FLINKITE AND ATELESTITE

K. B. CULVER AND L. G. BERRY

Queen's University, Kingston, Ontario, Canada

Abstract

Flinkite, $Mn''_{2}Mn'''(AsO_4)$ (OH)₄ is orthorhombic, spacegroup *Pnna* (52), with a = 9.55, b = 13.11, c = 5.25 Å, Z = 4 and calculated specific gravity 3.73. Atelestite, Bi₈(AsO₄)₃O₅(OH)₅ is monoclinic, space group $P2_1/a$ (14) with a = 10.88, b = 7.42, c = 6.98 Å, $\beta = 107^{\circ}13$, Z = 1 and calculated specific gravity 6.95.

INTRODUCTION

Flinkite and atelestite are basic arsenates of manganese and bismuth, respectively, which have been grouped (Dana, 1951) in Type 3 of Class 41 together with clinoclase $Cu_3AsO_4(OH)_3$ and cornetite $Cu_3PO_4(OH)_3$. The latter minerals (Palache & Berry, 1946, Berry, 1950), although analogous in chemical composition, are crystallographically dissimilar. Flinkite and atelestite have a metal to arsenate ratio which is similar to clinoclase but the hydroxyl content differs. In both cases the formulae are open to question. The minerals are of very rare occurrence, only one chemical analysis is on record for flinkite, and two for atelestite. The lack of x-ray data on these minerals has hindered a thorough crystallographic comparison with the copper minerals.

The writers wish to thank Professor C. Frondel of Harvard University for the loan of specimens of these scarce minerals on which the present studies were performed. Acknowledgments are also due to the National Research Council and the Committee on Scientific Research of Queen's University for grants (L. G. B.) in support of x-ray crystallographic studies.

FLINKITE

Flinkite, $Mn_2^2Mn^3(AsO_4)(OH)_4$ was described by Hamberg (1889) from the Harstig mine at Pajsberg near Persberg, Sweden. It occurs as feather-like and small bladed aggregates, greenish brown in colour, in veinlets in magnetite ore.

Two small specimens (Numbers 471 and 3728) were made available from the A. F. Holden collection at Harvard University. A small fragment, broken from a bladed aggregate, oriented optically, yielded an x-ray rotation film with smeared diffractions. This crystal was broken again and a smaller fragment yielded sharp rotation and Weissenberg films, using filtered copper radiation ($\lambda = 1.5418$). The films indicated orthorhombic symmetry with the following lattice dimensions:

$$a = 9.55$$
 $b = 13.11$ $c = 5.25$ Å
 $a:b:c = 0.728:1:0.400$
Space group: *Pnna* (52)

Only three weak reflections, 031, 051, 421, among those indexed on the first layer Weissenberg film, hkl, are inconsistent with a *B*-centred lattice. The ratio of lattice dimensions is in fair agreement with the morphological axial ratio when the latter is reoriented with c < a < b:

c':b:a' = 0.7386:1:0.4131 (Hamberg, 1889, Dana, 1951)

d (meas)	Ι	hkl	d (meas)	Ι	hkl		
$\begin{array}{c} 4.733 \ \text{\AA} \\ 4.386 \\ 3.815 \\ 3.179 \\ 2.710 \\ 2.662 \\ 2.570 \\ 2.506 \\ 2.392 \\ 2.271 \\ 2.214 \end{array}$	$100 \\ 100 B \\ 30 \\ 80 \\ 10 \\ 100 \\ 5 \\ 30 \\ 10 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} 200,101\\ 111,210\\ 220,121\\ 131\\ 240,301\\ 141,311\\ 103\\ 321\\ 400,122\\ 151\\ 132 \end{array}$	$\begin{array}{c} 2.183 \ \text{\AA} \\ 2.082 \\ 1.969 \\ 1.729 \\ 1.711 \\ 1.650 \\ 1.625 \\ 1.565 \\ 1.538 \\ 1.471 \end{array}$	5 5 5 5 10 5 5 20 5	060, 222 341, 042 161		

TABLE 1. FLINKITE: X-RAY POWDER DATA (FeK, MnO filter, $\lambda = 1.9373$, Diameter 114.59 mm, no correction for film shrinkage)

Composition and Cell Content

The only available analysis of flinkite (Table 2) combined with the cell volume (669.8 Å³) and measured specific gravity (3.78) lead to the

	1	2		3	4
CaO MgO MnO (Fe,Al) ₂ O ₃ Ás ₂ O ₅ Sb ₂ O ₅ H ₂ O	$\begin{array}{c} 0.4 \\ 1.7 \\ 35.8 \\ 20.2 \\ 1.5 \\ 29.1 \\ 2.5 \\ 9.9 \end{array}$	$\begin{array}{c} 0.11\\ 0.64\\ 7.79\\ 1.97\\ 0.17\\ 1.98\\ 0.11\\ 8.46 \end{array}$	Ca Mg Mn ²⁺ Mn ³⁺ (Fe,Al) As Sb H	$\begin{array}{c} 0.11\\ 0.64\\ 7.79\\ 3.94\\ 0.34\\ 3.96\\ 0.22\\ 16.92 \end{array}$	Mn ²⁺ Mn ³⁺ As H 1
	101.1		0	33.76	O 3

TABLE 2. FLINKITE: ANALYSIS AND CELL CONTENT

1. Flinkite, Harstig mine, Sweden (Hamberg, 1889).

2. Unit cell content (oxides).

3. Atomic content of unit cell.

4. Ideal unit cell content 4[Mn₂Mn(AsO₄)(OH)₄].

548

cell content $4[Mn_2^{2+}Mn^{3+}(AsO_4)(OH)_4]$ with a calculated specific gravity of 3.73.

The unit cell content confirms the previously accepted formula which led Dana (1951) to classify flinkite with clinoclasite. The (OH) content of the formula differs from clinoclasite and cornetite and no crystallographic similarity between these minerals is apparent from this study.

Atelestite

Atelestite, $Bi_3(AsO_4)O_2(OH)_2$?, was first described in crystals and crystalline aggregates by Breithaupt (1832) from the Neuhilfe mine, Schneeberg, and later as rhagite in mammillary material from the Weisser Hirsch mine near Schneeberg by Weisbach (1874). Frondel (1943) concluded from an x-ray powder study of several specimens of both materials from the original locality, that rhagite is identical with atelestite. Two specimens of atelestite from Schneeberg, Saxony, were available for this study from the Holden collection of Harvard University (numbers 1659 and 7115).

Atelestite occurs on the above specimens as subspherical aggregates with a maximum dimension of one millimetre and individual crystal faces of one fifth mm. or less. Single crystals are not present but fragments showing one or two crystal faces are obtainable from the aggregates. A tiny crystal fragment of atelestite, showing the faces ($\overline{111}$) and ($\overline{111}$) in the setting adopted here, was oriented for single crystal study. Precession and Weissenberg films yielded the following lattice dimensions:

a = 10.88 b = 7.42 c = 6.98 Å $\beta = 107^{\circ} 13'$ The observed diffractions, conforming to the conditions (h0l) present only with h even and (0k0) present with k even, lead to the space group $P2_1/a$ (14).

Comparison of the lattice elements determined by x-ray methods with the morphological ratio of Busz (1889) as given by Dana (1951)

$$a:b:c = 1.466:1:0.941, \quad \beta = 107^{\circ} 13' \text{ (x-ray)}$$

 $c':b':a' = 1.5051:1:0.9334, \quad \beta = 109^{\circ} 17' \text{ (Busz, 1889)}$

reveals good agreement between b:c and b':a' but poor agreement between a:b and c':b', and between the β angles. Examination of the morphological unit reveals a less oblique unit with:

 $a:b:c = 1.4855:1:0.9334, \ \beta = 107^{\circ} 05'(\text{morphology})$

which compares more favourably with the structural unit. The old morphological setting is related to the structural setting by the reversible transformation:

Busz to structure	101/010/100
Structure to Busz	001/010/101

In Table 3 the indices of the observed crystal forms, as listed in Dana, are tabulated with their indices in the structural setting and the standard φ and ρ angles calculated from the structural lattice elements.

Busz	Structure	ϕ	ρ
c 001	100	90°00'	90°00'
b 010	010	0°00′	90°00′
a 100	$10\overline{1}$	-90°00'	19°54′
n 110	111	-20°59 1/2'	45°18′
l 310	$10\overline{1}$ $11\overline{1}$ $31\overline{3}$	$-49^{\circ}01'$	25°37'
e 011	11 <u>0</u>	35°31 1/2'	90°00'
d 101	$20\overline{1}$	-90°00'	45°57 1/2′
g 101	001	90°00′	17°13′
o 111	$\begin{array}{c} 00\underline{1}\\ 21\underline{1} \end{array}$	-47°42′	54°25 1/2'
q 313	$\overline{613}$	$-73^{\circ}07'$	47°12'

TABLE 3. ATELESTITE, CRYSTAL FORMS AND CALCULATED ANGLES, $a:b:c = 1.466:1:0.941, \beta = 107^{\circ}13'$

The interfacial angles calculated from the axial elements for the structural lattice are tabulated in Table 4 with the measured and calculated angles given by Busz (1889). The differences between the original

Busz (1889) c':b':c' = 1.5051:1:0.9334 $\beta = 109^{\circ}17'$				Structural lattice a:b:c = 1.466:1:0.941 $\beta = 107^{\circ}13'$			
	Measured	Calculated	Δ		Calculated	Δ	
100 A 10 1	36°21′30″	*	0	Ĩ01 ∧ 001	37°07′	+ 36'	
100 \Lambda 001	70°43′	*	0	101 \ 100	70°06′	- 37'	
L10 🖊 110	82°45′45″	*	Ō	111 A 111	82°46'	°'	
001 \Lambda 101	$72^{\circ}57'$	72°55′30″	- 1 1/2'	100 / 001	72°47'	- 10'	
100 \Lambda 101	25°30′ †	25°53′32″	+ 23 1/2'	Ī01 ∧ <u>2</u> 01	26°03 1/2'	+331/2'	
100 🖊 110	41°22′30″	41°22′52″	+ 1/2'	ī01 ∧ ī11	41°34′	+ 11 1/9	
110 \Lambda 001	75°07′	75°39′09″	+ 32'	111 \Lambda 100	75°14'	+ 7'	
110 A 101	52°55′	52°49′30″	-51/2'	Ĩ11 ∧ 001	53°24'	+ 29'	
)11 A 001	54°39′30″	$54^{\circ}51'28''$	+ 12'	110 \ 100	54°28 1/2'	-11'	
011 A 100	78°53′30″	79°28′36″	+ 35'	110 A 10Ī	78°35′	- 19'	
011 A 101	80°16'30″	80°16′11″	- 1/2'	110 \ 001	80°14'	-21/2'	
D11 A 110	46°48′30″	46°54′19″	+ 6'	110 🔨 111	46°31'	- 17 1/2'	
00 \ 111	41°16′30″	41°16′40″	0	10Ī 🗛 21Ī	41°17′	+ 1/2'	
11 / 111	66°28′	66°41 ′20″	+ 13 1/2'	2 11 ∧ 2 11	66°24′	- 4'	
11 / 110	22°05′	$21^{\circ}58'17''$	- 6 1/2'	211 ∧ T11	22°16′	+11'	
11 / 011	37°37′	38°11′56″	+35'	21Ī ∧ 110	37°22 1/2'	- 14 1/2'	
10 \Lambda 310	24° †	25°00′53″	+61'	11Ĩ A 313	25°09'	+69'	
11 \Lambda 318	20°30′ †	$20^{\circ}58'25''$	+ 28 1/2'	21Ĩ ∧ 61 3	20°59′	+ 29'	
313 \land 3ī3	25°30′ †	24°44′30″	-45 1/2'	613 A 613	24°36'	- 54'	
		$\Sigma + \Delta$			$\Sigma + \Delta$		
		$\Sigma - \Delta$			$\Sigma - \Delta$	$169 \ 1/2'$	
		Σ	+ 187 1/2'		Σ	+ 47'	
		ΣΔ	306 1/2'		ΣΔ	396'	

TABLE 4. ATELESTITE: MEASURED AND CALCULATED INTERFACIAL ANGLES

*Used to calculate axial ratio.

†Schimmer.

FLINKITE AND ATELESTITE

measured angles and those calculated from the new and old axial ratios are also shown. The angles calculated from the structural elements show a somewhat larger total difference, but lower net difference, from the

Frondel (1943 CuK , filtered		This study CoK, Fe filter		Calculated		
I	d (meas)	I	d (meas)	hkl	d (calc)	
20	6.798	20	6.62	001	6.65	
$\overline{20}$	6.098	10	6.03	110	6.03	
60	4.221	$\overline{20}$	4.233	210	4.241	
		5	3.326	002	3.325	
100	3.234	100 B	3.239	$\overline{2}02,\overline{1}21$	3.272, 3.228	
70	3.115	40	3.116	<u>3</u> 10	3.126	
20	2.939	10	2.940	$\overline{2}21$	2.944	
70	2.720	30	2.725	112	2.721	
50	2.522	20	2.526	$\overline{4}11, 320$	2.533, 2.52	
	<u> </u>	2	2.469	022	2.477	
	_	$2 \\ 2 \\ 5 \\ 2$	2.406	402 , 130	2.418, 2.40	
20	2.305	2	2.316	$031, \overline{1}31$	2.319, 2.31	
	-	5	2.287	$122, \overline{4}12$	2.297, 2.29	
			2.260	322	2.261	
60	2.200	20	2.201	$\overline{2}31,401$	2.202,2.20	
50	2.121	20	2.124	013, 420	2.124, 2.12	
60	2.033	15	2.040	231	2.039	
		5	2.015	$\underline{312}, \overline{132}$	2.023, 2.01	
50	1.973	20	1.968	$\overline{5}12$	1.976	
50	1.885	15	1.878	$\overline{3}23$	1.881	
10	1.831	5	1.826			
40	1.803	20	1.802			
20	1.733	2	1.741			
		$\overline{\overline{5}}$	1.721			
40	1.685	5	1.681			
		2	1.653			
60	1.641	10	1.637			
30	1.575	$\frac{2}{2}$	1.574			
30	1.548	5	1.554			
—		2	1.538			
40	1.511	5	1.515			
20	1.468	 2	1 450			
20	1.447	5 5 5	1.450			
40	1.416	Ð	1.420			
	-	ð	1.408			
10	1.373		1,293			
40	1.290	5				
10	1.264	5	1.264			
10	1.229					
30	1.201					
19 additi	ional lines)					

TABLE 5. ATELESTITE: X-RAY POWDER DATA $a = 10.88 \ b = 7.42 \ c = 6.98 \ \beta = 107^{\circ}13'$ (corrected for film shrinkage)

measured angles than do the calculated angles of Busz. If the poor measurements are neglected the total and net differences are reduced to 210 1/2', 20 1/2' (x-ray) and 148', 120' (Busz). The low net difference between the measured angles and those calculated from the x-ray measurements indicate that the structural lattice elements are closer to the true crystallographic constants of atelestite than the elements derived by Busz. The present specimens did not include crystals suitable for accurate measurement on a two-circle optical goniometer; therefore Busz' data remain the only published morphological measurements.

X-ray Powder Pattern

In Table 5 the observed spacings and intensities obtained from an x-ray powder film are compared with the data published by Frondel (1943). The probable indices of the reflecting planes together with the calculated interplanar spacings are also given.

Composition and Cell Content

The two available analyses are listed in Table 6. The first represents the well crystallized material studied by Busz (1889). The second represents mammillary material originally described as rhagite but shown to

I	a	b	с	d	е	f	g
Bi ₂ O ₃	82.41	82.87	.1778	3.69	Bi 7.38	8.00	8
As_2O_5	14.12	14.20	.06767	1.40	As 2.80	3.04	ă
H_2O	1.92	1.93	.10712	2.22	H 4.44	4.81	$\frac{3}{5}$
Remainder	0.51	0.00			O 20.29	21.99	22
Total	98.96	100.00					
G	6.4						6.95
M	2074.91						2253.77
II	a	b	с	d	е	f	
Bi ₂ O ₈	72.76	79.45	.1705	3.77	Bi 7.54	8.00	
As ₂ O ₅	14.20	15.51	.07392	1.63	As 3.26	3.46	
H ₂ O	4.62	5.04	.27975	6.18	H 12.36	13.11	
Remainder	6.85	0.00		0.10	025.64	27.20	
Total	98.43	100.00			0 10.01		
G	6.82						
M	2211.07						

TABLE 6. ATELESTITE: ANALYSES AND CELL CONTENT

I-Neuhilfe mine, Schneeberg (crystals) Dana (1951) from Busz (1889), remainder is

Fe₂O₃. II—"Rhagite" Weisser Hirsch mine, Schneeberg (mammillary) Dana (1951) from Winkler (1874), remainder is CoO 1.47, CaO 0.50, (Fe,Al)₂O₃ 1.62, gangue 3.26. *a*—analysis, *b*—analysis corrected to 100%, *c*—molecular proportions, *d*—oxide content of unit cell, *e*—atomic content, *f*—atomic content adjusted to 8 Bi atoms, *g*—ideal

be identical with atelestite by Frondel (1943). The measured values for the specific gravity are given for both materials, but it is unlikely that these values are accurate. The higher value was obtained on the mamillary material with a lower bismuth content and higher water content. The data here quoted can be considered as representing a rough approximation to the true composition and specific gravity.

In Table 6 the molecular weight of the cell content M is given for both analyses using the measured unit cell volume and the specific gravity. For each analysis the cell content is computed in terms of oxides and elements. The most reasonable cell content is represented by the formula Bi₈(AsO₄)₈O₅(OH)₅ which gives a calculated specific gravity of 6.95, not far different from the higher measured value. Formulae derived for the cell content II f give higher calculated specific gravities. The nature of material II indicates that much of the water shown is probably part of the impurities. Thus more weight should be given to analysis I especially with respect to the water content. Formulae with 7 Bi give calculated specific gravities appreciably below 6.4.

In spite of the doubts expressed above regarding the reliability of the chemical data, the calculations in Table 6 clearly indicate a cell content of:

Bi₈(AsO₄)₃O₅(OH)₅

The contents of Bi and As are well established unless the analysis is grossly in error. The content of O and OH is less certain. The most serious objection to the above formula lies in the content of 3 As since the space group found for atelestite has no one-fold atomic positions. The correct answer to the composition of this mineral must await new analyses on pure material or a study of the synthetic phases in the system $Bi_2O_3 - As_2O_5 - H_2O$.

References

BERRY, L. G. (1950): On pseudomalachite and cornetite, Am. Mineral., 35, 365-385. BREITHAUPT, A. (1832): Vollstandige characteristik etc., ed. 2, 307, Dresden.

Busz, K. (1889): Atelestite von der Grube Neuhilfe bei Schneeberg in Sachsen, Z. Kryst. 15, 625–627.

DANA, J. D. & E. S. (1951): System of mineralogy 2, ed. 7, by C. Palache, H. Berman & C. Frondel, New York.

FRONDEL, C. (1943): New data on agricolite, bismoclite, koechlinite, and the bismuth arsenates, Am. Mineral., 28, 536-540.

HAMBERG, A. (1889): Ueber Flinkit, ein wasserhaltiges Manganarseniat aus der Grube Harstigen bei Pajsberg in Vermland, Geol. För. Förh., 11, 212.

PALACHE, C. & BERRY, L. G. (1946): Clinoclasite, Am. Mineral., 31, 243-258.

WEISBACH, A. (1874): N. Jb. Min., 302, 807.

WINKLER (1874): J. pr. Chem., 10, 190.

Manuscript received October, 1962