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Abstract 
 
Brittle  stars (Phylum Echinodermata,  Class Ophiuroidea) have evolved rapid  locomotion employing muscle and 

skeletal elements within their  (usually) five arms to apply forces in a manner analogous  to that  of vertebrates. 

Inferring the inner  workings  of  the arm has been difficult as the skeleton  is internal and many of  the ossicles 

are sub-millimeter in size. Advances in 3D visualization  and technology have made the  study of  movement  in 

ophiuroids possible. We developed  six virtual  3D skeletal models to demonstrate  the potential range of motion 

of the main arm ossicles, known  as vertebrae,  and six virtual  3D skeletal models of non-vertebral ossicles. These 

models  revealed  the  joint   center  and  relative  position   of  the  arm  ossicles during   near-maximal   range  of 

motion. The models also provide  a platform for  the comparative  evaluation of functional capabilities  between 

disparate  ophiuroid arm  morphologies. We made  observations  on  specimens of  Ophioderma  brevispina  and 

Ophiothrix angulata.  As these two  taxa exemplify  two  major  morphological categories of ophiuroid vertebrae, 

they  provide  a basis for  an  initial assessment of  the  functional consequences of  these  disparate  vertebral 

morphologies. These models suggest potential differences  in the structure  of the intervertebral articulations in 

these two  species, implying disparities in arm flexion  mechanics. We also evaluated the differences in the range 

of   motion  between   segments  in  the   proximal   and  distal   halves  of   the   arm  length   in  a  specimen  of 

O. brevispina,  and found  that  the  morphology of  vertebrae  in the  distal portion of  the  arm allows for  higher 

mobility than in the proximal  portion. Our models of non-vertebral ossicles show that  they rotate  further in the 

direction of  movement  than  the  vertebrae  themselves in  order  to  accommodate  arm  flexion.  These findings 

raise doubts  over previous  hypotheses regarding the  functional consequences of  ophiuroid arm disparity.  Our 

study demonstrates the value of integrating experimental data and visualization  of articulated structures when 

making  functional interpretations instead  of  relying  on  observations  of  vertebral  or  segmental  morphology 

alone.   This  methodological  framework  can  be  applied   to   other   ophiuroid  taxa  to   enable   comparative 

functional analyses. It will  also facilitate biomechanical  analyses of other  invertebrate groups to illuminate how 

appendage  or locomotor function evolved. 

Key words:  3D digital modeling; locomotion; mobility; Ophiuroidea; range of motion. 
 
 

 
Introduction 

 
Deuterostomia, the  superphylum   containing   chordates, 

51 

52 

53 
   

54 

55 

 hemichordates  and  echinoderms, includes  more  than 66 

000 species and a multitude of disparate body plans (Brusca 

&  Brusca, 1990; Lake, 1990; Halanych,  2004; Bisby et al. 

2010; Edgecombe  et al. 2011). Even within this  diversity, 

many deuterostomes  have an internal hard  skeleton that, 
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when acted on by muscles, allows for a variety of motions, 

permitting these organisms to run, swim and fly. Extensive 

biomechanical  research has been conducted  on motion in 

chordates,  in  particular  vertebrates  (Leach & Dagg, 1983; 

Alexander, 1992a,b, 2003; Bels et al. 2003). However, muscle 

physiology  and mechanical  properties  of the other  major 

deuterostome clade, the echinoderms, is much less well 

known.  Study of this group is critical to obtaining a deeper 

picture of the evolution of deuterostome locomotion. 

The phylum  Echinodermata includes an estimated 13 000 

extinct and 7000 extant species (Pawson, 2007), the latter 

representing  five body plans: crinoids (class Crinoidea); sea 

stars (class Asteroidea); sea cucumbers (class Holothuroidea); 

sea urchins (class Echinoidea); and brittle stars (class Ophi- 

uroidea).  The five living  echinoderm  classes each employ a 

unique  locomotion strategy (and additional locomotion 

strategies were presumably used by extinct echinoderm 

classes). Crinoids, although typically sessile, can crawl or 

swim  using  their many arms (Moore,  1924; Shaw & Fon- 

taine, 1990; Baumiller & Messing, 2007). Sea stars use water 

pressure to control tube feet to move themselves across the 

ocean floor (Smith, 1947; Kerkut, 1953). Sea cucumbers gen- 

erally crawl or burrow using wave-like body movements 

(Glynn, 1965), but  certain  forms  can walk  using  modified 

tube  feet (Hansen, 1972; Gebruk,  1995) or  swim  (Glynn, 

1965; Ohta, 1985; Gebruk, 1995). Sea urchins move using a 

combination of tube feet  and muscle-actuated spines 

(Domenici et al. 2003). These four extant classes are typically 

slow moving as they generally do not rely on rapid locomo- 

tion for survival. 

Many  extant  ophiuroids, in contrast,  coordinate move- 

ments in each of their (usually) five arms to produce  rela- 

tively rapid locomotion. Their arms consist of modular 

segments (sometimes more than 100 per arm; LeClair, 1996) 

composed of  skeletal elements (ossicles), which  are joined 

via connective tissue and muscle. Connective tissue between 

successive ossicles is made of specialized material that can 

change its tensile stiffness and strength  under nervous con- 

trol  (Wilkie,  1978a, 2005). Arm segments are typically com- 

posed  of  five  internal ossicles:  a vertebra  and  a dorsal, 

ventral and two lateral plates (laterals; Fig. 1). The vertebral 

ossicles are the most critical for movement as they incorpo- 

rate the intervertebral muscle attachments and joint inter- 

faces. Four intervertebral muscles, two aboral and two oral, 

attach to each vertebra surrounding a central intervertebral 

joint  (Wilkie, 1978b; Byrne, 1994; Clark et al. 2017). Contrac- 

tion of the  intervertebral  muscles allows the  distal of the 

two  segments to pivot  around  the joint (LeClair, 1996). A 

series of spines extends from  the laterals, varying  in thick- 

ness, length and number between species. 

The ophiuroid fossil record dates back to the Ordovician 

(Shackleton,  2005) , but  the crown  group  did  not  evolve 

until   the  Late  Paleozoic  (O’Hara  et al.  2014).  Although 

superficially similar, there are distinct morphological differ- 

ences between  stem and crown  ophiuroids, particularly in 

the  arms. Specifically,  they  generally  differ in  the  ossicles 

that run along the axis of the arm. Modern  ophiuroids have 

one massive vertebra at the center of each segment. Many 

Paleozoic forms, in contrast, have two sets of small ossicles 

(ambulacra)  through the  center  of the arm resembling a 

zipper,  and the morphology of  these small ossicles differs 

among Paleozoic taxa. Paired, fused ambulacra are hypoth- 

esized to be an autapomorphy of crown group  ophiuroids 

(Smith et al. 1995). Most Paleozoic taxa lack dorsal and ven- 

tral plates. The functional capabilities  of these fossil ossicle 

arrangements are largely unknown. 

During locomotion of modern  ophiuroids, each arm 

performs  a series  of  repetitive actions depending on  its 

position  relative  to the direction of motion. These actions 

are redistributed during  direction changes so that the 

organism   can  move   omnidirectionally without  turning 

the   central  disk  (Astley,  2012;  Kano  et al.  2012;  Mao 

et al.  2014). Ophiuroids  adjust  the  actions  performed  by 

the  arms  in response to arm damage or loss to minimize 

decrease in  movement  capability, and  they  can continue 

locomotion using tube feet  on the ventral  surface  of the 

disk  even  when   all  the  arms  are  removed   (Arshavskii 

et al.  1976a;  Kano  et al.  2017;  Matsuzaka  et al.  2017). 

They coordinate arm movements using decentralized con- 

trol  (Kano  et al. 2012, 2017; Watanabe  et al. 2012). Fea- 

tures   of  ophiuroid  arms  and   locomotion  have   been 

applied   to  robotics   (Lal  et al.  2008;  Kano  et al.  2012, 

2017; Watanabe  et al. 2012; Mao et al. 2014), biomaterial 

development (Wilt,  2005; Barbaglio  et al. 2012, 2013) and 

regenerative  medicine  (Dupont  & Thorndyke,  2007; Can- 

dia Carnevali & Burighel,  2010; Green et al. 2016). 

Despite these powerful applications  and the unique  nat- 

ure of ophiuroid locomotion, it has been the subject of rela- 

tively  little  experimental research, in  particular  on  how 

ossicle morphology and articulation influence  range of 

motion. The gait patterns of ophiuroid arms (i.e. the differ- 

ent  distributions  of  rhythmic  coordinated  actions  of  the 

arms to produce locomotion) have been studied (Arshavskii 

et al.  1976a,b; Astley,  2012; Watanabe  et al. 2012; Kano 

et al. 2017; Matsuzaka  et al. 2017), and  ranges of lateral 

motion in the arms have been measured externally on living 

specimens (LeClair & LaBarbera, 1997). However, it has been 

difficult to infer  the functions of the arm joints in an 

anatomical  context, due to their small size and because the 

key areas of interest are obscured by soft tissue and ossicles 

(Fig. 1). 

There are two joint morphologies, streptospondylous and 

zygospondylous,  corresponding  roughly  to the two  living 

groups of brittle stars: euryalid and non-euryalid ophiuroids 

(Hyman, 1955; LeClair,  1996; O’Hara et al. 2017). Euryalid 

ophiuroids are a clade that  includes basket stars and snake 

stars, encompassing less than 10% of ophiuroid taxonomic 

diversity (Sto€hr et al. 2012). The streptospondylous joint  is a 

relatively simple hourglass-shaped  articulation that allows 

the  arm  to coil  with   a range  of  motion posited  to be 

 
 



 

 
 

1 
A 

2 

3 

4 Fig. 1  Stereo images of 3D polygonal 

5 meshes of 24th most proximal segment of 

6 Ophiothrix angulata (YPM 7415), (A) distal 

7 face and (B) proximal face (see details in 

8 
Table S1). The position of the dorsal ossicle 
mesh is tilted as the segment was rotated B 

9 
slightly internally during the micro-computed 

10 tomography (CT) scan; the dorsal ossicle was 

11 flat in scans of O. angulata where the arm 

12 was straight. Meshes visualized and imaged 

13 using Autodesk Maya (see Materials  and 

14 methods). 

15 

16 greater  than that  allowed   by  the zygospondylous  joint 

17 (Hyman,  1955;  Byrne,  1994;  LeClair,  1996).  The  strep- 

18 tospondylous  joint  is  a trait  that exhibits  homoplasy:  it is 

19 present  in the Euryalida  and  in  the  non-euryalid families 

20 Ophiacanthidae and Hemieuryalidae  (LeClair, 1996; Sto€hr, 

21 2012). 

22 Non-euryalid  ophiuroids, in contrast, form a polyphyletic 

23 group  comprising  over  90%  of ophiuroid species  (Sto€hr 

24 et al. 2012; O’Hara et al. 2014, 2017). They show  greater 

25 interspecific  vertebral  disparity (LeClair, 1994) and greater 

26 complexity   in  their  vertebral   articulations (LeClair, 1994; 

27 LeClair  &  LaBarbera,  1997),  and  they  inhabit a  greater 

28 breadth  of ecological  niches than the euryalids  (Warner, 

29 1982;  LeClair,  1996;  LeClair  &   LaBarbera,   1997).  The 

30 zygospondylous articulation has a multifaceted process on 

31 the proximal  face accommodated  by a socket on the distal 

32 face (Hyman, 1955). 

33 Two  major   categories  of  zygospondylous   articulation 

34 are   recognized    based   on   morphometrics:   non-keeled 

35 (Group   I);  and   keeled   (Group   II;  LeClair,  1994,  1996; 

36 Fig. 2). Non-keeled  and  keeled  zygospondylous  vertebrae 

37 differ  in  the  nature   of  their distal  and  proximal   pro- 

38 cesses,  particularly in the presence  or  absence of a large 

39 keel on  the  distal surface  of the vertebra  and  a corre- 

40 sponding  groove  on  the aboral  proximal  surface  (LeClair, 

41 1996, fig. 2; Fig. 2). 

42 The ecological and taxonomic radiation of ophiuroids has 

43 been attributed to the evolution of different vertebral  joint 

44 types (Hendler & Miller,  1991; Litvinova, 1994; LeClair, 1996; 

45 LeClair & LaBarbera, 1997). Specific joint morphologies are 

46 thought to facilitate certain modes of locomotion and feed- 

47 ing  (Hendler  &  Miller,   1991; LeClair &  LaBarbera, 1997). 

48 These inferences rely on the assumption that vertebral mor- 

49 phology   influences  motion capabilities  (Emson &  Wilkie, 

50 1982; Hendler  & Miller,   1991; Litvinova,  1994). However, 

51 experimental data suggest that interspecific variation in lat- 

52 eral mobility is  not  significantly correlated  with  vertebral 

53 morphology or feeding ecology (LeClair & LaBarbera, 1997). 

54 Here, we use ‘mobility’ to refer to intersegmental range of 

55 motion; thus, ‘flexibility’ (sensu LeClair & LaBarbera, 1997; 

Hendler & Miller, 1991) is equivalent to how we use mobil- 

ity here. 

The first  step in addressing the  larger question  of the 

relationship between  ophiuroid vertebral  morphology, 

mobility and ecology  is to evaluate  functional differences 

between  their disparate  intervertebral  joints.  In order  to 

build  a platform to  analyze the impact  of  vertebral  mor- 

phology   on  the potential range  of  motion of  the ophi- 

uroid   arm,   we   created   3D  digital  models   based  on 

micro-computed  tomography  (CT) scans  that were  used 

to  view  the  relative positions  of the  arm  ossicles  during 

flexion.   The models  were  validated  using  in  vivo  range 

of  motion data  from  the same  specimens.  We used spec- 

imens  of two living   ophiuroids,  Ophioderma  brevispina 

(Say,  1825)  and  Ophiothrix angulata   (Say, 1825),  repre- 

senting non-keeled  (Group I) and keeled (Group II) 

zygospondylous vertebral morphologies, respectively. The 

analysis was conducted  using zygospondylous morpholo- 

gies so that  disparate yet homologous morphological 

structures  could  be  compared,  setting  up  a  framework 

that  could  be used to analyze the vast  majority of ophi- 

uroid   vertebral   disparity   in  future  studies.  This  frame- 

work  allows  for  the investigation of three hypotheses 

regarding the relationship between  ophiuroid vertebral 

shape and  function; we  provide  an  initial consideration 

of  these  hypotheses here. 

1   Range of  motion does not  correlate  with  disparity  in 

interspecific   non-euryalid  vertebral   morphology:  In 

vivo behavioral  observations by LeClair & LaBarbera 

(1997) suggested that  variation in  lateral  mobility is 

not  related  to  vertebral  morphology. Our  considera- 

tion of this hypothesis involved comparing the inter- 

segmental   joints   during    near-maximal   dorsal   and 

lateral  arm flexion  in two  specimens each of  O. bre- 

vispina and O. angulata  zygospondylous vertebrae, 

focusing  on the functional consequences of  the mor- 

phological features that  define  vertebral  groups I and 

II. 

2  Mobility is inversely related  to the size of the articular 

surfaces  (the   area   on   the   distal   surface   of   the 
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22 Fig. 2  Stereo images of 3D vertebral meshes showing terminology used to describe vertebral features (after LeClair, 1996, fig. 2). (A) The 11th 

23 most proximal vertebra of Ophioderma  brevispina; (B) the 24th most proximal vertebra of Ophiothrix angulata (YPM 7415; see details in Table S1). 

24 Right lateral view shown in O. brevispina, left lateral view in O. angulata. Vertebral  meshes visualized and imaged using Autodesk Maya. 

25 

26 
vertebra  that  directly  contacts the adjacent  vertebra): 

27 
Hendler  & Miller  (1991) speculated that  reduced  size 

28 
of  the  articular  surface of  the  vertebral  face relative 

29 
to   the   area   of   muscle   insertion    correlates   with 

30 
increased arm mobility. We provide  an initial evalua- 

31 
tion   of  this  hypothesis  by  comparing   near-maximal 

32 
mobility in segments of the proximal  and distal areas 

33 
of  the  total   free  arm  (by  dividing the  arm  in  two 

34 
halves by length)  in a specimen of  O. brevispina  [the 

35 
proportion of articular  surface area to surface area of 

36 
the muscle insertions  is relatively  smaller in vertebrae 

37 
of  the  proximal  half  of  the  arm than  in those of  the 

38 
distal half (LeClair, 1996)]. 

39 
3   The  presence  of   dorsal,   lateral   or   ventral   plates 

40 
reduces mobility: Litvinova  (1994) regarded  it as an 

41 
‘obvious   conclusion’   that   large,   developed   plates 

42 
restrict  motion of  the  arm.  We  observed  the  posi- 

43 
tions  of  these  external   ossicles before   and  during 

44 
near-maximal  flexion   in  four   specimens of  O.  bre- 

45 
vispina  and  O.  angulata   to  determine if  they  are 

46 
the  factor-limiting range  of  motion in  these  ophi- 

47 
uroids. 

48 

49 The 3D digital models  constructed  here  were  used to 

50 document  the mobility of the intervertebral joint  as  the 

51 arm engaged  in lateral and dorsal flexion. As hypotheses 

52 of  the  relationship  between   morphology  and  range  of 

53 motion prior  to this  had  only  been  based on  superficial 

54 features   of   isolated   ossicles,   we   used  the  models   to 

55 develop   our   understanding   of   the   extent   to  which 

 

morphological differences between  ophiuroid arm seg- 

ments  affect  function.  To  do  so,  we  adapted   methods 

used   in   the   study   of   vertebrate    biomechanics;   this 

approach  can  be  applied   to  the analysis  of  a  broader 

range of ophiuroid taxa in the future, and to the investi- 

gation  of mobility in other  invertebrates. 
 

 
Materials  and methods 

 
Experimental  overview 
 
We created 3D digital skeletal models of the arms of two live 

specimens  of O.  brevispina  (Group  I)  and  two of  O.  angulata 

(Group   II).   We   used  these   models   to  observe   the   relative 

position  of  the  ossicles during  movement,  and  interpret  how 

their morphology contributes  to lateral  and  dorsal  mobility. The 

disk diameters  were  1.46 and  1.66 cm for  the two  specimens  of 

O. brevispina,  and  0.58  and  0.78 cm  for the two specimens  of 

O. angulata;  arm length was  4.35 and  4.36 cm for  O. brevispina, 

and 2.51 and  3.26 cm for  O. angulata.  Specimens  were  obtained 

from Gulf  Specimen  Ordering  (Florida, USA).  First,  we  measured 

the near-maximal range of motion of each specimen in vivo. 

Second,  we  micro-CT  scanned  the  arms  to  reveal the 

configuration  of  the  ossicles  in this  near-maximally flexed posi- 

tion and  measured  the range  of motion using  the digitized 3D 

representation of the specimen (3D volume). Third, we used 

nonparametric  statistics  to  test  whether  the range  of motion in 

the scan falls within that observed in vivo. Finally, we micro-CT 

scanned   the  arms   in  a  straight   position,  and  integrated  the 

skeletal  elements  of the  two  scans  in  a  3D  digital  model to 

analyze the motion of  the  ossicles  as  they  shifted  from straight 

to  flexed. All  aspects   of   the  research   complied  with  federal 

 



 

 
 

1 and   Yale  University   protocols   for  working  with  invertebrate 

2 animals. 

3 

4 In vivo range of motion 
5 

6 We measured  the  near-maximal  range  of dorsal  and lateral  arm 

7 flexion in  vivo  in the  proximal and  distal  halves (determined by 

dividing the total length of the arm in half). Live animals were used 
8 

because measurements of museum specimens preserved in alcohol 
9 might result in artifacts due to unnaturally flaccid or stiffened post 

10 mortem  soft  tissues  controlling  joint motions.  Dorsal  and  lateral 

11 deviations from  the straightened arm are critical directions of flex- 

12 ion for locomotion  and  feeding  in non-euryalid ophiuroids.  The 

13 term ‘dorsal’ here refers to direction of motion; ‘aboral’ is used in 

14 names of morphological features (e.g. ‘aboral groove’, ‘aboral pro- 

cess’, ‘aboral muscle area’, etc.). The specimens were anesthetized 
15 

using MgCl2  hexahydrate  (as in Arafa et al. 2007; see also Deheyn 
16 et al. 1996, 2000) by gradually increasing the concentration  until 

17 they became motionless and unresponsive. The proximal portion of 

18 an arm was bent near-maximally in a dorsal direction from the oral 

19 disk by curving the arm until it offered strong resistance. Near-maxi- 

20 mal positioning  was  used  because  measuring maximal  range  of 

21 motion would have potentially damaged the arm ossicles, and did 

so in some early trials with other specimens. The fragility of these 
22 

specimens meant that true maximal (i.e. at failure point) and near- 
23 maximal motion were similarly subjective and, in our view, not far 

24 apart. The specimen was braced in this position using pins and pho- 

25 tographed with a Canon Powershot G16 (12.1 megapixel) camera 

26 (Fig. 3A,B). We repeated this process four times using the same arm 

27 that was straightened and re-submerged in the anesthetizing solu- 

28 tion for 30 s between trials. Multiple trials were conducted to assess 

the consistency of near-maximal flexion. The flexion of the distal 
29 

portion of the same arm was determined in the same way. This pro- 
30 cess was repeated with a second specimen of each species to mea- 

31 sure  the  range  of   lateral  motion.  Only  proximal  flexion  was 

32 measured in O. angulata, as the arm is too small distally to allow 

33 accurate data to be collected with our equipment. 

34 When the in vivo flexion trials were complete, we immediately 

35 micro-CT scanned each specimen with both  the proximal and distal 

36 
portions of the arm in a near-maximally  flexed position correspond- 

ing to that in the in vivo measurements. The micro-CT scans were 
37 

obtained using the North Star Imaging ImagiX (North Star Imaging, 
38 Minnesota, USA) in the Darroch Lab at Vanderbilt University (Ten- 

39 nessee, USA; see Table S1 for scan settings and output information). 

40 Volumes  were  reconstructed  using  EFX-CT  software  (North  Star 

41 Imaging, Minnesota, USA), and the micro-CT scans were visualized 

42 with VG Studio  MAX  v. 2.2 and  3.0 software  (Volume Graphics, 

43 
Heidelberg, Germany). 

44  
The 3D volume from the micro-CT scans of the specimens in near- 

maximally flexed position provided a view equivalent to that in the 
45 

photographs  of the in  vivo  trials.  In  every  case,  we  measured 
46 the angle formed  by each segment from the photographs and from 

47 the equivalent view of the 3D volume in ImageJ software (https:// 

48 imagej.nih.gov/ij/; Fig. 3B,C). These measurements were obtained to 

49 ensure that the distribution of the flexed articulations in the 3D vol- 

50 ume fell within that observed in the specimen in vivo, that is, to val- 

51 
idate  the use of the scan  data.  We tested  this  by comparing  the 

distribution   of   flexion  angles   between   successive   segments 
52 

observed in vivo with those responsible for the range of motion in 
53 the 3D volume.  Most of  the angles  between  successive vertebrae 

54 involved in the flexion were over 6.5 ° in both  the in vivo trials and 

55 the 3D volumes; we thus considered angles of 6.5 ° and higher to 
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Fig. 3  (A, B) Setup for in vivo intersegmental angle measurement of 

the proximal portion of the arm of Ophioderma  brevispina. (C) 3D vol- 

ume from micro-computed tomography (CT) scan of the same speci- 

men for comparison visualized and imaged in VG Studio MAX (see 

Materials and methods). 

 
be contributing to arm flexion, and used these measurements for 

the analysis. Angles observed during multiple in vivo trials were 

pooled into a single distribution per species, arm region and type 

of flexion  (dorsal and lateral), and compared with  the distribution 

of angles measured in the corresponding 3D volume using a two- 

sample  Kolmogorov–Smirnov test  (Massey, 1951; Conover,  1971). 

This test uses the maximum difference between the cumulative 

density functions of the two samples as a statistic to evaluate 

whether both samples are drawn from a common distribution. Like- 

wise, we tested for significant differences in the angles formed dur- 

ing dorsal  and lateral arm flexion between:  (a) specimens of the 

two ophiuroid species; and (b) the distal and proximal arm regions 
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1 of O. brevispina. In each case, values were compared using Mann– 

2 Whitney U-test. Statistical analyses  were performed in the  R soft- 

3 ware environment (R Core Team, 2017). 

4 

5 Construction of the 3D digital models 
6 

7 After scanning  an  arm  in a near-maximally flexed position,  we 

8 immediately straightened and re-scanned  it. We used a four-step 

process to integrate data from  the  flexed and straight  arms, and 
9 

create the mobility models: (i) surface structure of two adjacent ver- 
10 tebrae  were extracted as polygonal meshes from  scans of straight 

11 and flexed arms; (ii) the vertebral meshes were imported into Maya 

12 software (Autodesk, San Rafael, USA; Fig. 4A); (iii) the straight and 

13 flexed orientations  of the same  proximal vertebral  meshes  were 

14 superimposed (Fig. 4B); and (iv) the location of a joint center was 

15 specified  through inverse  kinematics  (Tolani et al.  2000; Nicolas 

et al. 2007) so that, when rotated, the distal ossicle from the flexed 
16 

scan was superimposed on that from the straight one while mini- 
17 mizing overlap with the distal face of the proximal ossicle (Fig. 4C). 

18 1    Extracting   surface  structure   of  two   adjacent  vertebrae  as 

19 polygonal meshes from  scans of straight  and flexed arms. We 

20 extracted  two  articulated vertebrae  from  both  the  proximal 

21 and distal portions  of  the  micro-CT scan of  the  flexed  ophi- 

22 uroid  arm using  VG Studio  MAX  3.0, referred  to  as ‘flexed 

proximal’ and ‘flexed  distal’,  respectively. We then  extracted 
23 

corresponding   articulated vertebrae  from   the  scan of  the 
24 straight arm (‘straight proximal’ and ‘straight distal’; Fig. 4A). 

25 2   Importing the vertebral  meshes into  Maya software.  The four 

26 segmented vertebrae were exported  from  VGStudio as water- 

27 tight  polygonal meshes in  STL format 3D  image  files  and 

28 imported into  Maya (Fig. 4A). During  import and  setup, we 

29 maintained the position  of the vertebral  meshes as they were 

articulated  in  the   3D  volume   (i.e.  ‘flexed   proximal’ with 
30 

‘flexed  distal’  and  ‘straight proximal’ with   ‘straight  distal’). 
31 We used the  articular  morphology of  the  ‘straight proximal’ 

32 and  ‘straight distal’  vertebral  meshes as a neutral  (or  refer- 

33 ence) pose (Gatesy et al. 2010; Fig. 5B). We assessed the joint 

34 angle  and  articulation of  the  ‘flexed  proximal’ and  ‘flexed 

35 distal’  vertebral  meshes in reference to this neutral  pose. We 

36 
used this pose to  compare flexion  in the proximal  and distal 

portions  of the arm. 
37 

3   Superimposing  the  straight   and  flexed  orientations of  the 
38 same proximal   vertebral  meshes. To compare  arm  orienta- 

39 tions,  we  superimposed  the  ‘flexed  proximal’ and  ‘straight 

40 proximal’ vertebral  meshes in Maya (Fig. 4B). We added col- 

41 ored  axes in  Maya to  link  ‘flexed  proximal’ and ‘flexed  dis- 

42 tal’  (as in  Otero  et al. 2017; Figs 4B and 5A). The center  of 

43 
each  axis  became  a  joint    center   with    three   rotational 

degrees of freedom:  mediolateral, dorsoventral  and internal/ 
44 

external.  We designated  the  new  joint  center  as the  center 
45 of  rotation of  ‘flexed  distal’,  allowing motions  in  3D to  be 

46 expressed relative  to the axis of rotation. The coordinate  sys- 

47 tem  aligned  the  x (red)-axis dorsoventrally so that  rotation 

48 resulted in lateral  flexion.  The y (green)-axis was orthogonal 

49 to  the  x (dorsoventral)-axis.  The z (blue)-axis  corresponded 

50 
to the longitudinal axis of the straight  arm; rotations around 

it corresponded to internal/external rotation. 
51 

4  Locating the joint  center. We used inverse kinematics to locate 
52 the position  of the joint  center along the x- and z-axes in the 

53 dorsal flexion  models, and along the z-axis in the lateral  flex- 

54 ion  models. Translation  along  the  y-axis was not  considered 

55 for   either   dorsal  or  lateral  flexion   models,  as  ophiuroid 
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Fig. 4  Process for construction of digital models in Autodesk Maya 

using polygonal meshes of ophiuroid vertebrae from micro-computed 

tomography (CT) scans. (A) Left lateral view of vertebral meshes of 

Ophioderma  brevispina (see details in Table S1). Intervertebral  joint 

flexed dorsally (left pair) and straight (right pair). Vertebral meshes 

labeled as used in the text. (B) Proximal vertebral  meshes superim- 

posed for direct comparison of relative orientations of distal ossicles; 

‘flexed distal’ at 50% transparency. Tri-colored axis inserted at joint 

center. (C) Joint axis rotated to superimpose distal ossicle meshes. 

 
vertebrae  are bilaterally symmetrical and all joint  centers fall 

along  the  proximodistal line  of  symmetry. Translation  along 

the x-axis was not considered for the lateral flexion  models, as 

dorsoventral  translation of the joint  center did not  affect  lat- 

eral flexion.  The joint  center  was selected as the  point  that 

optimized  maximal   superimposition  of   ‘flexed   distal’   and 

‘straight  distal’  orientations  while   minimizing  overlap 

between  ‘flexed distal’  and ‘straight proximal’ ossicles. After 

determination and rotation of the joint  center, the ‘flexed dis- 

tal’  vertebral  meshes assumed the position  of ‘straight distal’ 
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6 
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8 B 

9 

10 

11 

12 

13 

14 

15 Fig. 5  Stereo images of neutral reference pose in left lateral view of 

16 vertebral mesh of Ophioderma brevispina visualized using Autodesk 

17 Maya (see details in Table S1) without ‘straight distal’ (A) and articu- 

18 lated with ‘straight distal’ at 50% transparency  (B). Tri-colored  axes rep- 

19 resent coordinate system of joint center (see Materials and methods). 

20 

21 in the neutral  reference pose (Fig. 4C). As each model focused 

22 on movement  in a single plane,  we used the  joint  center  to 

23 rotate  ‘flexed  distal’  into  the  neutral  pose of the  other  two 

24 
planes to correct for minor  rotation along the other  axes. This 

approach allowed  us to build  six mobility models: dorsal flex- 
25 

ion of: (i) the proximal  and (ii) distal arms in O. brevispina; lat- 
26 eral  flexion   of   (iii)   the   proximal   and  (iv)  distal   arms  in 

27 O. brevispina; and (v) the dorsal and (vi) lateral flexions of the 

28 proximal  arm in O. angulata. 

29 
We also assessed the shift in position of the dorsal, ventral and 

30 
lateral ossicles relative to the vertebra during  flexion. The five ossi- 

31 cles from the segments in the ‘flexed distal’ and ‘straight distal’ ver- 

32 tebral meshes were extracted as watertight polygonal meshes from 

33 their respective micro-CT scans and imported into a new Maya file. 

34 We  maintained  the  position  of  the  four  non-vertebral ossicle 

35 meshes relative to their  respective vertebral  meshes. The vertebral 

36 
mesh from the flexed  scan  was  superimposed  over  that in the 

straight scan. The orientations of the four non-vertebral arm ossicles 
37 

were compared between the two orientations. 
38 

39 

40 Using digitized morphology of physical specimens 

41 The watertight polygonal meshes used in the construction of the 
42 3D digital models were built using an algorithm within VG Studio 

43 MAX based on the structure of the surface of a selected volume in 

44 the  micro-CT scan.  We noticed  that reconstructing  ossicle  shape 

45 using this method  resulted in minor differences between the shape 

46 of the meshes of the same ossicles extracted  from different scans. 
Features  of the minute ossicles  in the micro-CT scans approached 

47 
the  size  limits  of the resolution  of  the  mesh-building software. 

48 Some of the edges of the vertebrae, for example, appear rough  or 

49 punctured as their width approaches this limit (e.g. Group I proxi- 

50 mal face aboral muscle area in Fig. 2A). In addition, the close prox- 

51 imity of the ossicles often  made it difficult to discern the outline of 

52 separate structures. Some features of the ossicles were edited after 

53 extraction,  such  as 2D surfaces  outside  the  main  volume of each 

object, but such editing was minimal  in order to adhere to the orig- 
54 

inal morphology as closely as possible and to minimize subjectivity. 
55 

Another artifact  of micro-CT  imaging is  ‘beam hardening’, which 

can falsely represent the edges or relative densities of imaged 

objects. Acknowledging these downsides, the utility of this imaging 

method  for studying ophiuroid functional morphology significantly 

outweighs the shortcomings. 

 

 
Ancestral state reconstruction 
 
We performed an ancestral state reconstruction to look at the evo- 

lutionary history  of  Group I and Group II vertebral morphologies 

across Ophiuroidea. Ancestral state  reconstruction was  performed 

in R package phytools (Revell, 2012) using 100 replicates of stochas- 

tic character mapping (Bollback, 2006) under an equal rates model. 

The topology employed  corresponded  to  that of  O’Hara  et al. 

(2017) with terminals  pruned  to the set of taxa  coded by LeClair 

(1996). 
 

 
Results 

 
3D segment morphology 
 
The vertebral meshes of the two taxa revealed the differ- 

ences between  the  proximal and  distal  faces  that distin- 

guish the two groups of zygospondylous  articulations 

(LeClair, 1996; Figs 2, 6 and 7). The vertebral meshes of the 

O. brevispina  specimens showed  the  prominent proximal 

and  distal  aboral  articulating processes, and  the absence 

of a proximal  aboral groove and distal keel characteristic of 

Group I (Figs 2A, 6A,B and 7A,B). The vertebral  meshes of 

the  O. angulata  specimens  showed  the relatively reduced 

proximal  aboral  articulating process, large  distal  keel and 

proximal  aboral  groove  characteristic of Group II (Figs 2B, 

6C and 7C). 

The distal  aboral  muscle attachments  in the vertebral 

mesh of the Group I O. brevispina  specimens appear rela- 

tively shallow compared with  those of Group II O. angulata 

specimens in lateral view, as do the proximal aboral attach- 

ments  (Fig. 8). The median  process  slopes  gently in the 

O. brevispina specimens compared  with  the sharp,  promi- 

nent feature in the O. angulata  specimens (Fig. 8). We also 

observed notable  differences in the relative size of the ver- 

tebra and the other four ossicles. The articulating surface of 

the vertebra adjoining the lateral ossicles is relatively  larger 

in  the  O. brevispina  specimens  than in the O. angulata 

specimens. The dorsal plate  extends farther beyond  the 

proximal  dorsal edge of  the vertebra  in the segments  of 

O. brevispina than in the segments of O. angulata,  where it 

rests on the vertebral keel. The vertebra does not  extend 

distally beyond any of the other ossicles in the segments of 

O. brevispina,  whereas  it approaches  or  extends  slightly 

beyond their distal margins in the segments of O. angulata 

(Figs 6–8). 

As LeClair (1996) noted,  the proximal  ossicles have rela- 

tively  larger  aboral  muscle attachment areas and  smaller 

oral muscle attachments and articulating processes than the 

distal ossicles in both  Group I and Group II (Fig. 6). We also 
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12 

13 

14 

15 

16 Fig. 6  Stereo images of 3D meshes of distal face of micro-computed tomography (CT) scanned ophiuroid vertebrae from (A) Ophioderma bre- 

17 vispina proximal (11th segment),  (B) distal (43rd segment), and (C) Ophiothrix angulata (24th segment; YPM 7415). The position of the dorsal ossi- 

18 cle mesh in (C) is tilted as the segment was rotated slightly internally during the micro-CT scan; the dorsal ossicle was flat in scans of O. angulata 

19 where the arm was straight. Furthest left in row shows vertebral morphology; second to left shows vertebra articulated with non-vertebral ossicles. 

20 
See Table S1 for scan and rendering details. Meshes visualized and imaged using Autodesk Maya.
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37 
Fig. 7  Stereo images of 3D meshes of proximal face of micro-computed tomography (CT) scanned ophiuroid vertebrae from (A) Ophioderma bre- 

38 
vispina proximal (11th segment),  (B) distal (43rd segment), and (C) Ophiothrix angulata (24th segment; YPM 7415). The position of the dorsal ossi- 

39 cle mesh in (C) is tilted as the segment was rotated slightly internally during the micro-CT scan; the dorsal ossicle was flat in scans of O. angulata 

40 where the arm was straight. Furthest left in row shows vertebral morphology; second to left shows vertebra articulated with non-vertebral ossicles. 

41 See Table S1 for scan and rendering details. Meshes visualized and imaged using Autodesk Maya. 

42 

43 

44 observed that the proximal  vertebral meshes in the O. bre- 

45 vispina specimens  (Group  I) are proportionally shorter  on 

46 the  proximal–distal  axis, have smaller  articulating surfaces 

47 to the lateral ossicles (Fig. 8), and are larger dorsoventrally 

48 relative to the rest of the segment than the distal vertebral 

49 meshes (Figs 6 and 7). 

50 

51 
Comparing  range  of  motion measurements  in  vivo 

52 
and with micro-CT 

53 

54 Angle  measurements  from the in vivo trials  and digitized 

55 micro-CT  scans   can  be  found   in  Table  S2.  We  were 

unable  to reject  the null  hypothesis  that the distribution 

of  angles obtained from the in  vivo  trials  and  the digi- 

tized  micro-CT scans are drawn  from the same underlying 

distribution  in   all   combinations  of  flexion   type,   arm 

region  and  species  (Fig. 9A–F). Overall,  these  results  sup- 

port the conclusion that  the observations made using the 

micro-CT scan images are representative depictions  of  the 

range  of  motion of living  specimens.  We  found signifi- 

cant differences  in the angles formed by each segment in 

the proximal  and distal portions of the arm of the O. 

brevispina  specimen during   both  lateral and  dorsal  flex- 

ion   (Fig. 10).   Values  were   also   significantly  different 
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16 
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18 

19 

20 

21 Fig. 8  Stereo images of 3D meshes of right lateral face of micro-computed tomography (CT) scanned ophiuroid vertebrae from (A) Ophioderma 

22 brevispina proximal (11th segment),  (B) distal (43rd segment), and (C) Ophiothrix angulata (24th segment; YPM 7415). The position of the dorsal 

23 ossicle mesh in (C) is tilted as the segment was rotated slightly internally during the micro-CT scan; the dorsal ossicle was flat in scans of O. angu- 

24 lata where the arm was straight. Furthest left in row shows vertebral morphology; second to left shows vertebra articulated with non-vertebral 

25 
ossicles. See Table S1 for scan and rendering details. Meshes visualized and imaged using Autodesk Maya.

 

26 

27 between   the  O. brevispina   and  O.  angulata   specimens 

28 during   lateral flexion  of  the  proximal   arm  region,   but 

29 not  during  dorsal flexion of the same region. 

30 

31 
Dorsal flexion in Ophioderma  brevispina 

32 

33 Proximal vertebral  ossicles 

34 In  the  digital model  of  articulated vertebrae  from   the 

35 proximal   half  of   the  arm,  the  joint   center  for  dorsal 

36 flexion   was  located  on  the  ventral  half  of  the  median 

37 saddle  on  the  distal face  of  the ossicle. During   dorsal 

38 flexion,   the  vertebra  swung  out  from the median  pro- 

39 cess   of   the   distal  face   of  the  adjacent   vertebra   and 

40 rotated towards  the aboral  process  (Figs 2 and 11A). The 

41 distal  vertebra  appeared  to  maintain  contact  with   por- 

42 tions  of  the  median   saddle,  the  ventral   ridge   of   the 

43 aboral  process and the  dorsal side  of the median  process 

44 during  flexion, while  contact  was lost  between  the med- 

45 ian  socket  and  the  distal portion  of  the median  process 

46 (Figs 2 and 11A). 

47 

48 Distal vertebral  ossicles 

49 In the digital model of articulated vertebrae from the distal 

50 half of the arm, the pattern of flexion was similar to that in 

51 the  proximal   portion of  the arm.  The joint   center  was 

52 located along the dorsal half  of the median  saddle, which 

53 was positioned slightly more dorsally than in the vertebrae 

54 in the  proximal  portion of the  arm (Fig. 11B). The aboral 

55 process of the proximal  face of the distal ossicle seemed to 

roll more fully  over the surface of the aboral process of the 

proximal  ossicle than in the model of the proximal  part of 

the arm. 

 
Non-vertebral ossicles 

In the proximal  half of the arm, the distal end of the dorsal 

ossicle   was  lifted  dorsally   when   the  segment   rotated 

(Fig. 12A), allowing the next segment to be rotated in turn. 

The lateral  and  ventral  ossicles  appeared  to be  rotated 

slightly  dorsally as well  (Fig. 12A). The distal non-vertebral 

ossicles behaved in a similar way to those in the proximal 

half of the arm (Fig. 12B). 

 

 
Lateral flexion in Ophioderma  brevispina 
 

Proximal vertebral  ossicles  

In  the  digital model  of  articulated vertebrae  from   the 

proximal   half  of  the arm,  the joint   center  was located 

on  a line  passing  through the  median  process  and  the 

bilateral  plane   of   symmetry.   The  oral   process/median 

socket glided over the median process of the adjacent 

vertebra.   The  aboral   processes   on  the  opposing   faces 

rocked  over  each other about  the  median  saddle  (Figs 2 

and 13A). 

 
Distal vertebral  ossicles 

In the digital model of articulated vertebrae from the distal 

half of the arm, the joint center was located on a line pass- 

ing through the distal half  of the median  process and the 
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28 
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31 

32 

33 

34 
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44 

45 

46 bilateral plane  of  symmetry.  The distal face  slid  over the 

47 median  saddle and  rolled  over the aboral  process of the 

48 proximal   face.  The dorsal surface  of the median  socket 

49 glided   over  the  dorsal surface  of  the   median   process 

50 (Fig. 13B). 

51 

52 Non-vertebral ossicles 

53 The lateral ossicles rotated farther in the direction of flexion 

54 than   the  vertebral  ossicle  in  the  models  of   both   the 

55 proximal and distal halves of the arm (Fig. 14A,B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9  Comparison of the range of motion 

observed in vivo and in the micro-computed 

tomography (CT) scan. (A–F) Cumulative 

density functions of joint angles formed 

during CT scans (blue) and in vivo assays 

(green). In all cases, we are unable to reject 

the hypothesis that both samples are drawn 

from the same distribution (P = 0.15, 0.12, 

0.32, 0.79, 0.73 and 0.08 for A–F, 

respectively). 
 

 
Dorsal flexion in Ophiothrix angulata 
 
Vertebral  ossicles 

In the digital model of articulated vertebrae from the proxi- 

mal half of the arm, the articular facet of the proximal  face 

glided  dorsally about  the dorsal side of the articular  facet 

of  the adjacent  ossicle  (Figs 2 and  11C). The joint center 

was located at the center of the aboral process of the distal 

face; the median socket of the adjacent ossicle rotated dor- 

sally between  the dorsal area of the median  process  and 
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29 
Fig. 10  Comparison of the angles formed between segments during arm flexion between species and arm regions. Values are pooled from angles 

taken from in vivo photographs and micro-computed tomography (CT) scans. Angles  formed by the proximal part of the arms of Ophiothrix angu- 
30 

lata and Ophioderma brevispina were significantly different during lateral flexion (B), but not during dorsal flexion (A). Differences were also signif- 
31 icant for the proximal and distal parts of the arm during both lateral and dorsal flexion in O. brevispina  (C,D). P-values are reported in the figure. 

32 See Table S2 for angle measurements. 

33 

34 
the ventral area of the median saddle/aboral process on the 

35 
distal  face. Although this  joint center  was more dorsal in 

36 
position  on the articular  facet  than  that  in O. brevispina, 

37 
the  articular  facet  was  more  ventral in O. angulata,  the 

38 
median saddle was located deeper and the median process 

39 
was more  pronounced so the  ossicle  did  not appear  to 

40 
swing  away from the ventral  half  of the adjacent  ossicle 

41 
during  dorsal flexion (Fig. 11C).

 

42 

43 
Non-vertebral ossicles 

44 
The position  of the lateral and ventral ossicles remained rel- 

45 
atively constant in the straight to flexed positions. The dor- 

46 
sal ossicle appeared to be raised towards the distal face of 

47 
the vertebral ossicle presumably to accommodate the artic- 

48 
ulation, as it slightly overlapped  the next ossicle; however, 

49 
the thickness of this ossicle approached the size limits of the 

50 
extraction software (Fig. 12C).

 

51 
Lateral flexion in Ophiothrix angulata 

52 

53 Vertebral  ossicles 

54 In the digital model of articulated vertebrae from the proxi- 

55 mal half  of the arm, the joint center was located along  a 

line bisecting the center of the median process on the distal 

face and the bilateral line of symmetry dividing the ossicle. 

The median socket on the proximal  face of the vertebra slid 

over the aboral  process on the adjacent  vertebra, and the 

dorsal part of the oral process slid over the median saddle. 

The proximal  aboral  process rolled  over the distal process 

(Figs 2  and  13C). In  near  maximal  flexion,  the  median 

socket was observed to rotate  away from the median 

process, maintaining contact on the right  side alone. 

 
Non-vertebral ossicles 

The lateral ossicles rotated in the same direction as the arm 

(Fig. 14C): when  the  vertebral  ossicles  rotated, the  lateral 

ossicles rotated even further. This allowed  the lateral ossicle 

on the concave side to fit between its neighboring vertebral 

ossicle and  the  lateral  ossicle  of  the adjacent  segment 

(Fig. 14C). 

 
 
Discussion 
 
Micro-CT scanning has been used to study brooding in 

extant  South  African  brittle stars  (Landschoff  et al. 2015) 
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48 

49 and Early Devonian fossil ophiuroids of South Africa  (Reid 

50 et al. 2015). The present study, however,  is the first to use 

51 digital models based on micro-CT scans for mobility analysis 

52 of the brittle star skeleton. This technique has high utility as 

53 a non-destructive tool  for imaging internal ophiuroid anat- 

54 omy for two  main  reasons. (i) micro-CT imaging  makes it 

55 possible to view  whole  ossicles  in 360 ° without damage. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11  Comparison of orientation of ‘flexed 

distal’ (blue) and ‘straight distal’ (red) 

vertebral meshes in left lateral and oblique 

views during experiment in which arm is 

flexed dorsally. The first column shows the 

original orientation of flexed distal and 

straight distal relative to superimposed 

proximal vertebra. The second column shows 

the degree of overlap obtained once rotated 

at hypothesized joint center. The third 

column shows the point of hypothesized joint 

center on distal surface of ‘flexed proximal’. 

Ossicles are 3D meshes of micro-computed 

tomography (CT) scanned ophiuroid arms (see 

Table S1 for scan details) visualized using 

Autodesk Maya. 

 

 
Ophiuroid arm ossicles are very difficult to manipulate man- 

ually under  a light  microscope as they are often  ~1 mm or 

less in   size.  Scanning   electron   microscopy,  the  typical 

method   for  viewing   high-resolution  morphology  of  the 

minute  ossicles, leaves one side obscured, and manipulating 

specimens to reset them for re-imaging is very difficult. (ii) 

Articulations   between    ossicles  can   be   observed.   The 
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44 Fig. 12  Assessment of the shift in position of the dorsal, ventral and 

45 lateral ossicles relative to the vertebra during dorsal flexion. Whole 

46 segments from the ‘flexed distal’ (in blue) and ‘straight distal’ (in red; 

47 
see Fig. 4A) vertebral meshes were extracted  as watertight polygonal 

meshes from their respective micro-computed tomography (CT) scans. 
48 

The vertebral meshes were superimposed to compare the relative posi- 
49 tion of the four non-vertebral arm ossicles. 3D meshes are micro-CT 

50 scanned ophiuroid arm segments  (see Table S1 for scan details) visual- 

51 ized using Autodesk Maya. Presented as stereo images. 

52 

53 calcified ossicles are tightly articulated and immersed in soft 

54 tissues  so  the articulations  both  within and between  seg- 

55 ments  can only  be observed in full with 3D digitization. 

Micro-CT scanning allows for the virtual removal of soft tis- 

sues while the positions of the ossicles, as articulated in life, 

are maintained. This technique  allowed  us to view individ- 

ual ossicles and their articulations in vivo in 360 °. Our  

digital models  suggest  that, during  dorsal  flexion, the 

intervertebral joint center lies on the articular facet dor- 

sally to the median process in both  the specimen of O. bre- 

vispina (Group  I) and that of O. angulata  (Group  II). The 

articular  surface is more ventral and more deeply recessed 

in the O. angulata specimen than in the O. brevispina speci- 

men. In the proximal  portion of the arm of the O. angulata 

(Group II) specimen, the joint  center is more deeply recessed 

than in that of O. brevispina (Group I), correlating with  the 

relative positions of the articular surfaces. Within the articu- 

lar surface, the joint  center is more dorsal in position  in the 

O. angulata  specimen than  in the O. brevispina  specimen. 

During  lateral flexion, the joint center is located within the 

median  process in both  the specimens of O. angulata  and 

O. brevispina. We observed that the median socket pivoted 

away from  the median process during  maximal lateral flex- 

ion observed  in the O. angulata  specimen, extending the 

range of motion; however,  we could not attribute this dif- 

ference in function to any specific feature.  Additional taxa 

will  need to be examined  to determine the range of taxa 

capable of this extended motion and to identify the factors 

responsible for this  interesting aspect of lateral flexion in 

ophiuroids. 

Our mobility models reveal differences  in the mechanics 

of arm flexion between the specimens of the two taxa, par- 

ticularly  in terms  of  dorsal arm  flexion,  that seem  to be 

directly  related  to their disparate  vertebral  morphologies. 

However,   there  were  no  significant  differences  in  the 

angles formed  during  dorsal flexion of the arms of these 

two  specimens,  although the  differences  between   them 

during  lateral flexion were highly  significant (Fig. 10). We 

could not identify specific morphological features responsi- 

ble for these functional consequences (e.g. in the style of 

Hendler  & Miller, 1991; Litvinova,  1994), suggesting  that 

the factors controlling intervertebral joint function may be 

more complex than subtle disparities in vertebral  morphol- 

ogy. However,  the number  of taxa we examined was lim- 

ited;  the study of  articulated arm structures  in additional 

ophiuroid taxa using the methods described here is needed 

to understand the relationship between form and function. 

Through the observations presented, we hypothesize that 

interspecific  disparity  in vertebral  morphology may be less 

influential in contributing to differences in range of motion 

than previously considered (Emson & Wilkie,  1982; Hendler 

& Miller,  1991; Litvinova,  1994), consistent with  LeClair & 

LaBarbera’s (1997) findings that factors influencing arm 

mobility in ophiuroids go  beyond  vertebral  morphology 

alone.  It  would  be necessary to integrate soft  tissue  and 

force-application capabilities into the 3D models developed 

here in order to identify any differences  in integrated arm 

function  between   Group   I  and  Group  II.  Ophioderma 
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Fig. 13  Comparison of orientation of ‘flexed 

distal’ (blue) and ‘straight distal’ (red) 

vertebral meshes in ventral and oblique views 

during experiment in which arm is flexed 

laterally. The first column shows the original 

orientation of flexed distal and straight distal 

relative to superimposed proximal vertebra. 

The second column shows the degree of 

overlap obtained once rotated at 

hypothesized joint center. The third column 

shows the point of hypothesized joint center 

on distal surface of ‘flexed proximal’. Ossicles 

are 3D meshes of micro-computed 

tomography (CT) scanned ophiuroid arms (see 

Table S1 for scan details) visualized using 

Autodesk Maya. 
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44 Fig. 14  Assessment of the shift in position of the dorsal, ventral and 

45 lateral ossicles relative to the vertebra during lateral flexion. Whole 

46 segments from the ‘flexed distal’ (in blue) and ‘straight distal’ (in red; 
see Fig. 4A) vertebral meshes were extracted  as watertight polygonal 

47 
meshes from their respective micro-computed tomography (CT) scans. 

48 The vertebral meshes were superimposed to compare the relative posi- 

49 tion of the four non-vertebral arm ossicles. 3D meshes are micro-CT 

50 scanned ophiuroid arm segments  (see Table S1 for scan details) visual- 

51 ized using Autodesk Maya. Presented as stereo images. 

52 

53 species are known  to be predators, scavengers and deposit 

54 feeders, while  Ophiothrix species  are known  as primarily 

55 suspension feeders (Warner, 1982); future work will explore 

the wider  relationship between  form  and function in taxa 

with  drastically  different ecologies and  day-to-day  move- 

ment needs. 

LeClair (1996) suggested  that  ‘keeled  vertebral  ossicles 

are derived relative  to non-keeled  forms’ (i.e. Group II 

morphology is derived  relative  to Group  I), based on the 

presence  of   non-keeled   vertebrae   at  the  base  of   the 

arms in keeled  species.  Our ancestral state  reconstruction 

confirmed that  the  non-keeled  state  represents the 

ancestral condition  for ophiuroids, but also revealed  that 

the  keeled state  is likely  to have evolved  convergently in 

two  clades  (Fig. 15). 

The area of the articular surfaces is smaller relative to the 

surface area of the muscle attachment sites in vertebrae  in 

the  proximal vs. the distal portion of  the  arm of  O. bre- 

vispina (LeClair, 1996); thus, Hendler & Miller’s  (1991) 

hypothesis predicts greater mobility in the proximal  part of 

the arm. However, we found that the angles created by suc- 

cessive vertebrae during arm flexion were significantly smal- 

ler in the proximal  arm region than in the distal one in the 

specimen we analyzed (Fig. 10). This seems to be related to 

the disparate morphologies of proximal  and distal arm seg- 

ments: the joint center during  dorsal flexion of vertebrae in 

the proximal portion of the arm lies in a more ventral posi- 

tion on the joint interface than in those distal (represented 

by  the  tricolored axes in Fig. 11A,B). In  the  model  con- 

structed, the rounder,  more prominent articular  surface on 

the distal face of vertebrae in the distal portion of the arm 

allows  the  joint interface  to roll  over the aboral  process, 

whereas the more flattened distal face in the proximal  por- 

tion  limits flexion from the joint center. During lateral flex- 

ion,  the  joint center  for  both   the  proximal   and  distal 

portions of the arm bisected the median process. Our obser- 

vations do not  support  the hypothesis of Hendler & Miller 

(1991), as we found that a reduced articular surface 

decreases mobility. Analysis of additional specimens of this 

taxon is required  to determine  how  widely  this conclusion 

applies. 

Other features of the arm promote greater mobility in the 

distal with  respect to the proximal  region. The flexibility of 

a beam composed of multiple sequential units connected by 

passive tissue that resists tensile forces (i.e. a multi-jointed 

beam) is affected by the diameter of the units and joint den- 

sity (number  of units per beam length; Etnier, 2001). In a 

multi-jointed beam, the units are connected by a relatively 

stiff material  so that force applied is distributed across the 

beam; although this is not the case during  normal behavior 

of  the  ophiuroid arm, in our  in  vivo  trials  force  was  dis- 

tributed in such a way that each unit was flexed to its near- 

maximal extent. We observed an increase in mobility associ- 

ated with decreased segment diameter  and higher  joint 

density within the specimen we observed of O. brevispina, 

which is to be expected if we consider the ophiuroid arm as 

a multi-jointed beam (Etnier,  2001). Thus, the differential 

mobility and  flexibility within the arm  observed  may be 
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Fig. 15  Ancestral state reconstruction of the evolutionary history of ophiuroid vertebral morphologies.  The topology employed corresponded to 

26 that of O’Hara et al. (2017), with terminals pruned to the set of taxa coded by LeClair (1996) as having either non-keeled (Group I) or keeled 
27 (Group II) vertebrae.  Results suggest that the non-keeled vertebral morphology was present in the most recent common ancestors of Ophiuroidea, 

28 Ophintegrida  (C) and the two major clades represented in our study, Amphilepidida (A) and Ophiacanthida  (B). Furthermore, the keeled morphol- 

29 ogy evolved convergently at least twice within the Amphilepidida (A). 

30 

31 driven by the diameter and joint  density along its length, as 

32 well as the ossicle morphology described. 

33 The presence of non-vertebral arm plates might  appear 

34 to inhibit flexion of the arm (Litvinova, 1994); our observa- 

35 tions show, however, that the dorsal and lateral arm plates 

36 rotate  to accommodate the changing positions of the adja- 

37 cent segment during  dorsal and lateral  flexion, projecting 

38 further in the direction of flexion  than the vertebral  ossicle 

39 itself. Although further work  is  needed  to determine  the 

40 limits on the range of ophiuroid arm motion, as well as the 

41 pervasiveness  of  this   behavior   in  non-vertebral  plates 

42 throughout  ophiuroids, our  models  do  not support  the 

43 hypothesis  that non-vertebral arm plates are the limiting 

44 factor hindering flexion. 

45 

46 
Implications 

47 

48 Using 3D digital modeling of ophiuroid arms  built   with 

49 micro-CT scan data, we identified the joint center and docu- 

50 mented  arm mobility in four specimens in order to build  a 

51 framework for relating morphology to range  of  motion. 

52 Several  aspects of  our  findings  challenge   longstanding 

53 hypotheses about ophiuroid arm mobility that were based 

54 on  vertebral  and  arm  segment  morphology,  and  future 

55 work  will expand the dataset from the two taxa examined 

to investigate  broad-scale patterns in the relationship 

between  arm  form  and  function within  ophiuroids. Our 

results suggest that observations of ophiuroid arm mor- 

phology  from  isolated ossicles alone may not  be sufficient 

for estimating functional capabilities,  because the relation- 

ship between  form and function among the many parts of 

the arm can be more complex than is easily predicted  based 

on any single component. Further comparisons between 

other  Group I and II species using  the methods  described 

here  are  required   to determine   the  prevalence  of our 

findings. 

The morphology of lateral arm  plates  has been  docu- 

mented  in  terms of inter- and intra-specific  disparity and 

relative differences  along  the length of the arm (Thuy & 

Sto€hr, 2011). The functional implications of disparity  in lat- 

eral arm plate morphology, and within dorsal and oral arm 

ossicles, could be analyzed by modifying the methods used 

in this study. 

The evolutionary steps that resulted  in the construction 

and locomotion capabilities  of modern  ophiuroid arms 

remain poorly  understood. It has been difficult, if not 

impossible, to infer  the movement  capabilities of Paleozoic 

ophiuroids due to their dissimilarity to modern taxa. Move- 

ment capability  is one of the most critical  properties  of an 

organism   as  it impacts  behavioral   capabilities   such   as 
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1 feeding  and reproduction. Thus, drawing ecological  infer- 

2 ences regarding Paleozoic  taxa  is  contingent  on  under- 

3 standing  the mechanical abilities  of their arms. It has been 

4 hypothesized  that some taxa utilized tube feet for locomo- 

5 tion, as do modern  asteroids (Glass & Blake, 2004). Deter- 

6 mining  the  locomotion strategy  of stem-group  Paleozoic 

7 ophiuroids using the methods described herein is crucial to 

8 infer how the agile muscular-driven  locomotion strategy of 

9 modern ophiuroids evolved. 

10 This study  lays the groundwork for understanding the 

11 relationship between  ossicle  form and  function in  brittle 

12 stars, and  creates a framework  for  the analysis  of  move- 

13 ment   in  invertebrate   groups   outside   the  Ophiuroidea. 

14 Our  results  show  that 3D  digital models  of  articulated 

15 skeletal    structures    can   reveal  important    information 

16 about   echinoderm   mobility.  Thus, this  method   has the 

17 potential to  yield  important insights into the biomechan- 

18 ics  of  stem-group   echinoderms,   such   as  stylophorans 

19 (Lefebvre,    2003),   shedding    critical   insight   into   the 

20 evolutionary   history   of  deuterostome   movement    and 

21 locomotion. 

22 
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