ORTHOPINAKIOLITE, Me_{2.95}O₂[BO₃][†]: ITS CRYSTAL STRUCTURE AND RELATIONSHIP TO PINAKIOLITE, Me_{2.90}O₂[BO₃]^{*}

YOSHIO TAKÉUCHI, NOBUHIKO HAGA,

Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan

TOSHIO KATO AND YASUNORI MIURA

Institute of Mineralogical Sciences, Faculty of Literature and Science, Yamaguchi University, Yoshida, Yamaguchi 753, Japan

Abstract

The crystal structure of orthopinakiolite, a 18.357(4), b 12.591(2), c 6.068(1) Å, Pnnm, has been determined, and yields the cell formula 16 $Me_{3-x}O_2[BO_3]$, where x = 0.05, $Me_{3-x} =$ $(Mg_{1.423}Mn^{2+}_{0.432}Fe^{3+}_{0.220}Mn^{3+}_{0.875})_{\Sigma=2.95},$ Mn³⁺/ $Me^{2+} = 0.47$. The mode of cation ordering and the vacancy distribution are primarily explicable from the Jahn-Teller distortion and resulting asymmetric charge distribution about Mn³⁺. Orthopinakiolite is not a polymorph but an Mn³⁺ (and vacancy)-deficient modification of pinakiolite $(x = 0.1, Mn^{3+}/Me^{2+} = 0.56)$. The geometrical features of the orthopinakiolite structure can be expressed by Ito cell-twinning of the pinakiolite substructure on the scale of a double Takéuchi cell (a doubled). The polysymmetric synthesis needed to form the Ito "twin" plays a role in reducing the Mn³⁺ (and vacancy) content of the pinakiolite structure. Orthopinakiolite is thus an example of 'tropochemical twinning'.

SOMMAIRE

La structure de l'orthopinakiolite, déterminée pour la maille a 18.357(4), b 12.591(2), c 6.068(1)Å, dans le groupe *Pnnm*, correspond à 16 $Me_{3-x}O_2[BO_3]$ par maille, avec x = 0.05, $Me_{3-x} = (Mg_{1.423}Mn^{2+})_{0.432}$ $\mathrm{Fe^{3+}}_{0.220}\mathrm{Mn^{3+}}_{0.875}$)_{$\Sigma=2.95}, <math>\mathrm{Mn^{3+}}/\mathrm{Me^{2+}}$ = 0.47. La</sub> mise en ordre des cations et la distribution des lacunes s'expliquent principalement par la distortion Jahn-Teller et la distribution asymétrique des charges correspondante. L'orthopinakiolite est une modification, non pas polymorphique, mais déficiente en Mn³⁺ (et en lacunes), de la pinakiolite (x = 0.1, $Mn^{3+}/Me^{2+} = 0.56$). Géométriquement, la structure de l'orthopinakiolite peut s'exprimer par maclage Ito (maclage de mailles) de la sous-structure pinakiolite à l'échelle d'une double maille de Takéuchi (a doublé). La synthèse polysymétrique requise pour former la "macle" d'Ito conduit à une diminution du nombre des ions Mn³⁺ (et des

(Traduit par la Rédaction)

INTRODUCTION

Ludwigite, pinakiolite, hulsite and orthopinakiolite comprise a family of oxyborates characterized by cations with mixed valence states. Takéuchi *et al.* (1950) determined the essential structural features of warwickite, another oxyborate, ludwigite and pinakiolite, and discussed the common principle governing their morphotropic relations. Series of synthetic borates having these structure types were reported by Bertaut (1950). The crystal structure of vonsenite, a Mg-free ludwigite, confirmed the ludwigite structure, and yielded some additional details of this structure type (Takéuchi 1956, Federico 1957).

Recent structural studies on these minerals and related compounds include those of FeCoO[BO₃], an isotype of warwickite (Venkatakrishnan & Buerger 1972), pinakiolite and warwickite (Moore & Araki 1974), and hulsite (Yamnova et al. 1975; Konnert et al. 1976). For pinakiolite, Moore & Araki (1974) found a larger cell than that given by Takéuchi et al. (1950). The a axis of the new cell corresponds to [101] of the previous cell and is doubled primarily owing to the ordering of certain sets of cations. The new space group, C2/m, is different from the previous one, $P2_1/m$, yet both structures share essentially the same geometrical features. This is a consequence of the fact that, if the unit cell in space group C2/m is so folded that its a axis is halved, the resulting symmetry is consistent with $P2_1/m$ but with a halved; the structure given by Takéuchi et al. (1950) corresponds to a substructure of the true structure. The relations between the true structure and the substructure were discussed in detail in Moore & Araki (1974).

†*Me*: Mg, Mn²⁺, Mn³⁺.

^{*}Dedicated to Professor J. D. H. Donnay on the occasion of his 75th birthday.

Orthopinakiolite has the largest cell (Randmets 1960) among the above mentioned borates, but its structure remained unknown. This mineral is of particular interest because its cell is apparently more closely related to that of ludwigite (a and c doubled) than to that of pinakiolite (Moore & Araki 1974), even though its structure was first thought to be a derivative of the pinakiolite structure (Randmets 1960). Studies were undertaken to find the structural relationships between these minerals and crystallochemical factors underlying the formation of such a derivative structure. This mineral is also suited to test the partial Patterson method (Takéuchi 1972) as a means of determining the mode of cation ordering in a moderately complex structure.

MATERIAL

Orthopinakiolite crystals from Långban, Sweden, were used for X-ray investigation. In contrast to the platy crystals of pinakiolite, they have a prismatic habit similar to that of ludwigite. Our electron microprobe analyses (Table 1) showed a spatially homogeneous composition and revealed, in addition to Mg and Mn, the presence of Fe and Ca, though the latter was negligible; other elements, e.g., Al and Ti which Irving (in Moore & Araki 1974) detected for pinakiolite, were not found. As will be shown later from the Jahn-Teller distortion of octahedra about Mn³⁺, it is probable that the unit cell contains at least fourteen Mn³⁺ ions, the number corresponding to 0.875 per five oxygen atoms. On the other hand, Mössbauer spectra of orthopinakiolite (K. Nagashima, priv. comm. 1977) revealed that Fe in this mineral

TABLE 1. CHEMICAL COMPOSITIONS OF ORTHOPINAKIOLITE AND PINAKIOLITE

	1	2	3	4	
Mg Mn Fe Ca A1 B 0	16.7 34.4 5.8 0.0	16.5 34.3 5.9 - 5.17 38.1	17.4 39.3 5.15 38.15	20.7 32.0 0.6 0.7 5.4 39.8	

1 An average of analyses expressed as element percentages at five sampling points of a crystal from Långban, Sweden, specimen #332376 of the Swedish Museum of Natural History, Stockholm.

2 Theoretical composition: $Mg_{1.423}Mn_{0.432}^{2+}Fe_{0.220}^{3+}Mn_{0.875}^{3+}0_2B0_3$.

3 Composition reported by Bäckström (1895): $(Mg_{1.5}Mn_{0.5}^{2+})Mn_{1.00}^{3+}n_{2}^{00}B_{3}^{0}$

4 Pinakiolite (Moore & Araki 1974):

$$Mg_{1.68}^{Mn} {}^{2+}_{0.09}^{Fe} {}^{3+}_{0.02}^{A1} {}^{0.05}_{0.05}^{Mn} {}^{0.06}_{0.06}^{Mn} {}^{1}_{1.00}^{0} {}^{2B0}_{2}^{B0}_{3}$$

is mostly in the ferric state; Fe^{a^+} is negligible. The Mössbauer evidence then limits approximately the Mn^{3+} content to the above value so as to give a formula in which formal charges are neutralized (Table 1). Orthopinakiolite is thus significantly deficient in Mn^{3+} compared to pinakiolite. This difference is structurally important because the distortions of the octahedra about Mn^{3+} have a significant effect on the neighboring atomic arrangement.

The chemical compositions of these minerals nevertheless share the following features: (1) a general formula, $Me_{3-x}O[BO_3]$, with x = 0.1for pinakiolite, 0.05 for orthopinakiolite, and Me = Mg, Mn^{3+} , Mn^{2+} , and (2) compensating for cation deficiencies, excess of cations (other than Mn^{3+}) of higher valencies, like Fe³⁺ or Mn^{4+} , over those reported in the original formula (Mg₃Mn²⁺)Mn³⁺₂O₄[BO₃]₂ (Flink 1890, Bäckström 1895).

EXPERIMENTAL

Out of a crystal, a sphere was prepared having a radius of 0.1 mm, and used for X-ray experiments. The cell dimensions obtained from (graphite-monosingle-crystal diffractometry chromatized Mo K α : $\lambda = 0.71069$ Å) are: a 18.357(4), 12.591(2), c 6.068(1)Å,V b 1402.5Å3. The above-mentioned formula gives a calculated density, $D_x = 4.06 \text{ g} \cdot \text{cm}^{-3}$, comparable with the measured value, $D_m = 4.03 \pm$ 0.05 (Randmets 1960). The possible space groups are as reported by Randmets (1960): Pnnm or Pnn2; the former has been confirmed by the structure analysis.

The ω -2 θ scan technique was used to measure a total of 3800 independent reflections up to $2\theta = 75^{\circ}$. Of these, a set of 2309 reflections which had intensities greater than 2σ (I) were used for the structure determination. After due corrections for Lorentz and polarization factors as well as absorption ($\mu = 61.7$ cm⁻¹), the intensities were reduced to structure factors.

STRUCTURE DETERMINATION

As reflections are weak when $l \neq 2n$, the orthopinakiolite structure has a strong pseudotranslation of c/2, suggesting a substructure with this half period. This substructure should have a space group *Pbam*, provided it is centrosymmetric. Using a procedure described elsewhere (Takéuchi *et al.* 1950) and a two-dimensional Patterson map, we readily succeeded in deriving the substructure that gave a satisfactory agreement between observed and calculated amplitudes, F(hk0). From the two-dimensional data,

	Substructure, Phan True structure, Pnan									
Site	Number, Wyckoff	Number, Occupancy Wyckoff		Site	Number, Wyckoff		Occupancy			
	point symmetry	Mg	Mn		point symmetry	Mg	Mn ²⁺	Mn ³⁺	Fe ³⁺	Σ
I	2a, 2/m		1.0	M(1) M(2)	2a, 2/m 2b, 2/m			1.00		1.00
II	2c, 2/m	0.7	0.3	M(3) M(4)	2c, 2/m 2d, 2/m	0.54(8)	0.05(2)	1.00	·	1.00 1.00+
111	4h, m	0.9	0.1	M(5)	8h, 1	0.918(8)	0.082			1.00
IV	4g, m	0.25	0.75	M(6) M(7) M(7*) M(7)	4g, m 4g, m 4g, m 4g, m		0.448(7) 0.26(1)	1.00	 0.292(9)	1.00 1.00
۷	4g, m	0.2	0.8	M(8) M(9)	4g, m 4g, m	0.57	0.43(1)	1.00		1.00 1.00
VI	4h, m	0.7	0.3	M(10)	8h, 1	0.733(8)	0.12**		0.147**	1.00
VII	4h, m	0.75	0.25	M(11)	8h, 1	0.775(8)	0.078**		0.147**	1.00
				Ζ Σ + ch 1	arge	45.54	13.78	42.00	10.58	111.90
				Ζ Σ - ch	arge					112.00

TABLE 2. OCCUPANCIES IN THE CATION SITES OF ORTHOPINAKIOLITE

+ Includes 0.41 unoccupied.

** Assumed partition. For calculation, the weighted mean of the Mn²⁺ and Fe³⁺ form factors was used.

and using as cationic form factor, the average of those for Mg and Mn, we refined the structure to R = 17% to estimate rough contents at the cation sites, on the assumption that there were no vacancies at the cation sites (Table 2). Note that in the true structure two nonequivalent cations overlap down the *c*-axis projection, at each of the octahedral sites I, II, IV and V (Fig. 1, Table 2). Those which overlap at each of the sites III, VI and VII are equiva-

FIG. 1. (a) The c-axis projection of the substructure, showing idealized links of regular octahedra (numbers as in Table 2) and BO₃ triangles. The octahedra on the z = 0 and z = 0.5 levels are ruled, respectively, with heavy and light lines. (b) A portion of the partial Patterson section, z = 0, based on the synthesis using only odd terms in l and showing positive peaks due to vectors between octahedral cations II, IV and V.

TABLE 3. POSITIONAL PARAMETERS FOR ORTHOPINAKIOLITE ATOMS

x	У	z	B(Å ²)**
0.00000 .00000 .00000 .11890(9) .12887(6) .1064(2) .1644(2) .25289(6) .2509(1) .37222(7) .37260(7)	0.0000 .0000 .5000 .5000 .3935(1) .3935(1) .395(18) .4043(5) .27535(9) .2820(2) .1160(1) .394(1)	0.0000 .5000 .5000 .2480(4) .0000 .5000 .5000 .0000 .5000 .2476(2) .2486(3)	0.42 .43 .48 2.4 .51 .49 .98 4.8 3.3 .51 .79 .55 .49
.9821(4) .9816(5) .2367(4) .2318(4)	.2446(6) .2471(7) .0318(7) .0443(6)	.0000 .5000 .0000 .5000	.40 .84 .64 .59
.0662(2) .0564(3) .0577(3) .0731(2) .1947(3) .1926(3) .1802(2) .3125(3) .3070(3) .3189(2) .3038(3) .2977(3) .4463(3) .4445(3) .4443(3) .4423(3)	.0306(3) .2416(5) .2442(5) .4685(3) .1234(5) .1369(4) .3152(3) .0407(5) .0468(5) .2530(3) .4466(5) .1595(4) .1566(5) .1595(4) .3489(4)	.2504(7) .0000 .5000 .2148(7) .0000 .2221(7) .0000 .0000 .2379(7) .0000 .5000 .0000 .5000 .0000 .5000	.71 .78 .75 .81 .86 .73 .87 .92 .77 .84 .87 .79 .72 .85 .67 .74 .64
	x 0.00000 .00000 .00000 .00000 .11890(9) .12887(6) .1646(6) .25289(6) .2529(1) .37220(7) .37220(7) .37220(7) .37260(7) .9821(4) .2537(4) .2318(4) .0662(2) .0577(3) .0577(3) .1926(3) .1926(3) .1926(3) .3125(3) .3125(3) .3070(3) .3125(3) .3038(3) .3038(3) .2977(3) .4445(3) .4445(3) .4442(3) .4423(3)	x y 0.00000 0.0000 .00000 .0000 .00000 .5000 .00000 .5000 .00000 .5000 .00000 .5000 .00000 .5000 .00000 .5000 .00000 .5000 .11890(9) .1703(1) .12887(6) .3938(1) .0646(6) .4043(5) .25289(6) .27535(9) .25289(6) .27535(9) .25289(6) .27535(9) .37222(7) .1160(1) .37222(7) .160(1) .37224(7) .3948(1) .9821(4) .2446(6) .9816(5) .2471(7) .2387(4) .0318(7) .2318(4) .0443(6) .0662(2) .0306(3) .0564(3) .2416(5) .0577(3) .242(5) .0731(2) .4688(3) .1947(3) .1234(5) .926(3) .1369(4) .1802(2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

** Calculated from anisotropic thermal parameters.

lent by reflection; their contributions to *Fhkls* having l = 2n + 1 would be negligible. As the octahedra that overlap at position I were fully occupied by Mn (Table 2) according to the above preliminary calculations, the next step in determining the structure was to differentiate sets of two cations that overlap respectively at II, IV and V. This was accomplished by the partial Patterson function calculated using only odd-order terms in *l*.

Among vectors between the sets of cations now considered, those parallel to (001) give positive peaks in the function (Fig. 1), suggesting that all positive-difference electron densities, $\delta(x)$ (Takéuchi 1972) at these positions are in the same level on z, with all negative $\delta(x)$ s at the next level. Accordingly, we located Mn at z = 0 and Mg at z = 0.5 for each of the three sets of positions, thus providing initial phases for *Fhkls* with l = 2n + 1.

Several cycles of isotropic least-squares refinement, utilizing the program LINUS (Coppens & Hamilton 1970), reduced the R value from 35% to 13%. At this stage, we found the following features: (i) the M(4) position was only partly occupied, (ii) the atom at M(7) split to three positions, and (iii) M(1), M(2), M(3), M(6) and M(8) octahedra showed considerable distortions characteristic of those for Mn^{s+} octahedra and appeared to be fully occupied by that cation. Because of the unexpected result of (ii), a re-examination of cell dimensions was made by taking long-exposure X-ray photographs. However, no extra reflections were observed indicative of a larger cell.

When occupancy parameters at these split positions were introduced in the least-squares calculations, the isotropic refinement converged to R = 9.0%. Subsequent refinement applying anisotropic thermal parameters gave the final value of R = 4.9% for all reflections. The structure-factor table is available, at a nominal charge, from the Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Canada, K1A 0S2. The form factors used for Mn³⁺, Mn²⁺, Mg²⁺, B⁺ and

TABLE 4. PARAMETERS FOR THE ELLIPSOIDS OF VIBRATION IN ORTHOPINAKIOLITE*

Atom	i	μi	⁰ ia	⁰ ib	θ _{ic}	Atom	1	μţ	⁰ ia	⁸ 1b	θ _{ic}
M(1)	1 2 3	0.064 0.070 0.082	90° 162 72	90° 72 18	180° 90 90	0(3)	1 2 3	0.079 0.099 0.112	174° 90 84	84° 90 6	90° 0 90
M(2)	1 2 3	0.062 0.065 0.090	90 170 100	90 80 170	0 90 90	0(4)	1 2 3	0.083 0.109 0.109	39 128 83	123 139 111	72 78 158
M(3)	1 2 3	0.067 0.069 0.096	4 90 94	94 90 176	90 0 90	0(5)	1 2 3	0.094 0.098 0.119	161 90 71	71 90 19	90 0 90
M(5)	1 2 3	0.069 0.082 0.090	87 147 58	82 122 147	9 83 84	0(6)	1 2 3	0.081 0.099 0.107	90 116 26	90 26 64	180 90 90
M(6)	1 2 3	0.065 0.071 0.097	90 140 130	90 50 140	0 90 90	0(7)	1 2 3	0.085 0.103 0.123	159 111 94	70 158 81	97 83 10
M(8)	1 2 3	0.066 0.083 0.090	1 90 91	91 90 179	90 0 90	0(8)	1 2 3	0.090 0.099 0.131	167 90 103	103 90 :13	90 0 90
M(9)	1 2 3	0.063 0.086 0.137	90 41 131	90 49 41	0 90 90	0(9)	1 2 3	0.093 0.100 0.104	163 107 90	73 163 90	90 90 0
M(10)	1 2 3	0.066 0.088 0.093	83 173 92	104 90 166	16 83 104	0(10)	1 2 3	0.078 0.108 0.119	39 56 73	96 110 21	52 139 102
M(11)	1 2 3	0.063 0.081 0.090	98 154 115	84 116 26	170 86 81	0(11)	1 2 3	0.083 0.096 0.117	57 90 33	147 90 57	90 180 90
B(1)	1 2 3	0.064 0.067 0.082	90 38 128	90 52 38	0 90 90	0(12)	1 2 3	0.083 0.089 0.113	40 90 130	130 90 140	90 0 •90
B(2)	1 2 3	0.065 0.096 0.136	90 157 113	90 67 157	0 90 90	0(13)	1 2 3	0.092 0.103 0.115	133 90 43	137 90 133	90 180 90
B(3)	1 2 3	0.074 0.089 0.103	32 90 58	58 90 148	90 0 90	0(14)	1 2 3	0.088 0.094 0.094	91 90 179	179 90 89	90 0 90
B(4)	1 2 3	0.070 0.082 0.103	169 90 79	79 90 11	90 0 90	0(15)	1 2 3	0.080 0.091 0.115	90 146 124	90 56 146	0 90 90
0(1)	1 2 3	0.077 0.099 0.106	67 143 63	78 113 153	27 63 89	0(16)	1 2 3	0.076 0.092 0.100	90 56 34	90 34 124	180 90 90
0(2)	1 2 3	0.091 0.095 0.111	174 90 84	84 90 6	90 0 90						

* Those for partially occupied sites are not given. i = <u>i</u>th principal axis; $\mu_1 = rms$ amplitude (Å); θ_{1a} , θ_{1b} , $\theta_{1c} = angles between <u>i</u>th principal axis and the cell axes <u>a</u>, <u>b</u> and <u>c</u>.$

TABLE 5a. INTERATOMIC DISTANCES IN ORTHOPINAKIOLITE (Å)**

M(1)*** square plane -0(1) 1.983(4) × 4 elongate vertices -0(16)iv 2.177(5) × 2 average 2.048 M(2)*** square plane -0(1) 1.980(4) × 4 elongate vertices -0(15)iv 2.180(6) × 2 average 2.047 M(3)*** square plane -0(4) 1.913(4) × 4 elongate vertices -0(14)iv 2.252(5) × 2 average 2.026 M(4) -0(3)iv 2.205(6) average 2.218	$ \begin{array}{c} M(5) \\ -0(1) & 2.008(4) \\ -0(6) & 2.085(4) \\ -0(2) & 2.094(4) \\ -0(3) & 2.113(4) \\ -0(5) & 2.133(4) \\ -0(7) & 2.149(4) \\ average & 2.075 \\ M(6)^{***} \\ square plane \\ -0(4) & 1.908(4) \times 2 \\ -0(7) & 1.917(4) \times 2 \\ elongate vertices \\ -0(9) & 2.261(6) \\ -0(2) & 2.330(6) \\ average & 2.040 \\ M(7) \\ -0(4) & 2.043(4) \times 2 \\ -0(3) & 2.126(7) \\ -0(8) & 2.340(7) \\ -0(7) & 2.396(5) \times 2 \\ average & 2.224 \\ \end{array} $	$\begin{array}{c} M(7*) \\ -0(7) & 2.019(9) \times 2 \\ -0(8) \vee & 2.10(1) \\ -0(3) & 2.39(2) \\ -0(4) & 2.49(2) \\ average & 2.317 \\ M(\tilde{7}) \\ -0(4) & 1.916(5)^{\#} \\ -0(3) & 2.020(9)^{\#} \times 2 \\ -0(3) & 2.020(9)^{\#} \times 2 \\ -0(13) & 1.916(5)^{\#} \\ -0(3) & 2.020(9)^{\#} \times 2 \\ -0(13) & 1.920(9)^{\#} \\ -0(3) & 2.020(9)^{\#} \times 2 \\ -0(7) & 2.93(2) \times 2 \\ average & 2.408 \\ \#average & of four \\ 1.998 \\ M(8)^{***} \\ square & plane \\ -0(10) & 1.905(4) \times 2 \\ elongate & vertices \\ -0(5) & 2.192(6) \\ -0(11) & 2.349 \\ average & 2.046 \\ \end{array}$	$\begin{array}{c} M(9) \\ -O(10) & 2.054(4) \times 2 \\ -O(12) & 2.113(6) \\ -O(7) & 2.163(6) \\ -O(7) & 2.169(4) \times 2 \\ average & 2.113 \\ M(10) \\ -O(10) & 1.985(4) \\ -O(13) & 2.088(4) \\ -O(13) & 2.088(4) \\ -O(14) & 2.099(4) \\ -O(14) & 2.099(4) \\ -O(14) & 2.123(4) \\ average & 2.086 \\ M(11) \\ -O(10) & 2.041(4) \\ -O(15) & 2.091(4) \\ -O(15) & 2.091(4) \\ -O(12) & 2.114(4) \\ average & 2.073 \\ \end{array}$
B(1) -0(2) 1.364(9) -0(16)tv 1.385(9) -0(14)tv 1.391(9) average 1.380	B(2) -0(15)iv 1.37(1) -0(13)iv 1.38(1) -0(3) 1.40(1) average 1.38	B(3) -0(12) 1.37(1) -0(5) 1.39(1) -0(8) 1.40(1) average 1.38	B(4) -0(6) 1.370(10) -0(9) 1.382(9) -0(11)v 1.393(10) average 1.382

** Estimated standard errors in parentheses refer to the last digit. i = -x, -y, -z; ii = -x, -y, z; iii = x, y, -z; iv = 1/2+x, 1/2-y, 1/2-z; v = 1/2-x, 1/2+y, 1/2+z; vi = 1/2-x, 1/2+y, 1/2-z.

*** Mn³⁺

FIG. 2. (a) The structure of orthopinakiolite in a quarter cell, a/2, b/2 and c (a view down the axis lying at an angle of 108.4° to a and 96.4° to b). (b) Idealized arrangement of octahedral columns (ruled) and BO₃ triangles (stippled) projected down the c axis. Broken lines trace the monoclinic cell of pinakiolite (Fig. 7a), of which orthopinakiolite represents a twinned form.

479

O⁻ were taken from vol. IV of the International Tables for X-ray Crystallography. We give final positional parameters in Table 3, and anisotropic thermal parameters in Table 4; the occupancies at each cation position are listed in Table 2. The high temperature-factors of M(4), $M(7^*)$ and M(7) are probably due to the partial occupations of these sites. As the octahedron about M(4) is relatively large (Table 5a), we assumed a distribution of Mn²⁺ and Mg in this position and refined their occupancy parameters. The result, however, showed that Mg was dominant (Table 2); the high temperature-factor of M(4) may be due in part to positional disorder of Mg in the large octahedron for this atom.

DISCUSSION OF THE STRUCTURE

The arrangement of octahedral columns

Like those of pinakiolite and related borates, the structure of orthopinakiolite consists of infinite columns of edge-sharing octahedra where the shared edges are normal to the column direction, parallel to the fibre axis (c). These columns are laterally joined by sharing edges to form the structure (Fig. 2). The structure may be regarded as composed of: (i) 'flat' walls, like the one made of columns M(5), M(8,9), M(11)and their inversion images plus M(1',2'); (ii) 'corrugated' walls, each consisting of M(3,4), M(6,7) and the inversion image of the latter, and (iii) columns like M(10), which are flanked on wall (ii) to form Z-shaped walls. The two types of walls, (i) and (ii), will be designated as F and C walls respectively.

Whereas F walls in orthopinakiolite are seven octahedra wide, in pinakiolite they form a continuous sheet parallel to (100). Likewise, Cwalls in pinakiolite form with columns of (iii) continuous equilateral zig-zag sheets parallel to (100). These two kinds of sheets alternate in pinakiolite. In contrast to this, a F wall and a Z-shaped wall in orthopinakiolite join, by sharing edges, to form a continuous irregular

TABLE 55. INTERATOMIC DISTANCES (Å) AND O(1)-M-O(j) ANGLES (°) IN ORTHOPINAKIOLITE

2.949(6) 0(3)-0(7) 0(2)-0(3) 0(5)-0(6) 0(1)-0(5) 0(1)-0(2) 0(1)-0(2) 0(1)-0(3) 2.892 89.9 M(1)*** 87.6 average square edges 0(1)-0(1)ii × 2 0(1)-0(1)iii × 2 3.034(1 3.039(1 92.3 92.2 M(9) 0(7)-0(10) × 0(6)-0(7) × 0(10)-0(12) × 0(7)-0(12) × 0(6)-0(10) × 0(10)-0(10)111 0(7) 0(7)411 2.550(7) 80.0 3.039(9) 100.0 × 2 × 2 × 2 × 2 × 2 × 2 × 2 3.040(6) 3.066(6) 94.4 96.7 2.666(5) 2.818(6) 78.2 82.2 elongate edges 0(1)-0(16)iv × 4 0(1)-0(16)v 97.5 97.1 97.4 3.077(6) 2.818(6) 3.128(6) 3.128(6) 93.9 98.9 2.750(6) 2.891 82.6 3.090(6) average 90.0 2,955 89.8 3.169(6 average 101.5 3.181(9 M(6)*** 0(7)-0(7)111 M(2)*** 3.372(8) 102.1 square edges 0(4)-0(4)iii 0(7)-0(7)iii 0(4)-0(7) 2.979 90.0 square edges 0(1)-0(1)ti × 2 0(1)-0(1)tit × 2 average 2.607(5) 2.696(9) 2.755(5) 2.550(7) 3.029(9) 80.2 99.8 86.2 89.4 M(10) M(10) 0(4)vi-0(9) 0(4)vi-0(14) 0(8)-0(13) 0(4)vi-0(8) 0(9)-0(14) 0(4)vi-0(13) 0(10)-0(13) 0(13)-0(14) 0(8)-0(9) 0(10)-0(14) 0(8)-0(10) elongate edges O(1)-O(15) iv × 4 2.741(6) 80.3 × 2 92.2 elongate edges 0(4)-0(9)v × 0(2)-0(7) × 0(2)-0(4) × 0(7)-0(9)v × 3.110(6) 2.769(6) 2.890 2.754(6) 2.858(8) 81.4 96.7 2.741(6) 2.800(6) 3.156(6) × 2 × 2 × 2 × 2 81.8 × 4 86.3 0(1)-0(15)v 83.3 81.9 2,869(6 2.895(8 85.9 86.4 90.0 average 95.7 M(3)*** × 2 3.221(7) 100.6 2.955(6) 89.1 square edges 0(4)-0(4)it × 2 0(4)-0(4)iti × 2 95.0 average 2.887 90.0 2.799(7) 2.607(8) 94.1 3.034(1 92.8 92.1 85.9 M(7) M(7) O(4)-O(7) O(4)-O(8)v O(3)-O(7) O(7)-O(8)v O(3)-O(4) O(7)-O(7)iii O(4)-O(4)iii 96.2 96.6 95.7 × 2 × 2 × 2 × 2 3.039(6) 3.041(7) elongate edges 0(4)-0(14)iv × 4 0(4)-0(14)v × 4 2.755(5) 2.869(6) 76.3 3.142(6) 2.754(6) 2.866 97.6 82.4 90.0 2.949(6) 81.2 0(9)-0(10) 3.052(7) 2.940 3.304(7 88.5 average × 2 3.325(7 105.8 3.372(8) M(11) M(4) 89.4 0(1)v1-0(16) 0(1)v1-0(15) 2.750(6) 2.769(6) square edges 0(4)-0(4)11 × 2 0(4)-0(4)111 × 2 3.461(8) 115.8 83.8 84.0 2.799(7) 77.9 3.461(8) 102.1 average 3.103 89.3 0(10)-0(12) 0(10)-0(11) 2.818(6) 85.4 elongate edges $0(4)-0(13)iv \times 4$ $0(4)-0(13)v \times 4$ 2.846(6) M(8)*** 87.5 0(12)-0(16) square edges 0(7)-0(10) × 2 0(7)-0(7)111 2.867(8) 2.868(8) 3,301(6) 96.3 86.5 2.666(5) 2.696(9) 2.887(9) 83.7 87.0 2.955(6) 87.1 0(11)-0(15) 0(10)-0(15) 0(1)vi-0(11) 0(10)-0(16) 0(15)-0(16) 0(11)-0(12) 2.964(6) 3.019(6) 86.8 91.7 3.129 average 94.2 0(10)-0(10)111 98.5 0(10)-0(10)111 elongate edges 0(5)-0(7) × 2 0(10)-0(11) × 2 0(7)-0(11) × 2 0(5)-0(10) × 2 3.020(6) 94.5 M(5) O(5)-O(7) O(2)-O(7) O(6)-O(7) O(3)-O(6) 2.779(7) 2.846(6) 3.114(6) 3.153(7) 83.8 93.6 2.779(7) 2.800(6) 80.9 3.039(1) 3.161(6) 83.3 93.1 2.818(6) 2.821(8) 2.943(8) 83.4 92.0 0(1)vt-0(12)98.9 90.0 100.4 2.930 84.4 average 88.2 119.7 121.8 2.397 120.0 0(3)-0(13)iv 0(13)-0(15) 2.396(8) 2.398(8) 2.390 average 2.384(8) 120.2 2.386(8) 118.5 2.402(8) 121.3 -0(16)iv 0(14)-0(16) 0(2)-0(14)iv average 120.0 0(6)-0(9) 0(9)-0(11)v 0(6)-0(11)v 2.387(8) 120.4 2.394(8) 119.3 B(3) 0(5)-0(12)v average 2.391 120.0 2.373(8) 118.8 2.399(8) 119.1 2.420(8) 122.0 2.397(8) 120.4 2.393 120.0 0(5)-0(8) 0(8)-0(12)v average B(2) O(3)-O(15)iv 2.377(8) 118.5

The maximum estimated error in 0-M-O angles is $\pm 0.02^{\circ}$ excepting the cases M = B in which the maximum error is $\pm 0.07^{\circ}$. The angles about M(7*) and M(7) are not given. The symmetry code is explained in TABLE 5a. Triple asterisks denote Mn³⁺.

(a)

FIG. 3. Comparison of cation arrangements in the F walls of orthopinakiolite (a) and pinakiolite (b), each being projected along a normal to the wall. Note the distortion of M(9) octahedra in the former. Shaded small circles represent Mn^{3+} .

zig-zag sheet parallel to (100). They are linked, by sharing corners, with similar neighbors to build up the octahedral framework. In the interstices of such a patchwork of irregular zigzag sheets, $[BO_3]^{3-}$ triangles lie perpendicular to the *c* axis.

Octahedral columns in the F wall share edges which are oblique to the fibre axis, whereas in the C wall the shared edges between adjacent columns are parallel to the fibre axis. It follows that the scheme of cation order and the mode of distortions are different in these two types of walls, as will be discussed in subsequent paragraphs. This effect is of fundamental importance to characterize both orthopinakiolite and pinakiolite structures. Moore & Araki (1974) discussed it in considerable detail for the pinakiolite structure.

From the characteristic shape of the elongate

square bipyramid, we conclude that M(1), M(2), M(3), M(6) and M(8) are occupied by Mn^{s+} (Table 2). The bond lengths and edge lengths of the polyhedra are listed in Table 5.

Ordering scheme in the F wall

The arrangement of atoms in the F wall of orthopinakiolite (Fig. 3a) and of pinakiolite (Fig. 3b) shows that both walls share the same feature where octahedral columns of Mn^{3+} and of divalent atoms alternate. However, in the orthopinakiolite F wall, there is a pair of columns in which Mn^{3+} and Me^{3+} alternate along the fibre axis. The M(9) position, which accommodates the divalent cation, contains 0.57 Mg and 0.43 Mn^{2+} . The facts that the M(9)octahedron shows no elongation and that the average bond length (Table 5) has a value expected for the refined contents confirm the proposed distribution. The octahedron is distorted owing to geometrical restriction (Fig. 4) in such a way that it will not admit Mn^{s+} , which surrounds itself with a tetragonally distorted octahedron.

As pointed out by Moore & Araki (1974), the shortest shared edges occur between Mn^{3+} square bipyramids. Accordingly, square planes of the Mn^{3+} polyhedra in the F wall tend to elongate along the fibre axis. However, as no edge sharing between the square planes and the Me^{2+} octahedra occurs in the F wall, the Jahn-Teller distortion about Mn^{3+} admits less severe geometrical restriction to neighboring Me^{2+} octahedra in the F wall than in the C wall.

Ordering scheme in the C wall

The cation distribution in the C wall of orthopinakiolite (Fig. 4a) and of pinakiolite (Fig. 4b) shows that, in contrast to the F-wall case, Mn^{3+} atoms occur in alternate octahedral sites along each column, and at the same z level. Each Mn³⁺ square bipyramid thus shares a pair of square edges with those of bipyramids in adjacent columns, forming a lateral array of edgesharing Mn³⁺ bipyramids. The other pair of square edges is shared by adjacent octahedra in the same column. Consequently, the square is considerably contracted, particularly parallel to c, giving very short $Mn^{3+}-O$ (square) bonds. The shortest bond length, 1.913(4) Å, which occurs in M(3), is shorter by three percent than the average Mn³⁺-O (square) bond length in the F wall.

The contraction of the square is compensated by substantial expansion of octahedra adjacent to Mn^{s+} in the same column (Table 5). In agreement with the pinakiolite case (Moore & Araki 1974), vacancies in our structure occur only in the *C* wall, but particularly at M(4), which is about 40% empty (Fig. 4). The M(7)octahedron, however, which is adjacent to Mn^{s+} at M(6) in the same column, does not possess any vacancy, but the octahedral atoms are split into three positions, M(7), $M(7^*)$ and M(7)(Fig. 5); the $M(7) - M(7^*)$ and M(7) - M(7)distances are 0.70(2) and 0.77(1)Å respectively.

FIG. 4. Comparison of cation arrangements in the C walls of orthopinakiolite (a) and pinakiolite (b), each being projected along a normal to the wall. Shaded medium circles represent Mn^{3+} and small circles 'split atoms'; partly broken circles indicate the partly vacant sites. The pair of rim columns in (a) belong to F walls.

FIG. 5. Fourier peaks showing 'split atoms' M(7), $M(7^*)$ and M(7) viewed along c. Contours are drawn with equal intervals of 10 $e^{\text{Å}^{-3}}$ starting from 10 e contour.

This situation is likely the result of probable attainment of local charge balance around the large octahedral space. These octahedra are larger, compared to the corresponding ones in pinakiolite, primarily because the orthopina-kiolite structure as a whole contains more Mn^{s+} .

The octahedral columns like M(10) that flank the C wall to form the shape of a Z wall are mainly occupied by Mg, in both orthopinakiolite and pinakiolite, although Mg in these columns tends to be partly replaced by atoms of higher valence state other than Mn³⁺. The octahedral columns into which Moore & Araki (1974) introduced Mn⁴⁺ in fact are columns of this kind.

The above scheme of cation distribution is primarily explainable from the electrostatic valence balance of anions in a way similar to that of pinakiolite (Moore & Araki 1974). In particular, regarding the distribution of Fe^{3+} in orthopinakiolite, we assigned 0.294(9) Fe^{3+} at $M(\tilde{7})$ because of the tetrahedral coordination about $M(\tilde{7})$ (Fig. 5) and evenly distributed the remaining Fe^{3+} atoms over the M(10) and M(11) sites. With these assignments, the anions in the orthopinakiolite structure as a whole show a satisfactory valence balance.

RELATIONSHIPS BETWEEN ORTHOPINAKIOLITE AND PINAKIOLITE

Structural relationship

The basic geometrical features of the pinakiolite substructure (Takéuchi et al. 1950), as characterized by links of octahedra and triangles, are the same as those of the ordered true structure (Moore & Araki 1974). Accordingly, the structural relationship between orthopinakiolite and pinakiolite may well be studied based on the substructure, which is the structure type of hulsite (Moore & Araki 1974, Konnert et al. 1976). The non-reduced monoclinic cell which Takéuchi et al. (1950) used to describe the substructure indeed has a periodicity of 12.73Å, similar to b = 12.45Å of the ludwigite cell (Takéuchi et al. 1950). As the fibre axes of all are also of similar periodicity (3Å, except for doubling due to cation order), essential differences in their cell dimensions are observed only in one direction.

A closer examination of these structures has revealed that the orthopinakiolite structure can be described as an Ito twin (Ito *et al.* 1950) of the pinakiolite substructure on the scale of a cell with *a* doubled (Fig. 2); such a relation was predicted by Strunz (1970) based on cell dimensions. The Ito twin operation is a glide reflec-

FIG. 6. Three types of layers A, B and C; the first two consist of octahedral columns and the third consists of octahedral columns and BO₃ triangles. The upper layers are related to the lower ones by a glide reflection, the reflection plane being parallel to the layer and having glide component q = 3P/10. In deriving the orthopinakiolite structure (Fig. 2b) by polysymmetric synthesis, layers such as A and B at a twin position overlap across a twin plane, as indicated. In this case pairs of columns such as 1, 2 and 3, 4 do not coincide; to form the structure, the pair 1, 2 must change its orientation to that of the other pair 3, 4.

(b)

FIG. 7. (a) Idealized structure of pinakiolite, showing the cell given by Takéuchi et al. (1950). (b) Idealized structure of ludwigite depicted as a polysynthetic twin of the idealized pinakiolite structure that takes place on the unit-cell scale. Broken lines trace the monoclinic cell of pinakiolite, the horizontal lines corresponding to the twin planes. cion in a plane parallel to (100), with a glide component of $\pm 3P/10$ ($-3P/10 \equiv 7P/10$). Here, *P* corresponds to *c* of the pinakiolite subcell, and is equal to five times the edge of the rhombus or triangle as illustrated in Figures 2b and 6; the glide component equals 1.5 times the edge length.

The strips of rhombuses (or layers of octahedral columns parallel to (100)), like A and B in Figure 6, are astride the Ito twin plane that passes through the cations of the columns. In this case, specific pairs of rhombuses in a strip do not coincide with those in the other: those in one strip must change their orientation to coincide with corresponding ones of the other (Fig. 6). The structure thus has a = 18.389 Å, which agrees well with measured a = 18.357 Å.

A question arises: what will happen if the Ito twinning is considered not on the scale of double cell but on a unit-cell scale? The answer: the resulting structure is isotypic with ludwigite (Fig. 7).

Note that the structures of orthopinakiolite, pinakiolite and ludwigite consist of the three and only three kinds of layers (Fig. 6); the two rhombus layers A and B are enantiomorphs. Thus there is another way of looking at these structures: they are composed of stackings of these three kinds of layers, in which a rhombus layer of either kind alternates with a layer containing $[BO_3]^{3-}$. Depending upon the mode of stacking, various structures result. The Ito twin description, however, is the simplest one.

Mode of structural variation due to polysymmetric synthesis

It takes fewer columns of octahedra to constitute a C wall in orthopinakiolite than in pinakiolite (Table 6). The polysymmetric synthesis (Fig. 2) that leads to orthopinakiolite plays a role in reducing the number of columns in the C wall relative to that in the F wall. The amount of reduction depends on the size of the twin unit. If twinning takes place on the scale of a triple cell (a tripled), it yields a structure (a = 27.54 Å) in which F and C walls consist of nine and five columns respectively.

TABLE 6. DISTRIBUTION IN ORTHOPINAKIOLITE AND PINAKIOLITE OF Mn^{3+} AND HOLES IN THE F AND C WALLS*

	Min ³⁺		Hole		Octahedral columns involved (%)	
Walls	F	С	F	С	F	с
Orthopinakiolite Pinakiolite	4 4	3 4	0 0	0.41 0.84	58 33	25 33

* Number per 40 oxygen atoms.

Accordingly in such a hypothetical structure, the C wall can accommodate more Mn^{s+} than in orthopinakiolite, though less than that in pinakiolite.

In general, when twinning takes place on the scale of *n* cells, the Mn^{3+} contents in the *F* and C walls of the resulting structure are respectively 4 and 2(2n-1)/n per twelve columns (Takéuchi 1978). Thus in the hypothetical orthopinakiolitepinakiolite series, a change in structure from one phase to another, accompanying a change in chemical composition, seems to go along with twinning on the unit-cell level; the higher the twin periodicity, the greater is the Mn³⁺ content. That such twinning, with concomitant changes in composition, yields a chemical series of structures was first observed in the PbS-Bi₂S₃ system by Takéuchi & Takagi (1974). This 'tropochemical twinning' (Takéuchi 1978) may be regarded as a special case of 'chemical twinning' (in the sense of Andersson & Hyde 1974) that occurs in a given chemical system. Compared to Ito twinning which originally describes polymorphic relations (Ito et al. 1950), tropochemical twinning appears to have genetic significance (Takéuchi & Takagi 1974, Takéuchi 1978) although conclusive proof is reserved for future study.

In conclusion, orthopinakiolite should be regarded, not as a polymorph, but as a Mn^{a+} deficient modification of pinakiolite. According to Randmets (1960), both minerals belong to about the same period of mineral formation at the Långban deposit although they are not intimately associated.

ACKNOWLEDGMENTS

We wish to thank Dr. Göran Åberg, Swedish Museum of Natural History (Naturhistoriska Riksmuseet), Stockholm, for the orthopinakiolite specimen, Prof. K. Nagashima, Department of Chemistry, University of Tsukuba, for the results on the Mössbauer spectra of orthopinakiolite, and Prof. Paul B. Moore, University of Chicago, for reviewing the manuscript and providing many valuable comments and suggestions. Computations were carried out on HITAC 8700/8800 at the Computer Centre of the University of Tokyo.

References

ANDERSSON, S. & HYDE, B. G. (1974): Twinning on the unit cell level as a structure-building operation in the solid state. J. Solid State Chem. 9, 92-101.

- BÄCKSTRÖM, H. (1895): Ett pinakiolit närstående mineral från Långban. Geol. Fören. Förh. 17, 257-259.
- BERTAUT, E. F. (1950): Structures des boroferrites. Acta Cryst. 3, 473-474.
- COPPENS, P. & HAMILTON, W. C. (1970): Anisotropic extinction corrections in the Zachariasen approximation. Acta Cryst. A26, 71-83.
- FEDERICO, M. (1957): Breislakite. Period. Mineral. 26, 191-214.
- FLINK, G. (1890): Ueber Pinakiolith und Trimerit, zwei neue Mineralien aus den Mangangruben Schwedens. Z. Krist. 18, 361-376.
- IBERS, J. A. & HAMILTON, W. C., eds. (1974): International Tables for X-ray Crystallography. IV. Revised and Supplementary Tables. Int. Union Cryst., The Kynoch Press, Birmingham.
- ITO, T., SADANAGA, R. & TAKÉUCHI, Y. (1950): Xray Studies on Polymorphism. Maruzen, Tokyo.
- KONNERT, J. A., APPLEMAN, D. E., CLARK, J. R., FINGER, L. W., KATO, T. & MIÚRA, Y. (1976): Crystal structure and cation distribution of hulsite, a tin-iron borate. *Amer. Mineral.* 61, 116-122.
- MOORE, P. B. & ARAKI, T. (1974): Pinakiolite, Mg₂Mn³⁺O₂[BO₃]; warwickite, Mg(Mg_{0.5}Ti_{0.5})
 O[BO₃]; wightmanite, Mg₅(O) (OH)₅[BO₃])•nH₂O: crystal chemistry of complex 3 Å wallpaper structures. Amer. Mineral. 59, 985-1004.

- RANDMETS, R. (1960): Orthopinakiolite, a new modification of Mg₃Mn²⁺Mn³⁺₂B₂O₁₀ from Långban, Sweden. Ark. Mineral. Geol. 2, 551-555.
- STRUNZ, H. (1970): Mineralogische Tabellen, 5th ed. Akad. Verlagsgesellschaft Geest & Portig K.-G., Leipzig.
- TAKÉUCHI, Y. (1956): The crystal structure of vonsenite. Mineral. J. (Japan) 2, 19-26.
- (1972): The investigation of superstructures by means of partial Patterson functions. Z. Krist. 135, 120-136.
- —— (1978): 'Tropochemical twinning': a mechanism of building complex structures. Rec. Prog. Nat. Sci. Japan 3, 153-181.
- & TAKAGI, J. (1974): The role of twinning on composition in the PbS-Bi₂S₃ series. *Proc. Jpn. Acad.* 50, 843-847.
- , WATANABÉ, T. & ITO, T. (1950): The crystal structures of warwickite, ludwigite and pinakiolite. Acta Cryst. 3, 98-107.
- VENKATAKRISHNAN, V. & BUERGER, M. J. (1972): The crystal structure of FeCoOBO₃. Z. Krist. 135, 321-338.
- YAMNOVA, N. A., SIMONOV, M. A. BELOV, N. V. (1975): Crystal structure of the Fe-Mg borate hulsite (Fe³⁺, Mg, Fe³⁺, Sn)₃BO₃O₂. Sov. Phys. Cryst. 20, 89-90.
- Received January 1978; revised manuscript accepted April 1978.