.  The aft pressure bulkhead was critical only during the cruise portion of 

the flight.   
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The Final Climb phase includes final climb, cruise, and initial descent.  The debris file 

used the spread angles from the DFM report.  The DFM spread angles for the fan are 21° 

forward and -35° aft of the plane of rotation.  The FAA AC20-128 only specifies a ±15° 

fore/aft spread angle criteria for uncontained blade (small fragment) events.   

 

The intercept file indicates that the bulkhead would be in the hazard zone for release 

angles of 355° to 50° (±5°) for the left engine and 140° to 210° (±5°).  The pressure 

bulkhead was outside the hazard zone for the remaining rotors. 

 

Because the single small fragment debris case for the fan were the only category and 

engine rotor to effect the pressure bulkhead, the change in PHAZ was very small (1.83e-5) 

and resulted in a change to the baseline PHAZ due to a single small fragment of less than 

0.3%. 

 

 

Skin Thickness Increase 

 

The skin thickness of the aft section of the GBJ was increased to protect the structure and 

opposite engine from uncontained engine debris.  For this trade study, the skin thickness 

was varied from 0.032″ (baseline) to 0.080″ thick aluminum in increments of 0.016″.  

The three configurations of 0.048″, 0.064″, and 0.080″ thick skin resulted in an increase 

of 44 lb, 88 lb, and 133 lb, respectively.   

 

Table D-10 presents a summary of the UEDDAM results for increasing skin thickness.  

Increasing the skin thickness from 0.032″ to 0.08″ thick aluminum reduces the PHAZ by 

37% for the single small fragment debris category.  The increased thickness provides a 

small reduction to the PHAZ for the 1/3 disk case and intermediate fragment debris 

categories.  The percent differences calculated to illustrate the reduction are important 

figures, but can be deceiving.  It is important to realize that though the increased skin 

thickness reduced the PHAZ for the small fragment by 37%, the actual reduction in PHAZ 

(0.00352) is relatively small because the baseline PHAZ was small.  The reduction in PHAZ 

for the 1/3 disk section was almost 0.001 but only reduces the PHAZ by 2.09% of the 

baseline hazard level. 

 

TABLE D-10.  Skin Thickness Study Aircraft PHAZ Results* 
 

Skin 

Thickness 

Baseline 

(0.032″) 

0.048″ 0.064″ 0.08″ Hybrid 

PHAZ PHAZ% PHAZ PHAZ% PHAZ PHAZ% PHAZ PHAZ% 

1/3 Disk 0.04588 0.04587 -0.03% 0.04581 -0.17% 0.04492 -2.09% 0.04547 -0.91% 

Multiple 0.06853 0.06612 -3.52% 0.06452 -5.85% 0.06148 -10.29% 0.06485 -5.38% 

Intermediate 

Fragment 
0.03745 0.03723 -0.58% 0.037 -1.20% 0.03568 -4.74% 0.03623 -3.25% 

Single 

Fragment 
0.00962 0.00838 -12.84% 0.00735 -23.62% 0.00606 -37.03% 0.00614 -36.19% 

 

* PHAZ indicates change from baseline values 
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The small changes in PHAZ to the 1/3 disk section and intermediate fragment debris 

categories are mostly due to reductions in the contribution to PHAZ from the fan (Figures 

D-38 and D-39).  This slight decrease in PHAZ for the first stage fan was largely due to 

reductions in the contribution to PHAZ from structural damage.  Because the engine debris 

must penetrate five out of eight consecutive stringers, the increases in skin thickness 

combined with the larger area of the blade and multiple penetrations, reduces the energy 

of the disk sections.  The increased skin thickness effectively stops many of the small 

fragments from penetrating the fuselage, resulting in a reduction in the contribution to 

PHAZ from damage to the opposite engine for the single small fragment category (Figure 

D-40).  However, the skin thickness modifications have a very limited effect on the 

contribution of the fuel lines to system PHAZ.   

 

 
Figure D-38.  Component Contribution for Increased Skin Thickness 

(1/3 Disk Case, V1 to V1+30 Seconds) 
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Figure D-39.  Component Contribution for Increased Skin Thickness 

(Left Engine, V1 to V1+30 Seconds, Intermediate Fragment Case) 

 

 

 
Figure D-40.  Component Contribution for Increased Skin Thickness 

(Left Engine, V1 to V1+30 Seconds, Single Small Fragment Case) 

 

 

The sensitivity of PHAZ to weight was calculated for each of the cases.  This was done by 

calculating the ratio of the change in PHAZ to weight added to the aircraft by the 

additional shielding.  Based on these three configurations, the sensitivity of PHAZ 

reduction per lb of shielding weight added is highest for the 0.08″ in thick skin.  

However, the addition of 133 lb of shielding to the aircraft due to the increased skin 
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thickness is a source of concern.  Because any one of these modifications to the fuselage 

skin would add considerable weight to the aircraft (44 lb to 133 lb), these results 

emphasized the need to examine more localized armor for critical components.  

 

To reduce the amount of weight added to the aircraft, an alternate configuration, called 

hybrid, was modeled.  The modification to the skin was limited to increasing the skin 

adjacent to the engines to 0.080″ thick aluminum.  The engines are mounted in such a 

way that the tops of the engines are very near the same height as the top of the fuselage.  

Therefore, the area directly between the two engines encompasses almost the entire top 

half of the fuselage (indicated in orange in Figure D-41).  The length of the shielded area 

was 60″ with two sections extended to 70″ to shield the section of the fuel lines inside the 

hazard zone.  Because of the location of the engines, most of the top half of the GBJ 

fuselage was within the cross-engine damage area.  Increasing the skin thickness in these 

areas would provide additional protection to the opposite engine and fuel lines as well as 

the upper fuselage structure.  The results of this modification were within 1% of the PHAZ 

values for the 0.080″ skin for the small fragment and intermediate fragment debris 

categories.  The change in the PHAZ went from -2.09% to -0.91% for the 1/3 disk section 

and from -4.74% to -3.25% for the hybrid skin (a change in aircraft PHAZ of 0.0013 and 

0.0055, respectively).  The additional weight of 16 lb is significantly lower than the 

0.080″ thick skin, which weighed 133 lb, while maintaining a similar reduction in PHAZ 

from small fragments. 
 

 
Figure D-41.  GBJ Model with Localized Skin Thickness Increase (Hybrid) 
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Fuel Line Repositioning 

 

Of the three major contributors to the PHAZ (the engines, structure, and fuel lines), the fuel 

lines are the only components that can be effectively repositioned.  Therefore, rerouting 

of the fuel lines to take advantage of natural protection afforded by the aircraft structure 

was examined.  Because the fuel lines were modeled as long thin cylinders along a simple 

path, the changes were easily made.  The break point locations were moved so that the 

placement of the fuel lines took advantage of the existing structure.  The debris had to 

pass through the pylons, a stringer, and in some cases, the engine beam before striking 

the fuel lines.  The left supply and motive fuel lines were moved down several inches.  

The right fuel and motive lines were also moved down slightly so that they lay along a 

stringer, but still above the pylon (Figure D-42(a) shows the original configuration; 

Figure D-42(b) indicates the modified fuel line routing).   

 

 
Figure D-42.  (a) Baseline 5 and (b) Rerouted Fuel Lines 

 

 

This configuration was only partially successful.  The PHAZ for the single small fragment 

was reduced by 30.59%.  However, the PHAZ for the remaining debris categories, almost 

all of which are several times larger than the single small fragment case, increased (see 

Table D-11). 

 

TABLE D-11.  Comparison of Fuel Line Repositioning Results 
 

 Baseline Rerouted Fl PHAZ PHAZ% 

DISK1 0.0459 0.0527 0.0051 13.31% 

MFRAG 0.0375 0.0394 0.0009 2.87% 

SINGL 0.0096 0.0083 -0.0021 -30.59% 

 

 

Because the incremental method for Phaz calculation was used, multiple critical 

components along the same shotline do not increase the overall PHAZ.  Therefore, if 

damage to only one component along the shotline was prevented, the Phaz may not change 

because the other critical components along that shotline would still be defeated.  Such 

was the case for this configuration.  Because the engines and possibly the opposite engine 
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fuel supply and motive lines lay on the same shotline, the repositioning of the fuel lines 

created a larger vulnerable area.  Moving the fuel lines increased the translational risk 

angles by almost 10° (Figure D-43).  In the original position, the fuel lines were placed 

such that a shotline passing through the fuel lines would likely strike the opposite fuel 

supply lines or the opposite engine.  The larger fragments had sufficient energy to 

penetrate the pylon, skin, and stringers and continued through to cause damage to the fuel 

lines resulting in a fire hazard.  However, only one attempt was made in repositioning of 

the fuel lines.  Because fuel lines cannot entirely be removed from the near-field area, 

industry standard practices suggest reducing the exposure by routing the fuel lines in the 

most direct route possible. 

 

Figure D-43.  Translational Risk Angles for Fuel Lines. 

 

 

Fuel Line Shielding 

 

The critical component shielding portion of this study focused on the fuel lines.  The 

results from baseline runs revealed a high contribution to the PHAZ by damage to the 

opposite engine, the structure, and the fuel lines adjacent to the damaged engine, resulting 

in fire.  The localized shielding is intended to reduce the PHAZ and weigh less than 

increasing skin thickness of the fuselage.  This approach might also be easier to retrofit 

onto existing aircraft. 

 

Baseline runs indicated that damage to the fuel lines from uncontained engine debris 

from the first four rotors were a significant contributor to the overall PHAZ (up to 48%). 

Damage to the fuel lines adjacent to the event engine can result in a fire.  Damage to the 

nonevent engine fuel lines would result fuel starvation and loss of thrust from the 

functioning engine and possibly catastrophic hazard.  However, the adjacent fuel lines are 

larger contributors to the overall PHAZ. 

 

Two plates were used to shield the fuel lines.  One plate was used to shield the horizontal 

section of the fuel lines; and another, smaller, plate was used for the vertical section 

(Figure D-44).  The horizontal plates were approximately 7.5″ wide, tapering to 6.5″ at 

the aft end and approximately 42″ long.  The vertical plate measured 9″ by 4″.  The plate 

thickness and material was varied.  Cases with only one of the two shielding sections 

(horizontal or vertical sections) in place were run to identify which part of the fuel line 

was the greater contributor to the PHAZ.  This was necessary because the fuel and motive 
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lines were all modeled as a single component.  The results indicated that approximately 

13% of the contribution to the total PHAZ comes from the shielding of the vertical section 

of the fuel lines and 29% from the horizontal section, the remaining 58% of the overall 

PHAZ is due to structural or opposite engine damage.   

 

 

Figure D-44.  Horizontal and Vertical Shielding Plates 

 

The penetration equations were used to estimate the plate thickness required to stop the 

uncontained engine debris.  The size, weight, and velocity of the fragments from the third 

stage HPC3 and steel, aluminum, and titanium plates were used for this estimation.  This 

rotor was selected as the test case because it was one of the larger fragments and had a 

high PHAZ relative to the other rotors for the single small fragment case.  The small, 

intermediate, and 1/3 disk fragment characterizations were taken from the debris file.   

 

Aluminum, titanium, and steel plates were considered for the component shielding.  

According to the penetration equation results, the aluminum shields had to be more than 

twice the thickness of either titanium or steel shielding plates to stop the HPC fragments.  

The titanium plates required to stop the various HPC fragments were only slightly thicker 

than the steel plate but much lighter (Figure D-45).   
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According to the penetration equation, a 0.08″ thick steel plate will result in almost the 

same residual velocity for a 0.11″ thick titanium plate (517 ft/s and 519 ft/s, respectively) 

for a given projectile size and orientation.  Runs were conducted for shielding plates 

adjacent to the fuel lines of 0.08″ thick steel and 0.11″ thick titanium fuel.  The resulting 

PHAZ for these shielding plates were within 5% of each other.  Additional runs were 

conducted for 0.20″ thick steel plates and a 0.24″ thick titanium plates adjacent to the fuel 

lines.  For this case, the percent difference was less than 0.1%.  From the results of this 

comparison, one can infer that the results from plates of one material can be applied to 

equivalent plates of a different material. 

 

 
Figure D-45.  Plate Residual Velocity and Weight Comparison (1/3 Disk Section). 

 

 

To evaluate the potential PHAZ reduction from the protecting of adjacent fuel lines from 

fire, a run was conducted with the fuel lines adjacent to the event engine categorized as 

noncritical to represent maximum shielding of the fuel lines.  The probability of 

catastrophic hazard (fire) in the event of a hit (Phaz) for the fuel lines were set to 0 for the 

case labeled Fuel Lines NC (indicating fuel lines Not Critical with no shielding included 

in the target model).  The addition shielding resulted in PHAZ lower than that of the Fuel 

Lines NC configuration in some cases, and in others, the PHAZ was higher than identified 

by the noncritical fuel line case.  The shielding was meant to protect the fuel lines, but 

being located between two engines, it also offered limited protection to the opposite fuel 

lines and nonevent engine.  This placement of the shielding may have resulted in the 

lower than expected PHAZ in some cases.  The cases where the PHAZ was greater the 

noncritical fuel line case may be attributed to the small section of fuel lines between the 

fuselage and engine that was not shielded (Figure D-44). 

 

The aircraft PHAZ for the most effective thicknesses of titanium and steel plates are listed 

below in Table D-12 and plotted in Figure D-46.  The highest ratio of reduction in PHAZ 

per lb of shielding added was for the 0.18″ titanium shielding plates. 
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TABLE D-12.  Aircraft PHAZ from Uncontained Engine Debris for GBJ with Fuel 

Line Shielding Plates* 
 Baseline PHAZ 0.08″ Ti 0.11″ Ti 0.18″ Ti 0.22″ It 0.24″ Ti 

1/3 Disk 0.04588 -0.17% -0.68% -13.67% -19.07% -19.07% 

Intermediate Fragments 0.03745 -3.59% -7.47% -26.65% -26.65% -26.65% 

Single Fragments 0.00962 -37.77% -39.14% -39.14% -39.14% -39.14% 
 

* Percent difference from baseline values 

 

 

 
Figure D-46.  Overall PHAZ for GBJ with Titanium Fuel Line Shielding Plates. 

 

 

The shielding plates reduced the PHAZ for the aircraft by almost eliminating the 

contribution of fuel lines adjacent to the event engine.  The results for a left engine disk 

event with the 0.22″ thick titanium shield indicate no contribution to PHAZ from damage 

to the left fuel lines, a reduction in PHAZ of approximately 0.06.  However, because the 

incremental method for Phaz calculation was used, the effects of this reduction in 

component Phaz are reduced in the system (rotor) and overall PHAZ (Figure D-47).   

 

A significant contribution to the reduction of PHAZ is due to decrease in the component 

Phaz resulting from damage from the fan.  Though the shielding is intended to provide 

protection to the fuel lines, the plates also offer limited protection to opposite engine and 

structure (Figures D-47 through D-49).   

 

The shield did not stop all of the small fragments from damaging the fuel lines.  This may 

be due to the small, unshielded portion of the fuel lines from the fuselage to the engine. 
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Figure D-47.  Component Contribution with Fuel Line Shielding for GBJ 

(Left Engine, V1 to V1+30, 1/3 Disk) 

 

 

 
Figure D-48.  Component Contribution with Fuel Line Shielding for GBJ 

(Left Engine, V1 to V1+30, Intermediate Fragments) 
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Figure D-49.  Component Contribution with Fuel Line Shielding for GBJ 

(Left Engine, V1 to V1+30, Single Small Fragment) 

 

 

General Business Jet Analysis Summary 

 

Although the increased skin thickness was effective in reducing the PHAZ for all the debris 

cases, the increased weight may be prohibitive.  Even a 50% increase in skin thickness 

required the addition of 44 lbs. in the aft section of the aircraft.  The localized shielding 

resulted in a similar reduction in PHAZ but weighed only 16 lb.  However, increasing the 

skin thickness did not reduce the PHAZ for the intermediate fragment to below the 1-in-40 

(0.025) AC 20-128A maximum allowable PHAZ for the GBJ (Table D-10). 

 

The plates were effective in preventing the fuel lines from being severed and, hence, 

possible fires.  Shielding of the fuel lines reduced the PHAZ by up to 39% for the small 

fragment case, a change of 0.0038 to the PHAZ.  The PHAZ for the intermediate fragment 

debris category was reduced by as much as 0.010; this represents a reduction of almost 

27% of the aircraft (baseline) PHAZ debris category (for shielding plates 0.18″ Ti or 

thicker).  This shielding was slightly less effective for the 1/3 disk sections, resulting in a 

reduction of PHAZ of 0.0088 or 19% for the 0.22″ Ti plates. 

 

Although the component repositioning has the potential for the least weight penalty of the 

mitigation strategies attempted, the increase in PHAZ for the larger fragments outweighed 

its success in stopping the small fragments.   

 

For the sensitivity analysis, the results of each type of modification were compared based 

on the reduction in PHAZ per pound of weight added to the aircraft.  The results indicate 

that the 0.22″ Ti plate resulted in the highest reduction in PHAZ per pound of weight added 

to the aircraft for the large and intermediate debris categories (Table D-13).  The 

localized skin thickness increase (hybrid) resulted in the greatest reduction in PHAZ due to 
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the single small fragment debris category, but did not reduce the PHAZ for the 

intermediate fragment to below the 1-in-40 maximum allowable PHAZ.  Also, the baseline 

PHAZ for the single small fragment debris category was several times smaller than those 

of any other debris category examined. 

 

TABLE D-13.  Change in PHAZ per Pound Shielding 

 
PHAZ per lb. Shielding  

DISK MFRAG SINGL Weight (lb.) 

0.18″ Ti Plate -2.83E-04 -4.51E-04 -1.70E-04 22 

0.22″ Ti Plate -3.23E-04 -4.70E-04 -1.39E-04 27 

0.24″ Ti Plate -2.96E-04 -4.31E-04 -1.27E-04 28 

0.080″ Skin Thickness -3.12E-06 -9.19E-06 -2.61E-05 133 

Hybrid (Localized 0.080″ Skin) -2.60E-05 -7.66E-05 -4.68E-04 16 

Hybrid (Localized 0.160″ Skin) -7.62E-05 -1.65E-04 -2.34E-04 32 

 

 

The 0.22″ titanium fuel line shielding plate would constitute 27 lb of additional weight to 

the aircraft, including 3 mounting flanges on each side, and would result in as much as a 

39% reduction in the PHAZ from a single small fragment (Table D-14).  The mounts were 

made of the same material and thickness as the shield and located at the fuselage frame 

locations. 

 

TABLE D-14.  Results for 0.22″ Thick Titanium Fuel Line Shielding Plate 

 Baseline 0.24″ Ti % Difference 

DISK1 0.04588 0.03713 -19.07% 

MULTI 0.06853 0.05817 -15.12% 

MFRAG 0.03745 0.02473 -33.97% 

SINGL 0.00962 0.00585 -39.14% 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

CONCLUSIONS 

 

The results of the generic aircraft analysis show that Uncontained Engine Debris Damage 

Assessment Model (UEDDAM) is a viable tool to assess rotor burst hazard analysis.  

Study results indicate that common aircraft design practices result in acceptable risk 

levels to realistic engine debris.  Even when considering 1/3 disk segment debris 

trajectories out of plane of the disk rotation, values of risk probability were below the  

1-in-20 requirement.  This supports validation of UEDDAM in that the results show 



 

D-52 

common design practices that have been proven in aircraft certification programs that 

meet Advisory Circular (AC) 20-128A minimization intent are also predicted by 

UEDDAM to be within those limits.  While this is not a conclusive validation, it does 

shed a favorable light on UEDDAM.   

 

One of the benefits of UEDDAM over existing manual methods is that UEDDAM 

automates a critical part of the AC 20-128A analysis process.  Automation reduces errors, 

permits standardization, allows for ease of trade studies, and introduces a manageable 

means of evaluating uncontained engine events stochastically. 

 

By using UEDDAM as part of the uncontained engine debris damage assessment process, 

a more accurate and useful analysis can be achieved.  UEDDAM outputs data that allows 

determination of what engine sections are the major contributors to damage and, in 

addition, allows determination of what systems and components are responsible for the 

hazard.  Based on this information, design improvements can be identified and 

prioritized.  Since aircraft system and component contributions can be quantified, design 

improvements can be focused on specific aircraft systems.  This allows for a more 

tailored design process that can consider more than just shielding components.  For 

example, the analysis of the generic twin-engine aircraft (GT) showed that the hydraulic 

system contributed significantly to the hazard.  Simply rerouting hydraulic lines and 

moving components can achieve a measurable reduction in risk.  

 

UEDDAM allows for consideration of segment, intermediate, and small fragment 

trajectories that are out of plane of the rotor rotation.  This goes beyond the common 

manual, infinite energy 1/3 disk segment analysis that only considers segment releases in 

plane with the rotor rotation.  By looking out of the plane, additional vulnerabilities 

associated with a realistic uncontained engine event can be identified and remedied.  

UEDDAM also considers energy reduction of all debris types.  This allows for 

consideration of the inherent shielding effects of major structure, such as landing gear.  

The common manual method of assuming that the debris energy never decreases (infinite 

energy) does not allow for consideration of shielding effects. 

 

UEDDAM allows for parametric studies.  Once the data set has been developed, 

parametric studies can be performed easily by making small changes to the input and 

rerunning UEDDAM.  This automation saves time over manual methods where 

parametric studies must manually repeat the entire analysis process. 

 

Uncontained engine events are highly stochastic in nature.  UEDDAM is designed to 

consider the stochastic nature of uncontained engine events by varying release point, 

debris trajectory, and debris orientation over multiple iterations to give a more complete 

assessment of the threat.  The fore/aft trajectory can be varied uniformly, normally, or 

skewed to allow better representation of real debris. 

 

The UEDDAM visualizer aides in input development and output data analysis.  The 

Visualizer was used in support of this analysis by plotting the components in three-

dimensional space to allow analysis and discussion of the input and output data.  The 
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hazard zone plots allowed easy discovery of the limitation in shielding provided by the 

engine nacelle (trajectories of the turbine section debris escaped aft of the engine 

nacelle).  While not shown in this analysis, the UEDDAM Visualizer creates plots of the 

translational risk angles described in AC 20-128A.   

 

This effort has demonstrated that UEDDAM addresses the industry/Federal Aviation 

Administration need for an analytical tool to conduct rotor burst assessment that includes 

fragment penetration, system level hazard assessment, and multiple debris fragments.  

UEDDAM as a design tool can provide early insight to the rotor burst hazard for a given 

aircraft configuration.  Additionally, trade studies can be performed to conduct 

cost/benefit analyses and minimize the rotor burst hazard.  As a certification tool, 

UEDDAM provides a standardized approach to conduct rotor burst hazard assessment.  

UEDDAM output provides insight to the rotor burst hazard and can be used to develop a 

top level 1 in 20 analysis to address compliance to Code of Federal Regulations.   

 

It is well understood that a rotor burst analysis is a complex analysis.  UEDDAM was 

developed to provide useful tools to aide in conducting the analysis and presenting the 

results.  A UEDDAM Visualizer was developed to allow visualization of the complex 

data and information generated from a UEDDAM run.  It allows visualization of the 

aircraft geometry, debris hazard zones, debris trajectories, probability plots of the hazard 

levels, and translational risk angles.  

 

 

RECOMMENDATIONS 

 

The lessons learned from this study show that UEDDAM has great potential to provide 

uncontained engine debris damage assessment in support of design and certification.  

This study shows promise, but it was performed by the developers who are intimately 

familiar with FASTGEN and COVART.  To get a better gauge of the usefulness of 

UEDDAM, it is recommended that an aircraft manufacturer exercise UEDDAM using the 

personnel that would normally do such analyses. 

 

Use of the UEDDAM visualizer greatly enhanced data preparation and analysis but there 

are areas for improvement within the visualizer.  The user interface is adequate but there 

is room for improvement.  The data displayed in the visualizer was selected by the 

UEDDAM developers in anticipation of what the commercial aircraft manufacturers 

might be interested in.  As part of the UEDDAM exercise described above, it is 

recommended that the aircraft manufacturer attempt to exercise the visualizer and 

document any improvement suggestions. 

 

The rotor burst analysis is a complex process.  UEDDAM provides a means to 

standardize this process.  UEDDAM and its supporting tools are powerful, allowing for a 

wide variety of approaches to support uncontained engine debris damage assessment.  To 

achieve the full power and flexibility of UEDDAM as an analysis tool, many variables 

and inputs must be accurately defined and generated.  It is recommended that, following 

the aircraft manufacturer analysis, analysis guidelines be developed for using UEDDAM.  
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THE GENERIC ENGINE DEBRIS FRAGMENT MODEL TABLES 
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The following is an excerpt from the following report:  Seng, Silvia, John Manion, and 

Chuck Frankenberger, Uncontained Engine Debris Analysis Using the Uncontained 

Engine Debris Damage Assessment Model, DOT/FAA/AR-04/16, NAWC-WD, China 

Lake, California, September 2004.  Included are the debris fragment model tables that 

should be used to aid the user in developing debris characterizations for a UEDDAM 

analysis. 

 

Debris Fragment Model Tables 

 

An uncontained turbine engine debris fragment model was defined using the database and 

fragment penetration tools developed under the FAA sponsored NAWCWPNS 

Uncontained Engine Debris Damage Mitigation Program.  The debris fragment model is 

sub-divided into turboshaft, low bypass ratio (LBPR) and high bypass ratio (HBPR) 

engine categories.  Within each category component failure types are defined and the 

uncontained debris characteristics provided.  The model defines the average number of 

fragments per event, fragment size, velocity and trajectory. 

 

The basis for this model is the Large Engine Uncontained Debris Analysis report and 

Small Engine Uncontained Debris Analysis report.  These reports are based on historical 

event data to define the debris size and trajectories, specific engine characteristics and 

debris penetration analysis to define the fragment velocities.  The event data has been 

analyzed and compiled into a database that can be used to define debris trends for engine 

categories and failure modes. 

 

Fragment size is primarily based on damage (hole size) that has been done on aircraft. 

The damage dimensions were normalized to the engine component dimensions.  For a fan 

blade event, aircraft damage was normalized by dividing the damage length by the fan 

blade length.  Aircraft damage done by disk fragments was normalized by dividing the 

damage length by the disk diameter.  This normalization process provides a realistic 

estimate of the fragment size that caused the damage, and provided a means to scale 

damage from one engine type to another. 

 

The fragment model was developed to encompass a “significant majority” (approxi-

mately 85 % of the data) of the damages to the aircraft in terms of fragment size and 

trajectory angle.  Data excluded were generally small damages at extreme trajectory 

angles which penetrated aircraft secondary structure only.  To develop the fragment 

tables for each engine category and failure mode (e.g., HBPR fan blade failure) the data 

was sorted and plotted in a histogram based on debris size and debris trajectory.  It should 

be noted that the particle sizes represent only those particles that actually struck the 

aircraft, and that the actual event may have produced other fragment sizes and initial 

velocities.  The tables below represent only those particles that were documented as a 

threat to the aircraft. 

 

Fragment velocity is the velocity of the fragment after it exits the cowl/nacelle structure.  

The analytical process defined in the Large Engine Uncontained Debris Analysis report 

was used to calculate the fragment velocity.  The velocity values were based on the initial 
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fragment-centroid velocity value with some resulting attenuation after penetrating the 

surrounding structure.  In the cases of blade failures, a review of numerous fan blade out 

test results provided additional insight to the fragment velocity.  High speed movie 

documentation confirmed that sliding frictional effects of released blade fragments 

against engine case structure as the fragment traveled in a forward helical trajectory 

would reduce their velocities to approximately 75% of the original blade tip velocity.  

This 75% rule was also applied to blade particles in events initiated by disk failure as 

well, to account for blade breakage prior to exiting the case as well as blade particle 

friction.  This analysis was supported by one “data rich” field event where initial 

velocities were known and fragment size and energy were confirmed by aircraft damage 

analysis.  For blade initiated events, blade fragment velocities are based on penetration of 

the engine case, and surrounding cowl structure.  For disk initiated events, blade fragment 

velocities are based on penetration of the engine cowl structure only (assumes the disk 

has compromised the engine containment case).  Large disk fragment velocities 

(fragments weighing more than 10 lbs. are considered large) are based on initial velocity 

only.  Small disk fragment velocities are based on the initial velocity and penetration of 

the engine case and cowling. 

 

Where event data was unavailable for a failure mode for an engine type, the normalized 

debris size and trajectory angles from the other engine type were used.  This was done in 

three cases: 

LBPR compressor spacer-rim was scaled for HBPR compressor data  

LBPR compressor disk data was scaled for HBPR compressor data  

HBPR high-pressure turbine data was scaled for LBPR HPT data 

 

Scaling of the data included accounting for different component dimensions (disk 

diameter and blade length), mass, and rotational speeds. 

 

Normalized Size is the fragment size divided by the blade length or disk diameter 

respectively. 

 

Weight is the debris weight in pounds.  The weight percentage is based on the general 

rotor characteristics defined in the Large Engine Uncontained Debris Analysis report 

Figure 3-5.  Blade weight was divided by the blade weight and disk fragments are divided 

by disk weight.  Disk rim fragments are divided by the disk weight. 

 

Note: The engine fragment characterization tables are based upon engines installed in 

typical nacelle designs of the type certified in commercial transport designs of the 1970’s 

and 1980’s time period.  Nacelle skin thicknesses used for the three engine types to 

determine residual fragment velocities are the following: 
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TABLE E-1.  Nacelle Skin Thickness 

 HBPR LBPR Turboprop & 

Turboshaft 

Fan 3 

 

0.025 Al 

0.025 Al 

0.04 Al 

 

0.04 Al Not Applicable 

Compressor 0.04 Al 0.04 Al Disk 

0.1 Steel 

0.08 Steel 

0.06 Al 

Turbine 0.04 Al 0.04 Al Disks 

0.1 Steel 

0.08 Steel 

0.06 Al 

Blades  

0.06 Al 

 

1. Skin Thicknesses are in inches 

 

2. Turboprop and turboshaft steel skins represent additional ducting and casing around 

the rotating components. 

 

3. For HBPR fan disk events, blade fragments penetrated only the 0.04” Al. 

 

4. For all blade containment case penetration events, the initial velocity is not reduced 

by 25%, and the fragments penetrate a 0.25” Steel case then the cowl. 

 

Note:  The fan blade fragment model was updated to better represent realistic debris 

damage characteristics.  Updates were made to the number of debris for a given debris 

size, weight, velocity, and spread angle. 
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TABLE E-2.  Turboprop Engine Fragment Characterization 

Component 

Number 

of Events 

Number 

of 

Fragments 

(Average/ 

Event) 

Normalized 

Size 

Weight 

(lbs) 

Velocity 

(ft/sec) 

at 0o 

plane 

Spread 

Angle 

degrees 

Fan N/A 

Compressor 

Blade Event 0 --     

Spacer - Rim 3 1      

Blades       

Rim   89% 2.6 731 +5 

Disk Event 1 1      

Blades       

Disk   67% 10.2 580 +5 

HP Turbine 

Blade Event 0      

Spacer- Rim 0      

Blades       

Rim 5 1  50% 0.72 541 +5 to -11 

Disk Event       

Blades       

Disk 3 1  100% 8.38 533 +5 to -15 

LP/PT Turbine 

Blade Event 10  63% 0.1 609 +15 to -15 

Spacer- Rim 10 1      

Blades       

Rim   20% 1.05 662 +5 to -11 

Disk Event 4 1     

Blades       

Disk   68% 4 572 +5 to -15 
+ angles are forward, - angles are aft of the rotor plane of rotation 
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TABLE E-3.  Low Bypass Ratio Engine Fragment Characterization 

Component 

Number 

of 

Events 

Number of 

Fragments 

(Average/ 

Event) 

Normalized 

Size 

Weight Lbs 

(% of total) 

Velocity 

ft/sec at 

0o plane 

Spread 

Angle 

degrees 

Fan 

Blade Event 2 17     

  0 10% 0.07 (2%)  +20 to -10 

  3 20% 0.3 (7%) 907 +20 to -10 

  6 30% 0.8 (19%) 976 +20 to -10 

  3 50% 2.0 (48%) 939 +20 to -10 

  5 100% 4.2 (100%) 748 +20 to -10 

Disk Event 5      

Blades  17     

  6 10% 0.07 (2%) 1102 +25 to -40 

  7 20% 0.3 (7%) 1041 +25 to -40 

  1 30% 0.8 (19%) 4021 +25 to -40 

  2 50% 2.0 (48%) 955 +25 to -40 

  1 100% 4.2 (100%) 762 +10 to 0 

Disks  1 100% 41 (41%) 317 +5 to -4 

Compressor 

Blade Event 2      

Spacer – Rim 2      

Blades  6.5 100% 0.25 (100%) 642 +15 to -3 

Rim  2 80% 6 (30%) 565 +15 to 0 

Disk Event 6      

Blades  7.3 100% 0.25 (100%) 642 +15 to -30 

Disk (Large 

Fragment) 

 1 85% 9 (45%) 334 +5 to -5 

Disk 

(Intermediate 

Fragment) 

 1 30% 4 (20%) 460 +10 to -5 

HP Turbine 

Blade Event 0 10 80% 0.25 (100%) 336 +20 to -50 

Spacer – Rim 0      

Blades  11 85% 0.25 (100%) 871 +15 to -40 

Rim  1 50% 8.5 (7%) 1000 0 to -12 

Disk Event 0      

Blades  12 70% 0.25 (100%) 871 +15 to -60 

Disk  1 30% 10 (8%) 743 +3 to -11 
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TABLE E-3.  Low Bypass Ratio Engine Fragment Characterization (Continued) 

Component 

Number 

of 

Events 

Number of 

Fragments 

(Average/ 

Event) 

Normalized 

Size 

Weight Lbs 

(% of total) 

Velocity 

ft/sec at 

0o plane 

Spread 

Angle 

degrees 

LP Turbine 

Blade Event 5 8.6 50% 0.25 (37%) 378 +15 to -35 

Spacer – Rim 1      

Blades  10 50% 0.25 (37%) 889 +20 to -15 

Rim  1 56% 6.3 (5%) 918 +5 to -5 

Disk Event 5      

Blades  23.4 50% 0.25 (37%) 889 +10 to -70 

Disk  2 100% 70 (58%) 571 +3 to -5 
+ angles are forward, - angles are aft of the rotor plane of rotation 
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TABLE E-4.  High Bypass Ratio Engine Fragment Characterization 

Component 

Number 

of 

Events 

Number of 

Fragments 

(Average/ 

Event) 

Normalized 

Size 

Weight Lbs 

(% of total) 

Velocity 

ft/sec at 

0o plane 

Spread 

Angle 

degrees 

Fan 

Blade Event 

(Helical) 

11 7     

  3 10% 0.33 (3%) 904 +35 to -35 

  2 20% 2.0 (16%) 895 +20 to -45 

  1 30% 3.75 (30%) 877 +20 to -30 

  1 50% 6.24 (50%) 808 +15 to -30 

  0 70% 8.61 (70%)   

  0 100% 12.5 (100%)   

Disk Event 3      

Blades  27     

  10 10% 0.33 (3%) 935 +10 to -30 

  9 20% 2.0 (16%) 928 +15 to -25 

  2 30% 3.75 (30%) 894 +10 to -25 

  4 50% 6.24 (50%) 822 +10 to -20 

  1 70% 8.61 (70%) 796 +10 to -20 

  1 100% 12.5 (100%) 644 +15 to +5 

Disks  3 100% 45 (38%) 303 +2 to -3 

Compressor 

Blade Event 0      

Spacer – Rim 1      

Blades  6.5 100% 0.25 (100%) 642 +15 to -3 

Rim  2 80% 6.0 (30%) 523 +15 to 0 

Disk Event 2      

Blades  4.5 50% 0.19 (76%) 609 +5 to -25 

Disk (Large 

Fragment) 

 1 85% 9 (45%) 380 +5 to -5 

Disk 

(Intermediate 

Fragment) 

 1 30% 4 (20%) 385 +10 to -5 
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TABLE E-4.  High Bypass Ratio Engine Fragment Characterization (Continued) 

Component 

Number 

of 

Events 

Number of 

Fragments 

(Average/ 

Event) 

Normalized 

Size 

Weight Lbs 

(% of total) 

Velocity 

ft/sec at 

0o plane 

Spread 

Angle 

degrees 

HP Turbine 

Blade Event 1 10 80% 0.25 (100%) 337 +20 to -50 

Spacer – Rim 3      

Blades  11 85% 0.25 (100%) 871 +15 to -40 

Rim  1 50% 10 (83%) 967 0 to -12 

Spacer  1 50% 2 (16%) 781 +20 to -37 

Disk Event 5      

Blades  12 70% 0.25 (100%) 871 +15 to -60 

Disk  1 30% 10 (8%) 967 +3 to -11 

LP Turbine 

Blade Event 8 6.5 50% 0.25 (37%) 212 +20 to -45 

Blade Event 

Last Stage 

4 6.5 50% 0.25 (37%) 200 0 to -75 

Spacer – Rim 2      

Blades  5 15% 0.05 (7%) 326 +6 to -20 

Rim  1 20% 11.3 (9%) 505 +5 to -5 

Disk Event       

Blades  5 28% 0.25 (20%) 313 +5 to -40 

Disk  1 20% 18 (15%) 535 +3 to -5 
+ angles are forward, - angles are aft of the rotor plane of rotation 

 

 

The uncontained failure event rates by component set forth in the Table below are taken 

from the AIA PC 342-1, Committee on Continued Airworthiness Assessment 

Methodology (CAAM) Supplemental Report on Turbine Engine Uncontained Events 

dated 5 February 1997.  The event rates cover the period 01/01/1982 through 11/30/96 

and are the most current rates available.  The data used to characterize fragment hazards 

to the aircraft were obtained from all uncontained engine - aircraft events where fragment 

information was available, including those from earlier time periods.  There is no 

agreement in the event counts between these two sets of data and such an agreement 

should not be assumed to exist.  For the Table below the uncontained events for high and 

low pressure compressors were combined under the heading - Compressor.  Similarly, the 

uncontained events for high and intermediate pressure turbines were combined under the 

heading - HP Turbine. 
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TABLE E-5.  Uncontained Event Rate Table 

 Turboprop Low Bypass Ratio High Bypass Ratio 

Component 

Number 

of Events Rate * 

Number 

of Events Rate * 

Number 

of Events Rate * 

Fan 

Blade Event   26 2.2E-7 90 10.1E-7 

Disk Event   8 0.68E-7 4 0.45E-7 

Compressor 

Blade Event 1 0.08E-7 13 1.1E-7 2 0.22E-7 

Spacer – Rim 0  6 0.51E-7 1 0.11E-7 

Disk Event 10 0.84E-7 10 0.84E-7 10 1.1E-7 

HP Turbine 

Blade Event 7 0.59E-7 4 0.34E-7 2 0.22E-7 

Spacer – Rim 2 0.17E-7 0  4 0.45E-7 

Disk Event 18 1.5E-7 0  6 0.67E-7 

LP Turbine 

Blade Event 10 0.84E-7 48 4.1E-7 64 7.2E-7 

Spacer – Rim 0  0    

Disk Event 5 0.42E-7 7 0.59E-7 5 0.56E-7 
*  Per Aircraft Flight 

 

Based on 118.381E+6 Turboprop Aircraft Flights, 118.346E+6 Low Bypass Ratio 

Turbofan Aircraft Flights and 89.269E+6 High Bypass Ratio Turbofan Aircraft Flights in 

this calendar period. 
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DYNAMIC SHEAR CONSTANT (Cs) DEVELOPMENT 
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This appendix contains an excerpt from the following report:  Manion, John, Analysis of 

the Shear Constant (Cs) Used in FAA Ballistic Limit Velocity Equation (DRAFT), 

SURVICE-TR-06-034, SURVICE Engineering, Valparaiso, Florida, September 2006.  

Included is a discussion of the development of the original Cs value used for Aluminum 

in the penetration equations employed by UEDDAM as well as a proposed change to the 

Cs value and what effect this would have on a typical UEDDAM analysis. 

 

 

BACKGROUND 

 

The Federal Aviation Administration (FAA) initiated a research program, the 

Uncontained Engine Debris Mitigation Program (UEDMP), to investigate and determine 

methods to mitigate the damage caused by uncontained engine debris.  Damage from 

such an event is often considerable, but not necessarily catastrophic as long as structural 

integrity is maintained, fires are not sustained, and critical systems do not become 

inoperable.  The UEDMP, managed by the Airport and Aircraft Safety Research and 

Development Division located at the FAA William J. Hughes Technical Center, Aircraft 

Catastrophic Failure Prevention Program (ACFPP), works with industry and government 

to determine possible engineering solutions to reduce injuries and critical damage 

resulting from uncontained engine events.  As part of this program, the Naval Air 

Warfare Center-Weapons Division (NAWC-WD) was tasked to evaluate ballistic damage 

analysis tools and vulnerability (damage) reduction techniques currently in use within the 

Department of Defense (DoD).  From these tools, the Uncontained Engine Debris 

Damage Assessment Model (UEDDAM) was built. 

 

The UEDDAM tool was developed based on DoD vulnerability analysis tools.  NAWC-

WD tasked the SURVICE Engineering Company to design and code the UEDDAM 

application as an aircraft design and certification tool intended to address the uncontained 

engine debris hazard.  The UEDDAM application was built upon the existing DoD tools 

(Computation of Vulnerable Area and Repair Time (COVART) and Fast Shotline 

Generator (FASTGEN)).  These codes were modified to better describe an uncontained 

engine event and to permit unlimited distribution of the tools.  Within the UEDDAM 

application, penetration equations are used to determine the change in state of the 

fragment as a result of impacts to aircraft skin and components along the fragment 

trajectory.  These penetration equations require test data to derive empirical constants.  

 

Testing has provided the fragment penetration characteristics in terms of fragment 

orientation at impact, impact velocity, and fragment residual velocity.  Testing at 

NAWC-WD has been conducted in support of the UEDDAM code, specifically in 

developing the penetration equations and constants to model the impacts of engine fan 

blades.  Three series of tests have been completed to date.  

 

The first test series investigated small (less than 2-in. square) to medium-sized (3-in. by 

8-in.) fragments impacted into aluminum plates and engine cowlings (Ref. F-1††).   

 
†† Ref. F-1.  Manchor, J. and C. Frankenberger, “Engine Debris Penetration Testing,” FAA report, 

DOT/FAA/AR-99/19, June 1999. 
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Performed in 1998, this early testing also investigated the accuracy of several ballistic 

impact prediction methods, accepting both the Joint Technical Coordinating Group on 

Munitions Effectiveness (JTCG/ME), residual velocity (Vr), and ballistic limit (V50) 

equations as reasonable prediction tools for fan blade impacts.  

 

The second series, the following year, investigated small- to medium-sized fragments 

impacted into an actual narrow-body commercial aircraft fuselage, denoted as Fuselage 

Test Phase I (Ref. F-2‡‡).  

 

The third series, in 2000, impacted medium- to large-sized (8-in. by 8-in.) fragments into 

the same fuselage (Ref. F-3§§).  During the fuselage testing, the interaction of various 

aircraft structural elements apparently created some disparity in the accuracy of the 

predictions of the penetration equations.  Analysis of this phenomena determined that the 

V50 equation developed from the FAA Energy Equation was a more effective prediction 

tool for both single skin and complex structural impacts.  As a result of this test series, 

the FAA V50 equation replaced the JTCG/ME V50 equation in UEDDAM.   

 

The FAA Ballistic Limit Equation used in UEDDAM is: 
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where: 

L = Presented area perimeter (m), 

Cs  = Shear constant (Pa), 

t  = Target thickness (m), 

m = Fragment mass (kg), 

θ  = Obliquity angle (degrees), 

V50  = Ballistic limit velocity (m/s). 

 

Following an impact, the residual velocity of the fragment is predicted within UEDDAM 

using the following formula: 
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where: 

Vr, Predicted = Penetration equation prediction for residual velocity (m/s), 

θ  = Obliquity angle (degrees), 

m = Fragment mass (kg), 

t = Target thickness (m), 

Ap = Fragment presented area (m2), 

 
‡‡ Ref. F-2.  Lundin, S., “Engine Debris Fuselage Penetration Testing Phase I,” FAA report, 

DOT/FAA/AR-01/27, September 1999. 
§§ Ref. F-3.  Lundin, S., “Engine Debris Fuselage Penetration Testing Phase II,” FAA report, 

DOT/FAA/AR-01/27, II, August 2002. 



 

F-3 

ρ = Target material density (kg/m3), 

V50 = Ballistic limit velocity (m/s), 

Vi = Fragment initial velocity (m/s). 

 

The test series data was used to empirically derive the shear constant (Cs) in the FAA 

ballistic limit equation.  The method of Cs derivation will be discussed in detail later in 

this report. 

 

Recent analysis of the test series data has brought into question the ability of these 

equations to accurately predict penetration (Vr, Predicted) of the fragments following 

impacts.  Specifically, the methods used to derive the value of Cs and the resultant errors 

in Vr, Predicted have been questioned. 

 

 

PURPOSE 

 

The purpose of this report is to independently review the Cs derivation method and 

investigate alternate methods of deriving Cs from the test data that may reduce the overall 

error and/or increase the confidence in penetration prediction.  Another important issue 

investigated in this report is the sensitivity of UEDDAM results to small changes in Cs 

that may occur by empirically deriving Cs using different methods. 

 

The scope of this analysis is limited to the material 2024 aluminum. 

 

 

DERIVATION OF SHEAR CONSTANT 

 

CURRENT METHOD 

 

The currently accepted value of Cs for aluminum of 276 MPa that is used in UEDDAM 

for penetration calculations was derived using the following methodology. 

 

The penetration test data were used to determine the Cs that would produce the best 

agreement between the actual and predicted residual velocities.  The process used was 

multifold and required a computation of the root mean squared (rms) error (E) and the 

correlation factor (Q), the simple percent error in residual velocities, and a measure of 

conservatism.  An Excel spreadsheet was created that solved the penetration equations for 

all the impact data and then determined an rms error for the Q factors, where Q is defined 

as 
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where: 

Q = Correlation factor 

Vi = Test impact velocity (m/s), 
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Vr, Predicted = Penetration equation prediction for residual velocity (m/s),  

Vr, Test = Test residual velocity (m/s). 

 

This correlation factor describes the difference between measured test residual velocities 

and predicted residual velocities, normalized by the initial velocity, and offset to a scale 

of 1.  Equation 3 produces values between 0 and 2, where a value less than 1 represents 

an under-prediction and greater than 1 represents an over-prediction.  Consequently, a 

value of 1 describes a perfect prediction.  For each material, Q is calculated with respect 

to shot number.  Since Q is a function of residual velocity, only test shots where a 

penetration was both predicted to occur and actually occurred are considered (this turns 

out to be an important distinction, as will be discussed later). 

 

The rms error (E) is defined as: 
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where: 

E = rms error in predictions, 

n = Number of test shots,  

Vi_k = Impact velocity of test k (m/s),  

Vr, Predicted_k = Penetration equation prediction for residual velocity of test k (m/s), 

Vr, Test_k = Residual velocity of test k (m/s). 

 

To derive the appropriate Cs value, a typical iterative technique to search for the 

minimum value of E is used.  This technique starts by setting Cs to an assumed value and 

calculating Vr, Predicted for each test shot using equations 1 and 2 in this report.  Second, E 

is calculated over all of the test shots using equation 4.  Next, a new value of Cs is chosen 

and E is determined.  This is continued until E is minimized.  This process was automated 

with the Solver function in Excel.  Any optimizer solution must be checked for local 

minima conditions since they can lead to false solutions.  After a solution is found, the Cs 

is varied manually to explore the region for false minima.  

 

When the test Vi is lower than the V50, the value of E is excluded from the averaging 

process.  This is done for purely mathematical reasons since the result for Vr, Predicted 

becomes imaginary.  In reality, if Vi is less than V50, the value of Vr, Predicted should be 

zero. 

 

The test data used to estimate the currently accepted value of Cs (276 MPa) covers the 

first test series preformed in 1998 (Ref. F-1), the Fuselage Phase I testing (Ref. F-2), and 

the Fuselage Phase II testing (Ref. F-3).  A summary of the shot identifications used to 

calculate Cs is shown in Table F-1. 
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Table F-1.  Summary of Test Shots Used for Cs Derivation 
 

Test Series Shot I.D. Numbers 

Aluminum Plate Tests (Ref. F-1) 3, 4, 5, 7, 8, 9, 10, 23, 24, 64, 65, 66, 67, & 68 
B-727 Phase I Tests(Ref. F-2) 5, 6, 8, 9, 12, 13, 14, 15, 16, 17, 17.5, 19, 20, 

22, 23, 24, 25, 26.5, 33, 35, 37, 54, 55, 56, 57, 
58, & 59 

B727 Phase II Tests (Ref. F-3) 1, 2, 3.1, 4, 5, 8, 9, 10, 11.1, 12, 14, 15, 16, 23, 
24, 25, 26, 27, 28, 37, 38, 39, 40, 41, & 42 

 

 

The actual test data for the shots listed in Table F-1 are summarized at the end of this 

report (see Tables F-7 thru F-9). 

 

Using the currently accepted value of Cs (276 MPa) and the data from the tests indicated 

in Table F-1, E is calculated to be 0.098 and there exists an average percent error of  

-7.11% over all of the test data. 

 

 

ISSUES WITH CURRENT METHOD 

 

Since some of the Phase I and Phase II test shots hit secondary structure (stringers and 

spars), it was postulated that the value of Cs may have been skewed.  The reason for this 

postulation is that the value of Vr, Predicted for the tests that hit secondary structure assumed 

a material thickness equal to the skin thickness when in reality, the thickness was the skin 

plus the secondary structure.   

 

Previous conclusions in Reference F-3, however, state that the secondary structure was 

not a significant energy absorber and therefore should not skew the data.  If the assertion 

in Reference F-3 is true, then the value of Cs should not change significantly when 

looking only at the data that did not hit the secondary structure. 

 

To address this issue, values of Cs were derived using the existing methodology from the 

aluminum plate tests only (Table F-9) and from all of the test data that did not perforate 

secondary structure.  The test shots that did not hit secondary structure are denoted as 

“skin only” tests in this report.  A summary of the “skin only” tests used to derive Cs are 

shown in Table F-2. 

 

Table F-2.  Summary of “Skin Only” Cs Test Shots 
 

Test Series Shot I.D. Numbers 

Aluminum Plate Tests (Ref. F-1) 3, 4, 5, 7, 8, 9, 10, 23, 24, 64, 65, 66, 67, & 68 
B-727 Phase I Tests(Ref. F-2) 5, 6, 12, 16, 17, 17.5, 19, 20, 23, 24, 25, 35, 

37, 57, 58, & 59 
B727 Phase II Tests (Ref. F-3) 1, 2, 23, 27, & 28 
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The values of Cs, E, and percent error generated from the Aluminum plate tests and the 

“skin only” shots are listed in Table F-3.  For comparison purposes, the currently 

accepted values of Cs, E, and percent error are also shown in Table F-3.   

 

Table F-3.  Values of Cs Derived from Selected Test Shots 
 

Test Series 
Cs 

(MPa) 
E 

Within Data Set 
% Error  

Within Data Set 

Aluminum Plate Tests (Ref. F-1) 255 0.028 -1.19 
“Skin Only” Shots (Test Shots listed in 
Table F-2) 

265 0.066 -3.16 

Currently Accepted Value (Test Shots 
listed in Table F-1) 

276 0.098 -7.11 

 

 

From Table F-3 it can be seen that, depending on which subset of data is used, the value 

of Cs changes.  This could imply that the secondary structure is a significant energy 

absorber and should be considered in the Cs derivation.  This implication, however, 

contradicts the conclusions of Reference F-3 which stated that “these data show that the 

secondary structures are not significant energy absorbers when a small to large fragment 

impacts an aircraft structure.”   

 

To address this issue, a closer examination of the Cs minimization methodology is 

warranted. 

 

From Reference F-3, the solution of determining an appropriate value of Cs uses the 

Excel worksheet Solver function that minimizes the value of E.  This is an automated 

process to search for local minima.  Once the solver finds the minima, the value of Cs was 

varied manually about that point to explore the region for false minima.  It is not clear as 

to how encompassing that search was, so a plot of E versus Cs was performed over a wide 

range of Cs values and is illustrated in Figure F-1.  Note that the plot in Figure F-1 is for 

the entire data set list in Table F-1. 
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Figure F-1.  Graph of E vs. Cs for Test Shots Listed in Table F-1. 

 

 

From Figure F-1, there are clearly other minimums at 310 MPa and 435 MPa that result 

in an RMS error (E) less than the currently accepted value of 276 MPa.  Other interesting 

anomalies from Figure F-1 are the three large discontinuities in the function at Cs values 

of 310, 405, and 435 MPa. 

 

The same plots were made for the aluminum plate tests and the “skin only” tests listed in 

Table F-2 and are shown in Figures F-2 and F-3, respectively. 
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Figure F-2.  Graph of E vs. Cs for Aluminum Plate Test Shots Only. 

 

From Figure F-2, there are other minimums but the one that results in the lowest value of 

E is the Cs value of 255 MPa.  Again, note the large discontinuities in the function at 310, 

405, and 435 MPa. 
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Figure F-3.  Graph of E vs. Cs for “Skin Only” Test Shots. 

 

 

From Figure F-3 there are other minimums but the one that results in the lowest value of 

E is the Cs value of 265 MPa.  Again, note the large discontinuities in the function at 310, 

405, and 435 MPa. 

 

The results in Figures F-1 thru F-3 imply that another value of Cs (e.g., 310 MPa) may be 

better suited to representing the test data.  The value of Cs that results in the lowest 

minima and is consistent throughout the data sets is 310 MPa.  This consistency aligns 

with the assertion that Cs should not vary significantly when comparing shots that hit 

secondary aircraft structure and shots that did not.  The large discontinuity in the E vs. Cs 

functions at Cs = 310 MPa, however, brings into question the authenticity of the minima 

at that point.   

 

A closer look at the data and methodology reveals that the reason for the discontinuity at 

Cs = 310 MPa is that at that point, the value of Vr, Predicted for shot #23 of the aluminum 

plate tests is equal to zero.  Since the predicted residual velocity is zero, the Q value 

associated with Vr, Predicted and Vr, Test is not included in calculating E even though the 

value of Vr, Test is non-zero.  This is as a direct result of the RMS error calculation 

methodology.  Looking at Cs = 405 MPa, a similar observation is made:  the discontinuity 

is due to Vr, Predicted = 0 for shot #66 of the aluminum plate test and is thus excluded from 

the calculation of E.  Finally, the discontinuity at Cs = 435 MPa is due to Vr, Predicted = 0 

for shot #68 of the aluminum plate test data.  Note that because the aluminum plate test 

data is included in each of the data sets in Figures F-1 thru F-3, the discontinuities occur 

at the same Cs values in all three.   
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So, excluding the error associated with a test where Vr, Predicted = 0 but Vr, Test ≠ 0 is not 

valid since there is a real error associated with that prediction that must be accounted for.  

Therefore, we cannot conclude that the minimum at Cs = 310 MPa is any more valid than 

the accepted value of Cs = 265 MPa as both values are based on minimizing error.   

 

 

PROPOSED NEW METHOD 

 

The proposed new method for computing Cs follows the same methodology to calculate 

E and minimizes E with respect to Cs as previously discussed.  The difference is that 

instead of excluding Q values from the E calculation where either Vr, Predicted = 0 or  

Vr, Test = 0, all Q values when either of the two residual velocities are greater than zero are 

included in the E calculation.  Note that if Vr, Predicted and Vr, Test are both equal to zero, the 

respective Q is still excluded from the calculation of E. 

 

Using this new methodology, Figures F-4 thru F-6 were generated for all of the shots in 

Table F-1, the aluminum plate test only, and the “skin only” shots, respectively. 

 

 
 

Figure F-4.  Graph of E vs. Cs for Test Shots Listed in Table F-1 Using the  

Proposed New Method. 
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Figure F-5.  Graph of E vs. Cs for Aluminum Plate Test Shots Only Using the  

Proposed New Method. 

 

 

 
 

Figure F-6.  Graph of E vs. Cs for “Skin Only” Test Shots Using the Proposed  

New Method. 
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From Figures F-4 thru F-6, it can be seen that although there are discontinuities in the 

slope of the data, there are not discreet jumps in the graph of E vs. Cs as was the case 

using the original methodology.  Note also from Figures F-4 thru F-6 that the minimum E 

occurs at a consistent value of approximately 296 MPa regardless of the subset of data 

used.  This is consistent with the assertion that Cs should not vary significantly when 

comparing shots that hit aircraft structure and shots that do not. 

 

Table F-4 summarizes the values of Cs, E, and average percent error for the three data 

sets used to produce Figures F-4 thru F-6. 

 

Table F-4.  Values of Cs Derived from Selected Test Shots Using the Proposed  

New Method 
 

Test Series 
Cs 

(MPa) 
E 

Within Data Set 
% Error 

Within Data Set 

Aluminum Plate Tests 295 0.141 19.50 
Test Shots listed in Table F-2 (Skin Only) 296 0.091 0.22 
Test Shots listed in Table F-1 296 0.105 -5.91 

 

 

Note from Table F-4 that overall, the value of E has an apparent increase over using the 

old methodology.  This is due to the fact that all errors in velocity estimation are 

included, even the errors based on predicting a zero residual velocity. 

 

 

RECOMMENDATIONS 

 

The proposed new method described in the previous section of this report minimizes the 

overall error while allowing for some error in each of the individual predictions.  This 

method also considers all errors where the predicted or actual residual velocity is greater 

than zero and is therefore more complete than the original method.  It is recommended 

that the proposed new method be used to update the value of Cs for all of the material 

types tested to date.  The Cs value for aluminum based on this new method is 296 MPa.  

It is recommended that this new value for aluminum be used in UEDDAM for 

penetration calculations through aluminum. 

 

 

SENSITIVITY OF Cs TO MEASURED DATA 

 

Other factors, besides the methodology, that can affect the value of Cs are errors in the 

measured test data.  These factors are investigated in this section by assessing the 

sensitivity of Cs to the test parameters used to derive the value of Cs.  To do this, 

equations (1) and (2) were simultaneously solved for Cs to obtain the following relation:  
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where:  

Cs  = Shear constant (Pa), 

L = Presented area perimeter (m), 

t = Target thickness (m), 

m = Fragment mass (kg), 

θ  = Obliquity angle (degrees), 

Vr = Residual velocity (m/s), 

Ap = Fragment presented area (m2), 

 = Target material density (kg/m3), 

Vi = Fragment initial velocity (m/s). 

 

From the test data set, a representative test shot that resulted in a value of Cs close to the 

proposed value of 296 MPa was selected for this analysis.  The test shot selected is #67 of 

the aluminum panel testing (see Table F-5). 

 

Table F-5.  Test Parameters for Shot #67 of the Aluminum Panel Test Series 
 

Shot # m (kg) 

Avg. 
Frag 

Length 
(in.) 

Avg. 
Frag 

Width 
(in.) 

Vi (ft/s) Vr (ft/s) L (in.) Ap (in2) θ (deg) t (in) 
Cs  

(MPa) 

67 0.679 7.75 7.38 536 339 16.79 3.66 0 0.25 289.7 

 

 

From this data set, the values of Ap, L, t, Vi, and Vr were each varied by ±20% of their 

original values in 1% increments and Cs was calculated at each point.  Figure F-7 shows a 

plot of the percent change in Cs as a function of the percent change of the selected test 

parameters. 
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Figure F-7.  Sensitivity of Cs to Selected Test Parameters. 

 

 

From Figure F-7, Cs can be seen to be quite sensitive to changes (i.e., errors) in Vi 

throughout the range of values analyzed.  A 20% change in Vi can affect the calculated Cs 

by as much as 80%.  It is therefore of the highest importance to ensure the velocity 

measurements are accurate in the tests.  The material thickness, t, is the second highest 

driver in Cs sensitivity.  As t decreases from the nominal value, Cs becomes more 

sensitive to changes in t.  Therefore, for thin skin, it is very important to accurately 

measure the thickness at the perforation location.  Cs is also quite sensitive to changes in 

Vr.  Like Vi, then, it is important to accurately measure Vr.  A 20% change in presented 

area perimeter, L, can have an equal affect on the value calculated for Cs.  Surprisingly, 

Cs is not very sensitive to Ap in the region analyzed. 

 

Based on this analysis, the most sensitive parameters affecting Cs are Vi, Vr, and t.  It is 

therefore paramount that these parameters be accurately measured from the test data to 

ensure that the value of Cs is accurate.   

 

The value of Cs is least sensitive to the parameters L and Ap.  This turns out to be 

beneficial since it is L and Ap that are most likely to have significant errors.  The values 

of L and Ap are actually derived from measurements taken from high speed film of the 

orientation of the fragment just prior to impact.  These measurements compute the 

projected area and projected perimeter of the fragment onto the material being hit.  In 

actuality, the parameters Ap and L physically represent the area and perimeter of the hole 

but it is assumed that the projected area and projected perimeter of the fragment is 

suitable to represent this area.  The FAA reviewed selected test photographs and 

determined that the actual hole and perimeter produced from the impact did differ from 
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the presented area and perimeter of the fragment in some cases.  The calculated perimeter 

length, L, of the fragment varied on average from the actual perimeter length of the hole 

by about 11%.  This could have an impact on the computed value of Cs of about 10%. 

 

 

SENSITIVITY OF UEDDAM RESULTS TO Cs 

 

With the potential changes in the value of Cs and the uncertainty in the final value, the 

question arises as to the sensitivity of UEDDAM results to changes in Cs.  This section 

describes a preliminary sensitivity study designed to address this question. 

 

 

APPROACH 

 

Due to time and funding constraints, this was a very limited study.  The aircraft used for 

this study was the generic twin-engine aircraft provided in the UEDDAM v3.0 sample 

case data.  A single flight mode and only the first stage of the fan section of one engine 

were assessed. 

 

Three debris sets were investigated; each set assessing eight values of Cs.  This resulted 

in a run matrix of 24 UEDDAM runs.  The value of Cs was varied using the material 

modification input feature made available in UEDDAM v3.0.  Table F-6 summarizes the 

parameters used in this analysis. 

 

Table F-6.  Cs Sensitivity Study Parameters 
 

Parameter Values 

Aircraft Generic twin engine aircraft 

Flight mode Single flight mode = V1 to V1+30s 

Uncontained debris location Stage one of engine one fan section 

Debris 
1) one-third disk segment 

2) One-third disk segment and 28 small fragments 
3) 28 small fragments 

Release parameters 
Releases from 0°-360° in 5° increments 

50 iterations per release point 

Segment grid parameters 
2” main grid 

0.25” hyper-sample grid 

Cs values 

276 MPa 
211 MPa 
247 MPa 
255 Mpa 
265 Mpa 
295 Mpa 
350 Mpa 
476 MPa 

 

 

The three debris sets were intended to cover the spectrum of fragment penetration 

capability.  The one-third disk segment represents the toughest fragment; the 28 small 
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fragments represent the low-end fragments; and the one-third disk segment and 28 small 

fragments represent a mix of fragments. 

 

The Cs values were selected cover the range of values that have been derived from 

various sets of data using various methodologies.   

 

It is expected that the one-third disk segment case should be relatively insensitive to Cs 

due to the ability of the large fragment to perforate easily through aircraft structure.  The 

28 small fragments case should be the most sensitive to Cs changes since the fragment 

energies are more likely to be degraded by aircraft structure.  Finally, it is anticipated that 

the one-third disk segment and 28 small fragments case should be somewhere in between 

the other two cases in terms of Cs sensitivity. 

 

 

RESULTS 

 

UEDDAM was run for each of the three debris types for each of the eight Cs values 

shown in Table F-6.  The results of each of the 24 UEDDAM runs are plotted in Figure 

F-8. 

 

 
 

Figure F-8.  UEDDAM Sensitivity to Cs Results. 

 

 

From Figure F-8, the effect of varying Cs on UEDDAM results over the values assessed 

is clearly very small.  To amplify the differences, the results were also plotted in Figure 

F-9 as a percent change in PHAZ vs. the percent change in Cs. 
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Figure F-9.  Percent Change in PHAZ vs. Percent Change in Cs. 

 

 

From Figures F-8 and F-9, then, the results are as expected.  The only significant impact 

of varying Cs values on UEDDAM results is for the debris set that only includes small 

fragments.  Note, however, that even for the 28 small fragments case, a change in Cs on 

the order of 55%–60% is required for a change in PHAZ of 10%.  The proposed new value 

of Cs (296 MPa) is only 7% different than the current value (276 MPa). 

 

 

CONCLUSIONS 

 

This sensitivity study was extremely limited.  It only considered a single stage of one 

engine and one flight mode.  Therefore, the results can not be treated as conclusive.  A 

much more rigorous study is required to achieve conclusive results.   

 

However, the fact that this limited study achieved results that were expected gives a good 

indication that UEDDAM results should be insensitive to variations in Cs on the order of 

±30% about 276 MPa.  Beyond that value, the UEDDAM results should only be slightly 

sensitive for the smaller fragments.   
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TEST SHOT SUMMARIES 

 

Table F-7.  B727 Phase I Test Shot Summaries (Ref. F-2) 
 

Shot 
# 

m 
(g) 

Frag 
Len 
avg 

(x-axis) 
(in) 

Frag 
Width 
avg 

(z-axis) 
(in) 

Vi 
(ft/s) 

Vr 
(ft/s) 

L 
(in) 

Ap 
(in2) 

θ 
(deg) 

t 
(in) 

FAA V50 
(ft/s) 

 
(Cs=276 

MPa) 

FAA 
JTCG 
plg Vr

~
 

(ft/s) 

(Q-1)2 

5 299.1 7.63 3.00 572 421 12.51 9.74 7.0 0.114 231.89 446.99 0.0021 

6 333.5 9.44 3.00 515 462 6.64 0.77 3.0 0.142 197.37 468.77 0.0002 

8 295.8 7.63 3.00 813 641 6.94 1.41 8.0 0.184 280.96 733.45 0.0129 

9 180.9 4.70 3.00 892 735 7.17 1.74 8.0 0.184 365.18 752.77 0.0004 

12 127.2 4.75 2.75 658 613 5.88 0.53 8.0 0.085 181.11 622.56 0.0002 

13 319.0 7.25 3.00 655 522 7.80 2.68 8.0 0.094 145.75 616.40 0.0208 

14 314.8 8.75 3.00 802 620 9.83 5.72 8.0 0.101 177.92 721.34 0.0160 

15 306.0 7.44 3.00 867 541 9.10 4.55 8.0 0.121 208.02 777.56 0.0744 

16 335.2 8.00 3.00 367 263 9.30 2.10 8.0 0.114 188.47 304.99 0.0131 

17 366.0 7.19 3.00 505 441 7.70 2.52 8.0 0.088 126.52 475.77 0.0047 

17.5 184.6 4.75 3.00 577 505 7.10 1.65 8.0 0.094 182.80 527.10 0.0015 

19 144.9 4.40 3.20 530 497 7.01 0.64 10.0 0.068 149.93 501.39 0.0001 

20 328.2 8.00 3.00 840 833 7.96 2.48 10.0 0.062 96.01 817.03 0.0004 

22 302.5 7.88 2.88 795 725 6.66 1.16 14.0 0.100 150.96 766.81 0.0028 

23 327.5 7.31 3.00 385 327 8.00 2.95 8.0 0.104 161.26 335.28 0.0005 

24 335.2 8.00 3.00 340 243 12.23 7.62 8.0 0.084 159.95 275.88 0.0094 

25 398.1 8.25 3.00 519 484 9.17 4.30 8.0 0.097 146.76 475.02 0.0003 

26.5 334.6 8.88 3.00 574 494 8.13 1.16 8.0 0.060 92.46 561.22 0.0137 

33 327.8 9.50 3.00 687 373 8.84 4.25 8.0 0.200 327.42 539.80 0.0590 

35 327.5 7.31 3.00 811 544 7.51 2.66 8.0 0.184 277.01 713.50 0.0437 

37 340.5 8.88 3.00 799 698 6.69 0.78 8.0 0.197 274.58 735.20 0.0022 

54 317.3 7.70 2.90 470 437 6.51 1.03 8.0 0.086 122.80 447.96 0.0005 

55 317.3 7.70 2.90 472 430 7.15 1.73 8.0 0.070 104.00 452.56 0.0023 

56 328.0 8.00 3.00 373 352 7.08 1.58 8.0 0.054 79.09 360.24 0.0005 

57 343.7 8.88 3.00 399 386 8.06 2.01 8.0 0.060 91.60 382.21 0.0001 

58 343.7 8.88 3.00 495 490 7.47 0.73 8.0 0.079 116.10 477.54 0.0006 

59 328.2 8.00 3.00 608 590 6.84 1.26 8.0 0.137 196.45 561.92 0.0021 
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Table F-8.  B727 Phase II Test Shot Summaries (Ref. F-3) 
 

Shot 
# 

m 
(g) 

Frag 
Len 
avg 

(x-axis) 
(in) 

Frag 
Width 
avg 

(z-axis) 
(in) 

Vi 
(ft/s) 

Vr 
(ft/s) 

L 
(in) 

Ap 
(in2) 

θ 
(deg) 

t 
(in) 

FAA V50 
(ft/s) 

 
(Cs=276 

MPa) 

FAA 
JTCG 
plg Vr

~
 

(ft/s) 

(Q-1)2 

1 509.0 7.00 4.00 478 441 15.18 12.96 0.0 0.074 126.16 424.73 0.0012 

2 419.0 7.00 4.00 503 454 14.11 11.77 0.0 0.079 142.21 438.58 0.0009 

3.1 817.1 8.00 8.00 416 397 17.64 6.52 0.0 0.078 112.41 389.60 0.0003 

4 884.5 8.00 8.00 560 407 25.48 36.16 0.0 0.105 175.93 444.93 0.0046 

5 884.5 8.00 8.00 480 440 23.01 27.83 0.0 0.073 115.44 422.20 0.0014 

8 1400.6 7.00 2.00 519 435 19.25 14.53 0.0 0.083 95.48 491.08 0.0117 

9 1440.0 7.00 2.00 493 405 20.75 13.97 0.0 0.082 97.17 466.50 0.0156 

10 1376.1 7.00 2.00 490 356   6.40 0.0 0.184 0.00 471.69 0.0557 

11.1 873.7 8.00 8.00 445 267 22.76 25.34 0.0 0.115 183.23 352.20 0.0367 

12 708.6 8.00 8.00 662 647 18.07 3.97 0.0 0.075 118.23 639.19 0.0001 

14 871.8 8.00 8.00 869 725 29.59 54.33 0.0 0.045 81.84 767.44 0.0024 

15 821.8 8.00 8.00 872 841 22.62 3.02 0.0 0.045 73.70 862.45 0.0006 

16 868.3 8.00 8.00 986 864 29.86 55.36 0.0 0.048 86.96 863.45 0.0000 

23 596.6 7.00 5.50 780 775 14.58 7.80 0.0 0.097 149.70 723.85 0.0043 

24 585.2 8.00 8.00 721 571 29.42 53.59 14.9 0.080 183.24 518.76 0.0053 

25 851.5 8.00 8.00 692 450 27.31 43.56 14.9 0.080 146.36 567.27 0.0287 

26 802.6 8.00 8.00 741 649 21.19 5.76 14.6 0.075 124.32 712.53 0.0074 

27 480.1 7.00 5.00 879 681 17.56 11.63 14.9 0.119 232.49 746.60 0.0056 

28 483.6 7.00 5.00 873 526 21.15 27.32 14.9 0.145 308.70 590.21 0.0054 

37 823.4 8.00 8.00 894 814 24.52 33.53 14.9 0.065 114.58 788.58 0.0008 

38 802.1 8.00 8.00 666 592 21.59 22.07 14.9 0.065 108.94 606.12 0.0004 

39 802.1 8.00 8.00 615 459 25.64 34.02 14.9 0.065 118.72 534.24 0.0150 

40 800.2 8.00 8.00 845 741 22.57 2.54 14.9 0.083 142.40 822.77 0.0094 

41 777.2 8.00 8.00 736 621 23.97 31.72 14.9 0.085 152.49 619.13 0.0000 

42 777.2 8.00 8.00 663 525 18.32 4.61 14.9 0.083 130.18 635.43 0.0277 
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Table F-9.  Aluminum Plate Test Shot Summaries (Ref. F-1) 
 

Shot 
# 

m 
(g) 

Frag 
Len 
avg 

(x-axis) 
(in) 

Frag 
Width 
avg 

(z-axis) 
(in) 

Vi 
(ft/s) 

Vr 
(ft/s) 

L 
(in) 

Ap 
(in2) 

θ 
(deg) 

t 
(in) 

FAA V50 
(ft/s) 

 
(Cs=276 

MPa) 

FAA 
JTCG 
plg Vr

~
 

(ft/s) 

(Q-1)2 

3 772.0 7.63 7.56 553 0 30.37 57.65 0.0 0.250 489.52 139.46   

4 772.0 7.63 7.56 541 0 29.96 56.09 0.0 0.250 486.22 130.63   

5 772.0 7.63 7.56 368 0 26.32 42.34 0.0 0.250 455.72 ≈0*   

7 770.0 7.63 7.56 402 0 29.34 53.73 0.0 0.250 481.72 ≈0*   

8 770.0 7.63 7.56 499 0 16.13 3.78 0.0 0.375 535.74 ≈0*   

9 748.0 7.13 7.94 588 0 56.55 30.13 0.0 0.375 1017.89 ≈0*   

10 748.0 7.13 7.94 608 0 28.42 49.81 0.0 0.375 721.66 ≈0*   

23 715.0 7.63 7.75 603 229 17.02 5.69 0.0 0.375 571.17 171.34 0.0090 

24 748.0 7.13 7.94 554 0 21.61 21.95 0.0 0.375 629.26 ≈0*   

64 741.0 7.75 7.38 445 0 26.68 43.31 0.0 0.250 468.33 ≈0*   

65 741.0 7.75 7.38 469 0 24.92 37.19 0.0 0.250 452.59 78.33   

66 650.0 7.75 7.38 563 207 23.36 31.62 0.0 0.250 467.87 201.90 0.0001 

67 679.1 7.75 7.38 536 339 16.79 3.66 0.0 0.250 388.06 348.47 0.0003 

68 679.1 7.75 7.38 511 283 18.69 12.29 0.0 0.250 409.48 253.87 0.0033 
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1. INTRODUCTION 

1.1. Background 

The Federal Aviation Administration’s (FAA) Aircraft Catastrophic Failure Prevention Program is a 

congressionally funded budget line item that was established to look into improving aircraft safety as a 

result of the 1989 Sioux City accident. A significant portion of the research performed has been directed 

to support the Aviation Rulemaking Advisory Committee (ARAC), Power Plant Installation Harmonization 

Working Group (PPIHWG), including the development of an industry standard for evaluation of the 

threat to an airplane from an uncontained engine event. In support of this goal, the FAA has 

collaborated with ARAC and funded Lawrence Livermore National Laboratory, SRI International, and the 

Naval Air Warfare Center – Weapons Division (NAWC-WD) for extensive research into material 

properties and analytical capabilities to improve the knowledge base and tool suite for rotor-burst 

analysis. A prototype tool, the Uncontained Engine Debris Damage Assessment Model (UEDDAM), was 

developed by the SURVICE Engineering Company for NAWC-WD and is under evaluation with the FAA 

and industry to determine its suitability to conduct rotor-burst safety assessments. One of the 

recommendations that resulted from the FAA’s evaluation was to simplify the UEDDAM input file 

development process through the creation of utilities that would unburden the analyst. One such utility 

developed is referred to as the Fault Tree Development Tool (FTDT), which both imports and exports 

appropriately formatted fault trees for use in UEDDAM. Because UEDDAM was built on Joint Aircraft 

Survivability Program Office (JASPO) funded codes (i.e., Fast Shotline Generator [FASTGEN] and 

Computation of Vulnerable Area Tool [COVART]), FTDT can also be used to assist vulnerability analysts in 

development of MV files for COVART assessments; thus, the entire JASP community (users and 

evaluators alike) is provided with a tool to build and validate vulnerability fault trees. 

1.2. Overview 

FTDT is a fault tree analysis software specifically designed to read in existing MV files or generate new 

fault trees within the graphical user interface (GUI), edit the trees, and then export to the COVART MV 

file format (see Figure 1). Additionally, because it was originally developed for use with UEDDAM, FTDT 

contains support for logic statement and weighting factor development and visualization. 

    

Figure 1. Illustration of the Ability of FTDT to Read In and Write Out COVART MV Files. 

COVART MV File 

FTDT Graphical 

Display 
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It is the intent of this user’s guide to provide documentation of the aforementioned features, to include 

examples of their usage and known limitations. Note that this document is not intended to be a user 

manual for COVART or fault tree analysis in general; nor is it to be used as a standalone document. 

Rather, it is the hope of the authors that this supplement will be used in conjunction with the 

COVART 6.9 User Manual (distributed by the Defense Systems Information Analysis Center [DSIAC]), 

and/or the UEDDAM 6.0 User Manual (distributed by NAWC-WD for the FAA).  

 

1.3. Compatibility 

A standard input for COVART and UEDDAM, the MV file defines how multiply vulnerable (or redundant) 

components are combined into a fault tree and the supporting logic needed to determine the 

probability of damage incurred by the system. The input file consists of groups of critical functions, along 

with subsystems of those groups, defined for an associated flight phase or hazard level (Figure 2). For 

more information regarding the format and function of MV files, reference section 7 of the COVART 

User Manual (Ref. 1) and/or section 5.2.3 of the UEDDAM User Manual (Ref. 2). 

 

Figure 2. Example of an MV Input File. 

 

While structurally simple, an MV file can be somewhat difficult to understand just by examining the text, 

especially for those unfamiliar with its format. Fault tree diagrams, on the other hand, are a more 

intuitive interface for understanding system failures. Enter FTDT. With the ability to import and export 

MV files, FTDT affords the user the ability to display, develop, and evaluate MV files graphically using 

fault tree diagrams. 
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2. EXTERNAL DATA 

2.1. Importing MV Files 

A valuable feature of the FTDT is the ability to import existing MV files and visualize them as fault trees. 

To import an MV file, simply select File → Import From MV File from the FTDT menu bar (see Figure 3 

for the file selection dialog). Files can have either a .mv or .txt file extension. Once an MV file is selected, 

FTDT converts and graphically displays it as a fault tree, as previously illustrated in Figure 1. The name of 

the file will appear in the title bar of the GUI. Note, however, that the file will open with all trees 

collapsed (Figure 9). Additional information about expanding trees is provided in Section 4.1. 

 

Figure 3. File Selection Dialog. 

 

2.2. Exporting MV Files 

As fault trees are in the process of being built, they can be saved to an intermediate file format with the 

default extension .xml (accomplished by selecting File → Save as XML from the FTDT menu bar) or .json 

(accomplished by selecting File → Save as JSON). Once a fault tree is completed, exporting it to an MV 

file is accomplished by selecting File → Export to MV file from the FTDT menu bar (see Figure 4). The file 

saved will be given the default extension .mv. Note that when working with partially completed fault 

trees, they should be saved in XML or JSON format even if an extended period of time will occur before 

continued modification.  
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Figure 4. Illustration of the Export to MV File Option. 

 

When changes are made to the file, an asterisk will appear in the title bar next to the file name to 

indicate that it has changed. The file will need to be saved or exported to preserve the changes. 

Additionally, when exiting the program with unsaved changed, the user will be prompted to save the 

changes before exiting (Figure 5). 

 

Figure 5. Exiting with Unsaved Changes. 

 

2.3. MVKILL/Flight Phase 

In an MV file, the MVKILL function defines the Hazard Level or Flight Phase for multiply vulnerable 

groups. Within FTDT, the user can define up to fifteen hazard levels/flight phases (the maximum allowed 

by COVART) per tree which are applied to second level events. Each of the MVKILL categories may have 

multiple groups and a component may appear multiple times within that group. However, each instance 

of a single component/group may only be associated with one hazard level/flight phase.  
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To make navigating the fault tree more intuitive, tabs have been implemented for each of the 15 

possible MVKILLs (identified as Flight Phases) and are placed above the main drawing canvas. Clicking on 

a specific Flight Phase tab will change the canvas to show the tree for only those groups that are 

assigned to that MVKILL level. 

 

3. FAULT TREE ELEMENTS 

3.1. Event Types 

Event types consist of the Group/System Event (depicted in FTDT as a dark yellow box) and the 

Component Event (depicted in FTDT as a green oval) (Figure 6). A Group/System event correlates to 

groups and systems in the MV file. Top-level Group/System events are directly under the Flight Phase 

element and gate and are identified as GRUPMULTs in the exported MV file. All lower Group/System 

events are SYSMULTs in the exported MV file. A Component event correlates to single components or 

NAMs in the MV file.  

All events must be placed beneath a gate (described below in Section 3.3). 

 

Figure 6. Event Types. 

 

3.2. Transfer Event 

The Transfer symbol (depicted in FTDT as a blue triangle) allows for modularization of the fault tree 

through the incorporation of external sub-trees. To incorporate an existing tree into another tree, select 

the Transfer function as the next element. Once the Transfer element has been applied to the tree, 

double click the icon to browse to the tree of interest and select it for opening. Files can be in either MV 

or .xml format. All events (and only events) from the single corresponding Flight Phase tab will 

incorporated and displayed in the FTDT canvas once the tree is exported to an MV file. If it is saved as an 

XML file, the Transfer element will remain and retain the file path to the linked tree, but the transferred 

elements will not be incorporated into the tree itself. 
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3.3. Gates 

The MV file only supports AND and OR logic. As a subset of the AND logic, COVART allows the user to 

specify a certain number M of the N elements that must be failed for the system to fail – not strictly an 

AND gate logic. AND gates are represented by a red arch; OR gates are represented by a red irregular 

arch; and M of N gates are represented by a red hexagon with the M/N value displayed on it. Double 

click on the M of N gate to edit the value of M. 

       

Figure 7. Gate Types and Associated M of N Dialog. 

 

Gates can be added by selecting the desired event (which will then be outlined in blue) and selecting the 

desired gate. Immediately after adding a gate, events can be added to that gate without re-selecting it. 

If, however, additional events are to be placed under other gates, the gate must be selected first. Note 

that gates will also have a highlight to show that they are selected. 

Users can change gates from one type to another by right clicking and selecting the desired gate 

(Figure 8). 

 

Figure 8. Changing Gate Types. 

 

4. MANIPULATING THE CANVAS 

4.1. Expand and Contract 

Due to the extensive nature of most vehicle- and system-level fault trees, without the ability to expand 

and contract different sections of the tree, it can quickly become difficult to navigate on the canvas 

screen. Thus, for ease of handling, when a gate and component are added to a tree, the ability to 

collapse a subtree is added. Right clicking on a Group/System event opens a menu displaying Collapse 
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Subtree. When a tree is collapsed, a thick black border is drawn around it (see Figure 9). Right clicking 

on a collapsed subtree gives the option to Expand a Subtree. Note that it is not possible to Paste a 

Subtree or add to it when it is collapsed, but the user can still Copy or Delete it.  

  

Figure 9. Usage of Collapse and Expand Subtrees. 

 

The entire tree can be collapsed to the top-level groups and expanded by right clicking on the Flight 

Phase element and selecting either Collapse All Subtrees or Expand All Subtrees, respectively. Note that 

when MV files are imported, they will be initially displayed as collapsed at the top level. 

 

4.2. Zoom In and Zoom Out 

The canvas automatically adjusts to display all items when the file is opened and when components are 

added/deleted. To zoom in and out, use the scroll wheel on the mouse. If the tree in the view has 

become too large to fit on the screen, scroll bars will appear on the right and below the canvas to adjust 

the position. 

The buttons under the menu bar are another method for zooming. The magnifying glasses with “+” and 

“-” will zoom in and out respectively. The Zoom to Fit button ( ) will zoom in or out as needed to 

display the entire tree on the canvas (Figure 10). 
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Figure 10. Illustration of Canvas with Zoom to Fit Usage. 

 

4.3. Search Feature 

Beneath the menu bar and to the far right of the canvas is a search box. The user can type in a search 

string and if it is found on the current Flight Phase tab, the canvas will be centered over and zoomed in 

on the element(s) and a yellow highlight will appear around the matching element(s) (Figure 11). Note 

that the search feature is best used on a fully expanded fault tree. If no matching element(s) is(are) 

found, a dialog box will appear indicating “No matches were found.”  
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Figure 11. Illustration of the Search Feature. 

 

5. EDITING EVENTS 

5.1. Item Dialog 

Group/System and Component events in FTDT can be given an identification label (or key). The 

identification label of Group/System and Component events is used in the COVART MV file as the 

GRPMULT/SYSMULT and NAM names, respectively. Due to COVART convention of only accepting up to 

eight characters per system name, FTDT limits identification labels to 8 alphanumeric characters to 

maintain COVART (and therefore UEDDAM) compatibility. Additionally, Flight Phase, Group/System, and 

Component events can be given descriptive information in the form of comments. Text in the 

descriptive field of Flight Phase and Group/System events can be used both for reference in FTDT as well 

as when exported to MV format and read in on subsequent imports. The descriptive text associated with 

Component events is only used within FTDT. All descriptive text associated with Group/System events is 

exported with the preface $COMMENT whereas that associated with Flight Phase is placed after the 

MVKILL # entry.  
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To change the ID label for a Component or Group/System event, the user must access the associated 

dialog, achieved by double-clicking on the symbol of interest on the FTDT canvas (Figure 12). When 

creating names for components and systems it should be kept in mind that the names should be not 

only descriptive but also allow for differentiation from other similar components and systems.  

Note that names cannot include the space ( ), period (.), forward slash (/), plus (+) or minus (-) symbols. 

Spaces will be automatically replaced by an underscore (_) and the other prohibited characters will not 

be able to be entered. 

  

 

Figure 12. Item Dialogs for a Group, System, and Component Event. 

 

Also note that each event is not required to have a unique name and an event can occur multiple times 

in a fault tree. However, two dissimilar types of events (i.e., Group/System vs. Component) may not 

have the same name. If a user attempts to use the same name with similar events, a warning will appear 

but still allow the user to use the duplicate name. If the name is used for dissimilar events, the user will 

get a warning and will not be able to use the duplicate name (Figure 13). 
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Figure 13. Duplicate Name Warnings. 

 

5.2. Subsystems Limit 

Users operating COVART version 6 are restricted to 24 sub-elements for each group or system in an MV 

file. Thus, once 24 sub-components have been reached, FTDT will restrict any additional events from 

being added with an Error Dialog stating compatibility limitations (Figure 14).  

 

Figure 14. Subsystem Limit Error. 

 

5.3. Copy/Paste Subtrees 

There may be times where it is more convenient to copy and paste a portion of a tree than build it from 

scratch. To copy a subtree, right click on the topmost element in the subtree and select Copy Subtree. 

To paste it, simply right click on the event (not the gate) that it will be placed under and select Paste 

Subtree (Figure 15). 

   

Figure 15. Copy/Paste Examples. 
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5.4. Deleting Elements 

Items can be deleted from the canvas by right clicking the element and selecting Delete Item. Note that 

deleting an item will also delete any subordinate elements, should the item have any. Thus, when 

deleting any item, a warning will pop up (Figure 16), reminding users that deleting an item will also 

delete any children it has. There is no undo option, so use caution when deleting. 

 

Figure 16. Delete Item Warning. 

 

Another way to delete elements from the canvas is to select either the File → Clear Flight Phase or the 

File → Clear All Flight Phases option from the FTDT menu bar. As the menu text would indicate, the first 

option will clear all elements from the canvas of the currently selected Flight Phase tab whereas the 

second option will clear all elements from all tabs (thereby deleting the entire tree). A similar warning to 

that illustrated in Figure 16 appears upon selection of either of these options to ensure the user is aware 

of the specific ramifications of their selection. 

 

5.5. Logic Statements and Weighting Factors 

The MV input file allows for the application of weighting factors to sets of system failures within a 

multiply vulnerable group. These factors differentiate probabilities of outcomes for different 

combinations of failure. In FTDT, the individual combinations of critical systems can be entered in one of 

two ways (Logic Statements or Weighting Factors) and are assigned through the associated dialog. Since 

weighting factors are applied at the GRPMULT level in a COVART MV file, Group/System Events on the 

second level (i.e., directly beneath the MVKILL/Flight Phase event) are the only events where the user 

can access either dialog.  

To open the logic statement dialog, open a Group/System event item dialog (see Figure 12) and select 

the Logic Statements button. The logic statement dialog (see Figure 17) is divided into three sections: 

Statements, Elements, and Statement Builder. 
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Figure 17. Logic Statement Dialog. 

 

The Statements panel contains a list of all possible statements created using the elements of that event, 

as listed in the Elements panel. By default, FTDT generates all possible logic statements when the logic 

dialog is first opened. Individual statements can be removed from the list by selecting the Remove 

button. Similarly, all logic statements can be removed by selecting the Remove All Statements button. 

Once removed, the full list of possible statements can be regenerated by selecting the All Statements 

button. Useful for extensive fault trees, the Jump to row tool allows the user to search for a specific 

statement. 

To develop a new logic statement, it is recommended that the user first select the Remove All button to 

clear the automatically generated statements. Begin by selecting an element in the Elements panel and 

double click to send it to the Statement Builder panel. Selecting more elements from the panel will 

create an AND statement (i.e. CMP_1 .AND. CMP_2). To create an OR statement select the NOT button, 

located above the statement box. All following elements will be added as OR statements (i.e. (CMP_1 

.AND. CMP_2) .NOT. (CMP_3 .OR. CMP_4.)). Alternatively, the user can simply type in the Statement 

panel to change the syntax. Once complete, select Add to finalize the statement. If no name is entered, 

the Statement Builder will default to L1 (for the first statement). It is important to remember that user-

built statements should only be used to create or modify UEDDAM MV files. 

To change a probability associated with a particular logic statement, select the statement in the 

Statements panel and double click to send it to the Statement Builder panel. The desired factor is then 
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entered into the Probability field. Press the Edit button to apply the probability to the statement (see 

Figure 18). 

 

Figure 18. Assignment of Weighting Factors in the Logic Statement Builder. 

 

To make those groups with associated logic statements easily identifiable when viewing the fault tree 

diagram within FTDT, the label “LOGICST” is added to the Group/System event element (see Figure 19). 
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Figure 19. Illustration of a Group/System Event with Assigned Logic Statements. 

 

Once logic statements are applied, the user is restricted from also applying weighting factors until all 

logic statements have been deleted (Figure 20). 

 

Figure 20. Item Dialog with Logic Statements Applied. 
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To remove logic statements, open the Logic Statements Dialog and select Remove All Statements and 

click OK (see Figure 21). This will clear the items in the Statements panel and allow for edits to the 

weighting factors in the item dialog.  

 

Figure 21. Removing Logic Statements. 

 

To assign weighting factors for a Group/System event, select Weighting Factors from the item dialog 

(Figure 20). This will bring up the Weight Factors dialog which consists of an ordered list of all potential 

Functional/Failed combinations of the elements along with their associated weighting factors (see  

Figure 22).  To assign weighting factors, the user simply either uses the up/down arrow buttons to 

change the probability in 0.01 increments or types the desired value directly into the corresponding 

Weight Factors box. To save the assignments, click the OK button. 
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Figure 22. Weighting Factors Dialog. 

 

Note that unlike the logic statement dialog, the user is unable to remove individual weighting factor 

combinations due to the requirement that weighting factors be entered in a particular order within the 

MV file. As was done for logic statements, to make those groups with associated weighting factors easily 

identifiable when viewing the fault tree diagram within FTDT, the label “WGTFACT” is added to the 

Group/System event element (see Figure 23).  



 

18 

 

Figure 23. Illustration of a Group/System Event with Assigned Weighting Factors. 

 

In a similar manner as was done with logic statements, to remove all weighting factors (and thereby re-

enable the logic statements dialog), open the weight factors dialog, select Remove all Weight Factors, 

and select OK. This will reset all values in the Weight Factors column to 0.00 and allow for edits to the 

logic statements in the item dialog.  
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ABSTRACT 

 

 

The Uncontained Engine Debris Damage Assessment Model (UEDDAM) Visualizer was 

developed to allow visualization of the complex data and information generated from a 

UEDDAM run.  It allows visualization of the aircraft geometry, debris hazard zones, debris 

trajectories, probability plots of the hazard levels, and translational risk angles.  The UEDDAM 

Visualizer was written in the Java programming language, so it is transportable to any computer 

platform that has Java and Java 3D runtime environments.  It has been successfully tested on 

personal computers running the Windows 7 and 10 operating systems.  The PC installation CD 

contains the Java 6 and Java 3D 1.5.1 runtime environments. 
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1. INTRODUCTION 

 

The Uncontained Engine Debris Damage Assessment Model (UEDDAM) Visualizer was 

developed to allow visualization of the complex data and information generated from a 

UEDDAM run.  It allows visualization of the aircraft geometry, debris hazard zones, and debris 

trajectories as well as probability plots of the hazard levels and translational risk angles.   

 

The UEDDAM Visualizer was written in the Java programming language, so it is transportable 

to any computer platform that has Java and Java 3D runtime environments (the installation CD 

contains the Java 6 and Java 3D 1.5.1 runtime environments).  It has been successfully tested on 

personal computers (PC) running the Microsoft Windows 7 and 10 operating systems.   

 

The UEDDAM Visualizer can be run in two basic modes:  development and analysis.  First, it 

can be used to simply view the geometry of a FASTGEN (version 4 or later) file.  In 

development mode, the aircraft geometric model with the extension “.fg4” is read directly by the 

UEDDAM Visualizer and displayed.  In the second basic operating mode, any or all of the data 

generated from a successful UEDDAM run can be viewed in concert with the geometry.  In 

analysis mode, the UEDDAM control file with the extension “.ucf” is read in by the UEDDAM 

Visualizer and used to access all of the appropriate data from the UEDDAM run.  For more 

information on the data generated from a UEDDAM run, see the UEDDAM Version 5.1 User’s 

Manual (Reference 1).   

 

The purpose of this user’s manual is to familiarize the user with the UEDDAM Visualizer’s two 

basic modes of operation.  Section 2 focuses on manipulation of an aircraft geometric model 

through the Visualizer’s user interface (i.e., development mode).  The focus of Section 3 is to 

explore the UEDDAM analysis features available to the user within the Visualizer (i.e., analysis 

mode).  In order to facilitate location of a specific topic of interest, keywords have been 

highlighted using bold and colored text throughout this manual. 

 

 

2. USER INTERFACE AND DEVELOPMENT MODE OPERATION 

 

To launch the UEDDAM Visualizer from a PC running Microsoft Windows*, simply double-

click on the UVis desktop icon or browse to the directory where UEDDAM is installed and 

double-click on the file named Uvis.bat (located in the bin subdirectory).  After the UEDDAM 

splash screen disappears, the Visualizer Display (see Figure 1) will load.   

 

                                                 
* To launch the UEDDAM Visualizer from a UNIX workstation or PC running Linux, open a 

terminal window and change directories to the bin subdirectory of the UEDDAM installation.  At 

the command prompt, type uvis. 
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Figure 1.  UEDDAM Visualizer Display. 

 

 

The Visualizer Display consists of six elements—Menu Bar, View Control, Information 

Window, Display Window, Toolbar, and Status Bar—each of which is discussed in more 

detail in the sections that follow. 

 

 

2.1 MENU BAR 

 

In Figure 1, the Menu Bar can be seen at the top left of the Visualizer Display.  The Menu Bar 

consists of the following selections:  File, View, Tools, and Help.  

 

 

2.1.1 File Menu 

 

Selecting the File menu with the left mouse button will open a drop-down menu consisting of 

Open, Load View, Save View, and Exit options as well as a list of recently opened files.  To 

open a file not in the recently opened list, select the Open option with the left mouse button.  A 

window will appear, allowing you to browse to directories where *.ucf or *.fg4 files are stored, 

as illustrated in Figure 2.  
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Figure 2.  Open Display Window. 

 

 

Select the desired file with the left mouse button and choose the Open option button to load the 

file.  The left-most portion of the Status Bar (see Figure 1) will show the status of the data 

loading process.  When data are successfully read into the Visualizer, the geometry information 

is loaded into memory and the FASTGEN file name will appear in the Information Window.  

Double clicking the left mouse button on the file folder that appears next to the FASTGEN file 

name will then expose the numerical groupings found within the FASTGEN file.  Figure 3 

illustrates the Information Window display of the numerical groupings in sample case five’s 

FASTGEN file, Business_Jet.fg4.   
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Figure 3.  Information Window Displaying Numerical Groupings. 

 

 

Double clicking the left mouse button on any of the groups will then drop down a listing of all 

the component identification numbers found in that specific grouping.  A single click of the right 

mouse button on the file folder, numerical group, or any component ID number in the 

Information Window will give a menu of display options for the selected object.  Figure 4 

illustrates the drop-down listing and the available options.  

 

 
 

Figure 4.  Drop-Down Menu Displaying Object Options. 
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The display options include Solid, Wire, Off, Autoview, Color, and Transparency. 

 

• Solid, Wire, and Off – Clicking either the right or left mouse button on any one of 

these three options will take the selected object (file, folder, number grouping, or 

component) and display it as either a solid (Solid) or wireframe (Wire) three-

dimensional (3-D) representation in or remove (Off) it from the Display Window.   

 

• Autoview – Clicking on the Autoview option for any object currently displayed (in 

either solid or wireframe mode) will re-center the view such that the center of the 

object selected coincides with the center of the Display Window.  Once centered, the 

Visualizer will zoom in or out on the object such that the extents of the object 

selected are just within the bounds of the Display Window.  (Note that the Autoview 

option does not change the azimuth or elevation angle of the view.) 

 

• Color – The Color option contains the following basic color choices, which, if 

selected, is applied to the specified object:  Red, Orange, Yellow, Green, Blue, 

Indigo, and Violet.  Two additional options, Default and Select, are available under 

the Color menu as well (note that the Default option is not available at the file level).  

Choosing the Default option will return the selected object(s) to the default color 

scheme.  Choosing the Select option will open a separate window displaying various 

color swatches.  There are also options to enter HSB or RGB values.  Figure 5 

illustrates the Color option as well as the color swatch window opened when the 

Select option is chosen.  
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Figure 5.  Color Selections. 

 

 

• Transparency – Selecting the Transparency option will drop down a menu with the 

following preset values: 0% (default), 25%, 50%, and 75%.  A Select option is also 

available to obtain additional values for transparency to the preset ones.  The Select 

option brings up a transparency selector window with a slider (see Figure 6). 
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Figure 6.  Transparency Selector Window. 

 

 

The next two options under the File menu (i.e., Save View and Load View) allow the user to 

save and reload all of their display settings for a FASTGEN file (e.g., color, transparency, etc.).  

Selecting the Save View option opens a window which allows the user to save the display 

settings to a file; the information is saved to a binary file with the automatic extension *.vif 

(UEDDAM View Information File).  To open a previously saved view file, select the Load View 

option and browse to and select the *.vif file of interest. 

 

Selecting Exit with the left mouse button will exit the UEDDAM Visualizer program.   

 

 

2.1.2 View Menu 

 

Selecting the View menu from the Menu Bar with the left mouse button will open a drop-down 

menu consisting of the following options:  Trajectory, Reset, Autosize, Autocenter, Center, 

and Ortho View (Perspective View) along with a set of standard view angles.  The Trajectory 

feature is discussed in Section 3 of this manual; the remaining View menu options assist the user 

in viewing their FASTGEN geometry file: 
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• Reset – Selecting the Reset option performs a similar set of operations as the 

Autoview option discussed in the previous section.  For any object(s) currently 

displayed in the Display Window, selecting the Reset option will reset the view 

azimuth/elevation angles to 45o/45o, re-center the view such that the center of the 

object(s) displayed coincides with the center of the Display Window, and zoom in or 

out on the object(s) such that the extents of the object(s) displayed are just within the 

bounds of the Display Window.  (Note that the Reset option does change the 

azimuth and elevation angles of the view.) 

 

• Autosize and Autocenter – The Autosize and Autocenter options perform two of 

the three Reset operations; namely, zooming and re-centering, respectively.  Upon 

selecting the Autosize option, the Visualizer zooms in or out on the object(s) 

currently displayed in the Display Window such that the extents of the object(s) 

displayed would be just within the bounds of the Display Window if the object(s) 

was(were) centered.  The Autocenter option re-centers the view such that the center 

of the object(s) displayed coincides with the center of the Display Window.   

 

• Center – The Center option allows the user to specify the location of the center of 

the Display Window.  When the Center option is selected, a window appears for the 

user to enter the x, y, z location (in target coordinates) to be used for the display 

center.  The title of this new window is the current x, y, z location of the display 

center (which can also be found on the right side of the Status Bar [see Section 2.5]).  

The new center location must be entered using commas to separate the individual 

numbers.  Figure 7 illustrates the Center option. 
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Figure 7.  Center Option. 

 

 

• Ortho View (Perspective View) – Selecting the Ortho View option changes the 

view type from perspective (default) to orthographic.  The user returns the view to a 

perspective one by selecting the Perspective View option from the View menu.  

Figure 8 illustrates the difference between the two projection types. 

 

 
 

Figure 8.  Projection Types. 
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• Standard View Angles – When the user selects one of the available standard view 

angles (i.e., 45,45, front, rear, port, starboard, top, or bottom) from the View 

menu, the Visualizer modifies the azimuth (az) and elevation (el) angles of the 

Display Window accordingly (i.e., 45,45→45oaz, 45oel; front→0oaz, 0oel; 

rear→180oaz, 0oel; port→90oaz, 0oel; starboard→270oaz, 0oel; top→0oaz, 90oel; or 

bottom→0oaz, -90oel). 

 

 

2.1.3 Tools Menu 

 

Selecting the Tools menu with the left mouse button will drop down a menu consisting of the 

following options:  Background Color, Capture Image, 2D Plots, Significant Iterations, Risk 

Zone, Cross Section, and Find.  Figure 9 shows the UEDDAM Visualizer Tools menu.  The 2D 

Plots, Significant Iterations, Risk Zone, and Find options are discussed in Section 3. 

 

 
 

Figure 9.  Tools Menu. 

 

 

2.1.3.1 Background Color 

 

The Background Color tool allows the user to change the color of the Display Window 

background (default = black).  Selecting this option with the left mouse button will open an 

identical window to the color swatch display shown in Figure 5.  The window displays 

predetermined color swatches which can be selected by simply clicking on the desired color.  

There are also options to input HSB and RGB values, if desired. 
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2.1.3.2 Capture Image 

 

The Capture Image tool allows the user to save an image of the current Display Window for 

later reference.  Selecting this option will open a file save window where the user can specify a 

name and location to save the JPEG image.  The name of the file defaults to the azimuth, 

elevation of the display, but it can be changed to any desired naming convention. 

 

 

2.1.3.3 Cross Section 

 

The Cross Section tool allows the user to visualize a cross-section of the FASTGEN geometry.  

When the Cross Section option is selected from the Tools menu, a dialog box is opened that 

allows the user to choose between two types of cross-sections (Slice or Cutaway) as well as 

specify the Azimuth, Elevation, and Origin (x,y,z-coordinates) of the cross-section (see 

Figure 10). 

 

 
 

Figure 10.  Cross Section Dialog Box. 

 

 

The two types of cross-sections available to the user are described as follows: 

 

• Cutaway – When the Cutaway option is selected and the user presses the Display 

button, the Visualizer internally draws a plane through the FASTGEN geometry 

currently displayed in the Display Window.  This virtual plane passes through the 

user-supplied Origin and is parallel to the Azimuth and Elevation angles entered in 

the Cross Section dialog box.  The Visualizer then opens a secondary display 
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window.  Presented in this display window is the geometry that remains once any 

geometry located above/in front of the virtual plane is removed.  Note that the 

geometry displayed in the secondary display window retains some of the settings 

from the main Display Window (e.g., color and transparency), but not all settings 

(e.g., view angle, display center, and zoom level).  An example of this type of cross-

section is shown in Figure 11.  Another way to think about the Cutaway cross-

section is that it allows the user to see inside the geometry by cutting away those 

elements that are blocking the view. 

 

 
 

Figure 11.  Cutaway Example. 

 

 

• Slice – The Slice option allows the user to display a single slice of the geometry.  As 

in the Cutaway option, upon selecting the Slice option and pressing the Display 

button, the Visualizer internally draws a plane parallel to the user-selected Azimuth 

and Elevation angles through the geometry.  However, rather than the virtual plane 

being made to pass through the Origin, the Visualizer draws two planes, one slightly 

above/in front of the specified Origin and one slightly below/behind it.  The 

Visualizer then opens a secondary display window in which only the elements of the 

geometry that lie within the bounds of the two virtual planes are displayed.  An 

example of this type of cross-section is shown in Figure 12. 
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Figure 12.  Slice Example. 

 

 

2.1.4 Help Menu 

 

Currently, the only option under the Help menu selection is About UEDDAM Visualizer.  

Selecting this option will bring up an information window containing the UEDDAM Visualizer 

version number. 

 

 

2.2 VIEW CONTROL 

 

Located directly under the Menu Bar is the View Control.  As shown in Figure 13, the View 

Control consists of two dials labeled Azimuth and Elevation.  The current azimuth and 

elevation values are displayed under each dial.  You will notice that the default view when the 

*.ucf or *.fg4 file is opened is 45 azimuth, 45 elevation.  Inside of the shaded area of the dial is 

a circle above and to the right of the aircraft symbol.  The circle represents your viewpoint.  By 

placing the cursor on the viewpoint, holding down the left or right mouse button and dragging it 

around the shaded area, you are able to change the azimuth and elevation of the geometry in the 

Display Window.  Outside of the shaded area, selection ticks are given at 45 increments.  You 

may also click the left or right mouse button on any of the predetermined azimuth or elevation 

ticks to snap to that aspect.  The current azimuth and elevation are always updated under each 

view control dial. 
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Figure 13.  View Control. 

 

 

2.3 DISPLAY WINDOW 

 

The Display Window is the area of the screen where the geometry is displayed.  The UEDDAM 

Visualizer enables the user to view detailed 3-D information directly through the Display 

Window. 

 

 

2.4 TOOLBAR 

 

The Toolbar consists of 13 buttons and is located on the right side of the Visualizer display.  

Figure 14 shows the UEDDAM Visualizer Toolbar. 

 

 
 

Figure 14.  Toolbar. 
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  Rotate 

 

The Rotate button is an additional way, beyond the View Control dials (see Section 2.2), to 

control the viewing angle of the display.  Using the left mouse button, click on the Rotate button 

to activate this feature.  Then, position the mouse so that it is in the Display Window.  Finally, 

while holding down the left mouse button, move the mouse in any direction to rotate the viewing 

angle. 

 

  Move 

 

To move the geometry around the Display Window, select the Move button.  Once the Move 

button has been depressed, position the mouse so that it is in the Display Window, hold down 

the left mouse button, and move the mouse in any direction to move the display center and 

reposition the view. 

 

  Zoom 

 

The Zoom button is used to move the display closer to or farther from the geometry.  Zooming is 

accomplished by clicking the left mouse button over the Zoom button to turn this feature on.  

Then, move the mouse over to the Display Window and, while holding the left mouse button 

down, move the mouse up to zoom in on the geometry or down to zoom out. 

 

  Center 

 

The Center button allows the user to re-center the Display Window using the mouse.  To use, 

first click the Center button to activate this feature.  Once activated, position the mouse so that it 

is in the Display Window and click the left mouse button wherever the new view center should 

be located. 

 

  Identify 

 

The Identify button provides the user the ability to determine the number and name of a 

particular component of the geometry currently being displayed in the Display Window.  

Pressing the Identify button turns this feature on.  To identify a component, move the mouse so 

that it is in the Display Window and, with the left mouse button, click on a component.  The 

component identification number and name (if one has been provided in the FASTGEN 

geometry file) are displayed on the left side of the Status Bar (see Section 2.5).  Note that 

information is displayed only for the outermost component (i.e., if the component of interest is 

beneath another component in the Display Window, information for the blocked component can 

be obtained only after the top component is turned off). 

 

If a *.ucf file has been opened (for a successfully completed UEDDAM run) in addition/as 

opposed to a *.fg4 file, the Identify button provides more information than just the component 

identification number and name.  When the user clicks on a critical component in the Display 

Window, a secondary display window is opened that provides the following additional 
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component data:  COVART NAME, Material, % Density, Hazard Levels of Criticality, 

NearField Association, and COMALIAS (see Figure 15).  Consult Reference 1 for more 

information on any of these data fields. 

 

 
 

Figure 15.  Component Data Window. 

 

 

 

Spin Group 

 

 

The Spin Group of buttons is used to automatically rotate the displayed geometry in real time.  

To rotate about the Z axis, click the left mouse button over the top button, turning it on.  To stop 

rotation, click on the same button again, turning it off.  To rotate about the Y axis, select the 

bottom button.  To stop rotation, click again to turn off.  You may have both buttons turned on at 

the same time to rotate about both axes simultaneously.  

 

 

Zoom Group 

 

 

The Zoom Group of buttons is used to move the display closer to or farther from the geometry.  

Pressing the top (or bottom) button of the Zoom Group once moves the display one increment 

closer to (or further away from) the geometry.  Holding down either of the two Zoom Group 

buttons results in continuous zooming in the specified direction. 
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Move Group 

 

 

 

 

The Move Group of buttons is used to move the geometry about the screen in the direction of 

the selected arrow.  These buttons work in the same way that the Zoom Group of buttons do.  A 

single click will move the view of the screen an increment.  Holding the left mouse button down 

over the button will result in continuous movement until the button is released. 

 

 

2.5 STATUS BAR 

 

The Status Bar is located along the bottom of the UEDDAM Visualizer Display, under the 

Information and Display Windows, and can present three types of information:  Progress, 

Settings, and Identification.  While a file is loading, Progress (i.e., the percentage of 

information that has been read in) is tracked on the left side of the Status Bar.  Once a file has 

been loaded and the geometry is being displayed in the Display Window, the left side of the 

Status Bar is used to present Identification information (i.e., component identification 

information that results from pressing the Identify button on the Toolbar [see Section 2.4]).  

The right side of the Status Bar displays the current Settings (i.e., center, viewing angles, and 

size) of the Display Window.   

 

 

3. ANALYSIS MODE OPERATION 

 

In order to use the analysis tools discussed in this section, the user must first open a *.ucf file 

from a successfully completed UEDDAM run (see Section 2.1.1 for instructions on how to open 

a file).  This UEDDAM run must have included the following output files and options (see 

Sections 5.3.1.10 and 5.3.1.11 of Reference 1) to access certain features (listed after each 

file/option) in the Visualizer: 

• VISUALIZER FILE – display Hazard Zones, Comp Risk Angs, and Shotlines 

• SUMMARY FILE and DETAIL FILE – display Probability Plots 

• INTERCEPT FILE – display Risk Angles and Comp Risk Angs 

• Debugging flag set to “1” – display Shotlines and Shotline Information 

• TRAJECTORY FILE – display Risk Zone 

• One or all of the following:  SIGITSYS FILE, SIGITCRIT FILE, SIGITCHOLE FILE, 

SIGITSHOLE FILE – display SIGITSYS, SIGITCRIT, SIGITCHOLE, and/or 

SIGITSHOLE Shotlines 
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3.1 TRAJECTORY OPTION 

 

The Trajectory option under the View menu is a cascade-type menu (as indicated by the ► 

symbol) with additional options displayed to the right:  SIGITSYS, SIGITCRIT, 

SIGITCHOLE, SIGITSHOLE, All, and None.  When a “.ucf” file is initially loaded, the 

default Trajectory View is None.  Selecting any option other than None with the left mouse 

button will display a Shotlines file folder under the FASTGEN file name in the Information 

Window, as shown in Figure 16.  The All option enables the trajectories for all of the events 

assessed in the “.ucf” file to be displayed, whereas the SIGITSYS, SIGITCRIT, 

SIGITCHOLE, and SIGITSHOLE options limit the visualization to only those trajectories that 

are associated with iterations that meet a specified criterion (see sections 5.3.1.7 and 7.7 of 

Reference 1 for more information regarding the significant iterations files).  For any of the 

options, selecting the Shotlines folder with a double click of the left mouse button will drop 

down a listing of the Events of the “.ucf” file.  Selecting any of the Event folders displayed with 

the left mouse button will show a listing of the Release Points for that specific event.  Similarly, 

selecting any of the Release Point folders will show a listing of the Iterations for that release 

point, et cetera until the individual Rays used to evaluate the engine debris are displayed (see 

Figure 16). 

 

 
 

Figure 16.  Trajectory►All Option. 

 

 

On any of the levels of the Shotlines tree, clicking the right mouse button will display the Solid, 

Wire, Off, Autoview, Color, and Transparency menu options previously discussed in section 

2.1.1.  These selections allow the user to view the individual trajectories that make up the engine 

debris in the Display Window.  Figure 17 illustrates the display of all of the fragment 

trajectories (represented as rays) of a single Iteration (Iteration 3) of a single Release Point 

(Release0.00) of the Event (Event1) assessed in Sample Case 6. 
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Figure 17.  Fragments of Displayed Iteration. 

 

 

In addition to the viewing options previously discussed, at both the Event and Release Point 

levels of the Shotlines tree, a further option is available:  Hazard Zones.  The Hazard Zones 

option is a toggle switch option.  When the Hazard Zones toggle is on the entire range of 

possible trajectories for the selected Event or Release Point is shaded in a transparent blue (for 

additional information regarding the definition of a hazard zone, see Reference 1, Section 3.4).  

Figure 18 illustrates the Hazard Zones menu toggled on and the display of the hazard zone for 

the same Event (Event1) and Release Point (Release0.00) as in Figure 17.   

 

Finally, if the appropriate outputs have been specified in the Control file, an additional option 

will appear at the Event level of the Shotlines tree:  Comp Risk Angs.  When the Comp Risk 

Angs menu option is toggled on, a secondary window is opened containing a list of all 

components in the target description that could potentially be hit by the debris generated for the 

selected Event.  Next to each component is a check box.  When a component is selected from this 

secondary window, the Visualizer will attempt to draw a wedge representing the component’s 

translational and fore/aft risk angles in the Display Window (for a different method of 

displaying this same information, see section 3.2.2). 
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Figure 18.  Hazard Zones Displayed. 

 

 

When the individual Rays from any level of the Shotlines tree are displayed in the Display 

Window and the Identify button has been depressed, clicking on any single Ray in the Display 

Window with the left mouse button will color that ray blue and open a supplementary data 

window (as shown in Figure 19).  The shotline data window is divided into four sections:  the 
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Menu Bar, the Fragment Information section, the Shotline Information section, and a 

Shotline Selection section, as illustrated in Figure 20.   

 

• The Menu Bar section of the shotline data window currently only contains a single 

menu (Show) with a single option (Comps Hit).  Selecting the Comps Hit option 

with the left mouse button will shade all of the components hit by the particular Ray 

blue.  Toggling this option off returns the components to their default color. 

 

• The Fragment Information section of the shotline data window displays specific 

information about the particular Ray selected.  The information provided includes the 

X, Y, Z coordinates and azimuth and elevation angles of the Release Point of this Ray 

(in the target coordinate system).  Additionally provided is the material type, mass, 

ejection velocity, yaw angle, and roll angle of the debris associated with this Ray.   

 

 
 

Figure 19.  Shotline Data Window. 
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• The Shotline Information section contains a listing of all of the components (in 

order of impact) hit by the particular Ray, along with the line-of-sight thickness 

through the component, the cosine of the obliquity angle of impact, and the air gap to 

the next component along the shotline. 

 

 
 

Figure 20.  Shotline Data Window Details. 

 

 

• The Shotline Selection section contains two buttons (left and right arrows) that allow 

the user to scroll through individual Rays making up a SEGMENT or L-FRAGMENT 

bundle from within the shotline data window without having to physically select 

those Rays with the mouse in the Display Window.  The Visualizer colors the 

selected ray blue and updates the Fragment Information and Shotline Information 

sections with each click of an arrow.  

 

 

3.2 2D PLOTS 

 

Selecting the 2D Plots option under the Tools menu with the left mouse button will open a 

separate window.  The 2D Plots window is composed of three sections:  the Menu Bar, the 

Information Window, and the Plot Display.  Figure 21 illustrates the 2D Plots window.  The 

only option currently available in the File menu is Close.  Selecting this option simply closes the 

2D Plots window.  Likewise, the View menu only contains a single option:  Non-Crits.  

Toggling this option on (default) or off determines whether or not information for non-critical 

components is displayed in the risk angle plots.  A non-critical component is defined as a 

component that is not assigned a PK table in the JTYPE input file (for additional information 

regarding critical and non-critical components, see Reference 1, Section 5.2).  The Information 

Window has two folders displayed:  Probability Plots and Risk Angles, each of which is 

discussed separately in the sections that follow. 
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Figure 21.  2D Plots Window. 

 

3.2.1 Probability Plots 

 

Double-clicking on the Probability Plots folder with the left mouse button will drop down a 

menu listing the Events in the “.ucf” file.  Selecting any of the Events listed with the left mouse 

button will drop down another menu with the Hazard Summary and Averages options.  

Figure 22 illustrates these options. 
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Figure 22.  Probability Plots Options. 

 

 

Double-clicking on the Hazard Summary option with the left mouse button will open a Hazard 

Probability Summary window within the Plot Display (see Figure 23).  This graphic display 

shows the aircraft hazard probabilities for all flight phases assessed at each release angle of the 

Event selected.  If the number of release angles for any given Event is larger than can be 

displayed on a single page, the Next and Previous buttons located in the bottom corners of the 

display window can be used to scroll through the pages.  The page number will always appear 

under the title at the top of the display. 
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Figure 23.  Hazard Summary Option. 

 

 

Double-clicking on the Averages option with the left mouse button opens an Average Hazard 

Summary window within the Plot Display (see Figure 24).  The data presented includes two sets 

of averages computed by UEDDAM:  the blue columns represent the aircraft hazard probabilities 

at each flight phase assessed averaged over all Release Points analyzed; the red columns 

represent the aircraft hazard probabilities at each flight phase assessed averaged over the entire 

realm of possible release points (i.e., 360).  Note that the average over 360o assumes that the 

aircraft hazard probability for any Release Point not assessed is equal to 0. 
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Figure 24.  Averages Option. 

 

 

Selecting any of the blue columns in the Average Hazard Summary window with the right mouse 

button will open yet another graphic display.  This plot represents the probability of hazard at the 

selected flight phase for each Release Angle assessed and the average over all release angles 

assessed.  Figure 25 illustrates the Flight Phase by Release Angle window.  
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Figure 25.  Flight Phase by Release Angle Display. 

 

 

If the number of release angles for any given Event is larger than can be displayed on a single 

page, the Next and Previous buttons located in the bottom corners of the display window can be 

used to scroll through the pages. 

 

Selecting any of the blue columns on the Flight Phase by Release Angle plot with the right 

mouse button will open a Damage Release Contribution graphic display for the particular 

Release Angle selected.  This new plot breaks down the data one step further by displaying the 

probability of hazard of those components and/or systems that contribute to the overall aircraft 

probability of hazard (also displayed on the graph).  This plot is for a specific flight phase and 

Release Angle and interpretation of the data requires knowledge of both COVART and 

probability theory.  Figure 26 illustrates the Damage Release Contribution display. 
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Figure 26.  Damage Release Contribution Display. 

 

 

3.2.2 Risk Angles 

 

Similar to the Probability Plots option, double-clicking on the Risk Angles folder in the 

Information Window of the 2D Plots window with the left mouse button will drop down a 

menu listing the Events in the “.ucf” file.  Selecting any of the Events listed with the left mouse 

button will drop another menu with the Translational and Fore/Aft options.  Figure 27 

illustrates these options. 
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Figure 27.  Risk Angles Option. 

 

 

Double-clicking the Translational option with the left mouse button will bring up a plot in the 

Plot Display equivalent to those described in the FAA AC 20-128A (Reference 2).  Figure 28 

illustrates the resulting Translational Risk Angle bar graph.   

 

 
 

Figure 28.  Translational Option. 
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Along the x-axis are the translational release angles.  The y-axis contains a list of components 

identified by their COVART name followed by the associated component identification number 

in parentheses.  The dash number is the assembly ID for that component (see Reference 1 for 

additional information regarding component assemblies).  The bar for each component runs from 

the minimum translational release angle that will intersect that component to the maximum; 

collectively, these angles are referred to as the component’s translational risk angles.   

 

Because the number of components will be larger than can be displayed on a single page, the 

Next and Previous buttons are used to navigate between pages.  At the bottom of the 

Translational Risk Angle window, there is also a Search field and button.  By entering text in the 

Search field, the user can skip directly to a component that matches the search text.  Clicking on 

the Search button again will find the next component matching the search criteria and so on. 

Upon reaching the end of the list during a search, a window stating that the search has gone to 

the end of the list will appear.  Note that the Search field is case sensitive. 

 

Similarly, double-clicking the Fore/Aft option with the left mouse button will bring up a 

Fore/Aft Risk Angle plot in the Plot Display (see Figure 29).  The only difference between the 

Fore/Aft Risk Angle plot and the Translational Risk Angle plot are the angles represented along 

the x-axis. 

 

 
 

Figure 29.  Fore/Aft Option. 
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Selecting any one of the blue bars on either the Fore/Aft Risk Angle plot or the Translational 

Risk Angle plot with the right mouse button will open a Component Intercept Data window (see 

Figure 30).  The window contains a summary of the translational and spread risk angles and 

associated probability of hits for the particular component selected.   

 

 
 

Figure 30.  Component Intercept Window. 

 

 

3.3 SIGNIFICANT ITERATIONS 

 

Selecting the Significant Iterations option under the Tools menu with the left mouse button will 

bring up a secondary window in which the SIGIT* file(s) output from a successful UEDDAM 

execution are displayed.  If more than one SIGIT* file was requested in the UEDDAM control 

file, each output file will be displayed under a separate tab within the Significant Iterations 

Window (see Figure 31).  To close the secondary window and return to the main UEDDAM 

Visualizer Display, the user should select the File – Close option from the menu bar of the 

Significant Iterations Window. 
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Figure 31.  Significant Iterations Option. 

 

 

3.4 RISK ZONE 

 

Another option under the Tools menu is Risk Zone.  When this option is selected, the Visualizer 

opens a secondary window displaying the geometry as is currently displayed in the Display 

Window, except with the following modifications:  the view is set to 90o azimuth, 90o elevation 

and the geometry is Autosized and Autocentered in the Risk Zone Window.  Note that the 

geometry displayed in the Risk Zone Window cannot be manipulated.  In addition to the 

geometry, a series of Event Buttons, each representing a single Event specified in the 

UEDDAM control file, appear along the left-hand side of the Risk Zone Window.  When one of 

the Event Buttons is pressed, the Visualizer draws four lines through the geometry (two port and 

two starboard) indicating the maximum forward and aft spread angles for that specific Event.  

Components of the geometry that lie between these lines are at risk of being hit by the debris 

associated with this Event.  Figure 32 illustrates the Risk Zone option, with 4 of the possible 18 

Events selected for display.  To close the secondary window and return to the main UEDDAM 

Visualizer Display, the user should select the File – Close option from the menu bar of the Risk 

Zone Window. 
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Figure 32.  Risk Zone Tool. 

 

 

3.5 FIND 

 

The Find option (located under the Tools menu) allows the user to graphically locate a 

component (or group of components) of the geometry through a COVART name.  When the 

Find tool is selected, the Visualizer opens a Search window.  In the search field, the user can 

type either the complete or partial text of the COVART name of interest (the wild card character, 

used in the case of a partial name, is the *).  Note that the user can perform a case-sensitive 

search using the toggle switch located in the Search window.  The Visualizer then attempts to 

locate a component (or components) that match the text entered.  In the case of a partial field 

search resulting in a match with more than one COVART name, a List Box will appear allowing 

the user to select the particular name of interest.  Once a selection has been made, the component 

(or group of components) corresponding to the selected COVART name will be changed to 

solid, non-transparent, and highlighted in red in the Display Window; all other components of 

the geometry currently displayed will be made transparent.  This process is illustrated in 

Figure 33.   
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Figure 33.  Find Tool. 
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