


BRAIN ABSCESSES

Dr. Claire Karekezi Consultant Neurosurgeon

DEFINITION

A focal intracranial infection that is initiated as an area of cerebritis and evolves into a collection of pus surrounded by a vascularized capsule.

Mathisen GE, Johnson JP: Brain abscess. Clin Infect Dis 1997; 25:763-781.

HISTORY

- Hippocrates Purulent otorrhea and delerium
- The first successful operation for brain abscess S.F. Morand (France) in 1752 on a temperoethmoidal abscess.
- "Pyogenic Disease of the Brain and Spinal Cord, Meningitis, Abscess of the Brain, Infective Sinus Thrombosis" (1893) -William Macewen – Father of modern day abscess management
- King (1924) marsupialization
- Dandy (1926) aspiration
- Sargent (1928) enucleation
- Vincent (1936) complete excision
- Heineman et al (1971) successful medical management

BRAIN ABSCESS

- Was uniformly fatal before the late 1800's
- Mortality down to 30-60% from WWII-1970's
 - Introduction of abx (penicillin, chloramphenicol...)
 - newer surgical techniques
- Mortality down to 0-24% over the past three decades, with:
 - Advent of CT scanning (1974), MRI
 - Stereotactic brain biopsy/aspiration techniques
 - Further improvement in surgery
 - Newer abx (e.g. cephalosporins, metronidazole..)
 - Better treatment of predisposing conditions

CHANGES IN EPIDEMIOLOGY OF BRAIN ABSCESS (in the last 2-3 decades)

- Incidence 8% of all intracranial lesions in developing countries and 1-2% western world
- Lower incidence of otogenic brain abscesses
 - improved treatment of chronic ear infections
- Marked drop in mortality overall
- With increase in No. of immunosuppressed patients:
 - increased incidence of brain abscess seen in that population (Transplant, AIDS,...)
 - More incidence of brain abscess caused by opportunistic pathogens (fungi, toxo...)

PATHOGENESIS

Direct spread from contiguous foci (40-50%)

Hematogenous (25-35%): remote foci

Penetrating trauma/surgery (10%)

Cryptogenic (15-20%)

DIRECT SPREAD (from contiguous foci)

- Occurs by:
 - Direct extension through infected bone
 - Spread through emissary veins, diploic veins, local lymphatics

The contiguous foci include:

- Otitis media/mastoiditis
- Sinusitis
- Dental infection (<10%), typically with molar infections
- Meningitis rarely complicated by brain abscess (more common in neonates with Citrobacter diversus meningitis, of whom 70% develop brain abscess)

HEMATOGENOUS SPREAD (from remote foci)

- Empyema, lung abscess, bronchiectasis, endocarditis, wound infections, pelvic infections, intra-abdominal source, etc...
- may be facilitated by cyanotic HD, AVM.
- Results in brain abscess(es) at middle cerebral artery distribution
- Often multiple, deep

Microbiology of Brain Abscess

Dependent upon:

- Site of primary infection
- Patient's underlying condition
- Geographic location
- Usually streptococci and anaerobes
- Staph aureus, aerobic GNR common after trauma or surgery
- 30-60 % are polymicrobial

Predisposing Conditions & Microbiology of Brain Abscess

Predisposing Condition

Otitis media or mastoiditis

Sinusitis (frontoethmoid or sphenoid)

Dental sepsis

Penetrating trauma or postneurosurgical

Usual Microbial Isolates

Streptococci (anaerobic or aerobic), Bacteroides and Prevotella spp., Enterobacteriaceae

Streptococci, *Bacteroides* spp., Enterobacteriaceae, *Staph. aureus*, *Haemophilus* spp.

Fusobacterium, Prevotella and *Bacteroides* spp., streptococci

S. aureus, streptococci, Enterobacteriaceae, *Clostridium* spp.

MICROBIOLOGY OF BRAIN ABSCESS

AGENT F	FREQUENCY (%)	
Streptococci (S. intermedius, including S. anginosu	us) 60—70	
Bacteroides and Prevotella spp.	20–40	
Enterobacteriaceae	23–33	
Staphylococcus aureus	10–15	
Fungi [*]	10–15	
Streptococcus pneumoniae	<1	
Haemophilus influenzae	<1	
Protozoa, helminths ¹ (vary geographically)	<1	

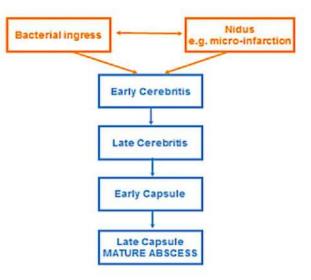
*Yeasts, fungi (Aspergillus Agents of mucor Candida Cryptococci Coccidiodoides Cladosporium trichoides Pseudallescheria boydii) †Protozoa, helminths (Entamoeba histolytica, Schistosomes Paragonimus Cysticerci)

PREDISPOSING CONDITION & LOCATION OF BRAIN ABSCESS

Otitis/mastoiditis	Temporal lobe, Cerebellum
Frontal/ethmoid sinusitis	Frontal lobe
Sphenoidal sinusitis	Frontal lobe,
	Sella turcica
Dental infection	Frontal > temporal lobe.
Remote source	Middle cerebral artery distribution (often multiple)

PATHOPHYSIOLOGY

- Begins as localized cerebritis (1-2 wks)
- Evolves into a collection of pus surrounded by a well-vascularized capsule (3-4 wks)
- Lesion evolution (based on experimental animal models):
 - Days 1-3: "early cerebritis stage"
 - Days 4-9: "late cerebritis stage"
 - Days 10-14: "early capsule stage"
 - > day14: "late capsule stage"


Stages of abscess formation

1. Early Cerebritis

Days 1-3: Perivascular inflammation, characterised by neutrophil infiltration, occurs around the site of focal infection with a surrounding area of oedema.

2. Late Cerebritis

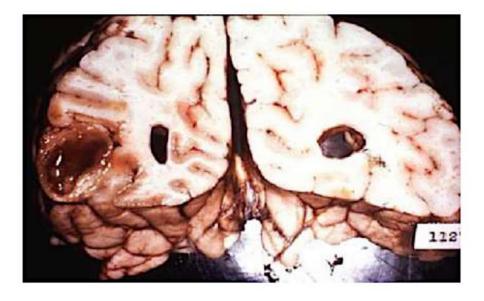
Days 4-9: A central area of necrosis develops as the surrounding oedema progresses. Peripheral accumulation of fibroblasts preludes the development of a capsule.

3. Early Capsule

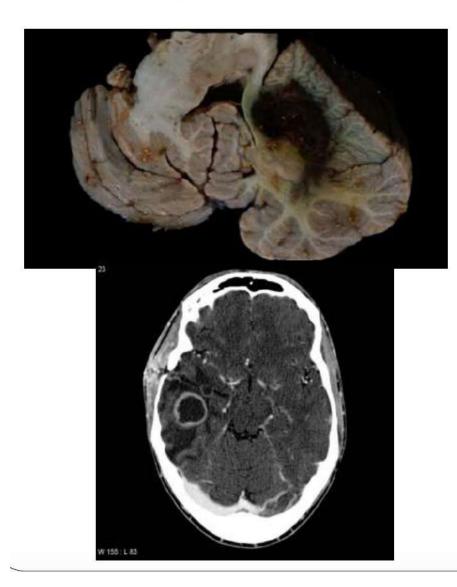
Days 10-14: Establishment of a ring-enhancing capsule of wellvascularised tissue with further fibroblast migration and adjacent reactive astrocytosis.

4. Late Capsule

Day 14 and beyond: Collagen fibre and granulation tissue deposition leads to a thickening of the capsule effectively walling off the area of focal suppurative infection.


Early cerebritis

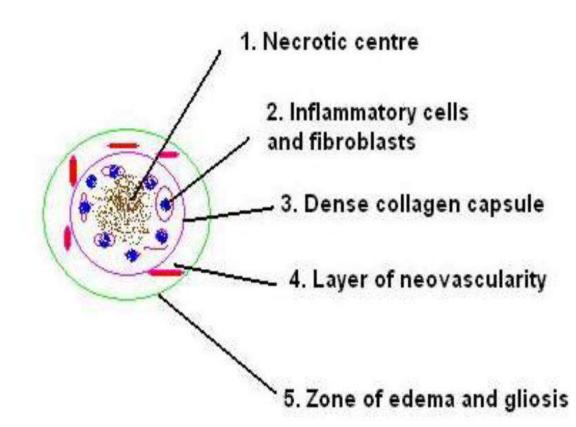
- Acute inflammatory infiltrate
- Marked edema
- Invisible on CT OR
- Poorly marginated cortical /subcortical hypodensity with mass effect with no enhancement


Late cerebritis

- Central necrosis
- Macrophages and fibroblasts
- Vascular proliferation
- Maximum edema
- Irregular rim enhancing lesion with hypodense center, better defined than early cerebritis

Early capsule formation

- Necrotic centre \downarrow
- Collagenous capsule
- Edema starts to regress
- Well-defined rim enhancing mass; an outer hypodense and inner hyperdense rim (double rim sign)


Late capsule formation

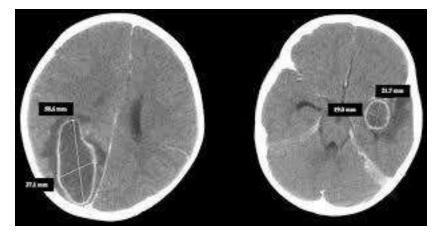
- Collagen capsule complete
- ↑ density and thickness
- Rim enhancing lesion with thickened capsule and diminished hypodense central cavity

Layers of abscess

DIAGNOSIS

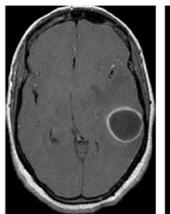
- High index of suspicion
 Contrast CT or MRI
 Drainage/biopsy, if ring
- enhancing lesion(s) are seen

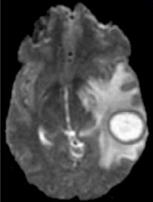
IMAGING STUDIES


 more sensitive for early cerebritis, satellite lesions, necrosis, ring, edema, especially posterior fossa & brain stem

CT scan with contrast

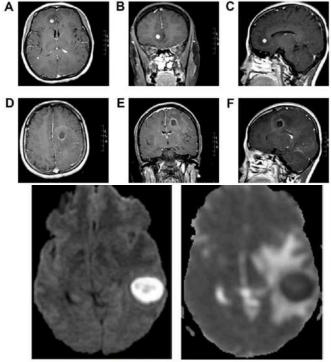
- Skull x-ray: insensitive,
 - if air seen, consider possibility of brain abscess


MRI Brain


• T1

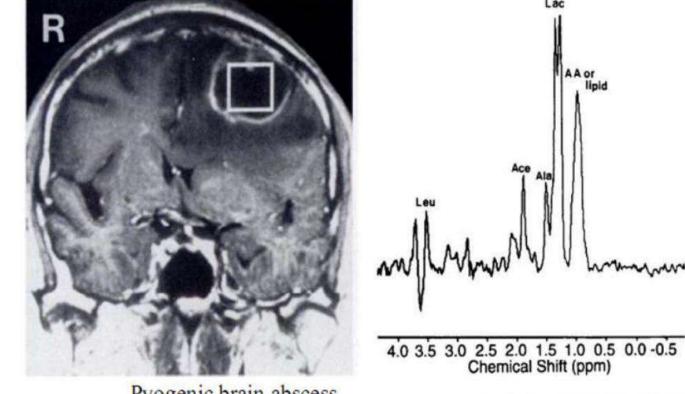
- Central low intensity (hyperintense to CSF)
- Peripheral low intensity (vasogenic oedema)
- Ring enhancement
- Ventriculitis may be present, in which case hydrocephalus will commonly also be seen

• T2 / FLAIR


- Central high intensity (hypointense to CSF, does not attenuate on FLAIR)
- Peripheral high intensity (vasogenic oedema)
- The abscess capsule may be visible as a intermediate to slightly low signal thin rim
- DWI / ADC
 - High DWI signal is usually present centrally
 - Low signal on ADC

Ti-weighted axial MR image

T2-weighted axial MR image Surgical Neurology 66 (2006) 246-251

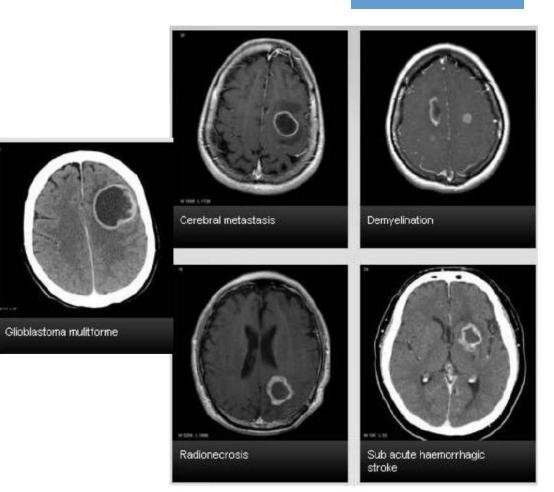


Diffusion-weighted MR image

ADC map

Brain Abscess and Brain Tumor: Discrimination with in Vivo H-1 MR Spectroscopy¹

Sung Hyun Kim, MD • Kee-Hyun Chang, MD • In Chan Song, PhD • Moon Hee Han, MD Hee Chan Kim, PhD • Heung Sik Kang, MD • Man Chung Han, MD



Pyogenic brain abscess

Radiology 1997; 204:239-245

DIFFERENTIAL DIAGNOSIS

- Malignancy
 - Abscess has hypo-dense center, with surrounding smooth, thin-walled capsule, & areas of peripheral enhancement
 - Tumor has diffuse enhancement & irregula borders.
 - SPECT (PET scan) may differentiate. CRP too?
- CVA
- Hemorrhage
- Aneurysm
- Subdural empyema/Epidur abscess

LABORATORY TESTS

- •Aspirate: Gram/AFB/fungal stains & cultures, cytopathology (+/-PCR for TB)
- •WBC Normal in 40% (only moderate leukocytosis in ~ 50% & only 10% have WBC >20,000)
- •**CRP** almost invariably elevated: !!!! Baseline CRP \rightarrow treatment response
- •**ESR** Usually moderately elevated
- •BC Often negative BUT *Should still be done*
- •LP

<u>Contraindicated in patients with known/suspected brain abscess</u> **Risk of herniation 15-30%** *If done, may have normal CSF findings, but:* Usually elevated CSF protein & cell count (lymphs) Unremarkable glucose & CSF cultures rarely positive

CLINICAL MANIFESTATIONS

- Non-specific symptoms
- Mainly due to the presence of a spaceoccupying lesion → increased ICP
 - H/A, N/V, lethargy, focal neuro signs, seizures
- Signs/symptoms influenced by
 - Location
 - Size
 - Virulence of organism
 - Presence of underlying condition

Initial Findings in Patients with Brain Abscess Based on Intracranial Location

INTRACRANIAL LOCATION	FINDING
Parietal lobe	Headache
	Visual field deficits (ranging from inferior quadrantanopia to homonymous hemianopia)
	Endocrine disturbances
Frontal lobe	Headache
	Drowsiness
	Inattention
	Personality change
	Mental status deterioration
	Hemiparesis
	Motor speech disorder
Temporal lobe	Ipsilateral headache
	Aphasia or dysphasia (if in the dominant hemisphere)
	Visual field deficit (ranging from upper quadrant homonymous quadrantanopia to complete homonymous hemianopia)
Cerebellum	Headache
	Nystagmus
	Ataxia
	Vomiting
	Dysmetria
	Meningismus
	Papilledema
Brainstem	Cranial nerve involvement
	Deficits of ascending and descending pathways

 Frontal > Temporal > Parietal > Cerebellum > Occipital

TREATMENT

Combined medical & surgical

- Aspiration or excision
- empirical abx
- Empirical antibiotics are selected based on:
 - Likely pathogen (consider primary source, underlying condition, & geography)
 - Antibiotic characteristics: usual MICs, CNS penetration, activity in abscess cavity
- Modify abx based on stains

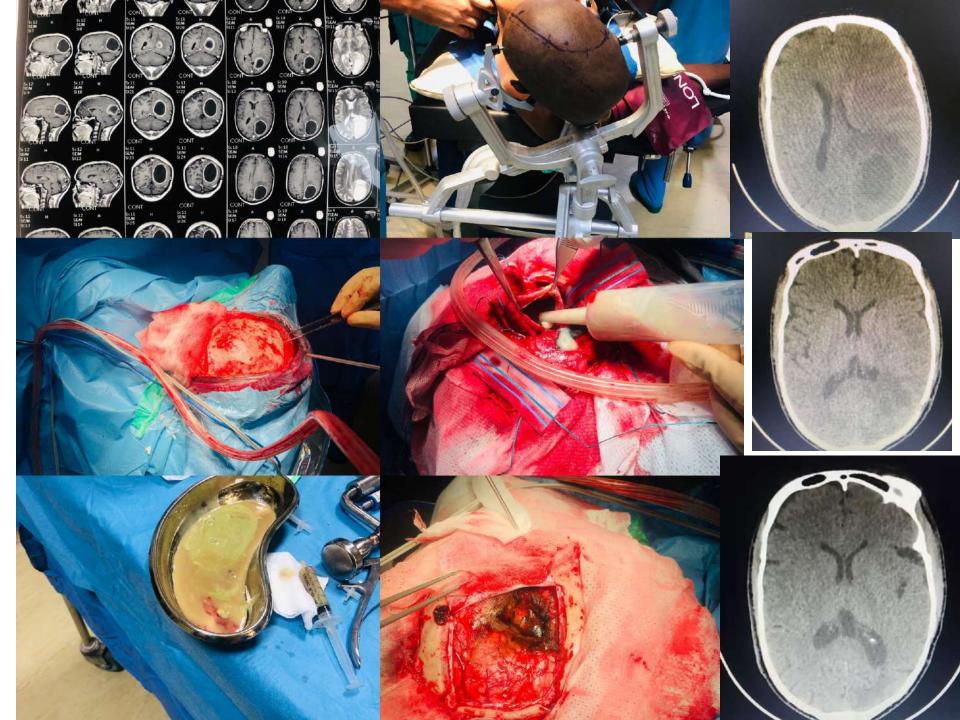
Duration: usually 6-8 wks

after surgical excision, a shorter course may suffice

SURGICAL THERAPY

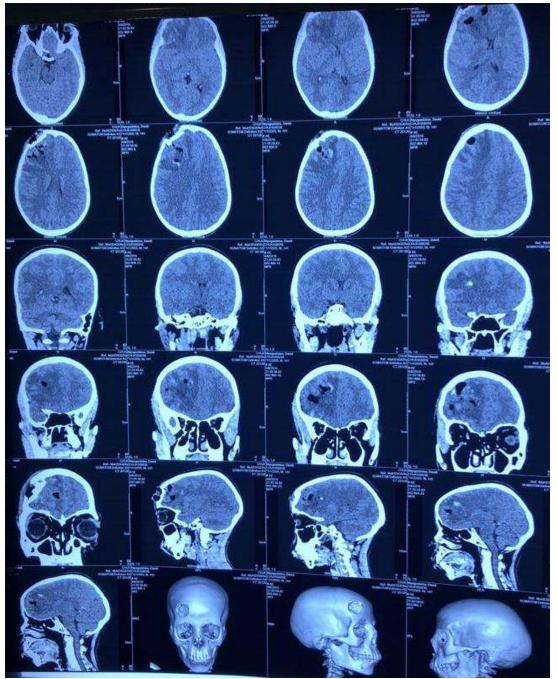
- The optimal approach to patients with bacterial brain abscess
- Aspiration after bur-hole placement or complete excision after craniotomy (no prospective trial comparing these two)
- May be performed under stereotactic neuroimaging guidance
- Stereotactic aspiration is a useful approach even for abscesses located in eloquent or inaccessible regions; repeat aspiration should be considered if the initial aspiration proves ineffective or partially effective.
- Intraoperative ultrasound for the aspiration of small abscesses and can delineate abscess pockets,
- Recurrence rates after stereotactic aspiration range from 0-24 %.

INDICATIONS FOR SURGERY


- 1. Significant mass effect exerted by lesion (on CT or MRI)
- 2. Difficulty in diagnosis (especially in adults)
- 3. Proximity to ventricle: indicates likelihood of intraventricular rupture which is associated with poor outcome
- 4. Evidence of significantly increased intracranial pressure
- 5. Poor neurologic condition (patients responds only to pain, or does not even response to pain)
- 6. Traumatic abscess associated with foreign material
- 7. Fungal abscess
- 8. Multiloculated abscess
- 9. Follow-up CT/MRI scans cannot be obtained every 1-2 weeks

What are the indications for complete excision by craniotomy?

- Multiloculated abscesses in whom aspiration techniques have failed
- Abscesses containing gas
- Abscesses that fail to resolve
- Posttraumatic abscesses that contain foreign bodies or retained bone fragments to prevent recurrence
- Abscesses that result from fistulous communications (e.g., secondary to trauma or congenital dermal sinuses)
- Abscess localized to one lobe of the brain and contiguous with a primary focus.
- Cerebellar abscess in children
- Difficulty in diagnosis
- Suspected fungal abscess


What are the contraindications for craniotomy and evacuation?

- Abscess in the cerebritis stage
- Deep-seated abscess in eloquent area
- Multiple abscesses

MEDICAL TREATMENT ONLY

Only in pts with prohibitive surgical risk:

- poor surgical candidate,
- multiple abscesses,
- in a dominant location,
- Abscess size <2.5 cm</p>
- concomitant meningitis, ependymitis,
- early abscess (cerebritis?)
- with improvement on abx,

[Better-vascularized cortical lesions more likely to respond to abx alone]

[Subcortical/white-matter lesions are poorly vascularized]

TREATMENT DURATION

- Bacterial brain abscess −6-8 weeks IV →2-3 months oral antimicrobial therapy
- •Post-surgical excision -Courses of 3 to 4 weeks of antimicrobial therapy
- Medical therapy alone -up to 12 weeks with parenteral agents
- A combination of surgical aspiration or removal of all abscesses larger than
 2.5 cm in diameter →6 weeks or more of antimicrobial therapy, and weekly neuroimaging to document abscess resolution
- Repeat neuroimaging studies -biweekly for up to 3 months after completion of therapy

Predisposing Conditions and Probable Etiologic Agents in Brain Abscess

PREDISPOSING CONDITION

POSSIBLE MICROBIAL CAUSES

Otitis media or mastoiditis Sinusitis (frontoethmoidal or sphenoidal) Dental infection Penetrating trauma or secondary to neurosurgical procedure Lung abscess, empyema, or bronchiectasis Bacterial endocarditis Congenital heart disease Immunocompromised state Neutropenia Transplantation

HIV infection

Streptococci (aerobic or anaerobic), Bacteroides spp., Prevotella spp., Enterobacteriaceae Streptococci, Bacteroides spp., Enterobacteriaceae, Haemophilus spp., Staphylococcus aureus

Mixed Fusobacterium, Prevotella, Actinomyces, and Bacteroides spp.; streptococci Staphylococcus aureus, Enterobacteriaceae, Clostridium spp.

Fusobacterium, Actinomyces, Bacteroides, and Prevotella spp.; streptococci; Nocardia spp.

Staphylococcus aureus, streptococci Streptococci, Haemophilus spp.

Aerobic gram-negative bacilli, Aspergillus spp., Mucorales, Candida spp., Scedosporium spp. Enterobacteriaceae, Listeria monocytogenes, Nocardia spp., Aspergillus spp., Candida spp., Mucorales, Scedosporium spp., Toxoplasma gondii Listeria monocytogenes, Nocardia spp., Mycobacterium spp., Cryptococcus neoformans, Toxoplasma gondi Predisposing Conditions and Empirical Antimicrobial Therapy in Patients with Presumed Bacterial Brain Abscess

REDISPOSING CONDITION	ANTIMICROBIAL THERAPY
)titis media or mastoiditis	Metronidazole + a third- generation cephalosporin*
inusitis (frontoethmoidal or sphenoidal)	Metronidazole + a third- generation cephalosporin* + vancomycin [†]
Pental infection	Penicillin + metronidazole
enetrating trauma or secondary to a neurosurgical procedure	Vancomycin + a third- or fourth-generation cephalosporin [‡]
ung abscess, empyema, or bronchiectasis	Penicillin + metronidazole + a sulfonamide [§]
lacterial endocarditis	Vancomycin + gentamicin
Congenital heart disease	Third-generation cephalosporin*
Inknown	Vancomycin + metronidazole + a third- or fourth-generation

cephalosporin

Antimicrobial Therapy for Brain Abscess Based on Isolated Pathogen

BACTERIA*

Actinomyces spp. Bacteroides fragilis Enterobacteriaceae[†]

Fusobacterium spp. Haemophilus spp.

Listeria monocytogenes Mycobacterium tuberculosis Nocardia spp.^{II}

Prevotella spp. Pseudomonas aeruginosa Staphylococcus aureus (methicillin sensitive) Staphylococcus aureus (methicillin resistant)

Streptococcus anginosus (milleri) group, other streptococci

Penicillin Metronidazole Third- or fourth-generation cephalosporin

Penicillin G Third-generation cephalosporin¹

Ampicillin[§] or penicillin G[§] Isoniazid + rifampin + pyrazinamide + ethambutol Trimethoprim-sulfamethoxazole

Metronidazole Ceftazidime,⁵ cefepime,⁵ or meropenem⁵ Nafcillin or oxacillin

Vancomycin

Penicillin G

MULTIPLE BRAIN ABSCESSES

- Incidence –10-50%
- •Emergent stereotactic aspiration for all lesions > 2.5 cm diameter and those causing mass effect, located deep in brain stem or close to ventricular wall
- •If all the lesions are < 2.5 cm and not producing mass effect, the largest one should be aspirated for diagnostic cultures.
- Antibiotics withheld till culture results
- •Antibiotics for 3 months (Immunosuppressed -1 yr)
- Repeat surgical aspiration if
 - •radiographic enlargement after 2 weeks of therapy
 - Failure to diminish in size after 4 weeks of antibiotics
 - Clinical deterioration

CYANOTIC HD WITH BRAIN ABSCESS

- •5-18% population with CHD. 10 times more prone. M.C-TOF
- •Intracardiac right to left shunt by-pass allows direct entry of blood containing bacteria to the cerebral circulation without pulmonary filtration.
- •Anaerobic streptococci (Sterile cultures are reported in 16-68%)
- •Cardiopulmonary risk, coagulation defects and variable degree of immunodeficient states
- •A deeply located parieto-occipital abscess larger than 2 cm diameter which causes mass effect, should be aspirated immediately even in late cerebritits stage using stereotactic or CT guided methods to decrease intra-cranial pressure and avoid intraventricular rupture of brain abscess.
- •Intravenous Beta-lactam antibiotics are started immediately.

POOR PROGNOSTIC MARKERS

- •Delayed or missed diagnosis
- Inappropriate antibiotics.
- •Multiple, deep, or multi-loculated abscesses
- •Ventricular rupture (80%–100% mortality)
- •Fungal, resistant pathogens.
- •Neurological compromise at presentation
- •Short duration w severe AMS,
- Rapidly progressive neuro. Impairment
- Immunosuppressed host
- •Poor localization, especially in the posterior fossa (before CT)

SEQUELAE

- •30-50% of survivors are found to have neurological sequelae.
- •The incidence of residual neural deficits -hemiparesis, cognitive and learning deficits in children, is less with aspiration than excision.
- •About 72% of patients can have epileptic seizures upto five years of diagnosis. This incidence is less with aspiration than excision.
- 5 to 10% abscesses recur due to inadequate or inappropriate antibiotics, failure of removal of foreign body, dural fistula or failure of eradication of primary source.
- Hydrocephalus may also develop