

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Transport Layer Security Extensions for
Middleboxes and Edge Computing

미들박스와엣지컴퓨팅을위한전송보안계층확장연구

2020년 8월

서울대학교대학원

컴퓨터공학부

이현우

III

Abstract

Transport Layer Security Extensions for
Middleboxes and Edge Computing

Hyunwoo Lee
Department of Computer Science and Engineering

The Graduate School
Seoul National University

Internet traffics are getting encrypted with HTTPS, which makes middleboxes blind. To intro-

duce middleboxes in the encrypted session, the TLS interception schemes (a.k.a., SplitTLS)

that abuse the public key infrastructure (PKI) are widely used in practice. Several papers,

however, demonstrate that the SplitTLS practice is risky due to incorrect implementation or

misconfiguration of middleboxes.

This dissertation aims to design secure and trustworthy methods to introduce middle-

boxes in the TLS session. To this end, we first classify middleboxes into two types called a

middlebox-as-a-middlebox and a middlebox-as-an-middlebox. A middlebox-as-a-middlebox

is an intermediary between a client and a server at communication time, while a middlebox-as-

an-endpoint is an intermediary that takes on the role of a server during the session. An example

of the former is an intrusion detection system and that or the latter is a web cache. Then we

conduct literature reviews over 23 protocols (14 protocols for a middlebox-as-a-middlebox

and 9 protocols for a middlebox-as-an-endpoint) that make middleboxes participate into TLS

sessions.

From our reviews, we have learned the following lessons. For a protocol with a middlebox-

as-a-middlebox, we should consider the least privilege of a middlebox to limit it not to perform

i

functionality with excessive permission in design. Also, since a server is involved into the

session, we can use a server to help a client to understand a middlebox. For a protocol with

a middlebox-as-an-endpoint, we should consider a method not to add further round-trips to

a server. In addition, the number of secrets should be minimal and the overhead for the key

management should not be placed on a server.

In this disseration, we propose two protocols called MATLS and TLS-SEED, based on

our learnings.

The MATLS protocol is a protocol for a middlebox-as-a-middlebox. Existing solutions,

such as SplitTLS, which intercepts TLS sessions, often introduce significant security risks

by installing a custom root certificate or sharing a private key. Many studies have confirmed

security vulnerabilities when combining TLS with middleboxes, which include certificate

validation failures, use of obsolete ciphersuites, and unwanted content modification. To

address these issues, we introduce a middlebox-aware TLS protocol, dubbed MATLS, which

allows middleboxes to participate in the TLS session in a visible and auditable fashion.

Every participating middlebox now splits a session into two segments with their own security

parameters in collaboration with the two endpoints. The MATLS protocol is designed to

authenticate the middleboxes to verify the security parameters of segments, and to audit the

middleboxes’ write operations. Thus, security of the session is ensured. We prove the security

model of MATLS by using Tamarin, a state-of-the-art security verification tool. We also carry

out testbed-based experiments to show that MATLS achieves the above security goals with

marginal overhead.

The TLS-SEED protocol is a protocol for a middlebox-as-an-endpoint, especially con-

sidering a scenario of edge computing. Edge computing is an emerging technology to bring

computation and data storage closer to clients, to provide fast responses and to reduce the

bandwidth usage in cloud servers. An edge computing platform is typically a third party to

an application service provider and a client, both of which require high security assurance.

Therefore, we propose TLS-SEED, a TLS extension that addresses risky private key sharing

ii

and inefficient remote attestation on the third party, while preserving performance in edge

computing. TLS-SEED allows an application service provider (i) to deploy its edge appli-

cation without sharing its private keys, (ii) to authorize/deauthorize its edge application by

performing remote attestation, while presenting sufficient information for a client to verify

the edge application without relying on an attestation service. A central data structure of

TLS-SEED is a CROSS CREDENTIAL (CC) that shows a client the trust relation between an

application service provider and a trusted device. The CC also gives the client the ability to

verify the integrity of the edge application. To formally analyze TLS-SEED, we introduce

ACCE-SEED, a formal model for TLS-SEED, by extending the ACCE model for TLS, and

show TLS-SEED is ACCE-SEED-secure. Furthermore, testbed-based experiments show that

TLS-SEED can be substantiated with a negligible performance overhead.

Keywords: Transport Layer Security (TLS), Middleboxes, Edge Computing, Trusted Execu-

tion Environments (TEEs)

Student Number: 2015-21259

iii

Contents

Abstract i

Contents viii

List of Tables ix

List of Figures xii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Types of Middleboxes . 3

1.2.2 Transport Layer Security . 4

1.2.3 X.509 Certificates . 4

1.2.4 Certificate Transparency . 5

1.2.5 TLS Interception . 6

1.2.6 Problems of SplitTLS . 7

Chapter 2 Literature Review 11

2.1 Middlebox-as-a-Middlebox . 11

2.1.1 Types of Protocols . 11

v

2.1.2 Takeaways . 16

2.2 Middlebox-as-an-Endpoint . 16

2.2.1 Types of Protocols . 16

2.2.2 Takeaways . 21

Chapter 3 MATLS: How to Make TLS middlebox-aware? 22

3.1 Introduction . 22

3.2 Trust and Threat Models . 26

3.3 Auditable Middleboxes . 27

3.3.1 Middlebox Certificates . 27

3.3.2 Middlebox Transparency . 28

3.3.3 Properties of Auditable Middleboxes 28

3.4 Middlebox-aware TLS (MATLS) . 30

3.4.1 Security Goals . 30

3.4.2 MATLS Design Overview . 32

3.4.3 MATLS Handshake Protocol . 38

3.4.4 MATLS Record Protocol . 40

3.5 Security Verification . 41

3.5.1 Protocol Rules . 42

3.5.2 Adversarial Model . 42

3.5.3 Security Claims . 43

3.6 Evaluation . 45

3.6.1 Experiment Settings . 45

3.6.2 HTTPS Page Load Time . 46

3.6.3 Scalability of Three Audit Mechanisms 48

3.6.4 CPU Processing Time . 50

3.7 Discussions . 51

vi

3.7.1 Incremental Deployment . 51

3.7.2 Abbreviated Handshake . 51

3.7.3 Mutual Authentication . 52

3.7.4 TLS 1.3 Compatibility . 52

3.7.5 Mobility Support . 52

3.7.6 P2P Communication . 53

3.8 Conclusion . 53

Chapter 4 TLS-SEED: How to SEcurely Communicate with EDge Computing

Platforms? 55

4.1 Introduction . 55

4.2 Preliminary . 58

4.2.1 Edge Computing . 59

4.2.2 Trusted Execution Environments . 61

4.2.3 TLS on the Third Party . 63

4.3 SEED Overview . 66

4.4 SEED Design . 68

4.4.1 Security Goals . 68

4.4.2 Cross Credential (CC) . 69

4.4.3 TLS-SEED: TLS extensions for SEED 70

4.4.4 Implications of Cross Credential . 75

4.5 Security Analysis . 76

4.5.1 Overview of ACCE . 76

4.5.2 ACCE-SEED Protocol Execution Environment 77

4.5.3 ACCE-SEED Security . 80

4.5.4 Security Result . 82

4.6 Evaluation . 86

vii

4.6.1 SEED Implementation . 86

4.6.2 Experiment Settings . 87

4.6.3 Performance Evaluation . 88

4.7 Discussions . 92

4.7.1 Incremental Deployment Scenario 92

4.7.2 Mobility Support . 92

4.7.3 Dependency on TEEs . 92

4.8 Conclusion . 93

Chapter 5 Conclusion 94

Bibliography 96

Chapter A Cryptographic Definitions 105

A.1 Cryptographic Definitions . 105

A.2 Oracles . 109

국문초록 110

Acknowledgements 113

viii

List of Tables

Table 3.1 Notation used in the description of MATLS 32

Table 3.2 Three audit mechanisms of endpoints in MATLS 35

Table 3.3 Security Lemmas of MATLS . 45

Table 3.4 Networking settings for MATLS evaluation 46

Table 4.1 Notation used in the description of TLS-FRONTEND-SEED and TLS-

BACKEND-SEED. 70

Table 4.2 Networking settings for TLS-SEED evalution 87

ix

List of Figures

Figure 1.1 Middlebox-as-a-Middlebox . 3

Figure 1.2 Middlebox-as-an-Endpoint . 3

Figure 1.3 Problems of the key management in SplitTLS: Custom root certificate 7

Figure 1.4 Problems of the key management in SplitTLS: Private key sharing . 8

Figure 1.5 Problems of the communication in SplitTLS: Broken authentication 9

Figure 1.6 Problems of the communication in SplitTLS: Broken confidentiality 9

Figure 1.7 Problems of the communication in SplitTLS: Broken integrity . . . 10

Figure 2.1 Middlebox-as-a-middlebox: Separate channel approaches 12

Figure 2.2 Middlebox-as-a-middlebox: Out-of-band channel approaches 13

Figure 2.3 Middlebox-as-a-middlebox: In-band channel approaches 15

Figure 2.4 Middlebox-as-an-endpoint: Certificate-based approaches 17

Figure 2.5 Middlebox-as-an-endpoint: Redirection-based approaches 18

Figure 2.6 Middlebox-as-an-endpoint: Key server-based approaches 19

Figure 2.7 Middlebox-as-an-endpoint: Token-based approaches 20

Figure 3.1 Two approaches to establish a TLS session with middleboxes 31

Figure 3.2 The MATLS protocol . 39

Figure 3.3 A Dolev-Yao adv7rsary in Tamarin 42

Figure 3.4 HTTP load time . 47

xi

Figure 3.5 Data transfer time . 48

Figure 3.6 Integrity verification time . 49

Figure 3.7 CPU processing time . 50

Figure 4.1 SEED platform scenario . 66

Figure 4.2 TLS-BACKEND-SEED . 71

Figure 4.3 TLS-FRONTEND-SEED . 71

Figure 4.4 Handshake latency . 89

Figure 4.5 Handshake CPU microbenchmarks 90

Figure 4.6 Fallback latency . 91

xii

Chapter 1

Introduction

1.1 Motivation

Middleboxes are entities located in-between a server and a client to enhance security and

performance in the session. For example, an intrusion detection system (IDS) monitors

application data exchanged and blocks any malicious data. On the other hand, a web cache

stores content on behalf of a server near a client and serves the content on request from a

client.

Such middleboxes are widely deployed and are likely to be used more in the future.

According to a survey from 57 enterprise networks [91], the number of middleboxes is

similar to the number of L3 routers in those networks. Furthermore, enterprises that have

large networks with more than 100k hosts spend one million dollars and above per year

to deploy and to maintain middleboxes. Additionally, network appliance and security-as-a-

service markets are getting bigger. For instance, a network appliance market evolves from

8.45 billion dollars (2018) to 13.97 billion dollars (2023) [65], while a security-as-a-service

market is growing from 6.91 billion dollars (2018) to 16.92 billion dollars (2024) [37]. Also,

a recent mobile technology, i.e., 5G or mobile edge computing, consider deploying edge

1

functions or virtualized network functions (VNFs) near base stations to perform services at

user proximity [47].

Middleboxes, however, should address a challenge due to encryption as HTTPS (HTTP

over TLS) [81] is widely adopted on the web1. Note that TLS makes middleboxes blind

since it achieves end-to-end security; thus, middleboxes cannot read messages exchanged

between a client and a server. Therefore, there have been much research that aims to address

the problems.

Contribution Points. In this paper, we identify security properties for middleboxes and

survey schemes used to enable middleboxes to function on encrypted messages. Specifically,

we classify middleboxes into two categories, middlebox-as-a-middlebox (e.g., IDSes) and

middlebox-as-an-endpoint (e.g., web caches), and conduct an extensive literature review on

related protocols, based on the type of middleboxes respectively. From learnings that we

get from our systemization, we propose MATLS and TLS-SEED, the former of which is

relevant for a protocol with a middlebox-as-a-middlebox while the latter of which is proper to

a middlbox-as-an-endpoint. Note that we conduct not only security analysis but also evaluation

for two protocols.

Roadmap. The paper is organized as follows. We first present the background of middleboxes

and introduce security issues in communicating with middleboxes (§1). We then review proto-

cols that introduce middleboxes into encrypted sessions based on the type of middleboxes (§2).

Next, we propose MATLS (§3) and TLS-SEED (§4). Finally, we present our concluding

remarks (§5).

1.2 Background

In this paper, we define middleboxes as third-party entities that add functionalities to sessions

to support a client or a server for the purpose of security and performance, while accessing to

1As time of writing, more than 72% of HTTP traffic is encrypted in Chrome from 10 countries, according to
Google Transparency Report [32]

2

Figure 1.1: Middlebox-as-a-Middlebox. When a middlebox receives packets from one chan-
nel, a middlebox performs its functionality over packets and forwards them to the other
channel. Examples are web application firewalls and anti-virus software. Note that a server is
always involved in the session.

Figure 1.2: Middlebox-as-an-Endpoint. When a middlebox receives packets from one chan-
nel, a middlebox processes and replies to them. The other channel is used only in a limited
case (e.g., pulling a content from a server). Examples are web caches or content delivery
networks. Note that a server is not always involved in the session.

application data. Middleboxes can be classified into two categories that we call middlebox-

as-a-middlebox (e.g., IDSes) and middlebox-as-an-endpoint (e.g., web caches) respectively.

The current approach to make middleboxes participate in the encrypted session is called TLS

interception (a.k.a., SplitTLS [45]) that is classified into custom root certificate and private

key sharing. Note that much research [22, 25, 103, 73] have reported that it is vulnerable.

1.2.1 Types of Middleboxes

Middlebox-as-a-Middlebox. A middlebox-as-a-middlebox (as in Figure 1.1) is an intermedi-

ary between a client and a server at communication time. It receives packets from one channel,

performs their functionality on packets, and forwards packets to the other channel. Examples

of this type are intrusion detection systems, virus scanners, and application firewalls. Note

that with a middlebox-as-a-middlebox, a server is always involved in the established session.

3

Middlebox-as-an-Endpoint. A middlebox-as-an-endpoint (as in Figure 1.2) is an intermedi-

ary that takes on the role of a server during the session. In other words, they serve requests as

possible and thus a server is not always involved in the established session. A representative

example of this type is an edge server in a content delivery network (CDN) that provides a

client with content on behalf of a server.

Comparison. The remarkable difference between the two types is whether a server partici-

pates in the session. This is important since a server or a client can offer a cryptographic proof

of a middlebox-as-a-middlebox to the other point at the communmication time, while it is

impossible with a middlebox-as-an-endpoint.

1.2.2 Transport Layer Security

The TLS protocol [23, 82], coupled with a Public Key Infrastructure (PKI), is designed to

authenticate endpoints, establishing a secure communication channel between them. The

security goals of TLS are authentication, confidentiality, and integrity: authentication is

confirmation of the identity of the other party, by validating a certificate chain and verifying

a proof-of-possession of the corresponding private key. In practice, the server is always

authenticated from its certificate, while authenticating the client is optional. Confidentiality

is a guarantee that the data sent over the channel is secret to all but the endpoints. Integrity

ensures that any third parties do not modify data on the network.

These security goals are achieved by two components of the TLS protocol suite, called

the handshake and record protocols. The main purpose of the TLS handshake protocol is to

establish a master secret, which will be used for an authenticated encryption and decryption

of the data between two endpoints.

1.2.3 X.509 Certificates

A digital certificate is an attestation that binds a subject (e.g., a domain name) to its public

key. This binding is guaranteed by a Certificate Authority (CA) with its signature in the

4

certificate. The CA also possesses its certificate issued by another CA. This results in a chain

of certificates terminated with a self-signed certificate called a root certificate. A certificate

receiver validates the certificate if the receiver trusts the root certificate in the chain and all the

signatures in the certificates can be verified using the public key of the next certificate in the

chain (up to the root certificate).

CAs also indicate that a domain owner satisfies specific suggested requirements. For

example, a domain validation (DV) certificate is issued when a domain owner has successfully

proved its ownership of the domain. To provide stronger assurance to clients that a certificate

has been adequately issued, CAs can require domain owners to follow a set of stricter criteria

in order to obtain extended validation (EV) certificates.

On the Internet, X.509 [41] is the most widely used format for certificates, which typically

include fields such as the subject, its public key, a serial number, and the certificate’s validity

period. The current version of X.509, version 3, supports extensions that CAs can add for a

variety of purposes; for example, the Server Alternative Name (SAN) field [38] is used to

allow alternative names of the certificate holder.

1.2.4 Certificate Transparency

The PKI trust model has a severe drawback in reality: any CA can issue a certificate for any

domain, potentially exposing users to high risk. There have been security incidents in which

commercial CAs were compromised and issued fraudulent certificates, allowing attackers to

impersonate the actual certificate owner or perform man-in-the-middle attacks [19, 106].

To mitigate the risks from CA compromises, Google introduced the Certificate Trans-

parency (CT) system [52], which aims to provide accountability to a PKI. This is achieved by

archiving every certificate into multiple append-only public log servers so that any entity can

monitor and audit a CAs’ operations. Upon submission of a certificate chain, the log servers

return a signed proof called a signed certificate timestamp (SCT), which can be verified using

the public keys of the log servers. An SCT can be delivered from web servers to the browsers

5

separately or embedded in the web server’s certificate, via a TLS extension or through OCSP.

For example, a browser might display a lower security indicator if the server’s certificate is not

logged on the CT servers. CT logging became mandatory in Chrome for all certificates issued

after April 2018 [72]. A third party (e.g., a CA) can keep track of CT log servers to see if there

is any mis-issuance of certificates, thus providing auditability of certificates and accountability

of CAs’ certificate issuance. For example, TLSMate’s CertSpotter [96] and Facebook’s CT

Monitor [28] monitor each log server and alert a domain owner if a new certificate that binds

to her domain name has been issued.

1.2.5 TLS Interception

Custom Root Certificate. The custom root certificate abuses centralized trust in public key

infrastructure (PKI). A middlebox generates a private key and the corresponding certificate,

which is installed into a trusted certificate store of a client. Whenever a client initiates a TLS

handshake with an intended target name (say, www.alice.com), a middlebox generates a

forged certificate signed with the custom root certificate and sends it to a client. Since a client

trusts the custom root certificate, a middlebox succeeds to impersonate a target server and a

client finally believes that she establishes a TLS session with a server (not a middlebox). This

method is widely used in virus scanners [22] and network appliances [25, 103].

Private Key Sharing. The private key sharing requires a server to share his private key and

certificate with a middlebox. A middlebox delivers a server’s certificate when a client begins

with a TLS handshake toward a server. Since the certificate sent by a middlebox is a genuine

certificate of a server, a client cannot but believe that she is communicating with a server (not a

middlebox) and finally establishes a TLS session with a middlebox. Content delivery networks

(CDNs) [16] or cloud-based middlebox services such as security-as-a-service generally require

a user to upload her private key and certificate.

6

Figure 1.3: Problems of Key Management in SplitTLS: Custom Root Certificate. A pri-
vate key that corresponds to a custom root certificate should be well protected. This is because
if a private key that corresponds to a custom root certificate is leaked by an adversary, an
adversary can impersonate arbitrary domains to a limited number of clients that trust the
custom root certificate.

1.2.6 Problems of SplitTLS

We summarize problems of SplitTLS in terms of key management and communication below.

Key Management. Private keys in both custom root certificate and private key sharing should

be securely managed. This is because if an adversary learns any of private keys, the situation

would be catastrophic.

As shown in Figure 1.3, an adversary can masquerade arbitrary domains with a private

key that corresponds to a custom root certificate if it is leaked and deceives a limited number

of clients that trust the custom root certificate. Note that in one experiment [22], all the eight

middleboxes do not remove their custom root certificates from trusted certificate stores at their

uninstallation. Furthermore, it is also reported that the passphrase to protect private keys is

static in middleboxes. This means that once an adversary can know the secret, he can learn all

the private keys from the same products and can conduct a phishing attack to all the clients

that trust those keys.

On the other hand, with a shared private key, an adversary can impersonate a limited num-

ber of domains listed in a shared certificate (i.e., a CommonName and SubjectAlternativeNames)

7

Figure 1.4: Problems of Key Management in SplitTLS: Private Key Sharing. Typically,
the private key sharing is used in a large infrastructure such as content delivery networks.
Therefore, once a private key is uploaded from a server to an infrastructure, it is distributed
over the infrastructure, increasing the attack surface.

and cheats arbitrary clients. Note that an infrastructure that utilizes private key sharing is

typically large (i.e., many machines included) like CDNs. Therefore, once a private key is

shared, it is distributed over the large infrastructure with increasing attack surface of it, as

demonstrated in Figure 1.4.

Communication. Although SplitTLS complies with the current TLS practice, several studies

have reported that some middleboxes fail to correctly validate certificates, degrade to weaker

ciphersuites, or insert malicious scripts [22, 25, 101, 18]. This means that fundamental security

properties (i.e., authentication, confidentiality, and integrity) between two endpoints are broken.

The client is forced to trust the behavior of middleboxes, since the security of the session

is highly dependent on whether the middleboxes correctly operate the TLS protocol. We

summarize how SplitTLS breaks the security goals of TLS.

Authentication: A client cannot authenticate the intended server, as the middlebox replaces

the server’s certificate with a certificate forged by the middlebox. Even worse, recent studies

8

Figure 1.5: Problems of Communication in SplitTLS: Broken Authentication Authenti-
cation is broken in SplitTLS, as there are some middleboxes that do not validate certificates.

Figure 1.6: Problems of Communication in SplitTLS: Broken Confidentiality Confiden-
tiality is broken in SplitTLS, since

showed that some middleboxes do not validate the certificate of the intended server. For

example, PrivDog [8] was known to accept every certificate without checking its validity, and

some anti-virus software always generates valid certificates even when it received invalid

certificates from the intended servers (or another middlebox) [22, 18].

Confidentiality: Because a middlebox splits the original session into two segments, the

client negotiates the key for the segment with the middlebox, not the intended server. Thus

the middlebox can read or modify all traffic between the client and the server. Further, the

client has no idea of whether the data has been encrypted (with a strong ciphersuite) after

it passes through the middlebox. For example, when a client sends an HTTPS request to a

server by using Nokia’s Xpress Browser, it forcibly sends all messages to the Nokia’s forward

proxy. Then, this proxy delivers the messages on behalf of the client to the server. However,

the Xpress Browser does not notify the clients that their information can be read or modified

9

Figure 1.7: Problems of Communication in SplitTLS: Broken Integrity

by the proxy [66, 31].

Integrity: SplitTLS cannot guarantee the integrity as a client cannot detect any modification

by a middlebox on her messages with the intended server. For example, Lenovo laptops

performed a man-in-the-middle attack to inject sponsored links on web pages (delivered over

TLS) using Superfish [90], but this injection behavior was not noticeable by the ordinary

client.

The above problems take place mainly because it is difficult for a client to detect which

middleboxes meddle in the session and what they do to the traffic.

10

Chapter 2

Literature Review

In this chapter, we survey 23 protocols from 16 research papers and 7 whitepapers. There are

14 protocols for a middlebox-as-a-middlebox out of the 23 protocols, while 9 protocols are

relevant to a middlebox-as-an-endpoint. For each type of a middlebox, we categorize protocols

into several classes and summarize the lessons from reviewing the protocols, respectively.

Unless otherwise stated, we describe the protocols with the scenario of a client that wants

to make a middlebox participate in the session for brevity. Note that a client and a server

is interchangeable in our description below. We call a finally established secure channel

including all the entities as a session that consists of segments between two entities.

2.1 Middlebox-as-a-Middlebox

2.1.1 Types of Protocols

The 14 protocols for a middlebox-as-a-middlebox can be classified into three types. They are

1) separate channel approaches [92, 51, 78], 2) out-of-band channel approaches [76, 107, 35,

69, 71, 54, 57], and 3) in-band channel approaches [63, 70, 30, 100].

Separate channel approaches

In separate channel approaches, a middlebox performs its functionality on the messages from

a client via a separate channel that is secured with a dedicated security scheme such as a

11

Figure 2.1: Separate Channel Approaches The protocols utilize a separate channel toward a
middlebox while establishing a TLS session between endpoints. A separate channel utilizes
a dedicated security schemes such as searchable encryption to allow least privilege to a
middlebox.

searchable encryption. Figure 2.1 demonstrates the high-level concept of these approaches.

The protocols work as follows. As shown in Figure 2.1, a client establishes two channels

– one with a server and the other with a middlebox. A channel between endpoints is a

standard TLS channel that is established according to the standard TLS protocol, while a

channel between a client and a middlebox is a dedicated encryption channel. For example,

BlindBox [92] leverages a searchable encryption, Embark [51] uses an order-preserving

encryption, and Safebricks [78] utilizes the IPSec [48] with an SGX-based middlebox that is

written in Rust [49] for the latter channel. Whenever a client sends/receives a message to/from

a server, she first asks a middlebox to inspect a message via a dedicated encryption channel,

and she finally sends/receives a message to/from a server via a TLS channel after getting a

processed message from a middlebox.

These approaches have the following properties.

First, in some schemes, the privilege of a middlebox is restricted based on dedicated

encryption schemes; thus, a middlebox cannot perform excessive functionality (e.g., , modify

messages without permission). For example, BlindBox [92] can only perform the keyword

matching over a searchable encrypted message and Embark [51] can only conduct IP filtering

by leveraging an order-preserving encryption.

Second, dedicated encryption schemes, however, mean that a middlebox cannot provide

12

Figure 2.2: Out-of-band Channel Approaches After a TLS session is established between
endpoints, middleboxes participate in the session by receiving the encryption key from either
of endpoints.

a particular functionality until an encryption scheme for it is developed. In other words, a

dedicated encryption scheme limits functionality of a middlebox.

Third, these approaches also introduce additional round-trips to a middlebox, which might

incur significant networking latency. Note that a client always forwards all the messages to a

middlebox before she sends them to or after she receives them from a server.

Fourth, to use these approaches, a new dedicated middlebox should be deployed. For

example, a middlebox should support dedicated encryption schemes in BlindBox [92] and Em-

bark [51], while Safebricks [78] require a middlebox implemented with the Rust programming

language.

Out-of-band channel approaches

With out-of-band channel approaches shown in Figure 2.2, a middlebox participates in the

TLS session by receiving an encryption key from a client via an out-of-band channel.

A naïve approach [76] in this category works as follows. A client establishes a TLS

channel with a server and then sends a session key to a middlebox via an out-of-band channel.

Then, a middlebox decrypts messages encrypted with a session key, performs its functionality,

re-encrypts processed messages, and forwards them to the other side.

We highlight four important aspects regarding a naïve approach.

First, this approach does not require any change on the protocol. What is required is

13

only a out-of-band channel between a client and a middlebox. Therefore, this approach is

immediately deployable and does not incur any significant overheads in terms of computation

and networking.

Second, without any measure, once a middlebox receives an encryption key, it can read all

the encrypted messages and perform any functionality on them. In other words, there is no

restriction to a middlebox on its behavior. Therefore, a client only sends an encryption key

after the key is expired in TLS-RaR [107]. A middlebox just keeps encrypted messages and

inspects the messages after it receives the expired key. Although a middlebox cannot look

into messages on-the-fly, a client does not need to concern about invalid modifications by a

middlebox. SGX-Box [35] utilizes Intel SGX, one of the trusted execution environments, to

guarantee the trustworthiness of a middlebox.

Third, a middlebox should support a ciphersuite that is agreed between a client and

a server. Otherwise, a middlebox still cannot decrypt encrypted messages. Thus, the TLS

KeyShare extension [71] requires a middlebox to advertise its capable ciphersuites or its policy

on ciphersuites to both endpoints. In this way, both endpoints can negotiate a ciphersuite

supported by a middlebox.

Fourth, this approach can undermine confidentiality due to the reused keystream and traffic

analysis. To perform functionality, a middlebox should use the same encryption key with the

same initialization vector that should not be reused. Therefore, an adversary can exploit the

reused keystream to conduct cryptanalysis [71] and can also know that a middlebox modifies

a message by comparing an input message with an output message of a middlebox [69]. To

address the problem, a client in mbTLS [69] generates different segment keys for all the

segments and distributes keys to the corresponding middleboxes (two segment keys per one

middlebox).

14

Figure 2.3: In-band Channel Approaches Middleboxes intervene in the session by actively
participating in the negotiation with endpoints and other middleboxes.

In-band channel approaches

In in-band channel approaches, a middlebox actively contribute to establishing keys (by

generating key materials) and finally intervenes into the session. The concept is demonstrated

in Figure 2.3.

The protocols are executed as follows. A client initiates a TLS extension with a server and

middleboxes. Each entitiy has its role and exchanges key materials to establish keys according

to the protocol. Finally, middleboxes have their own keys such as segment encryption keys or

message authentication code (MAC) keys, and exchange messages utilizing the keys.

In the TLS ProxyInfo extension [63], for instance, endpoints and all the middleboxes

exchange their key materials with adjacent entities, and establishes an encryption key per

segment. mcTLS [70], EFGH [30], and TLMSP [100] perform the Diffie-Hellman (DH) key

exchange between an endpoint and all the middleboxes.

We find three important features of in-band channel approaches.

First, a middlebox explicitly authenticates itself to entities to participate in the key genera-

tion process. All the studies in this type assumes that a middlebox has its own certificate and a

client authenticate all or parts of the middleboxes in the session.

Second, a server can perform cryptographic operations to support a client to understand a

middlebox. For example, a server and a client agree on a list of middleboxes authorized to

be involved in the session in mcTLS. Also, a server and a client contain an endpoint MAC

in the record layer to show whether a middlebox modifies a message or not. Furthermore,

TLMSP introduces an audit trail that logs a series of hash values of a message passing through

15

middleboxes.

Third, since a middlebox actively participates in the key establishment, a middlebox

should generate and verify signatures, which incurs computational overheads. For example, a

middlebox should generate a signature over a key material and should verify a signature from

other entities in mcTLS, which incurs additional computation overheads compared with other

types of approaches.

2.1.2 Takeaways

We have learned the following lessons from reviewing the 14 protocols for a middlebox-as-a-

middlebox.

First, we should consider the least privilege of a middlebox with a protocol. Many past

studies including mcTLS [70], BlindBox [92], Embark [51], Safebricks [78] provide their

own method to limit a middlebox not to perform functionality with excessive permission.

Second, a server can help a client to understand a middlebox. As seen in in-band ap-

proaches, a server can generate an endpoint MAC or a signature of a content; thus, a client

can understand how a message passes through middleboxes.

2.2 Middlebox-as-an-Endpoint

2.2.1 Types of Protocols

The 9 protocols can be categorized into 4 types, which are 1) certificate-based approaches [56],

2) redirect-based approaches [95, 26, 53], 3) key server-based approaches [98, 13, 12], and

4) token-based approaches [9]

Certificate-based approaches

As shown in Figure 2.4, there are two proposals of certificate-based approaches called the

DANE-based approach and the Name Constraint Certificate approach, both of which are

proposed by J. Liang et al [56]. Those utilize existing infrastructures such as the DNS-based

16

Figure 2.4: Certificate-based Approaches This approach leverages the existing infrastructure
such as PKI or DANE to authenticate and authorize middleboxes.

Authentication of Named Entities (DANE) [36] and the Public Key Infrastructure [38]. In

the DANE-based approach, a server adds his certificate as well as a middlebox’s certifi-

cate to the TLSA resource records in his zone file. On the other hand, a server generates

a key pair including a name constraint certificate and delegates them to a middlebox in

the Name Constraint Certificate approach. The middlebox that receives a name constraint

certificate can use it to authenticate herself as a valid delegator from a server.

We state two important points below.

First, these approaches are deployable in that both of them leverage the existing infrastruc-

tures. There is no need to upgrade a server to deploy these schemes, while minimal changes

are required for a client (e.g., parsing TLSA resource records or validating name constraint

certificates).

Second, these approaches, however, incur additional efforts to a server since it requires a

server to manage keys. For instance, a server should configure his TLSA resource records and

should manage keys as an intermediate certificate authority.

Redirection-based approaches

In the redirection-based approaches, a client first connects to a server and is redirected to

a middlebox; then, the final session is established between a client and a middlebox, as in

Figure 2.5.

17

Figure 2.5: Redirection-based Approaches A middlebox is forwarded from a server; there-
fore, a client can explicitly authenticate a middlebox that is authorized by a server by a
redirection.

A naïve approach for this type of protocols is the HTTP 302 Redirection protocol [95].

Initially, a client executes a TLS handshake with a server and sends an HTTP request to

a server. A server responds with an HTTP 302 status code that performs URL redirection

toward a middlebox. Then, a client connects to a middlebox with executing a TLS hand-

shake and sending an HTTP request. Finally, a middlebox repsonds to the request. Since

the HTTP 302 Redirection protocol requires two TLS handshake, meaning that the elapsed

time required to establish a session with a middlebox is doubled compared with the current

practice. To reduce such latency, BlindCache [26] uploads content encrypted with a previously

generated encryption key on a middlebox in advance and redirects a client toward a middlebox

via HTTP (not HTTPS) while giving an encryption key by leveraging the HTTP out-of-band

field [80]. A client gets not only an URL of a middlebox, but also the signatures of contents

from a server in Stickler [53]; thus, a client can verify the integrity of content on a named

middlebox.

We can get two learnings from this type of approaches.

First, a server can provide a client with a necessary information about a middlebox. A

server presents a client with a name of a middlebox by a URL, a client can authenticate a

middlebox with a middlebox’s certificate. Furthermore, as described above, Stickler offers

content signatures to a client to guarantee the integrity of the content. This is possible since a

client directly connects to a server at least once.

Second, these approaches, however, require a round-trip to a server, which incurs sig-

18

Figure 2.6: Key Server-based Approaches A server performs a private key operation on
request from a middlebox; thus, a server does not need to delegate a private key to a middlebox.

nificant networking latency. In general, a middlebox-as-an-endpoint is deployed to reduce

networking latency by locating a middlebox near a client. Unfortunately, these approaches

reduce the merits of a middlebox-as-an-endpoint.

Key server-based approaches

In key server-based approaches, a server deploys a key server that operates a private key

operation such as a signature generation or an asymmetric decryption on request from a

middlebox, which are described in Figure 2.6.

The protocols are executed as follows. A client initiates a TLS handshake with a middlebox.

During a handshake, a middlebox requests a private key operation to a key server to generate

ServerKeyExchange in TLS 1.2 or CertificateVerify in TLS 1.3, which includes a

signature of a server. The session between a middlebox and a key server is a TLS session that

is established with mutual authentication to provide a private key operation only to an allowed

middlebox. The TLS session is finally established between a client and a middlebox, whlie a

client believes that she is communicating with a server.

Note that this approach is currently serviced by Cloudflare as Keyless− SSL [98], which

is standardized as LURK [20, 21]. Keyless− SSL is also formally treated and is improved

as 3(S)ACCE− K− SSL [13]. Instead of a private key operation, a middlebox requests a

session key to a server while providing a server with an attestation report in SPX.

We find the following three features of these approaches.

First, no private key sharing is needed; thus, a middlebox is only required to manage its

19

Figure 2.7: Token-based Approaches A server previously issues an authorization token to a
middlebox. Whenever a middlebox receives a request from a client, it uses the token to prove
its authority granted by a server.

own key that is used to authenticate itself to a key server. The number of secrets is dramatically

reduced compared with the current CDN practice; thus, a server does not need to concern

about his private key being leaked on a middlebox.

Second, the protocol is compatible with a current client; thus, a client does not need to

modify his software. Only a server and a middlebox should upgrade their software to support

the new protocol.

Third, as redirection-based approaches do, these approaches also adds a round-trip to a

(key) server, which incurs significant networking delay.

Token-based approaches

In the token-based approaches, a middlebox utilizes a token issued by a server in advance to

authenticate itself as a server or a valid delegator, as shown in Figure 2.7.

The example of these approaches is DelegatedCredential that is currently being evaluated

by Cloudflare [34], Facebook [99], and Mozila [42] and is executed as follows.

A server generates a short-term keypair and signs it with a server’s long-term private key.

The resultant signature is called a delegated credential. Then, a server delivers a short-term

keypair and a delegated credential to a middlebox with his certificate. Whenever a client

initiates a TLS handshake, a middlebox responds with a server’s certificate as well as a

delegated credential. A client finally confirms that a middlebox is authorized by a server.

20

There are three points that we note regarding these approaches.

First, unlike previous two approaches – redirection-based and key server-based approaches

– these approaches do not need an additional round-trip to a server. A token can be generated

and delivered to a middlebox in advance; thus, the token issuing procedure is independent

of a communication. Therefore, the networking delay is nearly similar to the current CDN

practice.

Second, to support the new protocol, all the entities should upgrade their software. A

server and a middlebox should deploy a token generating server/client, while a client and a

middlebox should upgrade the TLS library to support a TLS extension that utilizes a token.

2.2.2 Takeaways

We describe what lessons we have learned from our literature review on protocols for a

middlebox-as-an-endpoint.

First, the number of secrets should be minimal. If a middlebox should have many private

keys to perform its functionality, a middlebox can be a target of an adversary. Note that a

middlebox in KeylessSSL or HTTP 302 Redirection only has its private key (not others). On

the other hand, DelegatedCredential

Second, the key management overhead should not be placed on a server. A server is

required to manage keys (e.g., key revocation management) in Name Constraint Certificate.

It is known that the key management requires heavy overheads; thus, it is undesirable to place

the burden on a server.

Third, additional round-trips to a server should be avoided. Many protocols show that

additional round-trips significantly incurs networking latency. Considering a middlebox-as-an-

endpoint is deployed to enhance the performance, additional round-trips should be removed.

21

Chapter 3

MATLS: How to Make TLS
middlebox-aware?

3.1 Introduction

Middleboxes have been widely used for various in-network functionalities and have become

indispensable. They are usually deployed by network operators, administrators, or users for

various benefits in terms of performance (e.g., proxies, DNS interception boxes, transcoders),

security enhancement (e.g., firewalls, anti-virus software), or content filtering (e.g., parental

controls). Such deployments have become easier and more flexible with the advent of cloud

computing represented by ‘everything-as-a-service,’ including outsourced middleboxes as a

service in the cloud [91].

However, the practice of using middleboxes is not compatible with Transport Layer

Security (TLS) [23, 82] — the de-facto standard for securing end-to-end connections. Since

TLS is initially designed to provide end-to-end authentication and confidential communication,

middleboxes are not supposed to read or modify any TLS traffic. Meanwhile, as HTTPS

(HTTP over TLS) [81] becomes increasingly common (more than 50% of total HTTP traffic is

now encrypted by TLS [29, 68]), middleboxes are at risk of becoming useless unless a solution

is found. To address this issue, several approaches have been made to retain the function of

middleboxes over HTTPS.

22

A well-known method is SplitTLS [45], in which a TLS session between two endpoints

is split into two separate segments1 so that a middlebox can decrypt, encrypt, and forward

the traffic as a man-in-the-middle. While SplitTLS allows us to use middleboxes with TLS, it

poses security and privacy risks on both the client and server sides. On the one hand, users are

often required to install custom root certificates, which allows a middlebox to impersonate

any server in order to read and modify all the HTTPS traffic. On the other hand, HTTPS

websites often share their private keys with some middlebox service providers (e.g., content

delivery networks (CDNs)), so that middleboxes can provide their content to clients with better

performance. These imply that a compromised middlebox may be used to perform critical

attacks, either by abusing custom root certificates to impersonate someone else or by using a

shared private key to impersonate a particular server.

Such vulnerabilities of middleboxes have been reported in several studies [22, 25, 103,

73, 101]; for instance, some middleboxes accept nearly all certificates in spite of certificate

validation failures, which gives a chance for another compromised/malicious middlebox to

meddle in the TLS session [22, 25, 103]. Similarly, a middlebox that splits a TLS session may

support only weak ciphersuites, which are vulnerable to known attacks such as the Logjam

attack [3] or the FREAK attack [10]. Even worse, it has been reported that middleboxes are

being used to inject malicious code [101, 73, 18]; for example, Giorgos et al. [101] found that

5.15% of proxies inject malicious or unwanted content into web pages.

Nevertheless, as middleboxes provide crucial benefits to users, content providers, and

network operators, there has been a long thread of studies aiming to accommodate for mid-

dleboxes in secure networking between two endpoints [92, 51, 78, 35, 60, 71, 70]. These

studies can be largely classified into three main categories: encryption-based, trusted execution

environment (TEE)-based, and TLS extension-based. First, BlindBox [92] and Embark [51]

proposed to use special encryption schemes such as order-preserving encryption to allow

1In this paper, an end-to-end channel between a client and a server is called a TLS (or MATLS) session, while
a channel between two points at which TLS messages are encrypted and decrypted with the same key, respectively,
is called a TLS (or MATLS) segment.

23

middleboxes to perform their functionality over encrypted packets. Second, SafeBricks [78]

and SGX-Box [35] leveraged TEEs such as Intel SGX to make middleboxes trustworthy.

Third, several studies sought to extend the TLS protocol [70, 60, 71, 63, 69] in order to let

middleboxes intervene during the TLS handshake and perform their functionalities within the

session.

However, these approaches pose several technical challenges and limitations. The encryption-

based approaches depend greatly on their encryption mechanisms; as a result, their functionali-

ties are limited to pattern-matching or range-filtering. The proposals leveraging TEEs are only

applicable to the middleboxes with specific hardware that provides secure enclaves. What is

worse, neither of them are backward-compatible (i.e., current middleboxes have to be replaced

to adopt such approaches). The TLS extension approaches are most feasible in the sense

that TLS software can be extended to support the backward compatibility. However, these

approaches leave three issues that have not been comprehensively solved.

First, the proposal of using explicit proxies in IETF [60] introduces a proxy certificate to

indicate that the certificate holder is a middlebox. However, the client can only authenticate

the next middlebox, not the server or other middleboxes intervening in the session. Thus,

there is still a risk of an unknown middlebox meddling in the session. Second, mcTLS [70],

TLMSP2, and TLS Keyshare extension3 [71] use the same symmetric key (and hence the

same ciphersuite) across all the split TLS segments between the two endpoints. As a result,

middleboxes that do not support the specific ciphersuite chosen will not be able to process the

TLS traffic. Furthermore, the middleboxes share the same keystream, which may undermine

confidentiality [63]. Third, none of these proposals except TLMSP allow the client to know

who has sent TLS traffic as well as who has modified it. For example, in mcTLS [70], the

2Transport Layer Middlebox Security Protocol (https://portal.etsi.org/webapp/WorkProgram/
Report_WorkItem.asp?WKI_ID=52930). The protocol is being discussed in ETSI, and the draft of the protocol
specification is currently unavailable. We refer to the document in the web archive:
https://docplayer.net/88122390-Announcement-of-middlebox-security-protocol-msp-draft-parts.html

3Note that this is different from the keyshare extension used to negotiate a Diffie-Hellman shared key in TLS
1.3.

24

https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=52930
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=52930

client cannot check whether the TLS traffic he received originated from a valid endpoint (e.g.,

a cache or an endpoint) if there is a middlebox that modified the message during transit.

In this paper, we propose an extension to TLS, which ensures middleboxes are visible and

auditable. The starting point is to enable a client to authenticate all the middleboxes. We first

define middlebox certificates, which are signed by certificate authorities (CAs), and used to

encrypt the channel for each TLS segment (e.g., between a client and a middlebox, between

middleboxes, and between a middlebox and a server). The use of middlebox certificates

eliminates the insecure practice of users installing custom root certificates or servers sharing

their private keys with third parties (like CDNs). We also introduce them with middlebox

transparency log servers to make middleboxes auditable. Along with auditable middleboxes,

we design the middlebox-aware TLS (MATLS) protocol, a TLS extension auditing the security

behaviors of middleboxes. The MATLS protocol is designed to satisfy the following security

goals (to be detailed later): server authentication, middlebox authentication, segment secrecy,

individual secrecy, data source authentication, modification accountability, and path integrity.

To satisfy these goals, a client authenticates all participants of its MATLS session. That is,

the client verifies the certificates of all the participating middleboxes to prevent any arbitrary

middleboxes from intervening in the session, which we will refer to as explicit authentication.

Moreover, the two endpoints confirm the negotiated security association of every segment to

ensure its confidentiality and integrity, which is called security parameter verification. Note

that a security association consists of a TLS version, a ciphersuite, and a confirmation of

encryption key establishment. Lastly, MATLS performs valid modification checks, which

allows the endpoints of a MATLS session to verify whether the received messages have been

modified only by authorized middleboxes. This way, MATLS provides auditability of all

participants in the session.

We also evaluate the security and performance of MATLS. We formally prove the security

of MATLS with Tamarin [64], a state-of-the-art symbolic verification tool. We also implement

MATLS by leveraging OpenSSL to compare its performance against prior proposals.

25

The remainder of the chapter is organized as follows. First, we explain our trust and

threat model (§3.2). Then, we describe how to make middleboxes auditable (§3.3), and design

the MATLS protocol (§3.4). We verify our security model (§3.5), evaluate the performance

overhead of MATLS (§3.6) and present our concluding remarks (§3.8).

3.2 Trust and Threat Models

Entities. Before introducing our threat model, we describe five entities in the networking

architecture.

(1) Client (C): A client refers to a machine or a piece of software (e.g., web browsers),

used by a user, that communicates with middleboxes. We assume the client correctly performs

protocols and is not compromised.

(2) Server (S): A server refers to a machine or a piece of software, operated by a content

provider, that services content based on a client’s request. We assume that the server to which

a client wishes to connect is not malicious or compromised. The client and the server are

collectively referred to as endpoints.

(3) Middlebox (MB): A middlebox is a machine or a piece of software, made by a

middlebox service provider. A middlebox is deployed by a network operator, a content

provider, or a user and is located between the client and the server. The endpoints may not

be aware of the middleboxes, their functions, or their states. If the middleboxes are mis-

configured or incorrectly implemented, they may accept invalid certificates, use deprecated

ciphersuites, or attempt to inject unwanted or malicious content [101, 73].

(4) Certificate Authority (CA): An organization that issues and revokes certificates. A

CA issues a certificate to a requester after a validation process. In our model, A CA can be

compromised; thus, fraudulent certificates can be issued to an adversary who can impersonate

the server.

(5) Middlebox Transparency (MT): A system (similar to CT [52]) that logs certificates,

which can be publicly monitored and audited by any interested parties. Any trusted CT

26

operator, such as Google, can operate an MT system. The only difference from CT is that the

MT system targets middlebox certificates, which will be detailed in §3.3. Alternatively, the

CT system can be assumed to accommodate middlebox certificates as well.

Adversary capabilities. We accept the Dolev-Yao model [24] in which an active adversary

can fully control the network; that is, the network is untrusted. The adversary can not only

capture messages on-the-fly, but also modify, drop, reorder, or inject messages. Specifically,

he can manipulate middleboxes (e.g., TLS-intercepting WiFi access points), which then can

capture packets, perform crypt-analysis, or patch software to inject malicious scripts. We do

not consider other attacks such as side-channel attacks or denial-of-service attacks. .

3.3 Auditable Middleboxes

In this section, we describe an architecture to make middleboxes visible to the endpoints of

TLS sessions. To this end, we define the notion of an auditable middlebox that has its own

middlebox certificate logged in middlebox transparency (MT) servers. Middlebox certificates

are written based on the X.509 format, and then signed by CAs, which may require middlebox

service providers to follow a set of established criteria for certificate issuance. Like TLS

certificates, middlebox certificates could also be mis-issued, mis-configured, or exploited. To

mitigate those attacks, we also introduce MT log servers where any middlebox certificates can

be publicly logged so that interested parties can monitor and detect unexpected behaviors.

3.3.1 Middlebox Certificates

The primary purpose of middlebox certificates is to help users authenticate middleboxes

by providing the information about behaviors of the middlebox; for example, the role of

the middleboxes (e.g., firewall) or permissions (e.g., read or write) can be included. This

information can be added into the format of X.509 certificate without any modification to the

existing infrastructure. Below, we itemize the required information for a middlebox certificate

along with the names of the fields.

27

• Name(s) of the Middlebox Service Provider indicates the name(s) of the middlebox

service provider, which can be specified at the CommonName field.

• Subject (Middlebox) Public Key Info carries the public key and the cryptographic

algorithm (e.g., ECC) used to generate the key, which can be specified at the Subject

Public Key Info field.

• Middlebox Information Access contains additional information that can help a user

trust the middlebox. To this end, we define an extension, MiddleboxInfoAccess

where its ASN.1 syntax is defined as follows.

MiddleboxInfoAccess :: =
SEQUENCE SIZE (1..MAX) OF Middlebox_Description

MiddleboxDescription::= SEQUENCE {
MiddleboxInfoType OBJECT IDENTIFIER ,
MiddleboxInfo GeneralName}

For example, permission can be one of the MiddleboxInfoType fields, used to indicate

the read or write permission required by the middlebox for TLS traffic. Similarly, the

TypeofService and URL fields can provide additional information about the middlebox

as a form of MiddleboxDescription.

3.3.2 Middlebox Transparency

We introduce an MT log server that publicly records middlebox certificates. The operation of

MT is similar to that of CT [52]. It encourages middlebox service providers or CAs to submit

middlebox certificates to the MT log server. Further, once a middlebox certificate is accepted

at the MT log server, the log server returns a Signed Certificate Timestamp (SCT). A client

can check its membership by verifying the SCT with the public key of the log server.

3.3.3 Properties of Auditable Middleboxes

We call a middlebox that has a middlebox certificate logged in an MT log server an auditable

middlebox. It provides the following benefits regarding the trustworthiness of middleboxes:

28

First, middleboxes now have their own key pairs and can be authenticated from the

endpoints by presenting their valid certificate. Thus, middleboxes now no longer require (1)

content providers to share their private keys or (2) users to install their custom root certificate.

Second, clients can be assured of the names and properties of middleboxes or middlebox

service providers. This will hold middlebox service providers accountable.Further, with

the help of maTLS, which will be detailed in §3.4, clients can detect if a middlebox has

modified traffic without any authorization. This can be done by checking the Permission item

in the Middlebox_InfoAccess field of the middlebox certificate, which would encourage

middleboxes to have least privileges. For example, anti-virus software can be issued with a

middlebox certificate with only read permission to assure users that it will not modify any

traffic.

Third, middlebox certificates may require some of the essential X.509 extensions such

as Permission field to be set to critical [41], which explicitly indicates that clients must

refuse the connection if they cannot interpret the extension.

Fourth, the MT system provides a global set of auditable middleboxes; any interested

parties, such as monitors, auditors, and clients, can check any mis-issued, mis-configured, or

fraudulent certificates.

Fifth, when a middlebox certificate’s corresponding private key is no longer safe due to

security breaches, the middlebox certificate can be revoked, and the revocation status can

be disseminated through existing revocation mechanisms such as CRL [38] or OCSP [67].

Thus, clients can be protected from middleboxes with security risks by leveraging the existing

revocation mechanisms.

Given that the PKI has been suffered from many security issues regarding certificate

management, one might be concerned that introducing additional infrastructure (i.e., MT

system) could exacerbate the current situation. However, we believe that the middlebox

certificate by itself does not introduce new management problems as it can be easily integrated

into the existing CT architecture. Rather, the use of middlebox certificates can mitigate the

29

current insecure practices of middleboxes splitting TLS connections such as installing custom

root certificates or sharing private keys.

3.4 Middlebox-aware TLS (MATLS)

In this section, we describe the MATLS protocol, which is designed to allow middleboxes to

participate in a TLS session. As we have middleboxes equipped with certificates, we extend

the security goals of TLS to the seven objectives below, divided into three categories. For

the sake of exposition, we explain MATLS based on TLS 1.2 with ephemeral Diffie-Hellman

(DHE) key exchange in the server-only authentication mode.

3.4.1 Security Goals

Authentication: . Similar to the authentication process of TLS certificates, clients should

be able to receive and check the validity of the certificate of the server that the clients

intended to connect. This should hold even when there are middleboxes splitting the TLS

connection between them. Thus, we extend the notion of the authentication to cover both the

intended server and middleboxes, and we call this property of the MATLS protocol (1) Server

Authentication. Clients should also be able to authenticate the middleboxes by verifying the

middlebox certificates, which we call (2) Middlebox Authentication.

Confidentiality: . Browsers warn a user if her session is negotiated with a low TLS version

or a weak ciphersuite. Thus, each MATLS segment should be encrypted with a sufficiently

high version of TLS and a strong ciphersuite; we apply this requirement to each MATLS

segments, which is called (3) Segment Secrecy. Further, each MATLS segment should have

its own security association (e.g., a unique session key) to prevent the same keystream from

being reused across the overall MATLS session. This goal is called (4) Individual Secrecy.

Integrity:. The notion of integrity can be extended such that only authorized entities can

generate or modify messages depending on their permissions. To this end, we define (5) Data

30

(a) Top-down approach: The initial negotiation is performed between two endpoints. Then the
key materials are exchanged with middleboxes.

(b) Bottom-up approach: The two participants of each MATLS segment negotiate security
parameters independently, and then the MATLS session is established by connecting the MATLS
segments.

Figure 3.1: Two approaches to establish a TLS session with middleboxes. We adopt the
bottom-up approach since it efficiently supports incremental deployment.

Source Authentication, which means that a client should be able to confirm that a received

message has originated from a valid endpoint such as a web server or cache proxy. Moreover, a

client should be able to figure out which middleboxes have made each modification to the mes-

sage, ensuring accountability. We call this (6) Modification Accountability. Moreover, not only

the integrity of the messages should be preserved, but also the order of the middleboxes; the

network attacker could also capture and redirect packets, or bypass some middleboxes. There-

fore an endpoint should be able to confirm that all messages passed through the authorized

middleboxes in the established order. We call this property (7) Path Integrity.

31

Notation Meaning
C Client
S Server
MBi ith Middlebox in the session (1 ≤ i ≤ n− 1)

ei ith Entity in the session where (e0 = C, en = S)

segmenti,j The MATLS segment between ei and ej
mi Message sent from ei
a||b a concatenated with b

PRF (a, b, c)
Pseudorandom function in [23] to derive keys
(a : secret, b : label, c : seed)

Sign(k,m) Signature function on m with a key k

H(m) Hash function on m

Hmac(k,m) Keyed hash-based MAC function with a key k on m

Ae(k,m) Authenticated encryption on m with a key k

(ski, pki) Entity ei’s (secret key, public key) pair
Certi Entity ei’s certificate
IDi Identity of ei. IDi = H(pki)

g Generator of a DH group
(a, ga) Ephemeral DH key pair

pi,j

Security parameters that includes the negotiated version,
the negotiated ciphersuite, the hashed master secret, and the
transcript between ei and ej

aki,j
Accountability key of ei established with ej (We simply
write aki when j is fixed in the context)

HMACi The result of Hmac(k,m) by ei
MLi Modification log generated by ei

Table 3.1: Notation used in the description of MATLS

3.4.2 MATLS Design Overview

Session Establishment Approaches: . First of all, we explain how a client establishes

a MATLS session with the server through multiple middleboxes. There are two possible

approaches to establish a MATLS session and its segments, as shown in Figure 3.1. In the

top-down approach, the client first establishes a TLS session directly with the server, and

the server determines the security parameters of the session. After that, either or both of

the endpoints should pass the segment keys to the authorized middleboxes via separate TLS

32

connections. In the bottom-up approach, the client and middleboxes first initiate TLS segments

sequentially up to the server. In this approach, the two participants of each segment negotiate

their security parameters individually, and the session is eventually constructed from these

segments.

In MATLS, we adopt the bottom-up approach for the following reasons. First, an MATLS

session can be partially established even if not all entities support MATLS. For example,

even if the server does not support MATLS, the client and the next middlebox that supports

MATLS can still negotiate security parameters for their segment and establish a MATLS

session. Second, each different MATLS segment can benefit from using strong ciphersuites

or newer TLS version independently because MATLS does not require all entities to share

the same ciphersuite or TLS version. Third, the bottom-up approach efficiently achieves

Individual Secrecy. This is because the two entities involved in each segment use different

random numbers to establish a master secret; thus, the probability that all the segment keys

are identical is negligible.

It is worth noting that most of the top-down approach schemes, such as mcTLS [70],

TLMSP, and TLS Keyshare extension [71], do not support incremental deployment. This is

mainly because only the server picks the version, ciphersuite, and extensions that are supported

across all entities (i.e., both endpoints as well as middleboxes), which makes it challenging to

deploy them incrementally. Even worse, it is highly likely that the security level of the session

will be decided by the “intersection” of the security parameters supported by all the entities.

Furthermore, the entire session needs to use the same shared secret, which undermines the

security of the communication as well.

Among the top-down approach schemes, the only solution that supports incremental

deployment is mbTLS [69]. If the server does not support mbTLS, the client first establishes

a standard TLS session with the server. Then, the client sends the segment keys to each

middlebox that does support mbTLS. To achieve individual secrecy, the client generates

the different segment keys for all the segments and distributes keys to the corresponding

33

middleboxes (two segment keys per one middlebox), which is inefficient.

Audit Mechanisms: . We propose three audit mechanisms for the clients to audit middleboxes

while performing an MATLS session: Explicit Authentication, Security Parameter Verifica-

tion, and Valid Modification Checks. These mechanisms necessitate some data structures for

middleboxes, such as signatures or message authentication codes (MACs), to demonstrate

accountability for every message. We prefer to use MACs, as signatures require higher compu-

tation overhead on their generation. Thus, entities will use hash-based message authentication

codes (HMACs) when signatures are not necessary. To this end, we introduce accountability

keys that are to be used as HMAC keys. The accountability key is established between the

endpoints and middleboxes; thus, each middlebox should establish one accountability key

with each endpoint (two in total), while the client and the server each need one accountability

key for each middlebox, and share one more key between them.

We overview the audit mechanisms in Table 3.2, alongside their notation in Table 3.1.

Explicit Authentication

Proof

A sequence of certificate blocks, including the server certifi-

cate and any middlebox certificates with their signed certifi-

cate timestamps

Description

The client authenticates the server and middleboxes by check-

ing their certificates, and confirms their names and the mid-

dleboxes’ permissions.

• No custom root certificate and no private key sharing

• EV certificates are not degraded due to fabricated certifi-

cates

• Support for Certificate Transparency [52] and DANE [36]

Security Parameter Verification

34

Proof

Security parameters of every MATLS segment including a

negotiated TLS version, an agreed ciphersuite, and a transcript

of the handshake

Description

The client confirms the confidentiality of every segment.

• Neither a low TLS version nor a weak ciphersuite is permit-

ted without the client’s knowledge

• The two points of each segment perform a TLS handshake

and establish a segment key

Valid Modification Checks

Proof
A modification log that keeps track of the modifications of a

packet

Description

The client confirms that only authorized entities can generate

or modify messages.

• Only an authorized data origin (a server or a cache proxy)

can generate messages

• Only trusted writer middleboxes can modify messages

• The order of middleboxes is always preserved

Table 3.2: Three audit mechanisms of endpoints in MATLS: Explicit authentication guar-
antees the authentication of all the participants. Security parameter verification ensures the
confidentiality of all the MATLS segments. Valid modification checks ensure that only autho-
rized entities can modify messages.

(1) Explicit Authentication guarantees authentication of the server as well as the middle-

boxes by validating received certificates. If there are any suspicious middleboxes, the MATLS

session can be aborted. The server sends its certificate in the ServerCertificate message

during the MATLS handshake. Whenever the middleboxes receive this message, each of them

simply appends its certificate, so that the client can receive all the certificates up to the server.

35

As the client receives all the certificates, she does not need to worry about the degradation of

certificate-level due to forged certificates by middleboxes. Similarly, DANE or CT can also be

supported with middleboxes.

When receiving a sequence of certificates, the client should validate all of the certificates

as well as recording the order of the certificates, up to the server.

(2) Security Parameter Verification allows the client to audit the security association of

each MATLS segment, and to confirm the accountability keys as well as their order. To this

end, the middleboxes have to present the security parameters (of each segment), that is, the

chosen TLS version, the negotiated ciphersuite, the hashed master secret, and a (hashed)

transcript of the TLS handshake (i.e., the verify_data in the Finished message). The

selected TLS version and ciphersuite show the degree of confidentiality of the corresponding

MATLS segment. The hashed master secret demonstrates the uniqueness of segment keys.

The transcript, a digest of handshake messages in the MATLS segment, is used to prove that

two entities involved in the segment performed the handshake without any modification by an

attacker.

However, middleboxes could potentially give false information to the client. To avoid such

misbehavior, we propose a security parameter block – an unforgeable cryptographic proof of

security information for each segment. Each block contains the security parameters and their

HMAC value. The two entities of a MATLS segment, say segmenti,i+1, present the security

parameters of the segment, respectively for cross-verification.

All the entities except the client in the MATLS session generate the security parameter

block. The basic structure of the block is in the form of:

IDi||pi,i+1||Sign(ski, Hmac(aki,0, pi−1,i||pi,i+1))

One entity ei first generates an HMAC over the security parameters in its two segments, namely

segmenti−1,i and segmenti,i+1, and signs on the resultant HMAC. Then, ei prepends its

identifier and the security parameters of the segment in the direction of the server with the

signature. When the block is generated, ei forwards it toward the client.

36

For a server (S = en) that is only involved in one segment, i.e., segmentn−1,n, the server

sends IDn||Sign(skn, Hmac(akn,0, pn−1,n)) in which the term corresponding to pi,i+1 in

the above expression is removed.

When the client receives a series of security parameter blocks, it can confirm all security

parameters negotiated between each entity by verifying the signature of signed HMACs.

Verification fails could be due to modified security parameters, missing or incorrect order of

the middleboxes; thus the client must abort the negotiation process. Once the client can suc-

cessfully verify all the security parameters, accountability keys, the order of the middleboxes

in the MATLS session, it can further decide whether to accept the session based on its policy.

For example, the client might abort the connection if any of the segments is established with a

weak algorithm such as an RC4 [79].

(3) Valid Modification Check allows a client to audit which entity has modified the message.

When an entity forwards a message to the next entity it also generates a cryptographic proof,

called a modification log (ML). Basically, it is to compare the incoming and outgoing message

from the entity by attaching (1) a HMAC generated from both received and sending message

using its accountability keys (aki), (2) a digest of the received message (H(mi+1)), and its

identifier (IDi). Assuming that the message is coming from the server (en) to the client (e0),

we can define the ML generated from the ei, which is denoted as MLi:

IDi||H(mi+1)||Hmac(aki,0, H(mi)||H(mi+1))||MLi+1

Here, we can apply some optimization techniques to reduce the size of the MLs in specific

scenarios. First, the server does not have a prior message, thus the MLn can be defined as

IDn||Hmac(akn,0, H(mn)). Second, when an entity (ei) does not modify any message (i.e.,

read-only middlebox), we can further reduce the size of the MLi by (1) simply generating a

HMACi from the previous HMACi+1 and (2) omitting its received digest (H(mi+1)) and

even its ID (IDi). Thus, if the client detects a omitted ID while parsing the received ML, it

can assume that the message has not been modified among the middleboxes with the omitted

IDs. For example, if an entity (ei) receives a message that has never been modified, the ML

37

that the entity received will be

IDn||Hmac(aki+1,0, Hmac(aki+2,0, · · · , Hmac(akn,0, H(mn))).

Once ei modifies the message, however, the ML produced from ei will be

IDi||H(mi+1)||Hmac(aki,0, H(mi)||H(mi+1))||IDn||HMACi+1,

which implies that the message between the middlebox ei+1 and en has never been modified.

Once the receiver (i.e., the client in this example) obtains the series of MLs, it can extract

the digests of all the modified messages, track the identifiers of the middleboxes that performed

the write operation, and finally verify each ML using its HMAC.

Note that this optimization has a limitation if a write middlebox lies. Let say two con-

secutive middleboxes simply perform HMAC over the received ML as if they are read-only

middleboxes, but the message is modified. In this case, a client cannot identify the lier; thus, a

level of accountability is decreased. Nevertheless, we propose the optimization to reduce an

amount of the hash values included in the record messages.

3.4.3 MATLS Handshake Protocol

A client performs a MATLS handshake to negotiate accountability keys, to authenticate

the server and middleboxes, and to perform security parameter verification. The MATLS

handshake protocol, which extends TLS 1.2, is shown in Figure 3.2a. In the first round-

trip, the client expresses its preference to perform the MATLS protocol by adding the

MiddleboxAware extension to the ClientHello message. The client generates its DH key

pair (say, (a, ga)) and inserts the DH public key (ga) into the extension. Then, the client sends

the ClientHello message with the highest possible TLS version and a set of supporting

ciphersuites. On receiving the ClientHello, each middlebox finds the client’s MATLS exten-

sion, generates its own DH key pair, and extracts the list of DH public keys from the MATLS

extension. After that, it appends its own DH public key, and sends the new ClientHello

with the DH public keys toward the client’s intended server. This process is repeated at every

middlebox on the way to the server.

38

(a) The MATLS-DHE handshake protocol on TLS 1.2 (server-only authentication)

(b) The MATLS record protocol with a modification log.

Figure 3.2: The MATLS protocol. The MATLS handshake protocol is responsible for explicit
authentication and security parameter verification, while the MATLS record protocol executes
valid modification checks.

The server generates its own DH key pair (say, (b, gb)) and sends the ServerHello

message with the DH public key (gb) and the selected TLS version and ciphersuite for the

MATLS segment. On receiving ServerHello, each middlebox processes the message as the

middlebox do on ClientHello and determines the TLS version and the ciphersuite to be

used in the MATLS segment.

Then, each entity negotiates the TLS version and the ciphersuite with its neighbor entity

for each MATLS segment. Furthermore, both endpoints receive the DH public keys from

all entities and each middlebox has two DH public keys (i.e. the client’s and the server’s).

With their own DH private keys, all entities generate the accountability keys by using the

39

PRF function defined in [23] with the server’s DH public key and the client’s DH public key

as seeds. For a label, one of the input parameters of the PRF function, we use the string,

“accountability key.”

The ServerCertificate message is sent after the Hello messages. The server sends

its own certificate and each middlebox appends its middlebox certificate. The client performs

explicit authentication in order to accept the server and the middleboxes. Then, the client

maps each accountability key to the corresponding identity, where an identity is a digest of

an entity’s public key. Although the server does not receive the certificates, the server can

identify the client from the accountability key.

After receiving the certificates, each MATLS segment exchanges key materials via the

ServerKeyExchange and ClientKeyExchange messages. Using the key material, all enti-

ties generate shared secrets of the segment.

Finally, Finished messages are exchanged to verify the handshake between two peers

in each segment, followed by a newly defined ExtendedFinished message that includes

security parameter blocks from the server to the client. The client performs security parameter

verification and confirms the proofs of private key possession by verifying the signatures by

processing the ExtendedFinished message.

3.4.4 MATLS Record Protocol

The MATLS record protocol provides data source authentication, modification accountability,

and path integrity during data exchange. The MATLS record protocol is illustrated in Fig-

ure 3.2b. For each message, the record protocol generates the data source, initializes an ML,

and inserts its source MAC. On receiving the message and its ML, each middlebox processes

the ML as mentioned earlier. A read-only middlebox extracts the final HMAC from the ML,

performs the HMAC operation over the previous HMAC to put its fingerprint, and updates the

MAC. A writer middlebox appends the modification MAC to the ML.

Upon receipt of the message, the destination performs valid modification checks by

40

validating the ML, aborting the connection if there has been an invalid modification by

middleboxes. The destination also verifies the source of the incoming message; for example, a

server can abort the connection if the HTTP request message (over MATLS) did not originate

from the client. Furthermore, since all the middleboxes in the session leave their own MACs

in the ML whenever the data is passed the middleboxes, the endpoints can confirm whether

the order of the middleboxes is preserved by verifying the MACs with the accountability keys

in sequence.

3.5 Security Verification

We analyzed the security goals of the MATLS protocol using Tamarin [64], an automated

verification tool. Tamarin is built upon a multiset rewriting model, which supports the un-

bounded analysis of security protocols based on a robust equational theory. Tamarin is capable

of accurately modeling Diffie-Hellman style key exchange, and is built upon the Dolev-Yao

adversary.

The Tamarin execution model observes the development of a series of states, each of which

is a multiset of facts. Each fact represents a detail about the current execution: for example,

the Out(msg) fact indicates that the message msg has been sent out to the communication

network, while the fact Ltk(A, k) might represent that the agent A has a long-term encryption

key k. Facts are added and removed from the state through a series of user-defined rules, each

of which is denoted by a triple l→ [a]→ r. Here, l, a, and r are collections of facts —

for the rule to execute, the facts l are removed from the state and replaced by the facts r. The

facts a form a trace: an indelible history of event markers that describe the progression of the

protocol’s execution.

Security goals, named lemmas, are expressed as first-order logic formulae describing

requirements on the existence and ordering of certain events, usually quantified over all

possible executions. If a formula is violated (generally indicating that a goal has not been

met), Tamarin generates a graph showing a trace that leads to the contradicting state.

41

3.5.1 Protocol Rules

The protocol rules for MATLS can be divided broadly into three categories. The first handles

the setup rules of the protocol. These represent events such as the registration of server or

middlebox certificates. Second, a set of corruption rules describe the main ways in which an

agent may violate their specification — for example, giving their long-term private key to

the adversary. Finally, the protocol rules describe the actual actions of the participants. The

protocol rules are again divided into two parts, namely Handshake rules and Communication

rules, to capture the MATLS handshake protocol and the MATLS record protocol, respectively.

3.5.2 Adversarial Model

As described above, we adopt a Dolev-Yao adversary that can be modeled with several rules

as follows:

Figure 3.3: A Dolev-Yao adversary in Tamarin. A Dolev-Yao adversary can be modeled
with several rules such as Inject,Block, and Corrupt in Tamarin.

42

3.5.3 Security Claims

With the protocol rules, we modeled the core security goals of MATLS. We formally describe

our security goals in the form of the first order logic formulae, examples of which are shown

in 3.5.3. Note that the goals shown in the table are slight simplifications of those in the full

analysis (for example, they must be taken modulo corruption).

Server Authentication
All C S nonces #tc.
C_HandshakeComplete(C, S, nonces)@tc
==>
Ex #ts.
S_HandshakeComplete(C, S, nonces)@ts &
(#ts < #tc)

When a client believes she has finished a MATLS handshake, the corresponding

server also believes he has established a session with the client, sharing the same

accountability key data

Middlebox Authentication
All C MB last next nonces #tc.
C_MB_HandshakeComplete(C, MB, last, next, nonces)@tc
==>
Ex #tmb.
MB_C_HandshakeComplete(C, MB, last, next, nonces)@tmb &
(#tmb < #tc)

When the client confirms a middlebox as part of the handshake, the client shares

accountability key data with them

Segment Secrecy
All C M S nonces params #tc #tcomplete.
C_ParameterVerification(C, M, nonces, params)@tc &
C_HandshakeComplete(C, S, nonces)@tcomplete
==>
Ex #tmb.
MB_SecurityParameters(C, M, nonces, params)@tmb &
(#tmb < #tc)

43

When the MATLS session is established, a client correctly verifies the security

parameters used in each segment

Individual Secrecy
All C S nonces #tc #tcomplete.
C_HandshakeComplete(C, S, nonces)@tcomplete
==> (

All a1 a2 b1 b2 keyA keyB #tmb1 #tmb2.
SegmentKeyMade(a1, a2, nonces, keyA)@tmb1 &
SegmentKeyMade(b1, b2, nonces, keyB)@tmb2
==> (

not (keyA = keyB) |
(a1 = b1 & a2 = b2)

))

At the end of a MATLS handshake, each segment has established distinct TLS keys

Data Authentication
All C S nonces req resp #trecv.
C_BelievesSentFromServer(C, S, nonces, req, resp)@trecv
==>
Ex #tresp.

ServerSent(C, S, nonces, req, resp)@tresp

When a client receives a message during the MATLS record phase, the hash value

from the server is a faithful digest of the original message

Modification Accountability
All C S nonces req #trecv.
ReceiveResponse(C, S, req, nonces)@trecv
==> (

All before after M #tc.
ModificationChecks(C, M, req, nonces, before, after)

@tc &
(#tc < #trecv) | (#tc = #tcrecv)
==> (

Ex #tmb.
MB_Modification(C, M, req, nonces, before, after)

@tmb &
#tmb < #tc

))

44

When an endpoint receives a message during the MATLS record phase, the agent

believes that a middlebox has changed the message if and only if that middlebox did

make a change

Path Integrity
All a1 a2 a3 nonces #ta #tb.
PathOrderingEstablished(nonces, a1, a2)@ta &
PathOrderingEstablished(nonces, a2, a3)@tb
==> (

All id #tf. ForwardAction(nonces, id, a2, a3)@tf
==> (

Ex #tp. ForwardAction(nonces, id, a1, a2)@tp &
#tp < #tf

))

The client knows the order of the intermediate middleboxes in an MATLS session.

Messages will always travel in this order.

Table 3.3: Security Lemmas. Tamarin representations of the core security goals of the MATLS
handshake and record phase protocols. For the full specifications, see our git repository.

The results of the analysis show that the MATLS protocol satisfies the core security

goals. The full Tamarin implementation can be found at our public repository at https:

//github.com/middlebox-aware-tls/matls-tamarin.

3.6 Evaluation

3.6.1 Experiment Settings

To demonstrate the feasibility of the MATLS protocol, we implemented it using the OpenSSL

library. Our testbed consists of a client (C), a client-side middlebox (MBC), a server-side

middlebox (MBS), and a server (S)4. The server-side middlebox and the server are equipped

with an Intel Xeon CPU E5-2676 at 2.40GHz with 1GB memory. We used a virtual machine

4The source code of the library as well as the test applications are available at https://github.com/
middlebox-aware-tls/matls-implementation

45

https://github.com/middlebox-aware-tls/matls-tamarin
https://github.com/middlebox-aware-tls/matls-tamarin
https://github.com/middlebox-aware-tls/matls-implementation
https://github.com/middlebox-aware-tls/matls-implementation

with an Intel Core i7 at 2.30GHz and 1GB memory for the client-side middlebox, and a virtual

machine with an Intel Broadwell CPU at 3.30GHz and 1GB memory for the client.

During our experiments, the client and the client-side middlebox were located on a campus

network. We ran tests with the server (and the server-side middlebox) located at three different

locations: in the same country (intra-country testbed), in different countries but the same

region (intra-region testbed), and in different continents (inter-region testbed). The round-trip

times between two entities in each scenario are shown in Table 3.4.

After establishing an MATLS session, the client requests an HTML page of 1KB with an

HTTP GET message, respectively, terminating the connection after completing the download

of the corresponding HTTP response. Each plotted value is the average of 100 measurements.

We compare the performance overhead of MATLS with those of SplitTLS and mcTLS [70],

the latter of which is the original protocol of TLMSP.

We used an ECDH key exchange algorithm over the secp256r1 elliptic curve for the

accountability keys, the SHA256 function for the hash algorithm, and a SHA256-based

ECDSA for the signature algorithm.

Testbed C-MBC MBC-MBS MBS − S

Intra-country 1.136ms 4.944ms 0.551ms
Intra-region 1.136ms 35.896ms 0.537ms
Inter-region 1.136ms 192.818ms 0.610ms

Table 3.4: Networking Settings. The round-trip times between two points in each scenario
are shown, where C and MBC are in the same campus, and MBS and S are in the same data
center.

3.6.2 HTTPS Page Load Time

We first evaluate the time elapsed to fetch an 1KB file from the server in the MATLS protocol,

which is compared with the SplitTLS and mcTLS protocols.

Figure 3.4 summarizes the time taken from starting a TCP handshake to finishing the

download of the content. We observe that the MATLS protocol introduces a slight delay

46

Intra-country Intra-region Inter-region

a

0

200

400

600

800

1000

1200
T

im
e

(m
s)

maTLS
mcTLS
SplitTLS

Figure 3.4: HTTP Load Time

(10.22ms – 32.52ms) compared to SplitTLS and mcTLS in the general case.

We believe this is mainly due to the message order dependency in MATLS. Unlike Split-

TLS, where each TLS segment is established completely independently, the MATLS segments

are established piecewise sequentially as some signaling messages (e.g., ClientHello,

ServerHello, ServerCertificate) must be exchanged between the client and the server

through the middleboxes in sequence. Thus, in MATLS, each middlebox needs to wait until

these messages arrive while performing the handshake.

To quantify the overhead that the MATLS record protocol requires, Figure 3.5 shows the

data transfer time, which starts at the client sending an HTTP GET (a single packet) and ends

at the client receiving an HTTP RESPONSE (a single packet). Interestingly, we notice that

the delay time of the MATLS record protocol is similar to that of the SplitTLS and mcTLS

47

Intra-country Intra-region Inter-region

a

0

100

200

300

400

500

600
T

im
e

(m
s)

maTLS
mcTLS
SplitTLS

Figure 3.5: Data Transfer Time

record protocols. For example, in the intra-region testbed scenario, the data transfer time is

39.92ms, 39.90ms, and 41.28ms in MATLS, SplitTLS, and mcTLS, respectively.

From Figure 3.4 and Figure 3.5, we conclude that the MATLS overhead is mainly due to

the setup of a MATLS session, which implies that once the session is established, MATLS

provides similar performance to the others while preserving all security merits that we have

discussed.

3.6.3 Scalability of Three Audit Mechanisms

Next, we evaluate the scalability of the MATLS audit mechanisms: Explicit Authentication

(EA), Security Parameter Verification (SPV), and Valid Modification Checks (VMC). Note

that the number of required HMAC operations increases in proportion to the number of the

48

2 4 6 8
Number of middleboxes

0.0

0.1

0.2

0.3

0.4

0.5

0.6
T

im
e

(m
s)

SPV
EA
VMC

Figure 3.6: Integrity Verification Time

middleboxes. Thus we now wish to check the scalability of the HMAC operations in MATLS

for its feasibility. To this end, we increase the number of middleboxes in the same data center to

quantify the computational overhead due to the audit mechanisms by measuring the validation

time for each arriving packet (Figure 3.6).

We observe that the overhead of the three audit mechanisms is almost negligible. For

example, it takes 0.195ms to verify security parameter blocks, 0.203ms to validate certificates,

and 0.013ms to check the modification record for two middleboxes. Also, we observe that

the overhead increases linearly with the number of middleboxes; for each incoming packet,

only an extra 0.045ms and 0.063ms overhead is required for the explicit authentication checks

and security parameter verification, respectively. It is worth noting that the delay of explicit

authentication is mainly due to certificate validation, which accounts for around 95% of

49

0 2 4 6 8
Number of middleboxes

 0

 2

 4

 6

 8
T

im
e

(m
s)

Figure 3.7: CPU Processing Time

the delay. Likewise, signature verification accounts for more than 91% of the delay of the

security parameter verification. The overhead for valid modification checks is marginal as it

uses HMAC operations to verify the ML, which turns out to be only 0.026ms, even with 8

middleboxes. We believe that the auditing mechanisms of MATLS can achieve their goals

without incurring a substantial delay.

3.6.4 CPU Processing Time

Next, we evaluate the CPU processing time for a MATLS handshake as the number of

middleboxes increases. We place all the middleboxes and the endpoints in the same data center

to minimize the impact of networking delay. As shown in Figure 3.7, the CPU processing time

for the MATLS handshake also linearly increases by on average 0.398ms for each middlebox.

50

This increment is mainly due to the multiplication operations required to add an ECDH shared

secret, and generating accountability keys using a PRF, which account for 0.367ms (92.2% of

the increment) and 0.016ms (4.0% of the increment), respectively.

3.7 Discussions

3.7.1 Incremental Deployment

The MATLS protocol can be executed even if not all the entities support it. In other words, a

session can have both MATLS segments and TLS segments at the same time. For example,

when a client and two middleboxes support MATLS and the server does not, MATLS segments

can be set up between the client and the two middleboxes. In this case, the middlebox farthest

from the client in the MATLS segments establishes a standard TLS segment with the server.

Following the MATLS protocol, all the middleboxes in the MATLS segments send their own

certificate to the client. Therefore, the client will receive a bundle of middlebox certificates,

but not the certificate including the server’s name. This will cause the client to issue a warning

message.

To resolve the problem, we require that the farthest middlebox in the MATLS segments

should send not only its middlebox certificate but also the received certificate from the standard

TLS segment. This allows the client to receive the server’s certificate and thus validate it.

Unfortunately, this requires that the client must trust that the middlebox sent the certificate

that it received, and correctly validated the server certificate in the standard TLS handshake.

However, the client can still authenticate the participating middleboxes and verify their security

parameters, which is not be supported by the current practice.

3.7.2 Abbreviated Handshake

MATLS supports abbreviated handshakes using session IDs/tickets in TLS 1.2, or pre-shared

keys in TLS 1.3, which need not extend the handshake. A client can resume a MATLS session

using the abbreviated handshake protocol. The middlebox (closest to the server) can resume its

51

MATLS segment with the server, as it knows the session ID, pre-shared key, or session ticket.

The middlebox, however, does not have the accountability key shared between the client and

the server; thus, the server is able to detect incorrect session resumptions by verifying the

modification log if an adversary attempts to impersonate the middlebox.

3.7.3 Mutual Authentication

Like the standard TLS protocol, MATLS also supports mutual authentication by sending a

CertificateRequest message to the client during the TLS handshake. In this case, the

client also sends her certificate upon receipt of the CertificateRequest message from

the server. The middleboxes can simply append their certificates to her certificates while

being forwarded to the server so that both the client and the server authenticate each other’s

certificates. After that, the client and the server each send a ExtendedFinished message to

verify the possession of their private keys.

3.7.4 TLS 1.3 Compatibility

TLS 1.3 [82] has been recently approved and is expected to be widely deployed. The MATLS

protocol can support TLS 1.3 by adding a ExtendedFinished message after a server’s

Finished message in the server-only authentication mode. The only difference is that TLS

1.2 requires two round-trips for session establishment, while TLS 1.3 only requires one and

a half round trips. Unfortunately, this means that individual segments running TLS 1.2 will

negate some of the speed-up benefits from TLS 1.3.

3.7.5 Mobility Support

Since mobile devices are pervasive, we should consider how MATLS responds to a mobile

environment. We follow the terms from [62]. A mobile node is a node that can change its point

of attachment to the network without breaking open sessions. A mobile node can be either of

a mobile host or a mobile router, the former of which can forward packets and the latter of

52

which cannot.

We would like to highlight two points regarding mobility support of MATLS.

First, MATLS does not need to deal with a middlebox located on public servers that

have their own IP addresses. Even if a mobile node changes its IP address, the TCP session

is maintained between a mobile node and a middlebox according to a mobility support

mechanism in a mobile network.

Second, a mobile host should re-establish an MATLS session when a middlebox is located

on a gateway or a base station. This is because if a mobile host moves to another network, the

session between a mobile host and a middlebox is disconnected.

3.7.6 P2P Communication

The recent video streaming service and web conferencing commonly use the WebRTC tech-

nology that a central server only serves as a broker to establish a session between two peers.

The MATLS protocol is also compatible with the p2p communication. After two peers get

information about each other with the help of a broking server, two peers can simply execute

the MATLS protocol to make a middlebox participate into the p2p session.

3.8 Conclusion

In this chapter, we propose middlebox-aware TLS, dubbed MATLS, that allows middleboxes

to participate in TLS networking in a visible and accountable fashion. The MATLS protocol

seeks to achieve the following security goals: server authentication, middlebox authentication,

path secrecy, data source authentication, and modification accountability, which are not com-

prehensively solved by the related work. To this end, MATLS relies on multiple mechanisms

such as middlebox certificates, security parameter blocks, and modification logs to make

middleboxs visible and auditable. We also analyze the security properties of the MATLS

protocol using Tamarin, which formally proves that MATLS satisfies those goals. Further-

more, testbed-based experiments show that MATLS accomplishes those goals with mostly

53

marginal performance overhead. For instance, the additional delays against the SplitTLS and

the mcTLS protocols are less than 33ms, which incurs mainly due to the signaling overhead

in a handshake. Numerical results also show that the MATLS protocol is scalable in terms of

number of middleboxs.

54

Chapter 4

TLS-SEED: How to SEcurely
Communicate with EDge Computing
Platforms?

4.1 Introduction

Due to the explosive growth of Internet-connected devices and the popularity of cloud-based

services, cloud platforms suffer from a scarcity of bandwidth [104]. To mitigate these problems,

edge computing (a.k.a., fog computing) [59, 93, 86, 14] has emerged to support fast delivery

and improved bandwidth utilization, by placing computing resources at the edge of a network.

Both industry [74, 97] and the research community [11, 58] have designed their edge

computing platforms, but based on a similar architecture. Application service providers

(ASPs) move their applications (called edge applications) to devices in the network (called

edge devices), which are typically managed by third-party platform providers (e.g., Intel [40]).

As application service providers can push their applications to multiple edge devices as a form

of container images without designing and deploying their platforms, edge computing has

attracted many application service providers in the area of content caching [4, 61, 104, 105],

augmented reality services [89], and vehicle control systems [85].

However, edge computing has fundamental security challenges, mainly due to two factors:

55

edge applications run outside the realm of the application service providers, and multiple edge

applications share a physical edge platform, thus exposing themselves to increased threats

from tampering or tapping compared with machines in private data centers [7, 12].

For this reason, several edge computing platform specifications [84, 33] recommend

using Transport Layer Security [23, 82] between clients and edge applications by default,

and conducting attestation by leveraging hardware security such as Trusted Platform Module

(TPM) to allow clients to attest the integrity of the edge application. However, there are still

unsolved challenges to achieve secure communication with edge computing platforms, which

we explain in the following:

Application service provider: risky private key management. As an edge application on

an edge computing platform communicates with clients on behalf of an application service

providers, the application service provider needs to embed its private key into the edge

application running on the edge platform, which is not managed by the application service

provider. Worse yet, an edge computing platform (1) hosts many edge applications, thus

inevitably maintains multiple private keys, and (2) has to be distributed over multiple places

administered by multiple network operators. Thus, edge computing requires more sophisticated

techniques to deal with such a broad attack surface.

Client: inefficient remote attestation. Since edge applications may process sensitive in-

formation of clients, clients want to attest the integrity of the edge application which they

are communicating with. There have been a few studies enabling remote attestation for

clients [39, 69], but there are still two main challenges.

First, as the client may want to quickly check the validity of the edge application (e.g., fast

response from the augmented reality application), the remote attestation should not impose a

substantial performance overhead on the client; however, prior studies [39, 69] do not consider

this issue and hence incur extra round-trips to attestation services (e.g., Intel attestation

service), increasing the network overhead.

Second, to verify a software attestation during remote attestation, a client should know

56

the trusted hash value of an edge application in advance. However, she might not know

whether she is communicating with an edge application or the application service provider’s

server, since a client may transparently connect to an edge application. Thus, she might need

other round-trips or other measures to know a trusted hash value for attestation, which incurs

performance degradation.

In this chapter, we propose SEED, which provides trustworthy edge computing. SEED

addresses the two challenges while providing additional benefits: accountability to application

service providers and visibility to clients. This is done by combining the TLS protocol and

remote attestation from Trusted Execution Environment (TEE) technologies (i.e., both Intel

SGX and ARM TrustZone), without sharing any long-term private keys with a third-party,

which we call TLS-SEED. In particular, we introduce a CROSS CREDENTIAL (CC), a short-

term data structure to show a trust relationship between an application service provider and

an edge device in the SEED platform to a client1. The CC also proves the integrity of the edge

application from the application service provider. We extend TLS to use a CC, which is dubbed

TLS-SEED. TLS-SEED consists of two TLS extensions (collectively called TLS-SEED) – a

TLS-BACKEND-SEED protocol (an application service provider’s issuing a CC to an edge

device) and a TLS-FRONTEND-SEED protocol (a client’s verifying a CC presented by an

edge device).

With a CC, an application service provider can (i) deploy his edge application without

embedding his private key, and (ii) achieve accountability by issuing a CC after attesting

his application. A client can (iii) get visibility of an edge computing platform (i.e., the

communicating counterpart is a trusted computing platform), by efficiently performing remote

attestation of an edge application.

We analyze the security and evaluate the performance overhead of TLS-FRONTEND-

SEED since this protocol allows a client and a SEED device to exchange application data with

delay-sensitive requirements. To this end, we introduce the ACCE-SEED model by extending

1An edge device in the SEED platform is also called a SEED device.

57

the ACCE model [43] that is generally used to prove the standard TLS and prove TLS-

FRONTEND-SEED is ACCE-SEED-secure. Then, we implement TLS-FRONTEND-SEED with

OpenSSL (over both Intel SGX and ARM TrustZone) and compare it with other schemes in

terms of the latency and CPU overhead.

In summary, we make the following contributions:

• We design a CROSS CREDENTIAL (CC) that enables an application service provider

to deploy his edge application without sharing his private key and a client to attest the

application efficiently.

• We propose the TLS-SEED protocol to incorporate CCs and formally prove the TLS-

FRONTEND-SEED protocol by leveraging the ACCE-SEED model.

• We demonstrate the feasibility of SEED by implementing TLS-SEED with OpenSSL

over Intel SGX and ARM TrustZone.

The remainder of this paper is organized as follows. We introduce the the background with

related work (§4.2). Next, the high-level overview of the SEED platform is described (§4.3).

We then detail the SEED platform with a focus on a CC and TLS-SEED (§4.4), followed by a

security analysis leveraging the ACCE-SEED model (§4.5) and a performance evaluation of

TLS-SEED (§4.6). We finalize with concluding remarks (§4.8).

4.2 Preliminary

In this section, we first review edge computing platforms and the networking patterns of the

edge applications. We then describe trusted execution environments (TEE) such as Intel SGX

and ARM TrustZone. Finally, we briefly explain about TLS variants that aim to avoid private

key sharing or to combine remote attestation.

58

4.2.1 Edge Computing

Edge computing is an emerging paradigm that brings computation and data storage closer

to end-users. New applications such as autonomous vehicles or augmented reality require

delay-sensitive services; thus, placing computing resources near clients to reduce delays has

become a viable solution.

Edge computing platforms. There have been many studies and trials for edge computing

platforms. For instance, industry stakeholders have attempted to standardize ETSI Multi-access

Edge Computing [74]. Companies and academic institutions joined the OpenFog consortium

for similar standardization [33]. Academic groups also propose Cloudlet [87], AirBox [11],

and Paradrop [58]. We consider a general edge platform from the ones in the literature, as

explained below.

Application service providers (ASPs) develop their edge applications, which are deployed

and run on central clouds or edge clouds leveraging virtualization technologies such as

virtual machines or containers. Developed applications are typically registered with an image

registry in the edge computing platform. Then, edge devices in the platform can load the edge

applications from the registry if needed. We assume that the ASPs are not involved in the

registration/migration process. That is, they need not consider how to distribute/replicate their

edge applications.

Networking of edge applications. In the edge computing platform scenario under consid-

eration, a client application (on her device) directly communicates with an edge application

running on an edge device as described in [74, A.12]. To establish a session between a client

and her nearest edge application, the platform utilizes DNS redirection or a TCP/IP termina-

tion based on the domain name or the destination address of the intended server. Then, the

platform redirects packets from a client to an edge application and vice versa. Thus, a client

communicates with the intended server without knowing whether she connects to an edge

device (running an edge application), or to a central cloud server.

59

Due to the above interception, there are two channels called frontend and backend channels

in edge computing. The former is established between a client and an edge application and

is used to provide delay-sensitive services that require fast responses (e.g., edge caching,

augmented reality, and autonomous vehicle). The latter is established between the edge

application and a cloud server, the channel is used only when an edge application needs

any data from a cloud server. For example, an edge caching application gets content from a

cloud server only in case of cache misses. An IoT aggregator, after receiving data from client

devices, intermittently reports aggregated data to a cloud server. This indicates that when a

client establishes a session with an edge device, a cloud server is participating in the session

typically in an intermittent and on-demand fashion. Also, a backend channel can be used

separately from a frontend channel and delay-tolerant.

Security in edge computing platforms. Security in edge computing is crucial due to the

following reasons. First, edge computing platforms can be a third party with a massive

infrastructure in the sense that the ASP has no control over the platforms. Another essential

nature is that edge devices are often vulnerable to attacks compared with machines in the data

center [7]. For example, WiFi access points or home routers are widely used edge devices

in the edge computing platform [11, 58, 7]. Thus, there can be several physical attacks,

side-channel attacks, or other software-based attacks against the edge computing platform.

Therefore, essential resources such as private keys or sensitive private data of edge applications

should be protected, and the integrity of the platform should be guaranteed.

Due to the above reasons, several proposals present guidelines such as using the (D)TLS

protocol for network security [84], leveraging Hardware Security Module (HSM) for secure

storage [84], or performing attestation with Trusted Platform Module (TPM) [33]. However,

the current standardizations of edge computing have not answered correctly for (i) how to

securely distribute (or manage) private keys to edge applications for TLS, or (ii) how to

perform remote attestation. There are only some guidelines but no systematic mechanisms.

These issues are left as developers’ responsibilities [84] or unspecified yet [33].

60

4.2.2 Trusted Execution Environments

Trusted execution environment (TEE). A TEE is a secure area within a main processor

and a memory. It provides an isolated execution region to run a program securely from

other untrusted software components such as an operating system as well as applications.

The TEE and other areas are called a trusted region and an untrusted region, respectively.

While the security guarantee of TEEs may vary depending on specific TEE designs, they

generally provide the confidentiality and integrity of the trusted program2, and such a security

assurance is guaranteed by the hardware (i.e., the main processor). In order to provide the

confidentiality, the main processor in a TEE ensures that an execution context of the trusted

program (including registers and memory) is strictly isolated from other untrusted software

components.

Remote attestation. Moreover, to provide integrity, TEE techniques support a security

mechanism called remote attestation. The security of remote attestation is based on following

two things: (i) the main processor is securely embedded with a cryptographic key during

the manufacturing process for attestation keys; and (ii) every trusted software component

can request a report called software attestation (called a quote in Intel SGX) including the

hash value of itself to a trusted program responsible for measuring and signing (e.g., a Quote

Enclave in Intel SGX).

An attestation key is provisioned by the hardware manufacturer in practice. For example,

Intel provides the provisioning service (IPS) [46], and the Provisioning Enclave on the platform

interacts with the IPS to get the EPID key, which is finally transferred to the Quote Enclave.

Also, a device using the Samsung KNOX platform [77] has its private key called a device root

key embedded at manufacturing, and the keys derived from the device root key are used for

the attestation.

The main processor (in Intel SGX) or the trusted application (in ARM TrustZone) com-

2A program running in a TEE is called a trusted program since it is protected from the rest of the system.

61

putes an authenticated hash of the target program’s memory footprint. That is, the hash value

signed with the above attestation key is presented to a remote client who wishes to verify

the integrity of the target program. The client that receives a quote can verify the integrity as

follows [88]:

1. Validating the signature chain from the software attestation to the attestation CA (e.g.,

Intel CA),

2. Verifying that no keys have been revoked and the signing application is valid,

3. Confirming the status of the trusted computing base,

4. Comparing the enclave measurement in the quote with the expected value.

The 1st three steps are typically offloaded to an attestation verification service, but the last

step should be done by the client (i.e., verifier). This means that if the verifier wants to

perform remote attestation, she needs to request the verification of the received assertion to

the attestation verification service and to know the expected value in advance. Note that this

results in additional round-trips to the attestation verification service or require some method

for a client to fetch an expected value of the edge application of interest.

Software attestation. Although the profile of the software attestation varies depending on

the trusted computing platform, there are common fields including:

• Measurement: the hash value of the program to be measured. The value can be used to

identify the program.

• Device signature: the signature generated by an edge device with an attestation key.

• Nonce: the random value to guarantee the freshness of the software attestation.

The above structure of the software attestation is somewhat simplified. For example, the

software attestation in Intel SGX includes the hash of the Quote Enclave to guarantee the

62

authenticity of the signing enclave. The following is an example of the software attestation

(SA) generated by a trusted computing platform P (i.e., SAP) running an application A:

SAP = MRA∥Sign (PrivP ,Nonce∥MRA) ,

where MRA is a measurement value of an application A, PrivP is a private key of a platform

P , and Sign(sk,m) is a signature over m with a private key sk.

Among the various TEE systems, we focus on Intel SGX Data Center Attestation Primi-

tives (DCAP) [88] and ARM TrustZone [6] to substantiate the SEED architecture.

Intel SGX DCAP. Intel SGX [5] is mainly designed for its hardware products, mostly

processors for desktop/laptop computers and servers. That is, the TEE implementation in

SGX focuses on enabling secure remote computation, which offloads a computational task

from desktop/laptop clients to remote servers. Thus, Intel SGX originally uses the Enhanced

Privacy Identifier (EPID) scheme to provide the privacy of the SGX machines by leveraging

group key cryptography, which is far from our objective — visibility. On the other hand, Intel

SGX DCAP is a general certification infrastructure for third party attestation and provides the

ECDSA-based attestation, which authenticates the attester.

ARM TrustZone. On the contrary, ARM TrustZone is mainly designed for mobile and

embedded computing platforms, where ARM-based processors dominate a market share.

Hence, its design is to facilitate hardware-enforced isolation between the secure and non-

secure worlds in a device. In ARM TrustZone, there is no reference model for the attestation.

However, the Samsung KNOX platform [77] builds its own attestation infrastructure based on

TrustZone and academic proposals [55, 44]. We also build the attestation system for ARM

TrustZone detailed in §4.6.

4.2.3 TLS on the Third Party

Transport layer security (TLS) [23, 82] provides end-to-end security for Internet connections.

One of the core functionalities of TLS is to allow a client to authenticate an ASP (e.g., domain

63

name) by checking whether the counterpart owns its private key, which corresponds to its

public key on the certificate. Therefore, an edge application running over a large distributed

infrastructure should authenticate itself as the ASP with its private key.

TLS with remote attestation. There are two representative proposals to combine TLS with

remote attestation in the academic community – Middlebox TLS (mbTLS) and SPX.

In Middlebox TLS (mbTLS) [69], all the middleboxes have their own certificates. Each of

the two endpoints authenticates their middleboxes individually and performs remote attestation

on them individually during the mbTLS handshake. If the middleboxes are attested fine, the

endpoints deliver the session keys to be used by the middleboxes.

SPX [12] is a Keyless SSL-style protocol that is enhanced with remote attestation. When

a client wants to establish a TLS session with a server, an edge device in the middle sends its

attestation proof to a server. The server attests the edge device, and if successful, sends the

shared session key to the edge device, which can then participate in the session.

Note that both protocols require a server to be involved in the session establishment.

Furthermore, the process of the attestation verification is unclear in the sense that they do not

specify how the attestation is verified with or without a remote attestation service.

Discussions on protocols for edge computing platform. From the above introductions, our

approach to combining the TLS protocol with remote attestation without sharing private keys

is designed with the following rationale.

First, the current proposals for inserting a private key into a Hardware Security Module

(HSM) [2, 33, 1] have limitations. Even if we can completely trust the HSM, we believe

removing private keys of ASPs from edge devices (as in Keyless SSL) is much safer. This is

because an edge device is physically accessible; thus, there can be many attempts to perform

side-channel attacks targeting the security modules (e.g., [102]). Furthermore, this requires a

method to bind the attestation key and the ASP’s private key; Without such methods, there

can be the TOCTTOU attack and the Cuckoo attack as described in [12].

Second, there is a trade-off between security/deployability and performance, the latter

64

of which is prioritized in practice. Keyless SSL, mbTLS, and SPX require each edge server

(or middlebox) to manage its private key. However, the performance of these schemes is

degraded compared with the current practice since an ASP should be involved in the session

establishment. On the other hand, DC performs better but requires the edge servers to manage

short-term private keys for individual domain clients to be upgraded to support the protocol.

To address the security and deployability issues of DC, Keyless SSL can be deployed as a

fallback to DC. That is, if a client does not support the DC protocol, Keyless SSL will be

used instead. Thus, we consider not only how to achieve better performance but also how to

provide a fallback mechanism and how to reduce the number of secrets.

Finally, the process of attestation verification should be clarified. We find that both mbTLS

and SPX do not detail how to verify attestations. We argue that the following two points

should be made clear in the remote attestation.

• The verification of the attestations requires round-trips to the attestation verification

service. Note that the API is provided with HTTPS [81] in the case of the Intel Attesta-

tion Service (IAS). This means that if a client uses the IAS as a verifier during its TLS

handshake, it requires another TLS session establishment with the IAS, which increases

the latency. Therefore, the problem of the attestation verification service should be

addressed.

• Obtaining the expected value of the enclave measurement in advance by a client is

challenging. As described in §4.2.1, the client connects to an edge application without

being aware that she is communicating with an edge device. Furthermore, the number of

edge applications may be unlimited in the edge computing platform. Thus, it might be

impossible for the client to manage all the measurement values of the edge applications.

65

Figure 4.1: SEED Platform Scenario. In the SEED platform that consists of SEED devices, an
attestation service, and a registry, an application service provider (ASP) develops his edge
application and registers it to the registry. The application is distributed to edge devices that
have their own attestation keys on the platform. A client that wants to connect to an ASP
transparently is redirected to the nearest edge device and gets service from the edge device.

4.3 SEED Overview

In this section, we describe a high-level overview of the SEED platform, which is shown in

Figure 4.1.

Participants. A SEED platform may have multiple SEED devices on which edge applications

are loaded and running. A SEED device can generate a software attestation leveraging its

hardware security module. We assume that every SEED device has its own public/private key

pair, which can be provisioned as described in §4.2.

The SEED platform also has two components: a registry and an attestation service. A

registry manages edge applications in the form of virtual machine or container images. When a

request for a particular application is received, the registry provides the image to the requesting

SEED device. An attestation service manages the status of attestation keys (i.e., public keys of

SEED devices) like the e.g., revocation status of the keys.

66

With the SEED platform, an application service provider (ASP) provides services at the

user’s proximity. He develops edge applications and registers them with the registry in the

platform; he need not consider how to distribute the edge applications. At the time when an

application service provider registers his application, he receives a certificate of the attestation

service run by the platform and configures the attestation service as the trusted one by inserting

the certificate into his trusted certificate store. We call a user or her program (e.g., a browser)

that uses edge services a client.

Adversary capabilities. Participants in our system are exposed to an adversary who controls

the untrusted part of the system. The adversary may also have full control of a network,

which means that he can capture all the messages on the network. He can also modify, inject,

and drop packets in the network. We also assume an adversary can mount an attack against

the software stack in the untrusted region and can perform Iago attacks [17] by giving an

invalid result of syscalls to the trusted application. However, the adversary is computationally

bounded, which means that he cannot break cryptographic primitives. The booting process for

the trusted environment is secure. Denial-of-service attacks and side-channel attacks on TEEs

are out-of-scope.

Solution overview. To resolve the issues as discussed in §4.2, we require an ASP to provide

its clients with sufficient information about an edge platform. In this way, the ASP allows a

client to verify the integrity of its edge application, while not embedding his private key into

the SEED platform. We believe this is the ASP’s responsibility since many privacy regulations,

such as the General Data Protection Regulation (GDPR), require ASPs to take accountability

with appropriate technical measures [27].

To this end, we propose that an ASP issue a CROSS CREDENTIAL (CC) to a trusted SEED

device, which can attest the loaded edge application of the ASP. The CC (i) allows the ASP

not to share his long-term private keys, and (ii) provides the following information to a client.

• A validity time that is granted by an ASP

67

• A attestation key of a device that an ASP authorizes

• A policy of an ASP (e.g., a URL that describes an edge application)

• An expected value (e.g., hash) that identifies an edge application developed by an ASP.

4.4 SEED Design

In this section, we present how SEED is designed. We begin with our security goals. Then we

detail a CC, a short-term data structure to achieve the security goals. Next, we discuss the

TLS-SEED protocol to allow a client, an edge device, and an ASP to communicate with each

other while satisfying the goals. Let us then explain the advantages of a CC.

4.4.1 Security Goals

SEED aims to provide (i) accountability for ASPs and (ii) visibility for clients, while achieving

(iii) minimal performance overhead compared with the current CDN practice.

• Accountability: In the current distributed system such as CDNs, an application service

provider (ASP) has no other choice but to trust the management of the system without any

technical assurance. For trustworthy services, the ASP may want to attest his application

deployed over the third party platform (Authorization after attestation). Note that this

authorization should be performed without sharing his private key (No private key

sharing) while the number of secrets managed by a SEED platform should be kept minimal

(Minimal secrets).

• Visibility: A client is not aware of a middle node (i.e., edge device) that can store her

sensitive data in the current practice. We propose that she should know (i) if such a middle

node exists, and (ii) whether it is authorized by an ASP (Trusted device authentication).

Furthermore, she should be able to attest an edge application to confirm whether the

application behaves as authorized by the ASP (Edge application attestation).

68

• Performance: Recall that many prior studies make cloud servers involved during hand-

shaking, which significantly increases the performance overhead compared with the current

CDN practice. The application service delay experienced by a client should be minimal

(Minimal performance overhead).

4.4.2 Cross Credential (CC)

To achieve the above security goals, we introduce a short-term proof, called a CROSS CRE-

DENTIAL (CC). The CC proves that an edge application is trustworthy and running on a SEED

device is authorized by an ASP. The structure of a CC can be expressed as follows; its notation

is provided in Table 4.1:

CCS
Dev = m2∥SignS (PrivS ,m2)

where,

binding = m1∥SignDev (PrivDev,m1)

m1 = H (PubS∥MRApp)

m2 = not_before∥not_after∥binding
A binding consists of a message m1 and its signature with the private key of a SEED

device, where m1 is the hash value of two elements: (i) the public key of an ASP (PubS) and

(ii) the measurement of an edge application (MRApp). This means that the SEED device with

its private key (PrivDev) loads an edge application, which is identified with the measurement

value (MRApp) of the application. The edge application is developed by the ASP (i.e., the

owner of the public key PubS). The not_before and not_after, which indicate the validity

period of a CC, are prepended to binding, resulting in m2. Finally, m2 is signed by the ASP S,

which is CCS
Dev. Note that the CC is used within the validity time and until the public key of

the SEED device or that of the ASP is changed.

69

Notation Meaning
ASP An application service provider (ASP)
C A client

Dev An edge device
rande A random value generated by an entity e
MRe The measurement value of an entity e
SAe The software attestation signed by an entity e
CCe

f The cross credential between an entity e and an entity f , meaning
that an entity e authorizes its service over an entity f

Pube An entity e’s public key
Prive An entity e’s private key
mi The message indexed with i

H(m) The hash of message m
Sign(k,m) The signature of message m with key k

Signe The signature generated by an entity e
a||b a concatenated with b

Table 4.1: Notation used in the description of TLS-FRONTEND-SEED and TLS-BACKEND-
SEED.

4.4.3 TLS-SEED: TLS extensions for SEED

TLS-SEED is a set of protocols to establish a secure session with a SEED device. Specifically,

TLS-SEED consists of two protocols: (i) TLS-BACKEND-SEED between the SEED device and

a cloud server operated by an ASP (i.e., the backend channel) and (ii) TLS-FRONTEND-SEED

between a client and the SEED device (i.e., the frontend channel). We detail each protocol in

the following. Note that both protocols are based on both TLS 1.2 [23] and TLS 1.3 [82].3

TLS-BACKEND-SEED

The main objectives of TLS-BACKEND-SEED are (i) to allow ASPs to take accountability —

authorization after attestation (), (ii) not to share the private keys of the ASPs with edge

devices (), and (iii) to keep minimal secrets in the edge computing platform () — by

issuing CCs. The protocol is executed whenever a SEED device loads the application or the

validity time in the CC is expired. The overall process is shown in Figure 4.2.

3The way to extend the TLS handshake is defined in [23] with the extension message in ClientHello and
ServerHello.

70

Figure 4.2: TLS-BACKEND-SEED. An ASP performs remote attestation during the hand-
shake and authorizes the SEED device by updating another CC after the handshake ().
Thanks to the CC, the ASP need not transfer his private key to the SEED device (). Note
that the CC is public; thus, the SEED device only needs to protect its own private key ().

Figure 4.3: TLS-FRONTEND-SEED. This process includes the presentation of a CC. The
CC helps the client verify (i) the communication counterpart is the intended edge application
on the edge device authorized from the ASP (), and (ii) the edge application will behave
as expected (). Note that this protocol does not add any additional round-trip messages as
similar to the current CDN practice ().

1. A SEED device initiates this protocol with ClientHello including a special constant (say,

TLS-BACKEND-SEED) to indicate its support of the protocol (➀).

2. An ASP responds with TLS-BACKEND-SEED in ServerHello to agree on the usage of the

protocol (➁).

3. Then, the ASP sends (i) CertificateRequest to request the SEED device’s certificate

and (ii) Certificate to deliver its certificate (➂).

4. The SEED device validates the ASP’s certificate and checks whether the ASP is one of the

contractors.

71

5. If successful, the SEED device sends Certificate that includes its certificate (➃), along

with the software attestation (➄). For the nonce value, the hash value of the handshake

messages until this point is used to bind the software attestation to this session and to

guarantee the freshness.

6. The ASP validates the SEED device’s certificate and checks whether the SEED device can

be trusted. Then, the ASP verifies the signature in the software attestation with the help of

the attestation service in the edge computing platform.

7. If successful, the ASP compares the measurement value in the software attestation with

the expected value. Note that the ASP knows the expected value since he deploys the edge

application.

8. Finally, both proceed with the remainder of the protocol and establish the session key.

After establishing the backend session, the SEED device and the ASP cooperate to generate

a CC according to the following procedure:

1. The SEED device generates a hash value by concatenating the ASP’s public key and the

measurement of the deployed edge application.

2. The SEED device signs the hash with its private key and sends the signature to the ASP.

We call this value CCRequest.

3. Then the ASP verifies the signature and checks the binding value in CCRequest.

4. If the verification succeeds, the ASP prepends the validity time to CCRequest and finally

signs it, resulting in a CC.

5. Finally, the ASP sends the CC back to the SEED device.

TLS-FRONTEND-SEED

The purpose of TLS-FRONTEND-SEED is to provide visibility for clients – trusted device

authentication () and edge application attestation () – without adding substantial

72

overheads (). Note that TLS-FRONTEND-SEED provides a method for a client to attest

the edge applications even if the client does not know the hash values of the edge applications.

Figure 4.3 illustrates the process of TLS-FRONTEND-SEED as follows:

1. The client begins with this protocol by sending ClientHello including TLS-FRONTEND-SEED

to use TLS-FRONTEND-SEED if possible (➀).

2. On intercepting the message, the SEED device examines the ClientHello extensions to

check TLS-FRONTEND-SEED. If so, the SEED device includes TLS-FRONTEND-SEED in

ServerHello to indicate its support (➁).

3. Then, the SEED device also provides its certificate (➂) and the ASP’s certificate (➃).

4. Next, the SEED device sends the software attestation (➄) of which the nonce is the hash

value of the handshake messages, followed by the CC (➅).

5. On receiving the two certificates along with the software attestation and the CC, the client

verifies them as follows:

• (Certificate validation) The client initially validates both certificates and checks the name

in the ASP’s certificate.

• (software attestation validation) The client then verifies the signature in the software

attestation. If the signature is proven to be valid, she can confirm that (a) the software

attestation is originated from the SEED, (b) it is freshly generated, and (c) the measure-

ment value is not altered. Note that at this point, the client cannot know whether the

measurement value is correct or not. She will get the measurement value from the CC

later on.

• (Signature verification in CC) Next, the client verifies two signatures in the CC. By

confirming the SEED device’s signature and the ASP’s signature, the client can figure

out the communicating counterpart is the edge application running on the SEED device

authorized by the ASP.

• (Validity time checking) After the verification, the client checks the validity time. If the

73

current time is not within the validity time, she aborts the session; otherwise, we proceed

to the next step.

• (binding verification) The client finally extracts the public key from the ASP’s certificate,

concatenates it with the measurement value from the software attestation, and applies

the hash function to the concatenated data. If the hash value matches the binding in

the CC, the client confirms that (a) the ASP deploys the program that is identified by

its measurement value and (b) the measurement value reported by the SEED device is

correct.

6. The remainder of the TLS-SEED handshake proceeds as the standard TLS handshake, and

the frontend session is finally established.

Other issues

For session resumption, we streamline TLS-FRONTEND-SEED by removing the certificates.

It is sufficient for the client only to verify the software attestation since the client has already

received a pre-shared key (from the SEED device), which is used for the session resumption.

We assume a fallback mechanism for a client that does not support TLS-FRONTEND-

SEED. In such cases, the client sets up a connection with the ASP while the SEED device

serves as a relay.

We want to highlight two points regarding the fallback mechanism. First, the session

established by the fallback mechanism should not allow the SEED device to inspect the

messages between the ASP and the client. As the SEED device is not involved in the handshake

and cannot know the session key between the ASP and the client, the SEED device cannot

read the messages.

Second, the fallback mechanism should not add substantial overhead. Since the SEED

device serves as an application-layer relay, this might add some computation overhead on the

device. Our testbed experiments show the overhead is marginal in terms of the latency and the

CPU computation to be detailed in §4.6.

74

4.4.4 Implications of Cross Credential

Contributions of CC. First, the SEED platform should provide authorization after attestation

(). A CC can be a time-bounded authorization token by an ASP. Recall that the ASP attests

his edge application during the handshake. After this, he can deauthorize the service due to

the compromised platform or other reasons based on his policy.

Second, the ASP should not share his private key with the SEED platform (). A SEED

device does not impersonate the ASP. Instead, the SEED device proves the integrity of the

application with the CC.

Third, the number of secrets should be minimal on a SEED platform (). Using CCs

does not increase the number of secrets kept in a SEED device, which protects its private key

only.

Fourth, the client can figure out the counterpart is a trusted computing platform (i.e., a

trusted device) authorized by the ASP (). Note that only a device that participates into

the procedure of a CC generation can use the CC since CC includes a device’s unique key.

Therefore, other devices cannot use the CC to impersonate a particular device. The CC

indicates that the ASP deploys its application on a trusted device in the SEED platform, and

authorizes the device to run the application.

Lastly, the client should be able to attest the remote edge application to ensure that it is

running as expected without compromises (). Since the CC includes the hash value of the

edge application, the client obtains the expected value for the attestation and compares it with

the measurement value in the software attestation. In this way, the client can perform remote

attestation for the third party.

Discussions of CC. An ASP can always control the permission to let the SEED platform

provide the service on his behalf. This is mainly controlled by two components in a CC: (i)

the validity period and (ii) certificate revocation.

(1) When signing the binding received from the SEED platform, the ASP can decide

75

the validity period of the CC. The longer is the validity period, the less frequently is a

CC updated. However, he may not be able to counter security incidents earlier. (2) If the

ASP is compromised, malicious services could be deployed at the SEED platform. Once the

administrator of the ASP notices the incident, his certificate can be immediately revoked.

Since the CC is also signed by his certificate, revoking either his certificate or the device’

certificate may immediately stop the effect of the compromised edge application4. Note that

due to this feature, the revocation mechanism of CCs is not needed.

4.5 Security Analysis

In this section, we analyze the security of the TLS-FRONTEND-SEED by which a client and

an edge device set up a TLS connection. To this end, we extend the authenticated confidential

channel establishment (ACCE) model to support TLS-FRONTEND-SEED, resulting in ACCE-

SEED. Based on the extended model, we formally prove that the TLS-FRONTEND-SEED is

ACCE-SEED-secure.

4.5.1 Overview of ACCE

The ACCE model originally used in the security proof of the TLS 1.2 protocol does not

guarantee indistinguishability in the authenticated key exchange model [43]. Instead, it focuses

on the channel established with a session key. The model separates the pre-accept phase (i.e.,

the handshake protocol) for entity authentication and the post-accept phase (i.e., the record

protocol) for channel security. The model is then used to prove that the session key established

after entity authentication in the pre-accept phase constructs a secure channel used in the

post-accept phase. Since CCs can also be used in TLS 1.2, the method of entity authentication

in TLS needs to be revised. Thus, we extend the ACCE model to the ACCE-SEED model to

prove the security of TLS-SEED.

4The client is responsible for checking the the revocation status of both certificates.

76

4.5.2 ACCE-SEED Protocol Execution Environment

Participants, sessions, and attributes. The environment consists of nP participants P1, · · · , PnP ,

each of which is one of C (Clients),DEV (SEED devices), orASP (ASPs). We use P for a set

of all the participants (i.e., P = C∪DEV∪ASP). Also, all the participants inDEV andASP

have their long-term private/public key pairs. Moreover, each participant has the following

variables, some of which can be set to none, ⊥. Note that for an n-tuple p = (c1, · · · , cn), we

use p.ci(i ∈ {1, · · · , n}) to denote an i-th component in the n-tuple.

• sk: a private key of a participant. A client may not have her own key pair; thus, it is set

to ⊥.

• pk: a public key of a participant. A client may not have her own key pair; thus, it is set

to ⊥.

• CertSet: an indexed set of certificates.

• MRSet: a set of measurement values, each of which is denoted by mrij , a hash of an

edge application deployed by ASP Pi over device Pj .

• CCSet : a set of “valid” cross credentials, each of which is denoted as ccij , which

is a CC issued by ASP Pi to device Pj . Note that a CC is expressed as a 5-tuple,

ccij = (ts, te, Pi.pk,mrij , σj , σi). ts and te are the starting ending times of the CC,

respectively. where Pi ∈ ASP , Pj ∈ DEV . Also, σj = Sign(Pj .sk,m1), where

m1 = H(Pi.pk∥mrij), and σi = Sign(Pi.sk,m2), where m2 = ts∥te∥m1∥σj .

Each participant Pi can run concurrent sessions. We denote the s-th session of Pi by πs
i

and the maximum number of the sessions per participant is nS . The session πs
i can access the

long-term key of Pi and maintains the state of the session with the following variables:

• ρ ∈ {init, resp}: The role of the party in the session. The session of init initiates the

77

handshake. On the other hand, the session of resp responds to the initial message from

the session of init.

• α ∈ {inprogress, reject, accept}: The status of the session.

• k: The session key established after the key exchange.

• pid: The communication counterpart.

• tid: The intended ASP. For sessions of participants in DEV or ASP , this is set to the

intended target of the client.

• sid: The session identifier. In the TLS protocol the session identifier is a transcript of

the handshake messages like a tls_unique value in [108].

• timestamp: The timestamp when the session is established.

• sa: The software attestation used during the handshake. It is denoted by saij =

(nonce,mrij , σj), where nonce is the concatenation of two random values, the hash

of the handshake messages until this point, mrij is a measurement value of an edge

application deployed to Pj by Pi, and σj is a signature generated by Pj over nonce and

mrij .

• cc: The cross credential used in the session.

• stE , stD: States for the stateful authenticated encryption and decryption algorithms.

• b: A hidden bit (used for a security experiment). This value is initialized with b
$←

{0, 1}.

Capabilities of an adversary. As described in §4.3, we assume that a Dolev-Yao adversary

can fully control the network, meaning that it can read, reorder, create, alter, and drop messages.

During the handshake, the adversary can interact with sessions by using the Send queries as

described below:

78

• Send(πs
i ,m)→ m′: The adversary sends this query with message m to πs

i . Pi processes

message m, updates the state of πs
i , and generates message m′ if needed, following the

protocol. The query returns an error symbol ⊥ if the session is already established (i.e.,

πs
i .α = accept).

The adversary can also leak the private key or the session key with the two queries.

• Reveal(πs
i)→ k: With this query, the adversary can get the session key (i.e., πs

i .k).

• Corrupt(Pi)→ sk: If Pi.sk =⊥, it returns⊥. Otherwise, with this query, the adversary

can get the long-term private key of Pi.

After the secure channel is established, the adversary can encrypt/decrypt a message with

the following two oracles that perform encryption/decryption with the shared key established

during the handshake [15].

• Encrypt(πs
i ,m0,m1) → C: If πs

i .k =⊥, the query returns ⊥. Otherwise, it performs

authenticated encryption with additional data (AEAD) encryption on both m0 and m1

(the resultant ciphertexts are C0 and C1 respectively), updates states of a session, and

returns one of the ciphertexts according to the result of tossing a coin. The algorithm is

described in Algorithm 1.

• Decrypt(πs
i ,C) → m or ⊥: If πs

i .k =⊥, the query returns ⊥. Otherwise, it performs

AEAD decryption on C, checks states of the session, and returns the decrypted message

if there is no error. The algorithm is described in Algorithm 2.

Note that the above encryption and decryption oracles capture indistinguishability under

chosen ciphertext attack, integrity of ciphertexts, integrity of associated data, and stateful

delivery of ciphertexts.

Finally, we add two oracles called RegParty and Deploy. RegParty is a modified version

of the new party-registration oracle in [13] and Deploy is an oracle to capture the behavior of

deploying an edge application into an edge device by an ASP.

79

• RegParty(Pi, role): this oracle registers Pi as a role ∈ {“ASP”, “Dev”}. Then, a private

key, a public key, and a certificate are installed to Pi, while the adversary gets a certificate

and a public key.

• Deploy(Pi,mrij , Pj): with this query where Pi ∈ ASP and Pj ∈ DEV , mrij is added

to Pi.MRSet and Pj .MRSet. Furthermore, ccij is added to Pi.CCSet and Pj .CCSet.

Matching sessions. We call πt
j matches πs

i if two conditions are met: (i) πs
i .ρ ̸= πt

j .ρ and (ii)

πs
i .sid is a prefix of πt

j .sid or equal to πt
j .sid.

Session freshness in ACCE-SEED. We call πs
i of Pi is fresh with a counterpart Pj when the

following conditions hold:

• On the last query of the adversary, πs
i has finished its handshake by πs

i .α = accept.

• No Corrupt query was made to Pi, πs
i .pid, and πs

i .tid.

• No Reveal query was made to πs
i and πt

j where πs
i .sid = πt

j .sid

Correctness of ACCE-SEED. For two communicating oracles πs
i of Pi (Pi ∈ C) and πt

j of

Pj (Pj ∈ DEV), we say the ACCE-SEED protocol is correct if, in the presence of a benign

adversary, the following conditions hold:

• πs
i .α = accept and πt

j .α = accept

• πs
i .k = πt

j .k ∈ K,

where πs
i .k and πt

j .k are session keys generated by πs
i and πt

j , respectively.

4.5.3 ACCE-SEED Security

We extend the ACCE model and define three security properties for ACCE-SEED-security:

trusted device authentication, edge application attestation, and (front-end) channel security.

80

Security experiment. In the ACCE-SEED security experiment, there is an adversary A

against a challenger. Then, the adversary uses the queries defined in §4.5.2 to break the

TLS-FRONTEND-SEED protocol Π and to win the following games.

DEFINITION 1 (Trusted device authentication (TDA)) When TLS-FRONTEND-SEED is

executed, a client should be able to authenticate the SEED device equipped with a hardware

security module and authorized by the intended ASP. In this game, the adversary A can query

the oracle RegParty, Deploy, and other ACCE oracles. We say the adversary wins the TDA

game if there exists a session πs
i (Pi ∈ C) in accept state without a matching session πt

j from

partner Pj ∈ DEV that provides services on behalf of Pk ∈ ASP . This can be formalized as

follows:

• πs
i .ρ = init.

• πs
i .α = accept.

• πs
i .tid = Pk.

• Neither Corrupt(Pj) nor Corrupt(Pk) has been issued before πs
i enters accept state.

• RegParty(Pk, “ASP”), RegParty(Pj , “Dev”), and

Deploy(Pk,mrkj , Pj) have been queried, but there is no matching session πt
j such that

πs
i .sid = πt

j .sid.

AdvtdaΠ (A) is defined as the adversary’s winning probability, where the probability is taken

over the random coins of all the participants.

DEFINITION 2 (Edge application attestation (EAA)) When TLS-FRONTEND-SEED is

executed, a client wants to confirm whether the counterpart is an edge application deployed by

the ASP. We say the adversary wins the EAA game if there exists a session πs
i (Pi ∈ C) in

accept state and the following conditions simultaneously hold for Pj ∈ DEV and Pk ∈ ASP :

81

• πs
i .ρ = init

• πs
i .α = accept.

• πs
i .pid = Pj

• πs
i .tid = Pk

• πs
i .sa.mr = mrkj

• πs
i .cc.mr = mrkj

• No Corrupt query is made to Pj and Pk

• Deploy(Pk,mrkj , Pj) query has been issued, but there is no matching session πt
j such

that πs
i .sid = πt

j .sid.

DEFINITION 3 (Channel security (CS)) In a channel security game, the adversary A uses

oracles arbitrarily and outputs a tuple (πs
i , b). He breaks the channel security if the following

conditions simultaneously hold:

• πs
i is fresh with the counterpart Pj ∈ DEV .

• πs
i .b = b′.

AdvcsΠ(A) is defined as the adversary’s winning probability, denoted by |p− 1
2 |, where p is

the probability that A correctly answers the encryption challenge (i.e., , b = b′).

4.5.4 Security Result

We state the following theorem to prove the security of TLS-FRONTEND-SEED.

THEOREM 1 Let Π be TLS-FRONTEND-SEED. If a signature scheme used in Π satisfies

existentially unforgeable under chosen message attacks (Definition 4) and a secure hash

function used in Π satisfies collision-resistant (Definition 5), then Π is ACCE-SEED-secure.

82

The following lemmas are stated to prove Theorem 1.

LEMMA 1 Let Π be TLS-FRONTEND-SEED. If a signature scheme used in Π satisfies existen-

tially unforgeable under chosen message attack (Definition 4) and a secure hash function used

in Π satisfies collision-resistant (Definition 5), then Π provides trusted device authentication

as well as edge application attestation with the following adversary’s advantage:

Adv
tda,eaa
Π ≤ (nPnS)

2

2ℓ

+ nPnS · (nP · ϵeuf-cma + nPnS · (nP · (ϵeuf-cma + 2ϵcoll)))

Proof. The proof is based on a sequence of games [94]. Let breakδ be the event that the
adversary wins the game in GAME δ, and abortδ be the event that the challenger aborts in
GAME δ.
GAME 0. [Original experiment] This game is equal to the ACCE-SEED experiment de-
scribed in §4.5.3; thus,

Adv
tda,eaa
Π (A) = Pr[break0]

GAME 1. [Exclude colliding nonces] We add an abort rule. A challenger aborts if a nonce is
repeatedly used. Thus, the following is satisfied with ℓ-bit nonces.

Pr[break0] ≤ Pr[break1] +
(nP ·nS)

2

2ℓ

GAME 2. [Identify accepted client] We add an abort rule. A challenger guesses a pair

(i∗, s∗)
$← (nP , nS) and aborts the game if πs∗

i∗ has πs∗
i∗ .ρ ̸= init or πs∗

i∗ is not the first session
that satisfies DEFINITION 1 or DEFINITION 2. The probability that a challenger guesses the
correct pair is 1

nPnS
; thus, the following is satisfied:

Pr[break1] = nPnS · Pr[break2]

GAME 3. [Signature forgery (SEED device)] We add an abort rule. A challenger aborts the
game if a session πs∗

i∗ receives a SEED’s certificate indicating j and a signature for a session
key material is valid, but there is no session that sends the signature.

Pr[break2] ≤ Pr[break3] + Pr[abort3]

Note that the event abort3 can only occur if a signature is forged by an adversary. For
each entity, the success probability to forge the signature by an adversary is ϵeuf-cma; thus,
Pr[abort3] ≤ nP · ϵeuf-cma. Therefore, we get:

Pr[break2] ≤ Pr[break3] + nP · ϵeuf-cma

83

GAME 4. [Identify communicating peer] We add an abort rule. In this game, a challenger

guesses a pair (j∗, t∗)
$← [nP] × [nS] that represents a communicating session. Then, a

challenger aborts the game if the following Send-queries have never been issued.

• Send(πs∗
i∗ ,⊥) that returns a message m0 with a client random,

• Send(πt∗
j∗ ,m0) that returns a message m1 with a signature including a client random.

The probability that a challenger guesses the right answer is 1
nPnS

; thus, we have

Pr[break3] = nPnS · Pr[break4]

GAME 5. [Signature forgery (ASP)] In this game, the game proceeds as before, but we add
an abort rule. A challenger aborts the game if a session πs∗

i∗ receives an application service
provider’s certificate indicating k with CCk

j∗ , πs∗
i∗ .timestamp ∈ [ts, te], both CC.σj∗ and

CC.σk are valid, but Pk has never generated CCk
j∗ .σk. Technically, the event abort5 happens

when an adversary forges the signature with the success probability ϵeuf-cma for each entity.
Thus:

Pr[break4] ≤ Pr[break5] + Pr[abort5]
≤ Pr[break5] + nP · ϵeuf-cma

GAME 6. [Identify an ASP] In this game, a challenger proceeds the game as before, but we

add an abort rule. A challenger guesses k∗ $← [nP] and aborts the game if πs
i .tid = Pk∗ , but

Deploy(Pk∗ ,mrk
∗

j∗Pj∗) has never been issued (i.e., mrk
∗

j∗ /∈ Pk∗ .MRSet), thus:

Pr[break5] = nP · Pr[break6]

GAME 7. [Remove colliding edge applications] We add an abort rule. A challenger aborts
the game if the measurement value reported by a SEED and the expected value in the binding
(CCk∗

j∗ .b
k∗
j∗) are the same, but the measured application and the deployed application are

different. The abort7 is an event that a hash collision happened; thus, Pr[abort7] ≤ ϵcoll.
Therefore, we get:

Pr[break6] ≤ Pr[break7] + ϵcoll

GAME 8. [Remove the hash collision] We add an abort rule. A challenger aborts the game if
the hash collision happened such that πs∗

i∗ .sid = πt∗
j∗ .sid but the messages that make πs∗

i∗ .sid

and πt∗
j∗ .sid are different.

Pr[break7] ≤ Pr[break8] + ϵcoll

Note that in GAME 8, the conditions in DEFINITION 1 and DEFINITION 2 cannot be satisfied;
thus, Pr[break8] = 0

Taking all the above probabilities in the games together, LEMMA 1 is proved.

84

LEMMA 2 Let Π be TLS-FRONTEND-SEED and A be an adversary in the channel security

game. If a pseudorandom function PRF is prf-secure, a stateful length hiding authenticated

encryption is slhae-ecure, and the DDH-problem is hard with respect to G, then Π provides

the channel security.

AdvencΠ = ϵenc ≤ ϵtda,eaa + nPnS · (ϵddh + 2 · ϵprf + ϵslhae)

Proof. Let guessδ be the event that the adversary guesses the correct answer, i.e., πs
i .b = b in

GAME δ, and abortδ be the event that the challenger aborts in GAME δ.
GAME 0. [Original experiment] This game equals to ACCE-SEED experiment described in
§4.5.3; thus,

Adv
tda,eaa
Π (A) = Pr[guess0]

GAME 1. [Exclude sessions without matching sessions] In this game, we add an abort rule.
A challenger aborts the game if a session does not have a matching session. Thus, we have:

Pr[guess0] = Pr[guess1] + ϵtda,eaa

GAME 2. [Identify a session] In this game, a challenger guesses a pair (i∗, s∗) $← [nP]×[nS].
The game proceeds as before but aborts if (i∗, s∗) is different from an adversary’s chosen
session (i, s). The probability that a challenger is correct is 1

nPnS
. Therefore, we get:

Pr[guess1] = nPnS · Pr[guess2]

Note that due to GAME 1 where enforces a matching session, this game also identifies the
peer of πs∗

i∗ . We will denote the peer πt∗
j∗ .

GAME 3. [Replace the premaster secret] In this game, we replace a uniform value from
{0, 1}n for the premaster secret established between πs∗

i∗ and πt∗
j∗ , where n is the length of

the premaster secret. Note that in TLS-DHE, the premaster secret is gab if πs∗
i∗ ’s DH keypair

is (a, ga) and πt∗
j∗’s DH keypair is (b, gb). An adversary that can differentiate GAME 2 and

GAME 3 can solve the DDH problem. Thus, we have:

Pr[guess2]− Pr[guess3] ≤ ϵddh

GAME 4. [Replace the master secret] In this game, we substitute a uniform value from
{0, 1}n for the master secret of πs∗

i∗ and πt∗
j∗ , which is computed with a pseudorandom function

PRF, where n is the length of the master secret.

85

Note that ms = PRF(pms, labelms∥rC∥rS) in GAME 3 and it is changed to m̃s
$←

{0, 1}n in GAME 4. Therefore, an adversary that can differentiate GAME 3 and GAME 4 can
break PRF. Thus, we get:

Pr[guess3]− Pr[guess4] ≤ ϵprf

GAME 5. [Replace encryption keys] In this game, we change encryption keys k of πs∗
i∗ and

πt∗
j∗ , which is computed as k = PRF(ms, labelk∥rC∥rS), into a uniform value from {0, 1}ℓ,

where ℓ is the length of the encryption keys. As in the previous game, an adversary that can
differentiate GAME 4 and GAME 5 can break PRF. Thus, we get:

Pr[guess4]− Pr[guess5] ≤ ϵprf

Note that in this game, the encryption keys become independent of the key material
since they are random values. This means that if an adversary can guess the correct answer
in this game, he can break the stateful length hiding authenticated encryption. Therefore,
Pr[guess5] = ϵslhae

Taken all the above probabilities together, we get the result.

4.6 Evaluation

We now evaluate the performance of TLS-SEED; we first discuss how we implement TLS-

SEED and then present its performance.

4.6.1 SEED Implementation

SEED devices we first build two SEED devices based on Intel SGX and ARM TrustZone;

the SGX-based SEED device is built on top of Intel NUC7CJYH with Intel Celeron J4005

at 2.00GHz and 8GB memory, while the ARM TrustZone-based SEED device is on top of

Hikey960 with Cortex-A73 at 2.40GHz and 4GB memory.

We also implement (i) an ASP on Amazon Web Services (AWS) EC2 with Intel Xeon

CPU E5-2676 at 2.40GHz and 1GB memory, and (ii) a client on a laptop equipped with Intel

Core i7-7500U CPU at 2.70GHz and 8GB memory to request content.

TLS extensions for SEED We extend OpenSSL-1.1.1e to implement TLS-SEED: TLS-FRONTEND-SEED

deployed on the client and the SEED device, and TLS-BACKEND-SEED on the SEED device

and the service provider. We also implement other TLS extensions as a reference to ours;

86

Keyless SSL [98] and Delegated Credential [9]5. The ciphersuites used in this experiment are

ECDHE-ECDSA-AES128-GCM-SHA256 for TLS 1.2 and AEAD-AES128-GCM-SHA256 for TLS

1.3, which are widely used in practice [50]. All digests and signatures are generated based on

the SHA-256 hash algorithm, which is a default hash function in TLS 1.2 [23].

4.6.2 Experiment Settings

We first locate the client and the SEED device in the same local network, and they communicate

via WiFi. When locating an ASP, however, we need to vary the distance between the ASP and

the SEED device to consider diverse cloud and edge settings; for example, a client may have

to directly communicate with an ASP if unexpected errors occur on the SEED device or the

application has not been loaded yet on the SEED device due to its incremental deployment.

Testbed C- SEED

(SGX)
SEED (SGX) -

S
C - SEED

(TZ)
SEED (TZ) -

S

Intra-country 4.194ms 22.499ms 9.386ms 22.921ms
Inter-country 4.194ms 52.673ms 9.386ms 54.601ms

Table 4.2: Networking Settings. The table describes the round-trip times between entities in
each scenario, where C and a SEED device (both SGX based and TrustZone (TZ) based) are
in the same campus while S is located depending on the scenarios.

To this end, we first consider an experiment scenario where the ASP is located near the

SEED device; we pick an EC2 instance whose region is located in the same country as the

SEED device (called the intra-country scenario). We next find other EC2 instances located in

the other regions; we deliberately choose one whose latency to the SEED device is at least

twice larger than that of the instance located in the same country as the SEED device (called

the inter-country scenario). Table 4.2 shows the network profiles of our settings: roundtrip

times (100 trials of ping) between the client (C) and the SEED device, and the SEED device

and the server (S) depending on the scenarios.

5Please refer to our implementation at https://github.com/tls-seed

87

https://github.com/tls-seed

4.6.3 Performance Evaluation

We evaluate the performance of the SEED platform from the perspective of the client and

the edge device. First, the edge application is assumed to be located near the edge of the

network; thus, its network latency to the client is small. However, all of the communications

between the client and the edge application are now on top of the TLS protocol, thus making

its initial handshake between the two parties heavily impact on users’ quality of experience.

To investigate its impact, we measure and analyze the handshake latency between the client

and the edge device.

Second, the SEED device now has to spend extra CPU cycles for its cryptographic opera-

tions, such as generating signatures, which can impose more computational overhead than our

expectation. Thus, we have to estimate the cost of TLS-SEED (i.e., CPU microbenchmark) to

understand how much computation resource a single SEED device needs to efficiently scale

out the number of edge applications.

Third, to benefit from TLS-SEED, the client should be upgraded to support TLS-FRONTEND-

SEED, which is a hurdle in terms of deployability. Note that the SEED device can know whether

the client supports TLS-FRONTEND-SEED when it receives a ClientHello message, SEED

has a fallback mechanism for a client that does not support TLS-FRONTEND-SEED. To

measure the fallback overhead, we evaluate the session establishment time between the client

and the server with and without the SEED device. In the latter case, the SEED device is an

application level relay.

Handshake Latency.

Figure 4.4 shows the experiment results and we make a number of observations. First,

we observe that Standard TLS achieves the best performance in TLS handshakes in all

scenarios, which is expected as the SEED device in Standard TLS just intercepts the TLS

handshake destined to the server and pretends to be the server. Note that it does not provide

any security benefits.

88

Standard
TLS

TLS-SEED Delegated
Credential

Keyless
SSL (Inter)

Keyless
SSL (Intra)

1

10

100

1000
m

s
Intel SGX
ARM TrustZone

Figure 4.4: Handshake Latency

Second, we observe that Keyless SSL takes longer than the other schemes to finish the

TLS handshake in all scenarios; this is because the SEED device in Keyless SSL needs to

communicate with the server that performs private key operations even if the edge application

services the client. This extra round trip incurs substantial delays when the server is located in

the different region (160.18ms (intra-country) and 241.3ms (inter-country) in SGX, 210.46ms

(intra-country) and 356.41ms (inter-country) in TrustZone), which shows 15.11 times (intra-

country) and 22.76 times (inter-country) in the SGX scenario while 19.30 times (intra-country)

and 32.70 times (inter-country) longer delay than that of Standard TLS.

Lastly, TLS-SEED shows the handshake delay of 11.6ms (in SGX) and 12.3 (in TrustZone),

which incurs only 9.43% (in SGX) and 12.84% (in TrustZone) more overhead compared with

Standard TLS, while meeting all the security goals that we specified. TLS-SEED also shows

slightly more delay compared with Delegated Credential. The overhead is only 2.65%

(in SGX) and 11.82% (in TrustZone). We break down this overhead and find out that the

overhead is mainly caused when generating a signature over software attestation, which takes

between 0.5ms and 1.2ms in the experiments.

89

Handshake CPU Microbenchmarks. We now evaluate the CPU processing time required

to perform TLS handshakes on the SEED device. More specifically, we measure the elapsed

time between the ClientHello to Finished message for each of the schemes in TLS 1.3.

Standard
TLS

TLS-SEED Delegated
Credential

Keyless
SSL (Inter)

Keyless
SSL (Intra)

3

6

m
s

Intel SGX
ARM TrustZone

Figure 4.5: Handshake CPU Microbenchmarks

As Figure 4.5 shows, we find that TLS-SEED shows slightly more delay in the CPU

processing time, compared with Standard TLS and Delegated Credential. The overhead

is 5.80% (both Standard TLS and Delegated Credential in SGX), 8.33% (Standard

TLS in TrustZone), and 5.41% (Delegated Credential in TrustZone) The result shows

that SGX is slower than TrustZone. To understand this result, we execute the same program

over the non-enclave and the normal world and find that the result is similar to the result over

TEE. We conclude that the performance of the CPU accounts for the difference between SGX

and TrustZone. Note that Keyless SSL delegates private key operations to key servers; thus,

the CPU processing time in SEED devices are faster than those of other schemes.

Fallback Latency. When the client without TLS-SEED attempts to initiate a connection with

the SEED edge device, the TLS connection is set up with the ASP. However, note that the

SEED device still mediates as an application level relay, which might introduce additional

90

delay. If this incurs some overhead, it will not only exacerbate the performance of non-TLS-

SEED clients, but also hinder the incremental SEED deployment. We now measure the time to

establish a TLS session between the non-TLS-SEED client and the ASP via the SEED device,

which is compared with the non-TLS-SEED client to directly initiate a TLS handshake with

the ASP without any involvement of the SEED device.

Standard TLS
(Inter)

TLS-SEED Fallback
(Inter)

Standard TLS
(Intra)

TLS-SEED Fallback
(Intra)

0

25

50

75

100

125

150

m
s

Intel SGX
ARM TrustZone

Figure 4.6: Fallback Latency

As shown in Figure 4.6, we notice that the overhead of the fallback mechanism is steady,

but modest 5.91 ms more delays (5.68% overhead) on average. For example, when the SEED

device is implemented based on TrustZone, it introduces additional 5.13% (intra-country) and

4.68% (inter-country) overhead on average. We believe this is not a significant performance

penalty; thus, the SEED device is incrementally deployable, even with non-TLS-SEED clients.

Summary. From the experiments, we found that SEED introduces the negligible overhead

in terms of TLS handshake delays and CPU cycles, while satisfying the security goals. We

also observed that SEED introduces up to 5% of additional latency when the client is not

SEED-compliant; however, we believe it is not a serious problem to non-TLS-SEED clients

and not a hurdle to deploying the SEED platform.

91

4.7 Discussions

4.7.1 Incremental Deployment Scenario

It is worth noting that the SEED platform requires modification onto both ASPs and clients,

which can be a major obstacle for a greater deployment. However, on a positive note, we

believe that, with marginal actions by relatively few parties, transitioning to the SEED platform

is not the illusory goal: A client needs to support only the TLS-FRONTEND-SEED to establish

the session with a SEED device, of which the additional requirement is limited to adding

cryptographic libraries An ASP needs only to deploy a CC server that performs the private key

operation to generate CC, which does not have to be integrated (thus, require modification) to

the existing platform.

4.7.2 Mobility Support

As in §3.7.5, it is necessary to consider how TLS-SEED can support mobility. The terminology

used in discussion follows [62]. Since edge applications are generally loaded at a gateway or a

base station, the connection would be disconnected when a mobile host leave the corresponding

network. To maintain a session, a migration should be proceeded from one gateway (or a

base station) to another one. Then, a mobile host can be served with a migrated context or

application.

4.7.3 Dependency on TEEs

Note that CC has dependency on TEEs since different TEEs guarantee different properties.

For example, Intel SGX provides an instruction to measure a particular enclave, while it is

not true over TrustZone. Furthermore, Intel SGX is independent of the secure booting; thus,

it is sufficient for a CC to include the hash value of the enclave. However, TrustZone aims

to perform the secure booting from a bootloader to a trusted application. Therefore, if we

wants to make CC to provide sufficient information to verify a TrustZone device precisely,

92

CC should include all the hash value of the software stack including a bootloader, a trusted

operating system, and a trusted application.

4.8 Conclusion

With an increasing number of connected devices and the popularity of delay sensitive-services

such as autonomous vehicles and virtual reality, edge computing has gained momentum.

Although many proposals have been introduced for edge computing platforms leveraging

virtualization technologies, the security technologies on the edge computing platforms are not

mature yet. Since the edge computing platform is usually installed and managed by a third

party, it should have a mechanism that each communication party can trust and verify the

platform and its applications.

To achieve this goal, we presented the SEED platform leveraging the TEE, which is

accountable to ASPs and visible to clients due to TLS-SEED. One of the central elements of

TLS-SEED is a Cross Credential (CC) that represents a trust relation between an ASP and

an edge computing platform. A CC not only frees the ASP from sharing his private key, but

also allows clients to attest edge applications. Moreover, the management overhead of CCs on

the SEED platform is marginal since the architecture requires SEED to protect only its private

key, which significantly reduces the attack surface. We also formally proved that TLS-SEED

by introducing the ACCE-SEED model where three participants are involved in a session.

Also, we implemented SEED on the Intel SGX platform (Intel NUC NUC7CJYH) and the

ARM TrustZone platform (Hikey960 with OP-TEE), which are two most widely deployed

TEE technologies and demonstrated the TLS-SEED extensions by using the OpenSSL-1.1.1e

library. From the experiments, we showed that the security of the edge computing platform

could be achieved without introducing substantial communication and computation overheads.

93

Chapter 5

Conclusion

Recently, a middlebox needs a method to be participate into encrypted sessions, as HTTPS

becomes a de facto standard protocol on Internet. The widely used TLS interception scheme,

so-called SplitTLS, is knows with various security vulnerabilities; thus, many require a

protocol to make middleboxes securely participate into TLS sessions.

To this end, we classify a middlebox into two types – a middlebox-as-a-middlebox and a

middlebox-as-an-endpoint, analyze 23 previous studies (14 for a middlebox-as-a-middlebox

and 9 for a middlebox-as-an-endpoint), and get lessons respectively. Based on the learnings,

we propose MATLS for a middlebox-as-a-middlebox and TLS-SEED for a middlebox-as-an-

endpoint (especially, considering edge computing). We present MATLS considering seven

security properties that we propose to secure a TLS session with middleboxes and we prove

all the properties are achieved during the execution of the MATLS protocol by using a state-

of-the-art security verification tool Tamarin. MATLS shows marginal overheads compared

with SplitTLS in our testbed-based experiments. TLS-SEED provides an application service

provider and a client with a way to securely communicate with each other in edge computing

platforms. It allows an application service provider not to share his private keys with platforms,

while it helps a client to perform remote attestation of an edge application without relying on

attestation services. The TLS-FRONTEND-SEED protocol demonstrates that it can achieve

its properties only with negligible overheads compared with SplitTLS in edge computing

94

platforms.

We leave two challenges for future work.

Middlebox Reputation. Note that many vulnerabilities from SplitTLS are from a incorrectly

implemented middlebox or a mis-configured middlebox. To reduce the risk from incorrct

middleboxes, there needs not only a protocol that audits a middlebox like MATLS, but also a

system that manages reputation of middleboxes to allow endpoints to decide whether to opt-in

a middlebox in the TLS session. With MATLS, endpoints can report incorrect middleboxes

to a management system and the system can provide endpoints with information about

middleboxes.

User Notification and Authorization. As [83] indicates that many people at least wants

to know whether the third-party middleboxes inspect his/her traffic. Note that there is no

information about middleboxes to users in practice. The protocols that assume a middlebox

has its own certificate can provide a user with information about a middlebox (e.g., a name

of a middlebox), but a user cannot know whether to accept a middlebox. Therefore, we

should specify what information should be provided to a user to decide whether to authorize a

middlebox and consider a convenient user interface for a user to (de)authorize a middlebox

with sufficient information about a middlebox.

95

Bibliography

[1] E. 3rd Generation Partnership Project (3GPP), “5g; security architecture and procedures
for 5g system (3gpp ts 33.501 version 15.1.0 release 15),” https://www.etsi.org/deliver/
etsi_ts/133500_133599/133501/15.01.00_60/ts_133501v150100p.pdf, 2018, accessed:
2019-10-20.

[2] M. access Edge Computing (MEC) ETSI Industry Specification Group (ISG), “Multi-
access edge computing (mec); phase 2: Use cases and requirements,” https://www.etsi.
org/deliver/etsi_gs/MEC/001_099/002/02.01.01_60/gs_MEC002v020101p.pdf, 2018,
accessed: 2019-10-20.

[3] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann, “Imperfect forward secrecy: How diffie-
hellman fails in practice,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015.

[4] H. Ahlehagh and S. Dey, “Video-aware scheduling and caching in the radio access
network,” IEEE/ACM Transactions on Networking (TON), vol. 22, no. 5, pp. 1444–1462,
October 2014.

[5] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for CPU based
attestation and sealing,” in Proceedings of the 2nd international workshop on hardware
and architectural support for security and privacy, vol. 13. ACM New York, NY,
USA, 2013.

[6] ARM, “ARM security technology building a secure system using TrustZone technology
(white paper),” ARM Limited, 2009.

[7] E. Asanghanwa, “Simplifying confidential computing: Azure iot edge security
with enclaves – public preview,” https://azure.microsoft.com/en-us/blog/simplifying-
confidential-computing-azure-iot-edge-security-with-enclaves-public-preview/, 2018,
accessed: 2020-04-21.

96

https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/15.01.00_60/ts_133501v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/15.01.00_60/ts_133501v150100p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/02.01.01_60/gs_MEC002v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/02.01.01_60/gs_MEC002v020101p.pdf
https://azure.microsoft.com/en-us/blog/simplifying-confidential-computing-azure-iot-edge-security-with-enclaves-public-preview/
https://azure.microsoft.com/en-us/blog/simplifying-confidential-computing-azure-iot-edge-security-with-enclaves-public-preview/

[8] W. Ashford, “Privdog ssl compromise potentially worse than superfish,” 2015,
accessed: 2020-06-05. [Online]. Available: https://www.computerweekly.com/news/
2240241126/PrivDog-SSL-compromise-potentially-worse-than-Superfish

[9] R. Barnes, S. Iyengar, N. Sullivan, and E. Rescorla, “Delegated credential for TLS
(RFC draft),” February 2019. [Online]. Available: https://tools.ietf.org/pdf/draft-ietf-
tls-subcerts-03.pdf

[10] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy state of the union: Tam-
ing the composite state machines of tls,” in Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 2015, pp. 535–552.

[11] K. Bhardwaj, M.-W. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and K. Schwan, “Fast,
scalable and secure onloading of edge functions using AirBox,” in Edge Computing
(SEC), IEEE/ACM Symposium on. IEEE, 2016, pp. 14–27.

[12] K. Bhardwaj, M.-W. Shih, A. Gavrilovska, T. Kim, and C. Song, “Spx: Preserving
end-to-end security for edge computing,” 2018.

[13] K. Bhargavan, I. Boureanu, P.-A. Fouque, C. Onete, and B. Richard, “Content delivery
over TLS: a cryptographic analysis of keyless SSL,” in Security and Privacy (EuroS&P),
2017 IEEE European Symposium on. IEEE, April 2017, pp. 1–16.

[14] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. ACM, 2012, pp. 13–16.

[15] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key exchange for
the tls protocol from the ring learning with errors problem,” in Security and Privacy
(S&P), 2015 IEEE Symposium on. IEEE, 2015, pp. 553–570.

[16] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wil-
son, “Measurement and analysis of private key sharing in the HTTPS ecosystem,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 628–640.

[17] S. Checkoway and H. Shacham, “Iago attacks: Why the system call api is a bad
untrusted rpc interface,” in 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), vol. 41, no. 1. ACM,
2013.

[18] T. Chung, D. Choffnes, and A. Mislove, “Tunneling for transparency: A large-scale
analysis of end-to-end violations in the internet,” in Internet Measurement Conference
(IMC), 2016.

97

https://www.computerweekly.com/news/2240241126/PrivDog-SSL-compromise-potentially-worse-than-Superfish
https://www.computerweekly.com/news/2240241126/PrivDog-SSL-compromise-potentially-worse-than-Superfish
https://tools.ietf.org/pdf/draft-ietf-tls-subcerts-03.pdf
https://tools.ietf.org/pdf/draft-ietf-tls-subcerts-03.pdf

[19] Comodo, “Comodo report of incident - comodo detected and thwarted an
intrusion on 26-mar-2011,” 2011, accessed: 2020-06-09. [Online]. Available:
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

[20] E. D. Migault, “LURK protocol for TLS/DTLS1.2 version 1.0 (RFC draft),” 2017.

[21] ——, “Lurk extension version 1 for tls 1.3 authentication (rfc draft),” 2018. [Online].
Available: https://tools.ietf.org/html/draft-mglt-lurk-lurk-00

[22] X. de Carné de Carnavalet and M. Mannan, “Killed by proxy: Analyzing client-end tls
interception software,” in Network and Distributed System Security Symposium, 2016.

[23] T. Dierks, “The Transport Layer Security (TLS) protocol version 1.2,” 2008.

[24] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Transactions on
information theory, vol. 29, no. 2, pp. 198–208, 1983.

[25] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey,
J. A. Halderman, and V. Paxson, “The security impact of https interception,” in Network
and Distributed Systems Symposium, 2017.

[26] G. Eriksson, J. Mattsson, N. Mitra, and Z. Sarker, “Blind cache: a solution to content
delivery challenges in an all-encrypted web,” Ericsson review, 2017.

[27] EU, “General data protection regulation article 5.” 2018. [Online]. Available:
https://gdpr-info.eu/art-5-gdpr/

[28] Facebook, “Introducing our certificate transparency monitoring tool,” accessed:
2020-06-09. [Online]. Available: https://www.facebook.com/notes/protect-the-graph/
introducing-our-certificate-transparency-monitoring-tool/1811919779048165/

[29] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz, “Measuring https
adoption on the web,” in 26th USENIX Security Symposium, 2017, pp. 1323–1338.

[30] T. Fossati, V. K. Gurbani, and V. Kolesnikov, “Love all, trust few: On trusting interme-
diaries in http,” in Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics
in Middleboxes and Network Function Virtualization, 2015, pp. 1–6.

[31] Gaurang, “Nokia’s mitm on https traffic from their phone,” 2013. [Online]. Available:
https://gaurangkp.wordpress.com/2013/01/09/nokia-https-mitm/

[32] Google, “Https encryption on the web,” https://transparencyreport.google.com/https/
overview, accessed: 2019-09-02.

98

https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://tools.ietf.org/html/draft-mglt-lurk-lurk-00
https://gdpr-info.eu/art-5-gdpr/
https://www.facebook.com/notes/protect-the-graph/introducing-our-certificate-transparency-monitoring-tool/1811919779048165/
https://www.facebook.com/notes/protect-the-graph/introducing-our-certificate-transparency-monitoring-tool/1811919779048165/
https://gaurangkp.wordpress.com/2013/01/09/nokia-https-mitm/
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview

[33] O. C. A. W. Group et al., “Openfog reference architecture for fog computing,” https:
//www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf, p. 162,
2017, accessed: 2019-10-20.

[34] A. Guzman, K. Nekritz, and S. lyengar, “Delegated credentials for tls,” https://blog.
cloudflare.com/keyless-delegation/, 2019, accessed: 2020-04-29.

[35] J. Han, S. Kim, J. Ha, and D. Han, “SGX-Box: Enabling visibility on encrypted traffic
using a secure middlebox module,” in Proceedings of the First Asia-Pacific Workshop
on Networking. ACM, 2017, pp. 99–105.

[36] P. Hoffman and J. Schlyter, “The DNS-based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) protocol: TLSA,” IETF, RFC 6698, 2012.

[37] A. Holst, “Security as a service revenues worldwide 2018-2024,” 2020, accessed:
2020-05-29. [Online]. Available: https://www.statista.com/statistics/595164/worldwide-
security-as-a-service-market-size/

[38] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509 public key infrastructure
certificate and CRL profile,” IETF, RFC 5280, 1998.

[39] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox for
untrusted computation on secret data,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 533–549.

[40] Intel, “Edge computing – intel,” https://www.intel.com/content/www/us/en/edge-
computing/overview.html, accessed: 2020-05-05.

[41] ITU-T RECOMMENDATION, “Information technology–open systems
interconnection–the directory: Public-key and attribute certificate frameworks,”
2000.

[42] K. Jacobs, J. Jones, and T. van der Merwe, “Validating delegated credentials for tls in
firefox,” https://blog.mozilla.org/security/2019/11/01/validating-delegated-credentials-
for-tls-in-firefox/, accessed: 2020-04-29.

[43] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of tls-dhe in the
standard model,” in Advances in Cryptology–CRYPTO 2012. Springer, 2012, pp.
273–293.

[44] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B. Kang, “Privatezone:
Providing a private execution environment using arm trustzone,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 5, pp. 797–810, 2018.

99

https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://blog.cloudflare.com/keyless-delegation/
https://blog.cloudflare.com/keyless-delegation/
https://www.statista.com/statistics/595164/worldwide-security-as-a-service-market-size/
https://www.statista.com/statistics/595164/worldwide-security-as-a-service-market-size/
https://www.intel.com/content/www/us/en/edge-computing/overview.html
https://www.intel.com/content/www/us/en/edge-computing/overview.html
https://blog.mozilla.org/security/2019/11/01/validating-delegated-credentials-for-tls-in-firefox/
https://blog.mozilla.org/security/2019/11/01/validating-delegated-credentials-for-tls-in-firefox/

[45] J. Jarmoc and D. Unit, “SSL/TLS interception proxies and transitive trust,” in Black
Hat Europe, 2012.

[46] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel R⃝ software guard
extensions: Epid provisioning and attestation services,” pp. 1–10, 2016.

[47] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,
F. Jiangping, D. Frydman, G. Verin et al., “Mec in 5g networks,” in ETSI white paper,
2018, no. 28.

[48] S. Kent and R. Atkinson, “Security architecture for the internet protocol,” 1998.

[49] S. Klabnik and C. Nichols, The Rust Programming Language (Covers Rust 2018). No
Starch Press, 2019.

[50] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson, N. Vallina-Rodriguez, and
J. Caballero, “Coming of age: A longitudinal study of tls deployment,” in Proceedings
of the Internet Measurement Conference 2018. ACM, 2018, pp. 415–428.

[51] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark: Securely outsourcing
middleboxes to the cloud.” in NSDI, vol. 16, 2016, pp. 255–273.

[52] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” 2013.

[53] A. Levy, H. Corrigan-Gibbs, and D. Boneh, “Stickler: Defending against malicious
content distribution networks in an unmodified browser,” IEEE Security & Privacy,
vol. 14, no. 2, pp. 22–28, 2016.

[54] J. Li, R. Chen, J. Su, X. Huang, and X. Wang, “Me-tls: Middlebox-enhanced tls for
internet-of-things devices,” IEEE Internet of Things Journal, 2019.

[55] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure online mobile advertisement
attestation using trustzone,” in Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 2015, pp. 75–88.

[56] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When HTTPS meets CDN: A
case of authentication in delegated service,” in Security and Privacy (S&P), 2014 IEEE
symposium on. IEEE, 2014, pp. 67–82.

[57] C. Liu, Y. Cui, K. Tan, Q. Fan, K. Ren, and J. Wu, “Building generic scalable middlebox
services over encrypted protocols,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 2195–2203.

[58] P. Liu, D. Willis, and S. Banerjee, “ParaDrop: Enabling lightweight multi-tenancy at
the network’s extreme edge,” in Edge Computing (SEC), IEEE/ACM Symposium on.
IEEE, 2016, pp. 1–13.

100

[59] P. G. Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcel-
los, P. Felber, and E. Riviere, “Edge-centric computing: Vision and challenges,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 5, pp. 37–42, 2015.

[60] S. Loreto, J. Mattsson, R. Skog, H. Spaak, G. Gus, and D. Druta, “Explicit trusted
proxy in http/2.0,” 2012. [Online]. Available: https://tools.ietf.org/html/draft-loreto-
httpbis-trusted-proxy20-01

[61] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding performance
of edge content caching for mobile video streaming,” IEEE Journal on Selected Areas
in Communications, vol. 35, no. 5, pp. 1076–1089, 2017.

[62] J. Manner, M. Kojo, T. Suihko, P. Eardley, and D. Wisely, “Mobility related terminology,”
2004.

[63] D. McGrew, D. Wing, Y. Nir, and P. Gladstone, “TLS proxy server extension,” 2012.
[Online]. Available: https://tools.ietf.org/html/draft-mcgrew-tls-proxy-server-01

[64] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for the sym-
bolic analysis of security protocols,” in International Conference on Computer Aided
Verification. Springer, 2013, pp. 696–701.

[65] MENAFN, “Network security appliance market 2019 global analysis, segments,
size, share, industry growth and recent trends by forecast to 2023,” 2019, accessed:
2020-05-29. [Online]. Available: https://menafn.com/1098037674/India-Network-
Security-Appliance-Market-2019-Global-Analysis-Segments-Size-Share-Industry-
Growth-and-Recent-Trends-by-Forecast-to-2023

[66] D. Meyer, “Nokia: Yes, we decrypt your https data, but don’t worry about it,” 2013.
[Online]. Available: http://gigaom.com/2013/01/10/nokia-yes-we-decryptyour-https-
data-but-dont-worry-about-it/

[67] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X. 509 internet public
key infrastructure online certificate status protocol-ocsp,” 1999.

[68] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Munafò, K. Papa-
giannaki, and P. Steenkiste, “The cost of the s in https,” in Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
ACM, 2014, pp. 133–140.

[69] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste, “And then there
were more: Secure communication for more than two parties,” in Proceedings of the
13th International Conference on emerging Networking EXperiments and Technologies.
ACM, 2017, pp. 88–100.

101

https://tools.ietf.org/html/draft-loreto-httpbis-trusted-proxy20-01
https://tools.ietf.org/html/draft-loreto-httpbis-trusted-proxy20-01
https://tools.ietf.org/html/draft-mcgrew-tls-proxy-server-01
https://menafn.com/1098037674/India-Network-Security-Appliance-Market-2019-Global-Analysis-Segments-Size-Share-Industry-Growth-and-Recent-Trends-by-Forecast-to-2023
https://menafn.com/1098037674/India-Network-Security-Appliance-Market-2019-Global-Analysis-Segments-Size-Share-Industry-Growth-and-Recent-Trends-by-Forecast-to-2023
https://menafn.com/1098037674/India-Network-Security-Appliance-Market-2019-Global-Analysis-Segments-Size-Share-Industry-Growth-and-Recent-Trends-by-Forecast-to-2023
http://gigaom.com/2013/01/10/nokia-yes-we-decryptyour-https-data-but-dont-worry-about-it/
http://gigaom.com/2013/01/10/nokia-yes-we-decryptyour-https-data-but-dont-worry-about-it/

[70] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R. López, K. Pa-
pagiannaki, P. R. Rodriguez, and P. Steenkiste, “Multi-context tls (mctls): Enabling
secure in-network functionality in tls,” in ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4. ACM, 2015, pp. 199–212.

[71] Y. Nir, “A method for sharing record protocol keys with a middlebox in TLS,” 2012.
[Online]. Available: https://tools.ietf.org/id/draft-nir-tls-keyshare-02.html

[72] D. O’Brien, “Certificate transparency enforcement in google chrome,” 2018, accessed:
2020-06-09. [Online]. Available: https://groups.google.com/a/chromium.org/forum/#!
msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ

[73] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala, “TLS proxies: Friend or foe?” in
Proceedings of the 2016 Internet Measurement Conference. ACM, 2016, pp. 551–557.

[74] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal et al., “Mobile-edge
computing introductory technical white paper,” pp. 1089–7801, 2014.

[75] K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size does matter: Attacks and
proofs for the tls record protocol,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2011, pp. 372–389.

[76] R. Peon, “Explicit proxies for http/2.0,” 2012.

[77] S. K. Platform, “Knox white paper – root of trust.” [Online]. Available: https://docs.
samsungknox.com/whitepapers/knox-platform/hardware-backed-root-of-trust.htm

[78] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks: Shielding network
functions in the cloud,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’18), Renton, WA, 2018.

[79] A. Popov, “Prohibiting rc4 cipher suites,” p. 25, 2015.

[80] J. Reschke and S. Loreto, “’out-of-band’ content coding for HTTP (RFC draft),” 2017.

[81] E. Rescorla, “Http over tls,” 2000. [Online]. Available: https://tools.ietf.org/pdf/rfc2818.
pdf

[82] ——, “The Transport Layer Security (TLS) protocol version 1.3,” 2018.

[83] S. Ruoti, M. O’Neill, D. Zappala, and K. E. Seamons, “User attitudes toward the
inspection of encrypted traffic.” in SOUPS, 2016, pp. 131–146.

[84] D. Sabella, V. Sukhomlinov, L. Trang, S. Kekki, P. Paglierani, R. Rossbach, X. Li,
Y. Fang, D. Druta, F. Giust et al., “Developing software for multi-access edge comput-
ing,” 2019.

102

https://tools.ietf.org/id/draft-nir-tls-keyshare-02.html
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://docs.samsungknox.com/whitepapers/knox-platform/hardware-backed-root-of-trust.htm
https://docs.samsungknox.com/whitepapers/knox-platform/hardware-backed-root-of-trust.htm
https://tools.ietf.org/pdf/rfc2818.pdf
https://tools.ietf.org/pdf/rfc2818.pdf

[85] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao, “Vehicle control system coordinated
between cloud and mobile edge computing,” in 2016 55th Annual Conference of the
Society of Instrument and Control Engineers of Japan (SICE), Sep. 2016, pp. 1122–
1127.

[86] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp.
30–39, 2017.

[87] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE pervasive Computing, 2009.

[88] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Supporting third party attestation
for intel R⃝ sgx with intel R⃝ data center attestation primitives,” 2018.

[89] M. Schneider, J. Rambach, and D. Stricker, “Augmented reality based on edge comput-
ing using the example of remote live support,” in 2017 IEEE International Conference
on Industrial Technology (ICIT), March 2017, pp. 1277–1282.

[90] T. J. Seppala, “New lenovo pcs shipped with factory-installed adware,” 2015.
[Online]. Available: https://www.engadget.com/2015/02/19/lenovo-superfish-adware-
preinstalled/

[91] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, “Making
middleboxes someone else’s problem: network processing as a cloud service,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 13–24, 2012.

[92] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep packet inspection
over encrypted traffic,” vol. 45, no. 4. ACM, 2015, pp. 213–226.

[93] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[94] V. Shoup, “Sequences of games: a tool for taming complexity in security proofs.” IACR
Cryptology ePrint Archive, vol. 2004, p. 332, 2004.

[95] S. Slovetskiy, “Approaches to HTTPS-based request routing and delegation (RFC
draft),” 2015.

[96] SSLMate, “Cert spotter,” accessed: 2020-06-09. [Online]. Available: https:
//sslmate.com/certspotter/

[97] StarlingX, “Starlingx,” 2018. [Online]. Available: https://starlingx.io

[98] D. Stebila and N. Sullivan, “An analysis of tls handshake proxying,” in Trustcom/Big-
DataSE/ISPA, 2015 IEEE, vol. 1. IEEE, 2015, pp. 279–286.

103

https://www.engadget.com/2015/02/19/lenovo-superfish-adware-preinstalled/
https://www.engadget.com/2015/02/19/lenovo-superfish-adware-preinstalled/
https://sslmate.com/certspotter/
https://sslmate.com/certspotter/
https://starlingx.io

[99] N. Sullivan and W. Ladd, “Delegated credentials: Improving the security of tls certifi-
cates,” https://engineering.fb.com/security/delegated-credentials/, accessed: 2020-04-
29.

[100] C. S. B. Y. L. A. A. N. TELEFONICA S.A., Cadzow Communications, “Cyper;
middlebox security protocol; part2: Transport layer msp, profile for fine grained
access control,” 2018, accessed: 2020-06-11. [Online]. Available: https://docplayer.net/
88122390-Announcement-of-middlebox-security-protocol-msp-draft-parts.html

[101] G. Tsirantonakis, P. Ilia, S. Ioannidis, E. Athanasopoulos, and M. Polychronakis, “A
large-scale analysis of content modification by open http proxies,” in Network and
Distributed System Security Symposium (NDSS), 2018.

[102] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,
T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to the intel
{SGX} kingdom with transient out-of-order execution,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 991–1008.

[103] L. Waked, M. Mannan, and A. Youssef, “To intercept or not to intercept: Analyzing tls
interception in network appliances,” in Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. ACM, 2018, pp. 399–412.

[104] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the air: exploiting
content caching and delivery techniques for 5G systems,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 131–139, 2014, https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/communications-small-cell-study.pdf (Retrieved
July 12, 2018).

[105] X. Wang, T. Taleb, Z. Han, S. Xu, and V. C. Leung, “Content-centric collaborative edge
caching in 5G mobile internet,” IEEE Wireless Communications, vol. 25, no. 3, 2018.

[106] O. Williams, “Google dropping cnnic root ca after trust breach,” 2015,
https://thenextweb.com/insider/2015/04/02/google-to-drop-chinas-cnnic-root-
certificate-authority-after-trust-breach/.

[107] J. Wilson, R. S. Wahby, H. Corrigan-Gibbs, D. Boneh, P. Levis, and K. Winstein, “Trust
but verify: Auditing the secure internet of things,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services, 2017, pp.
464–474.

[108] L. Zhu, N. Williams, and J. Altman, “Channel bindings for tls,” https://tools.ietf.org/
html/rfc5929, 2010, accessed: 2019-10-15.

104

https://engineering.fb.com/security/delegated-credentials/
https://docplayer.net/88122390-Announcement-of-middlebox-security-protocol-msp-draft-parts.html
https://docplayer.net/88122390-Announcement-of-middlebox-security-protocol-msp-draft-parts.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-small-cell-study.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-small-cell-study.pdf
https://tools.ietf.org/html/rfc5929
https://tools.ietf.org/html/rfc5929

Appendix A

Cryptographic Definitions

A.1 Cryptographic Definitions

In this section, we first introduce a formal model, called ACCE-SEED, that is a modified ver-

sion of the authenticated and confidential channel establishment (ACCE) security model [43].

The model consists of two phases called a pre-accept phase (corresponding to the TLS hand-

shake protocol) and a post-accept phase (corresponding to the TLS record protocol), the

latter of which is based on the stateful length-hiding authenticated encryption, proposed by

Paterson et al. [75]. Since there are three participants involved in our scenario, the model

should be modified by introducing a SEED device as a new participant. Therefore, we first

describe our modified model called ACCE-SEED and then define the lemmas, followed by

the proof based on sequence of games [94]. We reuse the notation in [15, 13].

DEFINITION 4 (Digital signature scheme) A digital signature scheme Π = (Gen, Sign,Vrfy)

is defined as follows:

• Gen(1λ)
$→ (sk, pk): A probabilistic key generation function that takes a security

parameter λ as input and outputs a signature key sk and a verification key pk.

• Sign(sk,m)
$→ σ: A probabilistic signing algorithm that takes a signing key sk and a

message m ∈ {0, 1}∗ as input and outputs a corresponding signature σ.

105

• Vrfy(pk,m, σ)→ {0, 1}: A deterministic verification algorithm that takes a verification

key pk, message m, and the corresponding signature σ. It outputs 0 (verification failure)

or 1 (verification success).

The security of the digital signature scheme is defined with the adversary’s advantage

in the experiment of the existential unforgeability under chosen message attack (euf-cma),

described as:

Adveuf-cma
Π (A) =Pr(Π.Vrfy(pk,m∗, σ∗) = 1 :

(sk, pk)
$← Π.Gen(1λ);

(m∗, σ∗)
$← AΠ.Sign(sk,·)(pk)),

where the security parameter λ is given, m∗ is a challenge message, and σ∗ is an output

of the adversary. The adversary A takes a verification key pk and interacts with an oracle

Π.Sign(sk, ·), but do not query m∗ to the oracle.

We say a digital signature scheme is euf-cma secure if there exists a negligible function

ϵeuf-cma such that:

Adveuf-cma
Π (A) ≤ ϵeuf-cma

DEFINITION 5 (Secure hash function) A secure (keyed) hash function Π = (Gen, H) that

guarantees collision resistance is defined as follows:

• Gen(1λ)
$→ s: A probabilistic key generation function that takes a security parameter λ

as input and outputs a key s.

• H: A deterministic algorithm that takes a key s and a message m ∈ {0, 1}∗ as input

and outputs a string Hs(x) ∈ {0, 1}λ.

The security of the secure hash function is defined with the adversary’s advantage in the

106

collision attack (denoted by coll), described as:

AdvcollΠ (A) =Pr(Π.Hs(m) = Π.Hs(m′) ∧m ̸= m′ :

(s)
$← Π.Gen(1λ);

m,m′ ∈ {0, 1}∗).
where the security parameter λ is given. We say a hash algorithm is collision (coll) resistant if

there exists a negligible function ϵcoll such that:

AdvcollΠ (A) ≤ ϵcoll

DEFINITION 6 (Pseudo random function) A pseudo random function is a deterministic

function PRF(k, x) that takes a key k ∈ {0, 1}λ1 and a message x ∈ {0, 1}∗ and outputs a

message z ∈ {0, 1}λ2 .

The security of a pseudo random function is defined with the adversary’s advantage in the

distinguishing messages from a random world and a pseudo random world, with a restriction

that A has never issued PRF(k, ·) queries.

That is:
Adv

prf
Π (A) =Pr(b = b′ : k

$← {0, 1}λ1 ;x
$← AF (k,·)();

k0 ← PRF(k, x); k1
$← {0, 1}λ2 ;

b
$← {0, 1}; b′ $← AF (k,·)(kb)).

where the security parameters λ1, λ2 are given. We say a pseudo random function is prf-secure

if there exists a negligible function ϵprf such that:

Adv
prf
Π (A) ≤ ϵprf

DEFINITION 7 (Stateful length-hiding authenticated encryption) A stateful length-hiding

authenticated encryption scheme Π = (Gen, Init,Enc) is defined as follows:

• Gen(1λ)
$→ k : A probabilistic key generation function that takes a security parameter

λ and outputs a key ∈ {0, 1}λ.

107

• Init() → (stE , stD) : A deterministic function that outputs initial encryption and

decryption states, stE and stD.

• Enc(k, ℓ, ad,m, stE)
$→ (c, st′E) : A probabilistic encryption algorithm that takes a

key k, length ℓ ∈ N, associated data ad ∈ {0, 1}∗, message m, and an encryption state

stE as input and outputs a ciphertext c or ⊥ with an updated encryption state st′E),

where |c| = ℓ if c ̸=⊥.

• Dec(k, ad, c, stD) :→ (m, st′D) A deterministic decryption algorithm that takes a key

k, associated data ad, a ciphertext c, and a decryption state stD as input and outputs a

decrypted message m with an updated decryption state st′D.

The security of the stateful length-hiding authenticated encryption is defined with the

adversary’s advantage as follows:

AdvslhaeΠ (A) =Pr(b = b′ : k
$← Π.Gen(λ); (stE , stD)← Π.Init();

b
$← {0, 1}; b′ $← AEnc,Dec()),

where Enc and Dec denote an encryption oracle and a decryption oracle whose algorithms

are described in §A.2. Note that they have their own internal state value and increased by

one whenever they are queried. We say a stateful length-hiding authenticated encryption is

slhae-secure if there exists a negligible function ϵslhae such that:

AdvslhaeΠ (A) ≤ ϵslhae

DEFINITION 8 (Decisional Diffie-Hellman Assumption) Let G be a group of prime order q

and g be a generator of G. Given (g, ga, gb, gc) for a, b, c ∈ Zq, the decisional Diffie-Hellman

(DDH) assumption means that there exists a negiligible function ϵddh such that:

|Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]| ≤ ϵddh

108

A.2 Oracles

In the ACCE and ACCE-SEED models, the adversary uses an encryption/decryption oracle.

Both oracles are described in Algorithm 1 and Algorithm 2 below. They manage states of a

particular session and update the states after encryption or decryption.

Algorithm 1 Enc(i, s, ℓ, ad,m0,m1)

[1] πs
i .u = πs

i .u + 1 (C0, πs
i .st

0
E)

$← AEAD.Enc(πs
i .k, ℓ, ad,m0, π

s
i .stE) (C

1, πs
i .st

1
E)

$←
AEAD.Enc(πs

i .k, ℓ, ad,m1, π
s
i .stE) if C0 =⊥ or C1 =⊥ then return ⊥ πs

i .Cπs
i .u
← Cπs

i .b,

πs
i .adπs

i .u
← ad, πs

i .stE ← st
πs
i .b

E return Cπs
i .b

Algorithm 2 Dec(i, s, ad, C)

[1] if πs
i .b = 0 then return ⊥ πt

j is the matching session at Pj with πs
i πs

i .v ← πs
i .v + 1

(m′, πs
i , stD ← AEAD.Dec(πs

i .k, ad, C, π
s
i .stD) if πs

i .v > πt
j .u or c ̸= πt

j .Cπs
i .v

or ad ̸=
πt
j .adπs

i .v
then πs

i .phase← 1 if πs
i .phase = 1 then return m return ⊥

109

국문초록

인터넷트래픽이 HTTPS로암호화되면서웹캐시나방화벽같은미들박스는특별한조치

가없이는동작하기어려운상태가되었다.그러다보니현업에서는미들박스를암호화된

세션에서 활용하기 위해 공개키 인증 구조의 신뢰 방식을 오용하여 SplitTLS 라고 하는

TLS를 가로채는 기법을 사용하고 있다. 그렇지만 지난 몇 년간 발표된 여러 논문에서는

미들박스가 잘못 구현되었거나 미들박스 설정이 잘못되어 SplitTLS 를 수행하는데 있어

여러보안문제가발생하고있다는것이밝혀졌다.

이논문은미들박스가 TLS세션에안전하고신뢰성있게참여하기위한방법을설계하

고자한다.이를위해우리는먼저미들박스를중간자역할을수행하는미들박스와종단점

역할을수행하는미들박스로구분하였다.중간자역할을수행하는미들박스란통신시간

에서버와클라이언트가운데서동작을수행하는중개자이며,종단점역할을수행하는미

들박스란세션이활성화된동안미들박스가서버처럼동작하는개체를의미한다.전자의

예로는 침입 탐지 시스템이 있으며 후자의 예로는 웹 캐시가 있다. 이 구분 하에서 우리

는 미들박스를 TLS 세션에 참여시키기 위한 23개의 프로토콜에 대해 검토하였다. 23개

중 14개는중간자역할을수행하는미들박스를위한프로토콜이며, 9개는종단점역할을

수행하는미들박스를위한프로토콜이다.

우리는선행연구를검토하면서다음의교훈을얻었다.우선중간자역할을수행하는

미들박스를위한프로토콜을설계하는데있어서먼저고려해야할점은,미들박스가과도

한 퍼미션을 갖지 않도록 최소 권한을 줄 수 있는 방법을 찾아야 한다는 것이었다. 또한,

서버가세션에참여하기때문에,서버가암호학적방법을통해서클라이언트에게미들박

스에대한정보를줄수있다는점도고려할수있다는것을알게되었다.다음으로종단점

역할을 수행하는 미들박스를 위한 프로토콜을 설계하는데 있어서 중요하게 고려해야 할

점은서버가세션에참여하지않기때문에,서버로의통신이추가되는것은바람직하지않

다는점과키관리에있어서서버에게부하가가지않도록되어야하며기밀키의개수는

110

최소화할수있어야한다는점이었다.

이논문에서는위교훈점을바탕으로 MATLS와 TLS-SEED라는두개의프로토콜을

제안하였다.

먼저, MATLS프로토콜은중간자역할을수행하는미들박스를위한프로토콜이다.현

재 미들박스를 보안 세션에 참여시키기 위한 SplitTLS 라는 프로토콜은 매우 많은 보안

문제점이 발견 되었다. 여러 선행 연구들이 TLS와 미들박스를 결합하면서 인증서 검증

실패나오래된암호기법을사용하거나원치않는수정을한다는것을밝혀내었다.이러

한 보안 취약점을 해결하기 위해 우리는 MATLS 프로토콜을 제안하였다. 이 프로토콜은

미들박스가 TLS세션에자신을드러내면서감독될수있는형태로참여하도록한다. TLS

세션에참여하는모든미들박스들은세션을두개의세그먼트로분할하며각세그먼트는

해당세그먼트를위한보안파라미터를갖는다. MATLS프로토콜은미들박스를인증하고

각 세그먼트들의 보안 파라미터를 검증하며, 미들박스의 쓰기 연산을 감독하도록 설계

되었다. 이렇게 하여 전체 세션의 보안성이 보장된다. 이 보안성이 실제 달성된다는 것을

보이기위해우리는최신보안성검증도구인 Tamarin을활용하여증명하였으며실제테스

트베드실험을통해 MATLS가약간의오버헤드를가지면서위보안성목표를달성한다는

것을보였다.

다음으로 TLS-SEED는종단점역할을수행하는미들박스를위한프로토콜이다.특별

히우리는엣지컴퓨팅시나리오를고려하면서이프로토콜을설계하였다.엣지컴퓨팅이

란 계산과 저장 노드를 클라이언트에 가깝게 위치시켜서 클라이언트에게는 빠른 응답을

제공하고 서버에게는 대역폭 부하를 줄이도록 한다. 일반적으로 엣지 컴퓨팅 플랫폼은

애플리케이션제공자나클라이언트에게서드파티이기때문에이두개체는모두높은수

준의 보안성을 요구할 것이다. 이에 따라 우리는 TLS-SEED 를 제안하였으며, 이를 통해

위험한 개인키 공유 문제와 비효율적인 원격 입증 문제를 해결하고자 하였으며, 동시에

엣지컴퓨팅의장점인성능향상을유지토록하고자하였다. TLS-SEED는애플리케이션

서비스제공자가 i)자신의개인키를공유하지않으면서도엣지애플리케이션을도입할수

있도록만들어주고, ii)원격입증을수행하여엣지애플리케이션을인가하거나비인가할

수있도록해준다.또한애플리케이션서비스제공자가클라이언트에게엣지애플리케이

111

션에대한충분한정보를제공하여클라이언트가입증서비스에의존하지않더라도엣지

애플리케이션에 대해 이해할 수 있도록 해준다. TLS-SEED 를 위한 핵심 자료 구조는

CROSSCREDENTIAL (CC)이며, 이는 클라이언트에게 애플리케이션 제공자와 신뢰할 수

있는기기사이의신뢰관계를명시적으로보여준다. CC는또한클라이언트가엣지애플

리케이션의무결성을검증할수있도록충분한정보를제공한다. TLS-SEED를수학적으

로증명하기위해,우리는 ACCE-SEED라는 TLS-SEED를위한보안모델을도입하였다.

이모델은 TLS를위한 ACCE모델을 TLS-SEED에적합하도록확장한것이다.이모델을

바탕으로우리는 TLS-SEED가 ACCE-SEED안전하다는것을보였다.마지막으로,테스

트베드기반실험을통해우리는 TLS-SEED가무시할만한부하만일으키기때문에실현

가능하다는것을증명하였다.

주요어:전송계층보안(TLS),미들박스,엣지컴퓨팅,신뢰수행환경(TEE)

학번: 2015-21259

112

Acknowledgements

먼저 이 논문이 나오기까지 옆에서 가장 고생한 제 아내와 아들에게 무한한 사랑과 감

사의 마음을 전합니다. 제가 새벽이나 밤늦게 나가서 여러 시간을 연구에 할애하고 매번

학회 논문 기한에 맞춰 살다보니 가까이에 있는 가족들이 많이 힘들 수 밖에 없었습니다.

이 논문이 나올 수 있었던 건 그럼에도불구하고 전적으로 지원해준 가족의 격려가 가장

컸습니다. 또한 제게 늘 사랑을 주시고 지원해주신 어머니와 집안의 버팀목이신 제 외할

아버지께도감사의인사를드립니다.

네트워크 보안 해보겠다고 무작정 연구실에 인턴으로 들어온 지 어언 햇수로 6년이

흘렀습니다.제지도교수님이신권태경교수님은제가아무런배경이없이왔음에도저를

받아주시고박사까지키워주셨습니다.특별히감사하다는말씀드립니다.최양희교수님

또한연구실에서많은조언을주셨고제논문심사의심사위원장을기꺼이맡아주셨습니

다. 특히나 좋은 논문이 되었을 때 격려의 말씀도 주셨는데 매우 감사드립니다. 또한 제

박사 논문 심사에 심사위원으로 참여해주신 백윤흥 교수님, 이병영 교수님, 그리고 고려

대 허준범 교수님 모두 진심으로 감사드립니다. 이 분들의 조언으로 제 학위논문이 보다

발전하여세상에나올수있었습니다.

먼저 제가 쓴 논문과 관련하여 직접적으로 많은 도움을 준 선후배님들에게 진심어린

감사의마음을전합니다.

세린이와 (임)정환,준혁이는제가쓴논문과관련해서,그리고제개인적인삶과관련

해서 여러 가지로 많은 도움을 주었습니다. 매우 감사합니다. 준희 형 또한 저와 함께 한

논문연구에서많은기여를해주셨습니다.지금같이하고있는연구도잘되리라믿습니

다.용배또한제논문에대해많은토론을해주었습니다.연구실에서잠시인턴을하면서

113

MATLS 논문에서 실험을 진행한 경재와 TLS-SEED 논문에서 ACCE-SEED 모델 관련

부분을 함께 토론해준 용운에게도 감사의 마음을 전합니다. 위 후배들은 연구실 생활 이

상으로오랜기간함께한인연이지만특별히제가쓴논문들에물심양면으로많은기여를

해주었습니다.진심으로감사합니다.

또한,제연구분야의개척자라고할수있는 CMU/Nefeli Networks의 David Naylor는

저에게 많은 조언을 아끼지 않았습니다. 그리고 우연히 저희 연구실에 와서 알게된 Zach

Smith는저에게 Tamarin을알려주었으며여러연구도함께하게되었습니다.연구실선배

로서현재미국에서교수를하고있는태중이도출중한글솜씨로 MATLS논문이질적으로

발전할수있도록해주었습니다. CCS에서알게된인연이지금까지이어져공동연구를하

고있는두원이형도여러조언을주었습니다.모두에게감사하다는말씀드립니다.

연구실의 보안팀에게도 감사의 마음을 전합니다. 우리 연구실에서 보안 연구를 수행

한 역사가 길지 않지만 양적, 질적으로 성장할 수 있었던 것은 보안팀이 보안 세미나를

비롯하여여러프로젝트로공동연구를수행했기때문일것입니다.현재연구실에서계속

연구를 수행하고 있는 맏형이신 은상이 형과 민경이, 현민이와 민혁이를 비롯하여 같이

공부와연구를진행한졸업생여러분들께도감사하다는말씀드리고싶습니다.

그리고박사심사과정에서많은도움을준명철이와컴퓨터연구소에서같은공간에서

연구를함께하면서공동생활을해온 (송)정환이와동현이,측위연구를이어가고계시는

초롬누나,군에서연구를위해우리연구실에온윤교,그리고같이프로젝트하면서최선

을다하고있는상윤이모두감사드립니다.

이상 언급한 많은 분들 외에도 제 박사 과정 동안 많은 조언을 주시고 격려를 아끼지

않으신 많은 교수님들과 연구실 선후배님들, 그리고 여러 인연들이 있습니다. 모두에게

감사의마음을전하며하시는일들모두잘되시기를기원합니다.

114

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Types of Middleboxes
	1.2.2 Transport Layer Security
	1.2.3 X.509 Certificates
	1.2.4 Certificate Transparency
	1.2.5 TLS Interception
	1.2.6 Problems of SplitTLS

	Chapter 2 Literature Review
	2.1 Middlebox-as-a-Middlebox
	2.1.1 Types of Protocols
	2.1.2 Takeaways

	2.2 Middlebox-as-an-Endpoint
	2.2.1 Types of Protocols
	2.2.2 Takeaways

	Chapter 3 maTLS: How to Make TLS middlebox-aware
	3.1 Introduction
	3.2 Trust and Threat Models
	3.3 Auditable Middleboxes
	3.3.1 Middlebox Certificates
	3.3.2 Middlebox Transparency
	3.3.3 Properties of Auditable Middleboxes

	3.4 Middlebox-aware TLS (maTLS)
	3.4.1 Security Goals
	3.4.2 maTLS Design Overview
	3.4.3 maTLS Handshake Protocol
	3.4.4 maTLS Record Protocol

	3.5 Security Verification
	3.5.1 Protocol Rules
	3.5.2 Adversarial Model
	3.5.3 Security Claims

	3.6 Evaluation
	3.6.1 Experiment Settings
	3.6.2 HTTPS Page Load Time
	3.6.3 Scalability of Three Audit Mechanisms
	3.6.4 CPU Processing Time

	3.7 Discussions
	3.7.1 Incremental Deployment
	3.7.2 Abbreviated Handshake
	3.7.3 Mutual Authentication
	3.7.4 TLS 1.3 Compatibility
	3.7.5 Mobility Support
	3.7.6 P2P Communication

	3.8 Conclusion

	Chapter 4 TLS-SEED: How to SEcurely Communicate with EDge Computing Platforms
	4.1 Introduction
	4.2 Preliminary
	4.2.1 Edge Computing
	4.2.2 Trusted Execution Environment
	4.2.3 TLS on the Third Party

	4.3 SEED Overview
	4.4 SEED Design
	4.4.1 Security Goals
	4.4.2 Cross Credential (CC)
	4.4.3 TLS-SEED:TLS extensions for SEED
	4.4.4 Implications of Cross Credential

	4.5 Security Analysis
	4.5.1 Overview of ACCE
	4.5.2 ACCE-SEED Protocol Execution Environment
	4.5.3 ACCE-SEED Security
	4.5.4 Security Result

	4.6 Evaluation
	4.6.1 SEED Implementation
	4.6.2 Experiment Settings
	4.6.3 Performance Evaluation

	4.7 Discussions
	4.7.1 Incremental Deployment Scenario
	4.7.2 Mobility Support
	4.7.3 Dependency on TEEs

	4.8 Conclusion

	Chapter 5 Conclusion
	Bibliography
	Chapter A Cryptographic Definitions
	A.1 Cryptographic Definitions
	A.2 Oracles

	국문초록
	Acknowledgements

<startpage>18
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Background 2
 1.2.1 Types of Middleboxes 3
 1.2.2 Transport Layer Security 4
 1.2.3 X.509 Certificates 5
 1.2.4 Certificate Transparency 5
 1.2.5 TLS Interception 6
 1.2.6 Problems of SplitTLS 7
Chapter 2 Literature Review 11
 2.1 Middlebox-as-a-Middlebox 11
 2.1.1 Types of Protocols 11
 2.1.2 Takeaways 16
 2.2 Middlebox-as-an-Endpoint 16
 2.2.1 Types of Protocols 16
 2.2.2 Takeaways 21
Chapter 3 maTLS: How to Make TLS middlebox-aware 22
 3.1 Introduction 22
 3.2 Trust and Threat Models 26
 3.3 Auditable Middleboxes 27
 3.3.1 Middlebox Certificates 27
 3.3.2 Middlebox Transparency 28
 3.3.3 Properties of Auditable Middleboxes 28
 3.4 Middlebox-aware TLS (maTLS) 30
 3.4.1 Security Goals 30
 3.4.2 maTLS Design Overview 32
 3.4.3 maTLS Handshake Protocol 38
 3.4.4 maTLS Record Protocol 40
 3.5 Security Verification 41
 3.5.1 Protocol Rules 42
 3.5.2 Adversarial Model 42
 3.5.3 Security Claims 43
 3.6 Evaluation 45
 3.6.1 Experiment Settings 45
 3.6.2 HTTPS Page Load Time 46
 3.6.3 Scalability of Three Audit Mechanisms 48
 3.6.4 CPU Processing Time 50
 3.7 Discussions 51
 3.7.1 Incremental Deployment 51
 3.7.2 Abbreviated Handshake 51
 3.7.3 Mutual Authentication 52
 3.7.4 TLS 1.3 Compatibility 52
 3.7.5 Mobility Support 52
 3.7.6 P2P Communication 53
 3.8 Conclusion 53
Chapter 4 TLS-SEED: How to SEcurely Communicate with EDge Computing Platforms 55
 4.1 Introduction 55
 4.2 Preliminary 58
 4.2.1 Edge Computing 59
 4.2.2 Trusted Execution Environment 61
 4.2.3 TLS on the Third Party 63
 4.3 SEED Overview 66
 4.4 SEED Design 68
 4.4.1 Security Goals 68
 4.4.2 Cross Credential (CC) 69
 4.4.3 TLS-SEED:TLS extensions for SEED 70
 4.4.4 Implications of Cross Credential 75
 4.5 Security Analysis 76
 4.5.1 Overview of ACCE 76
 4.5.2 ACCE-SEED Protocol Execution Environment 77
 4.5.3 ACCE-SEED Security 80
 4.5.4 Security Result 82
 4.6 Evaluation 86
 4.6.1 SEED Implementation 86
 4.6.2 Experiment Settings 87
 4.6.3 Performance Evaluation 88
 4.7 Discussions 92
 4.7.1 Incremental Deployment Scenario 92
 4.7.2 Mobility Support 92
 4.7.3 Dependency on TEEs 92
 4.8 Conclusion 93
Chapter 5 Conclusion 94
Bibliography 96
Chapter A Cryptographic Definitions 105
 A.1 Cryptographic Definitions 105
 A.2 Oracles 109
국문초록 110
Acknowledgements 113
</body>

