
Thorsten Franz, Tobias Trapp

ABAP Objects: Application Development
from Scratch

Bonn � Boston

211_Book.indb 3 8/5/08 10:39:34 AM

Contents at a Glance

1	 Introduction  ... 	 17

2	 Designing Application Systems  	 23

3	 Application Object  ... 	 51

4	 Classes, Interfaces, and Exceptions  	 113

5	 Application Architecture  .. 	 135

6	 Application Layer  ... 	 187

7	 GUI Programming  .. 	 229

8	 SAP Business Partner  ... 	 331

9	 Application Programming Techniques  	 391

10	 Information Acquisition  ... 	 447

A	 Managing Development Projects  	 465

B	 Bibliography  ... 	 487

C	 List of Quotations  .. 	 491

D	 Authors  ... 	 493

211_Book.indb 5 8/5/08 10:39:35 AM

7

Contents

Preface  ..	 15

1	 Introduction  ..	 17

1.1	 About this Book  ...	 18
1.2	 Sample Application and Technical Prerequisites 	 21

2	 Designing Application Systems 	 23

2.1	 Requirements  ..	 24
2.1.1	 Requirements Analysis as a Process 	 24
2.1.2	 Functional Requirements 	 25
2.1.3	 Non-Functional Requirements 	 25
2.1.4	 Limits of Functional and Non-Functional

Requirements  ..	 34
2.1.5	 System Specification  ..	 37

2.2	 General Architectural Considerations 	 39
2.2.1	 Product Families: Separating Frames and

Content  ...	 39
2.2.2	 Metadata  ..	 44
2.2.3	 Generative Programming 	 46
2.2.4	 Model-Driven Architectures 	 48

2.3	 Using the Standard SAP System 	 49

3	 Application Object  ..	 51

3.1	 What Is an Application Object? 	 52
3.2	 Modeling the Application Object at the Database Level  .	 56

3.2.1	 Structured Entity Relationship Model 	 56
3.2.2	 Data Modeling at the ABAP Dictionary Level 	 61

3.3	 Implementing Object Persistence 	 75
3.3.1	 Necessity of Database Access Layers 	 76
3.3.2	 Object Services  ..	 80
3.3.3	 Inheriting Persistent Classes 	 85
3.3.4	 Accessing Dependent Tables 	 88

211_Book.indb 7 8/5/08 10:39:35 AM

8

Contents

3.3.5	 Query Service  ..	 92
3.3.6	 Developing a Separate Persistence Service 	 93
3.3.7	 BAPI Access Methods  ..	 94

3.4	 Transaction Concept  ..	 95
3.4.1	 Special Techniques of the Classic Transaction

Concept  ..	 98
3.4.2	 Object-Oriented Transaction Concept 	 99

3.5	 Best Practices  ...	 102
3.5.1	 Creating Primary Keys  ..	 102
3.5.2	 Modeling the Application Object in

the ABAP Dictionary  ...	 104
3.5.3	 Service Functions for Persistent Objects 	 104
3.5.4	 Saving Unstructured and Semi-Structured Data 	 107
3.5.5	 Further Considerations  ..	 110
3.5.6	 Key Transactions  ..	 111

4	 Classes, Interfaces, and Exceptions 	113

4.1	 Advantages of ABAP Objects  ...	 114
4.1.1	 Defining Constants in Classes and Interfaces 	 115
4.1.2	 Function Groups versus Objects 	 115
4.1.3	 Events  ...	 116

4.2	 Exceptions  ...	 116
4.2.1	 Classic and Object-Oriented Exceptions 	 117
4.2.2	 Assertions  ..	 120
4.2.3	 Exception Handling  ...	 121

4.3	 Basic Principles of Object-Oriented Design 	 122
4.3.1	 Dependency Inversion  ...	 123
4.3.2	 Open-Closed Principle  ...	 124
4.3.3	 Inheritance and the Substitution Principle 	 126
4.3.4	 Testability Using Unit Tests 	 127

4.4	 Classic Modularization Units  ..	 130
4.4.1	 Function Modules  ...	 130
4.4.2	 Reports  ...	 130

4.5	 Best Practices  ...	 132
4.5.1	 General Considerations for Object-Oriented

Design  ...	 132
4.5.2	 Key Transactions  ..	 133

211_Book.indb 8 8/5/08 10:39:35 AM

9

Contents

5	 Application Architecture  ...	135

5.1	 Requirements for Application Architecture 	 135
5.2	 Software Structuring from a Technical Perspective 	 137
5.3	 How To Structure a Software System 	 141

5.3.1	 Taking Account of the Business Structure 	 141
5.3.2	 Identification of Layers  ..	 144
5.3.3	 Dividing Applications into Sub-Applications 	 145
5.3.4	 Creating Basic Components 	 146
5.3.5	 Dependency on SAP Standard Components 	 147
5.3.6	 Structure of the Sample Application 	 147

5.4	 Package Concept  ...	 148
5.4.1	 Package Interfaces and Checks 	 150
5.4.2	 Visibility of Package Interfaces 	 153
5.4.3	 Structure Packages and SAP Software

Components  ..	 154
5.4.4	 Excursion: Compatibility Problems 	 157
5.4.5	 Excursion: Naming Conventions and

Namespaces  ..	 159
5.5	 Composition of Packages  ...	 161

5.5.1	 Runtime Configuration of Software
Components  ..	 162

5.5.2	 Using Enhancements to Implement Interfaces 	 167
5.5.3	 Event-Based Interfaces  ..	 170

5.6	 Best Practices  ...	 179
5.6.1	 Architecture Documentation 	 179
5.6.2	 Characteristics of Package Splitting 	 180
5.6.3	 Interface Design  ..	 182
5.6.4	 Package Check Mode  ..	 183
5.6.5	 Outlook  ...	 185
5.6.6	 Key Transactions  ..	 185

6	 Application Layer  ..	187

6.1	 Application Logic  ...	 188
6.1.1	 Implementing the Application Object 	 190
6.1.2	 Separation of Object and Process 	 193

211_Book.indb 9 8/5/08 10:39:35 AM

10

Contents

6.2	 Customizing  ...	 196
6.2.1	 Basic Principles  ..	 197
6.2.2	 Technical Customizing  ...	 198

6.3	 Search Services  ..	 204
6.4	 Workflows  ...	 209

6.4.1	 Sample Scenario: Resubmission on a Specific
Date  ..	 211

6.4.2	 Key Transactions  ..	 226

7	 GUI Programming  ...	229

7.1	 Ergonomic Examples and Dialog Standards 	 230
7.1.1	 SAP R/3 Style Guide  ..	 231
7.1.2	 Ergonomic Examples  ..	 231
7.1.3	 Menu Standards  ..	 233
7.1.4	 Screen Layout and User Guide 	 233

7.2	 Table Maintenance Dialog and View Cluster 	 238
7.2.1	 Generating and Enhancing Table Maintenance

Dialogs  ..	 239
7.2.2	 View Clusters  ..	 250
7.2.3	 Tips for Handling Maintenance Views and View

Clusters  ...	 258
7.3	 Area Menus  ...	 258
7.4	 Object-Oriented Screen Programming 	 261

7.4.1	 Pros and Cons of Subscreens 	 261
7.4.2	 Subscreens as a Modularization Unit 	 262
7.4.3	 Encapsulating with Screens 	 263
7.4.4	 Message Handling with Screens 	 263
7.4.5	 BUS Screen Framework  ..	 264
7.4.6	 Advantages of Object-Oriented Screens 	 266
7.4.7	 Uses for the BUS Screen Framework 	 267
7.4.8	 Normal Screens and Modal Dialog Boxes 	 267
7.4.9	 Defining Flow Logic  ...	 269
7.4.10	Creating Instances  ...	 270
7.4.11	Calling Screens  ..	 271
7.4.12	Sequence of Processing Events 	 271
7.4.13	Defining Your Own Screen Logic 	 273
7.4.14	Setting Titles and GUI Statuses 	 273

211_Book.indb 10 8/5/08 10:39:35 AM

11

Contents

7.4.15	Handling User Inputs  ...	 273
7.4.16	Collecting and Issuing Error Messages 	 277
7.4.17	Embedding the Business Application Log 	 280
7.4.18	Table Controls and ALV-Grids 	 283
7.4.19	Screens with Subscreen Areas 	 283
7.4.20	Defining Subscreens   ...	 285
7.4.21	Data Transfer Between Screen Fields and

Screen Class  ..	 286
7.4.22	Tabstrips  ..	 287
7.4.23	For Advanced Users: Selection Screens

and Screen Painter  ...	 294
7.4.24	Selection Screens in Conjunction with the BUS

Screen Framework  ...	 300
7.4.25	Outlook  ...	 306

7.5	 Web Dynpro  ..	 306
7.5.1	 Basic Principles  ..	 307
7.5.2	 Creating a Sample Application 	 310
7.5.3	 Modification-Free Extensions Using Dynamic

Programming  ...	 317
7.6	 Best Practices  ...	 327

7.6.1	 Choosing the Right GUI Technology 	 327
7.6.2	 Software Factors  ..	 328
7.6.3	 Key Transactions  ..	 329

8	 SAP Business Partner  ..	331

8.1	 Background Information  ..	 331
8.1.1	 The Creation of SAP Business Partner 	 332
8.1.2	 Conceptual Overview  ..	 333
8.1.3	 First Impression  ...	 334

8.2	 Business Partner Extension  ...	 336
8.2.1	 Example of an Extension 	 336
8.2.2	 Maintaining the Application 	 338
8.2.3	 Maintaining the Data Set 	 339
8.2.4	 Maintaining Tables  ..	 339
8.2.5	 Maintaining Field Groups 	 340
8.2.6	 Views (Transaction BUS3) 	 341
8.2.7	 Sections (Transaction BUS4) 	 343

211_Book.indb 11 8/5/08 10:39:35 AM

12

Contents

8.2.8	 Screens (Transaction BUS5) 	 343
8.2.9	 Screen Sequences (Transaction BUS6) 	 345
8.2.10	 BP Views (Transaction BUSD) 	 345
8.2.11	 Creating Role Categories and Roles 	 345
8.2.12	 ZVHM_BUPA Function Group 	 347
8.2.13	 Screen 0100  ..	 348
8.2.14	 Events  ...	 349
8.2.15	 BDT Naming Conventions 	 363
8.2.16	 Testing the Extension  ..	 364
8.2.17	 Troubleshooting  ..	 366
8.2.18	 Summary  ...	 369

8.3	 SAP Locator Extension  ...	 369
8.3.1	 Introduction to the SAP Locator 	 369
8.3.2	 Aim of the Extension  ...	 370
8.3.3	 Transaction LOCA_CUST 	 370
8.3.4	 Definition of the Hierarchy 	 374
8.3.5	 Creating an Append Search Help 	 375
8.3.6	 Creating the Elementary Search Help 	 376
8.3.7	 Assigning the Search Help to the Append

Search Help  ...	 376
8.3.8	 Creating a Function Group 	 377
8.3.9	 Creating a Search Screen 	 377
8.3.10	 Form Routine to Initialize the Search 	 380
8.3.11	 Form Routine to Get Search Fields 	 380
8.3.12	 Form Routine to Set Search Fields 	 381
8.3.13	 Form Routine To Create the Screen Object 	 381
8.3.14	 Creating a Function Module 	 382
8.3.15	 Creating a Local Search Class 	 384
8.3.16	 Providing the Search ID in the Locator

Customizing  ..	 386
8.3.17	 Testing the Search  ...	 387
8.3.18	 Summary  ...	 388

8.4	 Key Transactions  ..	 388

9	 Application Programming Techniques 	391

9.1	 Implementing the Application Log 	 392
9.1.1	 Log Recipients  ...	 393
9.1.2	 Log Research as a Business Process 	 393

211_Book.indb 12 8/5/08 10:39:35 AM

13

Contents

9.1.3	 Business Application Log (BAL) 	 395
9.1.4	 BAL Data Model  ..	 396
9.1.5	 Application Programming Interface (API) 	 396
9.1.6	 Example: Creating and Displaying a Log 	 397
9.1.7	 Example: Saving the Log 	 399
9.1.8	 Transaction Concept  ..	 401
9.1.9	 Enriching Logs  ...	 403
9.1.10	 Saving Complex Data  ..	 412
9.1.11	 Using Additional Callbacks in the Display 	 415
9.1.12	 User-Defined Buttons  ..	 416
9.1.13	 Deleting and Archiving Logs 	 417
9.1.14	 Summary  ...	 417
9.1.15	 Additional Information 	 417

9.2	 Parallel Processing of Applications 	 417
9.2.1	 Use case  ..	 418
9.2.2	 Prerequisites  ...	 420
9.2.3	 Asynchronous Remote Function Call (aRFC) 	 424
9.2.4	 Parallelization with Background Jobs 	 437
9.2.5	 Parallelization with the Parallel Processing Tool

BANK_PP_JOBCTRL  ..	 439
9.2.6	 Summary  ...	 444
9.2.7	 Additional Information 	 444

9.3	 Key Transactions  ..	 445

10	 Information Acquisition  ..	447

10.1	 SAP Service Marketplace  ...	 447
10.1.1	 SAP Help Portal  ...	 447
10.1.2	 SAP Support Portal  ..	 448
10.1.3	 SAP Developer Network 	 448

10.2	 ABAP Keyword Documentation 	 450
10.3	 SAP Design Guild  ...	 451
10.4	 Internal Workings of AS ABAP 	 451

10.4.1	 Debugging  ..	 451
10.4.2	 Information Sources in the SAP System 	 453
10.4.3	 Runtime Analysis  ...	 454
10.4.4	 Database Trace  ..	 457
10.4.5	 Environment Analysis  ..	 458

211_Book.indb 13 8/5/08 10:39:35 AM

14

Contents

10.5	 Knowledge Management  ...	 459
10.6	 Key Transactions  ..	 461

Appendices...	463

  A	 Managing Development Projects  ...	 465
A.1	 Roles in Development Projects 	 465

A.1.1	 The Role of the Chief Software Designer 	 465
A.1.2	 Frameworks and Tools  ...	 466

A.2	 Quality Management  ...	 467
A.2.1	 Risk Management  ..	 467
A.2.2	 Development Guidelines 	 469
A.2.3	 Code Inspections and Enhancement of the

Code Inspector  ..	 470
A.2.4	 Creating a Documentation 	 480
A.2.5	 Enabling a Check  ...	 481
A.2.6	 Software Test  ...	 482
A.2.7	 Documentation  ...	 483
A.2.8	 Key Transactions  ..	 486

  B	 Bibliography  ..	 487
  C	 List of Quotations  ...	 491
  D	 The Authors  ..	 493

Index..	 495

211_Book.indb 14 8/5/08 10:39:35 AM

51

﻿     ﻿

 “Objects serve two purposes: They promote understanding of the
real world and provide a practical basis for computer implemen-
tation.” (James Rumbaugh)

Application Object3	

The paradigm of object orientation means that software is seen as a
quantity of discrete objects that have a data structure and data behavior.
This perspective is completely natural at the application design level,
because this approach can be used to map the business entities of the
conceptual design. Object-oriented programming involves creating an
equivalent to the business entities in each case, such as invoices or docu-
ments. The following are characteristic features of an object designed
and programmed in this way:

An EE object identity can be defined: An object exists but once and must
be uniquely identified.

An object has properties that are encoded in EE attributes. These are
defined in ABAP by ABAP Dictionary data elements.

Objects also have behaviors that are encoded as EE methods.

Objects of the same type (in terms of the same attributes and behav-EE

ior) are categorized. They are instances (or also copies) of a class. In the
sample application presented here, the central objects are instances of
a vehicle class.

Classes have a hierarchical structure through EE derivation. Derived
classes are more specific than their predecessors. The basis classes are
therefore true generalizations.

Object orientation helps you implement business processes flexibly,
because you can keep several instances of business entities in an inter-
nal session at the same time. This lets you implement methods that can
compare, copy, or possibly consolidate these instances.

Paradigm of object
orientation

Implementing
business processes
flexibly

211_Book.indb 51 8/5/08 10:39:41 AM

52

3      Application Object

In this chapter, you will learn about the techniques required to do this.
For the Vehicle Management sample application, you will design an
application object at the semantic level and create a data and object
model.

In Section 3.2, Modeling the Application Object at the Database Level,
we will discuss the mapping of the data model at the database level in
detail. Section 3.3, Implementing Object Persistence, deals with imple-
menting object persistence, as the name suggests. For example, how are
ABAP objects saved to the database? We will introduce different types of
database access layers, where the focus will be on Object Services. The SAP
transaction concept is illustrated in Section 3.4, Transaction Concept,
because you must thoroughly understand databases and SAP transactions
for developing and using database access layers. The chapter concludes
with Section 3.5, where we present best practices for all topics already
discussed. This section will also describe specific topics, such as using
change documents for persistent objects, for which you will need a num-
ber of the techniques developed in this chapter.

What Is an Application Object? 3.1	

At the core of typical applications for SAP systems is a relatively complex
application object whose data is saved to one or more tables and which
contains specialized methods that can be used to manipulate the applica-
tion object. Typical examples include business entities such as customer,
invoice, document, or delivery.

How do you identify application objects? In almost all cases, the appli-
cation object results from the product idea, whereby the application
will need to manage a central business entity. If a system specification
is object-oriented, you will find application objects for object-oriented
analysis.

In addition, more than one application object may exist in an application
system, in which case it is useful to modularize the application into sub-
applications. This is the topic of Chapter 5, Application Architecture.

You find application objects by breaking down an overall object model
into logical parts. This procedure is the key to every successful modeling

Object-oriented
analysis

211_Book.indb 52 8/5/08 10:39:41 AM

53

What Is an Application Object?      3.1

process. Instead of being analyzed in the overall model, each more com-
plex system is initially identified in submodels of greater cohesion.

Vehicle
Equipment

Assembly

1 *

1

*

OperationProducer

0.. 1

*

1

1

Application ObjectFigure 3.1 

There are two central application objects in this sample application, vehi-
cle and request. Figure 3.1 illustrates the strategic structure of the Vehicle
application object in Unified Modeling Language (UML). The semantics
are as follows:

A vehicle is normally assigned to exactly one operation where it is allowed.
When a vehicle changes the operation to which it is assigned in an orga-
nization group, it temporarily might not be assigned to any operation. In
fact, there is a time frame the user should also be able to recognize.

A vehicle has exactly one producer. To map the producer data, you can
access the SAP Business Partner available on every SAP system. To map
this producer, you can easily access the standard SAP system and cre-
ate a field on the vehicle that you can use to refer to a business partner
number.

A vehicle has a number of equipment parts, such as the type of passenger
information (for example the recorded announcement of stops). How-
ever, this also includes fittings like seating, paintwork, and advertising
(for example side panel, or full wrap advertising). You should model the
equipment parts as independent objects. There is no provision made to
enable you to assign a fitting to another vehicle.

Vehicles have assemblies. Unlike the equipment, they have a serial num-
ber, year of production, and so on. You should be able to assign assem-
blies to another vehicle.

Example of an
application object

211_Book.indb 53 8/5/08 10:39:42 AM

54

3      Application Object

The object-oriented analysis is followed by the design phase, where the
object model that is used as the basis for the implementation is also
developed. While the object-oriented analysis returns a domain model of
the application, the result of the object-oriented design is a class model
and sequence diagrams. Here, you should consider the class model and
the requirements for database persistence, which must satisfy each busi-
ness application object.

Different procedures exist in software technology for designing objects.
Some software designers design an object model first and then develop a
data model from this object model. However, the reverse is also possible,
that is, you can design a data model and develop an object model based
on it. Advocates of agile methods often favor incremental procedures.
That is, for example, if you make modifications to the object model you
will also need to make modifications to the data model, and vice versa.
Agile methods in ABAP development are certainly a major challenge. If
you choose this option, you will need detailed knowledge of the refac-
toring options of the ABAP Workbench, but should also be aware of the
implications of a structural change to transparent tables.

The procedure is as follows:

Starting with the class model from the analysis phase, you design the 1.	
application object.

You then develop the data model at the database level, starting with 2.	
the attributes and object model relationships.

Finally, you implement the object persistence, meaning you map the 3.	
object at the database level.

There are two advantages to this procedure: First, the focus early in the
design phase is on the database model. You will be able to ensure in good
time that it is optimized in terms of access paths, satisfies revisory fac-
tors, and can be found easily in the archive. Second, you can implement
the object persistence using the Object Services of the ABAP Workbench.

In the following text, we will discuss the aspects you must take into
account when designing application objects, such as the granularity of
the object model.

Object-oriented
design

Procedure

Advantages

211_Book.indb 54 8/5/08 10:39:42 AM

55

What Is an Application Object?      3.1

In most cases, the application object is not an instance of an individ-
ual class, but instead consists of compositions and associations to other
classes. Examples include header and item data that you frequently find
in SAP ERP applications. It may prove useful to implement these types
of compositions at the level of structured data types, rather than using a
wide variety of classes, and therefore use the options of internal tables
and, if necessary, also deeper data structures. This lets you reduce the
number of runtime objects as well as easily access quantities of object
attributes as internal tables. This approach is particularly beneficial in
performance-intensive applications. This procedure is often used in EDI
processes, where, for example, the Data delivery (external) application
object has a quantity of raw data in an external data format that cannot
be implemented as an independent object. In fact, after typing this raw
data and instancing a new Data delivery (internal) application object, you
must not model temporary data, such as address components (which
may involve you having to update the master data at a later stage) as
separate objects.

In the next step, you should try to use business objects from the standard
SAP system. You must define a producer for a vehicle in the sample appli-
cation. It would be useful here to map the possible business partners as
SAP Business Partners and include the business partner number as a ref-
erence in an attribute in the Z_CL_VEHICLE class. An example of the class
model obtained using this approach is shown in Figure 3.2.

Z_ CL_ VEHICLE

- PRODUCER

Z_ CL_ EQUIPMENT1

*

Z_CL _ COMPANY0..1*

Z_ CL_ ASSEMBLY

0..1

*

Design of an Application ObjectFigure 3.2 

Granularity of the
object model

Using business
objects from the
standard SAP
system

211_Book.indb 55 8/5/08 10:39:42 AM

56

3      Application Object

The Z_CL_VEHICLE class has an attribute that specifies a business partner
number in the producer role.

Not all attributes of an object must have a one-to-one correspondence to
a field in a database table. In addition to database attributes that repre-
sent the fields of assigned database tables, do you also want virtual attri-
butes that will be calculated, or read from other tables? In this case, you
do not need to take the corresponding attributes into account in the data
model. After you have finished designing the application object, you can
begin modeling it at the database level.

Modeling the Application Object 3.2	
at the Database Level

The database design is a key component of every business application.
You can develop it based on a model for object-oriented design. Alter-
natively, you can develop a semantic data model, implement it based
on the ABAP Dictionary, and derive an object model from this. You will
learn about this procedure in conjunction with the Structured Entity
Relationship diagram in Section 3.2.1.

You must be particularly thorough when creating data models. It is dif-
ficult to modify the data model of an application that is already live
because you have to write comprehensive conversion programs. If you
have just archived live data, the effort required will be even greater,
because you will have to check the effect on archiving objects (Transac-
tion AOBJ) when a modification is made.

You focus on two aspects when modeling data: the data model must
enable you to access data efficiently and have a simple structure so that
it can be evaluated by DataSources for SAP NetWeaver BI, or enable you
to display archives using methods of the standard SAP system.

Structured Entity Relationship Model3.2.1	

You can use the SAP Data Modeler integrated into the ABAP Workbench
to create data models. Figure 3.3 shows a small portion of the SAP_10130
SAP Business Partner data model . This example also illustrates that you
can use data models to document existing applications.

Virtual attributes

Two aspects

211_Book.indb 56 8/5/08 10:39:42 AM

57

Modeling the Application Object at the Database Level      3.2

Partial SAP Business Partner Data ModelFigure 3.3 

Unlike the Entity Relationship diagram, the Structured Entity Relationship
diagram (SERM) consists of directional arrows. An arrow means that the
target entity depends on the source entity in terms of the relationship of
a header record to item records. An item record can therefore only exist
if a header record exists (this is called existence dependency). In this case,
the letter “H” above the arrow stands for “hierarchical”. The double or
single arrowheads indicate that several entities, or only one single entity,
participate(s) in the relationship. A single line signifies that the relation-
ship is optional, meaning that an element may also be missing on the
target side.

You call the Data Modeler from Transaction SD11, but it is also inte-
grated into the ABAP Workbench. You can display data models or their
entity types in Transaction SE80 under Business Engineering • Data
Models or Business Engineering • Entity Types.

You will use the Data Modeler to develop an SERM diagram from the
design model shown in Figure 3.2. You will create a data model called
ZVEHICLE first.

Data Modeler

211_Book.indb 57 8/5/08 10:39:42 AM

58

3      Application Object

You will set up a ZVEHICLE business object in Chapter 6, Application
Layer; therefore, it will be useful to assign the data model using this
approach.

To do this, you will create entity types for all classes:

EE The ZVEHICLE entity type corresponds to the vehicle data.

ZOWNEREE defines the assignment of a vehicle to a company. A vehicle is
only assigned to one company at a time; you can use the time frame
to map different transfers of vehicle ownership.

ZEQUIPMENTEE represents the equipment data. Like ZOWNER, this has a
hierarchical (that is, existence-based) dependency on the vehicle
entity type, although no time dependency is involved here.

ZASSEMBLYEE represents assemblies. These have a referential relation-
ship to the vehicle entity (letter “R” above the arrow). Letter “C” (for
“conditional”) specifies a conditional relationship. This modeling
demonstrates that an assembly can also exist without a vehicle if it is
removed from one vehicle and built into another vehicle later.

Figure 3.4 shows the data model, visualized by the SAP Data Modeler.

Vehicle Data ModelFigure 3.4 

Creating entity
types

211_Book.indb 58 8/5/08 10:39:42 AM

59

Modeling the Application Object at the Database Level 3.2

You can create this data model using the ABAP Workbench by fi rst creat-
ing the entity types displayed in the fi gure. Other documentation options
are also available here, for example, you can create SAPscript texts for
all entities and for the data model. For each entity type, defi ne detailed
relationships (using the button of the same name or (F6)) to other enti-
ties that correspond to the arrows shown in Figure 3.4. You still have to
assign the entity types to the data model using the Hierarchy button, as
you can see in Figure 3.5. You can still subsequently move the entities if
you think that the positioning selected by the Data Modeler is unclear.

Data Model EntitiesFigure	3.5	

You will fi nd the Data Modeler in the SAP Library under the keyword
Data Modeler (BC-DWB-TOO). The SAP SERM model also provides other
relationship types (aggregating and external) and specializations for
modeling inheritances. You can also create submodels, hierarchically nest
them, use external relationships to refer to them and link data models
to business objects to ensure that you achieve an integrated description
of the application object, consisting of object behavior and object data,
in the SAP system. SERM models are generally quite suitable for data
modeling composite objects, because they are in the third normal form
in terms of database theory.

Normalization can be seen as optimizing the data model, which results in
redundancies and anomalies being avoided when you access databases.

Creating data
models

Data models of
business objects

211_Book.indb 59 8/5/08 10:39:43 AM

60

3      Application Object

We will not be able to discuss the theory of normal forms as it is beyond
the scope of the book.

The SAP Data Modeler enables you to assign entity types to ABAP Dic-
tionary elements such as transparent tables or views. This means that
you can link SERM models to the database model. Mapping the SERM
model in the ABAP Dictionary is the topic of Section 3.2.2, Data Model-
ing at the ABAP Dictionary Level.

Knowledge about database normalization is an important basis for each
data modeling, as well as an essential requirement here. Information
about this topic can also be found in every book about databases.

Normalized data models correspond to the semantic data model from
the business blueprint, and SAP SERM models are usually already in
the third normal form. Normalized data models do not have any redun-
dancies and no anomalies occur for database operations. However, they
are not optimized in terms of database access. In this type of optimi-
zation, you specifically narrow down the most common requests, and
also accept redundancies in the data model, to minimize the number of
requests. You achieve this by keeping fields in database tables redundant
and saving the results of calculations (such as aggregated values at the
database level) in the database. The following forms of denormalization
are widely used in SAP development:

EE The most common form of denormalization is keeping attributes
redundant. You usually save the last and first names of business part-
ners or classification criteria from other tables.

For temporary data, you can duplicate tables for which you expect EE

large data volumes. If these tables are distributed to different parti-
tions at the database system level, parallel access can be accelerated.
You can use Customizing to control which tables to select for which
transaction data.

If you are sure that a number of attributes will not be populated in EE

most cases, you can create a separate table for them and create the
corresponding records only as required.

Normalization

Forms of
denormalization

211_Book.indb 60 8/5/08 10:39:43 AM

61

Modeling the Application Object at the Database Level      3.2

Denormalization

The following rules apply for optimization of the database model:

You must not use denormalizationEE lightly; Denormalization is only useful
for optimizing frequently-performed access to databases.

Denormalization is often avoided for write-only applications to prevent EE

change anomalies.

Read-only applications are often considerably denormalized to prevent EE

joins, aggregations, and calculations at the database level.

Data Modeling at the ABAP Dictionary Level3.2.2	

The ERM and SERM data models are characteristically semantic. You must
develop a data model out of them that consists of transparent tables. The
relevant aspects required for this are described in the following text, and
include defining primary and foreign keys, indexes, database locks, sav-
ing unstructured data, and so on.

Primary Key

Each transparent table contains one primary key with a unique con-
straint. Two table rows must have different primary keys. Master and
transaction data should also contain the client in the primary key to
ensure that the application system has multitenancy capabilities.

To create primary keys, you can define either specialized or technical
keys. A specialized key is created by the attributes that define the iden-
tity of an object as a whole. You must use specialized keys with caution
because if the specialization changes, or if you discover that the key has
been modified, extensive recoding will be necessary.

Number ranges enable you to generate keys for application objects. This
also allows you to store specialized information in the keys by defining
subobjects and including fiscal years. You define number ranges in Trans-
action SNRO. Note the following when using number ranges:

Specialized componentsEE 	
Specialized components in a number range help persons responsible
when they are processing business objects, because they can memo-
rize these components, if necessary. Specialized components also sup-

Unique constraint

Number range
objects

211_Book.indb 61 8/5/08 10:39:43 AM

62

3      Application Object

port developers and support. Under no circumstances should a pro-
gram evaluate these specialized components because this would cause
the disadvantages of specialized keys to be inherited. There can be
exceptions if you want to merge data from different SAP systems as
part of a merge project. However, this requires assigning the numbers
disjointly in the different systems, which involves additional coordi-
nation effort.

Assigning external numbersEE 	
You should assign the numbers outside of the SAP system using an
external number assignment. These types of cases are common for
migration projects or external data transfers from other systems.

Deactivating bufferingEE 	
If you want assigned numbers to have the character of a document,
you must deactivate main memory buffering to ensure that the num-
bering is consistent, even if the Logical Unit of Work (SAP LUW) were
to terminate. A logical unit of work (or SAP transaction) is a sequence
of related database operations, which are discussed in detail in Sec-
tion 3.4, Transaction Concept. For more information about number
range buffering, refer to the SAP Number Range Buffering (BC-CST-NU)
section in the SAP Library.

Assigning a numberEE 	
The NUMBER_GET_NEXT function module accesses the database and
requires a certain amount of access time for activated main memory
buffering.

Maintaining interval statusesEE 	
Each customer must maintain the statuses of number range inter-
vals. The statuses cannot usually also be delivered with the software,
because the current values are also transferred in this way. This often
makes no sense in the target system, or is even risky if you want to
install the software again.1

1	 You can, of course, use a report to set the initial statuses of the number ranges by
manipulating the transparent NRIV table. However, this approach is extremely risky,
because multiple uses mean that the uniqueness of the numbers may no longer
be possible. Consequently, you may no longer be able to determine primary keys.
We therefore advise you to always write these programs as securely as possible to
eliminate the risk of statuses being reset that have already been maintained.

211_Book.indb 62 8/5/08 10:39:43 AM

63

Modeling the Application Object at the Database Level 3.2

You create number range objects in Transaction SNRO, as shown in Fig-
ure 3.6. In this case, you defi ne a domain for the number length, buffer
the numbers in main memory, and specify to issue a warning if only ten
percent of the numbers are still available.

Creating Number Range ObjectsFigure	3.6	

After creating the number range object, you create the intervals. Inter-
vals must not overlap; exceptions are only allowed if there is a reference
to the fi scal year. If you assign a number, you must specify an interval
where the generated numbers should be located. Alternatively, you can
specify that the numbers roll back. This means that when you start an
interval the numbers are assigned again from the beginning as soon as
the upper limit is reached (Transaction SNUM, see Figure 3.7). You can

Transaction SNRO

Intervals

211_Book.indb 63 8/5/08 10:39:44 AM

64

3 Application Object

also identify intervals as “external”. In that case, the number is assigned
by the user or an external system. This type of number range interval
can also contain alphanumeric characters if this is allowed by the domain
used. You can use the NUMBER_CH ECK function module to check whether
a number belongs to a certain number range interval.

Creating Number Range IntervalsFigure	3.7	

You can also classify number ranges according to fi scal year . You can clas-
sify number range objects by subobjects. In the example, you can create
a separate domain for different request types and assign your own inter-
vals for each characteristic value.

Other structuring is also possible, using number range groups . The stan-
dard example in Materials Management is the MATERIALNR number
range object for the material master, for which the material type (MTART
data element) determines the number range interval using Table T134
(which is specifi ed in the number range object).

You will fi nd plenty of examples of this procedure in the SAP ERP envi-
ronment. However, we advise against overdoing this by assigning num-
bers with too many specialized aspects. We will use a negative example
to confi rm this: Assume that you assign numbers for different materials
depending on the vendor. As a result, you receive a key (either struc-

Fiscal years

Number range
groups

211_Book.indb 64 8/5/08 10:39:44 AM

65

Modeling the Application Object at the Database Level      3.2

tured or concatenated as a fixed-length string) that contains a year, the
domain value depending on the vendor, the interval number, and the
actual number. You must first make sure that none of the parts of the
key for specialized processes are evaluated in the application. If this is
actually the case, there may be a risk of nasty surprises if the specializa-
tion changes, for example, if two vendors merge. Experience shows that
the risks of complex number range objects together with subobjects and
groups outweigh the advantages in most cases, unless sophisticated data
modeling was maintained.

For more information about number ranges, refer to the SAP Library
under BC Extended Applications Function Library • Number Ranges.

Global Unique Identifiers (GUIDs) enable you to generate technical keys.
Using GUIDs makes using number ranges effortless, and you get a purely
technical key that enables you to merge data from different live instances
of the application system again. You create GUIDs using the GUID_CREATE
function module of the SYGU function group. As of Release 7.0, GUIDs
have the benefit of distribution properties, which means that you can
easily receive packaging options as part of parallel processing. We also
recommend this key assignment for application objects that are used in
cross-system processes and for which uniqueness is therefore essential.
We examine this aspect in Section 9.2.2, Prerequisites, as part of paral-
lelization strategies.

Based on experience, GUIDs are not suitable for display in screens. They
are also not user-friendly for the person responsible; numbers are easier
to use.

Defining External Keys

You can define external keys in the ABAP Dictionary but they are not
represented by external keys in the database. Consequently, you cannot
guarantee the referential integrity of the dataset using database tools.

However, this does not mean that you should forego defining exter-
nal keys. You use them to document the data model of the applica-
tion system. You can also use external key relationships to implement

Global Unique
Identifier (GUID)

211_Book.indb 65 8/5/08 10:39:44 AM

66

3      Application Object

(F4) help and input checks on dialog boxes. You can generate complete
maintenance dialogs specifically for maintaining Customizing tables and
simple master and transaction data, as you will see in Chapter 7, GUI
Programming.

Mapping Inheritance

Different options are available for expressing the inheritance of classes
at the database level. You can use separate tables for each class and map
the entire hierarchy in a single table:

Mapping an entire class hierarchy in one tableEE 	
The advantage of mapping an entire class hierarchy in a table is that
one class can be converted easily into another class. This is the case in
the example here when a vehicle changes its type. Database queries
are also usually easy to organize. However, the disadvantage is that
often, a lot of memory space is wasted in the database because not all
attributes are required in every class. Perhaps more annoying than the
waste of memory space is the lack of transparency: You cannot easily
identify to which class attributes belong.

Mapping a class to a tableEE 	
Mapping a class to a table comes closest to object-oriented modeling.
In addition, you can change each class irrespective of other classes,
and delete and add attributes as you wish. The disadvantage of this
approach is that the number of database tables is very high, and access
can be complicated. The effort required also increases if you want to
add attributes to or delete them from all tables when you modify
the data model. Queries can be very complex when you have a wide
range of tables.

In many business applications, inheritance relationships are expressed
by different composition relationships to other objects. For example,
the parent class is usually abstract and represents the header data of an
entity. The different derived classes all have the same header data but
may have different item data. The problem of mapping inheritance does
not arise in these situations.

Options

Inheritance
relationships

211_Book.indb 66 8/5/08 10:39:45 AM

67

Modeling the Application Object at the Database Level      3.2

Locks

You use database locks to ensure that several internal sessions (users or
jobs) do not access the same object at the same time, which could cre-
ate inconsistent statuses, or situations where only data written by the
last person would be saved. What effects could not having locks have?
The first is lost modifications. When two programs read a value from the
database in a local variable in parallel and change and write this value
back, the last transaction that made modifications overwrites the modi-
fications made by the previous transaction. Even if only one transaction
writes data, while another transaction accesses read-only data, you will
not be able to rule out inconsistencies in the second transaction. You
must also protect reading processes against writing processes.

Dirty reads are another problem. If a transaction is working on an entry
and later executes a ROLLBACK WORK, written entries will be reset again in
the meantime. If another process is using this data before it is “released”
by COMMIT WORK, there is a risk that invalid data will be used.

Locks can have different granularities. For example, you can lock single
records, but you can also lock entire tables or use different lock con-
cepts, namely optimistic and pessimistic locks. The pessimistic lock con-
cept involves locking a database before each access, whereas the optimis-
tic lock concept means that you generally forego database locks and use a
time stamp to check whether a record has changed in the meantime. This
saves time and effort required to manage database locks. Isolation levels of
the database management system are closely associated with this.

ABAP development also has a lock concept that is not based on database
locks and is described in the SAP Library under The SAP Lock Concept (BC-
CST-EQ). Here, you manage locks in main memory on an enqueue server
that exists on the central instance of the SAP system or on a separate
server. If a work process is not running on the instance of the enqueue
server, a lock request is sent through the dispatcher and the message
server. Nevertheless, managing these locks does not require as much
effort as managing database locks, because you manage them in main
memory.

INSERT, UPDATE, MODIFY or SELECT ... FOR UPDATE set database locks
for database modifications only. This type of database lock is held until

Dirty reads

ABAP lock concept

Deadlocks

211_Book.indb 67 8/5/08 10:39:45 AM

68

3 Application Object

the next database commit, but not necessarily until the end of the LUW.
These locks can be the cause of deadlocks if other processes access the
same data and each process is waiting for the other process to release
the lock again.

However, there are other differences between SAP locks and database
locks. You can also create SAP locks for records that do not yet exist in
the database. You must use SAP locks when you work with updates,
because the database modifi cations are only implemented in the update
and no database locks can exist beforehand.

You create lock objects in Transaction SE80, as shown in Figure 3.8. For
example, create a somewhat more complex lock object for which you
can lock several tables of an application object, that is, the equipment
parts for a vehicle (ZEQUIPMENT table) and the owner (ZOWNER table). As a
result, additional lock parameters are created for the components of the
primary key of all tables involved.

Creating a Lock ObjectFigure	3.8	

SAP locks and
database locks

Creating lock
objects in the

ABAP Workbench

211_Book.indb 68 8/5/08 10:39:45 AM

69

Modeling the Application Object at the Database Level      3.2

Secondary Tables with Lock Objects

If you create the primary keys of the dependent tables in such a way that
they contain the primary key fields of the original table, and if you also
define foreign key relationships, you can include the dependent tables as
secondary tables in the lock object and also lock these tables. If this is not
the case, you may have to define additional lock objects for dependent
tables.

You generate an enqueue module for a lock object. This enqueue
module has several standard parameters. The mode parameter speci-
fies the lock mode. Some lock parameters you use to specify the area
to be locked include the _scope parameter, which describes the inter-
action of locks and updates. You can use the wait parameter to con-
figure the number of repeat attempts and the _collect parameter to
buffer the lock requirements locally in a lock container before the
FLUSH_ENQUEUE function module collects and transfers them into the
lock table.

The following lock modes exist:

EE The exclusive lock (“E” lock mode) can be requested several times per
session by the lock owner but there must be no shared or exclusive
locks from other lock owners. Exclusive locks cumulate and must be
released again several times.

The EE exclusive but not cumulative lock (“X” lock mode) can be requested
only once in the internal session, provided there are no exclusive or
shared locks from the same lock owner or other lock owners.

EE You can have several shared locks (“S” lock mode) in parallel but there
must be no additional exclusive locks. You can use shared locks to
protect displayed data records from being modified.

Optimistic locksEE are shared locks you can convert to exclusive locks by
calling a lock with the “R” lock mode. In that case, other existing locks
will be invalidated.

Enqueue modules

Exclusive lock and
exclusive but not
cumulative lock

Shared locks

211_Book.indb 69 8/5/08 10:39:46 AM

70

3      Application Object

Optimistic Lock Concept

Because the optimistic lock concept is relatively new, we will explain it in
more detail at this point. SAP’s optimistic lock concept sets shared locks,
and therefore protects against modifications (provided other optimistic locks
were not converted into exclusive locks). The SAP optimistic lock concept is
suitable if different processes set shared locks, of which only a small number
actually want to modify data later. This is the exact analogy for the lock con-
cept from classic database development. There, you forego database locks
and use time stamps to query whether a modification occurred in the mean-
time.

You call the lock module as shown in Listing 3.1.

DATA:
 ls_msg TYPE scx_t100key,

CALL FUNCTION ‘ENQUEUE_EZVEHICLE’
 EXPORTING
 mode_zvehicle = iv_enqmode
 mode_zequipment = iv_enqmode
 mode_zowner = iv_enqmode
 id = lv_id
 _scope = iv_scope
 _wait = iv_wait
 EXCEPTIONS
 OTHERS = 3.
IF sy-subrc <> 0.
 ls_msg-msgid = sy-msgid.
 ls_msg-msgno = sy-msgno.
 ls_msg-attr1 = sy-msgv1.
 ls_msg-attr2 = sy-msgv2.
 ls_msg-attr3 = sy-msgv3.
 ls_msg-attr4 = sy-msgv4.
 RAISE EXCEPTION TYPE zcx_locking_error
 EXPORTING textid = ls_msg.
ENDIF.

Calling a Lock ModuleListing 3.1 

The central component of this listing is the call for the generated ENQUEUE_
EZVEHICLE lock module, to which you transfer four parameters: the lock
mode in the IV_ENQMODE parameter with the “E” default value, the IV_

211_Book.indb 70 8/5/08 10:39:46 AM

71

Modeling the Application Object at the Database Level      3.2

SCOPE parameter with the “2” default value and the IV_WAIT parameter
with the SPACE default value because generally, you will want to repeat
unsuccessful lock attempts.

You can also use this lock object to delete the dependent tables, because
no values are transferred for the NR and TIME parameters, which, together
with the ID, create the primary key of the tables involved.

The “2” value of the SCOPE parameter is the default value for updates and
causes the lock to be forwarded to the update process.

If locks are not transferred to the update and deleted there, you must
remove them. You do this similarly to the way you set locks using gen-
erated function modules. The following sample source code shows the
sequence of the call:

 CALL FUNCTION ‘DEQUEUE_EZVEHICLE’
 EXPORTING
 mode_zvehicle = iv_mode
 mode_zequipment = iv_mode
 mode_zowner = iv_mode
 id = lv_id
 _scope = iv_scope
 _synchron = iv_synchron.

The iv_synchron parameter used here means that the lock module might
wait until the entry is actually deleted from the lock table. However, this
is only useful in a few cases; therefore, you use a method to make this
parameter optional when the removal of a lock is being encapsulated,
and set SPACE as the default parameter.

Indexes and Buffering

Two techniques for accelerating read database access include buffering
and using database indexes. Buffering and using indexes are two mutu-
ally exclusive concepts. In one case, you want to keep table contents in
main memory; in the other, your objective is to be able to access the
database efficiently. Buffering is a difficult topic for which you should
refer to SAP-specific literature such as SAP Performance Optimization Guide
by Thomas Schneider (SAP PRESS, 2008). However, we have compiled

Removing locks

Accelerating read
database access

211_Book.indb 71 8/5/08 10:39:46 AM

72

3      Application Object

the most important features you need to be aware of with regard to
buffering:

ABAP SQL commands exist that read past the table buffer.EE

Buffered items are held at the level of the application server and must EE

be synchronized with one another. This means it can take some time
until a database modification appears on another application server.

Based on experience, buffering is most suitable for small transparent
tables that have only a few entries and are not modified very often, for
example, Customizing tables or some types of master data.

You can define database indexes in the ABAP Dictionary. Because you
need resources to manage these indexes, you should only create them
for the relevant access paths. These are often known at design time; oth-
erwise you should determine them using runtime analysis (Transaction
SE30). For more information, see ABAP • Analysis Tools • Runtime
Analysis in the SAP Library.

Disadvantages of Indexes

The time an index saves when reading is lost when writing. Inserting many
individual data records is particularly intensive when you have to maintain
the indexes each time. When you load data into SAP NetWeaver BI, you
therefore delete the indexes before writing and create them again when all
data is loaded into the system. Even if you use these strategies in application
programming only in the rarest of cases, you should always consider this
factor and define database indexes as economically as possible. You should
also use bundling techniques, which we discuss in Section 3.3.1, Necessity of
Database Access Layers.

These tools and Transaction ST30 (global performance analysis) are used
to determine runtime gains on live systems. For example, you can store
tables, which are often accessed in parallel, on different disks. However,
you can generally only perform these types of optimization for a specific
live system.

NULL Values

Transparent tables can contain NULL values. They can be tricky for the
uninitiated because at first glance (for example, in Transaction SE16),

Suitability

Determining
runtime gains

211_Book.indb 72 8/5/08 10:39:46 AM

73

Modeling the Application Object at the Database Level      3.2

they are difficult to differentiate from initial values. If you load a data
record with NULL values into a working area using SELECT, initial values
will also appear in the corresponding fields. You can only access NULL
values in the WHERE condition using SELECT if you use IS NULL; the IS
INITIAL check or the check for inconsistencies with another value will
not work.

Before you learn how to create NULL values, we will explain the seman-
tics of these values. A NULL value can represent an unknown value. For
example, an object can have a certain characteristic but you do not know
it at the moment. NULL values can map non-existing values. A typical
situation is where you cannot use an attribute in a specific case.

However, a NULL value can also mean that you do not know whether a
value exists. Every employee experiences the standard example of this
situation when their company telephone system is being changed and
their old number is no longer valid. There is a transition period where
the employee may not know whether there is a new number or, if there
is a new number, he may not yet know it.

How do you create NULL values? In the ABAP Dictionary, you can spec-
ify whether you want every column of a transparent table to be filled
with initial values or NULL values. In the second case, NULL values are
added when you create a new column or insert entries using a view that
does not contain these fields.

There are limited benefits to NULL values for an ABAP programmer
because they have no equivalent in ABAP. NULL values are implicitly
converted into INITIAL values when loaded into working areas or inter-
nal tables so you cannot tell whether there was a NULL value. This is
why these values are often used only temporarily after structural modifi-
cations in the ABAP Dictionary, when a new column has to be converted
by a migration report that must decide between entries that have not yet
been processed and entries processed by the initial content.

Archiving

Not many applications delete business data; for auditing and legal rea-
sons, deleting data is not supported. Instead, deletion indicators are set
for the business objects to be deleted and these objects will be excluded

Semantics

Benefits

211_Book.indb 73 8/5/08 10:39:46 AM

74

3      Application Object

from future searches and processing. This increases the volume of data
in the database, response times for database queries rise, backups take
longer, and sometimes you have to get new hardware for the database
server. The best way to prevent this is to avoid data and to delete tempo-
rary data. If you have exhausted these options, you will have to archive
data. For more information, refer to the example given in the SAP Library
under CA-ARC Archiving.

SAP provides an API for archiving functions with the Archive Development
Kit (ADK). You can define archiving objects for an application object. You
create write, read, and delete programs for these archiving objects, which
write the data to be archived into an archive file, evaluate this data in a
second process, and then delete it from the database. Archive indexes are
created in the process. These are transparent tables that contain the object
key of the objects to be archived, a reference to the archive file, and the
item in the file, from which the object can be read. For the sake of com-
pleteness, we must mention that XML archiving is also possible. In this
case, you create an XML document for each document to be archived and
save it in a file. The scale of the data to be archived increases because of
the XML markup. You can use methods of the standard SAP system to
search in the archive index and look for corresponding data in a view
similar to the Data Browser, that is, perform a direct access. It is unusual
to restore data to the live system after it has been archived.

How to handle archiving in detail is beyond the scope of this book;
therefore, we will only refer to the factors that can affect the data mod-
eling of the application:

Archiving criteriaEE 	
Are there simple criteria you can use to decide when you want an
application object to be archived? You must ensure that there are no
references of active application objects to archived objects. This could
cause the program to behave incorrectly.

Archive searchEE 	
What criteria should you use to be able to search for database enti-
ties in the archive? Should the most important attributes be displayed
in the archive index to ensure that direct access to the object you are
looking for is not necessary? Assuming that direct access is required,
are the methods of the Archive Information System (Transaction SARI)

Archive
Development Kit

211_Book.indb 74 8/5/08 10:39:46 AM

75

Implementing Object Persistence      3.3

in the standard SAP system sufficient, or do the separate dialogs have
to be archive-enabled?

Modifications to the data modelEE 	
Should you expect modifications to the data model? Can you make
these modifications in such a way that you do not have to modify the
archiving programs? Will you need to modify archived data?

Implementing Object Persistence3.3	

In the previous sections, you have seen how you can model application
objects at the database level. Some developers question why additional
development work is required. Is it not enough to access the database
using Open SQL and manipulate individual table entries? Do additional
wrappers not mean increased development effort, reduce performance
and make programs more complicated? These arguments may apply in
individual cases but generally turn out to be hazardous design errors.
Specifically, the problem is that, in most cases, you can no longer reverse
the conversion of Open SQL calls scattered in the application. This argu-
ment applies in particular when other applications access the database
tables without access layers.

In the following sections, we will first explain the need to encapsulate
access to the application object. You will then implement an access layer
for the modeled application object using Object Services. Finally, we
will discuss when it makes sense to implement your own persistence
mechanisms.

You need the following services to be able to use persistence mechanisms
easily and efficiently:

Management serviceEE 	
You must ensure that several, possibly contradictory, runtime objects
do not exist in the same internal session. This type of management ser-
vice should also contain a cache to enable you to access the managed
objects more quickly.

Search serviceEE 	
A management service should also have a Search service that enables
you to search for objects based on specialized criteria and load them

Design errors

Management
service and search
service

211_Book.indb 75 8/5/08 10:39:46 AM

76

3      Application Object

into main memory. A search should also be able to return only a con-
stant number of objects to enable you to work in packages if you have
large sets of objects.

Necessity of Database Access Layers3.3.1	

Database access layers are an old and established concept. They were
previously implemented by BAPI interfaces, which you still require if
you want data to be read by Remote Function Call (RFC) or Web services,
or to be manipulated. However, there are also much simpler reasons for
implementing database access layers:

Transaction mechanismsEE 	
One important reason is the transaction mechanism itself. If you only
work with Open SQL access without using update techniques, this
means that the data is irreversibly saved to the database each time
an implicit commit is performed. Where dialog applications are con-
cerned, you are therefore not in command of transaction control and
cannot guarantee data consistency. This also applies in batch pro-
grams. In a batch program, you cannot execute any more RFCs for
accessing data in external systems or for the internal parallelization of
the processing, because these implicitly perform a database commit.2
This also makes it more difficult to enhance the programs. An implicit
commit must not be performed in any enhancement by a BAdI imple-
mentation. To avoid these unwanted consequences, you would have
to buffer the database modifications and persist them at the end of
the LUW, which already very closely reflects a database access layer.

Subsequent processes EE 	
Another problem with explicit database access is caused by the fact
that you cannot implement any new subsequent processes for data
modifications for the application system. If we assume that, for rea-
sons of revision security, you want to write change documents for
certain fields, replicate these changes by Application Link Enabling
(ALE), or provide the delta queue when connecting to SAP NetWeaver

2	 The same problem can occur when you debug, because database commits are also
performed there. If you save data to the database without updates, the debugging
of the application is risky because inconsistencies may occur.

Object-oriented
access layers

211_Book.indb 76 8/5/08 10:39:46 AM

77

Implementing Object Persistence      3.3

BI, you must add these functions to all of the points in programs that
conduct database updates. You must not include subsequent processes
in the area of data replication. Loose event linkages (for example, for
starting workflows) are also possible. These are presented in Section
5.5.3, Event-Based Interfaces, under the keyword Publish & Subscribe
interfaces. In practice, you will no longer be able to perform a subse-
quent implementation into a live application, unless you perform a
complete redesign.

RobustnessEE 	
Implementing a database access layer can also make an application
more robust. For professional reasons, you are often not allowed to
write any values into a table, but rather the programs must require
minimum data plausibility in order to work. A typical example is a
situation where certain fields are not allowed to contain any initial
values; filling these fields with the wrong values equates to an error
situation. You cannot assume that everyone who fills the database
tables is fully aware of these conditions. Therefore, it is absolutely
essential that you explicitly encode these conditions in one location
and check them before the INSERT.

ModularizationEE 	
Hiding details about the data model is another important reason for
creating an access layer. Developers often want to have the freedom
to modify and optimize a data model in the future if performance
problems were discovered in mass tests. If this means that you have
to adjust SQL calls at every location where a database is accessed, you
will find it very difficult to modify the data model because the appli-
cation system is not sufficiently modularized.

Checking authorizationsEE 	
You may require specific authorizations to read sensitive data. For
example, if a VIP indicator is set for customer-related master data,
only users with special authorizations can have full access to this
data. In such a case, data access modules must perform certain autho-
rization checks and may not necessarily offer all data. You cannot
currently avoid bypassing the programming of data access modules.
However, by defining package interfaces, you can find out through
the Code Inspector whether interfaces were bypassed in the program-

211_Book.indb 77 8/5/08 10:39:46 AM

78

3      Application Object

ming (see Chapter 5, Application Architecture). In Release 7.0 you
can use dynamic SELECT statements or generated programs to avoid
defined database access functions in package interfaces and access
tables directly. You can use the Code Inspector to check the use of
these potentially “dangerous” commands.

Alternatively, you have situations where you do not want to use a data-
base access layer:

You want to create a report for a user department that will determine EE

entries according to specified criteria in one or more tables and out-
put them in an ALV grid.

EE As part of a migration you want to load a dataset into the SAP system
in as short a time as possible.

In some tables, you have to modify certain data records and fill addi-EE

tional attributes. You can do this using an XPRA program when mak-
ing an ABAP Dictionary modification to a table structure.

Within data archiving, you have to write large quantities of data into EE

an archive file within a short time frame, and then delete this data in
the database and create search indexes.

Even if the examples indicate that you often work directly with Open
SQL tools in the database in mass process, you should not make this
procedure the norm. There is also no reason to impose severe restric-
tions at the development phase of an application system already, simply
because implementing a database access layer requires conceptual and
implementation effort.

You can drastically reduce the implementation effort by using Object
Services. Strangely, object-oriented access layers have a bad reputation
that is entirely unfounded. This poor reputation is based on the fear
that an object could be too finely detailed, resulting in lots of individual
database operations in mass processes, drastically affecting performance.
However, there are solutions to this problem in the form of bundling
techniques.

The standard SAP system‘s Object Services use bundling techniques
using generic update tasks. The data to be modified is collected and
transferred as a binary-formatted table to an update module that accesses

Migration

Are there reasons
against Object

Services?

Bundling
techniques

211_Book.indb 78 8/5/08 10:39:46 AM

79

Implementing Object Persistence      3.3

the database dynamically. This procedure shows that you can perform
mass modifications through a framework and completely hide it from
the user.

If you use your own persistence mechanisms, you can save the modi-
fications to be updated in an ABAP class or in the global memory of a
function group and then execute the PERFORM … ON COMMIT command
to implement them as mass inserts into a form routine of a function
group. In this case, we specifically recommend that you use the non
object-oriented PERFORM … ON COMMIT construction and not the modern
variant by creating an on_commit method as the event handler for the
TRANSACTION_FINISHED event of the CL_SYSTEM_TRANSACTION_STATE class
using the SET HANDLER on_commit command. The reason for this is the
following: Experience has shown that you cannot guarantee with cer-
tainty that updates started in the event handler are also executed in the
same SAP transaction.

One problem with object-oriented access layers can be that the instanc-
ing of an object requires an overhead, which in some cases cannot be
justified. This is the case, for example, if the user is searching for objects
based on certain criteria and a number of attributes are displayed for
this in an ALV grid. After the user selects an individual object, this is
specifically loaded and shown in a display dialog. Another application
scenario where instancing is not required is packaging as part of parallel
processing. You want to determine packages of objects but do not need
any time-consuming instancing to do this. A search service, that is, a class
that can provide primary keys of object instances without instancing
objects, can be useful in both of these application scenarios.

A search service can only consist of a static method of an application
object that queries the database using direct SELECT statements. However,
there are also application systems where you have to implement very
complex search criteria that are required for controlling automatic pro-
cesses. In the most complex case, these types of search services include
objects that were instanced but whose status differs from the status in
the database. You can even implement these techniques across sessions
using shared objects, although the effort required to implement this type
of object is usually too great. For more information about shared objects,
refer to ABAP – Shared Objects in the SAP Library.

Complex search
criteria

211_Book.indb 79 8/5/08 10:39:46 AM

80

3      Application Object

Object Search Services

Based on experience, search services are the basis of numerous application
scenarios in business programming and guarantee high-performance, object-
oriented programs. Their implementation will therefore also be the topic in
the following chapters.

Object Services3.3.2	

In individual software development, either a lot of effort is invested in
creating persistence layers, or commercial products are used. These soft-
ware products implement mappings of objects to tables, of a database-
independent persistence, and of caches and supported transactions. In
ABAP development, a uniform persistence mechanism was previously
not widely accepted. This was mainly because database updates occur
predominantly in update modules and BAPIs that are developed indi-
vidually. It was only relatively late in the game that the option of persis-
tent ABAP classes was made possible with Object Services and an object-
oriented framework made available for transactions. These functions are
described in ABAP Objects by Horst Keller and Sascha Krüger, but also in
the SAP Library under ABAP Object Services. The aim of the persistence
layer is to be able to work with objects without having to worry about
persistence. You instance objects and access their attributes using SET
and GET methods. You then collect the modifications and write them
to the database in separate update modules after the COMMIT WORK. The
result of this procedure is that you do not need separate update modules.
You can also use Object Services with classic update techniques, but you
must take into account that, after a COMMIT WORK, a persistent object is
invalidated and has an initial status. This means that accessing the object
in an update module will fail if this object was already accessed in the
LUW.

What must you keep in mind when using Object Services?

MappingEE 	
The options for mapping the application object to transparent tables
are somewhat restricted. For special techniques such as deriving or
mapping different classes to a transparent table, refer to the SAP
Library.

No uniform
persistence
mechanism

211_Book.indb 80 8/5/08 10:39:46 AM

81

Implementing Object Persistence      3.3

Query serviceEE 	
A query service using the methods of the IF_OS_CA_PERSISTENCY
interface is available, but it always instances the objects found and is
therefore not always suitable for mass processes.

Service interfacesEE 	
The user must program different service interfaces such as lock man-
agement or creating change documents.

Transaction conceptEE 	
The Object Services were incorporated into the classic transaction
concept. There are different transaction modes, including an object-
oriented transaction concept that makes a transaction manager avail-
able in the form of an API. This lets you implement transparently
complex scenarios such as nested transactions, however, there is no
coexistence with the classic LUW concept: The COMMIT WORK or ROLL-
BACK WORK commands will cause a runtime error. We present the
aspects of transaction control in detail in Section 3.4.

Many developers have reservations about Object Services, due primarily
to a perception of poor performance. The basic technique was optimized
in this case. For example, rather than vast numbers of update modules
being executed, the data to be updated is instead bundled and written
into a generic update task, to which binary serialized data is transferred.
This ensures that mass updates are implemented in a small number of
database operations.

An example of using Object Services in the sample application is shown
in the text that follows. You create a persistent class called ZCL_VEHICLE
in the ABAP Workbench, as shown in Figure 3.9.

You then define the persistence mapping using the Persistence button (or
(Ctrl) + (F4)). A dialog box called Add Table/Structure appears, where
you enter the name of the ZVEHICLE transparent table you created earlier.
Finally, you select all table fields sequentially in the lower Persistence
Representation area. Each field then appears automatically in the middle
drop-down box, where you can set the visibility. Select protected visibil-
ity for all fields, but only private visibility for the modification informa-
tion because you want to be able to access the attributes of a class easily

Reservations

Creating persistent
classes

211_Book.indb 81 8/5/08 10:39:47 AM

82

3 Application Object

through a working area. This, however, is only one service function that
you will develop in the following section.

Creating a Persistent ClassFigure	3.9	

Subsequently, two classes will be generated automatically: The ZCA_
VEHICLE class agent and its ZCB_VEHICLE basis class. The class agent is
a singleton object and therefore only exists once in an internal session.
The actual database access takes place in the basis class agent; as does
the object-relational mapping using the MAP_LOAD_FROM_DATABASE_KEY(
), MAP_LOAD_FROM_DATABASE_GUID() or MAP_SAVE_TO_DATABASE() meth-
ods. The basis class agent is derived from the CL_OS_CA_COMMON class;
therefore, you can redefi ne methods and also access the logic of a per-
sistent class to defi ne your own object-relational mapping, for example.
The most important interfaces for the user are IF_OS_FACTORY , IF_OS_CA_
PERSISTENCY and IF_OS_CA_INSTANCE .

First, you will implement several requirements in the persistent class
that will make it easier to work with the persistent class:

All equipment parts for a vehicle are to be automatically loaded from 1.
the database into an internal table when you instance objects. This
means that you will be able to display these parts easily and save
them using mass inserts when you save the vehicle data.

Implementing
requirements

211_Book.indb 82 8/5/08 10:39:47 AM

83

Implementing Object Persistence      3.3

The change information (changed by, date, and time) should be deter-2.	
mined automatically at the time of the COMMIT WORK.

The second item is easy to implement. You implement the IF_OF_CHECK
interface in the ZCL_VEHICLE class and create an implementation of the
IS_CONSISTENT() method. You execute this checking agent after COM-
MIT WORK and before you execute the update task. You normally use this
to implement consistency checks for an object and, in the case of an
emergency, prevent data from being saved. You use it to set the change
information:

METHOD if_os_check~is_consistent.
 TRY.
 set_chdate(i_chdate = sy-datum).
 set_chtime(i_chtime = sy-uzeit).
 set_chuser(i_chuser = sy-uname).
 CATCH cx_os_object_not_found .
* The object has been deleted.
 ENDTRY.
 result = oscon_true.
ENDMETHOD.

To ensure the IS_CONSISTENT() method is executed, you must register
it. You do this by redefining the INIT() method of the IF_OS_STATE
interface (see Listing 3.2).

METHOD IF_OS_STATE~INIT.

* Purpose : Initialization of the transient state
* partition.
* Version : 2.0
* Precondition : -
* Postcondition : Transient state is initial.
* OO Exceptions : -
* Implementation : Caution!: Avoid Throwing ACCESS Events.

* Changelog: 2000-03-07 : (BGR) Initial Version 2.0

* Modify if you like

DATA:
 lr_tm type REF TO if_os_transaction_manager,
 lr_t type REF TO if_os_transaction.

Using the checking
agent

211_Book.indb 83 8/5/08 10:39:47 AM

84

3      Application Object

 lr_tm = cl_os_system=>get_transaction_manager() .
 lr_t = lr_tm->get_current_transaction().
 lr_t->register_check_agent(me).
ENDMETHOD.

Registering the Checking AgentListing 3.2 

You can also use the initialization routine to load the equipment parts of
a vehicle into a transient attribute that is not managed by the persistence
service. Transient attributes are calculated at runtime and can be used to
save data of dependent objects (see Section 3.3.4, Accessing Dependent
Tables).

The source code from Listing 3.3 shows an example of how you create,
modify, and delete a vehicle object in a transaction.

DATA:
 lr_vehicle_agent TYPE REF TO zca_vehicle,
 lr_vehicle TYPE REF TO zcl_vehicle,
 lv_vehicle_id TYPE z_vehicle_id.

lr_vehicle_agent = zca_vehicle =>agent.
CALL FUNCTION ‘GUID_CREATE’
 IMPORTING
 ev_guid_22 = lv_vehicle_id.
TRY.
 lr_vehicle = lv_vehicle_agent->create_persistent(
 i_id = lv_vehicle_id).
 TRY.
 lr_vehicle->set_seats(i_seats = ‘2’).
 CATCH cx_os_object_not_found.
* Perform exception handling.
 ENDTRY.
 lr_vehicle_agent->delete_persistent(lv_vehicle_id).
 CATCH CX_OS_OBJECT_NOT_EXISTING .
* Perform exception handling.
ENDTRY.
COMMIT WORK.

Using Object Services Listing 3.3 

At the end of the transaction, the modifications are collected and writ-
ten to the database by an Object Services update task. You can work

Transient
attributes

211_Book.indb 84 8/5/08 10:39:47 AM

85

Implementing Object Persistence      3.3

with the object in this way, without having to worry about persistence
factors. (Using Object Services in the update would also generally cause
an exception.) In the example, you used Object Services in the classic
transaction mode instead of using the object-oriented transaction service
of the IF_OS_TRANSACTION interface. You can execute the Object Services
within classic LUWs. In contrast, the END() method of the Object Ser-
vices that completes an LUW implicitly calls a COMMIT WORK so that classic
updates can also be performed in an object-oriented transaction. These
aspects are discussed in Section 3.4.

Deleting Persistent Objects

When you delete persistent objects, note that deleting an object that does
not exist or no longer exists does not trigger an exception, but instead only
causes an update module to terminate.

Inheriting Persistent Classes3.3.3	

You use inheritance when there is a specialization relationship between a
class and a number of subclasses. However, you should only use inheri-
tance sparingly at the application object level, because there is a risk that
you may link two business entities too closely together. If, in hindsight,
your decision turns out to be incorrect, the cost of changing the program
and database model of the database will in most cases be far greater than
the benefits gained through reuse.

Nevertheless, inheritance is a powerful tool:

PolymorphyEE 	
You can derive persistent classes and keep the mapping to achieve
polymorphic behavior, for example, redefining methods: In the appli-
cation sample presented here, you can avoid there being instances
of coaches with standing room, define special checks, or implement
display transactions.

Enhancing using additional attributesEE 	
If you have to include additional attributes in a derived class that do
not have meaningful semantics in the basis class, you can create them
in an additional transparent table. This prevents transparent tables

Use it sparingly

211_Book.indb 85 8/5/08 10:39:47 AM

495

Index

A

ABAP
Class, 213
Dictionary, 61, 104, 142, 150, 183,
187
Keyword documentation, 450
Lock concept, 67
Objects, 114, 116
Unit, 128
Workbench, 213

ACID
Properties, 97

Activation error, 152
Additional fields, 406
Administrability

Customizing contents, 29
Live system, 28

Administration
Environment, 29
Tool, 175

Administrator
Cockpit, 29
Specialist, 28

Aesthetics, 135
Agile method, 25, 54
ALV grid, 229, 276, 283
Analysis

Object-oriented, 52
Application

Administrator, 394
Architecture, 135
Layer, 187
Log, 401
Logic, 188
Object, 19, 51, 52, 53, 55, 56, 104,
190, 195, 196
Object, example, 53
Programming, 391

Application data
Check, 44
Merge, 33

Application Link Enabling (ALE), 76, 189
Application Programming interface
(API), 396
Architecture, 179

Documentation, 179
Model-driven (MDA), 48

Archive
Migration, 194
Search, 54, 74

Archive Development Kit (ADK), 74,
166, 417
Archive information system, 74
ArchiveLink, 192, 193
Archiving, 73, 414

Criteria, 74
Area menu, 29, 258, 259, 260
AS ABAP, 17, 451
ASSERT, 120
Assertion, 120, 121
Association, 55
Attribute, 51

Public, 92
Transient, 84, 89
Virtual, 56

Authorization, 77
Check, 77, 189
Concept, 190
Object, 189

B

Background
Job, 437, 445
Processing, 132
Work process, 436

BANK_PP_JOBCTRL, 439
Basic

Class, 165
Component, 146
Function, 146

Basis component, 198

211_Book.indb 495 8/5/08 10:41:35 AM

496

Index

Batch program, 131
Blog, 449, 461
BOR object, 192, 213
BPX, 448
Breakpoint, 121
Bundling technique, 72, 78
Business Add-In (BAdI), 126, 167, 168,
169, 170, 181, 183
Business Application Log (BAL), 33,
117, 130, 392, 396, 407

BAL_DB_DELETE, 415
BAL_DB_LOAD, 397
BAL_DB_SAVE, 397
BAL_DSP_LOG_DISPLAY, 396, 397,
413
BAL_DSP_PROFILE_SINGLE_LOG_
GET, 405
BAL_LOG_CREATE, 413
Detailed information, 407
Interactive functions, 394
Log display, 395
Log object, 396
Log research, 394
Log sub-object, 396

Business Application Programming
Interface (BAPI), 45, 94, 142, 189, 454
Business Data Toolset (BDT), 45, 93,
261, 333

Application object, 333
Application owning the table, 333
Applications, 338
BUPA application object, 337
Current memory, 348
Data sets, 339
Direct input, 46
Event, 350, 351, 352
Field group, 340
Field grouping, 45
Global memory, 348
Naming conventions, 363
Participating application, 334
Regenerate subscreen containers, 366
Screens, 343
Screen sequence, 345
Section, 343
Tables, 339
Views, 341

Business object, 55, 59, 192
Delegation, 126

Business Object Builder, 126, 192
Business partner, 19, 331

Role, 332, 366
Business process, 51
Business Process Expert (BPX), 448

Community, 448
Business Server Pages (BSP), 229, 327
Business Workplace, 230
BUS Screen Framework, 261, 264, 265,
267, 300, 388
Button, 314

User-defined, 416

C

Calculation method, 219
Callback, 396, 415

Interface, 167
Method, 428
Routine, 410, 411, 427
Routine, specify, 411

CALL DIALOG, 427
CALL SCREEN, 268, 427
CALL SUBSCREEN, 285
CALL TRANSACTION, 427
CALL TRANSFORMATION, 48, 108
Cascading Stylesheets (CSS), 328
Change document, 105, 106
Check

Class, 474
Enabling, 481
Function, 27
Mode, 152
Report, 259

Checking agent, 83, 90
Checkpoint group, 120, 121
Class, 51, 113, 137

Abstract, 115
Agent, 104
CL_ABAP_EXPIMP_DB, 414
CL_ABAP_OBJECTDESCR, 203
CL_ABAP_ZIP, 109
CL_APL_ECATT_TDC_API, 482
CL_AUNIT_ASSERT, 128

211_Book.indb 496 8/5/08 10:41:35 AM

497

Index

CL_BATCH_EVENT, 131
CL_BUS_ABSTRACT_MAIN_SCREEN,
267
CL_BUS_ABSTRACT_SCREEN, 270,
301
CL_BUS_ABSTRACT_SUB_SCREEN,
285, 303
CL_BUS_LOCATOR_SEARCH, 382
CL_BUS_LOCATOR_SEARCH_SCREEN,
382
CL_BUS_MESSAGE, 277, 279
CL_BUS_TAB, 287
CL_BUS_TABSTRIP, 287, 293
CL_BUS_TABSTRIP_TAB, 293
CL_OS_CA_COMMON, 82
CL_OS_SYSTEM, 101
CL_SFW_EVT_EVENT, 173
CL_SYSTEM_TRANSACTION_STATE,
79
Diagram, 162
Final, 115
Model, 54
Persistent, 81, 82, 85, 87, 88

Coaching, 460, 466
Code inspection, 470

Automatic, 471
Code Inspector, 128, 156, 470, 471, 480

Enhancement, 472
Message suppressing, 480

Cohesion, 114, 194
COMMIT WORK, 67, 80, 81, 85, 94,
98, 101, 107, 131, 401, 402, 427
COMMUNICATION RECEIVE, 427
Compatibility problem, 157, 159
Component, 307

To be embedded, 325
Componentization, 309
Constant, 115, 200, 203

Evaluation, 201
Constructor

Abstract, 127
Container operation, 217, 218
Control

Flow, 119
Loop, 427
Parameter, 197
Program, 124

Cross-sectional function, 168
CRUD interface, 191
Customer enhancement, 168
Customizing, 26, 29, 34, 129, 163, 166,
196, 197, 259, 443

Access layers, 198
Check function, 27
Customer, 197
Developer, 197
Initial, 197
Table, 165
Technical, 198

D

Data
Archiving, 74
Cluster, 108, 413, 414
Complex, 412
Exchange process, 37
Model, 54, 56, 58, 59
Model, modifications, 75
Modeling, 61
Origin, 45
Quality, 110, 111
Semi-structured, 107
Tabular format, 326
Unstructured, 107

Data area
Retractable, 237

Database
Access layer, 76
Buffering, 71
Index, 71, 72
Level, 56
Persistence, 54
Trace, 457

Data Modeler, 56, 57, 192, 453, 484
Deadlock, 68
Debugger, 451, 452

Layer debugging, 452
Update debugging, 367

Decorator pattern, 191
Default interface, 156

Virtual, 156
Deliverability, 31

211_Book.indb 497 8/5/08 10:41:35 AM

498

Index

Denormalization, 60, 61, 93
Forms, 60

Dependency
Cyclical, 143

Derivation, 51
Deserialization, 125
Design

Application system, 23
Object-oriented, 54

Design pattern, 191
Developer

Requirements, 43
Development

Class, 138
Coordination, 43
Environment, 137
Guideline, 469
Test-driven, 128

Dialog
Modal, 267
Standard, 230
Work processes, 436

Dialog text, 410
Maintenance, 408

Direct access, 74
Dirty read, 67
Dispute case, 40
DOCTYPE switch, 328
Documentation, 138, 480, 483, 484

Mandatory components, 484
Document maintenance, 408
Domain-Specific Language (DSL), 46
DTD validation, 109
Duplicate, 188

E

Easy Access Menu, 453
EDI procedure, 40
Editor

Graphical, 408
Text-based, 408

Encapsulation, 168, 185, 263
Enhancement, 167

Spot, 168
Enqueue module, 69

Enqueue server, 67
Entity relationship

Diagram Model, structured, 57
Entity type, 58
Environment analysis, 458
Environment information, 403, 404
Ergonomics, 230, 231, 232
Error

Potential, 179
Process, 194
Situation, 116
System error, 117
Temporary, 117, 174, 178
Type, 178
Unexpected, 178

Error messages
Collecting, issuing, 277

Evaluation report, 259
Event, 116, 170, 226, 314

Block, 306
Handler, 276, 277
Linkage, 171, 172, 173, 226
Linkage, asynchronous, 213
Trace, 175, 176
Type linkage, 226

Event queue, 175, 226
Browser, 176, 177

Exception, 113, 116, 117, 121, 177, 426
Checked, 118
Classic, 117
Design, 121
Dynamically checked, 119
Handling, 173
Hierarchy, 122
Interface, 116
Linked, 122
Object-oriented, 118
Unchecked, 119

Exception class, 118
CX_BO_ERROR, 174
CX_BO_TEMPORARY, 174
CX_DYNAMIC_CHECK, 119
CX_NO_CHECK, 119
CX_STATIC_CHECK, 118
CX_SWF_EVT_INVALID_EVENT, 173
CX_SWF_EVT_INVALID_OBJTYPE,
173

211_Book.indb 498 8/5/08 10:41:35 AM

499

Index

CX_SY_NO_HANDLER, 119
PREVIOUS parameter, 122

EXIT FROM STEP-LOOP, 427
EXPORT, 414
EXPORT TO DATA BUFFER, 108
extended Computer Aided Test Tool
(eCATT), 482
Extending

Check variant, 473
Extensibility, 26
Extension

Modification-free, 93
External key, 65
Extract Transform Load (ETL), 33

F

Field grouping, 45
Field modification, 340
Fixture method, 128
Flexibility, 26
Flow logic, 269
Forum, 449
Framework, 40, 43, 133
Function code, 274, 275
Function group, 115
Function module, 130, 166, 206, 442

BAL_DB_SAVE, 402
BAL_DSP_LOG_DISPLAY, 415
BAL_DSP_PROFILE_DETLEVEL_GET,
406
BAL_DSP_PROFILE_NO_TREE_GET,
406
BAL_DSP_PROFILE_POPUP_GET,
406
BAL_DSP_PROFILE_STANDARD_
GET, 406
BAL_LOG_CREATE, 396
BAL_LOG_MSG_ADD, 396
BAPI_TRANSACTION_COMMIT, 99
BAPI_TRANSACTION_ROLLBACK,
94, 99
BP_CALCULATE_NEXT_JOB_STARTS,
438
BP_JOBVARIANT_OVERVIEW, 131,
437

BP_JOBVARIANT_SCHEDULE, 131,
437
BP_START_DATE_EDITOR, 438
BUPA_DIALOG_SEARCH, 383
BUP_BUPA_BUT000_GET, 353
BUS_MESSAGE_STORE, 353
BUS_PARAMETERS_ISSTA_GET, 353
BUS_SEARCH_GENERATOR_MAIN,
47
Call, 425
DB_COMMIT, 96
DISPLAY_XML_STRING, 109
FIMA_DECIMAL_MONTHS_AND_
YEARS, 157
FLUSH_ENQUEUE, 69
FREE_SELECTIONS_DIALOG, 206
GET_PRINT_PARAMETERS, 437
GUID_CREATE, 65
JOB_OPEN, 437
JOB_SUBMIT, 438
NUMBER_CHECK, 64
NUMBER_GET_NEXT, 62
OWN_LOGICAL_SYSTEM_GET, 33
SAP_WAPI_START_WORKFLOW, 226
SPBT_DO_NOT_USE_SERVER, 426
SPBT_GET_PP_DESTINATION, 426
SPBT_INITIALIZE, 425
TR_OBJECTS_CHECK, 258
TR_OBJECTS_INSERT, 102, 258
TR_SYS_PARAMS, 36
VIEWCLUSTER_MAINTENANCE_
CALL, 258
VIEW_MAINTENANCE_SINGLE_
ENTRY, 249

G

GENERATE REPORT, 47
GET BADI, 168
Global Unique Identifier (GUID), 65,
103, 422
Graphical User Interface (GUI)

Interface, 37
Programming, 204, 229
Status, 266
Technology, 46, 327, 328

211_Book.indb 499 8/5/08 10:41:35 AM

500

Index

I

Icon, 235, 409
ID, 278
Implementation Guide (IMG), 29
IMPORT, 414
Include, 115

Multiple use, 244
Program, 244, 255

Index, 72
Information hiding, 114, 119, 150
Inheritance, 66, 85, 114, 126

Hierarchy, 87
INSERT FOR UPDATE, 67
INSERT REPORT, 47
Integration test, 482
Integrity

Referential, 65
Interface, 37, 113, 115, 123, 137, 162,
165, 167, 169

BI_EVENT_HANDLER_STATIC, 171,
172, 174, 191
BI_OBJECT, 213, 215
BI_PERSISTENT, 214, 215
Design, 182
Event-based, 170, 192
External, 142
IFARCH21, 192
IF_BADI_INTERFACE, 169
IF_OF_CHECK, 83
IF_OS_CA_INSTANCE, 82
IF_OS_CA_PERSISTENCY, 81, 82, 87,
92
IF_OS_CHECK, 90, 91, 107
IF_OS_FACTORY, 82
IF_OS_STATE, 83, 89
IF_OS_TRANSACTION, 85, 100
IF_SERIALIZABLE_OBJECT, 203
IF_WORKFLOW, 172, 213
Public, 138
Publish & Subscribe, 170
Status, 233
Type, 156
Violation, 152

iXML Library (XML Library), 108

J

Job scheduling, 437

L

Layer, 144
Debugging, 452
Model, 39, 144, 181

List
Interactive, 131

Load distribution, 438
Locator, 233
Locator Framework, 267
Lock, 67, 68

Management, 105
Module, 70
Object, 68, 69, 178
Object, create, 68
Remove, 71

Lock concept
Exclusive but not cumulative lock, 69
Exclusive lock, 69
Optimistic lock, 69
Shared locks, 69

Log, 391, 393
Archive, 417
Create and display, 397
Default profile templates, 406
Delete, 417
Display, 406
Enrich, 403
Handle, 396
Header, 412
Object, 396
Persistent, 391
Recipient, 393
Research, 392, 393
Save, 399, 400
Sub-object, 396

Logging, 403
Logical Unit of Work (LUW), 62, 81, 95,
96, 131
LOGPOINT, 215

211_Book.indb 500 8/5/08 10:41:35 AM

501

Index

M

Main package, 141, 147, 149, 150
Main screen, 267
Maintainability, 139
Maintenance

Dialog, 241
View, 239, 241, 250, 253, 258

Management service, 75
Mapping, 80
Mass data

Ability to process, 93
Capability, 27

Master data tables, 197
Memory

Bound, 483
Lack, 483
Referenced, 483

Memory Inspector, 213, 482
Menu Painter, 233
Menu standard, 233
Message

Class, 95
Handling, 263

MESSAGE, 427
Metadata, 44
Method, 51

Asynchronous, 221
Migration, 73, 78, 102, 142, 143
Mini SAP system, 444
Mock object, 130
Model View Controller (MVC), 308
MODIFY FOR UPDATE, 67
Modularization, 26, 77, 114

Unit, 130
Module

Memory, 115
Test, 128

Monitoring, 423
Tool, 175

Multitenancy, 27, 198

N

Namespace, 149, 159, 160

Naming conflict, 160
Naming convention, 159, 160, 469, 470
Normalization, 59, 60
NULL value, 72, 73
Number assignment

External, 62
Number range, 44, 61

Buffering, 62
External interval, 64
Fiscal year, 64
Groups, 64
Interval, 63, 336
Interval, create, 64
Interval, disjunctive, 103
Interval, statuses, 62
Management, 44
Object, 61, 63
Object, create, 63

O

Object
Identity, 51
Lifecycle, 193
Management, 141
Model, 54
Orientation, 51, 122, 166
Persistence, 75, 141
Persistent, 85, 104, 190
Selection, 233
Service, 192

Object search service, 35
Object Services, 78, 80, 101

Checking agent, 83
Class agent, 82, 87, 91, 92, 93
Inheritance types, 86
Mapping, 80, 104
Object initialization, 89
Query service, 87, 88, 92
Transaction concept, 100
Transaction service, 100
Transient attributes, 84
Type identifier, 86

OK field, 274
OO event, 275

211_Book.indb 501 8/5/08 10:41:35 AM

502

Index

Open-closed principle, 124, 127
Open source project, 461
Organizational management, 210

P

Package, 143, 147, 149, 150, 161, 181,
183

Concept, 135, 138, 140, 148, 485
Cyclical dependency, 143
Cyclical usage, 181
Declarative, 146
Hierarchy, 150
Interface, 453
Main package, 149
Name, 149
Splitting, 180
Strong encapsulation, 185
Structure, 138, 142, 147
Structure package, 149

Package Builder, 151
Package check, 153, 183

Client, 152
R3ENTERPRISE check mode, 156, 157
RESTRICTED check mode, 152, 157,
184
Server, 152, 184

Package interface, 149, 150, 151
Extending visibility, 153
Visibility, 153, 154

Packaging, 420, 422
Criteria, 423

Parallelizability, 419, 420
Parallelization, 391, 417, 439

Background jobs, 437
Parallel processing, 132, 444

Framework, 445
Performance optimization, 28, 419
PERFORM ON COMMIT, 79, 99, 107
Persistence

Layer, 93
Mapping, 86
Mechanism, 80, 88
Service, 93

Plug-in, 125

Polymorphism, 163
Polymorphy, 85, 87, 104, 114
Primary key, 61, 69, 102, 103
Principle of information hiding, 138,
139, 148, 177
Print list, 131
Print process, 193
Product design, 145
Product family, 39
Product idea, 23, 136
Programming

Generative, 46, 47
Object-oriented, 113
Principles, 114

Prototyping, 468
Pseudo comment, 480
Publish & Subscribe interface, 36, 162,
170, 183, 192, 213, 221

Q

Quality management, 467
Query service, 81, 92

R

REJECT, 427
Release

Change, 468
External, 49
Planning, 139, 140

Reload operation, 315
Remote Function Call (RFC), 76, 94, 95

Asynchronous, 417, 424, 435, 444
Server group, 425, 438
Server group, development guideline,
470

Renaming development objects, 139
Report, 130, 442

BDT_ANALYZER, 366
For reuse, 442
RS_PACKAGE_TREE, 152, 156
RSVIMT_NON_UC_VIM_AREAS, 258
SBAL_ARCHIVE, 417

211_Book.indb 502 8/5/08 10:41:36 AM

503

Index

SBAL_ARCHIVE_DELETE, 417
Variant, 132

Repository Information System, 458
Requirement, 25

Analysis, 24
Functional, 25
Non-functional, 26
Requirements analysis, 24
Requirements management, 41

Responsibility, 143, 193
Return code, 426
Reuse Library, 450
Risk management, 467
Robustness, 77
ROLLBACK WORK, 81, 94, 402, 403,
427
Runtime

Analysis, 454, 455
Configuration, 162
Error, 427

Run Time Type Information (RTTI), 200,
203

S

Safety facade, 117
SAP_ABA, 49, 146, 154
SAP_BASIS, 49, 146, 154
SAP Business Partner, 55, 56, 57, 233,
260, 331, 332

Basic Customizing, 335
Business partner relationships, 333
Business partner role, 332
Business partner views, 345
Define Business partner roles, 345
Role, 347
Role category, 346

SAP Business Workflow, 261
SAP Business Workplace, 210, 224
SAP Community Day, 449
SAP Design Guild, 451
SAP Developer Network (SDN), 448

Subscription Program, 450
SAP GUI for HTML, 209
SAP Help Portal, 447, 448

SAP Library, 447, 448
SAPlink, 47, 124, 125
SAP Locator, 369

Search applications, 370
Search categories, 372
Search help hierarchies, 374
Search IDs, 372, 386
Search screen, 377

SAP LUW, 401, 403
SAP NetWeaver Business Intelligence
(SAP NetWeaver BI), 41
SAP Note, 49, 448, 449
SAP R/3 icon, 237
SAP R/3 Style Guide, 231
SAP Records Management, 108
SAP release note, 50, 448
SAPscript, 407
SAP Service Marketplace, 447
SAP software component, 154
SAP standard, 137, 147, 159
SAP Support Portal, 448
SAP Web Flow Engine, 209
Saving, 107

Complex data, 412
Mode, 403

Scalability, 27, 419
Scaling

Linear, 418
SCI message, 480
Screen, 263

BAdI, 262
Call, 271
Class, 286, 303, 304, 305
Field, 286
Layout, 233
Logic, 273
Painter, 265, 286, 294
Programming, 229
Programming, classic, 229
Programming, object-oriented, 261
Structural logic, 264

Script engine, 453
Search criteria

Complex, 79
Returning, 208

Search function, 164

211_Book.indb 503 8/5/08 10:41:36 AM

504

Index

Search help, 199, 234
Elementary, 199, 374

Search service, 35, 75, 79, 80, 93, 161,
162, 163, 164, 165, 191, 204, 206
SELECT FOR UPDATE, 67
Selection

Criterion, 294
Dynamic, 204
Screen, 294, 295, 296, 299, 300, 301

SELECT-OPTIONS, 294
Separating responsibilities, 41
Serialization, 125
Service, 168
Service class, 194, 195, 196
SET HANDLER, 277
SET PF-STATUS, 300
SET UPDATE TASK LOCAL, 94, 99
Shared

Buffer, 414
Memory, 414
Object, 79

Simple transformation, 108, 110
Single-step task, 190, 220
Software

Architecture, 180
Quality, 467
Structuring, 135, 137, 145
Technology, 136, 137
Test, 482

Software component, 154, 162
BBPCRM, 146, 158
SAP_HR, 146

Sorting, 406
Specification, 25, 37, 38
SQL trace, 458
Standard SAP system, 49
Start report, 442
STOP, 427
Structured Entity Relationship diagram
(SERM), 57
Structure package, 149, 154, 155

Check, 156
Style guide, 451
Sub-application, 145
SUBMIT, 427
Subscreen, 261, 262, 264, 267, 285,
286, 289, 296, 298

Area, 283
Class, 286

Subsequent process, 76
Subset, 252, 253
Substitution principle, 126, 127
Supply function, 326
System error, 117, 174, 178

Neutralization, 177
System specification, 37
System test

Automatic, 34

T

T100 message, 95
Table

Control, 283, 369
Dependent, 88

Table maintenance, 239, 241, 242, 243,
249

Dialog, 238, 239, 240, 249
Table view element, 326
Tabstrip, 235, 236, 287, 289, 324
Tag interface, 169, 203
Test

Class, 129
Customizing, 129
Method, 128

Top include, 115
Transaction

Control, 98, 102
Mechanisms, 76
Security, 97

Transaction concept, 95, 401
Classic, 98
Object-oriented, 99

Transport system, 241, 258
Type identifier, 86

U

UML
Component diagram, 142

Unique constraint, 61

211_Book.indb 504 8/5/08 10:41:36 AM

505

Index

Unit test, 127
Universal worklist, 210
Update, 98

Module, 92
Task, 402

UPDATE FOR UPDATE, 67
Usage

Cyclical, 143, 181
Use access, 149, 155
User guide, 233
User interface, 230

Graphical, 229
Utility class

Global, 104

V

Verification, 35, 36
View

Context, 326
Embedding, 321

View cluster, 238, 249, 250, 251, 254,
255, 256, 258

Call, 257
Event maintenance, 254
Functions, 255

W

WAIT UNTIL, 427
WAIT UP TO, 427
Web Dynpro, 229, 306

Application, 310
Code Wizard, 307, 315
Component controller, 311
Component-interface, 311
Dynamic programming, 317
Explorer, 311
Interface view, 311
Naming convention, 470
Programming model, 308
Window, 311

Web Dynpro ABAP, 48
Framework, 48

Web service, 45, 141, 189
Wf-XML, 210
WHERE condition, 208
Where-used list, 173, 399, 451
Wiki, 461
Workflow, 33, 37, 87, 103, 126, 142,
189, 193, 209, 212, 213

Asynchronous methods, 221
Container, 216, 217
Container operation, 217
Customizing, 34
Event, 170, 173, 174
Event linkage, 175
General task, 216
Log, 225
Multistep task, 222
Receiver type, 171
Resubmission, 211
Single-step task, 190, 210, 220
Start date, 220
Substitute rules, 210
Techniques, object-oriented, 213
Template, 216
Terminated events, single-step task,
222
Test, 223, 224
Work item preview, 210

Workflow Builder, 218, 222
Working area, 105
Work item, 224
Wrapper, 191

X

XML, 107, 125
Archiving, 74
Clobbing, 108
Library, 108
Shredding, 109

XSL Transformation, 48

Z

ZIP compression, 109

211_Book.indb 505 8/5/08 10:41:36 AM

	SAP PRESS – reading sample

	ABAP Objects: Application Developmentfrom Scratch
	Thorsten Franz, Tobias Trapp

	Contents at a Glance
	Contents

	chapter 3: Application Object
	3.1 What Is an Application Object?
	3.2 Modeling the Application Objectat the Database Level
	3.2.1 Structured Entity Relationship Model
	3.2.2 Data Modeling at the ABAP Dictionary Level

	3.3 Implementing Object Persistence
	3.3.1 Necessity of Database Access Layers
	3.3.2 Object Services
	(...)

	Index

	www.sap-press.de
	(c) Galileo Press GmbH 2008

