ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

A THESIS

FOR THE DEGREE OF MASTER OF SCIENCE

Systematic Review of Family Coccidae (Hemiptera:

 Coccoidea) in Korean Peninsula with Molecular Phylogeny밀깍지벌레과(노린재목: 깍지벌레상과)의 계통분류학적 연구

By
Jinyeong Choi

Program in Entomology
Department of Agricultural Biotechnology
Seoul National University
February, 2016

Abstract

Systematic Review of Family Coccidae (Hemiptera: Coccoidea) in Korean Peninsula with Molecular Phylogeny

\section*{Jinyeong Choi}

Program of Entomology, Department of Agriculture Biotechnology
The Graduate School
Seoul National University

The systematic studies had three main subjects: i) Taxonomic review of family Coccidae in Korean Peninsula; ii) Molecular phylogeny of family Coccidae; iii) Molecular analyses of genetic diversity and cryptic species of Coccus hesperidum.

In taxonomic study, a total of thirty-nine species of nineteen genera in the family Coccidae was reviewed with seven new records, Ceroplastes floridensis Comstock, Leptopulvinaria kawaii Tanaka \& Amano, Parthenolecanium fletcheri (Cockerell), Pulvinaria hydrangeae Steinweden, P. idesiae Kuwana, P. photiniae Kuwana, and Saissetia Miranda (Cockerell \& Parrott). Among previously recorded species, one species, Pulvinaria torreyae, was examined as misidentification. Diagnostic descriptions and identification keys with morphological illustrations and photographs were also given in the present study.

Phylogenetic study of the family Coccidae based on molecular fragments of mitochondrial DNA (COI), nuclear ribosomal RNA genes (18S and 28S), and elongation factor $1 \boldsymbol{\alpha}(\mathrm{EF}-1 \alpha)$ indicated that no subfamily is perfectly monophyletic except for Ceroplastinae which is clustered within the major clade of Coccinae. Four tribes of Coccinae are paraphyletic except for Saissetiini in ML tree, especially Coccini and Pulvinariini are irregularly scattered. Also, Paralecanium and Megapulvinaria, which are sister to Cardiococcinae or Filippiinae, are distinctively separated from the major clade of Coccinae. Eulecaniinae is paraphyletic in that Didesmococcus is nested within the clade of Coccinae.

Analyzing the genetic patterns of C. hesperidum revealed high degree of COI haplotype diversity and two cryptic species. In phylogenetic tree based on Maximum Likelihood (ML), all haplotypes of Coccus hesperidum were divided into three distinct clades, which was also supported by a haplotype network. Further, the K2P-distances showed that high genetic divergences among interclades.

Key words: Coccidae, soft scales, systematics, taxonomic review, molecular phylogeny, genetic diversity, cryptic species, the Korean Peninsula

Student number: 2014-20684

CONTENTS

Abstract i
Contents iii
List of tables vii
List of figures ix
PART I. Taxonomic review of the Family Coccidae (Hemiptera: Coccoidea) in the Korean Peninsula
Abstract 1
I. Introduction 2

1. General introduction of the Family Coccidae 2
2. Morphology 3
3. Biology and life cycle 5
4. Historical review 8
4.1. Taxonomy and phylogeny of the Family Coccidae 8
4.2. History of Korean records 10
II. Materials and Methods 14
III. Results 16
Family Coccidae Fallén, 1814 16
Subfamily Ceroplastinae Atkinson, 1886 17
Genus Ceroplastes Gray, 1828 17
Subfamily Coccinae Fallén, 1814 32
Tribe Coccini Fallén, 1814 33
Genus Coccus Linnaeus, 1758 33
Genus Eucalymnatus Cockerell, 1901 41
Tribe Pulvinariini Targioni-Tozzetti, 1868 44
Genus Leptopulvinaria Kanda, 1960. 45
Genus Nipponpulvinaria Tanaka, 2008 48
Genus Pulvinaria Tarioni-Tozzetti, $1867 \ldots$ 51
Tribe Saissetiini Hodgson, 1994 70
Genus Parasaissetia Takahashi, 1955 71
Genus Parthenolecanium Šulc, 1908. 75
Genus Saissetia Deplanche, 1859 88
Subfamily Eriopeltinae Šulc, 1941 94
Genus Eriopeltis Signoret, 1872 95
Genus Luzulaspis Cockerell, 1902 99
Genus Psilococcus Borchsenius, 1952 100
Subfamily Eulecaniinae Koteja, 1988 103
Genus Didesmococcus Borchsenius, 1953 104
Genus Ericerus Guérin-Meneville, 1858 105
Genus Eulecanium Cockerell, 1893 108
Genus Rhodococcus Borchsenius, 1955 112
Genus Sphaerolecanium Šulc, 1908 113
Subfamily Filippiinae Bodenheimer, 1952 116
Genus Metaceronema Takahashi, 1955 116
Genus Takahashia Cockerell, 1896 120
IV. Discussion 124
PART II. Molecular phylogeny of Coccidae (Hemiptera: Coccoidea)
Abstract 127
I. Introduction 128
II. Materials and methods 129
III. Result 137
IV. Discussion 142
V. Conclusion 148
PART III. Genetic diversity and cryptic species of brown soft scales, Coccus
hesperidum (Hemiptera: Coccidae) revealed by molecular analyses
Abstract 149
I. Introduction 150
II. Materials and methods 152
III. Result 153
IV. Discussion 155
Conclusion 162
Literature cited 163
Appendix I. Living appearances of Korean Coccidae species 185
Appendix II. Illustration of adult females 191
Appendix III. Tables of Biometric Data 213
국문초록 227
감사의 글 229

List of tables

Table 1. Historical review of classification of the family Coccidae 12
Table 2. History of Korean records of the family Coccidae 13
Table 3. Checklist of Coccidae in the Korean peninsula. 126
Table 4. Primers used in the present study 132
Table 5. Taxa used in this study with GenBank accession numbers 134
Table 6. Haplotype localities with values of frequencies and genetic diversities 157
Table 7. Percentage of genetic divergence (based on K2P-distances) between cladesof C. hesperidum and two Ceroplastes species for the COI region....... 158158
Table 8. AMOVA results of C. hesperidum 160
Table 9. Pairwise Fst values between phylogenetic clades of C. hesperidum for COI
region 161
Appendix III. Tables of Biometric Data
Table 10. Ceroplastes ceriferus (Fabricius, 1798) and C.floridensis Comstock, 1881.213
Table 11. Ceroplastes japonicus Green, 1921 214
Table 12. Ceroplastes rubens Maskell, 1893 215
Table 13. Coccus hesperidum Linnaeus, 1758 and C. pseudomagnoliarum
\qquad
Table 14. Leptopulvinaria kawaii Tanaka \& Amano, 2008 and Nipponpulvinaria horii
\qquad

Table 15. Pulvinaria nipponica Lindinger, 1933 and P. hydrangeae Steinweden, 1946...

Table 16. Pulvinaria idesiae Kuwana, 1914 and P. photiniae Kuwana, 1914...... 219
Table 17. Pulvinaria sp. (misreported as Pulvinaria torreyae Takahashi, 1956)... 220
Table 18. Parthenolecanium corni (Bouché, 1844) and P. fletcheri (Cockerell, 1893).. 221

Table 19. Parthenolecanium persicae (Fabricius, 1776)................................. 222
Table 20. Saissetia coffeae (Walker, 1852) and Saissetia miranda (Cockerell \& Parrott, 1899).. 223

Table 21. Eriopeltis festucae (Fonscolombe, 1834).. 224
Table 22. Ericerus pela (Chavannes, 1848)... 225
Table 23. Metaceronema japonica (Maskell, 1897) and Takahashia japonica (Cockerell, 1896)... 226

List of figures

Fig. 1. Morphological structures of Coccidae 3
Fig. 2. Detail characters of Coccidae 4
Fig. 3. The morphological phylogeny of the family Coccidae, using 105 characters..129
Fig. 4. Phylogenetic relationships of the superfamily Coccoidea 130
Fig. 5. Maximum likelihood tree from the combined analysis of all nuclear andmitochondrial fragments. Branches are colored by subfamilies of the familyCoccidae. Numbers indicate bootstrap values for each node138
Fig. 6. Maximum likelihood tree from the combined analysis of all nuclear andmitochondrial fragments. Branches are colored by tribes of the subfamilyCoccinae. Numbers indicate bootstrap values for each node139
Fig. 7. Bayesian inference tree from the combined analysis of all nuclear and mitochondrial fragments. Branches are colored by subfamilies of the family Coccidae. Numbers indicate Bayesian posterior probability values140
Fig. 8. Bayesian inference tree from the combined analysis of all nuclear and mitochondrial fragments. Branches are colored by tribes of the subfamily Coccinae. Numbers indicate Bayesian posterior probability values......... 141
Fig. 9. Maximum likelihood tree for all mtDNA haplotypes of C. hesperidum. 158
Fig. 10. Haplotype network for Coccus hesperidum from COI data 159

Appendix I. Living appearances of Korean Coccidae species
Fig. 11. Ceroplastes ceriferus (Fabricius, 1798) 뿔밀깍지 벌 레 185
Fig. 12. Ceroplastes floridensis Comstock, 1881 185
Fig. 13. Ceroplastes japonicus Green, 1921 거 북밀깍지 벌 레 185
Fig. 14. Ceroplastes rubens Maskell, 1893 루비깍지 벌레 185
Fig. 15. Coccus hesperidum Linnaeus, 1758 무화과깍지 벌레 186
Fig. 16. Coccus pseudomagnoliarum (Kuwana, 1914) 어리 목련깍지 벌레 186
Fig. 17. Leptopulvinaria kawaii Tanaka \& Amano, 2008 186
Fig. 18. Nipponpulvinaria horii (Kuwana, 1902) 단픙공깍지 벌 레 186
Fig. 19. Pulvinaria nipponica Lindinger, 1933 무궁화솜깍지 벌 레 187
Fig. 20. Pulvinaria hydrangeae Steinweden, 1946. 187
Fig. 21. Pulvinaria idesiae Kuwana, 1914 187
Fig. 22. Pulvinaria nishigaharae (Kuwana, 1907) 노랑솜깍지 벌 레 187
Fig. 23. Pulvinaria photiniae Kuwana, 1914 188
Fig. 24. Takahashia japonica (Cockerell, 1896) 줄솜깍지 벌 레 188
Fig. 25. Parthenolecanium corni (Bouché, 1844) 말채나무공각지 벌레 188
Fig. 26. Parthenolecanium fletcheri (Cockerell, 1893) 188
Fig. 27. Parthenolecanium persicae (Fabricius, 1776) 복숭아공깍지 벌 레 189
Fig. 28. Saissetia coffeae (Walker, 1852) 철 모깍지 벌레 189
Fig. 29. Saissetia miranda (Cockerell \& parrott, 1899) 189
Fig. 30. Didesmococcus koreanus Borchsenius, 1955 진 공깍지 벌 레 189
Fig. 31. Ericerus pela (Chavannes, 1848) 쥐 똥밀깍지 벌레 190

Fig. 32. Eulecanium cerasorum (Cockerell, 1900) 포도공깍지 벌 레................ 190
Fig. 33. Metaceronema japonica (Maskell, 1897) 과자깍지 벌 레................... 190

Appendix II. Illustration of adult females
Fig. 34. Ceroplastes ceriferus (Fabricius, 1798).. 191
Fig. 35. Ceroplastes floridensis Comstock, 1881.. 192
Fig. 36. Ceroplastes japonicus Green, 1921.. 193
Fig. 37. Ceroplastes rubens Maskell, 1893... 194
Fig. 38. Coccus hesperidum Linnaeus, 1758.. 195
Fig. 39. Coccus pseudomagnoliarum (Kuwana, 1914)................................... 196
Fig. 40. Leptopulvinaria kawaii Tanaka \& Amano, 2008............................... 197
Fig. 41. Nipponpulvinaria horii (Kuwana, 1902).. 198
Fig. 42. Pulvinaria nipponica Lindinger, 1933.. 199
Fig. 43. Pulvinaria hydrangeae Steinweden, 1946.. 200
Fig. 44. Pulvinaria idesiae Kuwana, 1914.. 201
Fig. 45. Pulvinaria photiniae Kuwana, 1914.. 202
Fig. 46. Pulvinaria sp. (misreported as Pulvinaria torreyae Takahashi, 1956)... 203
Fig. 47. Parthenolecanium corni (Bouché, 1844).. 204
Fig. 48. Parthenolecanium fletcheri (Cockerell, 1893)................................. 205
Fig. 49. Parthenolecanium persicae (Fabricius, 1776)................................... 206
Fig. 50. Saissetia coffeae (Walker, 1852).. 207
Fig. 51. Saissetia miranda (Cockerell \& Parrott, 1899.................................. 208
Fig. 52. Eriopeltis festucae (Fonscolombe, 1834) 209
Fig. 53. Ericerus pela (Chavannes, 1848) 210
Fig. 54. Metaceronema japonica (Maskell, 1897) 211
Fig. 55. Takahashia japonica (Cockerell, 1896) 212

PART I. Taxonomic review of the Family Coccidae (Hemiptera: Coccoidea) in the Korean Peninsula

Abstract

The family Coccidae is reviewed as 39 species of 19 genera in the Korean Peninsula, including seven new records, Ceroplastes floridensis Comstock, 1881, Leptopulvinaria kawaii Tanaka \& Amano, Parthenolecanium fletcheri (Cockerell), Pulvinaria hydrangeae Steinweden, P. idesiae Kuwana, P. photiniae Kuwana, and Saissetia Miranda (Cockerell \& Parrott).

Diagnosis and descriptions for all Korean species are redescribed with keys to subfamilies, tribes, genera, and species. Illustrations, photographs, and other ecological information are also provided.

Keywords: Coccidae, revision, new records, the Korean Peninsula

I. Introduction

1. General introduction of the Family Coccidae

The family Coccidae, also named soft scale insects, is the third largest family of Coccoidea, comprising 1,134 described species of 168 genera in all zoogeographical regions, especially most populated in tropics and subtropics (Hodgson, 1994; BenDov et al., 2015). Taxonomy of this group is primarily based on adult females because of their distinct sexual dimorphism and high accessible to females with sedentary lifestyles (Gullan \& Kosztarab, 1997). The female adults are characterized from other families by following characters: well-developed anal plates; deep anal cleft between anal lobes; eversible anal tube; anal ring consist of two sclerotized crescents; a structure of ventral microducts; tarsus without a campaniform sensilla (Hodgson, 1994). Many species are known as important pests in agricultural and ornamental products as well as inhibited pests in quranteen agency, however their faunal study have been poorly conducted. Previously, 32 species of 18 genera are recored in the family Coccidae from the Korean Peninsula (Paek et al., 2010). In addition to the previous species, seven new records, Ceroplastes floridensis Comstock, Leptopulvinaria kawaii Tanaka \& Amano, Parthenolecanium fletcheri (Cockerell), Pulvinaria hydrangeae Steinweden, P. idesiae Kuwana, P. photiniae Kuwana, and Saissetia Miranda (Cockerell \& Parrott), are newly reported to the Korean Peninsula, with taxonomical informations for all known species.

2. Morphology

The terminology of morphological characters is adapted from Hodgson (1994), BenDov \& Hodgson (1997) and Hodgson \& Henderson (2000).

Dorsal Ventral

Fig. 1. Morphological structures of Coccidae

Dorsum

Add es
Dorsal setae (D)

Dorsal simple pore (X)

Dorsal bilocular pore (W)

Margin
Dorsal tubercle (C)

Dorsal tubular ducts (G)
Dermal areolations

Filamentous ducts (T)

Venter

Fig. 2. Detail characters of Coccidae

3. Biology and life cycle

3.1. Biological characteristics

Sexual dimorphism. Male and female of soft scales have sexually dimorphic life cycles. The females have a sedentary lifestyle and neotenic development including two or three larval stages. Whereas, the males have developed similarly to holometabolism consisting prepupal and pupal stages after two instars. In addition, they have one pair of wings for flight.

Parthenogenesis. Although adult males have an ability to flight, they are fragile and can live for a short time due to lack of functional mouthparts (Gullan \& Kosztarab, 1997). As a result, most species are able to reproduce offsprings as parthenogenesis which compensates a low possibility of mating (Hughes-Schrader, 1948). In fact, family Coccidae exhibits diverse types of parthenogenesis like most families of Coccoidea (Nur, 1971; Ross et al, 2010).

3.2. Life cycles of male and female

From 1st to 2nd instar of male \& female
1st instar. The first-instar nymphs, also called 'crawlers', escape from brood chamber of adult females and play a major role in dispersal. Until this stage, both sexes do not have morphological sexual dimorphism. With well-developed legs, they move to other parts (e.g., branches, twigs and leaves) of existing host plant or try to find new one. After selecting the position, they insert stylet-like mouthparts into plant
cells and feed nutrients from phloem (Hamon \& Williams, 1984; Ben-Dov \& Hodgson, 1997). During this phase, some species which belong to genus Ceroplates start to secrete soft wax on dorsum and have distinctive wax patterns.

2nd instar. A representative feature of the second-instar is showing sexual dimorphism. During the second-instar nymphs become adults, the differences, such as wax formations and morphological characters, are more remarkable.

From 2nd instar to adult of male

2nd instar male. The second-instar of males are elongate oval shaped and develop secretory organs, especially dorsal tubular ducts in marginal part of body. These organs secrete translucent wax cover and help to fix the nymph to host plant (BenDov \& Hodgson, 1997). The presence of dorsal tubular ducts is used for distinguishing males from females in this stage (Hamon \& Williams, 1984; Hodgson \& Henderson, 2000).

3rd instar male. The third-instar of males are called prepupa stage. During this stage, not only legs and antennae but also wing buds are being distinct. A penial sheath which is a unique character of the male develops at the end of the abdomen. Dorsal and ventral eyes are also present on heads, but they loss functional mouthparts. Therefore, they stop feeding activity after this stage (Ben-Dov \& Hodgson, 1997; Hodgson \& Henderson, 2000).

4th instar male. Although the forth-instar (i.e., pupa stage) of males have similar morphology to the third-instar, antennae and legs are more segmented and developed. The wing buds are more distinct and the penial sheath is more elongated (Hamon \&

Williams, 1984; Ben-Dov \& Hodgson, 1997).
Adult male. After last moulting, adult males leave host plants to find mating partners. One of the distinctive features of the adult male is having a pair of fore wings on the mesothorax (hind wings are either absent or reduced as hamulohalteres). Other appendages, such as legs and antennae, are completely developed. Also, they have two or four pair of simple eyes and a pair of ocelli on sclerotized head (Giliomee, 1967; Hodgson \& Henderson, 2004).

From 2nd instar to adult of female

2nd and 3rd instar female. The second-instar of females with oval or circular body do not have tubular ducts on dorsum and conspicuous changes in morphology. They only have a change in body size. In case of annual species, the second-instar nymphs which settled on leaves at the first-instar stage move to woody parts of host plants. After resettling on the new places, they overwinter as the second-instar or immature adult stage.

Adult female. After two or three molting, nymphs become adults which have much more dorsal pores and ventral tubular ducts. Most soft scales (e.g., tribe Ceroplastini, Eulecaniini and Saissetiini) gradually make their body swelled and sclerotized. They lay eggs beneath the swelled bodies which act as brood chamber. Some groups (e.g., tribe Coccini) also have the same method like above groups, however their bodies are rather less convex and harden. In case of other groups (e.g., tribe Pulvinariini), they secrete white wax filaments from the ventral glands and lay eggs in the ovisac. Finally, the eggs emerge to crawlers and maintain their life cycles (Ben-Dov \& Hodgson, 1997).

4. Historical review

4.1. Taxonomy and phylogeny of the Family Coccidae (Table 1).

Fallén in 1814 introduced the family Coccidae with the type genus Coccus. Targioni Tozzetti (1868) and Signoret (1869) subdivided the Coccidae (i.e. the Coccoidea of today). Targioni Tozzetti (1868) proposed four tribes in Coccidae: Orthezites (Orthezia and relatives), Coccites (the family Pseudococcidae of today), Diaspidites (Diaspididae), and Lecanites (Coccidae). Additionally, the Lecanites contained seven groups including four are related to soft scales which were the Eriophori demum folliculares (including Filippia and Luzulaspis), the Pulcinati (Pulvinaria and Nidulari), the Ceriferi (Ceroplastes, Columnea and Ericerus) and the nudi (Lecanopsis and Lecanium). Signoret (1869) presented a classification similar to Targioni Tozzetti (1868), which are four groups: the Diaspides (now regarded as Diaspididae), the Coccides (Pseudococcidae), the Brachyscelides (Eriococcidae) and the Lecanides (Asterolecaniidae, Lecanodiaspididae, Coccidae, Aclerdidae and Tachardiidae). Based on the classification of Signoret (1869), Atkinson (1886) subdivided the Lecanina (=Lecanides) into 5 groups: the Lecaniodiasparia, Signoretiaria (containing Signoretia (=Luzulaspis), Eriopeltis and Philippia (=Filippia)), Ceroplastaria (Ceroplastes and Vinsonia), Pulvinariaria (Pulvinaria) and Lecanaria (Lecanium, Physokermes, Ericerus, Lecanopsis, Aclera and Carteria). These groups are quite similar to the present classification, except for the last two groups. Handlirsch (1903) used the superfamily Coccoidea grouping all scale insects, whereas Steinweden (1929) restricted
the meaning of the family Coccidae to the soft scale of today. Also, Steinweden (1929) proposed the generic level of classification studying the type species of 32 genera. This classification consisted of three groups: the Coccus (containing Coccus, Eulecanium, Lecanium, Protopulvinaria, Pulvinaria and Saissetia of today), the Toumeyella (Neolecanium and Pseudophilippia), and the Exaeretopus (Exaeretopus, Parafairmairia, Philephedra and Luzulaspis). The other 19 genera were not grouped, however most presented grouping is used today. Bodenheimer (1953) provided the subfamily groupings including the Ceroplatinae, Coccinae, Eriopeltinae and Filippinae, following the wax structures. Although Borchsenius (1957) agreed to the classification of Bodenheimer, he changed the positon of Eriopeltinae in the Filippiinae, so three groups were presented: Ceroplatinae (with a thick white wax covering the body of adult female), Coccinae (distinct wax absent or present beneath the abdomen of adult female), Filippinae (filamentous wax covering the adult female thoroughly). In addition, the Coccinae contained two tribes, Pulvinariini (wax secreted from beneath the abdomen, enclosing eggs) and Coccini (distinct wax absent and eggs stored under the body. Based on the adult males of 23 species in 19 genera, Gilomee (1967) proposed four genera in the family: the Eulecanium, the Coccus, the Eriopeltis and the Inglisia, This classification was quite different to previous grouping using characters of adult females. Kosztarab \& Kozar, 1988 elevated the three generic groups of Gilomee to the subfamilies which were Coccinae, Eulecaniinae, and Eriopeltinae. Tang et al. (1990) and Tang (1991) presented a complex grouping which was quite different to the classification of Giliomee. Based on the female adult, the family divided into four subfamilies: the Pseudopulvinariinae (including Pseudopulvinaria and Mallococcus) and the Filippiinae, Coccinae and

Ceroplastinae. Further, the Filippiinae was subdivided into the tribes Filippiini (consisting of Ceronemina, Ceroplastodina, Eripeltina and Filippiina) and Lecanopsiini (Lecanopsidini); the Coccinae into the tribes Coccini (Coccina and Eulecaniina) and the Pulvinariini (Pulvinariina and Takahashiina); and the Ceroplatinae into the tribes Ceroplastini and Ctenochitonini (Cardiococcina and Ctenochitonina). Most recently, Hodgson (1994) proposed a classification considering the characters of both adult males and females. The Coccidae was divided into 10 subfamilies, including the Coccinae subdivided into four tribes, Coccini, Paralecaniini, Pulvinariini, and Saissetiini.

4.2. History of Korean records (Table 2).

Until now, 32 species of Coccidae have been recored in Korea. In 1928, Machida and Aoyama firstly reported one species, Takahashia japonica (Cockerell), followed by Ceroplastes ceriferus (Fabricius), C. japonicas Green, Nipponpulvinaria horii (Kuwana), Eulecanium kunoense (Kuwana). Additionally, Satio (1931) reported Ericerus pela (Chavannes), and then Nakayama (1933) described six new records, Coccus hesperidum Linnaeus, Eucalymnatus tessellatus (Signoret), Parasaissetia nigra (Nietner), Parthenolecanium corni (Bouché), Parthenolecanium persicae (Fabricius), and Saissetia coffeae (Walker). After that, Kanda (1941) reported four species, Eriopeltis festucae (Fonscolombe), Coccus pseudomagnoliarum (Kuwana), Eulecanium cerasorum (Cockerell), and Parthenolecanium glandi (Kuwana), followed by Pulvinaria nishigaharae (Kuwana). In 1952, Shiraki reported Ceroplastes rubens Maskell and Sphaerolecanium prunastri. In addition,

Borchsenius studied North Korean species and reported eight species, Didesmococcus koreanus Borchsenius, Eulecanium kostylevi Borchsenius, E. secretum Borchsenius, Rhodococcus sariuoni Borchsenius, Eriopeltis sachalinensis Borchsenius, Luzulaspis bisetosa Borchsenius, Parthenolecanium orientale (Borchsenius), Psilococcus ruber Borchsenius from 1955 to 1957. After 1958, Korean researchers reported five species until recently. Paik (1958) described Metaceronema japonica (Maskell), followed by Pulvinaria torreyae Takahashi, and Eulecanium takachihoi (Kuwana), and then Pulvinaria nipponica Lindinger and P. floccifera (Westwood) reported by Kwon et al. (2005).

Table 1. Historical review of classification of the family Coccidae

Steinweden, 1929	Bodenheimer, 1953	Borchsenius, 1957	Giliomee, 1967	Koteja, 1988	Tang et al., 1990	Hodgson, 1994
Coccidae						
Coccus	Ceroplastinae	Ceroplastinae	Coccus	Coccinae	Coccinae	Coccinae
Toumeyella	Coccinae	Coccinae	Eulecanium	Eulecaniinae	- Coccini	- Coccini
Exaeretopus	Eriopeltinae	- Pulvinariini	Eriopeltis	Eriopeltinae	- Pulvinariini	- Pulvinariini
	Filippinae	- Coccini	Inglisia		Ceroplastinae	- Paralecaniini
		Filippinae			- Ceroplastini	- Saissetiini
					- Ctenochitonini	Ceroplastinae
					Pseudopulvinariinae	Eulecaniinae
					Filippiinae	Filippiinae
						Eiopeltinae
						Cardiococcinae
						Cissococcinae
						Cyphococcinae
						Myzolecaniinae
						Pseudopulvinariinae

Table 2. History of Korean records of the family Coccidae

No.	Author	Years	Recorded species	Korean name
1	Machida \& Aoyama	1928	Takahashia japonica (Cockerell, 1896)	줄솜깍지벌레
2	Machida \& Aoyama	1930	Ceroplastes ceriferus (Fabricius, 1798)	뿔밀깍지벌레
3			Ceroplastes japonicus Green, 1921	거북밀깍지벌레
4			Nipponpulvinaria horii (Kuwana, 1902)	단풍공깍지벌레
5			Eulecanium kunoense (Kuwana, 1907)	공깍지벌레
6	Saito	1931	Ericerus pela (Chavannes, 1848)	쥐똥밀깍지벌레
7	Nakayama	1933	Coccus hesperidum Linnaeus, 1758	무화과깍지벌레
8			Eucalymnatus tessellatus (Signoret, 1873)	남생이깍지벌레
9			Parasaissetia nigra (Nietner, 1861)	검은철모깍지벌레
10			Parthenolecanium corni (Bouché, 1844)	알채나무공깍지벌레
11				Saissetia coffeae (Walker, 1852)
12				Criopeltis festucae (Fonscolombe, 1834)

II. Materials and Methods

Collection of soft scale insects.
Materials has been collected from all provinces of South Korea, including specimens of National Institute of Agricultural Sciences (NIAS). For taxonomic examinations of soft scale insects, using young adult females are higly recommended because mature adults have swelled and sclerotized bodies which can not be slide mounted. Therefore, it is important to know the periods of occurring young adults as well as their host plants. In the field, living samples would better to be collected together with leaves, stems or twigs of their host plants and transferred to laboratory. After photographing their living appearances, the samples put in 2.0 ml tubes with 95% ETOH.

Slide mounted.

In order to exact identifications, the samples which are preserved in alcohol tubes should be slide mounted according to the modified method of Hodgson \& Henderson (2000) as follows: Sample preserved in 95% ethy alcohol (ETOH) is transferred to 5 ml tube containing 10% potassium-hydroxide (KOH) and then boied for 2-5 hours at $50-60^{\circ} \mathrm{C}$ or leave in room temperature for about one or several days. After transferring decolorized specimen to distilled water, pumping the body to extract unnecessary substances using micro tools and leave for 5-10 minutes. Eliminate distilled water and add 1-2 drops of acid fuchsin stain for 50-60 minutes. For
dehydration and cleaning the excess stain, move the specimen to 75% and $95 \% \mathrm{ETOH}$ each for 5-10 minutes. After that, the sample is transferred into clove oil for over 10 minutes and mounted on a slide glass with Canada balsam.

Examinations.

The slide mounted specimens were studied under a microscope and the digital images were taken by a software (Active measure ver. 3.0.3, Mitani Co. Ltd, Japan) to measure and illustrate for each species. Terminology of morphological characters follows that of Hodgson (1994). All samples examined for the present study are deposited in SNU.

Abbreviations of localities and depositories are as follows:

GG, Gyeonggi-do; GW, Gangwon-do; CB, Chungcheongbuk-do; CN, Chungcheongnam-do; GB - Gyeongsangbuk-do; GN - Gyeongsangnam-do; JB, Jeollabuk-do; JN, Jeollanam-do; JJ, Jeju-do; NIAS, National Institute of Agricultural Sciences, Suwon, Korea; SNU, Seoul National University, Seoul, Korea.

III. Result

Systematic Accounts

Order Hemiptera 노린재목

Suborder Sternorrhyncha 진 딧물아목 Superfamily Coccoidea 깍지 벌레상과

Family Coccidae Fallén, 1814 밀깍지 벌레과

Type genus: Coccus Linnaeus, 1758

Diagnosis. Well-developed and together quadrate anal plates on anus; a distinct anal cleft between anal lobes; an eversible anal tube to remove honeydew; an anal ring consist of two sclerotized crescents having setae and pores; a structure of ventral microducts; eyespots present on margin; tarsus without a campaniform sensilla (Hodgson, 1994).

Key to Korean subfamilies of Coccidae

1. Ceroplastes-type pores present on dorsum; a sclerotized caudal process present...

Ceroplastinae

- Ceroplastes-type pores absent on dorsum; a sclerotized caudal process absent 2

2. Dorsum covered with a felted ovisac; dorsal tubercles and pocket-like sclerotisations absent; numerous long ventral setae usually present; two stigmatic
spines present in stigmatic area or absent \qquad Eriopeltinae

- Dorsum not covered with a felted ovisac; dorsal tubercles and pocket-like sclerotisations occasionally present; numerous long ventral setae absent; zero to three stigmatic spines in each stigmatic clefts Filippiinae

3. Marginal setae only with simple pointed apices, never bifid or fimbriate; dorsal tubercles and pocket-like sclerotisations never present; each legs without a tibiotarsal articulatory sclerosis Eulecaniinae - Marginal setae with simple pointed apices, also bifid or fimbriate tips present; dorsal tubercles and pocket-like sclerotisations occasionally present; legs usually with a tibio-tarsal articulatory sclerosis \qquad Coccinae

Subfamily Ceroplastinae Atkinson, 1886 밀각지 벌레아과

Type genus: Coccus Linnaeus, 1758

Diagnosis. A thick wax usually covering entire body; Ceroplastes-type pores present on dorsum; a sclerotized caudal process for lifting anal plates to outside of thick wax; clear areas without pores; distinct characters of stigmatic areas; form of ventral microducts.

Genus Ceroplastes Gray, 1828 밀깍지 벌레속

Type species: Ceroplastes janeirensis (Gray, 1828)

Diagnosis. Hemispherical body entirely covered by a thick wax cover; distinctive shape and color of wax; a sclerotized caudal process; only one type of stigmatic spine arranged in stigmatic clefts or margin (Gill, 1988; Hodgson, 1994; Hodgson \& Henderson, 2000).

Key to Korean species of Ceroplastes

Abstract

1. Body covered with reddish brown wax; Ceroplates-type pores present 3 types; ventral tubular duct absent; leg poorly developed C. rubens

- Body covered with white wax; Ceroplates-type pores present 4 types; ventral tubular duct present; legs developed

2. Body covered with thick white wax having a distinct horn; stigmatic spines conical in triangular shape composed of 5-6 rows C. ceriferus

- Body covered with turtle-shaped white wax without a distinct projecting horn; stigmatic spines conical, arranged in 2-3 rows 3

3. Stigmatic spines almost continuously arranged and only 3-5 spinose setae scattered between anterior and posterior stigmatic clefts C. japonicus

- Stigmaitc spines distinctively separated by continuous 8-9 spinose setae between anterior and posterior stigmatic clefts
C. floridensis

1. Ceroplastes ceriferus (Fabricius, 1798) 뿔밀각지 벌 레

Coccus ceriferus Fabricius, 1798: 546.
Coccus chilensis Gray, 1828: 7.

Ceroplastes australiae Walker, 1852: 1087.
Ceroplastes vayssierei, Mahdihassan, 1933: 561.

Diagnosis. Body covered with thick white wax having a distinct horn; Ceroplatestype pores present 4 types; stigmatic spines conical in triangular shape composed of 5-6 rows; ventral tubular duct present 1 type; each leg without a tibio-tarsal articulation and an articulation sclerosis.

Living appearance. Body oval, completely covered by thick white wax with a distinct horn and powdery wax bands. Dorsum scarlet to dark red in color, heavily swelled and sclerotized during oviposition. Eggs reddish, deposited in ventral space (Fig. 11).

Slide-mounted material. Body oval to round, $1.2-3.8 \mathrm{~mm}$ long, $0.9-3.6 \mathrm{~mm}$ wide, with distinct stigmatic cleft; anal cleft short, present on immature adult but disappeared by caudal process (Fig. 34).

Dorsum. Derm membranous to heavily sclerotized. Dermal areolations absent. Dorsal tubercles absent. Dorsal setae cylindrical and stout with blunt apices, occasionally slightly pointed, each $5.4-10.0 \mu \mathrm{~m}$ long, rather evenly present on dorsum. Dorsal tubular ducts absent. Filamentous ducts with small pores, each $1.5-1.8 \mu \mathrm{~m}$ wide, distributed around margin. Ceroplates-type pores present 4 types: Monolocular pores each $4.0-6.0 \mu \mathrm{~m}$ wide, rarely present over dorsum. Bilocular pores each 5.6$7.3 \mu \mathrm{~m}$ wide, barred bilocular pores evenly scattered on entire dorsum, and irregular bilocular pores mainly distributed around submarginal areas. Trilocular pores each $6.0-8.2 \mu \mathrm{~m}$ wide, usually detected over dorsum. Quadrilocular pores each $6.6-8.6 \mu \mathrm{~m}$
wide, present throughout dorsum but some sparsely determined. Preopercular pore absent. Anal plates together elongated heart shape, each with rounded outer angles, 88.4-173.7 $\mu \mathrm{m}$ long, $90.5-154.5 \mu \mathrm{~m}$ wide. Each plate with 2 apical setae on dorsum (or venter) and 2 discal setae. Anal process elongated in old specimens. Clear areas present in submarginal area of body.

Margin. Marginal setae spinose, usually slightly curved, each 11.3-22.9 $\mu \mathrm{m}$ long, with simple pointed apices, arranged around margin, except for spiracular areas, present about 2-4 laterally between stigmatic area. Stigmatic clefts moderately furrowed each with 40-44 stigmatic spines, conical, bullet-shaped, each 17.0-35.5 $\mu \mathrm{m}$ long, arranged in triangular shape composed of 5-6 rows.

Venter. Derm membranous. Multilocular disc-pores 6.8-7.9 $\mu \mathrm{m}$ wide, each with 1012 loculi, mostly with 10 loculi, numerous around vulvar area, less frequently present on anterior area of abdomen and thorax. Spiracular pores 3.2-6.0 $\mu \mathrm{m}$ wide, each with 5 loculi, in a band becoming wider from each spiracles and margin. Ventral tubular duct 28.7-39.6 $\mu \mathrm{m}$ long, present 1 type with a moderately long outer ductule, a very thin and long inner dutule, occasionally entirely curved, and a quite small terminal gland, scattered around head and anal plates. Ventral microducts small, each 2.3$4.0 \mu \mathrm{~m}$ wide, distributed over venter. Ventral submarginal setae sharply pointed, straight, each with a developed basal socket, each 11.3-22.9 $\mu \mathrm{m}$ long. Ventral setae acute, straight, each with a rather wide basal socket, each 6.6-12.4 $\mu \mathrm{m}$ long, evenly scattered on venter. Leg well developed, each without a tibio-tarsal articulation and a small articulation sclerosis, total length of metathoracic leg each 234.9-368.0 $\mu \mathrm{m}$ long: each coxa 89.8-137.0 $\mu \mathrm{m}$ long, trochanter+femer 127.7-183.9 $\mu \mathrm{m}$ long, tibia+tarsus
146.0-213.0 $\mu \mathrm{m}$ long, claw 11.8-20.1 $\mu \mathrm{m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles very developed, usually posterior peritreme broader than anterior: anterior peritremes each 23.3-90.5 $\mu \mathrm{m}$ wide, posterior peritremes each 25.3$92.6 \mu \mathrm{~m}$ wide. Antenna 6 segmented, each 130.1-211.9 $\mu \mathrm{m}$ long. Clypeolabral shield 117.2-168.7 $\mu \mathrm{m}$ wide.

Specimens examined. 5q, Seoho-dong, Tongyeong-si, GN, 03.viii.2014, coll. J.Y. Choi, on Camellia japonica L. (Theaceae), Coll\#. 140803-JY-05; 4q, Jeodong-ri, Ulleung-eup, Ulleung-gun, GB, 08.viii. 2014, coll. J.Y. Choi, on Camellia japonica L. (Theaceae), Coll\#. 140808-JY-01; 1q, Bokgok-ri, Jipum-myeon, Yeongdeok-gun, GB, 20.x.1999, coll. G.M. Kwon, on Diospyros kaki THUNB. (Ebenaceae), Slide\#. M1AV00328; 1 \& , Nammunno, Sangdang-gu, Cheongju-si, CB, 21.iii.1997, coll. S.B. An, on Diospyros kaki THUNB. (Ebenaceae), Slide\#. M1AV00311; 1q, Goheungeup, Goheung-gun, JN, 25.iii.1998, coll. M.L. Lee, on Camellia japonica L. (Theaceae), Slide\#. M1AV00286; 1q, Buchun-ri, Busan-myeon, Jangheung-gun, JN, 18.ix.2001, coll. G.M. Kwon, on Diospyros kaki THUNB. (Ebenaceae), Slide\#. M1AV00347.

Host. Aceraceae: Acer japonicus; Amaranthaceae: Amaranthus sp.; Apocynaceae: Thevetia peruviana; Aquifoliaceae: Ilex aquifolium; I. cornuta; I. crenata; I. japonicus; I. latifolia; I. opaca; I. serrata; I. vomitoria; Araliaceae: Fatsia japonica; Berberidaceae: Mahonia sp.; Buxaceae: Buxus sempervirens; Celastraceae: Euonymus europaeus; E. japonicus; Cucurbitaceae: Cucurbita moschata; Ebenaceae: Diospyros kaki; Ericaceae: Azalea sp.; Vaccinium arboreum; Lythraceae: Lagerstroemia indica, Pinaceae: Tsuga canadensis; Pittosporaceae: Pittosporum sp.;

Podocarpaceae: Podocarpus macrophyllus; P. nagi; Rosaceae: Crataegus sp; Pyracantha coccinea; Spiraea sp.; Rutaceae: Citrus sp.; Sapindaceae: Nephelium lappaceum; Tamaricaceae: Tamarix gallica; Theaceae: Camellia japonica; C. sinensis; Ulmaceae: Ulmus sp.; Verbenaceae: Callicarpa sp. (Gimpel \& Davidson, 1974).

Distribution. Cosmopolitan species: Korea, Japan, China, Taiwan, Thailand, Vietnam, Australia, USA, Europe, UK, South America, Africa.

Remarks. Ceroplastes ceriferus is similar to C. pseudoceriferus Green which had been misidentified in Korea (Lee et al., 2012). C. ceriferus is differentiated from C. pseudoceriferus by 15 marginal setae between anterior stigmatic clefts (about 40 in C. pseudoceriferus) and multilocular disc-pores absent around procoxa (Hodgson \& Peronti, 2012). Although C. pseudoceriferus was not confimed in this study, it is possible to exist in Korea.

2. Ceroplastes floridensis Comstock, 1881

Ceroplastes floridensis Comstock, 1881: 331.

Diagnosis. Body covered with thick and bright white wax without a distinct projecting horn; Ceroplates-type pores present 4 types; stigmatic spines conical, arranged in 2-3 rows; ventral tubular duct present 1 type; each leg without a tibiotarsal articulation and an articulation sclerosis.

Living appearance. Body oval, thoroughly coated with bright white wax with powdery wax bands on margin. Wax surface rather flat, without a distinct projecting
horn. Dorsum reddish, highly swelled and sclerotized during oviposition. Eggs reddish, present under venter (Fig. 12)

Slide-mounted material. Body oval, 1.3-1.9mm long, $0.9-1.3 \mathrm{~mm}$ wide, with distinct stigmatic cleft; anal cleft rather short, present on young adult, but disappeared by caudal process (Fig. 35).

Dorsum. Derm membranous to heavily sclerotized. Dermal areolations absent. Dorsal tubercles absent. Dorsal setae very short with bluntly pointed apices, each 3.44.3 mm long, scarcely distributed over dorsum. Dorsal tubular ducts absent. Filamentous ducts not detected. Ceroplates-type pores present 4 types: Monolocular pores each $2.8-4.0 \mu \mathrm{~m}$ wide; Bilocular pores each $3.9-4.5 \mu \mathrm{~m}$ wide, present 2 types, barred and irregular bilocular pores; Trilocular pores each 3.7-6.0 $\mu \mathrm{m}$; Quadrilocular pores each $3.4-4.0 \mu \mathrm{~m}$, most pores scattered on entire dorsum and intermixed with each pore. Preopercular pore absent. Anal plates each with rounded outer angles, 99.3-126.1 $\mu \mathrm{m}$ long, $94.2-124.8 \mu \mathrm{~m}$ wide. Each plate with 4 apical setae setae. Anal process not observed. Clear areas present in submarginal area of body.

Margin. Marginal setae spinose, mostly straight or slightly curved, each 16.8-20.0 $\mu \mathrm{m}$ long, with simple pointed apices, arranged around margin, except for spiracular areas, about 41-44 anteriorly between anterior stigmatic areas. Stigmatic clefts moderately furrowed each with 30-44 stigmatic spines. Stigmatic spines conical, bullet-shaped, each with a narrow basal socket, each $9.9-14.1 \mu \mathrm{~m}$ long, arranged in 2-3 rows, distinctively separated by continuous 8-9 spinose setae between anterior and posterior stigmatic clefts.

Venter. Derm membranous. Multilocular disc-pores 6.7-6.9 $\mu \mathrm{m}$ wide, each with 10
loculi, frequently present around vulvar area, also sparsely scattered on anterior area of abdomen and thorax. Spiracular pores 3.4-3.9 $\mu \mathrm{m}$, each with 5 loculi in 3-4 pores wide between each spiracles and margin. Ventral tubular duct 18.9-21.3 $\mu \mathrm{m}$ long, present 1 type with a developed outer ductule, rather broad inner ductule and a swelled terminal gland, usually present around submargin. Ventral microducts small, each $1.1-2.6 \mu \mathrm{~m}$ wide, evenly distributed over venter. Ventral submarginal setae sharply spinose, each $6.8-8.1 \mu \mathrm{~m}$ long. Ventral setae with 2 pairs of long and short setae between antennae and other setae acute, straight, each $5.0-8.4 \mu \mathrm{~m}$ long, rarely present on entire venter. Leg well developed, each without a tibio-tarsal articulation and an articulation sclerosis, total length of metathoracic leg each $351.2-524.0 \mu \mathrm{~m}$ long: each coxa $86.1-137.2 \mu \mathrm{~m}$ long, trochanter+femer $118.0-173.2 \mu \mathrm{~m}$ long, tibia+tarsus $130.2-199.7 \mu \mathrm{~m}$ long, claw 11.1-14.5 $\mu \mathrm{m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles developed, mostly posterior peritreme broader than anterior: anterior peritremes each $20.3-39.3 \mu \mathrm{~m}$ wide, posterior peritremes each 21.6-45.0 $\mu \mathrm{m}$ wide. Antenna 6 segmented, each 201.3-275.3 $\mu \mathrm{m}$ long. Clypeolabral shield $109.1-152.7 \mu \mathrm{~m}$ wide.

Specimens examined. 2 Q , Yanghwa-dong, Yeongdeungpo-gu, Seoul, 02.viii.2014, coll. J.Y. Choi, on Poaceae sp., Coll\#. 140802-JY-06; 2 中, same locality, date and collector, on Ternstroemia japonica (Wight \& Arn.) (Theaceae), Coll\#. 140802-JY09; 1 ㅇ, Seoho-dong, Tongyeong-si, 03.viii.2014, GN, coll. S.H. Lee, Coll\#. 140803-JY-03; 1 , Jeodong-ri, Ulleung-eup, Ulleung-gun, GB, 08.viii.2014, coll. Y.L. Lee, on Machilus thunbergii SIEB. et ZUCC. (Lauraceae), Coll\#. 140808-JY-01; 1q,

Jang-dong, Dong-gu, Gwangju, 01.i.2016, coll. J.Y. Choi, on Euonymus japonicus Thunb. (Celastraceae), Coll\#. 160108-JY-01.

Host. Anacardiaceae: Mangifera indica; Schinus terebinthifolius; Aquifoliaceae: Ilex cornuta; I. crenata; I. vomitoria; Araliaceae: Aralia sp.; Hedera helix; Sciadophyllum sp.; Burseraceae: Bursera simaruba; Celastraceae: Euonymus japonicas; Ebenaceae: Diospyros kaki; Ericaceae: Pernettya sp.; Vaccinium sp.; Lauraceae: Lindera benzoin, Persea borbonia; Myrtaceae: Eugenia compacta; Eugenia jambolana; Psidium guajava; P. pomiferum; Pinaceae: Pinus elliotti; Tsuga canadensis; Platanaceae: Platanus sp.; Poaceae sp.; Polygonaceae: Coccoloba diversifolia; Punicaceae: Punica granatum; Rosaceae: Prunus persica; P. salicina; Pyrus communis; P. cydonia; P. malus; Rubiaceae: Gardenia jasminoides; Serraceniaceae: Serracenia minor (Hall, 1922; Gimpel et al., 1974; Hamon \& Williams, 1984)

Distribution. Korea, Japan, China, Taiwan, Vietnam, Indonesia, Australia, USA, Canada, Europe, South America, Africa.

Remarks. Because of morphological similarities, Ceroplastes floridensis may have been overlooked as C. japonicas Green in Korea. However, both species are easily distinguished by arrangements of stigmatic spines (See above the key to species of Ceroplastes). In this study, C. floridensis is newly reported from Korea.

3. Ceroplastes japonicus Green, 1921 거북밀깍지 벌레

Ceroplastes floridensis japonicus Green, 1921: 258.

Diagnosis. Body covered with turtle-shaped and yellowish white wax without a distinct projecting horn; Ceroplates-type pores present 4 types; stigmatic spines conical, arranged in 2-3 rows; ventral tubular duct present 1 type; each leg without a tibio-tarsal articulation and an articulation sclerosis.

Living appearance. Body oval, thoroughly coated with turtle-shaped white wax with powdery wax bands on margin. Wax surface flat or rough, without a distinct projecting horn. Dorsum reddish dark brown in color, strongly swelled and sclerotized during oviposition. Eggs reddish, stored under venter (Fig. 13).

Slide-mounted material. Body oval to circular, 1.7-3.5mm long, 1.1-3.1mm wide, with distinct stigmatic cleft; anal cleft very short, present on young adult but obscured by caudal process (Fig. 36).

Dorsum. Derm membranous to strongly sclerotized. Dermal areolations absent. Dorsal tubercles absent. Dorsal setae rather broad with bluntly pointed apices, each 5.1-8.3mm long, rarely scattered over dorsum. Dorsal tubular ducts absent. Filamentous ducts not detected. Ceroplates-type pores present 4 types: Monolocular pores each $3.9-5.3 \mu \mathrm{~m}$ wide; Bilocular pores each $4.1-5.3 \mu \mathrm{~m}$ wide, present 2 types, barred and irregular bilocular pores; Trilocular pores each 4.0-7.0 $\mu \mathrm{m}$; Quadrilocular pores each $4.0-6.6 \mu \mathrm{~m}$, most pores present on entire dorsum and intermixed with each pore. Preopercular pore absent. Anal plates each with rounded outer angles, 138.6$160.4 \mu \mathrm{~m}$ long, $109.9-137.0 \mu \mathrm{~m}$ wide. Each plate with 4 apical setae. Anal process elongated in matured adult. Clear areas present in submarginal area of body.

Margin. Marginal setae spinose, mostly straight or slightly curved, each 12.2-30.3 $\mu \mathrm{m}$ long, with simple pointed apices, distributed around margin, except for spiracular
areas, about $38-40$ anteriorly between anterior stigmatic areas. Stigmatic clefts moderately deep each with 98-123 stigmatic spines on each side. Stigmatic spines conical, bullet-shaped, each with a narrow basal socket, each $19.5-27.8 \mu \mathrm{~m}$ long, arranged in 2-3 rows, continuously arranged between anterior and posterior stigmatic clefts. Only 3-5 spinose setae scattered between each stigmatic clefts.

Venter. Derm membranous. Multilocular disc-pores $5.3-7.8 \mu \mathrm{~m}$ wide, each with 10 loculi, uncounted pores scattered around vulvar area, also rarely present on anterior area of abdomen and thorax. Spiracular pores 3.4-5.7 $\mu \mathrm{m}$, each with 5 loculi in a broad band between each spiracles and margin. Ventral tubular duct $21.2-41.4 \mu \mathrm{~m}$ long, present 1 type with a developed outer ductule, a greatly or moderately broad inner ductule, and a swelled terminal gland, mainly distributed around submargin. Ventral microducts small, each $1.6-3.6 \mu \mathrm{~m}$ wide, evenly present over venter. Ventral submarginal setae acute, straight or slightly curved, each $7.0-12.1 \mu \mathrm{~m}$ long. Ventral setae with 2 pairs of long and short setae between antennae and other setae sharply pointed, straight, each $4.4-9.6 \mu \mathrm{~m}$ long, scarcely scattered on entire venter, but frequently detected around anal plates. Leg well developed, each without a tibiotarsal articulation and a small articulation sclerosis, total length of metathoracic leg each 543.2-635.7 $\mu \mathrm{m}$ long: each coxa 131.3-160.2 $\mu \mathrm{m}$ long, trochanter+femer 182.7$222.7 \mu \mathrm{~m}$ long, tibia+tarsus $200.3-230.0 \mu \mathrm{~m}$ long, claw $15.7-23.2 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles well developed, mostly posterior peritreme broader than anterior: anterior peritremes each $41.9-53.4 \mu \mathrm{~m}$ wide, posterior peritremes each $50.8-60.8 \mu \mathrm{~m}$ wide. Antenna 6 segmented, each 285.3$327.7 \mu \mathrm{~m}$ long. Clypeolabral shield $141.8-163.1 \mu \mathrm{~m}$ wide.

Specimens examined. 2q, Buksan-ri, Seoun-myeon, Anseong-si, GG, 29.iv.1999, coll. S.H. Lee, on Diospyros kaki THUNB. (Ebenaceae), Slide\#. M1AV00078, M1AV00079; 1q, Sangmaengbang-ri, Geundeok-myeon, Samcheok-si, GW, 29.v.1999, coll. J.Y. Choi, on Diospyros kaki THUNB. (Ebenaceae), Slide\#. M1AV00082; 3q, Cheonji-dong, Seogwipo-si, JJ, 14.ix.2014, coll. J.Y. Choi, on Pittosporum tobira (Thunb.) (Pittosporaceae), Coll\#. 140914-JY-01; 1q, Suwon-ri, Hallim-eup, Jeju-si, JJ, 17.ix.1996, coll. S.B. An, on same host plant, Slide\#. M1AV00121; 3q, same locality, 18.ix.1996, coll. and host data absent, Slide\#. M1AV00186, M1AV00184, M1AV00185.

Host. Apocynaceae: Nerium oleander; Trachelospermum asiaticum; Aquifoliaceae: Ilex integra; Berberidaceae: Berberis sp.; Epimedium colchicum; Buxaceae: Buxus sempervirens; Celastraceae: Euonymus japonicus; Cornaceae: Cornus mas; Svida sp.; Cycadaceae: Cycas revoluta; Ebenaceae: Diospyros kaki; Ehretiaceae: Ehretia acuminata; Elaeagnaceae: Elaeagnus pungens; Elaeocarpaceae: Elaeocarpus decipiens; Lauraceae: Laurus nobilis; Machilus thunbergii; Magnoliaceae: Magnolia grandiflora; Moraceae: Morus sp.; Myrtus communis; Myrtaceae: Feijoa sellowiana; Pittosporaceae: Pittosporum tobira; Podocarpaceae: Podocarpus nagi; Rosaceae: Cerasus avium; C. vulgaris; Crataegus sp.; Cydonia vulgaris; Eriobotrya japonica; Malus domestica; Persica vulgaris; Prunus laurocerasus; P. yedoensis; P. sinensis; Rutaceae: Citrus sp.; Poncirus trifoliata; Salicaceae: Salix glandulosa; S. saidaeana; Theaceae: Camellia japonica; Eurya japonica; Thea sinensis (Tahakashi,1956; Borchsenius, 1957).

Distribution. Korea, Japan, China, Russia, Europe, UK.

4. Ceroplastes rubens Maskell, 1893 루비각지 벌레

Ceroplastes rubens Maskell, 1893: 214.
Ceroplastes rubensminor Maskell, 1897b: 309.

Diagnosis. Body covered with reddish brown wax without a distinct projecting horn; Ceroplates-type pores present 3 types; stigmatic clefts extremely deep, each with 2226 stigmatic spines; ventral tubular duct absent; legs poorly developed.

Living appearance. Body oval, entirely concealed by moderately thick wax reddish brown wax with distinct curved wax bands on margin. Wax surface flat or roundly convex, without a distinct projecting horn. Dorsum dark red in color, considerably swelled and sclerotized during oviposition. Eggs reddish, laid in swollen venter (Fig. 14).

Slide-mounted material. Body oval to round, $1.7-3.8 \mathrm{~mm}$ long, $1.3-3.2 \mathrm{~mm}$ wide, with extremely furrowed stigmatic cleft; anal cleft rather short, present on young adult but shrunk by caudal process (Fig. 37).

Dorsum. Derm membranous to severely sclerotized. Dermal areolations absent. Dorsal tubercles absent. Dorsal setae stout and short each with a developed basal socket and a quite blunt apex, each 4.4-6.4mm long, evenly scattered over dorsum. Dorsal tubular ducts absent.

Filamentous ducts absent. Ceroplates-type pores present 3 types: Monolocular pores each $4.0-5.3 \mu \mathrm{~m}$ wide; Bilocular pores each $4.8-7.2 \mu \mathrm{~m}$ wide, barred bilocular pores,
present 2 types, barred and irregular bilocular pores; Trilocular pores each $6.1-9.0 \mu \mathrm{~m}$ wide, irregular trilocular pores, most pores present on entire dorsum and intermixed with each pore, but Quadrilocular pores absent. Preopercular pore absent. Anal plates each with rather rounded outer angles, $140.8-160.3 \mu \mathrm{~m}$ long, $117.8-149.2 \mu \mathrm{~m}$ wide. Each plate with 4 apical setae. Anal process proceeded slightly in matured adult. Clear areas about 10 present in submedian area of body.

Margin. Marginal setae similar to dorsal setae, but slightly longer and less blunt than the latter, each 4.5-7.6 $\mu \mathrm{m}$ long, arranged around margin, except for spiracular areas, present about 2-4 laterally between stigmatic areas. Stigmatic clefts extremely deep each with 22-26 stigmatic spines: Median setae conical, mostly with blunt and slightly curved apices, each $39.9-66.6 \mu \mathrm{~m}$ long. Lateral setae hemispherical with roundly convex apices, each 26.1-35.6 $\mu \mathrm{m}$ long. The others similar to lateral setae, but much smaller than the latter, each $10.0-16.1 \mu \mathrm{~m}$ long, present on ventral stigmatic clefts.

Venter. Derm membranous. Multilocular disc-pores $6.3-8.6 \mu \mathrm{~m}$ wide, each with 10 loculi, many pores present around vulvar area, also rarely scattered on anterior area of abdomen and thorax. Spiracular pores $5.0-6.6 \mu \mathrm{~m}$ wide, each with 5 or 6 loculi, usually with 5 loculi, arranged in a broad band between each spiracles and margin. Ventral tubular duct absent. Ventral microducts small, each $3.1-4.6 \mu \mathrm{~m}$ wide, frequently scattered over venter. Ventral submarginal setae spinose, straight and rather stout, each $5.9-9.6 \mu \mathrm{~m}$ long. Ventral setae with 2 pairs of long setae between antennae and other setae sharply pointed, usually straight, each $7.7-9.4 \mu \mathrm{~m}$ long, frequently distributed on entire venter. Leg very short and poorly developed, total
length of metathoracic leg each $156.2-212.8 \mu \mathrm{~m}$ long: each coxa $56.2-71.9 \mu \mathrm{~m}$ long, trochanter+femer $37.0-64.6 \mu \mathrm{~m}$ long, tibia+tarsus $47.7-73.6 \mu \mathrm{~m}$ long, claw $6.4-$ $12.9 \mu \mathrm{~m}$ long. Tarsal digitules longer than claw digitules. Spiracles well developed, posterior peritreme slightly broader than anterior: anterior peritremes each 55.6$70.6 \mu \mathrm{~m}$ wide, posterior peritremes each $55.6-75.3 \mu \mathrm{~m}$ wide. Antenna 6 segmented, each 155.9-199.4 $\mu \mathrm{m}$ long. Clypeolabral shield $151.5-181.1 \mu \mathrm{~m}$ wide.

Specimens examined. 2 q, Nohyeong-dong, Jeju-si, JJ, 13.ix.2014, coll. J.Y. Choi, on Citrus sp. (Rutaceae), Coll\#. 140913-JY-09; 2 q, Gunnae-ri, Wando-eup, Wandogun, JN, 04.vii.2014, same collector, on Camellia japonica L. (Theaceae), Coll\#. 140704-JY-06; 2q, Seogwipo-si, JJ, 18.i.1972, collector data absent, on Euonymus alatus (Thunb.) (Celastraceae), Slide\#. M1AV00377, M1AV00378; 2 中, Topyeongdong, Seogwipo-si, JJ, 5.ix.2001, coll. G.M. Kwon, on Citrus unshiu Marcovitch (Rutaceae), Slide\#. M1AV00396, M1AV00399; 2q, Donghong-dong, Seogwipo-si, JJ, 27.xi.1996, coll. K.S. Lee, on Ligustrum obtusifolium Sieb. \& Zucc. (Oleaceae), Slide\#. M1AV00408, M1AV00412.

Host. Acanthaceae: Acer palmatum; Apocynaceae: Alyxia olivaeformis; Aquifoliaceae: Ilex cornuta; I. latifolia; I. oldhami; I. serrata; Araceae: Aglaonema pictum; Anthurium andraeanum; Araliaceae: Dizygotheca elegantissima; Hedera helix; Araliceae: Philodendron gigantium; Aspleniaceae: Asplenium nidum; Asteraceae: Helianthus sp.; Buxaceae: Buxus microphylla; Caprifoliaceae: Viburnum sp.; Clusiaceae: Calophyllum inophyllum; Celastraceae: Euonymus alatus; Cycadaceae: Cycas sp.; Dicksoniaceae: Cibotium sp.; Ebenaceae: Diospyros kaki; Fabaceae: Acacia sp.; Lecythidaceae: Barringtonia racemosa; Loranthaceae:

Loranthus sp.; Magnoliaceae: Magnolia salicifolia; Moraceae: Cudrania javanesis; Myrtaceae: Metrosideros collina; Psidium guajava; Rhodomyrtus tomentosa; Oleaceae: Ligustrum obtusifolium; Orchidaceae: Grammatophyllum sp.; Pinaceae: Pinus parviflora; Polypodiaceae: Polypodium sp.; Rhizophoraceae: Rhizophora sp.; Rosaceae: Chaenomeles sp.; Malus sp.; Rubiaceae: Gardenia jasminoides; Rutaceae: Citrus deliciosa; C. reticulata; C. unshiu; Sapindaceae: Litchi sp.; Sapotaceae: Calocarpum sp.; Schisandraceae: Kadsura japonica; Sinopteridaceae: Pellaea sp.; Taxaceae: Cephalotaxus sp.; Theaceae: Camellia japonica; C. rusticans, C. sasanqua; Ulmaceae: Celtis sp.; Zingiberaceae: Alpinia purpurata (Gimpel \& Davidson, 1974).

Distribution. Cosmopolitan species: Korea, Japan, China, Taiwan, Thailand, Vietnam, Indonesia, Australia, USA, Africa.

Remarks. Ceroplastes rubens is easily recognized by wax test of reddish brown.

Subfamily Coccinae Fallén, 1814 무화과각지 벌레아과

The subfamily Coccinae was divided into about 55 genera belonging to four tribes (Hodgson, 1994).

Key to Korean tribe of Coccinae

1. Body with white wooly ovisac under abdomen; three or four types (rarely two) of ventral tubular ducts present. \qquad Pulvinariini

- Body without white wooly ovisac under abdomen; one or two types of ventral tubular ducts present 2

2. Ventral tubular ducts present on medial area of thorax or absent; multilocular disc pores only present around vulvar area, not on medial thorax and head \qquad Coccini

- Ventral tubular ducts present on submarginal area; multilocular disc pores present around vulvar area, also medial thorax Saissetiini

Tribe Coccini Fallén, 1814 무화과깍지 벌레족

Type genus: Coccus Linnaeus, 1758

Diagnosis. Ventral tubular ducts restricted to medial area of thorax or absent; absence of dorsal tubular duct except for some species in Coccus; dorsum without pocket-like sclerotizations; eyespots closely located on margin; differentiated stigmatic spines; unsclerotized stigmatic areas; multilocular disc pores only present around vulvar area, not on medial thorax and head (Hodgson, 1994).

Key to Korean genera of Coccini

1. Irregular polygonal plates present on dorsum \qquad Eucalymnatus

- Irregular polygonal plates absent on dorsum \qquad Coccus

Genus Coccus Linnaeus, 1758 무화과깍지 벌레속

Type species: Coccus hesperidum Linnaeus, 1758

Diagnosis. Ventral tubular ducts distributed on medial thorax, but not in submarginal
area; legs with a tibio-tarsal articulation sclerosis; blunt or cylindrical dorsal setae; marginal setae with bifid or fimbriate apices; each triangular shaped anal plates with a few apical setae (Hodgson, 1994).

Key to Korean species of Coccus

1. Dorsal tubercles present; Marginal setae with bifid or fimbriate apices, occasionally with pointed tips; Antenna 7 segmented \qquad C. hesperidum

- Dorsal tubercles absent; Marginal setae with pointed apices; Antenna 8 Segmented C. pseudomagnoliarum

5. Coccus hesperidum Linnaeus, 1758 무화과각지 벌레

Coccus hesperidum Linnaeus, 1758: 455.
Calypticus laevis Costa, 1829: 11.
Coccus patellaeformis Curtis, 1843: 517.
Chermes lauri Boisduval, 1867: 340.
Lecanium angustatus Signoret, 1873b: 398.
Kermes aurantj Alfonso, 1875: 431.
Lecanium alienum Douglas, 1886: 77.
Lecanium minimum Newstead, 1892: 141.
Lecanium assimile amaryllids Cockerell, 1893b: 53.
Lecanium terminaliae Cockerell, 1893c: 254.
Lecanium ceratoniae Gennadius, 1895, cclxxvii.

Lecanium nanum Cockerell, 1896b.
Lecanium minimum pinicola Maskell, 1897b: 310.
Lecanium flaveolum Cockerell, 1897b: 52.
Lecanium ventrale Ehrhorn, 1898: 245.
Lecanium (Calymnatus) hesperidum pacificum Kuwana, 1902a: 30.
Lecanium signiferum Green, 1904: 197.
Coccus hemisphaerides Lindinger, 1929: 109-110.
Coccus jungi Chen, 1936: 218.

Diagnosis. Dorsal tubercles present; dorsal setae cylindrical and stout, with blunt apices; dorsal tubular ducts present or not; marginal setae with pointed, bifid or fimbriate apices; multilocular disc-pores each with 10 loculi; leg each with a tibiotarsal articulatory sclerosis; antenna 7 segmented.

Living appearance. Body elongate oval to round, occasionally diverse asymmetrical shapes depend on host plants, and relatively flat or moderately convex during oviposition. Dorsum greenish or yellowish brown in color, usually with irregular black or brown spots (Fig. 15).

Slide-mounted material. Body elongate oval to circular, 2.0-3.8mm long, 1.62.8 mm wide, with rather distinct stigmatic cleft; anal cleft approximately $1 / 6-1 / 7$ of body length (Fig. 38).

Dorsum. Derm membranous. Dermal s developed and small, each with a microductule. Dorsal tubercles convex, each with an inner filamentous ductule, present on submarginal area, 4-6 in total on each side: 1 or 2 between apex of head
and anterior stigmatic cleft, 1 between anterior and posterior stigmatic clefts and 2 or 3 between posterior stigmatic cleft and anal cleft. Dorsal setae cylindrical and stout with blunt apices, each $5.5-9.4 \mu \mathrm{~m}$ long, evenly scattered on dorsum. Dorsal tubular ducts not detected. Preopercular pore round to oval, distributed in a dense group in front of anal plates. Anal plates each triangular in shape, 135.2-175.4 $\mu \mathrm{m}$ long, 110.9$152.7 \mu \mathrm{~m}$ wide, mostly posterolateral margin rather longer than anterolateral margin: anterolateral margin $86.2-109.7 \mu \mathrm{~m}$ long, posterolateral margin $91.7-122.5 \mu \mathrm{~m}$ long. Each plate with 2 inner margin setae, 1 outer margin setae, and 1 apical setae on dorsum (or venter).

Margin. Marginal setae spinose, straight or slighly curved, each 18.5-36.6 m long, usually with bifid or fimbriate apices, also simple pointed tips frequently detected according to specimens, present about 8-10 laterally between stigmatic areas. Stigmatic clefts rather distinct each with 3 stigmatic spines, median spine slightly curved, and more or less 2 times as long as lateral spine: medians $38.2-73.8 \mu \mathrm{~m}$ long, laterals 4.9-44.2 $\mu \mathrm{m}$ long.

Venter. Derm membranous. Pregential disc-pores 3.2-4.7 $\mu \mathrm{m}$ wide, mostly each with 10 loculi, relatively a small number present around vulvar area. Spiracular pores 3.6$4.5 \mu \mathrm{~m}$ wide, each with 5 loculi, in a narrow or single band between each spiracles and margin. Ventral tubular duct present 1 type with a moderately narrow inner ductule and a developed flower-head-like terminal gland, present around each coxa of legs and anal plates. Ventral microducts quite small, rarely distributed over entire venter. Ventral setae with 3 pairs of long pregenital setae present, also about 2 pairs of long setae between antennae and other setae sharply spinose, scarcely present on
entire venter. Leg well developed, each with a tibio-tarsal articulation and a small articulation sclerosis, total length of metathoracic leg each 273.8-548.6 $\mu \mathrm{m}$ long: each coxa $89.8-137.0 \mu \mathrm{~m}$ long, trochanter+femer 127.7-183.9 $\mu \mathrm{m}$ long, tibia+tarsus $146.0-$ $213.0 \mu \mathrm{~m}$ long, claw $11.8-20.1 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, mostly posterior peritreme broader than anterior: anterior peritremes each $22.4-36.1 \mu \mathrm{~m}$ wide, posterior peritremes each $28.0-$ $49.2 \mu \mathrm{~m}$ wide. Antenna 7 segmented, each 237.8-329.1 $\mu \mathrm{m}$ long. Clypeolabral shield $102.2-142.5 \mu \mathrm{~m}$ wide.

Specimens examined. $2 q$, Punggok-ri, Gochon-eup, Gimpo-si, GG, 20.v.1998, coll. G.M. Kwon, on Ficus benjamina L. (Moraceae), Slide\#. M1AV00453, M1AV00456; $2 q$, Neunggok-dong, Siheung-si, GG, 20.V.1998, same collector and host, Slide\#. M1AV00449, M1AV00452; 2q, Sucheong-dong, Osan-si, GG, 06.vi.2015, coll. J.Y. Choi, on Schefflera actinophylla (Endl.) (Araliaceae), Coll\#. 150601-JY-04; 2 中, Cungjeongno, Jung-gu, Seoul, 25.iii.2015, same collector, on Dracaena sp. (Asparagaceae), Coll\#. 150325-JY-01; 2 Q, Cheolli-dong, Andong-si, GB, 07.vi.2015, same collector, on Schefflera sp. (Araliaceae), Coll\#. 150607-JY-06; 2 中, Cheonjeonri, Sinbuk-eup, Chuncheon-si, GW, 31.v.2015, same collector, on Heteropanax sp. (Araliaceae), Coll\#. 150531-JY-01; 2 , Sincheon-dong, Dong-gu, Daegu, 06.vi.2015, same collector and host, Coll\#. 150606-JY-12; 2 q, Gayang-dong, Dong-gu, Daejeon, 06.vi.2015, same collector and host, Coll\#. 150606-JY-03; 1 \&, Sacheon-ri, Deoksanmyeon, Yesan-gun, CN, 01.vi.2015, same collector, on Schefflera actinophylla (Endl.) (Araliaceae), Coll\#. 150424-JY-01; 1 \uparrow, Yeon-dong, Jeju-si, JJ, 17.iv.2003, coll. G.M. Kwon, on Schefflera sp. (Araliaceae), Slide\#. M1AV00429; 1q, Sinhyo-dong,

Seogwipo-si, JJ, 14.ix.2014, coll. J.Y. Choi, on Asplenium antiquum Makino (Aspleniaceae), Coll\#. 140914-JY-05; 1 Q, Geumam-dong, Jeonju-si, Deokjin-gu, JB, 06.vi.2015, coll. same collector, on Anthurium sp. (Araceae), Coll\#. 150606-JY-06. Host. Araliaceae: Heteropanax sp.; Pseudopanax crassifolius; P. lessonii; Schefflera actinophylla, S. sp.; Asparagaceae: Dracaena sp. Aspleniaceae: Asplenium antiquum; Asteraceae: Brachyglottis bellidioides; B. repanda; Olearia nummularifolia; Senecio sp.; Bignoniaceae: Tecomanthe speciosa; Blechnaceae: Blechnum fraseri; Cyatheaceae: Cyathea sp.; Escalloniaceae: Corokia sp.; Fabaceae: Carmichaelia sp.; Chordospartium stevensonii; Lauraceae: Beilschmiedia tawa; Lobeliaceae: Pratia physaloides; Moraceae: Ficus benjamina; Myoporaceae: Myoporum laetum; Pittosporaceae: Pittosporum sp.; Rubiaceae: Coprosma sp.; Solanaceae: Solanum aviculare; Thymelaeaceae: Pimelea sp.; Verbenaceae: Vitex lucens (Hodgson \& Henderson, 2000).

Distribution. Cosmopolitan species: Korea, Japan, China, Russia, Taiwan, Thailand, Vietnam, Indonesia, Australia, USA, Canada, Europe, South America, Africa.

Remarks. Coccus hesperidum is cosmopolitan species and higly polyphagous (having host plants belonging to about 133 families). Also, this species have morphological variations which are not only superficial appearances, body shapes and color, but also micro structures, positions of dorsal or ventral tubular ducts, sizes of a tibio-tarsal sclerosis, and shapes of anal plates (Hodgson, 1994; Ben-Dov et al., 2015).
6. Coccus pseudomagnoliarum (Kuwana, 1914) 어리목련깍지 벌레

Lecanium (Eulecanium) pseudomagnoliarum Kuwana, 1914: 7.
Coccus citricola Campbell, 1914: 222.
Coccus aegaeus De Lotto, 1973: 291.

Diagnosis. Dorsal tubercles absent; dorsal setae short and stout, with pointed apices; dorsal tubular ducts absent; marginal setae with pointed apices; multilocular discpores each with 6-10 loculi, usually 7 or 8 loculi; each leg without a tibio-tarsal articulatory sclerosis; antenna 8 segmented.

Living appearance. Body elongate oval, moderately convex. Dorsum green or grey in color, with numerous yellow and dark spots. Eggs orange, stored beneath venter (Fig. 16).

Slide-mounted material. Body elongate oval, $4.2-4.5 \mathrm{~mm}$ long, $3.5-3.6 \mathrm{~mm}$ wide, almost without stigmatic cleft; anal clefts about 1/6-1/7 of body length (Fig. 39).

Dorsum. Derm membranous. Dermal areolations well developed. Dorsal tubercles absent. Dorsal setae sharply spinose, short and stout, evenly present on entire dorsum, especially rather frequently present around anal plates. Dorsal tubular ducts absent. Preopercular pore round, $4.7-5.2 \mu \mathrm{~m}$ wide, scattered in a dense group of about 10 in front of anal plates. Anal plates quadrate, 157.2-168.4 $\mu \mathrm{m}$ long, $179.1-185.8 \mu \mathrm{~m}$ wide, usually anterolateral margin rather longer than posterolateral margin: anterolateral margin 109.9-119.9 $\mu \mathrm{m}$ long, posterolateral margin 105.4-108.6 $\mu \mathrm{m}$ long. Each plate with 4 apical setae.

Margin. Marginal setae spinose, straight or slighly curved, each 27.7-30.1 $\mu \mathrm{m}$ long, usually with simple pointed apices, occasionally with spatulate tips, present 23-26
laterally between stigmatic areas. Stigmatic clefts not distinct, each with 3 stigmatic spines, median spine slightly curved, and over 2 times as long as lateral spine: medians 67.9-75.5 $\mu \mathrm{m}$ long, laterals $25.1-35.7 \mu \mathrm{~m}$ long.

Venter. Derm membranous. Multilocular disc-pores 5.7-6.5 $\mu \mathrm{m}$ wide, each with a variable number of loculi, 6-10 loculi, usually 7 and 8 , frequently present around or under vulvar area, also scarcely scattered on anterior abdomen. Spiracular pores 4.4$4.5 \mu \mathrm{~m}$ wide, each with 5 loculi, in a narrow band 1-2 pores wide between each spiracles and margin. Ventral tubular duct present according to Gill, 1988, but not detected in the examined specimens. Ventral microducts small, evenly present over venter. Ventral setae with 3 pairs of long pregenital setae present, also about 4 pairs of long and short setae between antennae and other setae sharply spinose, each 10.6$13.6 \mu \mathrm{~m}$ long, evenly distributed on entire venter. Leg well developed, each with a tibio-tarsal articulation, but an articulation sclerosis absent, total length of metathoracic leg each $551.7-588.8 \mu \mathrm{~m}$ long: each coxa $140.6-144.0 \mu \mathrm{~m}$ long, trochanter+femer 177.5-196.1 $\mu \mathrm{m}$ long, tibia+tarsus 212.1-222.7 $\mu \mathrm{m}$ long, claw 21.6$25.9 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme broader than anterior: anterior peritremes each $47.7-56.6 \mu \mathrm{~m}$ wide, posterior peritremes each $61.8-71.7 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each 341.4-346.6 $\mu \mathrm{m}$ long. Clypeolabral shield $162.8-368.5 \mu \mathrm{~m}$ wide.

Specimens examined. $2 q$, Seogwipo-si, JJ, 10.v.1972, collector data absent, on Celtis sp. (Ulmaceae), Slide\#. 7197-A(1), 7197-A(2); 7우, Sujeong-dong, Yeosu-si, JN, coll. J.Y. Choi, same host, Coll\#: 150527-JY-01, 150527-JY-06, 150527-JY-09.

Host. Lauraceae: Laurus nobilis; Rutaceae: Citrus aurantium; C. deliciosa; Citrus limon; Evodia rutaecarpa; Ulmaceae: Celtis australis; Zelkova serrata (Takahashi, 1955c; Marotta, 1987; Marotta \& Tranfaglia, 1990).

Distribution. Korea, Japan, Russia, Australia, USA, Europe.

Genus Eucalymnatus Cockerell, 1901 남생 이각지 벌레 속

Type species: Lecanium tessellatum Signoret, 1873

Diagnosis. Irregular polygonal plates on dorsum; long setae present on anterior margin of ano-genital fold set (Gill, 1989; Hodgson, 1994)

7. Eucalymnatus tessellatus (Signoret, 1873) 남생 이각지 벌레

Lecanium tessellatum Signoret, 1873b: 401.
Lecanium perforatum Newstead, 1894: 233.
Lecanium tessellatum swainsonae Cockerell, 1897a: 109.
Lecanium subtessellatum Green, 1904: 206.
Lecanium tessellatum obsoletum Green, 1922: 1024.

Diagnosis. Polygonal plates irregularly present around margin; dorsal tubercles present; dorsal tubular ducts absent; marginal setae with acute, bifid or fimbriate apices; Multilocular disc-pores with 6 or 7 loculi; ventral tubular duct absent; leg each with a tibio-tarsal articulation and articulation sclerosis; antenna 7 or 8 segmented,
usually 8 .
Living appearance. Body oval, asymmetrical, rather flat. Dorsum dark red brown in color with sclerotized polygonal plates.

Slide-mounted material. Body pyriform to oval or asymmetrical, with distinct stigmatic cleft; anal cleft about $1 / 4$ of body length.

Dorsum. Derm membranous to sclerotized. Polygonal plates irregular shaped, and relatively larger ones present around margin. Dermal areolations present, but small. Dorsal tubercles normal, convex, distributed in a cleft between polygonal plates submarginally, 8-11 in total on body: 0-2 pairs between apex of head and anterior stigmatic clefts, 0 or 1 pairs between anterior and posterior stigmatic clefts and $0-3$ pairs between posterior stigmatic clefts and anal cleft. Dorsal setae bluntly spinose, short, curved, rarely scattered throughout dorsum. Dorsal tubular ducts absent. Dorsal pore small, scarcely present on dorsum. Preopercular pore present or absent, if present, in a small group of about 5-10 in front of anal plates. Anal plates each triangular in shape. Each plate with 4 apical setae present along to posterior margin.

Margin. Marginal setae spinose, straight or curved, usually with acute, bifid or fimbriate apices, present about $13-15$ setae on each side between anterior and posterior stigmatic clefts. Stigmatic clefts apparent each with 3 stigmatic spines, bluntly spinose, median spine more about 2 times as long as lateral spine.

Venter. Derm membranous. Pregenital disc-pores mostly each with 6 or 7 loculi, frequently scattered around vulvar area, less number present on anterior area of abdomen and thorax. Spiracular pores each with 5 loculi, in a narrow band between each spiracles and margin. Ventral tubular duct absent. Ventral microducts quite
small, rarely scattered on entire venter. Ventral setae sharply spinose, scarcely scattered over venter. Leg well developed, each with a tibio-tarsal articulation and articulation sclerosis. Tarsal digitules thinner and longer than claw digitules. Spiracles small, usually posterior peritreme slighly broader than anterior. Antenna 7 or 8 segmented, usually 8 . Clypeolabral shield present.

Host. Anacardiaceae: Schinus terebinthifolius; Apocynaceae: Nerium oleander; Plumeria rubra; Araceae: Scindapsus aureus; Araliaceae: Meryta angustifolia; Arecaceae: Elaeis guineensis; Asclepiadaceae: Calotropis gigantea; Asteraceae: Fitchia sp.; Caricaceae: Carica papaya; Flagellariaceae: Flagellaria sp.; Gnetaceae: Gnetum gnemon; Heliconiaceae: Heliconia sp.; Hippocrateaceae: Salacia sp.; Lauraceae: Cinnamomum elegans; Lecythidaceae: Barringtonia asiatica; Malvaceae: Lagunaria patersonii; Moraceae: Ficus tinctoria; Musaceae: Musa paradisiaca; M. sapientum; Myrtaceae: Eugenia malaccensis; Oleaceae: Olea verrucosa; Orchidaceae: Calanthe sp.; Vanilla sp.; Pandanaceae: Pandanus sp.; Pittosporaceae: Pittosporum bracteolatum; Rubiaceae: Morinda citrifolia; Randia tahitensis; Timonius sp.; Rutaceae: Citrus aurantifolia; C. limon; C. paradisi; C. reticulata; Evodia sp.; Sapindaceae: Dodonaea viscosa; Sterculiaceae: Theobroma cacao; Verbenaceae: Premna sp.; Zingiberaceae: Alpinia purpurata; Elettaria cardamomum (Williams \& Watson, 1990).

Distribution. Korea, Japan, China, Russia, Taiwan, Thailand, Vietnam, Indonesia, Australia, USA, Europe, South America, Africa.

Remarks. Any specimens of Eucalymnatus tessellatus could not be examined in this study. Above diagnosis and description was written according to Hamon \& Williams,

1984; Hodgson, 1994.

Tribe Pulvinariini Targioni-Tozzetti, 1868 솜깍지 벌레족

Type genus: Pulvinaria Targioni-Tozzetti, 1867

Diagnosis. Long or short white ovisac produced from beneath abdomen, usually making body strongly lifted; three or four types (scarcely two) of ventral tubular ducts; dorsum slightly covered with wax secretion or absent woolly wax cover; dorsal tubular ducts absent, or if present, one type with a filamentous inner ductule and short outer ductule; legs with a tibio-tarsal articulatory sclerosis; eyespots present on margin; slightly furrowed and unsclerotized stigmatic clefts (Hodgson, 1994).

Key to Korean genera of Pulvinariini

1. Ventral tubular ducts only present 2 types; Long ventral setae arranged medially between anal plates and mouthparts

Leptopulvinaria

- Ventral tubular ducts present 3 types; Long ventral setae restricted to anterior area of anal plates 2

2. Dorsal tubular ducts usually present; Legs each with a tibio-tarsal articulatory sclerosis \qquad Pulvinaria

- Dorsal tubular ducts absent; Each leg without a tibio-tarsal articulatory sclerosis Nipponpulvinaria

Genus Leptopulvinaria Kanda, 1960

Type species: Leptopulvinaria elaeocarpi Kanda, 1960

Diagnosis. Convex dorsal tubercles around submarginal area of body; only two types of ventral tubular ducts; rather long ventral setae arranged medially between anterior to anal plates and near to mouthparts (Hodgson, 1994; Tanaka \& Amano, 2008).

Remarks. Leptopulvinaria consists of 2 species, L. elaeocarpi Kanda, 1960 and L. kawaii Tanaka \& Amano, 2008, which were only described from Japan. In this paper, Leptopulvinaria is reported for the first time from Korean peninsula with one species, L. kawaii.

8. Leptopulvinaria kawaii Tanaka \& Amano, 2008

Leptopuvinaria kawaii Tanaka \& Amano, 2008: 225.

Diagnosis. Dermal areolations well-developed; dorsal tubercles present; dorsal tubular ducts present; marginal setae each with a simple pointed apex; multilocular disc-pores usually each with 10 loculi; ventral tubular duct present 2 types; antenna 8 segmented; legs each with a tibio-tarsal articulatory sclerosis.

Living appearance. Body elongate oval, slightly convex. Dorsum dark or light brown, usually with irregular pattern of black stripes before oviposition and covered by thin coiled wax. Ovisac made by secretion of white wax and moderately long, one or three times length of body. Eggs light yellow or orange in color (Fig. 17).

Slide-mounted material. Body oval to elongate oval, 3.2-4.3mm long and 2.33.2 mm wide; anal cleft approximately $1 / 6$ of body length (Fig. 40).

Dorsum. Derm membranous. Dermal areolations well-developed. Dorsal tubercles convex, each with an inner filamentous ductule around submargins, 11-14 in total on each side: $4-5$ between apex of head and anterior stigmatic cleft, 2-3 between anterior and posterior stigmatic clefts and 5-6 between posterior stigmatic cleft and anal cleft. Dorsal setae spinose and pointed, each $5.4-10.2 \mu \mathrm{~m}$ long, frequently scattered on dorsum, evenly present throughout dorsum. Dorsal tubular ducts each with a moderately long outer ductule and a quite thin inner ductule with a small terminal gland. Dorsal microducts frequently scattered on entire dorsum. Preopercular pore round to oval, small, $3.39-6.46 \mu \mathrm{~m}$ wide, present in a loose group of 1-9 in front of anal plates. Anal plates each triangular in shape, $121.6-145.1 \mu \mathrm{~m}$ long, $119.9-151.1 \mu \mathrm{~m}$ wide, usually anterolateral margin having similar length to posterolateral margin; anterolateral margin $79.8-100.9 \mu \mathrm{~m}$ long, posterolateral margin $82.0-102.8 \mu \mathrm{~m}$ long. Each plate with 4 apical or subapical setae.

Margin. Marginal setae sharply spinose, straight or slightly curved, with simple pointed apices, each $24.1-41.7 \mu \mathrm{~m}$ long, present $16-17$ setae between anterior and posterior stigmatic clefts. Stigmatic cleft slightly furrowed, each with 3 stigmatic spines, median spine about less 2 times as long as lateral spine: median $32.0-53.8 \mu \mathrm{~m}$ long, laterals 17.1-30.9 $\mu \mathrm{m}$ long. Eyespots located near margin.

Venter. Derm membranous. Multilocular disc-pores $5.0-8.2 \mu \mathrm{~m}$ wide, usually each with 10 loculi, mainly scattered around vulvar area, less frequently present on anterior area of abdomen and thorax, especially some groups present laterad of meta-, meso-,
and procoxa. Spiracular pores $5.0-8.2 \mu \mathrm{~m}$ wide, each with 5 loculi, in a narrow band 2-3 pores wide extending from each spiracles to stigmatic clefts. Ventral tubular duct $10.1-19.1 \mu \mathrm{~m}$ long, present 2 types: Type I with a moderately narrow inner ductule and a developed flower-head-like terminal gland, present on submargin and median areas of abdomen, thorax and head. Type II with a short outer ductule, a filamentous inner ductule, and a very small terminal gland, frequently present on submargin of posterior abdomen and rarely scattered on rest areas of venter. Ventral microducts distributed on entire venter, especially frequent on submargin. Ventral setae with about 8 pairs of long setae present between anal plates and mouthparts, also about 5 pairs of long setae between antennae and other setae sharply spinose, each 10.1$19.1 \mu \mathrm{~m}$ long, evenly distributed on entire venter. Leg well-developed, each with a tibio-tarsal articulation and an articulatory sclerosis, total length of metathoracic leg each $703.3-879.7 \mu \mathrm{~m}$ long: each coxa $144.2-209.5 \mu \mathrm{~m}$ long, trochanter+femer 214.9$291.4 \mu \mathrm{~m}$ long, tibia + tarsus $304.4-366.2 \mu \mathrm{~m}$, claw 29.7-39.4 $\mu \mathrm{m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, anterior peritreme mostly smaller than posterior: anterior peritremes each $32.3-49.3 \mu \mathrm{~m}$ wide, posterior peritremes each $36.6-54.0 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each 398.3$481.0 \mu \mathrm{~m}$ long. Clypeolabral shield $142.5-183.5 \mu \mathrm{~m}$ wide.

Material examined. 10 q, Daemun-ri, Gunoe-myeon, Wando-gun, JN, Korea, 04. v. 2014, same collector, on Eurya sp. (Theaceae), Coll\#: 140504-JY-05; 8q, Buhwang-ri, Bogil-myeon, Wando-gun, JN, Korea, 11. iv. 2015, coll. J.Y. Choi, on Ilex cornuta Lindl. (Aquifoliaceae), Coll\# 150411-JY-22.

Host. Aquifoliaceae: Ilex cornuta; I. integra; I. latifolia; I. pedunculosa; Pentaphylacaceae:

Cleyera japonica; Eurya japonica; Ternstroemia gymnanthera; Symplocaceae: Symplocos myrtaceae (Tanaka \& Amano, 2008).

Distribution. Korea, Japan.
Remarks. Leptopuvinaria kawaii is differentiated from Nipponpulvinaria and Pulvinaria species by only two types of ventral tubular ducts and rather long ventral setae arranged between anterior to anal plates and near to mouthparts, while the species of other genera have 3 types of ventral tubular ducts and only 3 pairs of long pregenital setae. In this study, L. kawaii is newly reported from Korea.

Genus Nipponpulvinaria Tanaka, 2008

Type species: Pulvinaria horii Kuwana, 1902

Diagnosis. A complete and broad submarginal band of large ventral tubular ducts; absence of dorsal tubular ducts; legs without a tibio-tarsal articulatory sclerosis (Tanaka, 2008).

Remarks. Nipponpulvinaria was newly erected as a monotypic genus of Pulvinariini based on absence of a tibio-tarsal articulatory sclerosis and different distributions of each type of ventral tubular ducts from other genera of Pulvinariini (Tanaka, 2008).

9. Nipponpulvinaria horii Kuwana, 1902 단풍공각지 벌레

Pulvinaria horii Kuwana, 1902b: 59.
Lecanium lichenoides Green, 1921: 257.

Diagnosis. Dermal areolations well-developed; dorsal tubercles absent; dorsal tubular ducts absent; marginal setae each with a simple pointed apex; multilocular disc-pores usually each with 10 loculi; ventral tubular duct present 3 types; antenna 8 or 9 segmented; each leg without a tibio-tarsal articulatory sclerosis.

Living appearance. Body oval to round, moderately convex. Dorsum whitish or yellowish, with a white longitudinal band surrounded by black mottling and other spots irregularly scattered on entire dorsum. Ovisac short, 1/2-1 times length of body, and abundantly secreted from abdomen, making body extremely lifted except for an anterior end. Eggs red or orange in color and concealed by white ovisac (Fig. 18).

Slide-mounted material. Body oval to circular, $4.3-8.4 \mathrm{~mm}$ long, $4.0-8.2 \mathrm{~mm}$ wide, with slightly furrowed stigmatic cleft; anal cleft about 1/4-1/5 of body length (Fig. 41).

Dorsum. Derm membranous or slightly sclerotized. Dermal areolations welldeveloped, each with a micropore 2.6-3.6 $\mu \mathrm{m}$ wide. Dorsal tubercles absent. Dorsal setae bluntly spinose, stout, slightly curved near to apices, present 2 sized: long sized setae, each $7.95-10.34 \mu \mathrm{~m}$ long; small sized setae, each $15.32-19.59 \mu \mathrm{~m}$ long, both types of setae sparsely distributed over dorsum. Dorsal tubular ducts not detected. Dorsal microducts frequently scattered entire dorsum. Preopercular pore round, 5.3$7.3 \mu \mathrm{~m}$ wide, extensively present on dorsal area between anal plates and near to mouthparts. Anal plates together quadrate, each with rounded outer angles, 200.6$247.1 \mu \mathrm{~m}$ long, $164.6-276.2 \mu \mathrm{~m}$ wide. Each plate with 4 apical setae.

Margin. Marginal setae spinose, stout, each $24.8-42.5 \mu \mathrm{~m}$ long, usually with simple
pointed apices, present about 15-19 laterally between anterior and posterior stigmatic clefts. Stigmatic clefts slightly deep, each with 3 stigmatic spines, bluntly spinose, median spine approximately 2 times as long as lateral spine: medians $77.2-122.2 \mu \mathrm{~m}$ long, laterals 27.2-65.7 $\mu \mathrm{m}$ long. Eyespots located near margin.

Venter. Derm membranous. Multilocular disc-pores $8.2-9.5 \mu \mathrm{~m}$ wide, each with 9 or 10 loculi, mostly with 10 , mainly scattered around vulvar area, less frequently present on anterior area of abdomen and thorax, especially some groups present laterad of meta- and mesocoxa. Spiracular pores $5.3-7.0 \mu \mathrm{~m}$ wide, each with 5 loculi, in a narrow band 2-3 pores wide between each spiracles and margin. Ventral tubular duct 34.0$49.4 \mu \mathrm{~m}$ long, present 3 types: Type I with a developed outer ductule, a broad and slightly curved inner ductule and a large flower-head-like terminal gland, frequently present and intermixed with Type III in submarginal band. Type II with a narrow inner ductule and a developed flower-head-like terminal gland, mainly scattered on posterior abdomen. Type III with a filamentous inner ductule and shorter outer ductule, primarily distributed on submarginal area. Ventral microducts small, each $2.4-3.6 \mu \mathrm{~m}$ long, evenly scattered on entire venter. Ventral setae with 3 pairs of long pregenital setae present, also about 4 pairs of long setae between antennae and other setae sharply spinose, slender, each 12.3-18.9 $\mu \mathrm{m}$ long, scarcely distributed on entire venter. Each leg normally developed, without a tibio-tarsal articulation and an articulatory sclerosis, total length of metathoracic leg each 604.0-946.0 $\mu \mathrm{m}$ long: each coxa 129.4-166.9 $\mu \mathrm{m}$ long, trochanter+femer 166.2-207.5 $\mu \mathrm{m}$ long, tibia+tarsus 225.4$262.7 \mu \mathrm{~m}$ long, claw $22.4-32.7 \mu \mathrm{~m}$ long. Tarsal digitules relatively thin. Spiracles normally developed, usually posterior peritreme much broader than anterior: anterior
peritremes each $66.0-113.1 \mu \mathrm{~m}$ wide, posterior peritremes each $77.9-142.2 \mu \mathrm{~m}$ wide. Antenna 8 or 9 segmented, each $420.0-485.9 \mu \mathrm{~m}$ long. Clypeolabral shield 225.4$316.3 \mu \mathrm{~m}$ wide.

Specimens examined. 5 , Daehak-dong, Gwanak-gu, Seoul, 17.iv.2014, coll. J.Y. Choi, on Acer palmatum Thunb. (Sapindaceae), Coll\#. 140417-JY-01; 5 , same locality, collector and host, 23.v.2014, Coll\#. 140523-JY-03.

Host. Aceraceae: Acer trifidum; Fagaceae: Shiia sieboldii; Hippocastanaceae: Aesculus hippocastanum; A. turbinata; Moraceae: Ficus carica; Rosaceae: Pyrus simonii; Sapindaceae: Koelreuteria paniculata; Ulmaceae: Zelkova serrata (Kuwana, 1902b; Kuwana, 1907; Takahashi, 1955b; Takahashi, 1956; Canard, 1994).

Distribution. Korea, Japan, Europe, UK.

Genus Pulvinaria Tarioni-Tozzetti, 1867 솜각지 벌레 속

Type species: Coccus vitis Linnaeus, 1758

Diagnosis. Elongate white ovisac secreted from body; many ventral tubular ducts distributed in submarginal band or median area of body; less frequent number of ventral tubular ducts present on head; few dorsal tubular ducts (Gill, 1988; Hodgson, 1994).

Remarks. Pulvinaria is comprised of about 146 species occurring in all of the zoogeographical regions (Ben-Dov et al., 2015).

Key to Korean species of Pulvinaria

1. Dorsal tubercles well-developed 2

- Dorsal tubercles absent 3

2. Spatulated marginal setae present; Dermal areolations well-developed; Dorsaltubular ducts presentP. torreyae

- Spatulated marginal setae absent; Dermal areolations absent; Dorsal tubular ductsabsentP. floccifera

3. Marginal setae each with a blunt apex P. nishigaharae

- Marginal setae each with a simple pointed or bifid apex 4

4. Ventral tubular ducts (Type I) with a broad inner ductule, usually present on submarginal area P. nipponica

- Ventral tubular ducts (Type I) with a broad inner ductule, usually present on medial area of head, thorax, and abdomen, and in inner submarginal band. 5

5. Dorsal tubular ducts frequently distributed on dorsum.

\qquad
P. photiniae

- Dorsal tubular ducts scarcely distributed on dorsum P. hydrangeae

10. Pulvinaria floccifera (Westwood, 1870) 동백 솜깍지 벌레

Coccus flocciferus Westwood, 1870: 308.
Pulvinaria camelicola Signoret, 1873a: 32.
Pulvinaria linearis Targioni Tozzetti, 1884: 398.
Pulvinaria brassiae Cockerell, 1895a: 135.
Pulvinaria theae Froggatt, 1915: 418.

Diagnosis. Dermal areolations absent; dorsal tubercles present; dorsal tubular ducts absent; marginal setae each with a simple pointed, bifid or fimbriate apex; pregential disc-pores with 7 loculi; ventral tubular duct present 3 type; antenna 8 segmented; leg each with a tibio-tarsal articulatatory sclerosis.

Living appearance. Body elongate oval, slightly convex. Dorsum cream to tan colored, mottled with brown. Ovisac elongate, secreted from abdomen.

Slide-mounted material. Body elongate oval, with shallow stigmatic cleft; anal cleft about $1 / 6$ of body length.

Dorsum. Derm membranous. Dermal areolations present, but not distinct on mature adult. Dorsal tubercles small, present on submarginal area, 4-14 in total on body, but occasionally absent. Dorsal setae spinose, short, abundantly distributed on entire dorsum. Dorsal tubular ducts each with a normal outer ductule and a filamentous inner ductule, and a small terminal gland, frequently present over dorsum. Bilocular pores and simple disc pores present on dorsum. Preopercular pore quite small, slightly sclerotized, present in a small group of 7-25 in front of anal plates. Anal plates each triangular in shape. Each plate with 4 apical setae.

Margin. Marginal setae spinose, long and slightly curved, usually present about 1527 laterally between stigmatic areas. Stigmatic clefts slightly furrowed, each with 3 stigmatic spines, blunt and stout, median spine about over 2 or 3 times as long as lateral spine.

Venter. Derm membranous. Pregential disc-pores usually each with 7 loculi, mainly scattered around vulvar area, less frequently present on anterior area of abdomen and
thorax, occasionally small groups also present laterad of metacoxa and mesocoxa. Spiracular pores each with 5 loculi, in a broad band 3-4 pores wide between each spiracles and margin. Ventral tubular duct present 3 type: Type I with a developed outer ductule, a rather stout inner ductule, and a developed flower-head-like terminal gland, usually present on head, thorax and abdomen. Type II with a narrow inner ductule, and a large flower-head-like terminal gland, mainly scattered medial area of posterior abdomen. Type III with a filamentous inner ductule and a quite small terminal gland, frequently scattered in wide submarginal bands between antennae and anal lobes. Ventral microducts small, especially present in submarginal band, also rarely distributed over venter. Ventral setae sharply pointed, slender, present on entire venter. Leg well developed, each with a tibio-tarsal articulation and an articulation sclerosis. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme much broader than anterior. Antenna 8 segmented. Clypeolabral shield normal.

Host. Agavaceae: Dracaena sp.; Amaranthaceae: Achyranthes sp.; Apocynaceae: Nerium sp.; Asteraceae: Chrysanthenum sp.; Celastraceae: Euonymus radicans; Euphorbiaceae: Chamaesyce sp.; Euphorbia sp.; Magnoliaceae: Magnolia japonica; Malvaceae: Hibiscus sp.; Moraceae: Ficus sp.; Myrsinaceae: Ardisia crispa; Myrtaceae: Pimenta sp.; Orchidaceae: Odontoglossum sp.; Polygonaceae: Altigonon sp.; Coccoloba sp.; Taxaceae: Taxus baccata; Theaceae: Camellia sp.; C. sinensis; Cleyera ochnacea; Pentaphylacaceae: Eurya japonica; Ternstroemia japonica; Umbelliferae: Foeniculum sp. (Takahashi, 1955d; Takahashi, 1956; Hamon \& Williams, 1984; Hodgson \& Hilburn, 1900; Hodgson \& Hilburn, 1991; Hodgson \&

Henderson, 2000).
Distribution. Korea, Japan, China, Australia, USA, Canada, Europe, UK, South America, Africa.

Remarks. Pulvinaria floccifera was firstly reported by Kown et al., 2005, however taxonomical information was not provided. In this study, any specimens of the specimens of this species could not be examined. Above diagnosis and description was written according to Hodgson \& Henderson, 2000; Williams \& Kosztarab, 1972; Tanaka \& Amano, 2007. In Tanaka \& Amano, 2007, the dermal areolations and dorsal tubular ducts are described as absent characters in dorsum.

11. Pulvinaria hydrangeae Steinweden, 1946

Pulvinaria hydrangeae Steinweden, 1946: 7.

Diagnosis. Dorsal areolations present; dorsal tubercles absent; dorsal tubular ducts present; marginal setae each with a simple pointed apex, occasionally with a bifid or fimbriate tip; Multilocular disc-pores usually each with 7 loculi; ventral tubular duct present 3 types; antenna 8 segmented; legs each with a tibio-tarsal articulatory sclerosis.

Living appearance. Body elongate oval, slightly convex. Young adult female not observed. Dorsum of mature adult female yellowish or light brownish, slightly covered with white coiled wax. Body extremely lifted by white ovisac secreted from abdomen. Ovisac about 2 or 3 times as long as body. Eggs reddish yellow in color and stored in ovisac (Fig. 20).

Slide-mounted material. Body elongate oval, $2.0-3.4 \mathrm{~mm}$ long, $1.6-2.9 \mathrm{~mm}$ wide, with moderately deep stigmatic cleft; anal cleft about 1/5-1/7 of body length (Fig. 43).

Dorsum. Derm membranous. Dermal areolations well-developed. Dorsal tubercles absent. Dorsal setae spinose, acute, each $8.7-13.0 \mu \mathrm{~m}$ long, evenly distributed on entire dorsum. Dorsal tubular ducts each with a short outer ductule and a filamentous inner ductule and a very small terminal gland, rarely present on entire dorsum. Preopercular pore round, $3.6-5.4 \mu \mathrm{~m}$ wide, present in a small group of $10-14$ in front of anal plates. Anal plates each triangular in shape, 133.7-155.0 $\mu \mathrm{m}$ long, 138.6-172.8 wide, mostly posterolateral margin slightly longer than anterolateral margin: anterolateral margin $89.0-111.2 \mu \mathrm{~m}$ long, posterolateral margin $98.4-120.0 \mu \mathrm{~m}$ long. Each plate with 4 apical setae. Eyespots located near margin.

Margin. Marginal setae spinose, slender, slightly curved, each $29.0-54.4 \mu \mathrm{~m}$ long, usually with simple pointed apices, occasionally with bifid or fimbriate tips, present about 9-15 laterally between stigmatic areas. Stigmatic clefts moderately furrowed, each with 3 stigmatic spines, blunt, stout, median spine about over 2 times as long as lateral spine: medians $71.4-83.7 \mu \mathrm{~m}$ long, laterals $27.8-59.5 \mu \mathrm{~m}$ long.

Venter. Derm membranous. Multilocular disc-pores $6.5-7.9 \mu \mathrm{~m}$ wide, usually each with 7 loculi, numerous pores scattered around vulvar area, less frequently present on anterior area of abdomen and thorax, especially small group also present laterad of metacoxa and mesocoxa. Spiracular pores $4.2-6.0 \mu \mathrm{~m}$ wide, each with 5 loculi, in a narrow band 2-3 pores wide between each spiracles and margin. Ventral tubular duct 27.0-38.5 $\mu \mathrm{m}$ long, present 3 types: Type I with a developed outer ductule, a rather broad inner ductule and a developed flower-head-like terminal gland, mainly present
on head and thorax, occasionally detected on abdomen. Type II with a slender inner ductule and a relatively large flower-head-like terminal gland, usually distributed around abdomen and medial submargin. Type III with a filamentous inner ductule, slightly or entirely curved and a quite small terminal gland, frequently scattered in submarginal area and making submarginal band, less number present on anterior area of venter. Ventral microducts small, each 1.9-3.2 $\mu \mathrm{m}$ long, frequently scattered on entire venter, especially on submargin. Ventral setae with 3 pairs of long pregenital setae present, also about 5 pairs of long setae between antennae and other setae sharply spinose, slender, each 7.6-14.8 $\mu \mathrm{m}$ long, evenly distributed on entire venter. Leg normally developed, each with a tibio-tarsal articulation and an articulatory sclerosis, total length of metathoracic leg each 796.4-922.1 $\mu \mathrm{m}$ long: each coxa 195.2$245.7 \mu \mathrm{~m}$ long, trochanter+femer $281.4-334.3 \mu \mathrm{~m}$ long, tibia+tarsus $269.9-325.9 \mu \mathrm{~m}$ long, claw 27.6-35.9 $\mu \mathrm{m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme slightly broader than anterior: anterior peritremes each 46.6-60.2 $\mu \mathrm{m}$ wide, posterior peritremes each 54.4$68.2 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each 408.4-497.4 $\mu \mathrm{m}$ long. Clypeolabral shield $158.0-190.8 \mu \mathrm{~m}$ wide.

Specimens examined. 10q, Han-gye-ri, Buk-myeon, Inje-gun, GW, 13.vi.2015, coll.
Y.R. Lee \& H.S. Lee, on Weigela sp. (Caprifoliaceae), Coll\#. 150613-JY-01.

Host. Aceraceae: Acer campestris; A. monspessulanum; A. pseudoplatanus; Caprifoliaceae: Weigela sp. Cornaceae: Cornus sanguinea; Ebenaceae: Diospyros kaki; Hydrangeaceae: Hydrangea sp.; H. hortensis; Moraceae: Ficus sp.; Morus alba; Platanaceae: Platanus acerifolia; Rosaceae: Crataegus sp.; Prunus avium; P.
serrulata; Taxaceae: Tilia platyphyllos; T. vulgaris; Ulmaceae: Celtis australis (Canard, 1965; Hodgson \& Henderson, 2000; Ben-Dov, 2013).

Distribution. Korea, Japan, Australia, USA, Europe, UK.
Remarks. Pulvinaria hydrangeae is distinguished from P. photiniae by frequency of ventral tubular ducts. The ventral tubular ducts of P. hydrangeae scarcely distributed on entire dorsum and less than the number of dorsal microductules, whereas those of P. photiniae are frequently distributed. In this study, Pulvinaria hydrangeae is firstly reported from Korea.

12. Pulvinaria idesiae Kuwana, 1914

Pulvinaria idesidae Kuwana, 1914: 6.

Diagnosis. Dermal areolations present; dorsal tubercles absent; dorsal tubular ducts absent; marginal setae each with a simple pointed apex; pregential disc-pores with 8 loculi; ventral tubular duct present 3 type; antenna 8 segmented; legs each with a tibio-tarsal articulatatory sclerosis.

Living appearance. Body oval, slightly convex. Dorsum greenish light brown with yellow spots on dorsum, especially stigmatic furrows and an anal cleft. Ovisac moderately long, one or two times length of body, and produced mainly from beneath abdomen, making body strongly lifted. Eggs light orange in color (Fig. 21).

Slide-mounted material. Body oval to round, $3.7-5.8 \mathrm{~mm}$ long and $3.2-5.0 \mathrm{~mm}$ wide; anal cleft about 1/5-1/6 of body length (Fig. 44).

Dorsum. Derm membranous, slightly sclerotized. Dermal areolations well developed.

Dorsal tubercles absent. Dorsal setae spinose with a pointed apex, each 6.3-9.9 $\mu \mathrm{m}$ long, frequently distributed over entire dorsum. Dorsal tubular ducts absent. Dorsal microducts evenly present on entire dorsum. Preopercular pore round to oval, small, $4.5-6.0 \mu \mathrm{~m}$ wide, rarely scattered in a small group of 2-3 in front of anal plates. Anal plates each triangular in shape, posterolateral margin much longer than anterolateral margin: anterolateral 104.6-142.9 $\mu \mathrm{m}$ long, posterolateral $124.7-173.3 \mu \mathrm{~m}$ long. Each plate with 4 apical setae.

Margin. Marginal setae spinose, straight or curved, with simple, pointed apices, each $34.8-47.9 \mu \mathrm{~m}$ long, present $14-17$ setae between anterior and posterior stigmatic clefts. Stigmatic cleft shallow each with 3 stigmatic spines, median spine about more 2 times as long as lateral spine: median $80.4-108.0 \mu \mathrm{~m}$ long, laterals $34.1-50.0 \mu \mathrm{~m}$ long.

Venter: Derm membranous. Pregenital disc-pore $6.3-7.9 \mu \mathrm{~m}$ wide, mostly with 8 loculi, mostly distributed around vulvar area, also relatively small number present on abdomen and thorax. Spiracular pores $4.2-5.3 \mu \mathrm{~m}$ wide, each with 5 loculi, present in a narrow band extending from each spiracles to stigmatic clefts. Ventral tubular duct 23.3-36.7 $\mu \mathrm{m}$ long, present 3 types: Type I with a broad inner ductule and a welldeveloped flower-haed-like terminal gland, frequently scattered on medial abdomen and thorax. Type II with a moderately narrow inner ductule and a developed flower-head-like terminal gland, maily present on submarginal area, also scarcely scattered on medial area of abdomen and thorax. Type III with a quite sort or long outer ductule, a very thin and long inner ductule, usually entirely curved, and a quite small terminal gland, primarily present on submargin and rarely scattered on rest areas of venter. Ventral microducts evenly present on entire venter, especially frequent on submargin.

Ventral setae with about 8 pairs of long setae present between anal plates and mouthparts, also about 6 pairs of long setae between antennae and other setae sharply spinose, each 12.0-20.5 m long, evenly distributed on entire venter. Leg well developed, each with a small tibio-tarsal sclerosis, total length of metathoracic leg each 880.7-1390.0 $\mu \mathrm{m}$ long: each coxa $204.5-356.4 \mu \mathrm{~m}$ long, trochanter+femer $280.91-478.5 \mu \mathrm{~m}$ long, tibia+tarsus $280.9-508.7 \mu \mathrm{~m}$, claw $34.8-48.2 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed: anterior peritremes each $56.4-70.9 \mu \mathrm{~m}$ wide, posterior peritremes each $49.9-91.6 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each 399.1-625.6 $\mu \mathrm{m}$ long. Clypeolabral shield 180.3$204.5 \mu \mathrm{~m}$ wide.

Specimens examined. $8 \uparrow$, Sillim-dong, Gwanak-gu, Seoul, Korea, 22.v.2014, coll. J.Y. Choi, on Acer sp. (Aceraceae), Coll\#. 140522-JY-02.

Host. Betulaceae: Alnus hirsuta; Cornaceae: Cornus sp.; Ebenaceae: Diospyros kaki; Flacourtiaceae: Idesia polycarpa; Hippocastanaceae: Aesculus turbinata; Salicaceae: Salix glandulosa (Takahashi, 1956).

Distribution. Korea, Japan.
Remarks. This species is newly reported from Korea. Pulvinaria idesiae is close to P. regalis Canard, however distinct characters which could distinguish both species are absent in current taxonomy. To clarify this problem, further examination for both speices is highly needed.

13. Pulvinaria nipponica Lindinger, 1933 무궁화솜각지 벌레

Pulvinaria nipponica Lindinger, 1933: 50

Diagnosis. Dermal areolations present; dorsal tubercles absent; dorsal tubular ducts present; marginal setae each with a simple pointed apex; Multilocular disc-pores usually each with 6-8 loculi, mostly 8 ; ventral tubular duct present 3 types; antenna 8 or 9 segmented; legs each with a tibio-tarsal articulatory sclerosis.

Living appearance. Body oval to round, moderately convex. Dorsum whitish or yellowish, with a white longitudinal band surrounded by black mottling and other spots irregularly scattered on entire dorsum. Ovisac short, 1/2-1 times length of body, and abundantly secreted from abdomen, making body extremely lifted except for an anterior end. Eggs red or orange in color and concealed by white ovisac (Fig. 19).

Slide-mounted material. Body elongate oval, $2.8-4.4 \mathrm{~mm}$ long, $2.1-3.6 \mathrm{~mm}$ wide, with shallow stigmatic cleft; anal cleft approximately $1 / 8$ of body length (Fig. 42).

Dorsum. Derm membranous. Dermal areolations well-developed. Dorsal tubercles absent. Dorsal setae spinose, stout, slightly pointed, each 6.1-10.2 $\mu \mathrm{m}$ long, evenly scattered on entire dorsum. Dorsal tubular ducts $16.5-24.3 \mu \mathrm{~m}$ long, each with a moderately developed outer ductule and a very narrow inner ductule with a quite small terminal gland, evenly present on dorsum. Dorsal simple pores $3.2-5.0 \mu \mathrm{~m}$ wide and bilocular pores about $5.3 \mu \mathrm{~m}$ wide, distributed throughout dorsum. Preopercular pore not detected. Anal plates together quadrate, 113.4-145.4 $\mu \mathrm{m}$ long, 124.3$164.4 \mu \mathrm{~m}$ wide, usually posterolateral margin rather longer than anterolateral margin: anterolateral margin $71.0-100.6 \mu \mathrm{~m}$ long, posterolateral margin $91.3-113.8 \mu \mathrm{~m}$ long. Each plate with 4 apical setae.

Margin. Marginal setae spinose, slender, straight or slightly curved, each 24.2$48.5 \mu \mathrm{~m}$ long, usually with acute apices, present about $14-17$ laterally between stigmatic areas. Stigmatic clefts slightly furrowed, each with 3 stigmatic spines, bluntly spinose, stout, median spine about more 2 times as long as lateral spine: medians 69.3-89.0 $\mu \mathrm{m}$ long, laterals 20.8-37.0 $\mu \mathrm{m}$ long. Eyespots located near margin. Venter. Derm membranous. Multilocular disc-pores $6.0-7.9 \mu \mathrm{~m}$ wide, each with 6-8 loculi, mostly 8 , mainly scattered around vulvar area, less frequently present on anterior area of abdomen. Spiracular pores $4.9-6.6 \mu \mathrm{~m}$ wide, each with 5 loculi, in a moderately broad band 3-4 pores wide between each spiracles and margin. Ventral tubular duct 19.9-28.3 $\mu \mathrm{m}$ long, present 3 types: Type I with a normal outer ductule, a broad inner ductule and a developed flower-head-like terminal gland, mainly present on submarginal area, especially anterior thorax and head. Type II with similar to Type I, but inner ductule much slender than Type I, usually distributed on medial abdomen, thorax and head, also present on anterior submargin. Type III with a filamentous inner ductule and a shorter outer ductule, usually scattered on submargin, especially frequent on either side of abdomen. Ventral microducts small, each 11.1$24.3 \mu \mathrm{~m}$ long, frequently scattered over venter, especially on submargin. Ventral setae with 3 pairs of long pregenital setae present, also about 4 pairs of long setae between antennae, especially interantennal setae with a bulbous expansion near to tip and other setae sharply spinose, slender, each $8.4-13.9 \mu \mathrm{~m}$ long, evenly distributed on entire venter. Each leg normally developed, without a tibio-tarsal articulation, but having a small articulatory sclerosis, total length of metathoracic leg each 794.4-868.0 $\mu \mathrm{m}$ long: each coxa 206.7-232.9 $\mu \mathrm{m}$ long, trochanter+femer 283.2-310.5 $\mu \mathrm{m}$ long, tibia+tarsus
269.9-285.4 $\mu \mathrm{m}$ long, claw 29.8-39.2 $\mu \mathrm{m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme slightly broader than anterior: anterior peritremes each $42.2-61.0 \mu \mathrm{~m}$ wide, posterior peritremes each 52.7-69.2 $\mu \mathrm{m}$ wide. Antenna 8 or 9 segmented, usually 8 , each 353.8 $424.8 \mu \mathrm{~m}$ long. Clypeolabral shield $158.8-188.2 \mu \mathrm{~m}$ wide.

Specimens examined. 6 Q, Yeouido-dong, Yeongdeungpo-gu, Seoul, 16.v.2015, coll. J.Y. Choi, on Hibiscus syriacus L. (Malcaceae), Coll\#. 150516-JY-09; 1q, Sedongri, Gogeum-myeon, Wando-gun, JN, 6.viii.1977, coll. S. Kawai, same host, Slide\#. 8417.

Host. Ebenaceae: Diospyros kaki; Malvaceae: Hibiscus syriacus; Rosaceae: Pyracantha coccinea; Rutaceae: Citrus sp.; Ulmaceae: Zelkova serrata (Sasscer, 1915; Steinweden, 1946; Takahashi \& Tachikawa, 1956; Williams \& Kosztarab, 1972; Gill, 1988).

Distribution. Korea, Japan, China, USA.
Remarks. Pulvinaria nipponica was newly recorded by Kown et al., 2005, however taxonomical information was not provided. In this study, taxonomical description of this species is firstly described with the morphological illustration and photographs of living appearances.

14. Pulvinaria nishigaharae (Kuwana, 1907) 노랑솜깍지 벌레

Lecanium nishigaharae Kuwana, 1907: 192.

Diagnosis. Dermal areolations present; dorsal tubercles absent; dorsal setae frequently distributed on entire dorsum; dorsal tubular ducts absent; preopercular pores $0-9$ present in front of anal plates; marginal setae variable length, each with a blunt or simple pointed apex; Multilocular disc-pores usually each with 7-15 loculi, usually 10; ventral tubular ducts present 3 types; antenna 6-8 segmented, usually 8 ; legs each with a tibio-tarsal articulatory sclerosis.

Living appearance. Body elongate oval. Dorsum dark yellowish brown in color, with small pale areas (Fig. 22).

Slide-mounted material.

Dorsum. Derm membranous. Dermal areolations not described. Dorsal tubercles absent. Dorsal setae normally spinose, rarely distributed on dorsum. Dorsal tubular ducts not described. Preopercular pore present in a small group of about 7 in front of anal plates. Anal plates each triangular in shape, posterolateral margin slightly longer than anterolateral margin. Each plate with 3 or 4 apical setae.

Margin. Marginal setae spinose, slender and slightly curved, usually with blunt apecies and variable length, present about 20-24 laterally between stigmatic areas. Larger marginal setae quite long, occasionally with bifid tips and similar to length of median stigmatic spine, present at intervals of 1-3 smaller ones. Stigmatic clefts each with 3 stigmatic spines, median spine about over 2 times as long as lateral spine, and curved at tips.

Venter. Derm membranous. Pregential disc-pores frequently scattered around posterior abdomen, also about 10 present behind procoxa, and some groups present laterad of metacoxa and mesocoxa. Spiracular pores each with 5 loculi, in a
moderately broad band 3-4 pores wide between each spiracles and margin. Ventral tubular ducts: Type I with a rather stout inner ductule, mainly present on submarginal area and making a broad submarginal band, but not detected in medial area of venter. Type II with a slender inner ductule, scattered on outer part of submarginal band. Ventral microducts not described. Ventral submarginal setae shorter than marginal setae, arranged in a row. Ventral setae 2-4 long setae present between antennae. Legs normal. Antenna normal.

Host. Aceraceae: Acer buergerianum; Cornaceae: Cornus florida; Cornus controversa; Moraceae: Morus sp.; Ulmaceae: Aphananthe aspera; Zelkova serrata (Kuwana, 1907; Takahashi, 1956; Kawai, 1980; Tanaka \& Amano, 2006; Tanaka, 2015).

Distribution. Korea, Japan.
Remarks. Samples of Pulvinaria nishigaharae could not be slide-mounted because of swollen and sclerotized body. Therefore, living appearances is only provided in this study. Above diagnosis and description was written according to Takahashi, 1955d and Tanaka, 2015.

15. Pulvinaria photiniae Kuwana, 1914

Pulvinaria photiniae Kuwana, 1914: 4.

Diagnosis. Dermal areolations well-developed; dorsal tubercles absent; dorsal tubular ducts present; marginal setae each with a simple pointed apex; Multilocular disc-pores usually each with 7 or 8 loculi, mainly 8 ; ventral tubular duct present 3
types; antenna 8 segmented; legs each with a tibio-tarsal articulatatory sclerosis.
Living appearance. Body elongate oval, moderately convex. Body dark brown in color, distinctively with a dusky yellow longitudinal stripe on center of dorsum. Dorsum slightly covered with white wax secretion, especially on marginal area. Ovisac white, about 1 or 2 times as long as body. Body heavily elevated by ovisac. Eggs pale white in color and covered in ovisac (Fig. 23).

Slide-mounted material. Body elongate oval, $2.5-3.7 \mathrm{~mm}$ long and $1.8-3.0 \mathrm{~mm}$ wide, without distinct stigmatic cleft; anal cleft approximately 1/7-1/8 of body length (Fig. 45).

Dorsum. Derm membranous. Dermal areolations well-developed. Dorsal tubercles absent. Dorsal setae sharply spinose, each $6.1-9.1 \mu \mathrm{~m}$ long, present evenly throughout dorsum. Dorsal tubular ducts each with a developed outer ductule and a filamentous inner ductule, and a very small terminal gland, frequently present on entire dorsum. Preopercular pore round to oval, small, $3.6-4.5 \mu \mathrm{~m}$ wide, distributed in a loose group of about 10 in front of anal plates. Anal plates together quadrate, each with roundish edges, mostly posterolateral margin slightly longer than anterolateral margin: anterolateral margin $63.9-97.6 \mu \mathrm{~m}$ long, posterolateral margin $82.4-104.5 \mu \mathrm{~m}$ long. Each plate with 4 apical setae.

Margin. Marginal setae finely spinose, mostly with simple pointed apices, but occasionally some bifid or fimbriate, each $30.8-55.2 \mu \mathrm{~m}$ long, present $10-12$ setae between anterior and posterior stigmatic clefts. Stigmatic cleft shallow each with 3 stigmatic spines, median spine about more 2 times as long as lateral spine: median $55.9-88.8 \mu \mathrm{~m}$ long, laterals 21.7-38.6 $\mu \mathrm{m}$ long. Eyespots located near margin.

Venter. Derm membranous. Multilocular disc-pores 5.3-7.1 μ m wide, with 7-8 loculi, mainly 8 , mainly present around vulvar area, less frequently scattered on anterior area of abdomen and thorax, especially small group also present laterad of metacoxa and mesocoxa. Spiracular pores 4.1-6.2 $\mu \mathrm{m}$ wide, each with 5 loculi, arranged in a narrow band 2-3 pores wide between each spiracles and margin. Ventral tubular duct 20.6$31.2 \mu \mathrm{~m}$ long, present 3 types: Type I with a developed outer ductule, a rather broad inner ductule and a developed flower-head-like terminal gland, mainly distributed on medial abdomen, thorax and head, also present on submarigin. Type II with a moderately narrow inner ductule and a well- developed flower-head-like terminal gland, usually scattered on posterior abdomen and submargin. Type III with a short outer ductule, a filamentous inner ductule and a quite small terminal gland, frequently present on submarginal area and making submarginal band. Ventral setae with 3 pairs of long pregenital setae present, also about 3 pairs of long setae present on thorax or anterior abdomen, about 4 pairs of long setae between antennae and other setae sharply spinose, each 9.1-17.7, evenly distributed on entire venter. Leg welldeveloped, each with a distinct tibio-tarsal sclerosis, total length of metathoracic leg each 680.6-820.9 $\mu \mathrm{m}$ long: trochanter+femer 241.4-293.4 $\mu \mathrm{m}$ long, tibia+tarsus 230.0$289.3 \mu \mathrm{~m}$, claw $23.2-35.6 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed: anterior peritremes each $48.2-65.6 \mu \mathrm{~m}$ wide, posterior peritremes each $56.3-71.8 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each 319.4$395.5 \mu \mathrm{~m}$ long. Clypeolabral shield $138.6-187.3 \mu \mathrm{~m}$ wide.

Specimens examined. : 9 q, Garwol-ri, Sinbuk-myeon, Pocheon-si, GG, Korea, 16.v.2015, coll. J.Y. Choi, on Styrax obassia Siebold et Zucc. (Styracaceae), Coll\#:

150516-JY-12.
Host plants. Cannabaceae: Celtis sinensis; Rosaceae: Photinia villosa; Styracaceae: Styrax obassia (Kuwana, 1914; Sasscer, 1915).

Distribution. Korea, Japan, China.
Remarks. In this study, Pulvinaria photiniae is firstly reported from Korea.

16. Pulvinaria sp.

Pulvinaria torreyae Takahashi, 1956: 29. Misidentification.

Diagnosis. Dermal areolations well developed; dorsal tubercles present; dorsal tubular ducts present; marginal setae each with a pointed, bifid, spatulate and slightly frayed apex; pregential disc-pores with 7 loculi; ventral tubular duct present 3 type; antenna 8 segmented; legs with a tibio-tarsal articulatatory sclerosis.

Living appearance. Not seen.
Slide-mounted material. Body elongate oval, $5.4-6.3 \mathrm{~mm}$ long, $4.3-4.4 \mathrm{~mm}$ wide with slightly furrowed stigmatic cleft; anal cleft approximately $1 / 8$ of body length (Fig. 46).

Dorsum. Derm membranous. Dermal areolations well developed. Dorsal tubercles not detached. Dorsal setae spinose, stout, rather pointed, each $9.2-12.1 \mu \mathrm{~m}$ long, evenly scattered on entire dorsum. Dorsal tubular ducts 27.8-28.5 $\mu \mathrm{m}$ long, each with a moderately developed outer ductule and a quite narrow and long inner ductule with a very small terminal gland, evenly present on dorsum. Dorsal micropores 3.2-3.6 $\mu \mathrm{m}$ wide, frequently distributed on dorsum. Preopercular pores 5.7-7.0 $\mu \mathrm{m}$ wide, present
in a large group of 17-22 between anal plates and metacoxa. Anal plates together quadrate, 203.9-210.3 $\mu \mathrm{m}$ long, $182.3-192.7 \mu \mathrm{~m}$ wide, usually posterolateral margin much longer than anterolateral margin: anterolateral margin $108.5-124.3 \mu \mathrm{~m}$ long, posterolateral margin 161.4-166.3 $\mu \mathrm{m}$ long. Each plate with 4 apical setae.

Margin. Marginal setae spinose, straight or slightly curved, each 54.6-61.4 $\mu \mathrm{m}$ long, usually with pointed and spatulate apices, occasionally having very few bifid tips, present about 17-20 laterally between stigmatic area. Stigmatic clefts shallow, each with 3 stigmatic spines, bluntly spinose, stout, median spine about more 2 times as long as lateral spine: medians $86.7-97.0 \mu \mathrm{~m}$ long, laterals $31.6-41.4 \mu \mathrm{~m}$ long. Eye spots located near margin.

Venter. Derm membranous. Pregential disc-pores $6.6-8.2 \mu \mathrm{~m}$ wide, each with 10 or 11 loculi, mostly with 10 , mainly scattered around vulvar area, less frequently present on anterior area of abdomen and thorax, especially small group also present laterad of metacoxa, mesocoxa and procoxa. Spiracular pores $5.3-6.0 \mu \mathrm{~m}$ wide, each with 5 loculi, in a narrow band 2-3 pores wide between each spiracles and margin. Ventral tubular duct present 3 type: Type I with a normal outer ductule and a broad inner ductule with a large flower-head-like terminal gland, usually present on medianal area of thorax. Type II with similar to Type I, but inner ductule much narrow and slender than Type I, mainly scattered around submarginal area and median abdomen. Type III with a filamentous inner ductule and a shorter outer ductule, frequently distributed in a submarginal band especially near to margin. Ventral microducts small, each 3.6$3.9 \mu \mathrm{~m}$ long, frequently scattered over entire venter. Ventral setae with 3 pairs of long pregenital setae present, also about 5 or 6 pairs of long setae between antennae and
other setae sharply spinose, each $21.0-23.8 \mu \mathrm{~m}$ long, evenly distributed on entire venter. Leg normally developed, each without a tibio-tarsal articulation, but having a small articulation sclerosis, total length of metathoracic leg each 1209.7-1415.4 $\mu \mathrm{m}$ long: each coxa $328.9-331.8 \mu \mathrm{~m}$ long, trochanter+femer $363.5-407.1 \mu \mathrm{~m}$ long, tibia+tarsus $449.7-480.2 \mu \mathrm{~m}$ long, claw $30.9-34.2 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme much broader than anterior: anterior peritremes each $69.4 \mu \mathrm{~m}$ wide, posterior peritremes each $77.6-85.0 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each $430.0-$ $597.4 \mu \mathrm{~m}$ long. Clypeolabral shield $196.0-198.9 \mu \mathrm{~m}$ wide.

Specimens examined. 2 ${ }^{\text {, }}$, Maetan-dong, Yeongtong-gu, Suwon-si, GG, 19.vi.2003, coll. G.M. Kwon, on Taxus cuspidata Siebold \& Zucc. (Taxaceae), Slide\#. M1AV00964, M1AV00966.

Host. Taxaceae: Taxus cuspidata.
Distribution. Korea, Japan.
Remarks. The examined samples which were used for reporting P. torreyae have different characters (a complete submarginal band of ventral tubular ducts and multilocular disc-pores with 10 loculi) from true P. torreyae. We concluded that is a report of misidentification and this species is a new species or other Palearctic continental one. After further taxonomic works for this species, P. torreyae should be excluded from Korean fauna and reported as another species which were exactly identified.

Tribe Saissetiini Hodgson, 1994

Diagnosis. One or two types of ventral tubular ducts making a broad submarginal band; lack of dorsal tubular ducts; dorsal tubercles and pocket-like sclerotizations usually present on dorsum, occasionally both not appeared; multilocular disc pores mostly with 10 loculi, scattered around vulvar area, also medial thorax; eyespots located on margin; slightly deep and unsclerotized stigmatic clefts (Hodgson, 1994)

Key to Korean genera of Saissetiini

1. Many polygonal reticulations present on dorsum; Dorsal setae with cylindrical apicesapices2
2. Distinctive H pattern of ridges present on dorsum; Dorsal setae with 1 size \qquad

- Distinctive H pattern of ridges absent on dorsum; Dorsal setae with 2 sizes \qquad
Parthenolecanium

Genus Parasaissetia Takahashi, 1955 검 은철 모깍지 벌레속

Type species: Lecanium nigrum Nietner, 1861

Diagnosis. A dark and highly sclerotized dorsum with many polygonal reticulations;
submarginal band consisting of ventral tubular ducts; cylindrical dorsal setae; absence of H pattern on dorsum; legs without tibio-tarsal articulation sclerosis (Gill, 1988; Hodgson, 1994).

17. Parasaissetia nigra (Nietner, 1861) 검 은철 모깍지 벌레

Lecanium nigrum Nietner, 1861: 9.
Lecanium depressum Targioni Tozzetti, 1867: 29.
Lecanium depressum simulans Douglas, 1887: 28.
Lecanium begoniae Douglas, 1892: 209.
Lecanium caudatum Green, 1896: 10.
Lecanium (Saissetia) pseudonigrum Kuwana, 1909b: 162.
Lecanium (Saissetia) siderxylum Kuwana, 1909b: 162.
Saissetia cuneiformis Leonardi, 1913: 33.
Lecanium (Saissetia) signatum Newstead, 1917: 363.
Lecanium (Saissetia) nigrum nitidum Newstead, 1920: 191.
Saissetia perseae Brain, 1920: 11.
Lecanium nigrumnitidum, Newstead, 1920: 191.
Lecanium (Saissetia) crassum Green, 1930: 287.
Coccus asiaticus Lindinger, 1932: 201.

Diagnosis. Dorsum with many polygonal areas; dorsal tubercles present; pocket-like sclerotisations usually present on submargin; dorsal setae usually with clavate apices;
dorsal tubular ducts absent; marginal setae with variable shaped apices; multilocular disc-pores usually each with 10 loculi; ventral tubular duct present 1 type; each leg without a tibio-tarsal articulatory sclerosis; antenna usually 8 segmented.

Living appearance. Body elongate oval, flat to moderately convex. Dorsum of young adult female yellowish sometimes with brown or red spots. Mature adult female dark purple brown or black in color, soft, and usually with a single series of wax plates around margin.

Slide-mounted material. Body circle to elongate oval, with slightly furrowed stigmatic cleft; anal cleft approximately 1/7-1/8 of body length.

Dorsum. Derm membranous with many polygonal areas excluding margin of body. Dermal areolations present in each polygon medially. Dorsal tubercles convex, rather small, scattered on submarginal area, 1-26 in total on body: 0-3 pairs between apex of head and anterior stigmatic clefts, 0-2 pairs between anterior and posterior stigmatic clefts and 0-7 pairs between posterior stigmatic clefts and anal cleft. Pocketlike sclerotisations usually present on submargin, and closely appeared with dorsal tubercles, total 0-17 on whole dorsum. Dorsal setae mainly with clavate apices, less frequently fimbriate, blunt or flat, commonly distributed on entire dorsum. Dorsal tubular ducts absent. Dorsal microducts small, distributed in each dorsal areolation. Preopercular pore circular, quite convex and sclerotized, present in a less dense group of about 4-13 in front of anal plates. Anal plates each triangular in shape, mostly posterolateral margin slightly longer than anterolateral margin. Each plate with 4 apical setae.

Margin. Marginal setae with variable shaped apices, such as broad, flat and fimbriate
tips, present about 11-19 setae on each side between anterior and posterior stigmatic clefts. Stigmatic clefts slightly deep each with 3 stigmatic spines, bluntly spinose, median spine about 2-4 times as long as lateral spine.

Venter. Derm membranous. Pregenital disc-pores usually each with 10 loculi, frequently scattered around vulvar area, less number present on anterior area of abdomen. Spiracular pores each with 5 loculi, in a narrow band between each spiracles and margin. Ventral tubular duct present 1 type with a long and developed outer ductule, a moderately narrow inner ductule, and a large flower-head-like terminal gland, distributed in each side of submarginal bands. Ventral microducts frequently scattered on entire venter. Ventral submarginal setae arranged in a single row. Ventral setae abundant on median thorax and head. Leg well developed, each with a tibio-tarsal articulation, but articulation sclerosis absent. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme slighly broader than anterior. Antenna 7 or 8 segmented, usually 8. Clypeolabral shield present.

Host. Aquifoliaceae: Ilex sp.; Iridaceae: Iris germanica; Myrtaceae: Feijoa sellowiana; Rosaceae: Prunus armeniaca; Thymelaeaceae: Daphne sp. (Hodgson \& Henderson. 2000).

Distribution. Korea, Japan, China, Indonesia, Australia, Taiwan, Thailand, Vietnam, Laos, USA, Canada, Europe, UK, South America, Africa.

Remarks. Although tree slide specimens of Parasaissetia nigra were confirmed in National Institute of Agricultural Sciences (NIAS), taxonomical examinations could not be performed because of sample conditions. Above diagnosis and description was
written according to Hodgson, 1994.

Genus Parthenolecanium Šulc, 1908 애 기 공각지 벌레 속

Type species: Lecanium corni Bouché, 1844

Diagnosis. Distinct submarginal band including ventral tubular ducts; ventral tubular ducts less frequently present on medial venter (Gill, 1988)

Key to Korean species of Parthenolecanium

1. Shapes of stigmatic spines similar to marginal setae......................... P. glandi

- Shapes of stigmatic spines distinct and different to marginal setae .2

2. Dorsal tubercles absent; ventral tubular ducts present 1 type.............. P. fletcheri

- Dorsal tubercles present; ventral tubular ducts present 3 types.......................... 3

3. Antenna 6 or 7 segmented.. P. corni

- Antenna 8 segmented.. P. persicae

18. Parthenolecanium corni (Bouché, 1844) 말채 나무공깍지 벌레

Lecanium corni Bouché, 1844: 298.
Lecanium vini Bouché, 1851: 112.
Coccus tiliae Fitch, 1851: 69.
Lecanium ribis Fitch, 1857a: 427.
Lecanium cynosbati Fitch, 1857b: 436.

Lecanium juglandifex Fitch, 1857d: 463.
Lecanium corylifex Fitch, 1857d: 473.
Lecanium fitchii Signoret, 1873b: 404.
Lecanium rugosum Signoret, 1873b: 429.
Lecanium tarsalis Signoret, 1873b: 430.
Lecanium wistariae Signoret, 1873b: 433.
Lecanium robiniarum Douglas, 1890: 318.
Lecanium armeniacum Craw, 1891: 12.
Lecanium assimile Newstead, 1892: 141.
Lecanium lintneri Cockerell and Bennett in Cockerell, 1895b: 381.
Lecanium caryae canadense Cockerell, 1895c: 253.
Lecanium crawii Ehrhorn, 1898: 247.
Lecanium (Eulecanium) caryarum Cockerell, 1898b: 293.
Lecanium (Eulecanium) maclurarum Cockerell, 1898b: 294.
Lecanium (Eulecanium) kingii Cockerell, 1898a: 322.
Lecanium maclurae Hunter, 1899: 67.
Lecanium kansasense Hunter, 1899: 69.
Lecanium (Eulecanium) aurantiacum Hunter, 1900: 107.
Lecanium (Eulecanium) vini: King and Reh, 1901: 6.
Lecanium rehi King in King and Reh, 1901: 61.
Lecanium websteri Cockerell and King in King, 1901a: 106.
Eulecanium guignardi King, 1901b: 334.
Eulecanium rosae King, 1901b: 336.

Eulecanium fraxini King, 1902: 158.
Lecanium obtusum Thro, 1903: 191.
Lecanium folsomi King, 1903: 193.
Lecanium corni robiniarum Marchal, 1908: 278.

Lecanium persicae crudum Green, 1917: 202.

Diagnosis. Dermal areolations absent; dorsal tubercles present; pocket-like sclerotisations present on submargin; dorsal setae present 2 sizes; dorsal tubular ducts absent; marginal setae usually with blunt apices; multilocular disc pores with 10 loculi; ventral tubular duct present 3 type; legs each with a tibio-tarsal articulatory sclerosis; antenna 6 or 7 segmented.

Living appearance. Body oval to round, variable shaped and colored, moderately or highly convex. Dorsum yellowish to dark brown in color, rough surfaced, sometimes with black stripes and spots. Eggs usually whitish or yellowish, stored in swollen venter (Fig. 25).

Slide-mounted material. Body oval to circular, 2.9-6.0mm long, 2.4-5.4mm wide, without distinct stigmatic cleft; anal cleft about $1 / 6$ of body length (Fig. 47).

Dorsum. Derm membranous to heavily sclerotized. Dermal areolations absent. Dorsal tubercles normal and convex, each 12.1-21.3 $\mu \mathrm{m}$ wide, each with an inner filamentous ductule, present on submarginal area, 5-9 in total on each side: 2 or 3 between apex of head and anterior stigmatic cleft, 1 or 2 between anterior and posterior stigmatic clefts and 2-4 between posterior stigmatic cleft and anal cleft. Pocket-like sclerotisations irregular shaped, 7.1-19.7 $\mu \mathrm{m}$ wide, rarely distributed on
submargin, total 0-3 on each side. Dorsal setae spinose, stout with blunt apices, present 2 sizes: large sized setae, each $7.4-13.9 \mu \mathrm{~m}$ long, arranged in 2 longitudinal rows medially between anterior anal plates and head; small sized setae, each 3.4$7.8 \mu \mathrm{~m}$ long, sparsely scattered on both sides of dorsum, except for the median area. Dorsal tubular ducts each with a normal outer ductule, a narrow inner ductule, usually entirely curved, and a small terminal gland, evenly distributed on dorsum. Dorsal microducts evenly scattered on entire dorsum. Preopercular pore round, variable sized, $4.9-9.7 \mu \mathrm{~m}$ wide, distributed in a dense group of 13-23 in front of anal plates. Anal plates each triangular in shape, $96.5-153.3 \mu \mathrm{~m}$ long, $106.4-160.0 \mu \mathrm{~m}$ wide, usually posterolateral margin rather longer than anterolateral margin: anterolateral margin $53.2-104.0 \mu \mathrm{~m}$ long, posterolateral margin $69.7-112.5 \mu \mathrm{~m}$ long. Each plate with 4 apical setae.

Margin. Marginal setae spinose, stout, straight or slighly curved, each 17.4-26.1 $\mu \mathrm{m}$ long, usually with blunt apices, present about 10-16 laterally between stigmatic. Stigmatic clefts not furrowed each with 3 stigmatic spines, bluntly spinose, stout, median spine approximately $1.5-2$ times as long as lateral spine: medians 47.8$54.1 \mu \mathrm{~m}$ long, laterals $19.9-31.6 \mu \mathrm{~m}$ long.

Venter. Derm membranous to sclerotized. Pregential disc-pores $6.3-7.9 \mu \mathrm{~m}$ wide, mostly each with 10 loculi, many pores scattered around vulvar area, less frequently present on anterior area of abdomen and thorax. Spiracular pores $4.4-5.7 \mu \mathrm{~m}$ wide, each with 5 loculi, in a moderately broad band 2-3 pores wide between each spiracles and margin. Ventral tubular duct 25.1-39.0 $\mu \mathrm{m}$ long, present 3 type: Type I with a moderately narrow inner ductule, a developed flower-head-like terminal gland, and
outer ductule relatively longer than inner ductule, primarily present submarginally around body. Type II with similar to Type I, but outer ductule rather shorter than inner ductule, mainly intermixed with Type I, less numbers scattered on medial area of body. Type III with a filamentous inner ductule and a short outer ductule, distributed between antennae and nearly end of anterior body. Ventral microducts small, each 2.1-3.7 $\mu \mathrm{m}$ wide, frequently present over venter, especially on submargin. Ventral submarginal setae spinose, straight and rather stout, each 10.0-17.9 $\mu \mathrm{m}$ long. Ventral setae sharply pointed, slender, scarcely scattered on entire venter. Leg normally developed, each with a tibio-tarsal articulation and a small articulation sclerosis, total length of metathoracic leg each 374.9-554.9 $\mu \mathrm{m}$ long: each coxa 107.8$133.7 \mu \mathrm{~m}$ long, trochanter+femer $149.1-184.6 \mu \mathrm{~m}$ long, tibia+tarsus $189.3-224.7 \mu \mathrm{~m}$ long, claw 20.3-25.1 $\mu \mathrm{m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme much broader than anterior: anterior peritremes each 26.1-55.2 $\mu \mathrm{m}$ wide, posterior peritremes each $33.4-69.3 \mu \mathrm{~m}$ wide. Antenna 6 or 7 segmented, each $242.6-289.7 \mu \mathrm{~m}$ long. Clypeolabral shield $126.4-180.2 \mu \mathrm{~m}$ wide.

Specimens examined. 1q, Maam-ri, Dunnae-myeon, Hoengseong-gun, GW, 30.viii.2000, coll. G.M. Kwon, on Leguminosae sp., Slide\#. M1AV00724; 1q, Dangu-dong, Wonju-si, GW, 9.Viii.1998, same collector, on Helianthus annuus L. (Asteraceae), Slide\#. M1AV00766; 1q, Maetan-dong, Yeongtong-gu, Suwon-si, GG, 19.iv.2001, same collector, on Zelkova serrata (Thunb.) (Ulmaceae), Slide\#. M1AV00739; 2 , Yeouido-dong, Yeongdeungpo-gu, Seoul, 17.v.2015, coll. J.Y. Choi, on Prunus sp. (Rosaceae), Coll\#. 150517-JY-03; 1q, Songmyeon-ri,

Cheongcheon-myeon, Goesan-gun, CB, 29.iv.1999, same collector, host data absent, Slide\#. M1AV00745; 1q, Hwaseo-myeon, Sangju-si, GB, 8.v.2001, same collector, on Chaenomeles sinensis (Thouin) (Rosaceae), Slide\#. M1AV00774; 1q, Sanje-ri, Sanpo-myeon, Naju-si, JN, 25.v.2001, coll. same collector, on Diospyros kaki L. (Ebenaceae), Slide\#. M1AV00821; 2 , Handong-ri, Pungyang-myeon, Goheunggun, JN, 24.v.2001, same collector, on Diospyros kaki L., Slide\#. M1AV00824, M1AV00825.

Host. Asteraceae: Helianthus annuus; Ebenaceae: Diospyros kaki; Fagaceae: Quercus nigra; Hamamelidaceae: Liquidambar styraciflua; Myricaceae: Myrica cerifera; Pinaceae: Pinus sp.; Rosaceae: Chaenomeles sinensis, Prunus sp.; Ulmaceae: Zelkova serrata (Hamon \& Williams, 1984).

Distribution. Korea, Japan, China, Russia, New Zealand, USA, Canada, Europe, UK, South America.

Remarks. Parthenolecanium corni has highly variable chracters, such as color, size or shape of the body (Stepaniuk \& Lagowska, 2006). For that reason, molecular analyses are also necessary for confirming identification based on morphology.

19. Parthenolecanium fletcheri (Cockerell, 1893)

Lecanium fletcheri Cockerell, 1893d: 221.
Lecanium (Eulecanium) fletcheri, Cockerell, 1896a: 332.
Lecanium arion Lindinger, 1912: 323.

Diagnosis. Dermal areolations well developed; dorsal tubercles and pocket-like
sclerotisations absent; dorsal setae present 2 sizes; dorsal tubular ducts absent; marginal setae usually with blunt apices; multilocular disc pores with 10 loculi; ventral tubular duct present 1 type; each leg without a tibio-tarsal articulatory sclerosis; antenna 8 segmented.

Living appearance. Body oval, heavily convex or hemispherical. Dorsum dark brownish, distinctively with a pale yellow or white longitudinal stripe on medial dorsum and many irregular spots. Eggs usually translucent white, stored in swollen venter (Fig. 26).

Slide-mounted material. Body oval, $2.3-3.3 \mathrm{~mm}$ long, $1.8-2.9 \mathrm{~mm}$ wide with quite shallow stigmatic cleft; anal cleft about 1/8-1/10 of body length (Fig. 48).

Dorsum. Derm membranous to slightly sclerotized. Dermal areolations well developed, but relatively small. Dorsal tubercles and Pocket-like sclerotisations not detected. Dorsal setae bluntly spinose, stout, present 2 sizes: large sized setae, each $18.2-26.9 \mu \mathrm{~m}$ long, arranged in 2 irregular longitudinal rows medially between anterior anal plates and near to mouthparts; small sized setae, each 5.6-10.9 $\mu \mathrm{m}$ long, scarcely scattered on both sides of dorsum, except for the median area. Dorsal tubular ducts absent. Dorsal microducts 2.3-3.2 $\mu \mathrm{m}$ wide, frequently distributed on dorsum. Preopercular pores 4.1-7.4 $\mu \mathrm{m}$ wide, present in a small group of 9 or 10 between anal plates and metacoxa. Anal plates together quadrate, mostly width much longer than length: $111.9-127.7 \mu \mathrm{~m}$ long, $127.3-169.0 \mu \mathrm{~m}$ wide. Anterolateral margin usually much longer than posterolateral margin: anterolateral margin $85.8-105.7 \mu \mathrm{~m}$ long, posterolateral margin $76.8-94.1 \mu \mathrm{~m}$ long. Each plate with each 4 apical setae.

Margin. Marginal setae spinose, stout and straight, each 14.7-22.1 $\mu \mathrm{m}$ long, usually
with blunt apices, about 6-10 laterally between stigmatic areas. Stigmatic clefts slightly deep, each with 3 stigmatic spines, bluntly spinose, stout, median spine about less 2 times as long as lateral spine: medians $26.2-45.8 \mu \mathrm{~m}$ long, laterals $13.6-26.7 \mu \mathrm{~m}$ long. Eye spots present near to margin.

Venter. Derm membranous. Pregential disc-pores 5.7-8.9 $\mu \mathrm{m}$ wide, each with 10 loculi, frequently scattered around vulvar area, also evenly present on anterior area of abdomen and thorax, especially small group present laterad of metacoxa, mesocoxa and procoxa. Spiracular pores 4.7-6.3 $\mu \mathrm{m}$ wide, each with 5 loculi, in a rather narrow band 1-2 pores wide between each spiracles and margin. Ventral tubular duct present 1 type with a long and normally developed outer ductule and a narrow and slender inner ducutule with a very large flower-head-like terminal gland, usually present submarginally and consisting of a submarginal band. Ventral microducts present on entire dorsum, especially on submargin. Ventral submarginal setae sharply spinose, slender, 10.8-17.6 $\mu \mathrm{m}$ long. Ventral setae with 3 pairs of long pregenital setae present, also 2 pairs of long setae between antennae and other setae sharply spinose, each $7.4-11.9 \mu \mathrm{~m}$ long, evenly distributed on entire venter. Leg normally developed, each with a tibio-tarsal articulation, but an articulation sclerosis absent, total length of metathoracic leg each 414.5-455.8 $\mu \mathrm{m}$ long: each coxa 106.7$118.6 \mu \mathrm{~m}$ long, trochanter + femer $130.0-144.1 \mu \mathrm{~m}$ long, tibia + tarsus $153.7-179.5 \mu \mathrm{~m}$ long, claw 12.7-23.1 $\mu \mathrm{m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme much broader than anterior: anterior peritremes each 34.9-48.1 $\mu \mathrm{m}$ wide, posterior peritremes each 44.9-56.1 $\mu \mathrm{m}$ wide. Antenna 8 segmented, each 129.5-265.6 $\mu \mathrm{m}$ long. Clypeolabral shield 146.6-
$180.4 \mu \mathrm{~m}$ wide.
Specimens examined. 10q, Daemun-ri, Baekgok-myeon, Jincheon-gun, CB, 16.v.2015, coll. Y.R. Lee, on Thuja orientalis L. (Curpressaceae), Coll\#. 150516-JY13.

Host. Curpressaceae: Thuja occidentalis; T. orientalis; Taxaceae: Taxus sp. (Kozár, 1980; Gill, 1988).

Distribution. Korea, Russia, USA, Canada, Europe, UK.
Remarks. Parthenolecanium fletcheri is rather monophagous, which has host plants belonging to Cupressaceae. This species is newly reported from Korea.

20. Parthenolecanium glandi (Kuwana, 1907) 큰공각지 벌레

Lecanium glandi Kuwana, 1907: 191.

Diagnosis. Dorsum shiny dark brown in color, with small sunken spots, slightly covered with wax secretion; antenna 7 segmented; marginal setae conical; stigmatic spines similar to marginal setae; anal plates with 4 apical setae.

Host. Rosaceae: Malus sylvestris; Pyrus communis; Ulmaceae: Zelkova serrata (Kuwana, 1907; Takahashia, 1955b).

Distribution. Korea, Japan, China.
Remarks. Any specimens of Parthenolecanium glandi could not be examined in this study. Above diagnosis was written according to Paik, 2000.

21. Parthenolecanium orientale (Borchsenius, 1957) 애기공깍지 벌레

Parthenolecanium corni orientalis Borchsenius, 1957: 369.

Host. Fabaceae: Wisteria chinensis; Grossulariaceae: Ribes sp.; Rosaceae: Prunus sp.; Salicaceae: Salix sp. (Borchsenius, 1957; Borchsenius, 1960).

Distribution. Korea, China.
Remarks. Parthenolecanium orientale was only recorded in North Korea (Borchsenius, 1957). Any specimens of this species could not be collected in South Korea. Also, any description could not be taken in this study because proper references are absent in current taxonomy.

22. Parthenolecanium persicae (Fabricius, 1776) 복숭아공각지 벌레

Chermes persicae Fabricius, 1776: 304.
Coccus persicorum Sulzer, 1776: 112.
Coccus clematitis Goeze, 1778: 344.
Coccus costatus Schrank, 1781: 296.
Coccus clematidis Gmelin, 1790: 2220.
Coccus berberidis Schrank, 1801: 146.
Lecanium elongatum Signoret, 1873b: 404.
Lecanium genistae Signoret, 1873b: 405.
Lecanium mori Signoret, 1873b: 407.
Lecanium sarothamni Douglas, 1891: 65.

Coccus spini Heyden, 1894.
Eulecanium magnoliarum hortensiae Cockerell, 1903: 19.
Eulecanium cecconi Leonardi, 1908: 178.
Lecanium (Eulecanium) spinosum Brittin, 1940: 420.
Parthenolecanium thymi Danzig, 1967: 152.

Diagnosis. Dermal areolations absent; dorsal tubercles present; pocket-like sclerotisations present or absent; dorsal setae present 2 sizes; marginal setae with pointed apices; multilocular disc pores with 10 loculi; ventral tubular duct present 3 type; legs each with a tibio-tarsal articulatory sclerosis; antenna 8 segmented.

Living appearance. Body elongate oval, moderately or strongly convex. Dorsum of immature adult female greenish or yellowish usually with a transversal band between each side of anterior and posterior spiracles and other black or brown spots present on entire dorsum. Old adult female becoming dark brown in color and sclerotized with a rather distinct longitudinal ridge medially (Fig. 27).

Slide-mounted material. Body elongate oval $2.2-8.1 \mathrm{~mm}$ long, $1.1-6.4 \mathrm{~mm}$ wide, with slightly deep stigmatic cleft; anal cleft approximately $1 / 7$ of body length (Fig. 49).

Dorsum. Derm membranous to strongly sclerotized. Dermal areolations absent. Dorsal tubercles normal and convex, each $22.7-28.6 \mu \mathrm{~m}$ wide, each with an inner filamentous ductule, distributed on submarginal area, 11-18 in total on each side: 4 or 5 between apex of head and anterior stigmatic cleft, 2 or 3 between anterior and posterior stigmatic clefts and 5-10 between posterior stigmatic cleft and anal cleft.

Pocket-like sclerotisations present or absent, detected on only few specimens, if present, irregular shaped, $11.4 \mu \mathrm{~m}$ wide, scarcely scattered on submargin. Dorsal setae bluntly spinose, stout, present 2 sizes: large sized setae, each $9.7-16.1 \mu \mathrm{~m}$ long, arranged in 2 longitudinal rows medially between anterior anal plates and near to anterior end of body; small sized setae, each 6.8-8.6 $\mu \mathrm{m}$ long, rarely scattered on both sides of dorsum, except for the median area. Dorsal tubular ducts absent. Dorsal microducts and bilocular pores small, frequently scattered on entire dorsum. Preopercular pore round, variable sized, 6.1-9.5 $\mu \mathrm{m}$ wide, present in a dense group of about 20-21 in front of anal plates. Anal plates together quadrate, $142.7-174.8 \mu \mathrm{~m}$ long, $123.1-178.6 \mu \mathrm{~m}$ wide, mostly posterolateral margin rather longer than anterolateral margin: anterolateral margin 104.5-110.7 $\mu \mathrm{m}$ long, posterolateral margin $114.4-129.7 \mu \mathrm{~m}$ long. Each plate with 4 apical setae.

Margin. Marginal setae spinose, long, stout or slender, curved, each 41.6-62.3 $\mu \mathrm{m}$ long, primarily with pointed apices, about 9-12 laterally between stigmatic areas. Stigmatic clefts slightly furrowed each with 3 stigmatic spines, bluntly spinose, stout, median spine less 1.5 times as long as lateral spine: medians $45.7-61.7 \mu \mathrm{~m}$ long, laterals 31.3-51.2 $\mu \mathrm{m}$ long.

Venter. Derm membranous to sclerotized. Pregential disc-pores $5.2-7.8 \mu \mathrm{~m}$ wide, usually each with 10 loculi, many pores scattered around vulvar area, less frequently present on anterior area of abdomen and thorax, also some pores appeared around each coxa. Spiracular pores 3.1-5.2 $\mu \mathrm{m}$ wide, each with 5 loculi, in a broad band 3-4 pores wide between each spiracles and margin. Ventral tubular duct $23.0-33.3 \mu \mathrm{~m}$ long, present 3 type: Type I with a developed outer ductule, a very broad inner ductule,
and a large terminal gland, mainly distributed in a submarginal band. Type II with a moderately narrow inner ductule and a large flower-head-like terminal gland, primarily present submarginally around body, rarely present on medial thorax and abdomen and intermixed with Type I. Type III with a filamentous inner ductule and a short outer ductule, scattered between antennae and nearly end of anterior body. Ventral microducts small, each 2.3-3.6 $\mu \mathrm{m}$ wide, frequently distributed on entire venter, especially on submarginal area. Ventral submarginal setae sharply spinose, straight, each $10.6-18.5 \mu \mathrm{~m}$ long, arranged in 2 rows. Ventral setae sharply pointed, relatively stout, sparsely scattered over venter. Leg normally developed, each with a tibio-tarsal articulation and an articulation sclerosis, total length of metathoracic leg each 645.2-795.7 $\mu \mathrm{m}$ long: each coxa $144.5-177.1 \mu \mathrm{~m}$ long, trochanter+femer 221.8$258.1 \mu \mathrm{~m}$ long, tibia + tarsus $243.3-337.3 \mu \mathrm{~m}$ long, claw $19.2-29.6 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme much broader than anterior: anterior peritremes each 54.9$86.1 \mu \mathrm{~m}$ wide, posterior peritremes each $69.6-93.1 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each 404.8-521.8 $\mu \mathrm{m}$ long. Clypeolabral shield 161.1-189.6 $\mu \mathrm{m}$ wide.

Specimens examined. 7 q, Maetan-dong, Yeongtong-gu, Suwon-si, GG, 26.iv.2015, coll. J.Y. Choi, on Magnolia Kobus DC. (Magnoliaceae), Coll\#. 150426-JY-03; 1 q, same locality and host, 9.vi.1998, coll. G.M. Kwon, Slide\#. M1AV00961; 1q, Juchon-myeon, Gimhae-si, GN, 27.vi.2001, same collector, Poncirus trifoliate (L.) (Rutaceae), Slide\#. M1AV00963.

Host. Berberidaceae: Berberis vulgaris; Ebenaceae: Diospyros kaki; Diospyros lotus; Elaeagnaceae: Elaeagnus sp.; Fabaceae: Sophora sp.; Wisteria sinensis;

Hydrangeaceae: Hydrangea hortensis; Magnoliaceae: Magnolia Kobus; Menispermaceae: Menispermum canadense; Moraceae: Ficus carica; Morus alba; M. nigra; Oleaceae: Fraxinus excelsior; Rosaceae: Armeniaca vulgaris; Prunus armeniaca; P. domestica; P. laurocerasus; P. persica; Rosa sp.; Rutaceae: Citrus aurantium; Poncirus trifoliate (Marotta, 1987).

Distribution. Korea, Japan, China, Australia, USA, Canada, Europe, UK, South America, Africa.

Genus Saissetia Deplanche, 1859 철 모깍지 벌레속

Type species: Lecanium coffeae Walker, 1852

Diagnosis. Extremely convex or hemispherical shape of body; distinctive H pattern of ridges on dorsum; distinct ventral submarginal band consisting of ventral tubular ducts; large median stigmatic spine; conical or spinose dorsal setae (Gill, 1988).

Key to Korean species of Saissetia

1. Dorsal setae spinose and short; Ventral tubular ducts with 3 types \qquad S. coffeae

- Dorsal setae conical and long; Ventral tubular ducts with 2 types. \qquad S. miranda

23. Saissetia coffeae (Walker, 1852, 1852) 철 모깍지 벌레

Lecanium coffeae Walker, 1852: 1079.
Lecanium hemisphaericum Targioni Tozzetti, 1867: 26.

Chermes anthurii Boisduval, 1867: 328.
Chermes filicum Boisduval, 1867: 335.
Chermes hibernaculorum Boisduval, 1867: 337.
Lecanium beaumontiae Douglas, 1887: 95.
Lecanium clypeatum Douglas, 1888: 59.

Diagnosis. Dermal areolations well developed; dorsal tubercles present; dorsal tubular ducts absent; marginal setae usually with bifid or fimbriate apices; multilocular disc pores mostly with 10 loculi; ventral tubular duct present 3 types; legs each with a tibio-tarsal articulatory sclerosis; antenna 8 segmented.

Living appearance. Body oval, considerably convex, helmet-shaped. Dorsum pale yellow to dark brown in color, without distinct stripes and spots. White silky wax mainly secreted from beneath abdomen, and slightly protruding around margin. Eggs light purple in color (Fig. 28).

Slide-mounted material. Body oval, $2.0-3.1 \mathrm{~mm}$ long, $1.7-2.9 \mathrm{~mm}$ wide, with slightly furrowed stigmatic cleft; anal cleft about 1/5-1/6 of body length (Fig. 50).

Dorsum. Derm membranous. Dermal areolations well developed, each with a simple pores $1.8-3.2 \mu \mathrm{~m}$ wide. Dorsal tubercles convex, each with an inner filamentous ductule, present on submarginal area, 5-8 in total on each side: 1 or 2 between apex of head and anterior stigmatic cleft, 1 or 2 between anterior and posterior stigmatic clefts and 3 or 4 between posterior sitgmatic cleft and anal cleft. Dorsal setae spinose and stout, each $5.6-8.9 \mu \mathrm{~m}$ long, rarely distributed over dorsum. Dorsal tubular ducts absent. Preopercular pore round to oval, $3.7-5.7 \mu \mathrm{~m}$ wide, present in a group of
approximately 11 in front of anal plates. Anal plates together quadrate, 135.1$158.6 \mu \mathrm{~m}$ long, $145.8-197.8 \mu \mathrm{~m}$ wide, usually posterolateral margin slighly longer than anterolateral margin: anterolateral margin 84.1-106.7 m long, posterolateral margin $86.4-129.2 \mu \mathrm{~m}$ long. Each plate with 3 apical setae and 1 discal seta.

Margin. Marginal setae, variable sized and shaped, each 31.2-64.5 $\mu \mathrm{m}$ long, mostly with bifid or fimbriate apices, also bluntly pointed and curved tips, 11-15 laterally between stigmatic areas. Stigmatic clefts slightly deep each with 3 stigmatic spines, median spine slightly curved, and more or less 2-3 times as long as lateral spine: medians $61.9-82.6 \mu \mathrm{~m}$ long, laterals $14.2-36.2 \mu \mathrm{~m}$ long.

Venter. Derm membranous. Pregential disc-pores 5.5-7.5 $\mu \mathrm{m}$ wide, each with 9 or 10 loculi, mostly with 10 loculi, numerous pores primarily present around vulvar area, also less numbers scattered on anterior area of abdomen and thorax. Spiracular pores $3.7-5.3 \mu \mathrm{~m}$ wide, each with 5 or 6 loculi, usually with 5 loculi, present in a narrow band 2-3 pores wide between each spiracles and margin. Ventral tubular duct 19.4$38.0 \mu \mathrm{~m}$ long, present 3 types: Type I with a broad inner ductule and a developed flower-head-like terminal gland, frequently present around submargin. Type II with a short outer ductule, a filamentous inner ductule, and a quite small terminal gland, and Type III with a narrow inner ductule and a developed flower-head-like terminal gland, rarely scattered in submarginal band. Ventral microducts $1.9-2.9 \mu \mathrm{~m}$ wide, evenly present on entire dorsum, especially around submargin. Ventral setae acute, straight, each 6.9-13.2 $\mu \mathrm{m}$ long, evenly scattered on entire venter. Leg well developed, each with a tibio-tarsal articulation and an articulation sclerosis, total length of metathoracic leg each 674.4-749.2 m long: each coxa $169.8-210.3 \mu \mathrm{~m}$ long,
trochanter+femer 221.8-246.1 $\mu \mathrm{m}$ long, tibia+tarsus 226.2-273.8 $\mu \mathrm{m}$ long, claw 18.7$31.2 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, posterior peritreme slightly broader than anterior: anterior peritremes each $36.8-56.3 \mu \mathrm{~m}$ wide, posterior peritremes each $44.7-59.5 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each 343.0-382.6 $\mu \mathrm{m}$ long. Clypeolabral shield $154.4-190.2 \mu \mathrm{~m}$ wide.

Specimens examined. 1 , Suwon-si, GG, 15.ii.1972, collector data absent, on Cycas revolute Thunb. (Cycadaceae), Slide\#. M1AV00700; 1q, Seoul, 22.ii.1972, collector data absent, on an alpine plant, Slide\#. M1AV00702; 1q, same locality, date and collector, on Cycas revolute Thunb. (Cycadaceae), Slide\#. M1AV00703; 1q, same locality, date and collector, on Euonymus japonica Thunb. (Celastraceae), Slide\#. M1AV00705; 1 , Dongnae-gu, Busan, 14.xi.1976, collector data absent, on Nerium indicum L. (Apocynaceae), Slide\#. M1AV00710; 1q, same locality, date and collector, Coffea arabica L. (Rubiaceae), Slide\#. M1AV00712; 1q, same locality, date and collector, Ardisia crenata Sims (Primulaceae), Slide\#. M1AV00713; 4 , Sagye-ri, Andeok-myeon, Seogwipo-si, JJ, 14.ix.2014, coll. J.Y. Choi, on Cycas revolute Thunb. (Cycadaceae), Coll\#. 140914-JY-09.

Host. Araceae: Anthurium sp.; Monstera deliciosa; Apocynaceae: Nerium indicum; Araliaceae: Aralia sp.; Aralia elegantissima; A. laciniata; Aristolochiaceae: Aristolochia pistolachia; Begoniaceae: Begonia sp.; Brexiaceae: Brexia madagascariensis; Celastraceae: Euonymus sp.; E. japonica; Cycadaceae: Cycas revolute; Euphorbiaceae: Croton sp.; Liliaceae: Asparagus sp.; Cordyline australis; Nymphaceae: Nuphar lutea; Oleaceae: Ligustrum sp.; Oleandraceae: Nephrolepis
exaltata; Piperaceae: Piper sp.; Pittosporum tobira; Polygonaceae: Muehlenbeckia platyclada; Platycerium sp.; Platycerium alcicorne; Primulaceae: Ardisia crenata; Pteridaceae: Adiantum capillus-veneris; Rubiaceae: Chlorophytum comosum; Coffea Arabica; Gardenia jasminoides; Rondeletia odorata; Theaceae: Camellia sp.; Verbenaceae: Duranta integrifolia (Marotta, 1987).

Distribution. Korea, Japan, China, Russia, Taiwan, Thailand, Vietnam, Indonesia, Australia, USA, Europe, Canada, South America, Africa.

24. Saissetia miranda (Cockerell \& Parrott in Cockerell, 1899)

Lecanium oleaemirandum, Cockerell \& Parrott in Cockerell 1899: 12.

Diagnosis. Dermal areolations well developed; dorsal tubercles present; dorsal tubular ducts absent; marginal setae usually with bifid or fimbriate apices; multilocular disc pores mostly with 10 loculi; ventral tubular duct present 2 types; legs each with a tibio-tarsal articulatory sclerosis; antenna 8 segmented.

Living appearance. Body round, heavily convex, hemispherical. Dorsum of young adult light brown in color, with distinct shape of ridges. Mature adult becoming darker, with rough surface (Fig. 29).

Slide-mounted material. Body round to slightly oval, $1.8-2.9 \mathrm{~mm}$ long, $1.4-2.5 \mathrm{~mm}$ wide, with shallow stigmatic cleft; anal cleft about 1/5-1/6 of body length (Fig. 51).

Dorsum. Derm membranous. Dermal areolations well developed, each with a simple pore about $2.4 \mu \mathrm{~m}$ wide. Dorsal tubercles convex, each with an inner filamentous ductule, present on submarginal area, $9-10$ in total on each side: 2 between apex of
head and anterior stigmatic cleft, 2 between anterior and posterior stigmatic clefts and 3 or 4 between posterior sitgmatic cleft and anal cleft. Dorsal setae conical, long and stout, each 13.5-18.7m long, scarcely scattered over dorsum. Dorsal tubular ducts absent. Dorsal microducts evenly distributed on dorsum. Preopercular pore round, $4.9-7.8 \mu \mathrm{~m}$ wide, present in a group of about 8 in front of anal plates. Anal plates each triangular in shape, $175.6-184.2 \mu \mathrm{~m}$ long, $179.0-194.1 \mu \mathrm{~m}$ wide, usually posterolateral margin much longer than anterolateral margin: anterolateral margin $105.5-111.2 \mu \mathrm{~m}$ long, posterolateral margin 136.6-137.0 $\mu \mathrm{m}$ long. Each plate with 3 apical setae and 1 discal seta.

Margin. Marginal setae, each 54.1-55.6 $\mu \mathrm{m}$ long, usually with bifid and fimbriate apices, occasionally simple pointed tips, present 63-67 anteriorly between anterior stigmatic areas, 20-23 laterally between stigmatic areas and 46-48 on each side of abdomen. Stigmatic clefts slightly furrowed each with 3 stigmatic spines, median spine more than 2 times as long as lateral spine: medians $57.2-61.6 \mu \mathrm{~m}$ long, laterals 27.5-29.1 $\mu \mathrm{m}$ long.

Venter. Derm membranous. Multilocular disc-pores $8.0-8.2 \mu \mathrm{~m}$ wide, each with 10 loculi, usually distributed around vulvar area. Spiracular pores $3.7-5.2 \mu \mathrm{~m}$ wide, each with 5 loculi, present in a narrow band 2-3 pores wide between each spiracles and margin. Ventral tubular duct $24.6-34.1 \mu \mathrm{~m}$ long, present 2 types: Type I with a normal outer ductule, a narrow inner ductule and a developed flower-head-like terminal gland, moderately scattered on submarginal area. Type II with a filamentous inner ductule, and a quite small terminal gland, intermixed with Type I. Ventral microducts 1.6$2.3 \mu \mathrm{~m}$ wide, evenly present on entire dorsum. Ventral setae with 3 pairs of long
pregenital setae present, also 5 pairs of long or short setae between antennae and other setae scarcely distributed on dorum. Leg well developed, each with a tibio-tarsal articulation and an articulation sclerosis, total length of metathoracic leg each 627.6$784.1 \mu \mathrm{~m}$ long: each coxa $130.8-148.2 \mu \mathrm{~m}$ long, trochanter+femer $198.4-211.4 \mu \mathrm{~m}$ long, tibia+tarsus $243.2-268.2 \mu \mathrm{~m}$ long, claw $17.3-24.5 \mu \mathrm{~m}$ long. Tarsal slightly thinner and longer than claw digitules. Spiracles normally developed, posterior peritreme slightly broader than anterior: anterior peritremes each $42.3-49.0 \mu \mathrm{~m}$ wide, posterior peritremes each $47.6-54.5 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each $297.0-$ $361.3 \mu \mathrm{~m}$ long. Clypeolabral shield $168.6-169.7 \mu \mathrm{~m}$ wide.

Specimens examined. 2 ${ }^{q}$, Bangbae 1-dong, Seocho-gu, Seoul, 07.vii.2015, coll. J.Y. Choi, on Ficus benjamina L. (Cycadaceae), Coll\#. 150707-JY-02.

Host. Arecaceae: Cocos nucifera; Euphorbiaceae: Acalypha tricolor; Fabaceae: Crotalaria usaramoensis; Heliconiaceae: Heliconia sp.; Malvaceae: Abutilon graveolens; Rubiaceae: Morinda citrifolia; Timonius sp.; Moraceae: Ficus benjamina; Rutaceae: Citrus paradisi; Tiliaceae: Grewia crenata (Williams \& Watson, 1990).

Distribution. Korea, Japan, Indonesia, Taiwan, Laos, Europe, USA, Africa, South America.

Remarks. In this study, Saissetia miranda is newly reported from Korea.

Subfamily Eriopeltinae Šulc, 1941 사다리럴각지 벌레아과

Type genus: Eriopeltis Signoret, 1872

Diagnosis. Rather elongate body; a felted ovisac covering entire or part of dorsum; large dorsal tubular ducts similar to ventral tubular ducts on submarginal area; membranous dorsum, not sclerotized; anal plates with one or two inner margin setae; multilocular disc pores each with 7-10 loculi; generally two types of ventral tubular ducts; lack of stigmatic clefts; absent or two stigmatic spines present in stigmatic area; absence of dorsal tubercles and pocket-like sclerotisations; normally developed legs and antennae (Hodgson, 1994).

Key to Korean genera of Eriopeltinae

1. Dorsal setae truncate cone shaped; Legs poorly developed.................. Eriopeltis

- Dorsal setae not truncate cone shaped; Legs normally developed...................... 2

2. Stigmatic spines distinguished from marginal setae; anterior margin of anal plates present

Luzulaspis

- Stigmatic spines not distinguished from marginal setae; anterior margin of anal plates obscure or absent Psilococcus

Genus Eriopeltis Signoret, 1872 사다리 털각지 벌레 속

Type species: Coccus festucae Fonscolombe, 1834

Diagnosis. Distinctive truncate cone shaped dorsal setae present on entire dorsum; poorly developed and distort legs; lack of stigmatic spines; scarcely present ventral setae (Gill, 1988; Hodgson, 1994).

Key to Korean species of Eriopeltis

1. Marginal setae arranged in a single row....................................... E. festucae

- Marginal setae arranged in two or three rows. E. sachalinensis

25. Eriopeltis festucae (Fonscolombe, 1834) 사다리 털깍지 벌 레

Coccus festucae Fonscolombe, 1834: 216.
Eriopeltis agropyri Borchsenius, 1956: 399.
Eriopeltis araxis Borchsenius, 1956: 401.
Eriopeltis caucasicus Borchsenius, 1956: 402.
Eriopeltis desertus Borchsenius, 1956: 403.
Eriopeltis eversmanni Borchsenius, 1956: 403.
Eriopeltis ferganensis Borchsenius, 1956: 404.
Eriopeltis hamberdiensis Borchsenius, 1956: 405.
Eriopeltis maximus Borchsenius, 1956: 408.
Eriopeltis phragmitidis Borchsenius, 1956: 408.
Eriopeltis pratensis Borchsenius, 1956: 411.
Eriopeltis rasinae Borchsenius, 1956: 411.
Eriopeltis zolotarevae Borchsenius, 1956: 416.

Diagnosis. Dorsal tubercles absent; dorsal setae truncated cone-shaped; dorsal tubular ducts absent; dorsal simple and bilocular pore present; marginal setae with
blunt pointed apices; multilocular disc-pores with 6 to 11 loculi; ventral tubular duct present 3 types; ventral setae absent; Leg poorly developed; antenna 6 segmented.

Living appearance. Body elongate oval, convex, tapered at anterior and posterior end of the body. Dorsum pale pink in color, thoroughly covered with white filamentous wax (Patch, 1905; Borchsenius, 1957).

Slide-mounted material. Body longish and elongate oval, $3.4-4.5 \mathrm{~mm}$ long, 1.8 2.6 mm wide, without distinct stigmatic clefts; anal cleft relatively short, approximately 1/13-1/14 of body length (Fig. 52).

Dorsum. Derm membranous. Dermal areolations not detected. Dorsal tubercles absent. Dorsal setae basically truncated cone shaped, each 16.2-37.4 $\mu \mathrm{m}$ long, densely scattered over dorsum except for a long vertical band extending anal plates to nearly anterior end of body; stout and broad shaped setae at the middle area, but rather pointed and long shaped setae at each end of body, especially the posterior end. Dorsal tubular ducts with a large outer ductule, a moderately narrow inner ductule, and a developed flower-head-like terminal gland, frequently distributed over dorsum. Dorsal simple pore small $2.5-3.4 \mu \mathrm{~m}$ wide, and bilocular pore $4.0-5.8 \mu \mathrm{~m}$ wide, evenly present on entire dorsum. Preopercular pore 5.3-7.3 $\mu \mathrm{m}$ wide, frequently distributed on the long vertical band of middle of body. Anal plates each triangular in shape, 140$190.3 \mu \mathrm{~m}$ long, $133.4-244.6 \mu \mathrm{~m}$ wide, mostly posterolateral margin much longer than anterolateral margin: anterolateral margin 86.7-128.7 $\mu \mathrm{m}$ long, posterolateral margin $97.0-167.9 \mu \mathrm{~m}$ long. Each plate with 4-5 apical setae.

Margin. Marginal setae spinose, short, stout, with blunt pointed apices, $9.8-16.8 \mu \mathrm{~m}$ long. Stigmatic clefts not distinct and nearly flat, without stigmatic spines.

Venter. Derm membranous. Pregential disc-pores $5.7-7.9 \mu \mathrm{~m}$ wide, with variable numbers of loculi, each 6 to 11, abundant pores mainly scattered around vulvar area, also less numbers scattered on anterior area of abdomen and thorax. Spiracular pores $4.7-7.4 \mu \mathrm{~m}$ wide, each with 5 to 7 loculi, usually with 5 loculi, arranged in a narrow band between each spiracles and margin. Ventral microducts not detected. Ventral tubular duct 29.1-45.1 $\mu \mathrm{m}$ long, present 2 types: Type I with a moderately narrow inner ductule, usually curved, and a developed flower-head-like terminal gland, frequently present over venter. Type II with slender and long inner ductule and a not distinct terminal gland, evenly distributed on venter. Ventral submarginal setae spinose, straight or slightly curved, each $15.5-29.5 \mu \mathrm{~m}$ long. Ventral setae absent. Leg quite short and poorly developed, total length of metathoracic leg each 86.2-252.3 $\mu \mathrm{m}$ long: each coxa 34.0-65.3 $\mu \mathrm{m}$ long, trochanter+femer 27.4-63.0 $\mu \mathrm{m}$ long, tibia+tarsus 27.5-106.1 $\mu \mathrm{m}$ long, claw $10.8-26.0 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, usually posterior peritreme broader than anterior: anterior peritremes each $52.8-72.1 \mu \mathrm{~m}$ wide, posterior peritremes each $56.8-75.0 \mu \mathrm{~m}$ wide. Antenna 6 segmented, each $113.1-156.4 \mu \mathrm{~m}$ long. Clypeolabral shield 129.1-190.1 $\mu \mathrm{m}$ wide.

Specimens examined. 6? , Daehyeon-ri, Bukhu-myeon, Andong-si, GB, 1.vii.1999, coll. G.M. Kwon, on Poaceae sp., Slide\#. M1AV00621, M1AV00622, M1AV00625, M1AV00627, M1AV00628, M1AV00631; 2q, Suwon-si, GG, 20.vi.1977, collector data absent, on Poaceae sp., Slide\#. M1AV00616, M1AV00617.

Host. Poaceae: Brachypodium pinnatum; B. silvaticum; Bromus sp.; Festuca sp.; F. ovina (Marotta, 1987).

Distribution. Korea, China, Russia, USA, Canada, Europe, UK.
Remarks. Ecological appearances of Eriopeltis festucae was not observed in this study.

26. Eriopeltis sachalinensis Borchsenius, 1956 진사다리털깍지 벌레

Eriopeltis sachalinensis Borchsenius, 1956: 413.
Eriopeltis koreanus Borchsenius, 1956: 406.
Eriopeltis strelkovi Borchsenius, 1956: 414.
Eriopeltis japonensis Takahashi, 1957: 65.

Diagnosis. Body oval; dorsum pink or yellow in color; antenna 6 or 7 segmented, but segmentation not clear; legs quite short, and stout; marginal setae arranged in two or three rows; dorsal pores 3 to 5 present around each base of marginal setae.

Host. Poaceae: Calamagrostis purpurea; Festuca sp. (Borchsenius, 1956; Takahashi, 1957)

Distribution. Korea, Japan, China, Russia.
Remarks. Eriopeltis sachalinensis was only reported in North Korea (Borchsenius, 1956). In this study, any specimens could not be examined. Above diagnosis was written according to Danzig, 1986.

Genus Luzulaspis Cockerell, 1902 쌍털각지 벌레속

Type species: Aspidiotus luzulae Dufour, 1864

Diagnosis. 2 stigmatic spines in stigmatic area; almost 30 setae present between antennae; many dorsal and ventral tubular ducts (Gill, 1988; Hodgson, 1994).

27. Luzulaspis bisetosa Borchsenius, 1952 쌍덜 깍지 벌레

Luzulaspis bisetosa Borchsenius, 1952: 277.
Luzulaspis amabilis Kanda, 1960: 116.

Diagnosis. Dorsum of young adult female with two longitudinal bands; antenna 8 segmented; spiracular pores present in a narrow band 2-3 pores wide between each spiracles and margin; stigmatic spines stout, curved, and bifid, 2 present on each stigmatic areas; marginal setae slender, similar length to stigmatic spines, arranged in a single row; dorsal setae slender, occasionally a group of rather stout setae distributed on head.

Host. Cyperaceae: Carex sp.; C. nanella; C. rugata; Juncaceae: Luzula sp. (Koteja, 1979; Danzig, 1980).

Distribution. Korea, Japan, Russia.
Remarks. Luzulaspis bisetosa was only recorded in North Korea (Borchsenius, 1957). Any specimens of this species could not be examined in this study. Above diagnosis was written according to Danzig, 1986.

Genus Psilococcus Borchsenius, 1952 대 륙털깍지 벌 레 속

Type species: Psilococcus ruber Borchsenius, 1952

Diagnosis. Wide band of disc pores present around marginal area of venter; distinctive anal plates without or obscure anterior margin.

28. Psilococcus ruber Borchsenius, 1952 대 륙털깍지 벌레

Psilococcus ruber Borchsenius, 1952: 270.
Psilococcus parvus Borchsenius, 1957: 115.

Diagnosis. Dorsal tubercles absent; dorsal tubular ducts present; marginal setae with blunt apices; multilocular disc-pores with 7-9 loculi; spiracular pores with 4 to 6 loculi; ventral tubular duct present 1 types; each legs without a tibio-tarsal articulatory sclerosis; antenna 6 segmented.

Living appearance. Body elongate oval. Dorsum yellowish red in color. Eggs covered with small ovisac.

Slide-mounted material. Body quite elongate oval, without stigmatic clefts; anal cleft slightly deep, approximately $1 / 10$ of body length.

Dorsum. Derm membranous. Dermal areolations not described. Dorsal tubercles absent. Dorsal setae spinose, acute, rarely scattered on entire dorsum. Dorsal tubular ducts each with a large and developed outer ductule, a filamentous and long inner ductule and a small terminal gland, frequently distributed on submarginal area, especially around posterior abdomen. Dorsal simple pore evenly present on entire
dorsum. Preopercular pores round and convex, abundantly present in a dense group in front of anal plates. Anal plates each triangular in shape, without distinct anterior margins. Each plate with 4 apical setae.

Margin. Marginal setae spinose, slender, with blunt apices, present about 4 or 5 setae on each side between anterior and posterior stigmatic clefts. Stigmatic clefts absent, without distinct stigmatic spines.

Venter. Derm membranous. Pregential disc-pores with variable numbers of loculi, each 7-9, frequently scattered around vulvar area, also less numbers present on anterior area of abdomen and thorax. Spiracular pores each with 4 to 6 loculi, usually with 5 loculi, arranged in a broad band between each spiracle and margin. Ventral microducts usually limited to median areas of body. Ventral tubular duct present 1 types similar to dorsal tubular duct, frequently present posterior median and margin of abdomen. Ventral setae scarcely scattered on venter. Leg small and normally developed, each with a tibio-tarsal articulation, but articulation sclerosis absent. Tarsal digitules thinner and longer than claw digitules. Spiracles small, usually posterior peritreme moderately broader than anterior. Antenna 6 segmented. Clypeolabral shield present.

Host. Cyperaceae: Carex sp.; C. brizoides; C. campylorhina; C. canescens; C. dispalata; C. divulsa; C. duriuscula; C. humilis; C. pallescens (Koteja, 1969a; Koteja, 1969b; Danzig,1980).

Distribution. Korea, Russia, Europe.
Remarks. Psilococcus ruber was only reported in North Korea (Borchsenius, 1957). Any specimens of this species could not be examined in this study. Above diagnosis
was written according to Kosztarab \& Kozár, 1988; Hodgson, 1994.

Subfamily Eulecaniinae Koteja, 1988
Type genus: Eulecanium Cockerell, 1893

Diagnosis. Multilocular disc pore each with 10 loculi, broadly scattered on median abdomen and thorax, also on head; simple pointed marginal setae, not bifid or fimbriate; lack of dorsal tubercles and pocket-like sclerotisations; a complete submarginal band including ventral tubular ducts; legs with rather slender claw digitules; without a tibio-tarsal articulation sclerosis (Hodgson, 1994)

Key to Korean genera of Eulecaniinae

1. Dorsal tubular ducts present.. 2

- Dorsal tubular ducts absent.. 3

2. Stigmatic spines almost 6 present in stigmatic clefts; Marginal setae present 1 type..
\qquad

- Stigmatic spines 2 or 3 present in stigmatic clefts; Marginal setae present 2 types Eulecanium

3. Preopercular disc-pores absent.

Rhodococcus

- Preopercular disc-pores present 4

4. Preopercular pores and long vetral setae separated to two groups present near to each anterior end of body; Multilocular disc-pores with 10 loculi.. Didesmococcus

- Preopercular pores and long vetral setae distributed in a wide band between anal
plates and anterior head; Multilocular disc-pores with 7 loculi.... Sphaerolecanium

Genus Didesmococcus Borchsenius, 1953, 진 공깍지 벌 레 속

Type species: Didesmococcus megriensis Borchsenius, 1953

Diagnosis. This genus is distinguished by two groups of preopercular pores; distinctive distribution of long ventral setae present near to anterior end of body; relatively large dorsal microducts; spiracular disc-pores with multiloculi (Hodgson, 1994)

29. Didesmococcus koreanus Borchsenius, 1955 진 공깍지 벌레

Didesmococcus koreanus Borchsenius, 1955a: 288.

Diagnosis. Body round and hemispherical. Dorsum of mature adult female dark brownish and heavily sclerotized. Antenna 6 segmented, with long third segment.

Living appearance. (Fig. 30)
Host. Rosaceae: Prunus sp. (Borchsenius, 1960).
Distribution. Korea, China.

Remarks. In this study, Didesmococcus koreanus which was only recorded in North Korea was also collected from South Korea (Borchsenius, 1955a). However, taxonomical examinations with slide-mounted materials could not be performed because of sample conditions. Above diagnosis was written according to Paik, 2000.

Genus Ericerus Guérin-Meneville, 1858 쥐똥밀깍지 벌레속

Type species: Coccus ceriferus Fabricius (as a misidentification of Coccus pela Chavannes, 1848)

Diagnosis. This genus is recognized by almost 6 stigmatic spines in stigmatic clefts; abundant dorsal tubular ducts except for area of preopercular pores (Hodgson, 1994).

30. Ericerus pela (Chavannes, 1848) 쥐똥밀각지 벌레

Coccus pela Chavannes, 1848: 144.
Coccus sinensis Walker, 1852: 1087.

Coccus sinensis Westwood, 1853: 95.
Eulecanium potanini Borchenius, 1955: 297.

Diagnosis. Dorsal tubercles absent; dorsal tubular ducts with a completely reduced inner ductule; marginal setae usually with blunt apices; stigmatic clefts each with 46 stigmatic spines; multilocular disc pores with 10 loculi; ventral tubular duct present 2 type; each legs without a tibio-tarsal articulatory sclerosis; antenna 6 or 7 segmented. Living appearance. Body slightly oval to round, extremely convex or spherical. Dorsum of young adult female pale brownish usually with many irregular shaped and sized spots and coiled wax filaments on entire dorsum. Mature adult female becoming darker brown in color, and having swelled and sclerotized dorsum with small pits making rough surface. Abundant mass of white wax covering twigs of host plant and
containing crowded larvae of males (Fig. 31).
Slide-mounted material. Body slightly oval to circular, $4.0-5.3 \mathrm{~mm}$ long, $3.5-5.0 \mathrm{~mm}$ wide, occasionally width of body is longer than length, with slightly furrowed stigmatic clefts; anal cleft about $1 / 6$ of body length (Fig. 53).

Dorsum. Derm membranous to heavily sclerotized. Dermal areolations present. Dorsal tubercles absent. Dorsal setae bluntly spinose, stout, each 7.4-11.0 m long, rarely scattered on dorsum. Dorsal tubular ducts $26.0-39.8 \mu \mathrm{~m}$ long, each with a moderately developed outer ductule and an inner ductule and terminal gland completely reduced or absent. Dorsal microducts small, 1.7-3.4 $\mu \mathrm{m}$ wide, frequently distributed throughout dorsum. Preopercular pore round, present in a dense group between anterior anal plates and median thorax. Anal plates together quadrate, each with rounded outer angles, 160.9-208.4 $\mu \mathrm{m}$ long, $149.0-193.0 \mu \mathrm{~m}$ wide. Each plate with 3 or 4 apical setae.

Margin. Marginal setae spinose, stout, straight or slightly curved, each 27.5-42.2 $\mu \mathrm{m}$ long, mostly with blunt apices and well developed basal sockets, about 23-30 laterally between stigmatic areas. Stigmatic clefts slightly deep each with 4-6 stigmatic spines, much blunt and stout than marginal setae: the longest one $31.8-59.7 \mu \mathrm{~m}$ long, other laterals $29.5-46.7 \mu \mathrm{~m}$ long.

Venter. Derm membranous to sclerotized. Pregential disc-pores $8.1-11.2 \mu \mathrm{~m}$ wide, usually each with 10 loculi, frequently scattered around vulvar area, less frequently present on anterior area of abdomen and thorax. Spiracular pores $5.3-6.5 \mu \mathrm{~m}$ wide, each with 5 loculi, in a moderately broad band 2-3 pores wide between each spiracles and margin, especially quite broader groups 5-6 pores wide present at each ends of
band. Ventral tubular duct $26.0-39.8 \mu \mathrm{~m}$ long, present 2 type: Type I with a long outer ductule, and a narrow and short inner ductule with a large flower-head-like terminal gland, mainly distributed in submarginal area. Type II with an outer ductule much broader than Type I and an inner ductule similar to Type I, rarely scattered on median thorax and abdomen, especially anterior area of anal plates. Ventral microducts small, each 1.1-3.4, frequently present over venter. Ventral submarginal setae spinose, straight or slightly curved, similar to ventral setae, each $10.0-19.0 \mu \mathrm{~m}$ long. Ventral setae sharply spinose, slender, evenly present on entire venter. Leg normally developed, but small, each with a tibio-tarsal articulation, but an articulation sclerosis absent, total length of metathoracic leg each $360.7-642.4 \mu \mathrm{~m}$ long: each coxa $96.8-$ $119.4 \mu \mathrm{~m}$ long, trochanter+femer $108.4-144.6 \mu \mathrm{~m}$ long, tibia+tarsus $132.7-155.6 \mu \mathrm{~m}$ long, claw $13.6-24.9 \mu \mathrm{~m}$ long. Tarsal digitules relatively thin. Spiracles normally developed, quite large: anterior peritremes each 162.2-195.1 $\mu \mathrm{m}$ wide, posterior peritremes each $162.1-218.2 \mu \mathrm{~m}$ wide. Antenna 6 or 7 segmented, each 181.9$242.2 \mu \mathrm{~m}$ long. Clypeolabral shield 200.3-257.0 $\mu \mathrm{m}$ wide.

Specimens examined. 1 , Gangwon National Univ., Hyoja 2-dong, Chuncheon-si, GW, 02.iv.2015, coll. J.Y. Choi, on Ligustrum obtusifolium Siebold \& Zucc. (Oleaceae), Coll\#. 150425-JY-02; 9q, Ilsandong-gu, Goyang-si, GG, 28.iii.1998, coll. J.C. Jung, same host, Slide\#. M1AV00602, M1AV00603, M1AV00604, M1AV00605, M1AV00606, M1AV00607, M1AV00608, M1AV00609, M1AV00610.

Host. Oleaceae: Chionanthus retusens; Ligustrum obtusifolium; Fraxinus bungeana; F. longicuspis; Ligustrum medium; Syringa amurensis (Kuwana, 1923; Danzig,
1967).

Distribution. Korea, Japan, China, Russia, South America.

Genus Eulecanium Cockerell, 1893 공깍지 벌레속

Type species: Coccus tiliae Linnaeus, 1758

Diagnosis. Spinose dorsal setae, stigmatic spines and marginal setae; dorsum with dorsal tubular ducts; two types of ventral tubular ducts: Type I in a broad submarginal band; Type II rarely scattered on thoracic and abdominal areas; ventral microducts limitedly distributed in a distinct band relating to submarginal band of ventral tubular ducts; multilocular disc pores widely present on median abdomen and thorax, occasionally on head; anal plates with more than one inner marginal setae; legs without a tibio-tarsal articulation sclerosis claws present at right angles to tarsus; claw digitules having rather small apical dilations (Hodgson, 1994).

Key to Korean species of Eulecanium

1. Marginal setae only slender.. E. kostylevi

- Marginal setae conical and stout or slender... 2

2. Marginal setae conical and stout... 3

- Marginal setae conical and slender.. 4

3. Dorsum with distinct white or yellow spots when mature adult........... E. cerasorum

- Dorsum without distinct white or yellow spots when mature adult........ E. takachihoi

4. Dorsum with 7 or 8 dark transverse stripes when immature adult...... E. kunoense - Dorsum without 7 or 8 dark transverse stripes when immature adult...... E. secretum

31. Eulecanium cerasorum (Cockerell, 1900) 포도공깍지 벌레

Lecanium cerasorum Cockerell, 1900: 71.

Diagnosis. Body highly convex, hemispherical; dorsum with irregular pattern of whitish or yellowish spots; antenna 7 segmented; marginal setae stout and conical; stigmatic spines similar to marginal setae and shorter than ones; ventral tubular ducts present 1 type; spiracular pores with 5 loculi; multilocular disc-pores 10 loculi; anal plates with 5 to 7 apical setae.

Living appearance. (Fig. 32).
Host. Aceraceae: Acer sp.; Betulaceae: Carpinus sp.; Fabaceae: Wisteria sp.; Hamamelidaceae: Liquidamber sp.; Magnoliaceae: Magnolia sp.; Rosaceae: Prunus sp.; Pyracantha sp.; Ulmaceae: Celtis sp.; Zelkova sp. (Kosztarab, 1996).

Distribution. Korea, Japan, China, USA.
Remarks. Any slide specimens of Eulecanium cerasorum could not be examined because of heavily sclerotized individuls. However, photographs of living appearances is provided and above diagnosis was written according to Gill, 1988; Paik, 2000.

32. Eulecanium kostylevi Borchsenius, 1955 북쪽공각지 벌레

Eulecanium kostylevi Borchsenius, 1955a: 295.

Diagnosis. Body brownish, convex and hemispherical at mature adult female, with winkled surface; Dorsum of immature female light orange in color, with a brown longitudinal band medially, and one pair of spotted bands laterally; antenna 7 segmented; marginal setae slender, with simple pointed apices, present about 15 laterally between stigmatic areas; stigmatic spines quite short and thin; dorsal pores and cylindrical dorsal tubular ducts scarcely scattered on dorsum.

Host. Corylaceae: Corylus heterophylla; Fabaceae: Maackia amurensis; Juglandaceae: Juglans mandshurica; Rosaceae: Rosa dahurica; Ulmaceae: Ulmus propinqua (Danzig, 1967).

Distribution. Korea, China, Russia.
Remarks. Eulecanium kostylevi was only recored in North Korea (Borchsenius, 1955). Any specimens of this species could not be examined in this study. Above diagnosis was written according to Danzig, 1986.

33. Eulecanium secretum Borchsenium, 1955 개 야광공각지 벌레

Eulecanium secretum Borchsenius, 1955a: 299.

Diagnosis. Body dark brown, heavily convex, and hemispherical at old adult female; dorsum of young females yellow to brown in color, with longitudinal and transverse stripes; antenna 7 or 8 segmented; marginal setae conical and slender, with simple
pointed apices, but absent between stigmatic areas; stigmatic spines cylindrical, with blunt apices; dorsal pores frequent present on dorsum.

Host. Rosaceae: Cotoneaster lucida; Dasiphora dahurica; D. fruticosa (Danzig, 1980).

Distribution. Korea, Russia.
Remarks. Eulecanium secretum was only reported in North Korea (Borchsenius, 1955). Any specimens of this species could not be examined in this study. Above diagnosis was written according to Danzig, 1986.

34. Eulecanium takachihoi (Kuwana, 1902) 밤나무공깍지 벌 레

Lecanium (Eulecanium) takachihoi Kuwana, 1902b: 63.

Diagnosis. Body oval, highly convex, and posterior part lower than anterior; dorsum drown in color, with depressed regions on margin; antenna 7 segmented; marginal setae rather stout, with simple pointed apices; stigmatic spines 2 or 3 , usually shorter and thicker than marginal setae.

Host. Fagaceae: Castanea sp.; Quercus mongolica (Kuwana, 1902a; Danzig, 1980).
Distribution. Korea, Japan, Russia.
Remarks. Although one slide specimen of Eulecanium takachihoi was confirmed in National Institute of Agricultural Sciences (NIAS), taxonomical examinations could not be performed because of sample conditions. Above diagnosis was written according to Danzig, 1986.

35. Eulecanium kunoense Kuwana, 1907 공각지 벌레

Lecanium kunoensis Kuwana, 1907: 191.

Diagnosis. Dorsum yellow in color, with 7 or 8 dark brown transverse stripe, but changing to bluish brown after oviposition; antenna 6 or 7 segmented; marginal setae 2 types present: very long and slender setae on upper and under margins; conical and stout setae on lateral margins; stigmatic spines with length similar to marginal setae or slightly stouter; ventral tubular duct present 1 type; spiracular pores with 5 loculi; multilocular disc-pores 10 loculi; anal plates with 3 or 4 apical setae.

Host. Grossulariaceae: Grossularia sp.; Ribes sp.; Hippocastanaceae: Aesculus sp.; Juglandaceae: Juglans regia; Rhamnaceae: Rhamnus japonicus; Rosaceae: Amygdalus communis; Cerasus vulgaris; Crataegus sp.; Cydonia oblonga; Malus sylvestris; Prunus mume; Pyracantha sp.; Pyrus baccata (Husseiny \& Madsen, 1962). Distribution. Korea, Japan, China, USA.

Remarks. Although five slide specimens of Eulecanium kunoense were confirmed in National Institute of Agricultural Sciences (NIAS), taxonomical examinations could not be performed because of sample conditions. Above diagnosis was written according to Gill, 1988; Paik, 2000.

Genus Rhodococcus Borchsenius, 1955 사리 원각지 벌레 속

Type species: Rhodococcus rosaeluteae Borchsenius, 1953

Diagnosis. Absence of dorsal tubular ducts and preopercular pores; sharply spinose marginal setae; stigmatic spines much shorter than marginal setae; an anal ring without both setae and pores (Hodgson, 1994).

36. Rhodococcus sariuoni Borchsenius, 1955 사리 원깍지 벌레

Rhodococcus sariuoni Borchsenius, 1955a: 302.

Diagnosis. Body hemispherical or spherical; dorsal setae very scarcely present; antenna 6 segmented, with long third segment; marginal setae present about 10 laterally between stigmatic areas; multilocular disc-pores and ventral tubular ducts present.

Host. Rosaceae: Cerasus sp.; Malus sp.; Spiraea sp. (Borchsenius, 1955b).
Distribution. Korea, China.
Remarks. Rhodococcus sariuoni was only recorded in North Korea (Borchsenius, 1955). Any specimens of this species could not be examined in this study. Above diagnosis was written according to Danzig, 1986; Paik, 2000.

Genus Sphaerolecanium Šulc, 1908 오얏공깍지벌레속

Type species: Chermes emerici Planchon, 1864

Diagnosis. Dorsum with a wide band consisting of highly sclerotized preopercular
pores and long dorsal setae between anal plates and near to anterior head; multilocular disc pores usually each with 7 loculi (Hodgson, 1994).

37. Sphaerolecanium prunastri (Fonscolombe, 1834) 오얏공각지 벌레

Coccus prunastri Fonscolombe, 1834: 211.
Eulecanium piligerum Leonardi, 1918.

Diagnosis. Dorsal tubercles absent; dorsal setae present 2 types; dorsal tubular ducts absent; preopercular pore present 2 sizes; marginal setae with blunt apices; multilocular disc pores with 4-6 loculi; ventral tubular absent; each leg without a tibio-tarsal articulatory sclerosis; antenna usually 8 segmented.

Living appearance. Body round to oval, strongly convex. Dorsum dark brown to black, shiny with punctate surface (Kosztarab \& Kozár, 1988).

Slide-mounted material. Body oval to slightly rounded, without stigmatic clefts; anal cleft about 1/5-1/6 of body length.

Dorsum. Derm membranous, but a distinct sclerotisation present around anal plates in older specimens. Dorsal tubercles absent. Dorsal setae present 2 types: setose setae, frequently scattered on entire dorsum; flagellate setae, much longer than setose setae, abundantly distributed on a median region longitudinally with Type I of preopercular pores. Dorsal tubular ducts absent. Dorsal microducts small, frequently present over dorsum. Dorsal pores, flat, slightly larger, evenly scattered on dorsum. Preopercular pore present 2 sizes: large sized pores, circular, convex and sclerotized, abundantly
distributed in a medial band between anterior to anal plates and antennae; small sized pores, similar to large pores, but much smaller, present laterad to band of large pores. Anal plates each triangular in shape, mostly length of posterolateral margin similar to anterolateral margin. Each plate with 2 apical and 3 subapical setae.

Margin. Marginal setae, variable sized, with blunt apices, present about 19-29 setae on each side between anterior and posterior stigmatic clefts. Stigmatic clefts not distinct each with 3 stigmatic spines, slightly shorter and wider than marginal setae, median spine similar or slightly longer than lateral spine. Eyespots present on dorsal margin.

Venter. Derm membranous. Pregenital disc-pores usually each with 4-6 loculi, frequently distributed around vulvar area, less frequently present on anterior area of abdomen, especially small group also present laterad or mesad of metacoxa. Spiracular pores each with 5 loculi, in a wide band between each spiracles and margin. Ventral tubular absent. Ventral microducts frequently scattered on venter, except for medial area. Ventral submarginal setae rather large, present in a distinct submarginal band. Ventral setae with 3 pairs of long pregenital setae present, also 3 pairs of long or short setae between antennae and other setae sharply spinose, evenly distributed on entire venter. Leg normal, each with a tibio-tarsal peudo-articulation, and without a sclerosis. Tarsal digitules thinner than claw digitules, but equal in length. Spiracles normally developed, rather large, usually posterior peritreme much broader than anterior. Antenna 7 or 9 segmented, usually 8 . Clypeolabral shield normal.

Host. Rosaceae: Prunus cerasifera, P. persica; P. spinosa (Argyriou \& Paloukis, 1976; Marotta, 1987).

Distribution. Korea, China, Russia, USA, Europe.
Remarks. In Shiraki, 1952, Sphaerolecanium prunastri was firstly recorded from Korea as Eulecanium prunastri. However, any specimens could not be examined in this study and above diagnosis and description was written according to Hodgson, 1994.

Subfamily Filippiinae Bodenheimer, 1952

Type genus: Filippia Targioni-Tozzetti, 1868

Diagnosis. The subfamily Filippinae is typically characterized by zero to three stigmatic spines in each stigmatic clefts; occasionally having dorsal tubercles and pocket-like sclerotisations.

Key to Korean genera of Filippiinae

1. Dorsal setae large and cone shaped, arranged in 2 rows between anterior anal plates to each antenna; Legs each with a tibio-tarsal articulatory sclerosis \qquad Metaceronema

- Dorsal setae irregularly scattered; Legs each without a tibio-tarsal articulatory sclerosis

Takahashia

Genus Metaceronema Takahashi, 1955 과자깍지 벌레 속

Type species: Ceronema japonicum Maskell, 1897

Diagnosis. Distinctive large and cone shaped dorsal setae arranged in 2 rows extending near to anterior anal plates to each antenna (Hodgson, 1994).

38. Metaceronema japonica (Maskell, 1897) 과자깍지 벌 레

Ceronema japonicum Maskell, 1897a: 243.
Eriochiton theae Green, 1900: 10.
Lichtensia japonica Kuwana, 1909a: 152.
Euphilippia aquifoliae Chen, 1937: 383.
Euphilippia monicola Wang, 1976: 342.

Diagnosis. Dorsal tubercles absent; dorsal setae cone shaped, arranged in 2 rows in medial area; dorsal tubular ducts present 2 types; dorsal pore present 5 types; marginal setae with pointed apices; stigmatic clefts each with 4-12 stigmatic spines; multilocular disc pores with 7 loculi; ventral tubular duct present 2 types; legs each with a tibio-tarsal articulatory sclerosis; Antenna 8 segmented.

Living appearance. Body elongate oval, flat or slightly convex. Dorsum yellowish or light brownish with black mottling around a median longitudinal area. White curled wax distinctively present on the longitudinal ridge and fine filamentous wax scattered on the rest of dorsum, also other wax secretion attached to each spiracles and anal plates (Fig. 33).

Slide-mounted material. Body elongate oval $1.6-3.0 \mathrm{~mm}$ long, $1.1-1.8 \mathrm{~mm}$ wide,
with moderately furrowed stigmatic cleft; anal cleft rather short, about $1 / 9-1 / 10$ of body length (Fig. 54).

Dorsum. Derm membranous. Dermal areolations absent. Dorsal tubercles absent. Dorsal setae spinose, cone shaped, each 11.9-17.1 $\mu \mathrm{m}$ long, arranged in 2 rows between each antenna and near to anterior anal plates. Dorsal tubular ducts 25.3$35.7 \mu \mathrm{~m}$ long, present 2 types: Type I with a short outer ductule, a quite narrow or filamentous inner ductule, and a small terminal gland, mainly distributed on dorsum submarginally. Type II with a developed outer ductule, a moderately narrow inner ductule and a large flower-head-like terminal gland, rarely present throughout dorsum except for the median longitudinal area. Dorsal pore present 5 types: Oval shaped pore (Type I) sclerotized, without an inner ductule, 3.1-4.1 $\mu \mathrm{m}$ wide, distributed around the medial rows of dorsal setae; Ventral microduct (Type II) small, with an inner ductule, $1.9-2.9 \mu \mathrm{~m}$ wide, primarily intermixed with oval shaped pore (Type I); Tubercle-like pore (Type III) large, sclerotized, $6.3-8.1 \mu \mathrm{~m}$ wide, with an inner filament, present on entire dorsum, especially in the lines of dorsal seta medially. Small convex pore (Type IV), with an inner ductule, 3.2-4.3 $\mu \mathrm{m}$ wide, scattered on both sides of dorsum. Minute pore (Type V) small, 1.9-2.6 $\mu \mathrm{m}$ wide, evenly present on entire dorsum, especially attached to tubercle-like pore (Type III). Anal plates each triangular in shape, each with rounded outer angles and inner margin sharply diverging outward, $104.6-154.0 \mu \mathrm{~m}$ long, $108.1-180.0 \mu \mathrm{~m}$ wide, usually posterolateral margin rather shorter than anterolateral margin: anterolateral margin $84.8-114.8 \mu \mathrm{~m}$ long, posterolateral margin $69.6-94.9 \mu \mathrm{~m}$ long. Each plate with 4 stout inner margin setae.

Margin. Marginal setae spinose, long, stout, each $31.4-56.7 \mu \mathrm{~m}$ long, mostly with pointed apices, about 19-28 laterally between stigmatic areas. Stigmatic clefts moderately deep each with 4-12 stigmatic spines, bluntly spinose, stout, median spine less 1.5 times as long as the longest lateral spine: medians 30.2-117.0 $\mu \mathrm{m}$ long, laterals $24.5-95.5 \mu \mathrm{~m}$ long.

Venter. Derm membranous. Pregential disc-pores $7.0-8.9 \mu \mathrm{~m}$ wide, usually each with 7 loculi, mainly distributed around vulvar area, less frequently present on anterior area of abdomen. Spiracular pores 4.4-6.1 $\mu \mathrm{m}$ wide, each with 5 loculi, in a very broad band 4-5 pores wide between each spiracles and margin. Ventral tubular duct 24.9$29.3 \mu \mathrm{~m}$ long, present 2 type: Type I with a broad outer ductule, a slightly wide inner ductule, and a developed flower-head-like terminal gland, usually distributed on submarginal area. Type II with a moderately narrow inner ductule, rather narrow outer ductule, and a developed flower-head-like terminal gland, rarely scattered around head and anal plates. Ventral microducts small, each 1.9-3.2 $\mu \mathrm{m}$ wide, evenly distributed on entire venter, especially on submarginal area. Ventral setae sharply pointed, scarcely scattered over venter. Leg normally developed, each with a tibiotarsal articulation and an articulation sclerosis, total length of metathoracic leg each $433.4-830.1 \mu \mathrm{~m}$ long: each coxa $111.5-234.5 \mu \mathrm{~m}$ long, trochanter+femer $145.8-$ $286.8 \mu \mathrm{~m}$ long, tibia+tarsus $156.2-297.8 \mu \mathrm{~m}$ long, claw $19.9-31.9 \mu \mathrm{~m}$ long. Tarsal digitules thinner and longer than claw digitules. Spiracles normally developed, mostly posterior peritreme much broader than anterior: anterior peritremes each $21.6-64.4 \mu \mathrm{~m}$ wide, posterior peritremes each $22.5-83.5 \mu \mathrm{~m}$ wide. Antenna 8 segmented, each $219.2-436.4 \mu \mathrm{~m}$ long. Clypeolabral shield $128.4-209.4 \mu \mathrm{~m}$ wide.

Specimens examined. $4 \not \subset$, Yesong-ri, Bogil-myeon, Wando-gun, JN, 11.iv.2015, coll. J.Y. Choi, on Camellia japonica L. (Theaceae), Coll\#.150411-JY-03; 2 , Seogwipo-si, JJ, 22.iii.1972, collector data absent, on Eurya japonica for. Integra (Nakai) (Theaceae), Slide\#. M1AV00649, M1AV00650; 1 Q, Yoseon-ri, Pyoseonmyeon, Seogwipo-si, JJ, 25.iv.1973, collector data absent, on Camellia japonica L. (Theaceae), Slide\#. M1AV00680; 1 q, Jindo-gun, JN, collector data absent, on Camellia japonica L. (Theaceae), Slide\#. M1AV00685; 2 q, Udo-myeon, Jeju-si, JJ, coll. G.M. Kwon, on Fortunella japonica (Thunb.) (Rutaceae), Slide\#. M1AV00689, M1AV00692.

Host. Aquifoliaceae: Ilex crenata; I. integra; Buxaceae: Buxus microphylla; Theaceae: Camellia japonica; Eurya japonica; Thea japonica (Takahashia, 1955a; Takahashia \& Tachikawa, 1956; Borchsenius, 1957).

Distribution. Korea, Japan, China, Taiwan.

Genus Takahashia Cockerell, 1896 줄솜각지 벌레 속

Type species: Pulvinaria (Takahashia) japonica Cockerell, 1896

Diagnosis. Very long white ovisac extremely lifting body of mature adult female; only one type of ventral tubular ducts; absence of a tibio-tarsal articulatory sclerosis (Hodgson, 1994)

Pulvinaria (Takahashia) Japonica Cockerell, 1896b: 20. Takahashia wuchangensis Tseng, 1947.

Diagnosis. Body of mature adult female extremely lifted by long ovisac; dorsal tubercles absent; dorsal tubular ducts present; preopercular pores absent; multilocular disc-pores each with 10 loculi; ventral tubular duct present 1 type; each leg without a tibio-tarsal articulatory sclerosis; antenna 7 segmented.

Living appearance. Body elongate oval, highly convex or hemispherical. Dorsum light or dark brownish, slightly covered with white wax secretion. White ovisac about two or three times as long as body. Body of mature adult female extremely lifted by long ovisac. Eggs orange or red in color, and stored in ovisac (Fig. 24).

Slide-mounted material. Body elongate oval, $5.2-9.2 \mathrm{~mm}$ long, $4.5-7.6 \mathrm{~mm}$ wide without distinct stigmatic cleft; anal cleft approximately $1 / 8$ of body length (Fig. 55).

Dorsum. Derm membranous. Dermal areolations absent. Dorsal tubercles not detached. Dorsal setae spinose, stout, rather pointed, each $10.9-14.9 \mu \mathrm{~m}$ long, rarely scattered on entire dorsum. Dorsal tubular ducts $21.2-29.7 \mu \mathrm{~m}$ long, each with a normal outer ductule and a long filamentous inner ductule with a small terminal gland, evenly present on dorsum. Dorsal pores ring shaped and sclerotized, each 4.2-6.5 $\mu \mathrm{m}$ wide, frequently distributed on dorsum. Preopercular pores absent. Anal plates together quadrate, $180.7-204.0 \mu \mathrm{~m}$ long, $155.0-194.6 \mu \mathrm{~m}$ wide, usually posterolateral margin longer than anterolateral margin: anterolateral margin $114.1-136.5 \mu \mathrm{~m}$ long, posterolateral margin 116.6-139.4 $\mu \mathrm{m}$ long. Each plate with about 5 apical setae.

Margin. Marginal setae spinose, straight, and stout, each 17.4-28.0 $\mu \mathrm{m}$ long, usually
with pointed apices, about 18-21 laterally between stigmatic areas. Stigmatic clefts not distinct, each with 3 stigmatic spines, more blunt and stout, usually median spine and lateral spine having similar sizes and shorter than marginal setae: medians 15.9$22.1 \mu \mathrm{~m}$ long, laterals $12.4-18.3 \mu \mathrm{~m}$ long. Eye spots located near to margin.

Venter. Derm membranous. Pregential disc-pores $7.0-10.5 \mu \mathrm{~m}$ wide, each with 10 loculi, numerously distributed around vulvar area, also scattered on almost areas of body. Spiracular pores 6.0-7.1 $\mu \mathrm{m}$ wide, each with 5-7 loculi, sometimes pregenital disc pores intermixed in an obscure band between each spiracles and margin. Ventral tubular duct present 1 type with a long and developed outer ductule and a rather shorter inner ductule with a large flower-head-like terminal gland, frequently distributed around vulvar area, also present on marginal area and head, but not detected on medial area of thorax and both sides of submarginal area. Ventral microducts small, each 3.9-4.7 $\mu \mathrm{m}$ long, evenly present over venter. Ventral setae with 2 or 3 pairs of long pregenital setae present, also about 3 pairs of long setae between antennae and other setae sharply spinose, each 10.2-15.6 m long, scarcely present on entire venter. Leg normally developed, each with tibio-tarsal articulation, but an articulation sclerosis absent, total length of metathoracic leg each $308.6-482.8 \mu \mathrm{~m}$ long: each coxa $54.2-104.3 \mu \mathrm{~m}$ long, trochanter+femer $87.1-137.1 \mu \mathrm{~m}$ long, tibia+tarsus 128.4-208.9 $\mu \mathrm{m}$ long, claw $13.9-32.6 \mu \mathrm{~m}$ long. Tarsal digitules similar to claw digitules and both long and narrow. Spiracles normally developed, mostly posterior peritreme much broader than anterior: anterior peritremes each 95.1$131.131 .6 \mu \mathrm{~m}$ wide, posterior peritremes each $114.6-155.5 \mu \mathrm{~m}$ wide. Antenna 7 segmented, each $163.0-252.1 \mu \mathrm{~m}$ long, occasionally a pseudo-articulation present on
the third segment. Clypeolabral shield 113.3-289.2 $\mu \mathrm{m}$ wide.
Specimens examined. 1 , Seodun-dong, Gwonseon-gu, Suwon-si, GG, 29.v.2000, coll. G.M. Kwon, on Cornus officinalis Torr. Ex Dur. (Cornaceae), Slide\#. M1AV00990; 1q, Maetan-dong, Yeongtong-gu, Suwon-si, GG, 1.vi.2000, same collector, on Pyrus serotine L. (Rosaceae), Slide\#. M1AV00997; 3q, Seodun-dong, Gwonseon-gu, Suwon-si, GG, 23.v.2003, same collector, on Magnolia obovata Thunb. (Magnoliaceae), Slide\#. M1AV01026, M1AV01027, M1AV01028; 1q, Irwol-myeon, Yeongyang-gun, GB, 25.vi.2014, coll. J.Y. Choi, on Lespedeza sp. (Leguminosae), Coll\#. 140625-JY-01.

Host. Cornaceae: Cornus officinalis; Leguminosae: Lespedeza sp.; Magnoliaceae: Magnolia obovata; Rosaceae: Prunus salicina; P. serotine; Salicaceae: Salix glandulosa; Ulmaceae: Celtis sinensis; Zelkova serrata (Takahashi \& Tachikawa, 1956; Hodgson, 1994).

Distribution. Korea, Japan, China.

IV. Discussion

The family Coccidae was reviewed as 39 species of 19 genera in the Korean Peninsula, including 7 new records, Ceroplastes floridensis Comstock, Leptopulvinaria kawaii Tanaka \& Amano, Parthenolecanium fletcheri (Cockerell), Pulvinaria hydrangeae Steinweden, P. idesiae Kuwana, P. photiniae Kuwana, and Saissetia Miranda (Cockerell \& Parrott). Among them, one species, Pulvinaria torreyae, was examined as misidentification.

So far, taxonomic study of the family Coccidae have been pooly studied in Korean Peninsula. According to the history of Korean records, only 4 species had been recorded after Paik reported Metaceronema japonica in 1958. In this study, 7 species were newly discovered for 2 years. This study implicated that taxonomic status of the family Coccidae would be underestimated and have possible to be increased by intensive study.

Unfortunately, 7 species, Parthenolecanium orientale (Borchsenius), Eulecanium kostylevi Borchsenius, E. secretume Borchsenius, Rhodococcus sariuoni Borchsenius, Eriopeltis sachalinensis Borchsenius, Luzulaspis bisetosa Borchsenius, and Psilococcus ruber Borchsenius which were only reported from North Korea could not be examined in this study. Only one species, Didesmococcus koreanus Borchsenius were confirmed to exist in South Korea (Type spcimens of those species are deposited in Zoological Institute, Russian Academy of Sciences).

Among species which were recorded in South Korea, any specimens of 4 species, Parthenolecanium glandi (Kuwana), Pulvinaria floccifera (Westwood),

Eucalymnatus tessellatus (Signoret), and Sphaerolecanium prunastri (Fonscolombe) were unavailable, and 5 species, Parasaissetia nigra (Nietner), Pulvinaria nishigaharae (Kuwana), Eulecanium cerasorum (Cockerell), E. takachihoi (Kuwana), and E. kunoense Kuwana could not be examined exactly because fresh samples were highly convex and sclerotized, or slide specimens were too old or in bad condition. Those species should be more sampled and included in further study.

In regard of reviewing previous records, one species, Pulvinaria torreyae Takahashi, was confirmed as misidentification. The examined samples may be a new species or other Palearctic continental one. After further taxonomic works for this species, P. torreyae should be excluded from Korean fauna and reported as another species which were exactly identified.

Table 3. Checklist of Coccidae in the Korean peninsula. Species name with an asterisk (*) indicates new records to the fauna from this study.

No.	Subfamily	Tribe	Species	Korean name
1	Ceroplastinae	Ceroplastini	Ceroplastes ceriferus (Fabricius, 1798)	뿔밀깍지벌레
2			Ceroplastes floridensis Comstock, 1881*	
3			Ceroplastes japonicus Green, 1921	거북일깍지벌레
4			Ceroplastes rubens Maskell, 1893	루비깍지벌레
5	Coccinae	Coccini	Coccus hesperidum Linnaeus, 1758	무화과깍지벌레
6			Coccus pseudomagnoliarum (Kuwana, 1914)	어리목련깍지벌레
7			Eucalymnatus tessellatus (Signoret, 1873)	남생이깍지벌레
8		Pulvinariini	Leptopulvinaria kawaii Tanaka \& Amano, 2008*	
9			Nipponpulvinaria horii (Kuwana, 1902)	단풍공깍지벌레
10			Pulvinaria floccifera (Westwood, 1870)	동백솜깍지벌레
11			Pulvinaria hydrangeae Steinweden, 1946*	
12			Pulvinaria idesiae Kuwana, 1914*	
13			Pulvinaria nipponica Lindinger, 1933	무궁화솜깍지벌레
14			Pulvinaria nishigaharae (Kuwana, 1907)	노랑솜깍지벌레
15			Pulvinaria photiniae Kuwana, 1914*	
16			Pulvinaria torreyae Takahashi, 1956	주목솜깍지벌레
17		Saissetiini	Parasaissetia nigra (Nietner, 1861)	검은철모깍지벌레
18			Parthenolecanium corni (Bouché, 1844)	말채나무공깍지벌레
19			Parthenolecanium fletcheri (Cockerell, 1893)*	
20			Parthenolecanium glandi (Kuwana, 1907)	큰공깍지벌레
21			Parthenolecanium orientale (Borchsenius, 1957)	애기공깍지벌레
22			Parthenolecanium persicae (Fabricius, 1776)	복숭아공깍지벌레
23			Saissetia coffeae (Walker, 1852)	철모깍지벌레
24			issetia miranda (Cockerell \& Parrott, 1899) *	
25		Eriopeltini	Eriopeltis festucae (Fonscolombe, 1834)	사다리털깍지벌레
26			Eriopeltis sachalinensis Borchsenius, 1956	진사다리털깍지벌레
27			Luzulaspis bisetosa Borchsenius, 1952	쌍털깍지벌레
28			Psilococcus ruber Borchsenius, 1952	대륙털깍지벌레
29	Eulecaniinae	Eulecaniini	Didesmococcus koreanus Borchsenius, 1955	진공깍지벌레
30			Ericerus pela (Chavannes, 1848)	쥐똥일깍지벌레
31			Eulecanium cerasorum (Cockerell, 1900)	포도공깍지벌레
32			Eulecanium kostylevi Borchsenius, 1955	북쪽공깍지벌레
33			Eulecanium secretum Borchsenius, 1955	개야광공깍지벌레
34			Eulecanium takachihoi (Kuwana, 1902)	밤나무깍지벌레
35			Eulecanium kunoense (Kuwana, 1907)	공깍지벌레
36			Rhodococcus sariuoni Borchsenius, 1955	사리원깍지벌레
37			Sphaerolecanium prunastri (Fonscolombe, 1834)	오얏공깍지벌레
38	Filippinae	Filippiini	Metaceronema japonica (Maskell, 1897)	과자깍지벌레
39			Takahashia japonica (Cockerell, 1896)	줄솜깍지벌레

PART II. Molecular phylogeny of Coccidae (Hemiptera: Coccoidea)

Abstract

The soft scales (Hemiptera: Coccidae) are plant-sucking insects, some of which are considered as serious agricultural pests. Their phylogenetic works have been poorly conducted even some hypotheses have been suggested only based on the alpha taxonomy. Here, we performed preliminary phylogenetic analysis of Coccidae based on molecular fragments 1813bp containing mitochondrial DNA (COI), nuclear ribosomal RNA genes (18S and 28S), and elongation factor 1α (EF-1 α). Data sets of 55 taxa were analyzed using maximum likelihood (ML) and Bayesian inference (BI). Our molecular analyses represent that any subfamily is not completely monophyletic except for Ceroplastinae; monophyletic clade of Ceroplastinae is nested within the major clade of Coccinae; Four tribes of Coccinae are paraphyletic except for Saissetiini in ML tree, and Megapulvinaria and Paralecanium are not clustered within the major clade of Coccinae; Didesmococcus is separated from the clade of Eulecaniinae; Filippiinae and Cardiococcinae are paraphyletic with respect to some of Coccinae and Eulecaniinae.

Key words: Coccidae, soft scales, molecular phylogeny, COI, 18S, 28S, EF1- α.

I. Introduction

Coccidae (Hemiptera: Coccoidea) is the third richest family of scale insects, consist of 1,134 described species of 168 genera in the world (Ben-Dov et al., 2014). This group which belonged to the neococcids has been inferred as sister to Aclerdidae or Kerriidae in several higher classification of the Coccoidea (Fig.4. a. Cook et al., 2002; b. Gullan \& Cook, 2007; c. Hodgson \& Hardy, 2013). The latest classification of Coccidae was suggested by Hodgson (1994) who introduced 10 subfamilies including the Coccinae subdivided into 4 tribes, based on morphology of adult males and females. Although some phylogenetic analyses of subgroups within soft scales were attempted by Qin \& Gullan (1995) and Miller and Williams (1995), the first comprehensive phylogeny of Coccidae was accomplished by Miller and Hodgson, (1997), using 105 characters of 24 taxa which represent all subfamilies, tribes of Coccidae and outgroups (Fig. 3). In this cladistic analysis, monophyly of Coccidae was well supported and most relationships of higher taxa of Coccidae were rather constant, however other relationships of Filippiinae, Eulecaniinae and Cissococcinae were changed according to outgroups. Miller and Hodgson, (1997) suggested that the Filippiinae, Eulecaniinae and Cissococcinae is basal groups and Myzolecaniinae, Eriopeltinae, Pseudopulvmariinae and Cyphococcinae are intermediate within Coccidae. In addition, they suggested Paralecaniini closely sister to Cardiococcinae is not a group belonging the Coccinae. Although they provided the hypotheses based on the morphological characters, further phylogenetic works have not been conducted to define relationships of groups in Coccidae. For that reason, we constructed
preliminary molecular phylogeny of Coccidae to estimate the monophyly of higher groups of Coccidae and the previous hypotheses.

Fig. 3. The morphological phylogeny of the family Coccidae, using 105 characters (Miller \& Hodgson, 1997).

II. Materials and methods

Taxon Sampling

Total 55 taxa including 49 ingroup species and 6 outgroup of three families sister to Coccidae were used in analyses (Table 5). Among them, sequenced data for 30 samples were downloaded from NCBI (Lin et al., 2013; Wang et al., 2015). These

Fig. 4. Phylogenetic relationships of the superfamily Coccoidea.
(a) The first phylogenetic hypothesis based on the nuclear small subunit ribosomal RNA gene (SSU rRNA); (b) The developed phylogenetic tree using 18S and an expanded taxon set; (c) The phylogeny based on the morphology of macropterous males.
ingroup taxa comprise 5 subfamilies; Cardiococcinae, Ceroplastinae, Coccinae, Eulecaniinae and Filippiinae and 4 tribes of Coccinae; Coccini, Pulvinariini, Paralecaniini and Saissetiini of Coccidae. The outgroup taxa, Nipponaclerda biwakoensis (Kuwana, 1907) from Aclerdidae; Kermes miyasakii Kuwana, 1907 from Kermesidae; Diaspididae sp.1, Diaspididae sp.2, Pseudaulacaspis eugeniae (Maskell, 1892) and Pseudaulacaspis sp. from Diaspididae are chosen.

DNA extraction, PCR amplification, and Sequencing

Genomic DNA was extracted by a non-destructive method to further identifications, using DNeasy Blood \& Tissue kit (QIAGEN, Inc., Dusseldort, Germany) and following the manufacturer's protocol. The preserved vouchers were slide-mounted according to the method given by Hodgson \& Henderson (2000). All slide specimens are deposited in the College for Agriculture and Life Sciences, Seoul National University (SNU). In PCR amplification, four genes were selected as follows: mitochondrial protein coding gene (the cytochrome c oxidase subunit I gene, COI), nuclear ribosomal RNA genes (18S and 28S) and elongation factor-1 α (EF-1 α). Primers for amplifying each genes are given in Table 4. The thermal cycling program was performed according to protocols of each markers. The COI marker was amplified as $95^{\circ} \mathrm{C} / 2 \mathrm{~min}, 5$ cycles of $94^{\circ} \mathrm{C} / 40 \mathrm{~s}, 45^{\circ} \mathrm{C} / 40 \mathrm{~s}$, and $72^{\circ} \mathrm{C} / 70 \mathrm{~s}$, and 40 cycles of $94^{\circ} \mathrm{C} / 40 \mathrm{~s}, 51^{\circ} \mathrm{C} / 40 \mathrm{~s}$, and $72^{\circ} \mathrm{C} / 70 \mathrm{~s}$, followed by a final extension at $72^{\circ} \mathrm{C} / 5 \mathrm{~min}$. The 18 S and 28 S markers were conducted as $94^{\circ} \mathrm{C} / 4 \mathrm{~min}$, 35 cycles of $55^{\circ} \mathrm{C} / 30 \mathrm{~s}$, and $72^{\circ} \mathrm{C} / 30 \mathrm{~s}$, followed by a
final extension at $72^{\circ} \mathrm{C} / 3 \mathrm{~min}$. The EF- 1α was followed the protocol of 18 S and 28 S , but the annealing temperature changed to $50^{\circ} \mathrm{C}$. Then, PCR products were sequenced at MACROGEN Inc (Geumcheon-Gu, Seoul, Republic of Korea).

Table 4. Primers used in the present study.

Gene regions	Direction	Primer name	Sequences (5'-3')	Annealing temperature	References
COI	Forward	ProF1	CCTTCAACTAATCATAAAAATATYAG	$51{ }^{\circ} \mathrm{C}$	Park et al. (2010)
	Reverse	HCO	TAAACTTCAGGGTGACCAAAAAATCA		Folmer et al. (1994)
	Reverse	LepR1	TAAACTTCAGGGTGACCAAAAAATCA		Park et al. (2010)
18S	Forward	2880	CTGGTTGATCCTGCCAGTAG	$55^{\circ} \mathrm{C}$	Tautz et al. (1988)
	Reverse	Br	CCGCGGCTGCTGGCACCAGA		von Dohlen \& Moran (1995)
28S	Forward	S3660	GAGAGTTMAASAGTACGTGAAAC	$55^{\circ} \mathrm{C}$	Dowton \& Austin (1998)
	Reverse	A335	TCGGARGGAACCAGCTACTA		Whiting et al. (1997)
EF1- α	Forward	ScutA	ATTGTCGCTGCTGGTACCGGTGAATT	$50{ }^{\circ} \mathrm{C}$	Hardy et al. (2008b)
	Reverse	rcM52.6	GCYTCGTGGTGCATYTCSAC		Cho et al. (1995)

Alignment and Characterization of Gene Fragments

Sequence assembling and editing were performed using SeqMan Pro ver. 7.1.0 (DNASTAR, Inc., Madison, WI). Sequences were aligned with MEGA software ver. 5.0 (Tamura et al., 2011). Each sequence data was combined using SequenceMatrix ver. 1.7.8. (Vaidya et al., 2010).

The complete data sets were used to Maximum likelihood and Bayesian inference analyses.

Maximum likelihood (ML) was performed with PhyML v. 3.0 (Lanave et al., 1984). The nodes were estimated with 100 bootstrap replications.

Bayesian inference (BI) was conducted with GTR+I+G model in MrBayes ver. 3.1.2 (Ronquist and Huelsenbeck, 2003). The BI analyses ran for 10 million Markov chain Monte Carlo (MCMC) generations. Burn-in was set at 15% of the sampled number of trees. Tracer ver. 1.4 (Rambaut and Drummond, 2003) was used to view the graphical representation of MCMC chain mixing in order to ensure that the distribution had stabilized. A 50\% majority-rule consensus tree was constructed from the remaining trees to estimate posterior probabilities.

Table 5. Taxa used in this study with GenBank accession numbers.

Subfamily	Tribe	Specific Name	Host	Locality	COI	18S	28S	EF-1a
Cardiococcinae		Dicyphococcus ficicola Borchsenius	Ficus microcarpa	Kunming, Yunnan, China	KP190014	-	KP189735	-
Cardiococcinae		Drepanococcus chiton (Green, 1908)	Ficus benjamina	Taipei City, Taiwan	JX853913	JX866686	JX866699	JX965106
Ceroplastinae		Ceroplastes ceriferus (Fabricius, 1798)	Ilex rotunda	Wando-gun, Jeollanam-do, Korea	O	O	O	O
Ceroplastinae		Ceroplastes japonicus Green, 1921	Pittosporum tobira	Seogwipo-si, Jeju-do, Korea	O	O	O	O
Ceroplastinae		Ceroplastes rubens Maskell, 1893	Citrus sp.	Jeju-si, Jeju-do, Korea	O	O	O	-
Ceroplastinae		Ceroplastes rusci (Linnaeus)	Ficus microcarpa	Maoming, Guangdong, China	KP189752	-	KP189489	-
Ceroplastinae		Ceroplastes stellifer (Westwood, 1871)	Mangifera indica	Vientiane province, Laos	0	O	O	O
Coccinae	Coccini	Coccus formicarii (Green, 1896)	Ficus microcarpa	New Taipei City, Taiwan	JX853902	JX566901	JX866687	-
Coccinae	Coccini	Coccus hesperidum Linnaeus, 1758	Asplenium antiquum	Seogwipo-si, Jeju-do, Korea	O	O	O	O
Coccinae	Coccini	Coccus pseudomagnoliarum (Kuwana, 1914)	Citrus sp.	Davis, CA, USA	JX845479	JX566919	JX645352	JX965089
Coccinae	Coccini	Coccus sp.	Ficus banghalensis	Gangnam-gu, Seoul, Korea	O	O	O	O
Coccinae	Coccini	Coccus viridis (Green, 1889)	Lagerstroemia sp.	Bolikhamsai Province, Laos	O	O	O	O
Coccinae	Coccini	Eucalymnatus sp.	Michelia yunnanensis	Kunming, Yunnan, China	KP189854	-	KP189591	-
Coccinae	Coccini	Eucalymnatus tessellatus (Signoret)	Trachycarpus fortunei	Jinghong, Yunnan, China	KP189801	-	KP189535	-
Coccinae	Coccini	Prococcus acutissimus (Green)	Trachycarpus fortunei	Jinghong, Yunnan, China	KP189789	-	KP189523	-
Coccinae	Pulvinariini	Leptopulvinaria kawaii Tanaka \& Amano, 2008	Ilex cornuta	Wando-gun, Jeollanam-do, Korea	O	-	O	O
Coccinae	Pulvinariini	Megapulvinaria maxima (Green)	Artocarpus heterophyllus	Puer, Yunnan, China	KP189889	-	KP189630	-
Coccinae	Pulvinariini	Milviscutulus mangiferae (Green, 1889)	Plumeria obtusa	Pingtung County, Taiwan	JX845482	JX566920	JX645355	JX965093
Coccinae	Pulvinariini	Milviscutulus sp.	Mangifera indica	Vientiane province, Laos	0	O	O	-
Coccinae	Pulvinariini	Nipponpulvinaria horii (Kuwana, 1902)	Acer sp .	Gwanak-gu, Seoul, Korea	O	O	O	O
Coccinae	Paralecaniini	Neosaissetia tropicalis Tao \& Wong in Tao, Wong \& Chang, 1983	Palaquium formosanum	Pingtung County, Taiwan	JX853911	JX866685	JX866697	JX965104
Coccinae	Paralecaniini	Paralecanium expansum (Green, 1896)	Litsea glutinosa	Kinmen	JX853909	JX866683	JX866695	JX965102

Coccinae	Paralecaniini	Paralecanium frenchii (Maskell, 1891)	Banksia integrifolia	Brisbane, QLD, Australia	JX853910	JX866684	JX866696	JX965103
Coccinae	Paralecaniini	Paralecanium sp.	Mangifera indica	Vientiane province, Laos	O	O	O	-
Coccinae	Saissetiini	Parasaissetia nigra (Nietner)	Strelitzia reginae	Jinghong, Yunnan, China	KP189865	-	KP189603	-
Coccinae	Saissetiini	Parasaissetia sp.	Hibiscus syriacus	Sanya, Hainan, China	KP189874	-	KP189611	-
Coccinae	Saissetiini	Parthenolecanium corni (Bouché, 1844)	Platanus sp.	Anyang-si, Gyeonggi-do, Korea	O	O	O	-
Coccinae	Saissetiini	Parthenolecanium fletcheri (Cockerell, 1893)	Thuja orientalis	Jincheon-gun, Chungcheongbukdo, Korea	O	O	O	-
Coccinae	Saissetiini	Parthenolecanium persicae (Fabricius, 1776)	Magnolia sp.	Suwon-si, Gyeonggi-do, Korea	O	-	O	-
Coccinae	Pulvinariini	Protopulvinaria pyriformis (Cockerell, 1894)	Jasminum sp.	Crete, Greece	JX853912	JX566900	JX866698	JX965105
Coccinae	Pulvinariini	Pulvinaria aurantii Cockerell	Pittosporum tobira	Guilin, Guangxi, China	KP189810	-	KP189544	-
Coccinae	Pulvinariini	Pulvinaria idesiae Kuwana, 1914	Acer sp.	Sillim-dong, Gwanak-gu, Seoul, Korea	O	O	O	O
Coccinae	Pulvinariini	Pulvinaria neocellulosa Takahashi	Ficus sp.	Menglun, Yunnan, China	KP200686	-	KP189621	-
Coccinae	Pulvinariini	Pulvinaria photiniae Kuwana, 1914	Styrax obassia	Jincheon-gun, Chungcheongbukdo, Korea	O	O	O	O
Coccinae	Pulvinariini	Pulvinaria psidii Maskell, 1893	Tabebuia chrysantha	Chiayi City, Taiwan	JX845481	JX560411	JX645354	JX965092
Coccinae	Pulvinariini	Pulvinaria sp.	Cephalotaxus koreana	Gwangyang-si, Jeollanam-do, Korea	O	O	O	O
Coccinae	Saissetiini	Saissetia coffeae (Walker, 1852)	Cycas revoluta	Seogwipo-si, Jeju-do, Korea	O	O	O	O
Coccinae	Saissetiini	Saissetia miranda (Cockerell \& Parrott in Cockerell, 1899)	Mangifera indica	Chiayi County, Taiwan	JX853908	JX866682	JX866694	JX965101
Coccinae	Saissetiini	Saissetia oleae (Olivier)	Capparis masaikai	Menglun, Yunnan, China	KP189778	-	KP189512	-
Eulecaniinae		Didesmococcus koreanus Borchsenius, 1955	Prunus armeniaca	Yeongdeungpo-gu, Seoul, Korea	O	O	O	O
Eulecaniinae		Ericerus pela (Chavannes, 1848)	Ligustrum obtusifolium	Chuncheon-si, Gangwon-do, Korea	O	O	O	O
Eulecaniinae		Eulecanium cerasorum (Cockerell, 1900)	Cornus officinalis	Gwanak-gu, Seoul, Korea	O	-	O	-
Eulecaniinae		Eulecanium kuwanai Kanda	Ulmus pumila	Hefei, Anhui, China	KP189953	-	KP189681	-
Eulecaniinae		Eulecanium sp.	Ulmus pumila	Korla, Xinjiang, China	KP189940	-	KP189672	-
Eulecaniinae		Physokermes jezoensis Siraiwa	Picea koraiensis	Harbin, Heilongjiang, China	KP189989	-	KP189717	-

Eulecaniinae	Rhodococcus sariuoni Borchsenius	Crataegus pinnatifida	Cangshan, Shandong, China	KP189911	-	KP189648	-
Filippiinae	Metaceronema japonica (Maskell, 1897)	Camellia japonica	Wando-gun, Jeollanam-do, Korea	-	O	O	O
Filippiinae	Takahashia japonica (Cockerell, 1896)	Lespedeza sp.	Yeongyang-gun, Gyeongsangbuk-do, Korea	-	O	-	O
Aclerdidae	Nipponaclerda biwakoensis (Kuwana)	Phragmites australis	Linyi, Shandong, China	KP189751	-	KP189488	-
Kermesidae	Kermes miyasakii 2	Castanea crenata	Gwanak-gu, Seoul, Korea	O	O	O	O
Diaspididae	Diaspididae sp. 1		Australia	-	-	GQ325582	GQ403938
Diaspididae	Diaspidida sp. 2		Arizona, USA	-	-	GQ325587	GQ403947
Diaspididae	Pseudaulacaspis sp.		Australia	-	-	GQ325582	GQ403936
Diaspididae	Peudaulacaspis eugeniae		Australia	-	-	GQ325582	GQ403932

O: unpublished sequences; -: unavailable sequences

III. Result

The phylogenetic trees from Maximum Likelihood (ML) and Bayesian Inference (BI) based on molecular fragments of mitochondrial DNA, nuclear ribosomal RNA genes and elongation factor $1 \alpha(\mathrm{EF}-1 \alpha)$ were compared and shown in Fig. 5-8.

The monophyletic clade of Coccidae was recovered except for Drepanococcus which was nested within a clade of outgroups in the BI tree (Fig. 5; Fig. 7). No subfamily is completely monophyletic except for Ceroplastinae. The monophyletic clade of the Ceroplastinae was placed in a basal position in BI tree (Fig. 7). and an intermediate in ML tree (Fig. 5). within the major clade of the Coccinae. In case of the Coccinae, relatively many exemplars formed a major clade, however some taxa, Megapulvinaria and Paralecanium, were distinctively separated from the major one of Coccinae (Fig. 6; Fig. 8). Eulecaniinae was paraphyletic because Didesmococcus koreanus was nested within the major clade of Coccinae from both trees (Fig. 5; Fig. 7). Filippiinae and Cardiococcinae were recovered as paraphyletic with respect to some of Coccinae and Eulecaniinae and placed in the most basal position of Coccidae although both subfamilies didn't have sufficient exemplars (Fig. 5; Fig. 7).

Fig. 5. Maximum likelihood tree from the combined analysis of all nuclear and mitochondrial fragments. Branches are colored by subfamilies of the family Coccidae. Numbers indicate bootstrap values for each node.

Fig. 6. Maximum likelihood tree from the combined analysis of all nuclear and mitochondrial fragments. Branches are colored by tribes of the subfamilies Coccinae. Numbers indicate bootstrap values for each node.

Fig. 7. Bayesian inference tree from the combined analysis of all nuclear and mitochondrial fragments. Branches are colored by subfamilies of the family Coccidae. Numbers indicate Bayesian posterior probability values.

Fig. 8. Bayesian inference tree from the combined analysis of all nuclear and mitochondrial fragments. Branches are colored by tribes of the subfamilies Coccinae. Numbers indicate Bayesian posterior probability values.

IV. Discussion

The Coccidae was recovered as a monophyletic group from the two phylogenetic trees, which was identical to previous cladistic analysis (Miller \& Hodgson, 1997). However, an exemplar of Aclerdidae was nested within a major clade of Coccinae (Fig. 5; Fig. 7). Miller \& Hodgson (1997) also found a result that the Aclerdiae showed in the monophyletic clade of the Coccidae when Tachardiidae, Micrococcidae and Aclerdidae used as outgroups. Although our result was insufficient to define the exact relationship between the Coccidae and Aclerdidae, it was suggested that the Aclerdidae might be close to the Coccidae, which was also strongly supported by a phylogenetic study of superfamily Coccoidea (Hodgson \& Hardy, 2013). Other detail relationships among subfamilies, tribes and genera were as below.

Saissetiini

Each genus Parthenolecanium, Saissetia and Pasaissetia of Saissetiini were monophyletic in both phylogenetic results and each monophyletic clade of genera formed a cluster in the ML tree (Fig. 6; Fig. 8). Morphologically, they share following characters: ventral tubular ducts with 1 or 2 types making a wide submarginal band; dorsal tubular ducts usually absent; dorsal tubercles and pocket-like sclerotisations typically present, but both could be absent; multilocular disc-pores each with 10 loculi, present between anal plates and thorax; eyespots located near margin; stigmatic clefts shallow and unsclerotised. The phylogenetic results implied that these morphological characters of Saissetiini are adequate for grouping the genera. The monophyly of Saissetiini was only supported by ML tree because Parasaissetia was nested within a major clade of Coccini in Bayesian analysis, therefore further studies need to be conducted in this tribe.

Coccini

The genus Coccus, Prococcus and Eucalymnatus were used for exemplars of Coccini. This
tribe was apparently paraphyletic because each clades of Coccini were scattered across 4 or 5 different places and intermixed with paraphyletic clades of Pulvinariini in a major clade of Coccinae (Fig. 6; Fig. 8). The tribe Coccini was grouped by following characters: dorsal tubular ducts usually absent, if present, very rarely distributed in submargin; ventral tubular ducts absent or restricted to medial thorax; pocket-like sclerotisations absent; eyespots located near to margin; stigmatic areas unsclerotised; stigmatic spines distinct from marginal setae; multilocular disc-pores densely present on pregenital segment, but absent medial area of thorax. Although they share these morphological characters, the phylogenetic results conflicted with the previous grouping of these taxa. Further, the paraphyly of the genus Coccus which was referred by Lin et al. (2013) was identical with the result of present study and Eucalymnatus with 2 species were monophyletic.

Pulvinariini

The monophyletic clade of Pulvinariini which was represented by the genus Pulvinaria, Milviscutulus, Protopulvinaria, Leptopulvinaria, Nipponpulvinaria, and Megapulvinaria was not recovered, especially Megapulvinaria was distinctively separated from the major clade of Coccinae and sister to Cardiococcinae or Filippiinae in each phylogenetic trees (Fig. 6; Fig. 8). The tribe Pulvinariini was grouped based on following characters: a white ovisac produced by mature adult female; ventral tubular ducts with 3 or 4 types (scarcely 2) present; ovisac not covering dorsum; dorsal tubular ducts present or absent; spinose dorsal setae present; a tibiotarsal articulatory sclerosis present; pocket-like sclerotisations absent; an eyespots located near margin; stigmatic clefts shallow and unsclerotised. The morphology of Megapulvinaria correspond the above characters, however they have 2 types of marginal setae and anal plates each with a discal seta and truncate spines along inner margin which are distinct from other groups of Pulvinariini. Especially, the stout spines along inner margins of anal plates is very unique in Pulvinariini as well as among all genera of Coccinae except for Pulvinarisca which was closely related with Megapulvinaria. On the other hand, most genera of Cardiococcinae and some of Filippiinae share this unique character of Megapulvinaria. From these evidences,
we assumed that Megapulvinaria is not part of Coccinae and more related with Cardiococcinae or Filippiinae. The phylogenetic positon of Pulvinarisca is open to question because they have a high possibility of forming a distinct clade outside of Coccinae. The genus Pulvinaria was clearly paraphyletic in the both analyses, which showed that 3 or 4 separated clades were scattered with Coccus on the major clade of Coccinae. These problematic groups, the genus Coccus and Pulvinaria, and the tribe Coccini and Pulvinariini should be reclassified with comprehensive studies based on morphological and molecular data.

Paralecaniini

The genus Paralecanium and Neosaissetia were used for representing Paralecaniini in the present study. This tribe was apparently paraphyletic in that one clade of Neosaissetia placed within the major clade of Coccinae, whereas the other clade of Paralecanium was distinctively separated from the Coccinae and sister to Cardiococcinae, Filippiinae and Eulecaniinae in two phylogenetic trees (Fig. 6; Fig. 8). These molecular results was consensus with the morphological phylogeny of Miller \& Hodgson (1997) who pointed out that the Paralecaniini may not belong to the Coccinae and have close relationship with Cardiococcinae (Fig. 3). According to the classification of Hodgson (1994), the 12 genera of Paralecaniini shared following characters: stigmatic cleft deep and sclerotized; eyespots located onto dorsum; ventral tubular ducts generally restricted to vulvar area; preopercular pores usually arranged in 2 bands between anal plates and anterior head. On the other hand, the three other tribes, Coccini, Pulvinariini and Saissetiini, have different characters with Paralecaniini as follows: stigmatic cleft shallow and unsclerotized; eyespots present near margin; ventral tubular ducts present submarginal area or medial abdomen, thorax and head, not restricted to prevulvar area; preopercular pores typically present in a single band anterior area of anal plates. These results suggested that the distinct characters of Paralecaniini may cause the different phylogenetic placements with the other tribes of Coccinae. In case of the closely related subfamilies, they also don't share the unique characters of Paralecaniini and have quite different morphologies. Particularly, Cardiococcinae was treated as the most distinct group in the Coccidae (Hodgson, 1994). These evidences more supported the independent identity of Paralecaniini. However,
the presence of remained taxon of Paralecaniini in the clade of Coccinae left the possibility that other genera also show the phylogenetic positions like Neosaissetia. Morphologically, the Neosaissetia possesses 2-4 pairs of dorsal tubercles which are completely absent in all genera of Paraelcaniini except for Perilecanium. In contrast, all type genera of the three tribes in Coccinae have the dorsal tubercles although not all the species share this character. Additionally, above defined characters of Paralecaniini are weakly appeared in the Neosaissetia, especially anal clefts distinct, but shallow and preopercular pores restricted to anterior area of anal plates, not extending to head. It seems possible that these differences affected the phylogenetic positon of Neosaissetia which was placed in the clade of Coccinae and not related with Paralecanium. The phylogenetic result of the Paralecanium which is the type genus of Paralecaniini suggested that the tribe Paralecaniini should be separated from the subfamily Coccinae and elevate to the rank of an independent subfamily Paralecaninae based on the congruence of morphological and molecular analyses. However, the genus Neosaissetia would remain in the Coccinae and be treated as a genus of other tribes or new tribe.

Ceroplastinae

The 5 species of Ceroplastes which is the type genus of Ceroplstinae formed a monophyletic clade and it was nested within the major clade of Coccinae in both phylogenetic trees (Fig. 5; Fig. 7). In the cladistic analysis of Miller \& Hodgson (1997), Ceroplastinae was positioned between each clade of Coccini+Pulvinariini+Saissetiini and Paralecaniini, which was roughly similar to our result in that Ceroplastinae was placed to a same clade with Coccinae (Fig. 3). Their close relationship was recognized by Giliomee (1967) who considered Ceroplastes as one of Coccus-group because of morphological similarities of the adult males. After the generic group, Coccus, was elevated to the subfamilies, Coccinae by Kosztarab \& Kozar (1988), Tang et al. (1990) proposed the subfamily Ceroplastinae which was separated from the subfamily Coccinae based on the adult female. Hodgson (1994) agreed the previous argue of Giliomee (1967), however he accepted the subfamily Ceroplastinae of Tang et al. (1990) because of very distinctive characters of the adult females: thick wax covering dorsum of mature adult; having
caudal process; derm with dorsal lobes and clear area; highly differentiated dorsal pores called as Ceroplastes-type pores; variable shaped and abundant stigmatic spines. The adult females of Ceroplasinae have the differentiated characters from Coccinae, whereas they also share many other characters: body usually highly convex and sclerotized (= Saissetiini of Coccinae); doral tubercle, pocket-like sclerotisation and dorsal tubular ducts absent (= some groups of Coccinae); anal plates together quadrate, with apical setae; ano-genital fold with setae present along anterior and lateral margins; marginal setae usually setose; eyespots generally present near margin(except for Paralecaniini of Coccinae); multilocular disc-pores each with 10 loculi (= some groups of Coccinae); spiracular disc-pores each with 5 loculi; ventral tubular ducts usually present; antennae each with 6-8 segments ($5-9$ segments in Coccinae). These evidences that Coccinae and Ceroplastinae share the morphological characters and form a monophyletic clade in molecular and morphological phylogenies suggested that Ceroplastinae should be degraded one of tribes in the subfamily Coccinae.

Eulecaniinae

The genus Ericerus, Physokermes, Rhodococcus as well as the type genus Eulecanium were clustered in a clade sister to the Coccinae in the two phylogenetic results (Fig. 5; Fig. 7). However, Didesmococcus was separated from the major clade and nested within the Coccinae. In the classification of Hodgson (1994), he distinguished the Eulecaniinae as 4 distinct groups: the Eulecanium-group, the Sphaerolecanium-group, the Cryptes-group, and the Ericerus-group. Among them, the Didesmococcus was included in the Sphaerolecanium-group which was considered as quite distinct from other members of the Eulecaniinae because of following characters: ventral tubular ducts absent (usually 1 or more types present); dorsal setae sharply setose (typically stout setose or spinose present); spiracular disc-pores forming wide bands; stigmatic spines differentiated from marginal setae or not. Their differences were supported by Giliomee (1967) and Boratyński (1970) who assumed this group may be more related with either Eriopeltis-group or the Coccus-group based on the adult males. In the present study, the phylogenetic result of Didesmococcus was identical to their predictions and it suggested that
the Sphaerolecanium-group would be separated from the subfamily Eulecaniinae and assign to a new position through further study with the species of Spherolecanium. The genus Eulecanium, Physokermes and Rhodococcus which were treated as the Eulecanium-group showed a monophyletic clade sister to the Ericerus-group which was placed in the most basal position of the major clade of Eulecaniinae.

Filippiinae

Among two genera, Takahashia and Metaceronema, of Filippiinae, the Takahashia was nested within the major clade of the Eulecaniinae from the both phylogenetic trees (Fig. 5; Fig. 7). The close relationship between Eulecaniinae and Filippiinae was recognized by the cladistic analysis of Miller \& Hodgson, (1997), which showed that both subfamilies were cluster in a clade or closely related lineages on the basal part of Coccidae (Fig. 3). Although the phylogenetic result implied that the Takahashia was related with the Eulecaniinae, it was insufficient to clarify the exact relationship between Eulecaniinae and Filippiinae because the two exemplars formed the paraphyletic clades, especially the Takahashia is not a typical genus of the Filippiinae. In order to get reliable results, additional taxa need to be sampled for defining their relationship.

Cardiococcinae

The two genera, Dicyphococcus and Drepanococcus were paraphyletic in the both trees (Fig. 5; Fig. 7). The clade of the Dicyphococcus which is one of the typical genera of the Cardiococcinae was closely sister to Metaceronema of Filippiinae. Morphologically, the Dicyphococcus more shares important characters with the Drepanococcus, whereas they don't have reasonable similarity with the Metaceronema. These conflict results called into question the relationships of them and future work is highly needed to interpret the results.

V. Conclusion

This analyses performed by maximum likelihood and bayesian inference using mitochondrial DNA, nuclear ribosomal RNA genes and elongation factor 1α implicated preliminary hypotheses for phylogenetic relationships between subfamilies, tribes and genera of Coccidae. Although the present results are not completely consensus with the previous classification of Coccidae, we could discuss the cause of conflict results with morphological evidences and predictions of several authors. Especially, the significant results suggest as follows: Ceroplastinae may be treated as one of tribes in Coccinae; Coccus and Pulvinaria as well as their tribes are problematic groups and should be reclassified; Paralecaniini is a distinct group from Coccinae and would be elevate to the subfamily level; Didesmococcus is separated from Eulecaniinae and may need a new position. In order to answer the unresolved questions and understand comprehensive relationships within Coccidae, additional taxa and informative genes should be included in further study.

PART III. Genetic diversity and cryptic species of brown soft scales, Coccus hesperidum (Hemiptera: Coccidae) revealed by molecular analyses

Abstract

The brown soft scales, Coccus hesperidum (Linnaeus, 1758) is one of the serious agricultural pests in the family Coccidae, particularly on Citrus spp. and various greenhouse crops. Ironically, C. hesperidum has a cosmopolitan distribution and an extremely wide range of host plants, despite the very low dispersal abilities. Their wide geographic distribution may be explained by human mediation or an unrevealed cryptic diversity. In order to investigate above questions, we analyses the genetic patterns of C. hesperidum populations collected from South Korea, Lao PDR and USA with available sequences of various geographical populations. In the results, all populations were grouped into three distinct clades with $\sim 9 \%$ of high genetic divergence levels. In the major clades, their genetic divergence was observed regardless of geographical distances and/or host plant differences. Based on the results of molecular analyses, we propose cryptic species of C. hesperidum, and explain that a worldwide distribution of C. hesperidum is closely related to human mediated transport.

I. Introduction

The modern taxonomy based on morphological characters has been used to describe and delimitate numerous species (Dunn, 2003). However, this concept has a limitation to clarify species boundaries when species complex not only having variable characters but also sharing morphological similarities (Lefébure, 2006). These ambiguity made the species complex subdivided as different species or treated as single one when the different characters were considered as one of morphological variations. For that reason, the species with high morphological variation have a taxonomic history that synonymizing many resemble species with primary one (Kosztarab \& Kozár, 1988). Recently, cryptic species which are two or more species that are considered as a single species by traditional taxonomy have been rescued by new molecular tools, especially, a fraction of mitochondrial DNA, COI, which provides a high resolution result for molecular taxonomy and relatively high genetic divergence of intraspecies as well as interspecies (Pfenninger \& Schwenk, 2007; Galtier et al., 2009). In general, cryptic species have frequently found from species which have wide distribution, highly polyphagy and low dispersal ability (Andersen et al., 2010; Gwiazdowski et al., 2011; Pérez-Portela et al., 2013). Under these conditions, strong divergent selection may drives speciation according to different host plants and local environments (Bush, 1969; Via, 2001; Drès \& Mallet, 2002). The brown soft scale, Coccus hesperidum (Linnaeus, 1758) is the one of the most widespread species extending to almost biogeography (Williams \& Kosztarab, 1972). Also, this species is highly polyphagous feeder and have
numerous records of host plants belonging to about 133 families, particularly diverse ornamental plants originated from tropical or subtropical areas (Gill et al., 1977; Ben-Dov et al., 2014). High variability of morphology have been observed in the species. Morphological variations include not only superficial appearances, body shapes and color, but also taxonomically important characters, positions of dorsal or ventral tubular ducts, sizes of a tibio-tarsal sclerosis, and shapes of anal plates (Hodgson, 1994). For that reason, the list of synonyms for C. hesperidum is very long, consisting of over 20 names (Ben-Dov, 1993; Ben-Dov et al., 2014). This species has an ecological controversy that an organism with a limited dispersal ability successfully could become a cosmopolitan species. Their global spreading may be related with human activities, mainly an export or import of the horticultural products among diverse countries (AIPH statistic, 1998). The individuals transferred to each regions have been exposed to different climates and maintained distinct gene pools through the isolated populations on specific places (Mayr, 1963; Queiroz, 1992). In other words, C. hesperidum has a high possibility to possess their concealed genetic diversity and cryptic species, which were overlooked by the morphological taxonomy.

Here, we perform molecular analyses of Cytocrome oxidase subunit I COI for populations from various geographical regions. From the analyzed genetic patterns of populations, we purpose to assess genetic diversity of Coccus hesperidum and discover cryptic species which have high molecular distances.

II. Materials and methods

Sample collection

A total of 209 individuals from 56 different localities were used in analyses. Among them, 193 individuals were collected in Korean peninsula ($\mathrm{n}=161$), Lao PDR ($\mathrm{n}=20$) and USA ($\mathrm{n}=12$). In addition, 16 sequences of various geographical populations downloaded from NCBI.

DNA extraction and sequencing

In total, 193 samples of C. hesperidum were used for extracting DNA using a DNeasy Blood \& Tissue kit (QIAGEN, Inc., Dusseldort, Germany) and following protocol of the manufacturer. The primers ProF1, 5' CCTTCAACTAATCATAAA AATATYAG 3', and LepR1, 5' TAAACTTCTGGATGTCCAAAAAATCA 3', or CocR6, 5' AATTATTGTGATTCCTCTTG 3' were used to amplify a fragment of the COI mitochondrial gene. Using AccuPowerH PCR PreMix (BIONEER, Corp., Daejeon), the DNA fragments were amplified in a total volume of 20μ including $0.4 \mu \mathrm{M}$ of each primer, $20 \mu \mathrm{M} \mathrm{dNTPs}, 20 \mu \mathrm{M} \mathrm{MgCl} 2$, and $0.05 \mu \mathrm{~g}$ template DNA. PCR reaction was performed by following procedure: a denaturation at $95^{\circ} \mathrm{C}$ for 2 min, followed by 5 cycles at $94^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 45^{\circ} \mathrm{C}$ for 40 s , and $72^{\circ} \mathrm{C}$ for 70 s , then 40 cycles at $94^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 51^{\circ} \mathrm{C}$ for 40 s , and $72^{\circ} \mathrm{C}$ for 70 s , and a final extension at $72^{\circ} \mathrm{C}$ for 5 min . Each PCR product showing a single band on a 1.5% agarose gel during electrophoresis were purified using a QIAquick PCR purification kit
(QIAGEN, Inc.), and then sequenced with an automated sequencer (ABI Prism 3730 XL DNA Analyzer) at © MACROGEN LIC.

Molecular analyses

All sequences for molecular analyses were edited with SeqMan Pro ver. 7.1.0 (DNASTAR, Inc., Madison, WI), and then aligned using MEGA software ver. 5.0 (Tamura et al., 2011). In order to compare sequences from other countries, we retrieved 16 COI sequences of the known C. hesperidum from the the GenBank. Using DnaSP ver. 5, COI haplotypes of each species were analyzed (Rozas et al., 2003). Maximum likelihood (ML) was performed with PhyML v. 3.0 (Lanave et al., 1984). The nodes were estimated with 1000 bootstrap replications. Genetic divergences between phylogenetic clades were calculated using MEGA based on the Kimura-2-Parameter (K2P) model (Kimura, 1980). Analyses of the molecular variance (AMOVA) with haplotype frequencies were conducted by Arlequin v. 3.5 (Excoffier \& Lischer, 2010), which is for analyzing the molecular variations in populations.

III. Results

A total of 209 samples from 56 different populations were sequenced for molecular analyses. All analyzed sequences of COI (Cytochrome c Oxidase subunit I) with a length of 444 bp revealed 19 haplotypes including 7 (37\%) private ones (Table 6).

Phylogenetic tree based on Maximum Likelihood (ML) constructed from all fragments of the COI separated the haplotypes of Coccus hesperidum into three distinct clades (named clades A, B, and C) with high node values (Fig. 9). The K2Pdistances between each clade showed that high genetic divergences of interclades ranged from a 6.6 to 7.6% between clades A and $B, 8.1-9.1 \%$ between clades B and C, and 6.6 to 9.7% between clades A and C. Whereas intraclades genetic divergences indicated low ranges from 0 to 2.1% in clades $\mathrm{A}, 0 \%$ in clades B , and 0 to 4.2% in clades C (Table 7).

A haplotype network constructed with the all sequences divided into three clades which was supported by phylogenetic tree (Fig. 10). Clade A showed high diversities of the COI haplotype and localities, including 13 haplotypes of the analyzed 158 samples which was from 48 different localities. Among the haplotypes in clade A, most samples had H 1 and H 2 types, and H 9 presents geographic diversity containing almost continents except for East-Asia. One the other hands, clade B appeared very simple diversity of the haplotype which was from the only locality from Laos. Intermediate haplotypes also not existed between clad A and B. Clade C contained 5 haplotypes including 3 intermediate ones, which was from 8 different localities in Korea. Although the haplotype network distinctively separated to the three clades, it did not infer that the haplotypes had no correlation with geographies and host plants. Pairwise Fst values revealed that Laos and some of Korea were obviously distinct from the other populations, each with one and five haplotypes respectively (Table. 9).

IV. Discussion

The molecular analyses of mitochondrial genes for Coccus hesperidum revealed the presence of haplotype diversity and cryptic species with high intraspecific genetic divergences. The genetic diversity of Coccus hesperidum is the result of exposures to many different kinds of geographical environments and adaptations to a sessile lifestyle as plant feeders on diverse hosts because they are cosmopolitan and polyphagous species (Gullan \& Kosztarab, 1997). However, each haplotypes was not grouped by the related geographies and host plants as well as Korean populations showed irregular genetic patterns of 15 haplotypes with high molecular divergences (Fig. 10). Especially, some haplotypes (H2, H 8 and H 9) of Korean populations were identical to ones of USA, UK, Europe, Taiwan and China regardless of physical or geographical distances. Those results of the species with a low dispersal ability were caused by human activities accompanied with export or import of agricultural or horticultural products. Also, the diverse haplotypes in Korean populations means the presence of multiple introductions of Coccus hesperidum because most ornamental products including tropical or subtropical plants were imported from other countries. Above all, the exogenous plants were grown indoors, Coccus hesperidum which was feeding the host was not effected by natural environments.

Although C. hesperidum have been regarded as one species only based on
morphology, the results of molecular analyses provide an evidence to separate species. In C. hesperidum populations, 13 haplotypes belonged to clade A which showed the highest diversity of the haplotype and localities (Table 6). However, H 13 and 4 private haplotypes in clade C, and H3 in clade B were distinctively separated to the haplotypes in clade A with high divergence levels (Table 7; Fig. 10). In order to define the boundary of genetic divergence to distinguish species, we analyzed the interspecific distances in the genus Ceroplastes of the family Coccidae. As a result, the total interspecific divergences ranged from 3.3 to 8.9% between each species in the genus Ceroplastes, especially the lowest value showed the range from 3.3 to 4.8 between C. ceriferus and C. pseudoceriferus. From the comparison with the genus Ceroplastes, we observed the intraspecific divergences of C. hesperidum exceeded the interspecific distances of other species. That is to say, our result implicated the presence of cryptic species in the complex populations of C. hesperidum.

Table 6. Haplotype localities with values of frequencies and genetic diversities.

Clade	Locality	Code	N	NH	Haplotypes	HD	ND	Tajima's D	Fu's Fs
A	Africa	AF	1	1	H10	-	-	-	-
	Asia	AS	139	12(3)	H1, H2, H4, H5, H6, H7,	0.752 ± 0.024	0.006 ± 0.001	0.063	-0.078*
					H8, H9, H10, H11, H18,				
					H19				
	Europe	EU	4	2	H2, H9	0.5 ± 0.265	0.005 ± 0.002	-0.780	2.197
	North America	NA	12	2	H2, H9	0.485 ± 0.106	0.004 ± 0.001	1.633	4.240
	Australia	OC	2	2(1)	H9, H12	1.0 ± 0.5	0.007 ± 0.003	-	-
	Total A		158	13(4)		0.776 ± 0.02	$\mathbf{0 . 0 0 7} \pm 0.0004$	0.102	-0.163*
B	Asia	AS	20	1	H3	0	0	-	-
C	Asia	AS	31	5(4)	H13, H14, H15, H16,	0.245 ± 0.101	0.007 ± 0.003	-1.845*	3.068
					H17				
Total			209	19		$\mathbf{0 . 8 4 7} \pm \mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 3 4} \pm \mathbf{0 . 0 0 3}$	0.858	14.285

[^0]Table 7. Percentage of genetic divergence (based on K2P-distances) between clades of C. hesperidum and two Ceroplastes species for the COI region.

	Clade A	Clade B	Clade C
Clade A	$0-2.1 \%$	-	-
Clade B	$6.6-7.6 \%$	0%	-
Clade C	$6.6-9.7 \%$	$8.1-9.1 \%$	$0-4.2 \%$
C. stellifer	$19.5-21.0 \%$	20.7%	$19.5-21.0 \%$
C. japonicas	$22.2-23.2 \%$	23.5%	$20.1-22.5 \%$

Fig. 9. Maximum likelihood tree for all mtDNA haplotypes of C. hesperidum. All haplotypes are grouped into three distinct clades A (blue), B (red) and C (green). Branch topography supported by bootstrap values more than 50% is shown. The number in bracket indicates the number of individuals sharing identical haplotypes.

Fig. 10. Haplotype network for Coccus hesperidum from COI data. Each circle indicates a unique haplotype. The colour represents the locality of sample and size is proportional to the number of individuals. Pie charts inside the circles show the frequency of each local population. The numbers in the middle of lines exhibit the number of mutations between haplotypes, if one mutational step, the number is absent.

Table 8. AMOVA results of C. hesperidum.

Source of variation		Sum of squares	Variance components	Percentage variation
Phylogenetic clades	Among groups	1300.422	15.176	$89.571(\mathrm{FCT}=0.896, p<0.001)$
	Among populations within groups	25.745	0.510	3.011 (FSC= $0.289, p<0.001)$
	Within populations	252.588	1.257	7.417 (FST $=0.926, p<0.001)$
Geographical region	Among groups	442.805	7.486	$62.2(\mathrm{FCT}=0.622, p=0.265)$
	Among populations within groups	2.441	-1.532	$-12.73(\mathrm{FSC}=-0.337, p=0.555)$
	Within populations	1234.664	6.082	50.53 (FST $=0.495, p<0.001)$

Table 9. Pairwise Fst values between phylogenetic clades of C. hesperidum for COI region.

	AF	AU	NA	SA1	EA1	EU	SA2
AU	-1.000	-					
NA	-0.455	0.071	-				
SA1 (Taiwan)	$0.001>$	$0.001>$	0.282	-			
EA1 (Korea \& China)	0.215	0.179	0.238^{*}	-0.030	-		
EU (Greece, Spain \& UK)	-1.000	-0.081	-0.180	0.245	0.232		
SA2 (Laos)	1.000^{*}	0.936^{*}	0.812^{*}	0.936^{*}	0.480^{*}	0.922^{*}	
EA2 (Korea)	0.755	0.675	0.675^{*}	0.675^{*}	0.429^{*}	0.710^{*}	0.854^{*}

AF, Africa, AU, Australia, NA, North America, SA, Southeast Asia, ES, East Asia, EU, Europe (*significant at $P<0.05$)

Conclusion

In the taxonomic study of the family Coccidae, a total of thirty-eight species of nineteen genera were reviewed in the Korean Peninsula, containing six new records, Leptopulvinaria kawaii Tanaka \& Amano, Parthenolecanium fletcheri (Cockerell), Pulvinaria hydrangeae Steinweden, P. idesiae Kuwana, P. photiniae Kuwana, and Saissetia Miranda (Cockerell \& Parrott). Keys to subfamilies, diagnosis and descriptions for all Korean species were redescribed with illustrations, photographs, and other ecological information.

The Phylogenetic study of the family Coccidae indicated that any subfamily is not completely monophyletic except for Ceroplastinae which is clustered within the major clade of Coccinae. Four tribes of the Coccinae are paraphyletic except for Saissetiini in ML tree. Especially, Coccini and Pulvinariini are highly scattered. Megapulvinaria and Paralecanium which are sister to Cardiococcinae or Filippiinae are distinctively separated from the clade of Coccinae. Also, Didesmococcus is separated from clade of Eulecaniinae and nested within the clade of Coccinae.

Analyzing the genetic patterns of C. hesperidum revealed high degree of COI haplotype diversity and two cryptic species. Phylogenetic tree based on Maximum Likelihood (ML) separated all haplotypes of Coccus hesperidum into three distinct clades. A haplotype network also divided the sequences into three clades. In addition, the K2P-distances showed that high genetic divergences among interclades.

Literature cited

Alfonso, F. 1875. Trattato sulla coltivazione degli agrumi. Luigi Pedone Lauriel Palermo. 533 pp.
Andersen, J.C., Gruwell, M.E., Morse, G.E. \& Normark, B.B. 2010. Cryptic Diversity in the Aspidiotus nerii Complex in Australia. Annals of the Entomological Society of America. 103(6): 844-854.

Argyriou, L.C. \& Paloukis, S.S. 1976. Some data on biology and parasitization of Sphaerolecanium prunastri Fonscolombe (Homoptera Coccidae) in Greece. Annales de l'Institut Phytopathologique Benaki (N.S.). 11: 230-240.

Atkinson, E.T. 1886. Insect-pests belonging to the homopterous family Coccidae. Journal of the Asiatic Society of Bengal. Natural History. 55: 267-298.

Ben-Dov, Y. 1993. A systematic catalogue of the soft scale insects of the world (Homoptera: Coccoidea: Coccidae). Sandhill Crane Press Gainesville, FL. 536 pp.

Ben-Dov, Y. \& Hodgson, C.J. 1997. Soft Scale Insects - Their Biology, Natural Enemies and Control. 7A. Elsevier Amsterdam \& New York. 452 pp.

Bodenheimer, F.S. 1952. The Coccoidea of Turkey. I. Revue de la Faculté des Sciences de l'Université d'Istanbul (Ser. B). 17: 315-351.

Bodenheimer, F.S. 1953. The Coccoidea of Turkey II. Revue de la Faculté des Sciences de l'Université d'Istanbul (Ser. B). 18: 1-61.

Bodenheimer, F.S. 1953. The Coccoidea of Turkey. III. Revue de la Faculté des Sciences de l'Université d'Istanbul (Ser. B). 18: 91-164.

Boisduval, J.B.A. 1867. Essai sur l'entomologie horticole. [Report on horticultural eneomology.] Donnaud Paris. 648 pp.

Boratynski, K.L. 1970. Advances in our knowledge of Coccoidea (Homoptera) with reference to the studies of the males and the application of some numerical methods of classification. Polish Congress of Contemporary Science and Culture in Exile. 1: 585-595.

Borchsenius, N.S. 1952. [New genera and species of soft scales of the family Coccidae (=Lecaniidae) of the USSR fauna and adjacent countries (Insecta, Homoptera, Coccoidea).] Trudy Zoologicheskogo Instituta Akademii Nauk SSSR. 12: 269-316.

Borchsenius, N.S. 1953. [New genera and species of scale insects of the family Coccidae (Homoptera, Coccoidea).] Entomologicheskoe Obozrenye. 33: 281-290.

Borchsenius, N.S. 1955a. [New species of false-hard scales (Homoptera, Coccoidea, Coccidae) of the fauna of USSR and adjacent countries.] Trudy Zoologicheskogo Instituta Akademii Nauk SSSR. 18: 288-303.

Borchsenius, N.S. 1955b. [Suborder Coccoidea - scale insects and mealybugs.] [Handbook of forest pests.] Akademiya Nauk SSSR Moscow.

Borchsenius, N.S. 1956. [Review of the Palearctic scale-insects of the genus Eriopeltis Sign. (Homoptera, Coccoidea).] Entomologicheskoe Obozrenye. 35: 397-420.

Borchsenius, N.S. 1957. [Subtribe mealybugs and scales (Coccoidea). Soft scale insects Coccidae. Vol. IX.] Fauna SSSR. Zoologicheskii Institut Akademii Nauk SSSR. 66: 493pp.

Borchsenius, N.S. 1960. [Contribution to the coccid fauna KNR [Chinese Peoples' Republic]. 4. Hard and soft scales, harmful fruit and grape culture in northeast and east KNR.] Acta Entomologica Sinica. 10: 214-218.

Bouché, P.F. 1844. Beiträge zur Naturgeschichte der Scharlachläuse (Coccina). [Contributions to the natural history of the "Scharlachläuse" (Coccina).] Entomologische Zeitung, Stettin. 5: 293-302.

Bouché, P.F. 1851. Neue Arten der Schildlaus-Familie. [New species of scale insects.] Entomologische Zeitung, Stettin. 12: 110-112.

Boyer de Fonscolombe E.L.J.H. 1834. Description des Kermes qu'on trouve aux environs d'Aix. [Description of Kermes species found near Aix]. Annales de la Société Entomologique de France. 3: 201-218.

Brain, C.K. 1920. The Coccidae of South Africa - V. Bulletin of Entomological Research. 11: 1-41.
Brittin, G. 1940. The life history of Lecanium (Eulecanium) persicae (Fabricius), and descriptions of the different instars. Transactions and Proceedings of the Royal Society of New Zealand. 69: 413-421.

Campbell, R.E. 1914. A new coccid infesting citrus trees in California (Hemip.). Entomological News. 25: 222-224.

Canard, M. 1965. Sur quelques Pulvinariini (Homoptera, Coccoidea) du midi de la France. [On some Pulvinariini (Homoptera, Coccoidea) in the south of France.] Proceedings. XII International Congress of Entomology. Royal Entomological Society of London. 842 pp.

Canard, M. 1994. Une cochenille floconneuse Pulvinaria horii Kuwana, 1902 (Homoptera: Coccidae) nouvelle pour la faune d'Europe continentale. [A cottony scale, Pulvinaria horii Kuwana, 1902 (Homoptera: Coccidae) new to the fauna of continental Europe]. Biologia Gallo-hellenica. 21: 35-40.

Chavannes, A. 1848. Notice sur deux Coccus cériféres du Brésil. Bulletin de la Societe Entomologique de France (ser.2). 6: 139-145.

Chen, F.G. 1936. Notes on the scale insects of citrus in several districts of East Chekiang, with description of one new species. Entomology and Phytopathology. Hangchow. 4: 208-228.

Chen, F.G. 1937. Four new coccids from Chekiang. Entomology and Phytopathology. Hangchow. 5: 382-388.
Cho, S., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P. \& Zhao, S. 1995. A highly conserved nuclear gene for low-level phylogenetics: Elongation Factor-1 α recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution. 12: 650-656.

Cockerell, T.D.A. 1893a. Coccidae, or scale insects. - II. Bulletin of the Botanical Department, Jamaica. 40: 7-9.

Cockerell, T.D.A. 1893b. Notes on Lecanium, with a list of the West Indian species. Transactions of the American Entomological Society. 20: 49-56.

Cockerell, T.D.A. 1893c. A list of West Indian Coccidae. Journal of the Institute of Jamaica. 1: 252-256.
Cockerell, T.D.A. 1893d. A new Lecanium from Canada. Canadian Entomologist. 25: 221-222.
Cockerell, T.D.A. 1895. Two more new species of Lecanium. American Naturalist. 29: 381-382.
Cockerell, T.D.A. 1895a. A new Pulvinaria found on orchids. Canadian Entomologist 27: 135.
Cockerell, T.D.A. 1895b. Two more new species of Lecanium. American Naturalist. 29: 381-382.
Cockerell, T.D.A. 1895c. Miscellaneous notes on Coccidae. Canadian Entomologist. 27: 253-261.
Cockerell, T.D.A. 1896a. A check list of the Coccidae. Bulletin of the Illinois State Laboratory of Natural History. 4: 318-339.

Cockerell, T.D.A. 1896b. Preliminary diagnoses of new Coccidae. Psyche, Supplement. 7: 18-21.
Cockerell, T.D.A. 1897a. Note on Lecanium tessellatum. Bulletin of the Botanical Department, Jamaica (n.s.). 4: 109.

Cockerell, T.D.A. 1897b. Notes on new Coccidae. 1. A new coccid pest of greenhouses. 2. A Japanese coccid quarantined at San Francisco. Psyche. 8: 52-53.

Cockerell, T.D.A. 1898a. New North American insects. Annals and Magazine of Natural History (n.s.). 2: 321-331.

Cockerell, T.D.A. 1898b. Two new species of Lecanium from Canada. Canadian Entomologist. 30: 293-294.
Cockerell, T.D.A. 1900. Some Coccidae quarantined at San Francisco. Psyche. 9: 70-72.
Cockerell, T.D.A. 1902. New genera and species of Coccidae, with notes on known species. Annals and Magazine of Natural History (Ser. 7). 9: 20-26.

Cockerell, T.D.A. 1903. Some species of Eulecanium (Coccidae) from France. Psyche. 10: 19-22.
Cockerell, T.D.A. \& King, G.B. 1901. A new lac-insect from South Africa. The Entomologist. 34: 342.

Cockerell, T.D.A. \& Parrott, P.J. 1899. Contributions to the knowledge of the Coccidae. IX. A green Mytilaspis. The Industrialist. 25: 276-284.

Cockerell, T.D.A. \& Parrott, P.J. 1901. Table to separate the genera and subgenera of Coccidae related to Lecanium. The Canadian Entomologist. 33: 57-58.

Cook, L.G., Gullan, P.J. \& Trueman, H.E. 2002. A preliminary phylogeny of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea) based on nuclear small-subunit ribosomal DNA. Molecular Phylogenetics and Evolution. 25(1): 43-52.

Costa, O.G. 1829. Fauna del Regno di Napoli, famiglia de coccinigliferi, o de' gallinsetti. Emitteri Napoli. 23 pp.
Craw, A. 1891. Destructive insects, their natural enemies, remedies and recommendations. II. Scale insects. Description, history, and remedies for their destruction. California State Board of Horticulture, Division of Entomology. Sacramento. 1891: 7-15.

Curtis, J. 1843. Coccus patellaeformis (Curtis). The brown limpet-scale. Gardeners' Chronicle and Agricultural Gazette. 30: 517-518.

Danzig, E.M. 1967. Contributions to the knowledge of the Coccidae (Homoptera) of the Primorye Territory. Trudy Zoologicheskogo Instituta. Leningrad. 41: 139-172.

Danzig, E.M. 1980. Coccoids of the Far East USSR (Homoptera, Coccinea) with phylogenetic analysis of scale insects fauna of the world. Nauka Leningrad. 367 pp.

Danzig, E.M. 1986. Coccids of the Far-Eastern USSR (Homoptera: Coccinea). Phylogenetic analysis of coccids in the world fauna. Boletin del Museo de Entomologia de la Universidad del Valle Amerind Publishing Co. New Delhi, India. 450 pp .

De Groot, N. S. P. 1998. "Floriculture worldwide trade and consumption patterns." WCHR-World Conference on Horticultural Research. 495 pp.

De Lotto, G. 1973. A new soft scale from citrus (Homoptera: Coccoidea: Coccidae). Bollettino del Laboratorio di Entomologia Agraria 'Filippo Silvestri'. Portici. 30: 291-293.

Déplanche, E. 1859. Maladie du cafeier. [Diseases of coffee.] Messager de Tahiti. 8(9): 6-7.
Douglas, J.W. 1886. Note on some British Coccidae (No. 4). Entomologist's Monthly Magazine. 23: 77-82. Douglas, J.W. 1887. Note on some British Coccidae (No. 7). Entomologist's Monthly Magazine. 24: 21-28. Douglas, J.W. 1888. Notes on some British and exotic Coccidae (No. 9). Entomologist's Monthly Magazine. 25: 57-60.

Douglas, J.W. 1890 Notes on some British and exotic Coccidae (No. 18). Entomologist's Monthly Magazine. 26: 318-319.

Douglas, J.W. 1891. Notes on some British and exotic Coccidae (No. 19). Entomologist's Monthly Magazine. 27: 65-68.

Douglas, J.W. 1892 Notes on some British and exotic Coccidae (No. 23). Entomologist's Monthly Magazine. 28: 207-209.

Dowton, M. \& Austin, A.D. 1998. Phylogenetic relationships among the microgastroid wasps (Hymenoptera: Braconidae): Combined analysis of 16 S and 28S rDNA genes and morphological data. Molecular Phylogenetics and Evolution. 10: 354-366.

Drès, M., \& Mallet, J. 2002. Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 357(1420): 471-492.

Dufour, L. 1864. Notice sur une nouvelle espèce de gallinsecte (Aspidiotus luzulae). [Notice of a new species of gall forming insects (Aspidiotus luzulae).] Annales de la Societe Entomologique de France (ser. 4). 4: 207-209.

DUNN, C.P. 2003. Keeping taxonomy based in morphology. Trends. Ecol. Evol. 18: 270-271.
Ehrhorn, E.M. 1898. New Coccidae. Canadian Entomologist. 30: 244-246.
ESK \& KSAE. 1994. Check list of insects from Korea. Kon-Kuk University Press. 744 pp.

Excoffier, L. \& Lischer, H.E.L. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Eco. Res. 10: 564-567.

Fabricius, J.C. 1776. Genera Insectorum. Chilonii Bartschii. 310 pp.
Fabricius, J.C. 1798. Supplementum Entomologiae Systematicae. Proft et Storch Hafniae. 572 pp.
Fallen, C.F. 1814. Specimen novam Hemiptera disponendi methodum exhibens. 100th Lundae. 26 pp.
Fitch, A. 1851. Catalogue with references and descriptions of the insects collected and arranged for the State Cabinet of Natural History. Fourth Annual Report of the Regents of the University, on the Condition of the State Cabinet of Natural History, and the historical and antiquarian... Albany, N.Y. 146 pp.

Fitch, A. 1857a. 139. - Circular bark louse, Aspidiotus circularis, new species; 140. - Currant bark louse, Lecanium ribis, new species. (Homoptera. Coccidae). In : Third report on noxious and other insects of the state of New York. Transactions of the New York State Agricultural Society with an Abstract of the Proceedings of the County Agricultural Societies. 16: 426-427.

Fitch, A. 1857b. 147. - Gooseberry bark-louse, Lecanium cynosbati, new species. (Homoptera. Coccidae). In : Third report on noxious and other insects of the state of New York. Transactions of the New York State Agricultural Society with an Abstract of the Proceedings of the County Agricultural Societies. 16: 436.

Fitch, A. 1857c. Hazelnut bark-louse, Lecanium corylifex, new species. (Homoptera. Coccidae). In : Third report on noxious and other insects of the state of New York, 201. Transactions of the New York State Agricultural Society with an Abstract of the Proceedings of the County Agricultural Societies. 16: 473.

Folmer, O., Black, M., Hoeh, W., Lutz, R. \& Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology. 3: 294-299.

Froggatt, W.W. 1915. A descriptive catalogue of the scale insects ('Coccidae') of Australia. Agricultural Gazette of New South Wales. 26: 411-423.

Bush, G.L. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution. 23: 237-251.

Galtier, N., Nabholz, B., Glémin, S. \& Hurst, G. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology. 18: 4541-4550.

García M., Denno B., Miller D.R., Miller G.L., Ben-Dov Y., \& Hardy N.B. 2015. ScaleNet: A

Literature-based model of scale insect biology and systematics. http://scalenet.info (Accessed: 2 July 2015).

Gennadius, P. 1895. Sur deux nouvelles cochenilles du caroubier dans l'Ile de Chypre (Hem.). [On two new scale insects of carob on the Isle of Chypre (Hym.)]. Annales de la Société Entomologique de France. 64: 287.

Giliomee, J.H. 1967. Morphology and taxonomy of adult males of the family Coccidae (Homoptera:
Coccoidea). Bulletin of the British Museum (Natural History) Entomology, Supplement. 7: 168 pp .
Gill, R.J., Nakahara, S. \& Williams, M.L. 1977. A review of the genus Coccus Linnaeus in America north of Panama (Homoptera: Coccoidea: Coccidae). Occasional Papers in Entomology, State of California, Department of Food and Agriculture. 24: 44 pp .

Gill, R.J. 1988. The Scale Insects of California: Part 1. The Soft Scales (Homoptera : Coccoidea : Coccidae). California Dept. of Food \& Agriculture Sacramento, CA. 132 pp.

Gimpel, W.F., Miller, D.R. \& Davidson, J.A. 1974. A systematic revision of the wax scales, genus Ceroplastes, in the United States (Homoptera; Coccoidea; Coccidae). University of Maryland, Agricultural Experiment Station, Miscellaneous Publication. 841: 1-85.

Gmelin, J.F. 1790. Systema Naturae. Editio decima tertia. Acuta, reformata, cara. Lipsiae.
Goeze, J.A.E. 1778. Entomologische Beyträge zu des Ritter Linné zwölften Ausgabe des Natursystems. Zweyter Theil. Weidmanns Erben und Reich Leipzig. xxiv +350 pp.

Gray, E.J. 1828. Spicilegia Zoologica; or original figures and short systematic descriptions of new and unfigured animals. Part 1. Treuttel, Wurtz \& Co. London. 12 pp.

Green, E.E. 1896. Catalogue of Coccidae collected in Ceylon. Indian Museum Notes. 4: 2-10.
Green, E.E. 1900. Remarks on Indian scale insects (Coccidae), with descriptions of new species. Indian Museum Notes. 5: 1-13.

Green, E.E. 1904. The Coccidae of Ceylon. Pt. III. Dulau \& Co. London. 171-249.
Green, E.E. 1917. Observations on British Coccidae: With descriptions of new species. Entomologist's Monthly Magazine. 53: 201-210.

Green, E.E. 1921. Observations on British Coccidae: With descriptions of new species. - VII. Entomologist's Monthly Magazine. 57: 257-259.

Green, E.E. 1922. Supplementary notes on the Coccidae of Ceylon. Part IV. Journal of the Bombay Natural History Society. 28: 1007-1037.

Green, E.E. 1930. Fauna Sumatrensis (Bijdrag Nr. 65). Coccidae. Tijdschrift voor Entomologie. 73: 279-297.
Guérin-Méneville, F.E. 1858. [Communication sur un insecte, qui, en Chine, produit de la cire]. [Communication on an insect that produces wax in China.]. Bulletin de la Société Entomologique de France. 16: 1xvii.

Gullan, P.J. \& Cook, L.G. 2007. Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Zootaxa. 1668: 413-425.

Gullan, P.J. \& Kosztarab, M. 1997. Adaptations in scale insects. Annual Review of Entomology. 42: 23-50.

Gwiazdowski, R.A., Vea, I.M., Andersen, J.C. \& Normark, B.B. 2011. Discovery of cryptic species among North American pine-feeding Chionaspis scale insects (Hemiptera: Diaspididae). Biological Journal of the Linnean Society. 104:47-62.

Hall, W.J. 1922. Observations on the Coccidae of Egypt. Bulletin, Ministry of Agriculture, Egypt,

Technical and Scientific Service. 22: 1-54.

Hamon, A.B. \& Williams, M.L. 1984. The soft scale insects of Florida (Homoptera: Coccoidea: Coccidae). Arthropods of Florida and Neighboring Land Areas. Boletin del Museo de Entomologia de la Universidad del Valle Fla. Dept. of Agric. \& Consumer Serv. Div. Plant Ind. Gainesville. 194 pp.

Hall, W.J. 1922. Observations on the Coccidae of Egypt. Bulletin, Ministry of Agriculture, Egypt, Technical and Scientific Service. 22: 1-54.

Handlirsch, A., 1903. Zur Phylogenie der Hexapoden. Sitzungsberichte der Akademie der Wissenschaflen in Wien. 112: 716-738.

Hardy, N.B., Gullan, P.J., Henderson, R.C. \& Cook, L.G. 2008. Relationships among felt scale insects (Hemiptera: Coccoidea: Eriococcidae) of southern beech, Nothofagus (Nothofagaceae), with the first descriptions of Australian species of the Nothofagus-feeding genus Madarococcus Hoy. Invertebrate Systematics. 22: 365-405.

Heyden, L. von. 1894. Beiträge zur Kenntnis der Hymenopteren-Fauna der weiteren Umgegend von Frankfurt a. M., VIII Theil, Chalcididae (Fortsetzung). Bericht über die Senckenbergische naturforschende Gesellschaft in Frankfurt am Main. 169-194.

Hodgson, C.J. 1994. The scale insect family Coccidae: an identification manual to genera. Boletin del Museo de Entomologia de la Universidad del Valle CAB International Wallingford, Oxon, UK. 639 pp.

Hodgson, C.J. \& Hardy, N.B. 2013. The phylogeny of the superfamily Coccoidea (Hemiptera:
Sternorrhyncha) based on the morphology of extant and extinct macropterous males. Systematic Entomology. 38:794-804.

Hodgson, C.J. \& Henderson, R.C. 2000. Coccidae (Insecta: Hemiptera: Coccoidea). Manaaki Whenua Press Lincoln, Canterbury, New Zealand. 259 pp.

Hodgson，C．J．\＆Henderson，R．C．2004．Coccidae（Insecta：Hemiptera：Coccoidea）：adult males，pupae and prepupae of indigenous species．Fauna of New Zealand No．51： 229 pp．

Hughes－Schrader，S．1948．Cytology of coccids（Coccoidea－Homoptera）．Advances in Genetics．2：127－203．
Hunter，S．J．1899．The Coccidae of Kansas，II．Kansas University Quarterly．8：67－77．
Hunter，S．J．1900．Coccidae of Kansas，III．Kansas University Quarterly．9：101－107．
Husseiny，M．M．\＆Madsen，H．F．1962．The life history of Lecanium kunoensis Kuwana（Homoptera： Coccidae）．Hilgardia．33：179－203．

Kanda，S（神田重夫）．1943．朝鰦産介殻虫の調查研究．1．2，服部報公会研穷報告．10：329－343，344－352．

Kanda，S．1941．Studies on Coccidae from Corea．Insect World．45：296－302，323－328．
Kanda，S．1960．Descriptions of the Coccidae from Japan（Homoptera）．Kontyu．28：116－123．
Kimura，M．1980．A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences．Journal of Molecular Evolution．16：111－120．

King，G．B．1901．Lecanium websteri，Ckll．and King n．sp．with notes on allied forms．Canadian Entomologist．33：106－109．

King，G．B．1901．The Coccidae of British North America．Canadian Entomologist．33：333－336．
King，G．B．1902．Coccidae of British North America．Canadian Entomologist．34：158－161．
King，G．B．1903．Some new records of coccidae．Canadian Entomologist．35：191－197．
King，G．B．\＆Reh，L．1901．Über einige europäische und an eingeführten Pflanzen gesammelte Lecanien． Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten．18：57－65．

Kosztarab，M．\＆Kozár，F．1988．Scale Insects of Central Europe．Boletin del Museo de Entomologia de la Universidad del Valle Akademiai Kiado Budapest． 456 pp．

Kosztarab，M．1996．Scale insects of Northeastern North America．Identification，biology，and distribution．Virginia Museum of Natural History Martinsburg，Virginia． 650 pp．

Koteja, J. 1969. Notes on the Poland's scale insect fauna (Homoptera, Coccoidea). II. Polskie Pismo Entomologiczne. 39: 3-15.

Koteja, J. 1969. Psilococcus parvus Borchsenius (Homoptera, Coccoidea) - morphology, biology and taxonomy. Acta Zoologica Cracoviensia. 14: 21-41.

Koteja, J. 1979. Revision of the genus Luzulaspis Cockerell (Homoptera, Coccidae). Polskie Pismo Entomologiczne. 49: 585-638.

Koteja, J. 1988. Review of Kiritshenkella Borchsenius and Balanococcus Williams, with a description of a new species (Homoptera, Pseudococcidae). Polska Akademia Nauk. Instytut Zoologii. Annales Zoologici. 42(3): 119-140.

Kozár, F. 1980. The scale insect fauna (Homoptera: Coccoidea) of the Bakony Mountains and surrounding area. Veszprém Megyei Muzeumok Közleményei. 15: 65-72.

Kuwana, S.I. 1902a. Coccidae from the Galapagos Islands. Journal of the New York Entomological Society. 10: 28-33.

Kuwana, S.I. 1902b. Coccidae (scale insects) of Japan. Proceedings of the California Academy of Sciences. 3: 43-98.

Kuwana, S.I. 1907. Coccidae of Japan, I. A synoptical list of Coccidae of Japan with descriptions of thirteen new species. Bulletin of the Imperial Central Agricultural Experiment Station, Japan. 1: 177-212.

Kuwana, S.I. 1909a. Coccidae of Japan (III). First supplemental list of Japanese Coccidae, or scale insects, with description of eight new species. Journal of the New York Entomological Society. 17: 150-158.

Kuwana, S.I. 1909b. Coccidae of Japan (IV). A list of Coccidae from the Bonin Islands (Ogasawarajima), Japan. Journal of the New York Entomological Society. 17: 158-164.

Kuwana, S.I. 1914. Coccidae of Japan, V. Journal of Entomology and Zoology. 6: 1-8.
Kuwana, S.I. 1923. I. Descriptions and biology of new or little-known coccids from Japan. Bulletin of Agriculture and Commerce, Imperial Plant Quarantine Station, Yokohama. 3: 1-67.

Kwon, G.M., Han, M.J. \& Choi, D.R. 2005. Scale insects (Sternorrhyncha) occurring on flowering plants in Korea. Korean Journal of Applied Entomology. 44(1): 51-59.

Lanave, C., Preparata, G., Saccone, C. \& Serio, G. 1984. A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20:86-93.

Lee, Y.H., Wu, S.A., \& Suh, S.J. 2012. Notes on the Indian Wax Scale, Ceroplastes ceriferus (Fabricius), from Korea (Hemiptera: Coccidae). Korean Journal of Applied Entomology. 51(2): 157-162.

Lefébure, T., Douady, C. J., Gouy, M., \& Gibert, J. 2006. Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular phylogenetics and evolution. 40(2): 435-447.

Leonardi, G. 1913. Contribuzione allo studio delle cocciniglie dell'Eritrea (Africa Orientale). Bollettino del Laboratorio di Zoologia Generale e Agraria della R. Scuola Superiore d'Agricoltura di Portici. 7: 27-38.

Leonardi, G. 1918. Terza contribuzione alla conoscenza delle cocciniglie Italiane. Bollettino del R. Laboratorio di Entomologia Agraria di Portici. 12: 188-216.

Lin, Y.-P., Kondo, T., Gullan, P. \& Cook, L.G. 2013. Delimiting genera of scale insects: molec ular and morphological evidence for synonymising Taiwansaissetia Tao, Wong and Chang with Coccus Linnaeus (Hemiptera: Coccoidea: Coccidae). Systematic Entomology. 38(2): 249-264.

Lindinger, L. 1912. Die Schildläuse (Coccidae) Europas, Nordafrikas und Vorder-Asiens, einschliesslich der Azoren, der Kanaren und Madeiras. Ulmer Stuttgart. 388 pp.

Lindinger, L. 1929. Bericht über die Tätigkeit der Abteilung f. Pflanzenschutz, gleichzeitig Hauptstelle für Pflanzenschutz fur das Hamburgische Staatsgebiet. a. Überwachung der Ein-und Ausfuhr von Obst, Pflanzen und Pflanzenteilen (amtliche Pflanzenbeschau). Jahresberichte Institut für Angewandte Botanik. Hamburg. 104-114.

Lindinger，L．1932．Beiträge zur Kenntnis der Schildläuse．Konowia．11：177－205．
Lindinger，L．1933．Beiträge zur Kenntnis der Schildläuse（Hemipt．－Homopt．，Coccid．）．Entomologischer Anzeiger．13：77－166．

Linnaeus，C．1758．Systema Naturae，per regna tria naturae，secundum classes，ordines，genera，species cum characteribus，differentiis，synonymis，locis．Laurentii Salvii，Holmiae．［1－4］ 824 pp．

Machida \＆Aoyama（町田貞一 \＆青山哲四郎）．1928．朝鮮害虫編 前篇． 308 pp ．

Machida \＆Aoyama（町田貞一 \＆青山哲四郎）．1930．朝鮮害虫編 後篇． 424 pp ．
Marchal，P．1908．Notes sur les cochenilles de l＇Europe et du nord de l＇Afrique（1re partie）．Annales de la Société Entomologique de France．77：223－309．

Marotta，S．1987．I Coccidi（Homoptera：Coccoidea：Coccidae）segnalati in Italia，con riferimenti bibliografici sulla tassonomia，geonemia，biologia e piante ospiti．Bollettino del Laboratorio di Entomologia Agr Filippo Silvestri．44：97－119．

Marotta，S．\＆Tranfaglia，A．1990．New and little known species of Italian scale insects（Homoptera： Coccoidea）．Proceedings of the Sixth International Symposium of Scale Insect Studies，Part II． Cracow，Poland：August 6－12，1990．Agricultural University Press Cracow．

Maskell，W．M．1892．Further coccid notes：with descriptions of new species，and remarks on coccids from New Zealand，Australia and elsewhere．Transactions and Proceedings of the New Zealand Institute． 24：1－64．

Maskell，W．M．1893．Further coccid notes：with descriptions of new species from Australia，India，Sandwich Islands，Demerara，and South Pacific．Transactions and Proceedings of the New Zealand Institute． 25：201－252．

Maskell，W．M．1897a．On a collection of Coccidae，principally from China and Japan．Entomologist＇s Monthly Magazine．33：239－244．

Maskell, W.M. 1897b. Further coccid notes: with descriptions of new species and discussions of points of interest. Transactions and Proceedings of the New Zealand Institute. 29: 293-331.

Mayr, E., Mayr, E., Mayr, E. \& Mayr, E. 1963. Animal species and evolution. Cambridge, Massachusetts: Belknap Press of Harvard University Press. xvi +797 pp.

Miller, D.R. \& Hodgson, C.J. 1997. 1.1.3.7 Phylogeny. Soft Scale Insects: Their Biology, Natural Enemies and Control [Vol. 7A]. Elsevier Amsterdam \& New York. 452 pp.

Miller, D.R. \& Williams, D.J. 1995. Systematic revision of the Family Micrococcidae (Homoptera: Coccoidea), with a discussion of its relationships, and a description of a gynandromorph. Bollettino del Laboratorio di Entomologia Agraria 'Filippo Silvestri'. Portici. 50:199-247.

Newstead, R. 1892. On new or little known Coccidae, chiefly English (No. 2). Entomologist's Monthly Magazine. 28: 141-147.

Newstead, R. 1894. Observations on Coccidae (no. 10). Entomologist's Monthly Magazine. 30: 232-234.
Newstead, R. 1917. Observations on scale-insects (Coccidae) - III. Bulletin of Entomological Research. 7: 343-380.

Newstead, R. 1920. Observations on scale-insects (Coccidae) - VI. Bulletin of Entomological Research. 10: 175-207.

Nietner, J. 1861. Observations on the enemies of the coffee tree in Ceylon. Ceylon Times Ceylom. 31 pp .
Nur, U. 1971. Parthenogenesis in coccids (Homoptera). American Zoologist. 11: 301-308.
Paik, J.C. 2000. Economic Insects of Korea 6 Homoptera (Coccinea), Insecta Koreana Supplement 13. National Institute of Agricultural Science and Technology. 193 pp.

Paik, W.H. 1958. [Citrus insect problem in Quelpart Island.] Journal of Applied Zoology. 1(1): 31-35.
Paik, W.H. 1978. Illustrated flora and fauna of Korea. Insecta (VI). No. 22. Min. Education Samhwa Publ. Co. Ltd. 481 pp .

Paik, W.H. \& Kim, J.H. 1977. Study on the scale insects of conifers. Forestry Bulletin, Seoul National University. 13: 41-54.

Park, D.S., Suh, S.J., Oh, H.W. \& Hebert, P.D.N. 2010. Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers. BMC Genomics. 11: 423.

Park, M.K., Hwang, J.M., Kung, K.S., Kim, T.W., Kim, M.C., Lee, Y.J., Cho, Y.R., Park, S.W., Lee, H.S., Ku, D.S., Jeong, J.C., Kim, K.G., Choi, D.S., Shin, E.H., Hwang, J.H., Lee, J.S., Kim, S.S. \& Bae, Y.S. 2010. Checklist of Korean Insects. In : Paek, M.K. \& Cho, Y.K.(eds): Checklist of Korean Insects. <Nature \& Ecology> Academic Series 2, Nature \& Ecology. 598pp.

Pérez-Portela, R., Arranz, V., Rius, M. \& Turon, X. 2013. Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Scientific Reports, 3.

Pfenninger, M., \& Schwenk, K. 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7(1): 121.

Planchon, G. 1864. Le Kermes du chene aux points de vue zoologique, commercial \& pharmaceutique. De Boehm \& Fils Montpellier. 47 pp.

Qin, T.K. \& Gullan, P.J. 1995. A cladistic analysis of wax scales. Systematic Entomology. 20: 289-308.
Queiroz, K. D. 1992. Phylogenetic relationships and rates of allozyme evolution among the lineages of sceloporine sand lizards. Biological journal of the Linnean Society. 45(4): 333-362.

Ronquist, F. \& J.P. Huelsenbeck. 2003. MrBayes 3: Bayesian Phylogenetic Inference Under Mixed Models. Bioinformatics. 19(12): 1572-1574.

Ross, L., Pen, I. \& Shuker, D.M. 2010. Genomic conflict in scale insects: the causes and consequences of bizarre genetic systems. Biological Reviews of the Cambridge Philosophical Society. 85(4): 807-828.

Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X. \& Rozas. R. 2003. "DnaSP, DNA polymorphism analyses by the coalescent and other methods." Bioinformatics. 19(18): 2496-2497.

Saito, T. 1931. [The monocytosis produced by the injection of carmine, India ink and several other substances in the ear muscles of rabbits.] Folia Hematol. 46: 59-93.

Sasscer, E.R. 1915. Catalogue of recently described Coccidae - V. Proceedings of the Entomological Society of Washington. 17: 25-38.

Schrank, F. 1781. Coccus, Gallinsect. numeratio insectorum Austriae indigenorum. Augustae Vindelicorum. 552 pp .

Schrank, F. 1801. Fauna Boica. Nurnberg. 374 pp.
Shiraki, T. 1952. Catalogue of injurious insects in Japan (exclusive of animal parasites). Preliminary Study (Economic and Scientific Section, Natural Resource Division, General Headquarters, Supreme Commander for the Allied Powers. Tokyo). 2(71).

Signoret, V. 1869. Essai sur les cochenilles ou gallinsectes (Homoptères - Coccides), 3e partie. [Essay on the gall forming insects (Homoptera - Coccidae) - 3rd Part.] Annales de la Societe entomologique de France (serie 4). 9: 97-104.

Signoret, V. 1872. Essai sur les cochenilles ou gallinsectes (Homoptères - Coccides), 8e partie. [Essay on the gall forming insects (Homoptera - Coccidae) - 8th Part.] Annales de la Societe Entomologique de France (serie 5). 1: 421-434.

Signoret, V. 1873a. Essai sur les cochenilles ou gallinsectes (Homoptères - Coccides), 10e partie. [Essay on the gall forming insects (Homoptera - Coccidae) - 10th Part.] Annales de la Societe Entomologique de France (serie 5). 3: 27-48.

Signoret, V. 1873b. Essai sur les cochenilles ou gallinsectes (Homoptères - Coccides), 11e partie. [Essay on the gall forming insects (Homoptera - Coccidae) - 11th Part.] Annales de la Société Entomologique de France (serie 5). 3: 395-448.

Steinweden, J.B. 1929. Bases for the generic classification of the coccoid family Coccidae. Annals of the Entomological Society of America. 22: 197-245.

Steinweden, J.B. 1946. The identity of certain common American species of Pulvinaria (Homoptera: Coccoidea: Coccidae). (Contribution no. 49). Microentomology. 11: 1-28.

Stepaniuk, K. \& Lagowska, B. 2006. Number and arrangement variation of submarginal tubercles in adult females Parthenolecanium corni group (Hemiptera, Coccidae) and its value as a taxonomic character. Polskie Pismo Entomologiczne. 2(75): 293-301.

Šulc, K. 1908. Towards the better knowledge of the genus Lecanium. Entomologist's Monthly Magazine. 44: 36.
Šulc, K. 1941. Mohelnia festuceti n. gn., n. sp. (Lecaniidae, Eriopeltini, Coccoidea, Hemiptera). Acta Societatis Scientiarum Naturalium Moravicae. 13: 1-17.

Sulzer, J.H. 1776. Abgekurzte Geschichte der Insecten nach dem Linaeischen System. Steiner Winterthur. 274 pp.

Takahashi, R. 1955a. Key to the genera of Coccidae in Japan, with descriptions of two new genera and little-known species (Homoptera). Insecta Matsumurana. 19: 23-28.

Takahashi, R. 1955b. Lecanium of Japan (Homoptera: Coccidae). Transactions of the Shikoku Entomological Society. 4: 69-78.

Takahashi, R. 1955c. Notes on the Coccus of Japan (Homoptera: Coccidae). Transactions of the Shikoku Entomological Society 4: 78.

Takahashi, R. 1955d. Pulvinaria of Japan (Coccidae, Homoptera). Kontyu. 23: 148-154.
Takahashi, R. 1956. Pulvinaria of Japan (Coccidae, Homoptera). Kontyu. 24: 23-30.
Takahashi, R. 1957. A new species of Eriopeltis from Japan (Coccoidea, Homoptera). Akitu. 6: 65-66.
Takahashi, R. \& Tachikawa, T. 1956. Scale insects of Shikoku (Homoptera: Coccoidea). Transactions of the Shikoku Entomological Society. 5: 1-17.

Tamura K., Peterson D., Peterson N., Stecher G., Nei M. \& Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 28: 2731- 2739.

Tanaka, H. 2008. A New Genus of Pulvinariini (Hemiptera, Coccidae) from Japan. Journal of Entomology. 14(2): 165-170.

Tanaka, H. 2015. Redescription of Pulvinaria nishigaharae (Kuwana, 1907) (Hemiptera: Coccoidea: Coccidae). Japanese Journal of Systematic Entomology. 21(1): 13-16.

Tanaka, H. \& Amano, H. 2006. New host-plant records for four species of Pulvinaria (Homoptera: Coccidae). Rostria, 52: 40-44.

Tanaka, H. \& Amano, H. 2007. Redescription of Pulvinaria floccifera (Insecta: Hemiptera: Coccidae). Species Diversity. 12: 211-215.

Tanaka, H. \& Amano, H. 2008. Taxonomic study of the genus Leptopulvinaria Kanda (Hemiptera:
Coccoidea: Coccidae), with a description of a new species. Entomological Science. 11(2): 221-229.
Tang, F.T., Hao, J., Xie, Y. \& Tang, Y. 1990. Family group classification of Asiatic Coccidae (Homoptera: Coccoidea, Coccidae). Proceedings of the Sixth International Symposium of Scale Insect Studies, Part II. Cracow, Poland: August 6-12, 1990; Cracow. Agricultural University Press.

Tang, F.T. 1991. [The Coccidae of China.] Shanxi United Universities Press Taiyuan, P. R. China. 377 pp.
Targioni Tozzetti, A. 1867. Studii sulle Cocciniglie. Memorie della Società Italiana di Scienze Naturali. Milano. 3(3): 1-87.

Targioni Tozzetti, A. 1868. Introduzione alla seconda memoria per gli studi sulle cocciniglie, e catalogo dei generi e delle specie della famiglia dei coccidi. Atti della Società italiana di scienze naturali. 11: 721-738.

Targioni Tozzetti, A. 1884. Relazione intorno ai lavori della R. Stazione di Entomologia Agraria di Firenze per gli anni 1879-80. Article V. omotteri. Annali di Agricoltura. (Ministero di Agricoltura, Industria e Commercio). Firenze, Roma. 1884: 383-414.

Tautz, D., Hancock, J.M., Webb, D.A., Tautz, C. \& Dowl, G.A. 1988. Complete sequences of the rRNA genes of Drosophila melanogaster. Molecular Biology and Evolution. 5: 366-376.

Thro, W.C. 1903. Distinctive characteristics of the species of the genus Lecanium. Bulletin. Cornell University Agricultural Experiment Station. Ithaca, N.Y. 209: 205-221.

Tseng, S. 1947. A new scale insect parasitic on the ivy. Tezisy Statei Izd. Kitaiskogo Nauchnogo Obsh. I: 21.

Vaidya, G., Lohman, D. \& Meier, R., 2010. SequenceMatrix: concat-enation software for the fast as sembly of multi-gene datasetswith character set and codon information. Cladistics. 27: 171-180.

Via, S. 2001. Sympatric speciation in animals: the ugly ducking grows up. Trens Ecol. Evol. 16: 381-390. von Dohlen, C.D. \& Moran, N.A. 1995. Molecular phylogeny of the Homoptera: A paraphyletic taxon. Journal of Molecular Evolution. 41: 211-223.

Walker, F. 1852. List of the specimens of homopterous insects in the collection of the British Museum, Part IV. British Museum (Natural History) London. 1188 pp.

Wang, T.C. 1976. [Two new species of coccids on tea bush (Homoptera: Coccoidea).] Acta Entomologica Sinica. 19: 342-344.

Wang, X. B., Deng, J., Zhang, J. T., Zhou, Q. S., Zhang, Y. Z., \& Wu, S. A. 2015. DNA barcoding of common soft scales (Hemiptera: Coccoidea: Coccidae) in China. Bulletin of entomological research. 1-10.

Westwood, J.O. 1853. Coccus sinensis sp.n. Proceedings of the Royal Entomological Society of London (N.S.) 2: 95.

Westwood, J.O. 1870. [The camellia coccus - Coccus flocciferus Westw.] Gardeners' Chronicle and Agricultural Gazette. 10: 308.

Whiting, M.F., Carpenter, J.C., Wheeler, Q.D. \& Wheeler, W.C. 1997. The Strepsiptera problem: Phylogeny of the holometabolous insect orders inferred from 18 S and 28S ribosomal DNA sequences and morphology. Systematic Biology. 46: 1-68.

Williams, M.L. \& Kosztarab, M. 1972. Morphology and systematics of the Coccidae of Virginia with notes on their biology (Homoptera: Coccoidea). Research Division Bulletin, Virginia Polytechnic Institute and State University. 74: 215 pp .

Williams, D.J. \& Watson, G.W. 1990. The Scale Insects of the Tropical South Pacific Region. Pt. 3: The Soft Scales (Coccidae) and Other Families. CAB International Wallingford. 267 pp.

SEOUL NATONAL LNVERSITY

Appendix I. Living appearances of Korean Coccidae species

Fig. 11. Ceroplastes ceriferus (Fabricius, 1798) 뿔밀깍지 벌 레
Mature adult female (A); Eggs stored under venter (B); Population of nymphs (C).

Fig. 12. Ceroplastes floridensis Comstock, 1881
Mature adult female (A); Population of adult females (B); Population of nymphs (C).

Fig. 13. Ceroplastes japonicus Green, 1921 거 븍밀 깍지 벌 레
Mature adult female (A); Population of adult females (B); Population of nymphs (C).

Fig. 14. Ceroplastes rubens Maskell, 1893 루비깍지 벌레
Mature adult female (A); Population of adult females (B); Population of nymphs (C).

Appendix I. Living appearances of Korean Coccidae species

Fig. 15. Coccus hesperidum Linnaeus, 1758 무화과깍지 벌레
Mature adult female (A-C); Population of adult females (D); Population of nymphs (E).

Fig. 16. Coccus pseudomagnoliarum (Kuwana, 1914) 어리 목련깍지 벌 레 Mature adult female (A-B); Population of the first instar nymphs (C).

Fig. 17. Leptopulvinaria kawaii Tanaka \& Amano, 2008
Mature adult female with ovisac (A); Immature adult female (B); Population of adult females (C).

Fig. 18. Nipponpulvinaria horii (Kuwana, 1902) 단픙공깍지 벌 레
Mature adult female with ovisac (A); Immature adult female (B); Population of adult females (C).

Appendix I. Living appearances of Korean Coccidae species

Fig. 19. Pulvinaria nipponica Lindinger, 1933 무궁화솜깍지 벌레
Mature adult female with ovisac (A); Immature adult female (B); Population of adult females (C).

Fig. 20. Pulvinaria hydrangeae Steinweden, 1946
Mature adult female with ovisac (A-B); Population of adult females (C).

Fig. 21. Pulvinaria idesiae Kuwana, 1914
Mature adult female with ovisac (A); Eggs in ovisac (B); Immature adult female (C).

Fig. 22. Pulvinaria nishigaharae (Kuwana, 1907) 노랑솜깍지 벌 레
Mature adult female (A); Eggs stored under venter (B); Population of adult female (C).

SEOUL NATONAL LINVERSTY

Appendix I. Living appearances of Korean Coccidae species

Fig. 23. Pulvinaria photiniae Kuwana, 1914
Mature adult female with ovisac (A); Immature adult female (B); Population of adult females (C).

Fig. 24. Takahashia japonica (Cockerell, 1896) 줄솜깍지 벌레
Mature adult female with ovisac (A); Immature adult female (B); Population of adult females (C).

Fig. 25. Parthenolecanium corni (Bouché, 1844) 말채 나무공깍지 벌 레
Mature adult female (A); Immature adult female (B); Population of adult females (C).

Fig. 26. Parthenolecanium fletcheri (Cockerell, 1893)
Mature adult female (A); Immature adult female (B); Population of adult females (C).

Appendix I. Living appearances of Korean Coccidae species

Fig. 27. Parthenolecanium persicae (Fabricius, 1776) 복숭아공깍지 벌 레
Mature adult female (A); Immature adult female (B); Population of adult females (C).

Fig. 28. Saissetia coffeae (Walker, 1852) 철 모깍지 벌레
Mature adult female (A); Immature adult female (B); Eggs stored under venter (C).

Fig. 29. Saissetia miranda (Cockerell \& parrott, 1899)
Mature adult female (A); Immature adult female (B-C).

Fig. 30. Didesmococcus koreanus Borchsenius, 1955 진 공깍지 벌레 Mature adult female (A); Immature adult female (B-C).

SEOUL NATONAL LINVERSTY

Appendix I. Living appearances of Korean Coccidae species

Fig. 31. Ericerus pela (Chavannes, 1848) 쥐똥밀깍지 벌레
Mature adult female (A); Immature adult female (B); Mass of white wax of male nymphs

Fig. 32. Eulecanium cerasorum (Cockerell, 1900) 포도공깍지 벌 레 Mature adult female (A-B); Eggs stored under venter (C).

Fig. 33. Metaceronema japonica (Maskell, 1897) 과자깍지 벌레 Mature adult female (A-B); Population of adult females (C).

Appendix II. Illustration of adult females

Fig. 34. Ceroplastes ceriferus (Fabricius, 1798)

Appendix II. Illustration of adult females

Fig. 35. Ceroplastes floridensis Comstock, 1881

Appendix II. Illustration of adult females

Fig. 36. Ceroplastes japonicus Green, 1921

Appendix II. Illustration of adult females

Fig. 37. Ceroplastes rubens Maskell, 1893

Appendix II. Illustration of adult females

Fig. 38. Coccus hesperidum Linnaeus, 1758

Appendix II. Illustration of adult females

Fig. 39. Coccus pseudomagnoliarum (Kuwana, 1914)

Appendix II. Illustration of adult females

Fig. 40. Leptopulvinaria kawaii Tanaka \& Amano, 2008
sar mom lumesar

Appendix II. Illustration of adult females

Fig. 41. Nipponpulvinaria horii (Kuwana, 1902)

Appendix II. Illustration of adult females

Fig. 42. Pulvinaria nipponica Lindinger, 1933

Appendix II. Illustration of adult females

Fig. 43. Pulvinaria hydrangeae Steinweden, 1946

Appendix II. Illustration of adult females

Fig. 44. Pulvinaria idesiae Kuwana, 1914

Appendix II. Illustration of adult females

Fig. 45. Pulvinaria photiniae Kuwana, 1914

Appendix II. Illustration of adult females

Fig. 46. Pulvinaria sp. (misreported as Pulvinaria torreyae Takahashi, 1956)

Appendix II. Illustration of adult females

Fig. 47. Parthenolecanium corni (Bouché, 1844)

Appendix II. Illustration of adult females

Fig. 48. Parthenolecanium fletcheri (Cockerell, 1893)

Appendix II. Illustration of adult females

Fig. 49. Parthenolecanium persicae (Fabricius, 1776)

Appendix II. Illustration of adult females

Fig. 50. Saissetia coffeae (Walker, 1852)

Appendix II. Illustration of adult females

Fig. 51. Saissetia miranda (Cockerell \& Parrott, 1899)

Appendix II. Illustration of adult females

Fig. 52. Eriopeltis festucae (Fonscolombe, 1834)

Appendix II. Illustration of adult females

Fig. 53. Ericerus pela (Chavannes, 1848)

Appendix II. Illustration of adult females

Fig. 54. Metaceronema japonica (Maskell, 1897)

Appendix II. Illustration of adult females

Fig. 55. Takahashia japonica (Cockerell, 1896)

Appendix III. Tables of Biometric Data

Table 10. Ceroplastes ceriferus (Fabricius, 1798) and C. floridensis Comstock, 1881

	Part	C. ceriferus ($\mathrm{n}=13$)		C. floridensis ($\mathrm{n}=7$)	
		mean	range	mean	range
Body (mm)	Length of body	2.3	1.2-3.8	1.5	1.3-1.9
	Width of body	2.0	0.9-3.6	1.0	0.9-1.3
Dorsal ($\mu \mathrm{m}$)	Length of Setae	7.8	5.4-10	4.0	3.4-4.3
	Length of Anal plates	122.0	88.4-173.7	106.1	99.3-126.1
	Width of Anal plates	114.3	90.5-154.5	107.8	94.2-124.8
	Width of monolocular pores	4.8	4.0-6	3.3	2.8-4.0
	Width of bilocular pores	6.3	5.6-7.3	4.1	3.9-4.5
	Width of trilocular pores	6.9	6.0-8.2	5.1	3.7-6.0
	Width of quadrilocular pores	7.6	6.6-8.6	3.7	3.4-4.0
Margin	Length of Marginal setae (conical)	-	-	12.3	9.9-14.1
	Length of Marginal setae (spinose)	16.5	11.3-22.9	18.5	16.8-20.0
	Length of stigmatic setae	25.2	17.0-35.5	19.0	15.4-22.2
Venter	Length of Submarginal setae	8.7	6.3-11.1	7.5	6.8-8.1
	Width of Multilocular pores	7.4	6.8-7.9	6.8	6.7-6.9
	Width of Clypeolabral shield	141.8	117.2-168.7	119.7	109.1-152.7
	Length of Coxa	83.7	56.8-102.3	100.7	86.1-137.2
	Length of trochanter+femur	103.5	77.3-126.1	133.1	118.0-173.2
	Length of tibia+tarsus	109.4	84.4-125.1	144.7	130.2-199.7
	Length of claw	12.8	9.8-16.3	13.0	11.1-14.5
	Total length of leg	309.4	234.9-368	407.7	351.2-524.0
	Length of Antennae	168.5	130.1-211.9	215.5	201.3-275.3
	Width of peritreme (Anterior)	58.6	23.3-90.5	24.5	20.3-39.3
	Width of peritreme (Posterior)	62.4	25.3-92.6	27.4	21.6-45.0
	Width of Spiracular pores	4.7	3.2-6	3.6	3.4-3.9
	Length of Setae (Spinose)	8.2	6.6-12.4	6.0	5.0-8.4
	Length of Tubular ducts	33.3	28.7-39.6	20.1	18.9-21.3
	Length of Microducts	3.2	2.3-4	1.8	1.1-2.6

Appendix III. Tables of Biometric Data

Table 11. Ceroplastes japonicas Green, 1921

	Part	C. japonicus ($\mathrm{n}=10$)	
		mean	range
Body (mm)	Length of body	2.5	1.7-3.5
	Width of body	1.9	1.1-3.1
Dorsal ($\mu \mathrm{m}$)	Length of Setae	6.1	5.1-8.3
	Length of Anal plates	147	138.6-160.4
	Width of Anal plates	122.1	109.9-137.0
	Width of monolocular pores	4.4	3.9-5.3
	Width of bilocular pores	4.9	4.1-5.3
	Width of trilocular pores	5.1	4.0-7
	Width of quadrilocular pores	5.5	4.0-6.6
Margin	Length of Marginal setae (conical)	15.1	11.9-17.5
	Length of Marginal setae (spinose)	24.6	12.2-30.3
	Length of stigmatic setae	22.9	19.5-27.8
Venter	Length of Submarginal setae	9.5	7.0-12.1
	Width of Multilocular pores	6.5	5.3-7.8
	Width of Clypeolabral shield	154.4	141.8-163.1
	Length of Coxa	145.5	131.3-160.2
	Length of trochanter+femur	202.7	182.7-222.7
	Length of tibia+tarsus	211.6	200.3-230
	Length of claw	20.8	15.7-23.2
	Total length of leg	580.5	543.2-635.7
	Length of Antennae	310.2	285.3-327.7
	Width of peritreme (Anterior)	47.8	41.9-53.4
	Width of peritreme (Posterior)	56.6	50.8-60.8
	Width of Spiracular pores	4	3.4-5.7
	Length of Setae (Spinose)	7.4	4.4-9.6
	Length of Tubular ducts	28.3	21.1-41.4
	Length of Microducts	2.5	1.6-3.6

Appendix III. Tables of Biometric Data

Table 12. Ceroplastes rubens Maskell, 1893

	Part	C. rubens ($\mathrm{n}=10$)	
		mean	range
Body (mm)	Length of body	2.6	1.7-3.8
	Width of body	2.1	1.3-3.2
Dorsal ($\mu \mathrm{m}$)	Length of Setae	5.5	4.4-6.4
	Length of Anal plates	151.1	140.8-160.3
	Width of Anal plates	130.8	117.8-149.2
	Width of monolocular pores	4.8	4-5.3
	Width of bilocular pores	5.9	4.8-7.2
	Width of trilocular pores	7.1	6.1-9
Margin	Length of Marginal setae (dorsal)	6.4	4.5-7.6
	Length of Marginal setae (ventral)	8.1	5.9-9.6
	Length of stigmatic setae (conical)	55.3	39.9-66.6
	Length of stigmatic setae (round)	29.9	26.1-35.6
	Length of stigmatic setae (others)	13	10.1-16.1
Venter	Width of Multilocular pores	7.3	6.3-8.6
	Width of Clypeolabral shield	165.4	151.5-181.1
	Length of Coxa	64.6	56.2-71.9
	Length of trochanter+femur	54.0	37.0-64.6
	Length of tibia+tarsus	62.5	47.7-73.6
	Length of claw	10	6.4-12.9
	Total length of leg	191.2	156.2-212.8
	Length of Antennae	173.8	155.9-199.4
	Width of peritreme (Anterior)	63.4	55.6-70.6
	Width of peritreme (Posterior)	69.6	55.6-75.3
	Width of Spiracular pores	5.6	5-6.6
	Length of Setae (Spinose)	8.3	7.7-9.4
	Length of irregular ducts	23.6	-
	Length of Microducts	4	3.1-4.6

Appendix III. Tables of Biometric Data

Table 13. Coccus hesperidum Linnaeus, 1758 and C. pseudomagnoliarum (Kuwana, 1914)

Appendix III. Tables of Biometric Data

Table 14. Leptopulvinaria kawaii Tanaka \& Amano, 2008 and Nipponpulvinaria horii (Kuwana, 1902)

Part		L. kawaii ($\mathrm{n}=18$)		N. horii ($\mathrm{n}=10$)	
		mean	range	mean	range
Body (mm)	Length of body	3.8	3.2-4.3	5.9	4.3-8.4
	Width of body	2.8	2.3-3.2	5.8	4.0-8.2
Dorsal ($\mu \mathrm{m}$)	Length of Setae	7.5	5.5-10.2	12.2	8.0-19.6
	Length of Anal plates	134.3	121.6-145.1	226.7	200.6-247.1
	Width of Anal plates	132.9	119.9-151.1	222.3	164.6-276.2
	Length of Anterolateral margin	89	79.8-100.9	156.8	129.6-187.6
	Length of Posterolateral margin	91.5	82.0-102.8	145.6	120.7-158.8
	With of Disc pores	-	-	6.2	5.3-7.3
	With of Preopercular pores	5.0	3.4-6.5	-	-
	Width of Dorsal microducts	-	-	6.2	5.3-7.3
Margin	Length of Marginal setae	33.3	24.1-41.7	34.1	24.8-42.5
	Length of Median stigmatic setae	43.9	32.0-53.8	106.8	77.2-122.2
	Length of Lateral stigmatic setae	24.8	17.1-30.9	52.7	27.2-65.7
Venter	Width of Multilocular pores	6.7	5.0-8.2	8.7	8.2-9.5
	Width of Clypeolabral shield	156	142.5-183.5	269.5	225.4-316.3
	Length of Coxa	179.5	144.2-209.5	143.6	129.4-166.9
	Length of trochanter+femur	256.6	214.9-291.4	192.6	166.2-207.5
	Length of tibia+tarsus	339.5	304.4-366.2	244.0	225.4-262.7
	Length of claw	34.2	29.7-39.4	28.9	22.4-32.7
	Total length of leg	809.2	703.3-879.7	824.7	604.0-946.0
	Length of Antennae	452.6	398.3-481.0	455.3	420.0-485.9
	Width of peritreme (Anterior)	41.7	32.3-49.3	89.3	66.0-113
	Width of peritreme (Posterior)	44	36.6-54.0	114.4	77.9-142.2
	Width of Spiracular pores	4.4	3.7-5.3	6.1	5.3-7
	Length of Setae (Spinose)	12.6	10.1-19.1	15.8	12.3-18.9
	Length of Tubular ducts	21.5	11.4-44.7	42.9	34.0-49.4
	Width of Microducts	-	-	3.1	2.4-3.6

Appendix III. Tables of Biometric Data

Table 15. Pulvinaria nipponica Lindinger, 1933 and P. hydrangeae Steinweden, 1946

Part		P. nipponica ($\mathrm{n}=7$)		p. hydrangeae ($\mathrm{n}=10$)	
		mean	range	mean	range
Body (mm)	Length of body	3.7	2.8-4.4	2.5	2-3.4
	Width of body	2.9	2.1-3.6	2.1	1.6-2.9
Dorsal ($\mu \mathrm{m}$)	Length of Setae	7.7	6.1-10.2	10.4	8.7-13
	Length of Anal plates	134.7	113.4-145.4	145.1	133.7-155
	Width of Anal plates	142.5	124.3-164.4	157.2	138.6-172.8
	Length of Anterolateral margin	86.7	71.0-100.6	99.5	89-111.2
	Length of Posterolateral margin	100.8	91.3-113.8	110.8	98.4-120
	With of Disc pores	4	3.2-5	-	-
	Length of Tubular ducts	-	-	20.9	18.1-23.1
	With of Preopercular pores	-	-	4.2	3.6-5.4
	Width of Dorsal microducts	-	-	2.9	2.1-3.9
Margin	Length of Marginal setae	36.6	24.2-48.5	43.2	29-54.4
	Length of Median stigmatic setae	77.2	69.3-89	80.1	71.4-83.7
	Length of Lateral stigmatic setae	29.2	20.8-37	38.0	27.8-59.5
Venter	Length of Submarginal setae	17	11.1-24.3	18.1	11.4-26.4
	Width of Multilocular pores	6.8	6.0-7.9	7.2	6.5-7.9
	Width of Clypeolabral shield	175.1	158.8-188.2	174.6	158-190.8
	Length of Coxa	223.2	206.7-232.9	222.5	195.2-245.7
	Length of trochanter+femur	293.8	283.2-310.5	308.7	281.4-334.3
	Length of tibia+tarsus	275.7	269.9-285.4	299.0	269-325.9
	Length of claw	33.3	29.8-39.2	31.5	27.6-35.9
	Total length of leg	825.9	794.4-868	861.6	796.4-922.1
	Length of Antennae	388.7	353.8-424.8	442.1	408.4-497.4
	Width of peritreme (Anterior)	52.7	42.2-61	52.2	46.6-60.2
	Width of peritreme (Posterior)	61.3	52.7-69.2	61.2	54.4-68.2
	Width of Spiracular pores	5.5	4.9-6.6	5.1	4.2-6
	Length of Setae (Spinose)	10.9	8.4-13.9	11.8	7.6-14.8
	Length of Tubular ducts	24.8	19.9-28.3	31.2	27-38.5
	Width of Microducts	2.7	2.4-3.1	2.6	1.9-3.2

Appendix III. Tables of Biometric Data

Table 16. Pulvinaria idesiae Kuwana, 1914 and P. photiniae Kuwana, 1914

	Part	P. idesiae ($\mathrm{n}=5$)		p. photiniae ($\mathrm{n}=9$)	
		mean	range	mean	range
Body (mm)	Length of body	4.7	3.7-5.8	2.9	2.5-3.7
	Width of body	3.9	3.2-5	2.2	1.8-3
Dorsal ($\mu \mathrm{m}$)	Length of Setae	7.9	6.3-9.9	7.6	6.1-9.1
	Length of Anal plates	194.7	169.5-214.2	133.6	125.4-141.1
	Width of Anal plates	197.3	163.8-216.3	126.1	104.1-142.7
	Length of Anterolateral margin	125.2	104.6-142.9	82.1	63.9-97.6
	Length of Posterolateral margin	151.3	124.7-173.3	92.2	82.4-104.5
	With of Preopercular pores	5.3	4.5-6	4.1	3.6-4.5
Margin	Length of Marginal setae	43.1	34.8-47.9	42.6	30.8-55.2
	Length of Median stigmatic setae	97.2	80.4-108	74.2	55.9-88.8
	Length of Lateral stigmatic setae	42.1	34.1-50	31.0	21.7-38.6
Venter	Width of Multilocular pores	6.8	6.3-7.9	6.5	5.3-7.1
	Width of Clypeolabral shield	194.1	180.3-204.5	163.9	138.6-187.3
	Length of Coxa	293.8	204.5-356.4	192.9	165.1-210.3
	Length of trochanter+femur	404.8	280.9-478.5	271.0	241.4-293.4
	Length of tibia+tarsus	403.4	280.9-508.7	264.0	230-289.3
	Length of claw	40.7	34.8-48.2	29.9	23.2-35.6
	Total length of leg	1142.7	880.7-1380	757.7	680.6-820.9
	Length of Antennae	559.0	399.2-625.6	356.6	319.4-395.5
	Width of peritreme (Anterior)	62.7	56.4-70.9	56.2	48.2-65.6
	Width of peritreme (Posterior)	74.7	49.9-91.6	62.9	56.3-71.8
	Width of Spiracular pores	4.9	4.2-5.3	5.3	4.1-6.2
	Length of Setae (Spinose)	16.6	12-20.5	13.1	9.1-17.7
	Length of Tubular ducts	29.8	23.3-36.7	26.5	20.6-31.2

Appendix III. Tables of Biometric Data

Table 17. Pulvinaria sp. (misreported as Pulvinaria torreyae Takahashi, 1956)

Part		P. sp. ($\mathrm{n}=2)$	
		mean	range
Body (mm)	Length of body	5.8	5.4-6.3
	Width of body	4.4	4.3-4.4
Dorsal ($\mu \mathrm{m}$)	Length of Setae	10.6	9.2-12.1
	Length of Anal plates	207.1	$\begin{gathered} 203.9- \\ 210.3 \end{gathered}$
	Width of Anal plates	187.5	$\begin{gathered} 182.3- \\ 192.7 \end{gathered}$
	Length of Anterolateral margin	116.4	$\begin{aligned} & 108.5- \\ & 124.3 \end{aligned}$
	Length of Posterolateral margin	163.9	$\begin{gathered} 161.4- \\ 166.3 \end{gathered}$
	Length of Dorsal tubular ducts	28.1	27.8-28.5
	Width of Disc pores	6.3	5.7-7
	With of Dorsal microducts	3.4	3.2-3.6
Margin	Length of Marginal setae	58.0	54.6-61.4
	Length of Median stigmatic setae	91.8	86.7-97
	Length of Lateral stigmatic setae	36.5	31.6-41.4
Venter	Width of Multilocular pores	7.4	6.6-8.2
	Width of Clypeolabral shield	197.5	196-198.9
	Length of Coxa	330.3	$\begin{gathered} 328.9- \\ 331.8 \end{gathered}$
	Length of trochanter+femur	385.3	$\begin{gathered} 363.5- \\ 407.1 \end{gathered}$
	Length of tibia+tarsus	465	$\begin{gathered} 449.7- \\ 480.2 \end{gathered}$
	Length of claw	32.5	30.9-34.2
	Total length of leg	1312.5	$\begin{gathered} 1209.7- \\ 1415.4 \end{gathered}$
	Length of Antennae	513.7	$430-597.4$
	Width of peritreme (Anterior)	69.4	69.4-69.4
	Width of peritreme (Posterior)	81.3	77.6-85
	Width of Spiracular pores	5.7	5.3-6
	Length of Setae (Spinose)	22.4	21-23.8
	Length of Tubular ducts (TypeI)	31.2	29.7-32.6
	Length of Tubular ducts (TypeII)	30.1	28.7-31.5
	Length of Tubular ducts (TypeIII)	19.6	16.2-23
	Width of Microducts	3.7	3.6-3.9

Appendix III. Tables of Biometric Data

Table 18. Parthenolecanium corni (Bouché, 1844) and P. fletcheri (Cockerell, 1893)

Part		P. corni ($\mathrm{n}=10$)		P. fletcheri ($\mathrm{n}=10$)	
		mean	range	mean	range
Body (mm)	Length of body	4.5	2.9-6	2.7	2.3-3.3
	Width of body	4.1	2.4-5.4	2.2	1.8-2.9
Dorsal ($\mu \mathrm{m}$)	Length of Setae (large)	10.1	7.4-13.9	21.5	18.2-26.9
	Length of Setae (small)	6	3.4-7.8	8.5	5.6-10.9
	Length of Anal plates	132.2	96.5-153.3	123.3	111.9-127.7
	Width of Anal plates	129.7	106.4-160	150.2	127.3-169
	Length of Anterolateral margin	83.9	53.2-104	96.1	85.8-105.7
	Length of Posterolateral margin	94.1	69.7-112.5	87.4	76.8-94.1
	Width of Dorsal tubercles	16.9	12.1-21.3	-	-
	Width of Pocket-like sclerotisations	9.3	7.1-19.7	-	-
	Width of Preopercular Pores	6.9	4.9-9.7	6	4.1-7.4
	Length of Dorsal tubular ducts	27.4	17.1-37.1	-	-
	With of Dorsal microducts	2.9	2.1-3.4	2.8	2.3-3.2
Margin	Length of Marginal setae	21.9	17.4-26.1	18.6	14.7-22.1
	Length of Median stigmatic setae	51.2	47.8-54.1	34.1	26.2-45.8
	Length of Lateral stigmatic setae	26.3	19.9-31.6	20.6	13.6-26.7
Venter	Length of Ventral submarginal setae	14.1	10-17.9	13.9	10.8-17.6
	Width of Multilocular pores	7.5	6.3-7.9	7.2	5.7-8.9
	Width of Clypeolabral shield	158.1	126.4-180.2	166.4	146.6-180.4
	Length of Coxa	123.3	107.8-133.7	112.1	106.7-118.6
	Length of trochanter+femur	169.8	149.1-184.6	137.4	130-144.1
	Length of tibia+tarsus	192.1	62.4-224.7	165	153.7-179.5
	Length of claw	22.9	20.3-25.1	19.2	12.7-23.1
	Total length of leg	508.1	374.9-554.9	433.7	414.5-455.8
	Length of Antennae	269.1	242.6-289.7	236.5	129.5-265.6
	Width of peritreme (Anterior)	44.2	26.1-55.2	42.8	34.9-48.1
	Width of peritreme (Posterior)	58.5	33.4-69.3	51.2	44.9-56.1
	Width of Spiracular pores	4.9	4.4-5.7	5.3	4.7-6.3
	Length of Setae (Spinose)	9.9	7.7-14.6	9.4	7.4-11.9
	Length of Tubular ducts	32.7	25.1-39	35.5	26-49.8
	Width of Microducts	2.8	2.1-3.7	3	2.4-3.9

Appendix III. Tables of Biometric Data

Table 19. Parthenolecanium persicae (Fabricius, 1776)

Part		P. persicae ($\mathrm{n}=9$)	
		mean	range
Body (mm)	Length of body	3.7	2.2-8.1
	Width of body	2.6	1.1-6.4
$\begin{gathered} \text { Dorsal } \\ (\mu \mathrm{m}) \end{gathered}$	Length of Setae (large)	14.7	9.7-22.4
	Length of Setae (small)	7.4	6.8-8.6
	Length of Anal plates	161.2	142.7-174.8
	Width of Anal plates	149.2	123.1-178.6
	Length of Anterolateral margin	108.1	104.5-110.7
	Length of Posterolateral margin	125.2	114.4-129.7
	Width of Dorsal tubercles	26.1	22.7-28.6
	Width of Pocket-like sclerotisations	11.4	11.4-11.4
	Width of Preopercular Pores	7.8	6.1-9.5
	Length of Dorsal tubular ducts	-	-
	With of Dorsal microducts	-	-
Margin	Length of Marginal setae	48.9	41.6-62.3
	Length of Median stigmatic setae	53.3	45.7-61.7
	Length of Lateral stigmatic setae	42.5	31.3-51.2
Venter	Length of Ventral submarginal setae	13.6	10.6-18.5
	Width of Multilocular pores	6.8	5.2-7.8
	Width of Clypeolabral shield	176.5	161.1-189.6
	Length of Coxa	163.5	144.5-177.1
	Length of trochanter+femur	239.9	221.8-258.1
	Length of tibia+tarsus	308.0	243.3-337.3
	Length of claw	25.3	19.2-29.6
	Total length of leg	736.8	645.2-795.7
	Length of Antennae	443.1	404.8-521.8
	Width of peritreme (Anterior)	68.8	54.9-86.1
	Width of peritreme (Posterior)	83.9	69.6-93.1
	Width of Spiracular pores	4.5	3.1-5.2
	Length of Setae (Spinose)	9.5	7.1-10.9
	Length of Tubular ducts	26.9	23-33.3
	Width of Microducts	2.9	2.3-3.6

Appendix III. Tables of Biometric Data

Table 20. Saissetia coffeae (Walker, 1852) and Saissetia miranda (Cockerell \& parrott, 1899)

Part		S. coffeae ($\mathrm{n}=11$)		S. miranda ($\mathrm{n}=2$)	
		mean	range	mean	range
Body (mm)	Length of body	2.6	2-3.1	2.3	1.8-2.9
	Width of body	2.2	1.7-2.9	2.0	1.4-2.5
Dorsal ($\mu \mathrm{m}$)	Length of Setae	7.2	5.6-8.9	16.1	13.5-18.7
	Length of Anal plates	144.7	135.1-158.6	179.9	175.6-184.2
	Width of Anal plates	165.8	145.8-197.8	141.8	89.5-194.1
	Length of Anterolateral margin	97.6	84.1-106.7	108.4	105.5-111.2
	Length of Posterolateral margin	108.9	86.4-129.2	136.8	136.6-137
	Width of Disc pores	2.2	1.9-2.8	2.4	2.4-2.4
	Width of Preopercular Pores	4.4	3.7-5.7	6.3	4.9-7.8
	With of Dorsal microducts	2.5	1.8-3.2	1.8	1.7-1.9
Margin	Length of Marginal setae	48.8	31.2-64.5	54.9	54.1-55.6
	Length of Median stigmatic setae	73.7	61.9-82.6	-	-
	Length of Lateral stigmatic setae	23.2	14.2-36.2	29.1	29.1-29.1
Venter	Length of Ventral submarginal setae	13.6	9.2-24.2	17.0	14.3-19.7
	Width of Multilocular pores	6.4	5.5-7.5	8.1	8-8.2
	Width of Clypeolabral shield	173.2	154.4-190.2	169.1	168.6-169.7
	Length of Coxa	193.0	169.8-210.3	139.5	130.8-148.2
	Length of trochanter+femur	230.8	221.8-246.1	204.9	198.4-211.4
	Length of tibia+tarsus	248.2	226.2-273.8	255.7	243.2-268.2
	Length of claw	23.5	18.7-31.2	20.9	17.3-24.5
	Total length of leg	693.1	662.2-749.2	705.8	627.6-784.1
	Length of Antennae	357.6	343-382.6	329.1	297-361.3
	Width of peritreme (Anterior)	47.1	36.8-56.3	45.7	42.3-49
	Width of peritreme (Posterior)	52.1	44.7-59.5	51.0	47.6-54.5
	Width of Spiracular pores	4.4	3.7-5.3	4.4	3.7-5.2
	Length of Setae (Spinose)	10.2	6.9-13.2	-	-
	Length of Tubular ducts	27.5	19.4-38	29.3	24.6-34.1
	Width of Microducts	2.4	1.9-2.9	2.0	1.6-2.3

Appendix III. Tables of Biometric Data

Table 21. Eriopeltis festucae (Fonscolombe, 1834)

Part		E. festucae ($\mathrm{n}=8$)	
		mean	range
Body (mm)	Length of body	3.8	3.4-4.5
	Width of body	2.3	1.8-2.6
Dorsal ($\mu \mathrm{m}$)	Length of Setae	26.9	16.2-37.4
	Length of Anal plates	161.6	140-191.3
	Width of Anal plates	182.3	133.4-244.6
	Length of Anterolateral margin	105.3	86.7-128.7
	Length of Posterolateral margin	139.8	97-167.9
	Width of Bilocular pores	4.7	4-5.8
	Width of Dorsal simple pores	2.9	2.5-3.4
	Width of Dorsal disc pores	6.4	5.3-7.3
Margin	Length of Marginal setae	13.1	9.8-16.8
	Length of Median stigmatic setae	22.5	15.5-29.5
Venter	Width of Multilocular pores	7	5.7-7.9
	Width of Clypeolabral shield	154.4	129.1-190.1
	Length of Coxa	42.0	34-65.3
	Length of trochanter+femur	42.9	27.4-63
	Length of tibia+tarsus	59.8	27.5-106.1
	Length of claw	16.1	10.8-26
	Total length of leg	150.1	86.2-252.3
	Length of Antennae	131.5	113.1-156.4
	Width of peritreme (Anterior)	62	52.8-72.1
	Width of peritreme (Posterior)	66.4	56.8-75
	Width of Spiracular pores	6.1	4.7-7.4
	Length of Tubular ducts	38.6	29.1-45.1

Appendix III. Tables of Biometric Data

Table 22. Ericerus pela (Chavannes, 1848)

	Part	E. pela ($\mathrm{n}=10$)	
		mean	range
Body (mm)	Length of body	4.6	4-5.3
	Width of body	4.4	3.5-5
Dorsal ($\mu \mathrm{m}$)	Length of Setae	8.5	7.4-11
	Length of Anal plates	189.6	160.9-208.4
	Width of Anal plates	170.7	149-193
	Length of Tubular ducts	20	14.5-24.5
	With of Dorsal microducts	2.7	1.7-3.4
Margin	Length of Marginal setae	33.7	27.5-42.2
	Length of Median stigmatic setae	43.9	31.8-59.7
	Length of Lateral stigmatic setae	37.0	29.5-46.7
Venter	Length of Ventral submarginal setae	14.5	10-19
	Width of Multilocular pores	9.1	8.1-11.2
	Width of Clypeolabral shield	229.6	200.3-257
	Length of Coxa	106.6	96.8-119.4
	Length of trochanter+femur	127.2	108.4-144.6
	Length of tibia+tarsus	145.5	132.7-155.6
	Length of claw	18.9	13.6-24.9
	Total length of leg	466.2	360.7-642.4
	Length of Antennae	218.6	181.9-242.2
	Width of peritreme (Anterior)	176.8	162.2-195.1
	Width of peritreme (Posterior)	184.4	162.1-218.2
	Width of Spiracular pores	5.8	5.3-6.5
	Length of Setae (Spinose)	12.7	7.3-17.4
	Length of Tubular ducts	34.1	26-39.8
	Width of Microducts	2.5	1.1-3.4

Appendix III. Tables of Biometric Data

Table 23. Metaceronema japonica (Maskell, 1897) and Takahashia japonica (Cockerell, 1896)

Part		M. japonica ($\mathrm{n}=10$)		T. japonica ($\mathrm{n}=6$)	
		mean	range	mean	range
Body (mm)	Length of body	2.2	1.6-3	7.2	5.2-9.2
	Width of body	1.4	1.1-1.8	5.8	4.5-7.6
$\begin{gathered} \text { Dorsal } \\ (\mu \mathrm{m}) \end{gathered}$	Length of Setae	15.0	11.9-17.1	12.0	10.9-14.9
	Length of Anal plates	135.5	104.6-154	192.7	180.7-204
	Width of Anal plates	144.0	108.1-180	177.9	155-194.6
	Length of Anterolateral margin	100.3	84.8-114.8	122.4	114.1-136.5
	Length of Posterolateral margin	78.9	69.6-94.9	132.8	116.6-139.4
	Length of Dorsal tubular ducts	30.2	25.3-35.7	24.2	21.2-29.7
	Width of Dorsal pores	-	-	5.4	4.2-6.5
	Width of Dorsal pores (elongate oval)	3.4	3.1-4.1	-	-
	Width of Dorsal pores (microduct)	2.6	1.9-2.9	-	-
	Width of Dorsal pores (tubercle like)	7.3	6.3-8.1	-	
	Width of Dorsal pores (small convex)	3.7	3.2-4.3	-	-
	Width of Dorsal pores (minute pore)	2.2	1.9-2.6	${ }^{-}$	${ }^{-}$
Margin	Length of Marginal setae	43.4	31.4-56.7	22.8	17.4-28
	Length of Median stigmatic setae	95.5	30.2-117	19.0	15.9-22.1
	Length of Lateral stigmatic setae	70.1	24.5-95.5	15.4	12.4-18.3
Venter	Length of Ventral submarginal setae	9.8	6.8-13.7	-	-
	Width of Multilocular pores	7.9	7-8.9	9.2	7-10.5
	Width of Clypeolabral shield	175.0	$\begin{aligned} & 128.4- \\ & 209.4 \end{aligned}$	211.0	113.3-289.2
	Length of Coxa	195.5	111.5-234.5	80.5	54.2-104.3
	Length of trochanter+femur	254.8	$\begin{aligned} & 145.8- \\ & 286.8 \end{aligned}$	114.1	87.1-137.1
	Length of tibia+tarsus	265.4	$\begin{aligned} & 156.2- \\ & 297.8 \end{aligned}$	175.0	128.4-208.9
	Length of claw	26.3	19.9-31.9	20.8	13.9-32.6
	Total length of leg	742.0	$\begin{gathered} 433.4-1 \\ 830.1 \end{gathered}$	390.5	308.6-482.8
	Length of Antennae	372.9	$\begin{aligned} & 219.2- \\ & 436.4 \end{aligned}$	208.7	163-252.1
	Width of peritreme (Anterior)	51.4	21.6-64.4	119.3	95.1-131.6
	Width of peritreme (Posterior)	60.9	22.5-83.5	132.4	114.6-155.5
	Width of Spiracular pores	5.5	4.4-6.1	6.5	6-7.1
	Length of Setae (Spinose)	8.9	7-12.6	12.8	10.2-15.6
	Length of Tubular ducts	27.2	24.9-29.3	48.9	40.4-60
	Width of Microducts	2.5	1.9-3.2	4.3	3.9-4.7

국문초록

밀깍지벌레과(노린재목: 깍지벌레상과)의 녜통분류학적 연구

서율대학교 대학원 농생명공학부 곤충학전공
 최진영

본 연 구는 한반도산 밀깍지벌레과에 대한 계통분류학적 연 구로쎄, 세가지 주요 주제를 가지고 연구를 수행하였다. 첫 번째, 한반도산 밀깍지벌레의 분류학적 검토, 두 번째, 밀깍지벌레의 분자예통학적 연구, 세 번째, 무화과깍지벌레의 유전적 다양성과 잠재종에 대한 분자학적 연 구이다.

첫 번째 연구에서는 총 19속 39종의 밀깍지벌레류에 대한 분류학적 검토가 수행되었다. 이를 통하여 7종이 국내에서 처음으로 보고되었으며, 이 전에 기록된 종 중 주목솜싹지벌레로 기록된 종이 오동정으로 보고된 종임을 확인하였다.

두 번째 연 구에서는 mitochondrial DNA (COI) 와 nuclear ribosomal RNA genes (18 S and 28 S), elongation factor $1 \boldsymbol{\alpha}$ (EF-1 α)의 분자마커를 이용한 밀깍지벌레과에 대한 계통학적 연 구를 수행하였다. 분석결과 Ceroplastinae를 제외한 모든 아과는 측계 통을 형성하였으며, Coccinae에 속하는 4 개의 족의 경우에는 ML tree 상의 Saissetiini를 제외하고 모두 단계 통을 나타내지 않았다. 특히, Coccini와 Pulvinariini는 블쥬칙한 분기 형대를 보였으며, Paralecanium과 Megapulvinaria는 Coccinae의 주요 분기군에서 뚜렷하게 분리되어 Cardiococcinae와 Filippiinae에 근연으로 나타났다. 그리고 Didesmococcus가 Coccinae의 분기군 내에서 나타남에 따라 Eulecaniinae는 측계통을 형성하는 그릅임을 확인하였다.

세 번째 연 구에서는 무화과깍지벌레의 유전자 분석을 통하여 COI haplotype의 높은 다양성과 2종의 잠재종을 확인하였다. Maximum Likelihood (ML)의 계통수와 haplotype network에서 무화과깍지벌레의 모든 haplotype은 3개의 분리된 분기군을 형성하였고, K2P-distance를 통하여 분기군간 유전적인 차이 정도가 크게 나다남을 확인하였다.

검색어: 밀깍지벌레과, 밀깍지벌레류, 계통분류학, 분류학적 검토, 분자녜통학, 유전적 다양성, 잠재종, 한반도

SEOUL NATONAL LNNERSTY

[^0]: N, number of analysed individuals, NH, number of haplotypes, HD, haplotype diversity, ND, nucleotide diversity, HR, haplotype richness (*significant at $P<0.05$)

