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Handout #  1 
Modeling of Mechanical (Lumped 
Parameter) Elements 
 
The fundamental components of a mechanical system 
are: masses or inertias, springs (stiffnesses), and 
dampers. 
 
Lumped elements lead to ordinary differential equations of 
motion describing the system dynamical behavior. 
 
Each mechanical element has a particular function within the 
mechanical system: 
 
All systems are just an ensemble of inertias, stiffnesses, and 
damping elements with definite relationships between its 
components: 
Inertia elements are conservative, store kinetic energy, and 

relate momentum to velocity (linear momentum to 
translational velocity, and angular momentum to angular 
velocity); 

 
Stiffness (compliant or elastic) elements are conservative 

store potential or strain energy, and relate the element 
force (torque) to a translational (angular) displacement; 
and, 

 
Damping elements are non-conservative and dissipate 

energy from the system. They convert the energy into 
another form of energy (usually heat).  Dampers relate 
the element force (torque) to a translational (angular) 
velocity. 
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Our objective: 
to determine equivalent system elements as those capable of 
reproducing an identical action as all the elements of the same 
class, and combined by virtue of rendering the same energy or 
dissipated power.  This can be achieved once a particular 
coordinate or generalized displacement is selected to represent 
the system or element behavior. 
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Stiffnesses (Springs) in Mechanical Systems  
 

Translational Springs:  relate force to displacements 
(deflections).  Springs are commonly assumed as MASSLESS, so 
that a force  F   at one end must be balanced by a force  Fs (reaction) 
acting on the other end.  Due to this force applied at one end, the spring 
undergoes an elongation (deformation) equal to the difference 
between its two end displacements (e = X2-X1).  For small values of (e),  
the spring constant or stiffness is: 

K =  F/e     [N/m, lb/in]        
  

A spring element is an energy  
storage device.  This energy (Vs) is of 
strain (potential) type.  In the linear 
range this energy is: 
Vs =  ∫ Fs dx  =  ½  K e2 

 
and indicated by the area under the 
Fs  vs. e  (force vs. deformation) curve. 
 
Special cases of non-linear springs are 
denoted as softening if the slope of  
the curve Fs  vs. e  curve decreases as 
the elongation increases; and as  
hardening if the slope increases as the 
deformation e  also increases. 
 
In general, for small amplitude motions 
about an equilibrium point, a local or 
linearized stiffness is defined as: 
 
K  =  -∂Fs/∂X⏐o 

where the sub index  o  denotes a point of static equilibrium. 
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Equivalent Spring Coefficients: 
Select an equivalent displacement, find the total strain energy 
and equate to that of the equivalent element.  
 
(a)  springs connected by levers 
 
Vs= ½ {K1 X

2
1

 + K2 X
2
2 } = ½ Keq X eq

2
 [N.m=J] 

 
Let  Xeq = X1,  then  X2 = θL2,   X1 = θL1 
 
so then  X2 = X1 (L2 / L1) and 
 
Keq = K1 + K2 (L2 / L1)2  [N/m] 
 
 (b)  torsional springs on geared shafts 
 
Vs=½  {K1 θ 1

2
 + K2 θ 2

2 } = ½ Keq θ eq
2

 [N.m=J] 

since θ1N1 = θ2 N2, where N is the number of teeth 
 
and select   θeq = θ1 , then 
 
Keq = K1 + K2 (N1 / N2)2   [N.m/rad] 
 
 (c)  coupled torsional and translational 
springs 

 Vs = ½  {K x2 + Kt θ2 } = ½ Keq X eq
2  

Let   Xeq = X , and since X = R θ , then 
 
Keq = K + Kt / R2  [N/m], or 

Let  Xeq = θ , then the equivalent torsional spring is 
 
Kteq = K R2 + Kt   [N.m/rad] 
 
Note: in (a) thru (c) one of the spring ends is connected to ground. 
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Equivalent Spring Coefficients: (continued)  
 
 
(d)  springs with two end displacements 
 
 F = K (Xb − Xa)   [N or lb];  Xb  >  Xa 
 
 the spring deflection is e=(Xb − Xa) 
 
(e)  springs connected in parallel 
Both of the spring ends share common boundaries. 
 
Fs  =  Fa + Fb,              let    X2  >  X1 
Fa =  Ka (X2 − X1),   Fb = Kb (X2 − X1) 
 
hence Fs =  Ka (X2−X1) + Kb (X2 −X1) 
 Fs = (Ka + Kb) (X2−X1) = Keq Xeq ; 

Let, Xeq  = X2 - X1 
Hence, Keq = Ka + Kb       [N/m]     
 
(f)  springs connected in series 
If end of one spring is fastened to the end of the other springs, then both springs 
transmit the same force. 
 
For equilibrium:   Fa = Fb = F 
                                            

since  (X2−X1) = Fa / Ka           
(X3−X2) = Fb / Kb 

and (X3−X1) = F / Keq; 
 

let     Xeq = X3 - X1 
 

then   F / Keq = Fa / Ka + Fb / Kb; 
 1 / Keq = 1 / Ka + 1 / Kb.  Thus,  

 Keq = (Ka ⋅ Kb) / (Ka + Kb)   [N/m] 
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Equivalent mass (inertia) elements 
The mass of a body is a fundamental material property and thought as 
the amount of matter within a body.  The mass  (M)  is a constant (at 
velocities well below the speed of light) and not to be confused with its 
weight  (W = Mg). 
 
Mass enters the system dynamics through the fundamental 
laws of motion (linear and angular momentum conservation),  
 
In translational systems: 
                 

F M X=  [N]                          
    where   
 

2
2

d
dt= XX  : acceleration  [m/s2] 

 
 
In rotational systems: 
               

M Iθ=  [N.m]                       
   where   

2
2

d
dt

θθ =  : angular acceleration  [rad/s2] 

 
With I [N.m.s2/rad=kg.m2] as the mass moment of inertia. 
 
Recall some definitions: 
               US system  SI system____ 
   displacement  inch =0.0254 m       meter (m) = 100 cm 
   mass   lb-sec2/inch=snail  kilogram (kg) = 2.2 lbm 

   time   second (s)   second (s) 
   force   lb = 4.448 N            Newton (N)  
 
  US:  A force of 1 lb applied to a mass of 1 lbm produces an acceleration of 386 in/s2         
 
   SI:  A force of 1 N applied to a mass of 1 kg produces an acceleration of 1 m/s2 
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If the body is rigid (not deformable), a lumped mass may be condensed 
at the center of mass of the body, and hence all material points translate 
or rotate together, i.e. 
 

M =   ∫  ρ  dV 
 
I =    ∫  ρ  r2 dV 
 
where ρ: mass density, V: body volume, r: distance from  

reference axis to dm = ρ dV 
 
The kinetic energy (due to motion) is associated to masses and 
moments of inertia.  For translation, 
           

21
2

T M X=  

while for rotation about a fixed axis, 
                 

21
2

T Iθ=  

 
Newton’s 2nd law of motion in terms of the body linear momentum  
(p = M v) as   

; whered p dV d XF M V
d t d t d t

= = =   

 

From this definition, p F dt=∫  is also known as the impulse. 
 
 
The mass element is energy-conservative since,  
work performed = change in kinetic energy 
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Note: Kinetic Energy (T) is independent of the path followed; it is a 

function of the end and beginning states. 
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Equations of motion for a rigid body on plane XY 

 
 

Summation of Forces:  ∑ ∑ == r  MF 
G
   

Summation of Moments: let                                    
body rigid the of onaccelerati angular the as  θα =  

G GM I θ=∑  About center of mass,    
 

o oM I θ=∑             About a fixed axis of rotation, or 
 

( )o o og o
z

M I m b x Rθ= +∑  

About point o moving with acceleration oR  

bog 
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Equivalent Inertia elements: rendering same kinetic energy 

(a)  Rigidly connected masses 

have identical velocities, and hence 
Veq  =  V1 = V2 
Meq =  M1 + M2 
 
 
(b)  Masses connected by a lever 

for small amplitude angular motions.  Let  
Veq = V1, then since the lever is RIGID, 
V2 = V1 (L2/L1) 
 
and the total kinetic energy is equal to  
 
T = ½ {M1 V 1

2  + M2 V 2
2 } = ½ Meq V eq

2  [N.m=J] 

T = ½ {M1 + M2 (L2/L1)2 } V1 ,   let  V1 = Veq 

 
hence          Meq = {M1 + M2 (L2/L1)2 }   [kg] 
 
(c)  Inertias on geared shafts (rotation) 
Consider two shafts with mass moments of inertias, I1 and I2, connected by 
massless gears. 
Let the number of teeth on each gear be N1 and N2, respectively. 
 

Since   ,N =N 112 2 ΘΘ  
because the contact speed is the same.  

Select   = 1 eq ΘΘ  
 
and using the equivalence of kinetic  
energies find: 
 

2
1 2 1 2 ( / )eqI I I N N= +  [N.m/(rad/s2) =  

kg.m2] 
 
(d)  Masses in series 
Masses do not have two ends (terminals or ports), and thus can not be connected in 
series. 
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 (e)  Coupled rotation and translation 
 

T = ½ Meq V eq
2  = ½ M  V2 + ½ I 2θ   [N.m] 

 
since  V Rθ=   at the contact 
point  without slipping, then 
 
 
 
for  Veq = V,   →  Meq = M + I/R2,  [kg] 
or 
for Veq =θ ,  →  Ieq = I + M R2,  [kg⋅m2] 
 
 
LUMPED MASS FOR SPRING ELEMENT: 

 
2 2

( )
0

1 1          .     Let     ,  the spring tip speed,
2 2

M

eq eq x eq mT M V v dm V V= = =∫
  

since  ( )           and             for uniform densityx m
x dxv V dm M
L L

= =  

Then 
2

2
21 202 20
2 2 31 0

2

      
           

 

L
M

m
L

eq
eq m

x MV dxv dm L L MM x dx
V V L

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= = = ⎜ ⎟

⎝ ⎠

∫∫
∫  

 
3  

3
 0

     
3 3

L

eq
M x MM

L
⎤= =⎥⎦

  : Not all of the element mass moves with same speed 
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Dissipation elements in mechanical systems 
These are mechanical components which dissipate power (remove 
energy from system) converting it usually into heat. The process is 
irreversible! 
 
Energy dissipation elements are known as dampers or dashpots, and 
typically used as: 
ISOLATORS: to reduce the amount of transmitted forces (moments) to 
other system components, and/or 
VIBRATION ABSORVERS: to dissipate energy of undesirable 
vibrations and to decrease the amplitude of vibrations in a mechanical 
system. 
 
(Note: effort=force or moment, flow: velocity or angular speed) 
 
TYPES of DAMPING: 
 
VISCOUS (Linear)      
 
effort = D flow 
 
Typically found at low speeds and 
with viscous fluids 
 
 
 
NONLINEAR DAMPING: 
 
Aerodynamic:       
 
effort = C |flow| flow 
 
Typically found at high speeds and 
with non-viscous fluids 
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Dry (Coulomb) friction: 
 
Effort = {|flow|/flow} μN 
 
Typically found between dry surfaces 
in relative motion. μ is the coefficient of 
friction (static and dynamic), 
 
Histeretical or structural damping: 
Material damping with structural 
components 
 
 
 
 
Except for linear (viscous) damping, all other forms of damping are 
difficult to analyze (and to include) in dynamic models, even for 
simple cases. 
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Viscous damping elements 
 
Viscous (Linear) Damper:  is the mechanical dissipative element which relates 
force to velocity.  Dampers or DASHPOTS are commonly assumed as 
MASSLESS, so that a force  F at one end must be balanced by a force  FD  
(reaction) acting on its other end.  Due to the force applied at one end, the damper 
follows a motion equal to the difference between its two end velocities (V=V2-V1).  
For small values of V, a linear relationship appears so that the damping constant is 
defined as: 
 

D = F/V  [N-sec/m, lb-sec/in]      
 
A linear damper denotes a viscous shear 
mechanism for its action. A damper 
dissipates energy lost to 
the surroundings (outside of system)  
or transferred to other systems  
usually in the form of heat.  The 
energy dissipated is given as: 
 

2

1

2

1
  

t
x

d D Dx
t

E F dX F V dt= =∫ ∫  

 
2 2

1 1

2 0
t t

d v
t t

E P dt D V dt= = >∫ ∫  

 
if  D > 0 
 
In general, for small amplitude  
motions about an equilibrium point,  
a local or linearized damping 
coefficient can be defined as: 
 

D  =  -∂F/∂V⏐o 
 
where the sub index  o  denotes a point  
of equilibrium. 
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MORE on VISCOUS DAMPER ELEMENTS 
A fluid is a material that can not withstand tension. A fluid flows as soon 
as a shear stress τ  is applied to it.  In general, it is sufficient to know 
(for now) that the shear stress  τ  [N/m2] in a newtonian fluid is 
proportional to the spatial rate of change of its velocity  V [m/s].  The 
proportionality constant is the fluid viscosity  μ [Pa.s = N.s/m2], i.e. 

τ [N/m2]  =  μ ∂ V/∂x 
 
Consider two parallel plates of area  A  and separated by a gap h.  A 
viscous fluid fills the space between the plates.  The top plate moves 
with velocity V. Then, the shear force resisting the relative motion is: 
 

F = τ A = μ A V/h = Deq V 
 
Assumed a linear velocity profile between the  
stationary plate and the moving plate.   
Note that Deq corresponds 
to a damping coefficient for translation  
with physical units [N.s/m]. 
 
Consider two cylinders of length L 
and radii R and R+h, respectively.  The 
inner cylinder rotates at angular speed ω  
(rad/s). The gap between the two cylinders 
is filled with a viscous fluid.  Note  h < < R. 
 
For concentric cylinders, the resistive torque  To  
opposing the rotation at angular speed  (ω)  is  
 
To = F R = μ A (V/h) R = μ (2 π R L) (ω R/h) R 

To = 2 μ π R3 (L/ h) ω = Deq ω 
Note that Deq is a damping coefficient for rotational motions with physical 
units [N.m.s/rad]. 
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Equivalent Damping Coefficients: 
Select an equivalent velocity and equate the dissipated powers 
 

2  D dP F X D V= =  

 
(a)  dampers connected by levers 

PD=  {D1 V
2
1

 + D2 V
2
2 } = Deq V eq

2
 [N.m=J]   

ω θ=  
Let  Veq = V1 & since V2 = ωL2,   V1 = ωL1 
 
then  V2 = V1 (L2 / L1) and 
 
Deq = D1 + D2 (L2 / L1)2  [Ns/m] 
 
(b)  torsional dampers on geared shafts 
 
Since 1 1 2 2N Nθ θ= , where N is the number of teeth 
 

and selecting      1eqθ θ= ,  then 

 

Deq = D1 + D2 (N1 / N2)2   [N.m.s/rad] 
 

(c)  coupled torsional and translational  
      dampers 
 

Let  ω θ= , Veq = V & since V = ω R, then 
 

Deq = D + Dt / R
2       [N.s/m] 

 

Or let 1eqθ θ= then the equivalent torsional damper is 

 

Deq = D R2 + Dt    [N.m.s/rad] 
 
Note: in (a) thru (c) one of the dashpot ends is connected to ground. 
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Equivalent Damping Coefficients: (continued) 
 
 
(d)  damper with two end velocities 
 

( )2 1DF D X X= −     [N or lbs] 

 
(e)  dampers connected in parallel 
Both damper ends share common boundaries 
 
Fp = Fa + Fb = Fd 
 
Fa = Da (V2-V1),   Fb = Db (V2-V1) 
 
hence  Fp = (Da + Db ) (V2-V1) 
 
select  Veq  =  (V2-V1) 
 
Thus, 

 Deq = Da + Db     [N.s/m] 
 
(f)  dampers connected in series 
If the end of one damper is fastened to the 
end of the other damper. The same force is  
transmitted. 
 
For equilibrium:  Fa = Fb = F = Fd 
 
since   (V2-V1) = Fa/Da 
 (V3-V1) =  Fb/Db 
 
 (V3-V1) = F/Deq;  and let  Veq=(V3-V1) 
 
then  F/Deq = Fa/Da + Fb/Db 
  
1/Deq = 1/Da + 1/Db 
 
Thus, Deq = (Da Db) / (Da + Db)   [N.s/m] 
 
 




