
1 of 20Published by Polish Botanical Society

Acta Societatis Botanicorum Poloniae

ORIGINAL RESEARCH PAPER

From barren substrate to mature 

tundra – lichen colonization in the forelands 

of Svalbard glaciers

Paulina Wietrzyk-Pełka1*, Volker Otte2, Michał Hubert Węgrzyn1, 

Maria Olech1

1 Professor Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, 

Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
2 Senckenberg Museum of Natural History Görlitz, Postfach 300 154, 02806 Görlitz, Germany

* Corresponding author. Email: paulina.wietrzyk@doctoral.uj.edu.pl

Abstract

 is paper contributes to studies on the lichen biota of Arctic regions.  e research 
was carried out in the forelands of eight glaciers and in the mature tundra sur-
rounding them. Study areas were located in two parts of Svalbard: in the Kongs#ord 
(forelands of Austre Brøggerbreen, Vestre Brøggerbreen, Austre Lovénbreen, Midtre 
Lovénbreen, and Vestre Lovénbreen) and in the Is#ord (forelands of Rieperbreen, 
Svenbreen, and Ferdinandbreen). In each foreland and in the mature tundra sur-
rounding it, a series of 1-m2 plots was established, within which a percentage cover 
for each species was determined. In total, 133 lichens and one lichenicolous fungus 
were recorded. Nineteen species were recorded for the first time in Svalbard: Agoni-
mia allobata, Atla wheldonii, Bacidia herbarum, Catolechia wahlenbergii, Epigloea 
soleiformis, Lecanora behringii, Lepraria subalbicans, Leptogium arcticum, Pertusaria 
pseudocorallina, Placidiopsis custnani, Protothelenella corrosa, Pyrenidium actinellum, 
Spilonema revertens, Stereocaulon saxatile, "elocarpon sphaerosporum, Toninia 
coelestina, Verrucaria elaeina, Verrucaria murina, and Verrucaria xyloxena.  e 
lichen richness was the lowest in the Ferdinandbreen foreland (24 species) and the 
highest in the Rieperbreen foreland (82 species). Significant differences in species 
composition were found among the forelands studied, except for Austre and Vestre 
Brøggerbreen whose lichen composition was similar.  e differences in lichen 
composition between mature tundra in the vicinity of the following forelands were 
identified: Vestre Brøggerbreen and Svenbreen, Austre Brøggerbreen and Svenbreen, 
and Austre Brøggerbreen and Ferdinandbreen.  e most dominant group of lichens 
in both forelands and mature tundra were chlorolichens, not cyanolichens.
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Introduction

 e harsh environment rendered by the geographical location of the Arctic contributes to 
the specific habitat conditions encountered by living organisms that inhabit this region. 
Tundra plant communities are dominated by cryptogamic species that are perfectly 
adapted to an environment that is inadequate for the majority of vascular plants [1,2]. 
Although cryptogams are the main components of the Arctic tundra, including both 
climax communities and recently deglaciated forelands [2–4], the majority of studies 
in Svalbard have neglected their importance. One of the most significant cryptogamic 
groups are lichens. In the Arctic, lichens are an important component of biodiversity 
in plant communities [5].  ere are approximately 1,750 species of lichen in the Arctic, 
with 742 known to inhabit Svalbard [6–8]. Lichens are complex symbiotic organisms 
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consisting of associations between fungi and photobionts that host hyperdiverse mi-
crobial communities [9]. Due to the fact that photobionts may facilitate the ability of 
lichens to colonize extreme environments such as glacier forelands [10], they play a 
dominant role in primary succession as pioneers in this process [11]. Epigeic lichens in 
glacier forelands, together with bryophytes, bacteria, and cyanobacteria, create so-called 
BSCs (biological soil crusts).  e presence of cyanobacteria having the ability to bind 
atmospheric nitrogen as symbiotic components of lichens increases the colonization 
potential of species [12,13], contributing to the biogeochemical nitrogen cycle that is 
critical in barren and nutrient-poor soils present in freshly deglaciated areas [14,15]. 
Climate change is driving the growth of ice-free areas in glacier forelands, galvanizing 
the need for further research on the primary succession of lichens [16,17]. Retreating 
glaciers uncover new habitats that can easily be colonized by lichens as pioneering 
species [18,19]. However, studies conducted in both the Arctic and subarctic regions 
indicate that lichen diversity appears to decrease as a result of global warming [20]. 
Nevertheless, glacier forelands offer habitat conditions wherein lichens are less vulner-
able, in that they are exposed to less competition from vascular plants compared to 
tundra communities with more developed vascular plant cover [18]. Consequently, 
glacier forelands may serve as important lichen refugia in the future.

 e main aim of the present study was to investigate terricolous lichen diversity 
and the composition of terricolous lichen communities in the foreland of eight glaciers 
and in the mature tundra that surrounds them, as well as the differences in terricolous 
lichen composition between selected locations.  e following hypotheses were set: (i) 
considering the plant communities surrounding the glacier forelands whose development 
was not disturbed by the glacier as climax communities, the species richness of mature 
tundra differs from the species richness of glacier forelands; (ii) with regard to similar 
habitat conditions in the glacier foreland, the lichen composition and species richness of 

the glacier forelands under investigation are similar; 
and (iii) the species number and percentage cover of 
nitrogen-binding cyanolichens is higher in the glacier 
forelands than in mature tundra, while the species 
number and percentage cover of chlorolichens show 
the opposite pattern.

Material and methods

Study area

 e research was carried out in the summer of 2017 
in the forelands of eight glaciers (whose deglaciation 
process began at the end of the Little Ice Age) and 
in the mature tundra which surrounds them. Study 
areas were located in two parts of Spitsbergen, (i) 
the biggest island of the Svalbard archipelago (the 
biggest island of the Svalbard archipelago): in Kongs-
#ord, located in the northwestern part of Spitsbergen 
where the forelands of Austre Brøggerbreen, Vestre 
Brøggerbreen, Austre Lovénbreen, Midtre Lovén-
breen, and Vestre Lovénbreen are located, and (ii) 
in Is#ord, situated in the central part of Spitsbergen 
where the forelands of Rieperbreen, Svenbreen, and 
Ferdinandbreen are located (Fig. 1).

Data sampling

In each foreland and surrounding mature tundra, a 
series of 1-m2 plots was established in a square grid. 
Fig. 1 presents the location of sampling plots (black 

Fig. 1 Location of sampling plots within study areas. Is#ord: A – Rie-
perbreen, B – Ferdinandbreen and Svenbreen; Kongs#ord: C – Austre 
and Vestre Brøggerbreen, Austre, Midtre, and Vestre Lovénbreen (© 
Norwegian Polar Institute 2018; http://www.npolar.no).
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dots). Altogether, 276 plots were investigated: 175 in Kongs#ord and 101 in Is#ord. 
At each plot, the cover of each terricolous lichen species was estimated on a percent-
age scale (the present study did not include epilithic lichens). With respect to Austre 
Brøggerbreen, Vestre Brøggerbreen, Rieperbreen, Svenbreen, and Ferdinandbreen, the 
forelands were completely covered by square grids, while in the forelands of Austre 
Lovénbreen, Midtre Lovénbreen, and Vestre Lovénbreen, only part of the area was 
covered by grids (Fig. 1). Regarding taxonomically problematic specimens, samples 
of lichen thalli were collected for laboratory identification.

Lichen identification

Traditional taxonomical methods and standard light microscopy were used for species 
identification.  e following guides were used: Andreev et al. [21,22], Brodo et al. [23], 
Smith et al. [24], and  omson [25,26]. Chemical analysis of lichen substances were 
conducted according to the technique developed by Orange et al. [27].  e taxonomical 
nomenclature followed the Index Fungorum [28].  e distribution of taxa in Svalbard 
was confirmed according to Elvebakk and Hertel [29], Øvstedal et al. [8], Redchenko 
et al. [30], Kristinsson et al. [31], Zhurbenko and Brackel [32], and the Svalbard Lichen 
Database [33]. Lichen samples were deposited in the Herbarium of the Institute of 
Botany at Jagiellonian University in Kraków (KRA).

Statistical analyses

 e Mann–Whitney U test was applied to investigate the differences in species richness 
between Kongs#ord and Is#ord as well as the differences in species richness between 
plots located in glacier forelands and mature tundra.  e differences in percentage 
cover and species number of cyanolichens and chlorolichens between all of the glacier 
foreland plots and all of the mature tundra plots were also investigated using this test. 
 e Wilcoxon test was applied to study the differences in species number and percentage 
cover between lichens with different symbiotic components for glacier foreland and 
mature tundra separately. Differences in species richness among the forelands studied 
were tested using the Kruskal–Wallis test.

Nonmetric multidimensional scaling (NMDS) followed by a multivariate statisti-
cal test (one-way PERMANOVA; 999 permutations) with a sequential Bonferroni 
procedure were applied to determine similarities in lichen composition among the 
glacier forelands studied as well as among mature tundra that surrounds particular 
glaciers.  e same analysis was used to test differences in lichen composition between 
Kongs#ord and Is#ord for plots located in glacier forelands and plots designated in 
mature tundra separately. Indicator species analysis measured with Pearson’s phi coef-
ficient was performed to investigate the lichens related to each glacier foreland and the 
surrounding mature tundra.  is analysis allowed us to distinguish indicator species 
representing lichens characteristic of each foreland or each mature tundra. Data from 
plots without species cover were excluded from the above-mentioned analyses.  e 
changes in species richness along the forelands were presented on a heat map (based 
on kernel density estimation) which was created using Quantum GIS so<ware [34]. 
 e statistical analyses were carried out using STATISTICA 12 (Statso<, Tulsa, OK, 
USA), PAST 3.10 [35], and CRAN R-3.4.2 [36].

Results

Species richness and composition of lichen communities

Overall, a total of 133 lichen taxa and one lichenicolous fungus were found in the 
study areas. Tab. 1 presents the recorded lichen species occurring in each foreland and 
surrounding mature tundra.
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Tab. 1 A list of the lichen taxa recorded in the studied glacier forelands and mature tundra in their vicinity. A star (*) indicates lichenicolous fungi. Abbreviations used: AL – Austre Lovénbreen; 
ML – Midtre Lovénbreen; VL – Vestre Lovénbreen; AB – Austre Brøggerbreen; VB – Vestre Brøggerbreen; R – Rieperbreen; S –Svenbreen; F – Ferdinandbreen. Species new to Svalbard are in bold.

Species name

Glacier foreland of Mature tundra of

AL ML VL AB VB S F R AL ML VL AB VB S F R

1 Agonimia allobata (Stizenb.) P. James - - - - - - - × - - - - - - - -

2 Agonimia gelatinosa (Ach.) M. Brand & Diederich × × × × × - - - × × × × × - × -

3 Amandinea punctata (Hoffm.) Coppins & Scheid. - × - × - - - × - × - - - - - -

4 Arctomia delicatula  . Fr. - - - - × - - × × × × × × - - ×

5 Arthonia lapidicola (Taylor) Branth & Rostr. - - - - - × - × - - - - - × - ×

6 Arthrorhaphis citrinella (Ach.) Poelt × - × × - × - × × × × × × - × -

7 Athallia pyracea (Ach.) Arup, Frödén & Søchting × × × × - × × × × × - × × × × ×

8 Atla alpina Savić & Tibell - - - - - × - × - - - - - - × -

9 Atla wheldonii (Travis) Savić & Tibell × × × × × × × - × × × × × - × -

10 Bacidia bagliettoana (A. Massal. & De Not.) Jatta × × × × × × - - × × × × - - - -

11 Bacidia herbarum (Stizenb.) Arnold - - × - - - - - × × - - - - - -

12 Baeomyces rufus (Huds.) Rebent. × - - - - - - × - - - × - - - -

13 Biatora carneoalbida (Müll. Arg.) Coppins × - - - - - - - × - × - - × × ×

14 Biatora cuprea (Sommerf.) Fr. - × × - - - - × × - - × × - × ×

15 Biatora ementiens (Nyl.) Printzen × × × × × - - × × × × × × × × ×

16 Biatora subduplex (Nyl.) Printzen × × × - - - - × × × × × × - - ×

17 Bilimbia lobulata (Sommerf.) Hafellner & Coppins × × × × - × - - × - - × × × × -

18 Bilimbia sabuletorum (Schreb.) Arnold × × - - - × - - × - - - × - × -

19 Blastenia ammiospila (Ach.) Arup, Søchting & Frödén × - - - - - - × × - - × × - - ×

20 Bryobilimbia hypnorum (Lib.) Fryday, Printzen & S. 
Ekman

- - - × - - - - × - - × × - × ×

21 Bryonora castanea (Hepp) Poelt - - - - - - - - - - × - × - - ×

22 Bryoplaca tetraspora (Nyl.) Søchting, Frödén & Arup - × × × - - - × × × × × × - - ×

23 Buellia disciformis (Fr.) Mudd - - - - - - - × - - - - - - - -

24 Buellia elegans Poelt - - - - - - - × - - - - - - - -

25 Buellia geophila (Flörke ex Sommerf.) Lynge - - - - - - - × × × - × × - - -

26 Buellia insignis (Nägeli ex Hepp)  . Fr. - - - - - - - × - - × × - - - ×

27 Buellia papillata (Sommerf.) Tuck. - - - - - - × × × - - - - - × ×
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Tab. 1 Continued

Species name

Glacier foreland of Mature tundra of

AL ML VL AB VB S F R AL ML VL AB VB S F R

28 Caloplaca caesiorufella (Nyl.) Zahlbr. - - - - - - - × - - - × - - - ×

29 Caloplaca cerina (Hedw.)  . Fr. × × × × - × × × × × × × × × × -

30 Catapyrenium cinereum (Pers.) Körb. - - - - - - - × - - - - - × - ×

31 Catolechia wahlenbergii (Ach.) Körb. - - - - - - - × - - - - - - - -

32 Cetraria aculeata (Schreb.) Fr. - × - × - - - - - × × × - - - -

33 Cetraria ericetorum Opiz - - - × - - - - - - × × - - - -

34 Cetraria islandica (L.) Ach. - - - × - - - - - - - × × - - -

35 Cetrariella delisei (Bory ex Schaer.) Kärnefelt & A. 
 ell

× × × × × × - × × × × × × × × ×

36 Cladonia borealis S. Stenroos - - - - - × - × - - × × - - - ×

37 Cladonia chlorophaea (Flörke ex Sommerf.) Spreng. - - - - - - - × - - - - - - - -

38 Cladonia coccifera (L.) Willd. - - - - - - - × - - - - - - - -

39 Cladonia cornuta (L.) Hoffm. - - - - - - - × - - - - - - - -

40 Cladonia ecmocyna Leight. - - - - - - - × - - - - - - - ×

41 Cladonia macroceras (Delise) Ahti - - - - - - - × - - × × - - × ×

42 Cladonia mitis Sandst. - - - - - - - × - - × - - - - -

43 Cladonia pocillum (Ach.) O. J. Rich. × × × × × × × × × × × × × × × ×

44 Cladonia pyxidata (L.) Hoffm. × × - × × × - × - - × × × × × ×

45 Cladonia squamosa (Scop.) Hoffm. - - - - × - - - - - - - - - - -

46 Cladonia uncialis (L.) Weber ex F. H. Wigg. - - - - - - - - - - × - - - - ×

47 Collema tenax (Sw.) Ach. × - - × × - - × × - × × × × × ×

48 Epigloea soleiformis Döbbeler - - - - - - - × - - - - - - - -

49 Flavocetraria cucullata (Bellardi) Kärnefelt & A.  ell - - - - - - - - × - - - - - - -

50 Flavocetraria nivalis (L.) Kärnefelt & A.  ell - - - × - × - × × - × × × - × -

51 Frigidopyrenia bryospila (Nyl.) Grube × × × × × × × × × × × × × × - -

52 Frutidella caesioatra (Schaer.) Kalb - - - - × - - × - - - - - × - ×

53 Fulgensia bracteata (Hoffm.) Räsänen × × - - × × × - × - - - - × × -

54 Huneckia pollinii (A. Massal.) S. Y. Kondr., Kärnefelt, 
Elix, A.  ell, Jung Kim, A. S. Kondr. & Hur

× × × × - - - - × × × × × - - -
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Tab. 1 Continued

Species name

Glacier foreland of Mature tundra of

AL ML VL AB VB S F R AL ML VL AB VB S F R

55 Japewia tornoensis (Nyl.) Tønsberg - - - - - - - - × - - - - - - -

56 Lathagrium cristatum (L.) Otálora, P. M. Jørg. & Wedin × - × × × × - - - - - × - - - -

57 Lecanora behringii Nyl. - - - - - - - × - - × - - - - -

58 Lecanora epibryon (Ach.) Ach. × × × × - × × - × × × × - × × -

59 Lecidea berengeriana (A. Massal.) Nyl. - - - - - - - - - - - - - - × -

60 Lecidea ramulosa  . Fr. × × × × × × × - × × × × × × × ×

61 Lecidella wulfenii (Ach.) Körb. - - × - - - - × × × × × × - × ×

62 Lecidoma demissum (Rutstr.) Gotth. Schneid. & Hertel - - - - - - - - - - - - - - - ×

63 Leciophysma finmarkicum  . Fr. × × × × × - - - × × × × × - × -

64 Leciophysma furfurascens (Nyl.) Gyeln. - - - × × - - - - × × × - - - -

65 Lepraria subalbicans (I. M. Lamb) Lendemer & B. P. 

Hodk.

- - - - × - - × - - - - - - - -

66 Leptogium arcticum P. M. Jørg. - × × - - - - - - - - - × - - -

67 Lopadium coralloideum (Nyl.) Lynge - - - - - - - × - - - × - - × ×

68 Megaspora verrucosa (Ach.) Hafellner & V. Wirth - × - × - - - - × - × × × × - -

69 Micarea crassipes ( . Fr.) Coppins - × - - - - - - - - - - - - - -

70 Micarea incrassata Hedl. - - - - - - - × - × × × × - - -

71 Mycobilimbia microcarpa ( . Fr.) Brunnb. × × × × × × × - × × × × × × × -

72 Myriolecis zosterae (Ach.) Śliwa, Zhao Xin & Lumbsch × × × × × × × × × × × × - × × ×

73 Nephroma expallidum (Nyl.) Nyl. - - - - - - - - - - - - - - - ×

74 Ochrolechia androgyna (Hoffm.) Arnold × × × - × × × × × × - × × × - ×

75 Ochrolechia frigida (Sw.) Lynge × × × × × × - × × × × × × × × ×

76 Parvoplaca tiroliensis (Zahlbr.) Arup, Søchting & 
Frödén

× × × × × × × × × × × × × × × ×

77 Peltigera aphthosa (L.) Willd. - - - - - - - × - - - - - - - -

78 Peltigera didactyla (With.) J. R. Laundon × - - - - - - × - - - - - - - -

79 Peltigera leucophlebia (Nyl.) Gyeln. - - - - - - - × - - × - - - - ×

80 Peltigera polydactylon (Neck.) Hoffm. × - - - - - - × - - - - - - - ×

81 Peltigera venosa (L.) Hoffm. - - - - × - - - - - - - - - - ×
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Tab. 1 Continued

Species name

Glacier foreland of Mature tundra of

AL ML VL AB VB S F R AL ML VL AB VB S F R

82 Pertusaria pseudocorallina (Sw.) Arnold - - - - - - - × - - × - - - - ×

83 Phaeorrhiza nimbosa (Fr.) H. Mayrhofer & Poelt - - × × - - - × × × × × × - - ×

84 Phaeorrhiza sareptana (Tomin) H. Mayrhofer & Poelt - - - - - - - × - - - - - - - ×

85 Placidiopsis custnani (A. Massal.) Körb. - - - - - × - - - - - - - × - -

86 Placidiopsis pseudocinerea Breuss - - - - - - - - × - - - × - - -

87 Polyblastia bryophila Lönnr. × × × × × - - × × × × × - - - -

88 Polyblastia gothica  . Fr. × × × × × × × × × × × × × × × ×

89 Polyblastia schaereriana (A. Massal.) Müll. Arg. - - - - - × × × - - - - - - - -

90 Polyblastia sendtneri Kremp. × × × × × × × × × × × × × × × ×

91 Porina mammillosa ( . Fr.) Zahlbr. - - - - - - - × - - - - - - - -

92 Protomicarea limosa (Ach.) Hafellner - - - - - - - - - - - × - - - ×

93 Protopannaria pezizoides (Weber) P. M. Jørg. & S. 
Ekman

- - - - - - - × - - - - - - - ×

94 Protothelenella corrosa (Körb.) H. Mayrhofer & Poelt - - - - - - - × - - - - - - - -

95 Protothelenella sphinctrinoidella (Nyl.) H. Mayrhofer 
& Poelt

- - - - - - - × - - - × - - - ×

96 Protothelenella sphinctrinoides (Nyl.) H. Mayrhofer & 
Poelt

- - - - - - × × - - - - - - - -

97 Psoroma hypnorum (Vahl) Gray - - - - × - - - × - × × - - - ×

98 Psoroma tenue Henssen - - - × × - - × - - × × × - - ×

99 *Pyrenidium actinellum Nyl. - - - - - - - × - - - - - - - -

100 Rhymbocarpus neglectus (Vain.) Diederich & Etayo × × × × × × - - × × × - × - - -

101 Rinodina roscida (Sommerf.) Arnold - - - - - - - × - - - - - - - -

102 Rinodina turfacea (Wahlenb.) Körb. × × × × - × × - × × × × × × × ×

103 Rostania ceranisca (Nyl.) Otálora, P. M. Jørg. & Wedin × × × × × × × × × × × × × × × ×

104 Schadonia fecunda ( . Fr.) Vězda & Poelt - - - - - - - × - - - - - - - -

105 Scytinium gelatinosum (With.) Otálora, P. M. Jørg. & 
Wedin

× × × × × × - - × - × × × - - -

106 Scytinium tenuissimum (Hoffm.) Otálora, P. M. Jørg. 
& Wedin

- - - × - - - - - - - - - - - -
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Tab. 1 Continued

Species name

Glacier foreland of Mature tundra of

AL ML VL AB VB S F R AL ML VL AB VB S F R

107 Solorina bispora Nyl. - - - - - - - × - - - - - - × -

108 Solorina crocea (L.) Ach. - - - - × - - - × - - × × - - -

109 Sphaerophorus globosus (Huds.) Vain. - - - - - - - - - - - - - - - ×

110 Spilonema revertens Nyl. - - - - - - - - × - × × × - - -

111 Sporodictyon terrestre ($. Fr.) Savić & Tibell - × - - × × × × × - - - - × × -

112 Steinia geophana (Nyl.) Stein × × × - - - × × - × - - - × × ×

113 Stereocaulon alpinum Laurer × × × × - × - × - × × × - - - ×

114 Stereocaulon arcticum Lynge - - - - - - - × - × × - - - - -

115 Stereocaulon botryosum Ach. - - - - - - - × - - - - - - - -

116 Stereocaulon capitellatum H. Magn. - - - - - - - × - - - - - - - -

117 Stereocaulon condensatum Hoffm. - × × - - - - - - - - - - - - -

118 Stereocaulon glareosum (Savicz) H. Magn. - - - - - - × × - - - - - - - ×

129 Stereocaulon paschale (L.) Hoffm. - - - - - - - × - - - - - - - ×

120 Stereocaulon rivulorum H. Magn. × × × × × × - × - - - × - × × ×

121 Stereocaulon saxatile H. Magn. - - - - - - - × - - - - - - - -

122 Strigula sychnogonoides (Nitschke) R. C. Harris × - - - - × × × - - - × - - - -

123 "amnolia vermicularis (Sw.) Schaer. - - - - - - - - - - - - - - × -

124 "elidium minimum (A. Massal. ex Körb.) Arnold - - - - - - - × - - - - - - - -

125 "elocarpon epibolum Nyl. - - × - × - - - - - - - - - - -

126 "elocarpon impressellum Nyl. - × - - - - - - - - - - - - - -

127 "elocarpon sphaerosporum H. Magn. - - - - - × - - - - - - - - - -

128 Toninia aromatica (Turner) A. Massal. × × × × - × × × × × × - × × × -

129 Toninia coelestina (Anzi) Vězda - - - - - × - - - - - - - × × -

130 Toninia verrucarioides (Nyl.) Timdal - - - - - - - - - - - × - - - -

131 Verrucaria elaeina Borrer - - - - - - - - - - - - - - × -

132 Verrucaria murina Leight. - - - - - - - × - - - - - - - -

133 Verrucaria xyloxena Norman - - - × - - - - - - - - - - - -

Sum of recorded species 43 44 41 45 36 39 24 82 52 40 53 61 46 32 42 54
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Eighteen lichen species were recorded for the first time in Svalbard: Agonimia al-
lobata, Atla wheldonii, Bacidia herbarum, Catolechia wahlenbergii, Epigloea soleiformis, 
Lecanora behringii, Lepraria subalbicans, Leptogium arcticum, Pertusaria pseudocorallina, 
Placidiopsis custnani, Protothelenella corrosa, Spilonema revertens, Stereocaulon saxatile, 
"elocarpon sphaerosporum, Toninia coelestina, Verrucaria elaeina, Verrucaria murina, 
and Verrucaria xyloxena. Furthermore, one species of lichenicolous fungi, Pyrenidium 
actinellum, was observed for the first time in Svalbard.

Regarding species number in the glacier forelands, the greatest species diversity 
was observed in the Rieperbreen foreland – 82 species, while the lowest was observed 
in the Ferdinandbreen foreland – 24 species. Comparing the mature tundra plots, 
the greatest diversity was exhibited by the plant community in the vicinity of Austre 
Brøggerbreen – 61 species, while the lowest was in the surroundings of Svenbreen – 32 
species (Tab. 1). When comparing the overall species richness between plots located in 
glacier forelands and plots designated in mature tundra, the species richness of mature 
tundra plots was significantly higher (Z = 6.799, p < 0.05; Fig. 2).

 e same pattern was observed in all study areas: species richness gradually increased 
from the glacier forehead to the mature tundra surrounding the glacier foreland. Plots 
localized near the glacier forehead or in the vicinity of glacier-fed rivers showed the 
lowest species number, while plots located in mature tundra and in the terminal part 
of forelands showed the highest, reaching as many as 40 species (Fig. 3).

Comparing the overall species number between Kongs#ord and Is#ord, the analysis 
performed showed no differences (Z = −1.648, p > 0.05). Similarly, the analysis showed 
no differences when analyzing the number of species between the mature tundra of 
Kongs#ord and Is#ord (Z = −0.586, p > 0.05). Nevertheless, the differences were signifi-
cant when analyzing the number of species occurring in glacier forelands among the 
above-mentioned locations (Z = −2.164, p < 0.05).  e species number in Kongs#ord 
forelands was significantly lower than in Is#ord forelands: mean species number per 
plot was 7 and 10, respectively. In the analysis of species richness between particular 
forelands, differences were observed only between certain studied forelands (Fig. 4). 
 e differences were significant for: Austre Lovénbreen and Austre Brøggerbreen (Z 
= 3.174, p < 0.05); Austre Lovénbreen and Vestre Brøggerbreen (Z = 3.433, p < 0.05); 
Midtre Lovénbreen and Vestre Brøggerbreen (Z = 3.177, p < 0.05); Austre Brøggerbreen 
and Rieperbreen (Z = 5.022, p < 0.001); Vestre Brøggerbreen and Rieperbreen (Z = 
5.069, p < 0.0001); and Rieperbreen and Ferdinandbreen (Z = 4.545, p < 0.0001).  ere 
were no significant differences in species richness among plots located in mature tundra 
surrounding any particular glacier.

Differences in lichen composition among study areas were presented as the results of 
NMDS plots for glacier forelands and mature tundra separately (Fig. 5, Fig. 6), followed 
by one-way PERMANOVA (Tab. 2) and species indicator analyses (Tab. 3, Tab. 4). 

Fig. 2  e difference (p < 0.05) in species richness between plots 
located in mature tundra and glacier forelands.
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Fig. 3 Species richness of study areas. Is#ord: (A) Rieperbreen, (B) Ferdinandbreen 
and Svenbreen; Kongs#ord: (C) Austre and Vestre Brøggerbreen, Austre, Midtre, and 
Vestre Lovénbreen.

Fig. 4  e differences in species richness among forelands studied (Kruskal–Wallis analysis: chi-
square = 40.4, p = 0.00001).
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With respect to both the forelands studied and the mature tundra in their vicinity, 
significant differences in lichen composition were observed between Kongs#ord and 
Is#ord (Tab. 2).

Analyses comparing the species composition in glacier forelands indicated significant 
differences among nearly all forelands studied (Fig. 5, Tab. 2).  e only exception were 
the forelands of Austre Brøggerbreen and Vestre Brøggerbreen, between which no 
difference was recorded (Fig. 5, Tab. 2, Tab. 3). Rieperbreen foreland differed the most 
within all forelands and showed the highest species individuality (Fig. 5, Tab. 3). Regard-
ing the forelands of Austre Lovénbreen, Midtre Lovénbreen, and Vestre Lovénbreen, 
several species were recorded as common to all of these forelands (Tab. 3). A similar 
trend was observed for the forelands of Ferdinandbreen and Svenbreen (Tab. 3). When 

Fig. 5 NMDS analysis of plots located in the glacier forelands (with the Morisita index as a dissimilarity measure). 
 e first axis (Coordinate 1) explains 35% of the variability and the second (Coordinate 2) explains 20%.

Fig. 6 NMDS analysis of plots located in the mature tundra (with the Bray–Curtis index as a dissimilarity measure). 
 e first axis (Coordinate 1) explains 52% of the variability and the second (Coordinate 2) explains 12%.
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Tab. 2 Results of one-way PERMANOVA with sequential Bonferroni significance.

Differences in lichen 

composition between:

One-way PERMANOVA

Sequential Bonferroni significance; p

Total sum of 

squares

Within-group 

sum of squares F p

Kongs#ord and Is#ord 
mature tundra

11.52 10.66 3.757 0.001 0.001

Kongs#ord and Is#ord 
glacier forelands

42.54 37.99 18.79 0.001 0.001

Mature tundra in front of 
each glacier foreland

11.85 7.428 3.486 0.001 Austre Brøggerbreen and Svenbreen, 
Ferdinandbreen: 0.001; Vestre Brøgger-

breen and Svenbreen: 0.001

All studied glacier 
forelands

48.65 29.24 12.44 0.001 Austre Brøggerbreen and Vestre Brøg-
gerbreen: 0.455; other forelands: <0.01

Tab. 3 Results of indicator species analysis with Pearson’s phi coefficient values for foreland plots.  e species characterized for 
each particular foreland are in bold.

p ≤ 0.001 phi 0.001 ≤ p < 0.01 phi 0.01 ≤ p < 0.05 phi

Austre Lovénbreen A. gelatinosa 0.507 C. delisei 0.491 B. ammiospila 0.341

A. wheldonii 0.636 O. frigida 0.629 F. bryospila 0.444

L. ramulosa 0.664 P. didactyla 0.403 L. epibryon 0.418

M. microcarpa 0.59 P. gothica 0.613 P. sendtneri 0.756

R. ceranisca 0.854 R. turfacea 0.447

S. geophana 0.586

S. alpinum 0.697

T. aromatica 0.615

Midtre Lovénbreen A. gelatinosa 0.507 C. delisei 0.491 B. bagliettoana 0.404

A. wheldonii 0.636 H. pollinii 0.491 F. bracteata 0.427

B. ementiens 0.628 O. frigida 0.629 F. bryospila 0.444

C. pocillum 0.7 P. gothica 0.613 L. epibryon 0.418

L. ramulosa 0.664 R. turfacea 0.447 P. sendtneri 0.756

M. microcarpa 0.59 S. rivulorum 0.544

O. androgyna 0.698

S. alpinum 0.697

Vestre Lovénbreen A. gelatinosa 0.507 C. delisei 0.491 B. bagliettoana 0.404

A. wheldonii 0.636 H. pollinii 0.491 B. subduplex 0.34

M. microcarpa 0.59 L. cristatum 0.429 F. bryospila 0.444

S. alpinum 0.697 R. turfacea 0.447 L. epibryon 0.418

T. aromatica 0.615 S. rivulorum 0.544 P. sendtneri 0.756

Austre Broggerbreen A. wheldonii 0.636 L. cristatum 0.429 P. sendtneri 0.756

R. ceranisca 0.854

Vestre Broggerbreen A. wheldonii 0.636 L. cristatum 0.429 P. sendtneri 0.756

R. ceranisca 0.854 S. rivulorum 0.544

Svenbreen L. ramulosa 0.664 P. gothica 0.613 F. bracteata 0.427

M. microcarpa 0.59 R. turfacea 0.447 L. epibryon 0.418

O. androgyna 0.698 S. rivulorum 0.544 P. sendtneri 0.756

R. ceranisca 0.854 S. terrestre 0.4

T. aromatica 0.615

Ferdinandbreen O. androgyna 0.698 P. gothica 0.613 L. epibryon 0.418
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Tab. 1 Continued

p ≤ 0.001 phi 0.001 ≤ p < 0.01 phi 0.01 ≤ p < 0.05 phi

T. aromatica 0.615 R. turfacea 0.447 P. sendtneri 0.756

Rieperbreen B. rufus 0.506 B. papillata 0.454 A. punctata 0.328

B. ementiens 0.628 O. frigida 0.629 B. ammiospila 0.341

B. insignis 0.566 P. didactyla 0.403 B. subduplex 0.34

C. borealis 0.716 P. sphinctrinoidella 0.346 L. coralloideum 0.346

C. caesiorufella 0.447 S. saxatile 0.346 S. terrestre 0.4

C. chlorophaea 0.529 S. sychnogonoides 0.447

C. pocillum 0.7

C. pyxidata 0.675

F. caesioatra 0.645

M. incrassata 0.529

P. nimbosa 0.479

P. pezizoides 0.959

P. tenue 0.763

S. bispora 0.529

S. glareosum 0.474

S. paschale 0.632

Tab. 4 Results of indicator species analysis with Pearson’s phi coefficient values for mature tundra plots.  e species characterized 
for each particular mature tundra location are in bold.

p ≤ 0.001 phi 0.001 ≤ p < 0.01 phi 0.01 ≤ p < 0.05 phi

Austre Lovénbreen B. bagliettoana 0.878 B. tetraspora 0.741 P. tiroliensis 0.733

H. pollinii 0.82 P. nimbosa 0.705

L. epibryon 0.961 M. microcarpa 0.803

C. pocillum 0.81

L. ramulosa 0.958

C. delisei 0.915

Midtre Lovénbreen B. bagliettoana 0.878 S. alpinum 0.812 L. furfurascens 0.651

H. pollinii 0.82 B. tetraspora 0.741 P. tiroliensis 0.733

L. epibryon 0.961 M. microcarpa 0.803

C. pocillum 0.81

L. ramulosa 0.958

C. delisei 0.915

Vestre Lovénbreen B. bagliettoana 0.878 S. alpinum 0.812 L. furfurascens 0.651

H. pollinii 0.82 B. tetraspora 0.741 P. nimbosa 0.705

M. microcarpa 0.803

C. pocillum 0.81

L. ramulosa 0.958

C. delisei 0.915

Austre Brøggerbreen P. nimbosa 0.705

L. ramulosa 0.958

C. delisei 0.915

Vestre Brøggerbreen C. tenax 0.73

L. ramulosa 0.958

C. delisei 0.915
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analyzing differences in species composition between mature tundra in the vicinity of 
each foreland, significant differences were observed between Austre Brøggerbreen and 
Svenbreen; Austre Brøggerbreen and Ferdinandbreen; and Vestre Brøggerbreen and 
Svenbreen (Fig. 6, Tab. 2, Tab. 3). With respect to the mature tundra of other glacier 
forelands, no significant differences in lichen composition were found and the same 
species were dominant in the majority of locations (Tab. 2, Tab. 4).

The occurrence of cyanolichens and chlorolichens

 e species number of cyanolichens recorded in glacier forelands as well as in mature 
tundra was significantly lower compared to chlorolichens (respectively: Z = 5.044, p 
< 0.0001 and Z = 4.299, p < 0.0001; Fig. 7).  e number of cyanolichen species were 
higher in mature tundra than in glacier forelands (Z = 6.694, p < 0.0001; Fig. 7), however 
there was no difference in their percentage cover between mature tundra and glacier 
forelands (Z = −0.078, p > 0.05; Fig. 8).  e taxa with green algae components showed 
similar patterns in terms of species number (Z = 6.592, p < 0.0001; Fig. 7) and percent-
age cover (Z = 0.196, p > 0.05; Fig. 8).

Discussion

Species richness and composition of lichen communities

Lichens are effective colonizers during primary succession in the glacier forelands [1,4]. 
 e substantial number of recorded species as well as their frequency in each foreland 
would seem to confirm the pioneering abilities of lichens (Tab. 1) [19]. Regarding 
species presence, the glacier forelands that offer similarly harsh habitat conditions 

Tab. 4 Continued

p ≤ 0.001 phi 0.001 ≤ p < 0.01 phi 0.01 ≤ p < 0.05 phi

Svenbreen L. epibryon 0.961 F. bracteata 0.779 P. tiroliensis 0.733

S. rivulorum 0.761 C. tenax 0.73

M. microcarpa 0.803

C. pocillum 0.81

L. ramulosa 0.958

Ferdinandbreen T. coelestina 0.806 F. bracteata 0.779 B. papillata 0.668

L. epibryon 0.961 S. rivulorum 0.761 C. pyxidata 0.666

P. tiroliensis 0.733

C. tenax 0.73

M. microcarpa 0.803

C. pocillum 0.81

L. ramulosa 0.958

C. delisei 0.915

Rieperbreen P. pseudocorallina 0.956 P. pezizoides 0.775 P. tenue 0.635

C. borealis 0.902 C. caesiorufella 0.757 N. expallidum 0.632

S. paschale 0.894 C. macroceras 0.735 B. papillata 0.668

L. coralloideum 0.769 S. alpinum 0.812 C. pyxidata 0.666

B. tetraspora 0.741 P. nimbosa 0.705

C. tenax 0.73

C. pocillum 0.81

C. delisei 0.915
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appear to possess comparable lichen composition; however, the present study did not 
fully confirm this statement. Significant differences were observed among the glacier 
forelands studied (Tab. 2).

Considering the lichen composition of communities surrounding the glacier forelands 
as climax communities, a gradual change in species richness and percentage cover is 
observed from the glacier foreheads to the ends of the forelands where the near-climax 
communities are located. A similar pattern was observed in the studies on primary 
succession on Signy Island by Favero-Longo et al. [37]. Cryptogam species such as 
lichens and bryophytes which dominate in the colonization process in the forelands 
modify the edaphic and microclimatic conditions and favor the growth of other taxa 
that create the next successional community and may replace previous species by 
competition [1].  e results of the present study showed that the species richness of 
glacier forelands differs from the species richness of mature tundra.  is confirmed 
our initial hypothesis and indicated that the communities developing at the ends of 
glacier forelands had not yet reached the climax stage exhibited by mature tundra. 
Several species were recorded in all mature tundra areas studied; those associated 
with plant debris and bryophytes presence were: Athallia pyracea, Biatora ementiens, 
Rinodina turfacea, and Parvoplaca tiroliensis. Other species such as Cetrariella delisei, 

Fig. 7 Number of cyanolichens and chlorolichens in the plots of glacier forelands 
and mature tundra.

Fig. 8 Percentage cover of cyanolichens and chlorolichens in the plots of 
glacier forelands and mature tundra.
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Cladonia pocillum, Lecidea ramulosa, Ochrolechia frigida, Polyblastia gothica, Polyblastia 
sendtneri, and Rostania ceranisca were mainly recorded on soil surface. According the 
CAVM [38], Jónsdóttir [39], and Elvebakk [40], the mature tundra of Kongs#ord differs 
from that of Is#ord. Kongs#ord represents northern Arctic tundra [39] and prostrate 
dwarf-shrub/herb tundra belonging to Subzone B, where the dominant alliance is 
Luzulion nivalis in which species of "amnolia and Flavocetraria are common [38,40]. 
Is#ord represents middle Arctic tundra [39] and prostrate/hemiprostrate dwarf-shrub 
tundra [38] localized in Subzone C, in which Peltigera aphthosa, Cetrariella deliseii, 
Stereocaulon rivulorum, Solorina sp., and "amnolia sp. commonly occur [38,40].  e 
statistical analysis showed differences in species composition between Kongs#ord and 
Is#ord mature tundra; however, further analysis indicated significant differences in 
mature tundra composition only between Austre Brøggerbreen and Svenbreen, Austre 
Brøggerbreen and Ferdinandbreen, and Vestre Brøggerbreen and Svenbreen (Tab. 2). 
 is was caused by high participation of Fulgensia bracteata, Stereocaulon rivulorum, 
Lecanora epibryon, and Mycobilimbia microcarpa in the mature tundra in front of the 
Svenbreen and Ferdinandbreen forelands.  ese species were either not present at all 
or were rarely recorded in front of the Austre Brøggerbreen and Vestre Brøggerbreen 
forelands (Tab. 1, Tab. 4).  e dominance of Fulgensia bracteata and Lecanora epi-
bryon in the vicinity of the Svenbreen and Ferdinandbreen forelands was observed 
by Redchenko et al. [30].  ere were no statistical differences in species composition 
among mature tundra surrounding other glacier forelands (Tab. 2).  e presence of 
the following indicator species was responsible for this similarity: Cetrariella delisei, 
Cladonia pocillum, and Lecidea ramulosa (Tab. 4).  ese species are frequently observed 
and dominate in climax plant communities on Svalbard [29].

 e results only partly confirmed our hypothesis that assumed no differences in 
lichen composition and species richness among the glacier forelands studied (Fig. 4). 
 e foreland of Rieperbreen seems to be unique in terms of lichen diversity.  e high 
species diversity of this foreland was observed in previous research conducted by 
Wietrzyk et al. [4]. It may be suggested that the location of Rieperbreen in the Is#ord, 
which is the warmest and driest area of Svalbard [41–43], may contribute to higher 
species diversity. Nevertheless, compared to Rieperbreen, the Ferdinandbreen foreland 
located in an area exposed to similar climatic conditions showed the lowest species 
richness. A similar trend was observed between the Lovénbreen and Brøggerbreen 
forelands, located in the Kongs#ord area; however, differences in species richness 
between certain forelands were noted.  is may suggest that apart from the climatic 
conditions of the #ord, characteristics of the foreland substrate may play an important 
role in species presence, e.g., substrate acidity, which is strongly correlated with the 
distribution of lichens and even whole lichen communities [44]. Studies by Wietrzyk 
et al. [45] in the Irenebreen forelands demonstrated that apart from soil pH, distance 
from the glacier forehead and total nitrogen content also affects species occurrence and 
vegetation development.  e impact of distance from the glacier forehead on lichen 
colonization was also reported by Rodriguez et al. [46] in the South Shetlands Islands. 
Nevertheless, further research is necessary to elucidate the factors influencing lichen 
occurrence in glacier forelands across broader areas, including the investigation of 
more than one foreland.

Within all recorded taxa, the following species were present in all studied areas, 
both in glacier forelands and mature tundra: Cladonia pocillum, Parvoplaca tiroliensis, 
Polyblastia gothica, Polyblastia sendtneri, and Rostania cerenisca (Tab. 1). Nevertheless, 
their percentage cover in the species composition of particular glaciers and mature 
tundra differs (Tab. 3, Tab. 4). Polyblastia sendtneri was an indicator species for each 
foreland except that of Rieperbreen where it was only occasionally recorded.  is species 
tolerates a wide pH range and occurs on acidic and slightly alkaline, barren substrata 
[25,47], while Cladonia pocillum prefers intermediate substrata pH [47].  is species 
served as an indicator species of the majority of mature tundra areas studied, except 
for the mature tundra in front of Austre and Vestre Brøggerbreen, where the taxon 
was only infrequently present.  is may be related to the rather alkaline substrate of 
mature tundra of the Austre and Vestre Brøggerbreen forelands [48]. Similarly, Rostania 
ceranisca grows on subacid to subneutral substrata [47]. Apart from being an indicator 
species of Austre and Vestre Brøggerbreen, its occurrence was also connected to the 
forelands of Austre Lovénbreen and Svenbreen (Tab. 1). According to Olech and Słaby 
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[49], Polyblastia gothica prefers water-logged areas and is most frequently found at 
the base of long-lasting snow patches. In our study areas, it was a commonly recorded 
species and no such relationship was observed.

Various analyses showed significant differences in species composition of the forelands 
studied, except for Austre and Vestre Brøggerbreen (Tab. 2). Four lichens were distin-
guished as indicator species for these forelands: Atla wheldonii, Lathagrium cristatum, 
Polyblastia sendtneri, and Rostania ceranisca. Within these species, Atla wheldonii was 
an indicator species for all of the forelands located in the Kongs#ord area, growing in 
acidic and subneutral soil [47,50]. However, Lathagrium cristatum occurs only in basic 
substrata (Tab. 3) [47], which may suggest the basic characteristics of the substrate of 
Austre and Vestre Brøggerbreen forelands, confirmed by Zhang et al. [48]. With respect 
to other forelands, their substrates seem to have neutral characteristics with a tendency 
toward greater acidity, as evidenced by the presence of lichens inhabiting subacidic and 
acidic habitats such as: Agonimia gelatinosa (indicator species for forelands of Austre, 
Midtre, and Vestre Lovénbreen) [47], Steinia geophana (distinctive taxon for Austre 
Lovénbreen foreland) [24,47], and Ochrolechia androgyna (a species that contributed 
significantly to the lichen composition of the forelands of Midtre Lovénbreen, Ferdi-
nandbreen, and Svenbreen) [47]. Species recorded in the Rieperbreen foreland are also 
connected with acidic and subacidic soil or with the presence of plant debris (Tab. 3) 
[24,47]. Nevertheless, the Rieperbreen foreland was the one with the most unique spe-
cies composition in comparison to the other areas studied (Tab. 3) making it an area 
that warrants further detailed research.

The occurrence of cyanolichens and chlorolichens

Our results oppose the hypothesis that the number and percentage cover of lichens with 
cyanobacterial symbionts are higher in the forelands than in mature tundra, while the 
number and percentage cover of lichens with green algae components show the opposite 
pattern (Fig. 5, Fig. 6).  is indicated that possession of cyanobacterial symbionts is 
not indispensable to the colonization of glacier forelands. In contrast to chlorolichens, 
cyanolichens have the ability to conduct net photosynthesis in the presence of elevated 
water content and stabilize the soil surface [51].  ey are therefore able to colonize 
the wet and unstable surfaces of forelands in contrast to chlorolichens, which do not 
have the ability to bind nitrogen but are able to conduct photosynthesis at lower water 
content in drier sites where the process may be activated by high air humidity [51]. 
Indeed, the ability to bind nitrogen is a very important facet to the colonization and 
growth of organisms, especially in the early stages of primary succession [52]. Apart 
from cyanobacterial lichens, the free-living heterocystic cyanobacteria (e.g., Nostoc sp., 
Scytonema sp.), which are also BSC components, play an important role in nitrogen 
fixation and facilitation of the primary succession process [53].  e importance of BSCs 
in organic matter accumulation and nitrogen fixation was reported in previous studies 
by Yoshitake et al. [52] and Breen and Lévesque [11,54]. Given that the percent cover 
of BSCs significantly influences the general vegetation distribution across the foreland 
[11,54], it may also be assumed to affect the occurrence of lichens.

Conclusions

 is study contributes to the understanding of lichen colonization and species com-
position in the Arctic region, focusing on glacier forelands and the mature tundra that 
surrounds them. Both in forelands and in mature tundra, the most dominant group was 
chlorolichens, not cyanolichens. Altogether, 133 species of lichens and one lichenicolous 
fungus were found in the study areas. Furthermore, 18 species of lichens and one species 
of lichenicolous fungus were recorded for the first time in the Svalbard.  e high number 
of lichen species that were new to Svalbard indicates the need for further research on 
the biodiversity of lichens in the Arctic. In particular, the glacier forelands deserve 
attention if further warming of the climate continues, as species sensitive to competi-
tion from vascular plants will move into habitats in the vicinity of glaciers [18].  us, 
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long-term monitoring of changes in lichen biota in the glacier forelands will provide 
valuable information on the impact of global warming on lichen communities in the 
Arctic. Given that this research did not include epilithic lichen biota, the overall lichen 
diversity of the study areas is expected to be higher. We suggest that further research is 
needed to better clarify the factors determining the differences in species occurrence 
and primary succession patterns among study areas.
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