In vivo mRNA therapy for Argininosuccinic Aciduria

S Gurung¹, DP Perocheau¹, L Touramanidou¹, Y Khalil¹, PB Mills¹, SN Waddington², S Eaton¹, P Gissen^{1,2,3}, Cavedon A⁴, P Finn⁴, S Siddiqui⁴, P Martini⁴, L Rice⁴, A Frassetto⁴, J Baruteau^{1,2,3}.

1. Great Ormond Street Institute of Child Health, University College London, UK; 3. Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 4. Moderna, Inc., Cambridge, MA, USA

Aim: Assess therapeutic potential of systemically delivered LNPs encapsulating hASL-mRNA.

Background

Argininosuccinic lyase (ASL) is a urea cycle enzyme, which detoxifies ammonia by converting argininosuccinic acid (ASA) to L-arginine and fumarate¹ (Fig 1). Inherited ASL deficiency causes argininosuccinic aciduria, the second most common urea cycle defect causing hyperammonaemia, chronic liver and cerebral diseases². Standard of care aims to normalise ammonaemia with protein-restricted diet,

IP= Intraperitoneal administration; IV= Intravenous administration; All doses 1mg/kg

Contact: Dr. Sonam Gurung; sonam.gurung@ucl.ac.uk

