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The information content per contact in the net of contacts and in the critical net of structural units of CaCO3 

crystal modifications and CaCO3 crystalline hydrates is calculated. Critical coordination numbers CNcrit and 

crit
CN′  are determined by analysing the solid angles of Voronoi–Dirichlet polyhedra (VDPs) constructed for 

the center of mass of each structural unit. The following topological types are determined for all critical 

nets: pcu (primitive cubic packing) for calcite, postaragonite, sra (SrAl2) for aragonite, pts (PtS) for 

vaterite, qtz (α- and β-quartz) for monohydrocalcite. In all structures, except for ikaite, the number of 

symmetrically independent contacts in the critical net coincides with its exact lower boundary. Thus, this 

rule of economy holds true not only in molecular crystals but also in other island structures. 
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INTRODUCTION 

Calcium carbonate is one of the main components of carbonatites formed by a two-stage genesis from primary 

carbonate melts of Earth's mantle [1] and from sedimentary carbonate rocks. Carbonate minerals exhibit polymorphism, 

wide-range isomorphism, significant variations of the crystal order/disorder degree and are therefore very promising for the 

study of the geological past by structural crystallography methods [2]. Calcium carbonate occurs in nature as six crystal 

modifications: three anhydrous modifications (calcite, aragonite, vaterite) and two crystalline hydrates (monohydrocalcite 

CaCO3⋅H2O and ikaite CaCO3⋅6H2O) [3] which are dehydrated upon heating to thermodynamically stable calcite. Metastable 

two- and six-layer calcite polytypes were also predicted theoretically; as a result, assumptions about the mechanism of 

aragonite to calcite transformation were made [4]. Inorganic aragonite has some structural differences compared to biogenic 

aragonite [5]. Isostructural analogs of aragonite also include minerals strontianite SrCO3, cerussite PbCO3, and witherite 

BaCO3 [6]. In contrast to calcite and aragonite, vaterite is metastable and forms polycrystalline spherulites with a diameter of 

10-50 nm, which nevertheless may be essential for the biogenic calcification [6]. Ikaite is widespread in Arctic and Antarctic 

sea ice; according to the modern theories, it is produced there from organic substances and (partly) as a result of anaerobic 

methane oxidation [7]. Above 40 GPa, the structure of postaragonite (probably the most widespread carbon-containing  
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mineral in Earth's mantle) is stable; it was observed experimentally [8] and confirmed by theoretical predictions [9]. There 

are also other high-pressure CaCO3 modifications [10-12] such as the theoretically predicted orthocarbonate structure Ca2CO4 

[13], which is stable at 20-100 GPa and 1000-2000 K [14]. 

Disordered crystal structures of calcite [16] and aragonite [17] were determined more than half a century ago, while 

the ikaite structure was determined by XRD relatively recently [18]. The crystal structure of monohydrocalcite [19], which 

was solved in the P31 group by the Rietveld method using powder XRD data, complemented the earlier structural data on 

rotationally disordered carbonate ions with the P3121 space group. The crystal structure of vaterite [20] was solved by direct 

methods using only precision electron diffraction data for nanocrystals with a linear size of ~50 nm. It is assumed that 

vaterite crystals, belonging to the same space group C2/c as aragonite, undergo merohedral twinning to form fine powder 

characterized by a false hexagonal crystal system, thus explaining the fact why vaterite was initially assigned to the 

hexagonal system [6]. 

Borisov et al. in [15-17] and subsequent works published in JSC carried out a comprehensive crystallographic 

analysis of calcite, aragonite, and vaterite structures with atomic arrangements determined mainly by the relative positions of 

Ca2+ cations and the centers of mass of triangular CO3 groups. The results of a similar analysis performed by the same 

authors for other series of minerals [18, 19] showed that atomic ordering during crystallization proceeds separately for anions 

and larger cations through different systems of crystallographic planes. The results of the analysis also suggest that the crystal 

structure's stability increases significantly with increasing rigidity of atomic localization by symmetry elements, i.e. for  

a smaller number of translational degrees of freedom. The relation between the stability and symmetry of the crystal structure 

was also discussed in the works by Shablovsky [20, 21]. 

If the contributions of enthalpy and entropy to the crystal's free energy are considered separately, the distribution of 

particles over crystallographic positions affects mainly the configurational entropy of the crystal [22]. The configuration 

entropy decreases with increasing diversity of occupied positions, but the information complexity of the crystal structure 

increases. According to Krivovichev [23], the structural information content per atom in a crystal is equal to 

str
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where mi is the order of the ith occupied crystallographic orbit per reduced unit cell of the crystal; v is the total number of 

atoms in the reduced unit cell; k is the number of orbits occupied by atoms. The total information content per reduced unit 

cell is 
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In the most general case, it can be expressed using the Shannon functional 
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where the information complexity of any chemical object, e.g. molecules [24] is estimated from 
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The set of orbits occupied by atoms in the crystal structure is determined by their interactions, but not vice versa, 

since in R. V. Galiulin's apt expression “atoms do not know space groups”. The strongest chemical bonds correspond to  

a particular set of symmetry operations generating a group [25-27], and this set is referred to as a fuzzy one due to the 

uncertainty in the choice of these bonds [28, 29]. After all, correctness of the Delone set for the points occupied by a crystal's 

structural units is determined by the local correctness of the system within a sphere of a finite radius [30, 31]. 

The set of generating contacts is usually distinguished from a large array of non-equivalent sets using the Voronoi–

Dirichlet polyhedra (VDP) method (due to its simplicity) (Fig. 1) [32]. By means of their contacts, the structural units of  

a crystal form a 3D net which can be topologically analyzed and classified [33]. A combination of VDP and Monte Carlo  
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Fig. 1. First coordination sphere of Ca2+(3) (designations according to Table 3) in the 
structure of monohydrocalcite (a) and its VDP relative to the centers of mass of the 
ligands (b). 

 

methods allows even predicting the crystal growth [34]. The analysis of nets simplified by the contraction of covalently 

bonded atoms to the center of mass of a system was conducted for the first time by Blatov and Zakutkin [35] on the example 

of anhydrous borates, nitrates, and carbonates, including calcite, aragonite, and vaterite; it was also noted that calcium 

carbonates are topologically similar to binary compounds NaCl and NiAs and that aragonite and vaterite constitute a “type–

antitype” pair. 

The procedure for identifying generating contacts using VDPs was initially applied to organic crystals [36-38]. In 

this work, generating contacts are identified for the first time in the crystal structure of minerals. 

METHOD 

In this work, only structural data without positional disorder were used. Since coordination numbers of structural 

units in a crystal are not very sensitive to the methods and conditions of determining atomic coordinates in the crystal 

structure, no other requirements were imposed on the crystal data in this work. The structural data were taken from the COD 

database [41] for aragonite [39], vaterite [40], monohydrocalcite [19], and ikaite [18]; from the AMCSD database [42] for 

calcite [16]; and from SpringerMaterials [46] for postaragonite [11]. 

The calculations were conducted using the ToposPro program [43]; the net classification was performed using 

RCSR [44] and topcryst [45] topological databases. The nets that are not classified in the databases were characterized by  

a point symbol [46]: notation Aa.Bb… means that a angles belonging to the shortest cycle A, b angles belonging to the cycle 

of the shortest cycle B, etc., converge at the vertex of the net, while A < B < … and a + b + … = CN(CN – 1)/2. 

The following algorithm was used to analyze the complexity of the studied crystal structures. 

1. The adjacency matrix was constructed in each crystal structure from the VDPs of individual atoms by the domain 

method [47]. All non-covalent contacts, as well as all contacts with the participation of Ca2+ ions, were considered as net-

forming ones (Fig. 2a). 

2. Krivovichev's complexity [23] of a structure str

G
I  (bit/atom) was calculated (in this work, it is denoted Hcomb). 

3. Each structural unit of a crystal was contracted to its center of mass while maintaining the adjacency between its 

structural units (Fig. 2b); the reduced unit cell of the resulting net contained v vertices (centers of mass) and e edges 

(contacts) occupying orbits v″ and e″, respectively. The assumed structural units in calcium carbonate polymorphs are Ca2+,  
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Fig. 2. Crystal structure of monohydrocalcite as projected along direction [001]: general form (a), centers of mass 
of adjacent structural units (b), edge net (c), critical net (d). 

 
2

3
CO

−  groups, and water molecules (if present). If CNi is the coordination number of the structural unit whose center of mass 

occupies the ith orbit in the crystal, then 
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The double prime is required to distinguish the number of net elements in the symmetrically independent part of the 

reduced unit cell (v′ or e′), which can be fractional, in contrast to the number of occupied orbits. 

4. Krivovichev's complexity for the centers of mass of structural units (Hcm, bit/center of mass) was calculated. 

5. The edge net was constructed by replacing each edge by a vertex and each vertex by an edge (Fig. 2c). Two 

vertices of the edge net are adjacent to each other when and only when the corresponding edges in the original net come from 

the same vertex. 

6. Complexity of the edge net [48] was calculated (bit/contact): 
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where ej is the number of edge net vertices occupying the jth orbit. 

7. The net of generating contacts (critical net, Fig. 2d) was constructed in the descending order of solid angles Ωj (in 

% of 4π steradian) for the VDPs of centers of mass of the structural units. All contacts with Ωj < 0.5% were removed from 

the original net, and the net of contacts was verified for being simply connected. If not, the original net was declared critical. 

If yes, all contacts with Ωj < 1.0% were removed, and the obtained net was verified for simple connectedness. If not, the 

previous net was declared critical. If yes, all contacts with Ωj < 1.5% were removed, etc. The procedure was repeated with  

a step of 0.5%, which approximately corresponds to the accuracy of solid angle calculations. The net that was not found 

simply connected at the next step was declared critical. The coordination number of the structural unit on the ith orbit of the 
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space group in the critical net is denoted CNcrit,i when considering the symmetrically equivalent edges and crit ,CN
i

′−  (with  

a prime) otherwise. It is known [25] that the infimum of e″ in the critical net is calculated as 

crit SG PG1
inf(e ) = | | + 1 | |,

v

i
U v U

′′

=

′′ ′′ − −∑            (10) 

where USG is the minimum generating subset of the crystal's space group; UPG is the minimal generating subset of the 

symmetry point group [49] of the molecule's position minus those elements which are not contained in any of the generating 

subsets of this space group (such elements are referred to as non-generating ones [29]); the parentheses denote the number of 

elements in the subset. 

8. The edge net of the critical net was constructed and its complexity Hedge,crit (bit/contact) was calculated. 

9. Normalized values 

SIC( )  / max( ),H H H=       (11) 

were calculated, where max(H) is the largest theoretically possible value of complexity H: max(Hcomb) = log2v, 

max(Hedge) = log2e. 

RESULTS AND DISCUSSION 

The number of symmetrically independent formula units (Z″) is 1 in the crystal structures of calcite, aragonite and 

vaterite, 2 in ikaite, and 3 in monohydrocalcite. Table 1 lists the structural complexity values Hcomb calculated for all atoms 

(a) and for the centers of mass of covalently bonded islands (b). Since only two orbits are occupied by the centers of mass of 
2

3
CO  and Ca2+ groups in calcite and aragonite structures, Hcomb = –1/2log2(1/2) – 1/2log2(1/2) = 1 bit/center of mass; however, 

their complexity values per atom are different, since atoms occupy three orbits in calcite and four orbits in aragonite 

(Hcomb = 1.371 bit/atom and 1.922 bit/atom, respectively). Both Hcomb values and the corresponding SIC(H) values increase in 

the row from aragonite to vaterite, ikaite, and monohydrocalcite. 

It has long been established that the calcite structure can be classified as a distorted NaCl structural type [50]; its 

topological type is pcu. Similarly, the aragonite and vaterite structures are classified as anti-NiAs and NiAs structural types, 

respectively [35]; their topological type is nia. Thus, in calcite, aragonite and vaterite, we have 
2 2 2 2

3 3
CN(Ca / CO )   CN(CO / Ca )  6

+ − − +

= = . The postaragonite structure belongs to the CsCl (bcu) type [11],  

 

TABLE 1. Structural Data (space group (SG), occupied Wyckoff positions (WP)) and Structural  
Complexity of Ordered CaCO3 Polymorphs 

Structural data Calcite Aragonite Postaragonite Vaterite Monohydrocalcite Ikaite 

SG 3R c  Pmcn Pmmn C2/c P31 C2/c 

Z 6 4 2 12 9 4 

Z″ 1 1 1 2 3 1 

Atoms v 10 20 10 30 72 46 

v″ 3 4 4 9 24 13 

WP eba dc3 eba2 f 6e2c a24 f 10e3 
Hcomb, bit/atom 1.371 1.922 1.922 3.107 4.585 3.654 

SIC(Hcomb) 0.413 0.445 0.579 0.633 0.743 0.662 

Centers of mass v 4 8 4 12 27 16 

v″ 2 2 2 4 9 5 

WP ba c2 ba f 2ec a9 f 3e2 
Hcm, bit/center of mass 1.000 1.000 1.000 1.918 3.170 2.250 

SIC(Hcm) 0.500 0.333 0.500 0.535 0.667 0.563 
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2 2

3

2 2

3
CN(Ca / CO )  CN(CO / Ca )  8+ − − +

= = . In monohydrocalcite, 2 2

3
CN(Ca )   CN(CO )  6

+ −

= = , CN(H2O) = 4; the 

structure contains an unclassified 3-transitive 4,6-coordinated net with the (42.54)(46.56.62.7)2 point symbol. Thus, all 

symmetrically independent Ca2+ cations and 2

3
CO

−  groups in this net, as well as all water molecules, have topologically 

similar environments. In ikaite CN(Ca2+) = 7, 2

3
CN(CO ) 9

−

= ); two water molecules have CN = 4 and one molecule has 

CN = 3. The net of contacts in this case is 5-transitive; the point symbol is (4.52)2(4
2.53.6)2(4

3.510.67.8)(43.53)2(4
5.512.67.78.84), 

where vertices with the subscript 2 correspond to the centers of mass of water molecules, 43.510.67.8 corresponds to Ca2+ ions; 

45.512.67.78.84 corresponds to carbonate ions. 

Fig. 3 shows the number of symmetrically independent edges of the net e″ as a decreasing function of the minimal 

solid angle (minΩ) for the removal of contacts. The circles show the e″ values in the critical net. According to (10), 

crit crit
e inf(e )′′ ′′=  in all structures, except for ikaite. In the ikaite structure, this number is one unity larger than the infimum. The 

results of statistical analysis in molecular crystals showed [51] that the distribution of a random variable 
crit crit

(e inf(e ))′′ ′′−  is 

similar to the branch of the normal discrete distribution with μ = 0, i.e. 
crit crit

(e inf(e )) 2′′ ′′− ≤  for more than 90% of molecular 

structures. Apparently, this regularity is true also for the nets of contacts in nonmolecular crystals. The range of Ω values 

increases in the calcite–postaragonite–aragonite–monohydrocalcite–vaterite–ikaite row and indicates that the homogeneity of 

the Delone system of the centers of mass of structural units decreases in this row. Since the CN value for postaragonite is 

larger than those of calcite, aragonite, and vaterite, the range of Ω values ends at the critical value of calcite and vaterite (with 

an accuracy up to half integer Ωcrit = 16.5%). The average value Ω over all contacts always decreases with increasing average 

CN value over all structural units: 〈Ω〉 = 100%/〈CN〉. We have 〈Ω〉 = 100/6 = 16.67% for calcite, aragonite, and vaterite, 

〈Ω〉 = 100/8 = 12.50% for postaragonite, 〈Ω〉 = 100/5.33 = 18.75% for monohydrocalcite, and 〈Ω〉 = 100/4.75 = 21.05% for 

ikaite. However, Ωcrit may differ from the average value: the Ωcrit – 〈Ω〉 difference is equal to 0 for calcite and vaterite (for 

vaterite this equality is approximate), slightly smaller than zero for monohydrocalcite, aragonite, and postaragonite, and 

significantly smaller than zero for ikaite. That is why seemingly insignificant contacts 2

3
CO

−…H2O (Ωcrit = 11.9%) in ikaite 

are classified as structure-forming ones. 

The calcite structural class 3R c ,   6(3; 32)Z =  belongs to the classes where only one base contact is possible (see our 

publications in JSC, 2022), even though this class has never been found in molecular crystals [52]. Indeed, the calcite 

structure has only one symmetrically unique contact; therefore, the critical net in the calcite structure coincides with the  

 

 

Fig. 3. Number of symmetrically independent contacts 
between the crystal's structural units e″ as a function of 
the minimal solid angle (minΩ) for the removal of 
contacts with a step of 0.5% for calcite (1), aragonite (2), 
vaterite (3), monohydrocalcite (4), ikaite (5), post-
aragonite (6). The circles show the 

crit
e′′  values. 
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original net of pcu contacts. The critical net in the postaragonite structure belongs to the same type, but has three unique 

contacts. 

In the aragonite structure, we have 
crit
e 3′′ = , 2 2

crit crit 3
CN (Ca )   CN (CO )  4

+ −

= = ; the critical net, in contrast to the 

original net of contacts, is vertex-transitive in the idealized version and belongs to the sra type (SrAl2, Fig. 4a). A net of this 

type (along with gsi (γ-Si), crb (CrB4), and gis (natural zeolite gismondine)) is formed in tetrahedral and disphenoidal 

coordination environments of structural units in the 1:1 ratio [53]. In the critical net of aragonite, the centers of mass of 2

3
CO

−  

groups have a distorted disphenoidal environment, and Ca2+ cations have a distorted tetrahedral environment. 

Table 2 lists the coordination numbers in the critical net of the vaterite structure 
crit

4e′′ = . In one of symmetrically 

independent pairs, the ions denoted Ca2+ (2) and 2 (1)
3CO
−  have CN = 2. Strictly speaking, a vertex degree cannot be less than 

three in a crystallographic net; therefore, one- and two-coordinated vertices are to be removed from net classifications [54]. 

Then the only remaining vertices are four-coordinated vertices corresponding to Ca2+ (1) with a distorted square coordination 

and to 2 (2)
3CO
−  with a distorted tetrahedral coordination, and this net belongs to the pts topological type (PtS, Fig. 4b). 

In the monohydrocalcite structure, 
crit

10e′′ = , which is the largest value among all of the considered structures, 

despite the fact that the P31 space group has the smallest value |USG| = 2. The reason is that the P31 group has no stationary 

orbits, whence it follows that |UPG| = 0. Therefore, according to (10), 
crit

inf( ) = 2 9 1 0 10e′′ + − − =  in the monohydrocalcite 

structure. The coordination numbers for the critical net are listed in Table 3. After removing one- and two-coordinated 

vertices (all Ca2+ cations and the centers of mass of all water molecules), the net adopts the qtz topological type (quartz, 

Fig. 4c). The centers of mass are located in the net 2 (3)
3CO
−  vertices, while the centers of mass of 2 (1)

3CO
−  and 2 (2)

3CO
−  are 

removed together with Ca2+ and water molecules, since they become two-coordinated after the latter are removed. Note that 

both qtz and pts become edge-transitive in the idealized version. 

In the ikaite structure, we have 
crit

7e′′ = , which is, as already mentioned, only one unit larger than 
crit

inf( )e′′ . In this 

case, the contact between Ca2+ and 2

3
CO

−  located on the same second-order rotation axis (Wyckoff position 4e) is redundant  

 

 

Fig. 4. Topological types sra (a), pts (b), and qtz (c) in RCSR [44] (left), coordination environment of vertices in 
the critical nets of aragonite (a), vaterite (b), and monohydrocalcite (c) (right). 
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TABLE 2. Coordination Numbers CN(X/Y) in the Crystal Structure  
and in the Vaterite Critical Net (in parentheses) 

X 
Y 

CNΣ 
Ca2+ (1) Ca2+ (2) 2 (1)

3
CO

−  2 (2)

3
CO

−  

Ca2+ (1) 0 0 4(2) 2(2) 6(4) 
Ca2+ (2) 0 0 4(1) 2(1) 6(2) 

2 (1)
3CO
−  2(1) 4(1) 0 0 6(2) 

2 (2)
3CO
−  2(2) 4(2) 0 0 6(4) 

 

TABLE 3. Coordination Numbers CN(X/Y) in the Crystal Structure and in the Monohydrocalcite  
Net of Base Contacts (in parentheses) 

X 
Y 

CNΣ 
Ca2+ (1) Ca2+ (2) Ca2+ (3) 

2 (1)

3
CO

−  2 (2)

3
CO

−  2 (3)

3
CO

−  H2O
(1) H2O

(2) H2O
(3) 

Ca2+ (1) 0 0 0 1(1) 0 3(1) 0 2(0) 0 6(2) 
Ca2+ (2) 0 0 0 0 3(1) 1(1) 2(0) 0 0 6(2) 
Ca2+ (3) 0 0 0 3(1) 1(1) 0 0 0 2(0) 6(2) 

2 (1)
3CO
−  1(1) 0 3(1) 0 0 0 2(1) 0 0 6(3) 

2 (2)
3CO
−  0 3(1) 1(1) 0 0 0 0 2(1) 0 6(3) 
2 (3)
3CO
−  3(1) 1(1) 0 0 0 0 0 0 2(1) 6(4) 

H2O
(1) 0 2(0) 0  0 0 0 0 0 4(1) 

H2O
(2) 2(0) 0 0 0  0 0 0 0 4(1) 

H2O
(3) 0 0 2(0) 0 0 2(2) 0 0 0 4(2) 

 

for the generating set. Through this contact, the carbonate anion chelates the Ca2+ cation whose first coordination sphere was 

considered to be the fundamental building unit (FBU) of the ikaite structure [3]. The coordination numbers in this structure 

are listed in Table 4. 

Interestingly, one of H2O
(1) water molecules in the ikaite critical net maintains all its contacts from the original net, 

and the CN does not decrease. After the two-coordinated vertices (centers of mass of H2O
(2)) are removed from the critical 

net, it is no longer classified by known databases. All water ions and molecules have different coordination environments, 

and the difference between environments appears only beginning with the fourth coordination sphere for Ca2+ and 2

3
CO

− , and 

from the fifth coordination sphere for water molecules (Table 5). 

 

TABLE 4. Coordination Numbers CN(X/Y) in the Crystal Structure  
and in the Ikaite Critical Net (in parentheses) 

X 
Y 

CNΣ 
Ca2+ 2

3
CO

−  H2O
(1) H2O

(2) H2O
(3) 

Ca2+ 0 1(1) 2(2) 2(2) 2(0) 7(5) 
2

3
CO

−  1(1) 0 2(2) 2(0) 4(2) 9(5) 

H2O
(1) 1(1) 1(1) 0 1(1) 0 3(3) 

H2O
(2) 1(0) 1(0) 1(1) 0 1(1) 4(2) 

H2O
(3) 1(1) 2(1) 0 1(1) 0 4(3) 
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TABLE 5. First 10 Coordination Spheres of H2O Molecules in the Simplified Critical Net of Ikaite 

No. 1st 2d 3d 4th 5th 6th 7th 8th 9th 10th 

Ca2+ 5 12 25 46 71 96 137 180 221 274 
2

3
CO

−  5 12 25 42 71 104 135 172 223 278 

H2O
(1) 3 10 24 43 67 100 134 174 222 275 

H2O
(3) 3 10 24 43 66 96 133 176 221 271 
 

If all edges are removed from the original net of contacts in the ikaite structure, then all possible nets obtained by 

adding no more than 
crit

inf( ) = 6e′′  symmetrically independent edges constitute a total of 847 combinatorially distinct variants. 

Only 166 of them have 3D nets; one variant out of 166 has a 3D net and island graphs; and 36 variants have 0-coordinated 

vertices. Without these variants, 129 combinatorially different nets remain, but 25 of them have two interpenetrating nets, i.e. 

the net is not simply connected. Thus, there are 104 possible combinatorially different critical nets in the ikaite structural 

class. After removing 1- and 2-coordinated vertices, the remaining nets include ten 5-coordinated nets of the bnn topological 

type (“single-layer graphite” BN, Fig. 5a), five 3.6-coordinated nets of the ant topological type (anatase, Fig. 5b), one 6-

coordinated pcu, one 3.5-coordinated gra (bilayer graphite, Fig. 5c), one 4-coordinated gis (gismondin, Fig. 5d), and other 

nets. Thus, different critical coordination numbers are possible for the same 
crit
e′′ . The bnn and pcu types are the most 

common critical nets in molecular crystals with the corresponding CNcrit [51]. 

 

 

Fig. 5. Topological types bnn (a), ant (b), gra (c), and gis (d) in RCSR [44]. 
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All 104 possible critical nets can be divided into two groups. The first one contains a generating set of contacts with 

exactly one symmetrically independent involution (contact of order 1 relative to the center of inversion); therefore, e = 22 (56 

nets). The second group has no involutions in the generating set; therefore, e = 24 (48 nets). The Hedge values in the first and 

second groups are 2.550 bit/contact and 2.585 bit/contact, respectively. In the real ikaite structure, this value is slightly larger 

(2.777 bit/contact) due to the presence of a redundant contact in the generating set (Table 6). The only contact of order 1 is 

the redundant contact of Ca2+ and 2

3
CO

−  occupying the 4e position (see above). 

According to the rule of strong additivity, information complexity can be expressed in terms of individual 

contributions from several sources of information [55, 56]. In a crystal, such possible sources are symmetrically independent 

structural units. Let value HCN,i (bit/ structural unit) characterize the complexity of the first coordination sphere of the ith 

structural unit: 

CN, 2

CN CN
log ,

CN CN

j j

i

j i i

H = −∑         (12) 

where CNi is the coordination number of the ith structural unit; CNj is the number of symmetrically equivalent contacts of the 

jth type in the coordination sphere of the ith structural unit. Then the total complexity of first coordination spheres in the 

crystal is 

CN CN, 1 21
(CN , CN , , CN )

jv

i vi

v

H H H

v

′′

=
= ⋅ +∑ …           (13) 

where, in view of (7): 

1 2 21

CN CN
(CN , CN , , CN ) log .

2 2

v i i

v ii
H v

e e

′′

=
= − ⋅∑…            (14) 

However, HCN does not coincide with Hedge, since the second quantity does not take into account the partitioning of 

symmetrically nonequivalent contacts over coordination spheres of different structural units: 

CN edge edge ,H H H= + Δ                 (15) 

 

TABLE 6. Structural Data and Information Complexity of the Net of Contacts in the CaCO3 Polymorphs 

Structural data Calcite Aragonite Postaragonite Vaterite Monohydrocalcite Ikaite 

Net Topological 

type 

pcu nia bcu nia (42.54)(46.56.62.7)2 (4.52)2(4
2.53.6)2 

(43.510.67.8)(43.53)2 

(45.512.67.78.84) 
e 12 24 16 36 72 38 

e″ 1 4 4 9 24 10 

WP f d2c2 f 2e2 f 9 a24 f 9e 
Hedge,  

bit/contact 
0 1.918 2.000 3.170 4.585 3.301 

SIC(Hedge) 0 0.418 0.500 0.613 0.743 0.629 

Critical net Topological 
type 

pcu sra pcu pts qtz (63)2(6
7.82.10) 

e 12 16 12 16 30 26 

inf e″ 1 3 3 4 10 6 

e″ 1 3 3 4 10 7 

WP f dc2 fe2 f 4 a10 f 6e 
Hedge, crit,  

bit/contact 
0 1.500 1.585 2.000 3.322 2.777 

SIC(Hedge) 0 0.375 0.442 0.500 0.677 0.591 
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