Emmanuel Hadzipetros

Architecting EDI with SAP® IDocs

Sula>aliyoayy

ements, standards, an

1e architectural blueprint of EDI

for implementing

m
:
¢
T
!
>
!
0
0
)
[

Emmanuel Hadzipetros . .s .

GalileoPress

..s‘

Galileo Press

Bonn « Boston

Contents at a Glance

PrOlOGUE ..o 17

Act 1: Hollywood, DVD's and the After Life of Movies

1 Acme Pictures: Hollywood's Queen of the B Movies Looks to

SAP and EDI .o 29
2 The Blueprint: Discovery and Documentationcc.cccccceeens 47
3 Designing the New SAP EDI Architectureccccovvvieeiiiiinniinnnn, 77

Act 2: Taming Chaos with Standards — EDI in an SAP Environment

4 EDI: The Ugly Stepsister of E-COMMEICecccovviiiiiiiiiiiiieeeennnns 115
5 Real World Business Process Integration with EDI 167
6 EDI Architecture in SAP: The IDoc Interfacecccccccoviiiniennnn. 217
7 Building Custom IDocs and IDoc Extensionscccccoecvvveennne. 287

Act 3: Realizing the Dream - Building Acme's SAP EDI System

8 Building the 850-ORDERS Inboundcccooiiiiiiiiiiiiiiis 339
9 Building the ORDRSP-855 Outboundcccooeiiiiiiiiiiii, 377
10 Building the SHPORD-830 Outboundcccooiiiiiiiiiiiiiiecin, 431
11 Building the 856-SHPCON Inboundccccooiiiiiiiiiiiiiie, 455
12 Building the DESADV-856 Outboundcccoiiiiiiiiiiiii 479
13 Building the INVOIC-810 Outboundccccceoviiiiiiiiiiiiiee, 507
14 Building the 820-REMADV Inboundcccccoooiiiiiiiiiiicii, 563

Act 4: Finishing Touches

15 Extending the Interface: Custom IDoc Toolscccceeiiiiiiiiiiiinnen. 595
16 Testing the EDI System in SAP ..o 631
17 Troubleshooting and RECOVErYcccceiiiiiiiiiiiiiiiiccece e 681

EPIOGUE oo 727

Contents

ProlOgUE e 19

Act 1: Hollywood, DVD's and the After Life of Movies

1 Acme Pictures: Hollywood's Queen of the B Movies Looks to

SAP and EDI

1.1 SAP and EDI: Getting to Know Each Othercccccoviiiiiiiiinnns 30
1.2 A Brief History of Fame: Our Imaginary Dream Factory 31
1.2.1 A Bird's Eye View of the Businesscccccooiiiininnnnn 33
1.2.2 Enter Plan Q: A New Project Is Bornccccocoeeeviiennenn. 36
1.2.3 We Define OUr SCOPE ..ooviiviiiiiiiiieeiie et 37
1.3 Defining Some Basic Ground RUIEScccovviriiiniiiiiiiiiiiiieccen 38
1.3.1 The Technical Environment ... 39
1.3.2 The EDI SYStemccooiiiiiiiiic e 39
1.3.3 Nothing But IDOCSc.ccoiiiiiiiiiiiiccc 41
1.3.4 Batch Processing of Large Filescocceviiiiniiiniicnieen, 43
1.3.5 File POrts ..o 44
1.3.6 Partner Profiles ... 44
1.3.7 EDI Mapping Strategyccccceiiiiiiiiiiiii 45

2 The Blueprint: Discovery and Documentation

2.1 A Business Process OVEIVIEWccccoccviiiiiiiniiiiiiiiieec e 48
2.1.1 The As-Is Purchasing Process FIOWc..cccceeriiiiiicininene 48
2.1.2 The As-Is Sales and Distribution Processing Flow 53
2.1.3 Selling the Dream with Vendor Management Inventory 56
2.2 Legacy Systems, Data Flows, and Interfacescccociiiiiiiiinnns 60
2.2.1 Title Master and DVD Repositorycccccovveieiiiiciiiccninene 62
2.2.2 Release Planning and Promotions Systemsc.cc.c.c.. 62
2.2.3 Legacy SD ... 63
2.2.4 Manufacturingocccoiiiiiiiii e 63
2.25 FiNanceccccccooiiiiiiiiiii 64
226 VML L 65
2.2.7 EDI o 65

Contents

2.3 Legacy EDI Data FIOWScocooiiiiiiiii e 66
2.3.1 Replicating Success: Outsourcing Productionc........ 67
2.3.2 Order-to-Cash and Legacy EDIccccoooiiiiiiiiiiiien, 72

3 Designing the New SAP EDI Architecture

3.1 The To-Be Systems and Interfaces Emergecccccovviviniicninnnn. 78
3.1.1 The Resource Integration Managercc.cccceevvcnveerninneenns 78
3.1.2 Let's Get Technical: A More Intimate Look at the RIM 81
3.2 Laying the Foundations for EDI: Master Dataccccccovcvvieerninnncenne 85
3.2.1 A Brief Word on Conversion Strategycccoceeiininnne 85
3.2.2 General Ledger Chart of Accounts and Cost Centers 86
3.2.3 Customer Master SOId-TOcccocoiiiiiiiiiiiiice e 87
3.2.4 Customer Master Ship-TOcccocoiviiiiiiiiiiiiee e 88
3.2.5 Vendor Mastercocoiiiiiiiiiiiiic e 88
3.2.6 Material Masterccccceiiiiiiiiiiiic 89
3.2.7 Customer Material Info Recordsccccceviviiiiiiniieninennn. 20
3.2.8 Bill of Materialsccooeiiiiiiiiiiiiici 91
3.2.9 Pricing Conditionsccccoiiiiiiiiiiii e 92
33 The Typical Life Cycle of an Order from Gordyccccccvvviviinnnnnne. 93
3.3.1 VMI Sales Ordersoceooiiiiiiiiiiieciiie e 94
3.3.2 Catalog Planningccccovuiiiiiiiiiiciiie e 98
3.3.3 Purchasing/Manufacturingcccccooiiiiiiiiiniie 101
3.3.4 DeliVEIY oo 103
3.3.5 BilliNG eeeeiiiiiiie i 105
3.3.6 Payment ... 107
3.4 Interfaces in the Order-to-Cash Cycleccccovviiniiiiiiiniiii, 109
3.5 Considering the Project Planccccoceiiiiiiiiiiiie 110

Act 2: Taming Chaos with Standards — EDI in an SAP Environment

4 EDI: The Ugly Stepsister of E-Commerce

4.1 EDI Follows the MONEYccceiiiiiiiiiiiiiieiie e 116
4.1.1 E-Commerce is Mostly Business Selling to Business 117
4.1.2 Big Numbers Booked for EDIcccocuviiiiiiniiiiiiiiiieeiiene 119
4.1.3 Manufacturing ... 120
4.1.4 Merchant Wholesaleccoccoviiiiiiiiiiiiic 121
4.1.5 What the Numbers Mean for EDI ..., 122

Contents

4.2 ABrief History of EDIoccooiiiiiiiiii e 123
4.2.1 The Berlin Airlift and the Supply Chain ... 123
4.2.2 Transportation and the Birth of Cross-Industry Standards ... 125
4.2.3 The Transportation Data Coordinating Committee 126
4.2.4 The Birth of ASCX12 .ioiiiiiiiiiiii e 127
4.25 Global Trade and E-Commerce: UN/EDIFACTcc........ 129
4.2.6 Other EDI Standardsccoccuvveiiiiiiiiiiiieeec e 134
4.2.7 Value Added Networks, the Internet, and EDI 137
4.3 The Anatomy of an X12 Interchangecccccooveriiiiniicniicniee, 140
4.3.1 Building an Outbound EDIcccoeeiniiiiiiniiccecce 142
4.3.2 Unwrapping an Inbound EDIc.coooiiiiiiiii . 144
4.3.3 The Envelope Segmentscccooiiiiiiiiiiiiiini e, 145
4.3.4 Structure of the Transaction Set ..., 149
4.3.5 Dissecting Gordy's 850 to ACMEcovciiieiiiiiieiniiiieenneenn 151

Real World Business Process Integration with EDI

5.1 The Basic EDI INterfaceoccvvoeiiiiiiiiiiii e 168
5.2 Trading Partner Managementcccccoceemviiiiiniiiieenniniie e 169
5.3 The Impact of VMI Collaboration Through EDIccccoevirinn. 172
5.4 The Role of Acme's EDI RIMcooiiiiiiiiiiiiiiicce e 173
5.4.1 Outbound ServiCesccceeiiiieiiieiiiieni e 173
5.4.2 Inbound Servicescccoviiiiiiiiiiiiinie e 183
5.4.3 Archiving EDI Datacccooiiiiiiiiiiii e 189
5.5 Reporting EDI Status to SAP ... 191
5.5.1 SAP Status Codescoiiiimiiiiiiiiiiiiieiiee e 191
5.5.2 Creating Custom MesSagesccccceevremmiiiiieiiiiiiiiieeee e, 194
5.5.3 Mapping the STATUS IDOCccccuvviiiiiiiiiiiiieeiiee e 195
55.4 So How Do We Get the Enveloping Data?cc.cco..... 199
5.5.5 The Status Interface BPMcccoiiiiiiiiiiii e 202
5.5.6 The 997 Functional Acknowledgement Interface 206
5.6 Putting All of the Pieces Togetherccccoooiiiiiiiiii 210
5.6.1 INDOUND ooiiiiiiiii 211
5.6.2 OUtbOUNdooiiiiiiiiiiiii 213

EDI Architecture in SAP: The IDoc Interface

6.1 Intelligent Messages: The Anatomy of an IDOCcccceeevvierinnnnn 218
6.1.1 1Doc Terminologyccccccoviiiiiiiiiiiiiici s 218

Contents

6.1.2 Logical Message TYPEccoviirieiiiiiiieiiiiiie ettt 219
6.1.3 IDOC RECOId TYPES ...eiiiiiiiiiiiie e 220
6.1.4 1DOC BasiC TYPecccoviiiiiiiiiiiiii 232
6.1.5 IDoc Extended TYPecccoviiiiiiiiiieeiiiie e 234
6.1.6 IDOC oo 234
6.1.7 IDOC File .o 235
6.2 Building IDoc Architecture in the Data Dictionaryccccccceeeeeee. 236
6.2.1 DOMaINS . .ccoiiiiiiiii 236
6.2.2 Data Elements ..o 238
6.2.3 Fields ..o 238
6.2.4 Segments ... 239
6.2.5 IDoc Basic and Extended Typesccccocoeiiiiiniiciiiceneee 239
6.3 Base EDI Configuration with IDocs in SAPccccoeiiiniiiniiieniee 240
6.3.1 EDIUser Nameccccoiiiiiiiiiiiiii e 241
6.3.2 Logical SyStemccoiiiiiiii 241
6.3.3 Connecting Systems to SAPccciii 242
6.3.4 File POIt .o 243
6.3.5 Message or Output Controlccoociiiiiiiiiiiiin 246
6.3.6 Partner Profilesccoiiiiiiiii 257
6.4 EDI Reference Data in SAPcccoiiiiiiiiii e 262
6.4.1 Getting to Know EDPAR ... 262
6.4.2 EDSDC:Sales Orgcccoooiiiiiiiiiiiiiiccieccec e 267
6.4.3 KNMT: Customer Material Info Recordc..cceeeenen 268
6.4.4 ZEDIXREF: EDI Trading Partner IDsccccveeniiieeniiinnennns 271
6.5 The SAP EDI Inbound Process FIOWccccocoiiiiiiiiiiiiicie 272
6.6 The SAP EDI Outbound Process FIOWccccviiiiiiiiiiiiiiciiiiecee 279
6.6.1 Building Outputoccoiiiii 280
6.6.2 Writing the IDoc to the Databaseccccccoiiiiiiiiin, 282
6.6.3 Sending the IDoc to the EDI RIMcccoeviiiiiiiiiiiieiieeen 285

Building Custom IDocs and IDoc Extensions

7.1 IDoc Development and Configuration Toolsccccceviiirinrinnnn. 288
7.1.1 SE11 — Data Dictionaryccccccciiiiiiii 289
7.1.2 WE31 — Segment Editor ..o 290
7.1.3 WE30 — IDoc Type Editorcccooviiiiiiiiiiiies 291
7.1.4 WE81 — Logical Message TYPecoccvveeriiiieiniiiiieenieeeeas 291
7.1.5 WE82 — Message to Basic Type Linkcccccoocvveiniiinennas 292
7.1.6 SE37 — Function Editor: Function Groupsc........ 292

10

7.1.7 SE37 — Function Editor: Function Modules
7.1.8 SE38 — ABAP Editorccooiiiiiii
7.1.9 SMOD — SAP Enhancementscccccoeeviieniiennnnennn.
7.1.10 CMOD — Project Management of SAP Enhancements
7.1.11 WE57 — Link Function to Message and Basic Type
7.1.12 BD51 — Define IDoc Attributesccocviinniiiiinnnn
7.1.13 WE42 — Inbound Process Codecccovuriiennnnnecnnnn
7.1.14 Inbound Partner Profilecccocoiiiiiniiiiii
7.1.15 WE41 — Outbound Process Codec.ccvveeriiireennnnn.
7.1.16 Outbound Partner Profilec.ccccooiiiviiiniiiiniiinee
7.2 IDoc Development Process FIOWccccoceiiiiiiiiiiiiiiiicce,
7.2.1 Checklist for Developing Custom IDOCSccceeueeenee.
7.2.2 Developing Extended IDOCSccoccuiviiiiiiiiiiiiicce,
7.3 Custom IDoc: Inbound Inventory Reportcccccvveeriinreennn
7.3.1 Creating the Segmentsccccoceirniiiiiiiiiciniee
7.3.2 Building an 1Doc Basic Typecccoeeviiiniiieiiieiieen
7.3.3 Create a Custom Message Typecccvvveneiiiiiiinnnnnn,
7.3.4 Link Message to Basic Typeccccoooviiiiiiiiinniincenne,
7.3.5 Create the Function Groupcccccoeciviiiniiieenniinecnne,
7.3.6 Code an IDoc Processing Function
7.3.7 Link the Function to Message and Basic Type
7.3.8 Set Attributes for the Functionccooeiiiiiinn
7.3.9 Create a Process Codeccccoviiiiiiniiiiiiiiiiee e,
7.3.10 Define the Partner Profilec.cccooviiiiiiiiiiniiie
7.4 IDoc Extension: Outbound ORDRSP with BOM
7.41 Create Segment Z1EDPOT ...,
7.4.2 Build Extension ZORDRSOTcceeivviiiiiiiiiiiiiiieee,
7.4.3 Link Message to Basic and Extended Types
7.4.4 Create the Modification Projectc.ccccoviviinniicinnnn,
7.4.5 Coding the EXitccoooiiiiiiiiiii
7.4.6 Define Message Controlcccccooiiiiiiiiiiniiinins
7.4.7 Build Outbound Partner Profilecccccveiiiiiiinnnenn.

Act 3: Realizing the Dream - Building Acme's SAP EDI System

8 Building the 850-ORDERS Inbound

Contents

8.1 Functional Specificationsccccociiiiiiiiiiiii
8.1.1 Process OVEIVIEWccooevvieiiieiiieeeeeee e

"

Contents

8.1.2 Requirementsccccciiiiiiiiiiiiii 340
8.1.3 Dependenciescocociiiiiiiiiiie e 341
8.1.4 ASSUMPLIONS oo 342
8.1.5 Data Required to Create a Sales Ordercccccceeeriinnenns 343
8.1.6 Reconciliation Procedureccccovviiiiiiiiiiieiiiiie e 344
8.1.7 Enhancements to the Processc.ccccoiiiiiiiiiiiiininenn 344
8.1.8 Enhancement Detailscccccviiiiiiiiiiiiiiiiiiiiniecc e 344
8.1.9 Errors and Error Handlingccccceeviiiiiiiniiic i, 345
8.2 End-to-End Process FIOWcccccoviiiiiiiiiiiiiiec e 345
8.3 Technical Specificationsccccveiiiiiiiiiiiiee e 351
8.3.1 Interface SUMMArYcocoiiiiiiiiiiiic e 352
8.3.2 Technical Requirementscccooeiiiiiiiiiiniiicii e 352
8.3.3 DePENAENCIES oiieeiieiiieieeiiete et 353
8.3.4 ASSUMPLIONS ..ooooiiiiiiiii 353
8.3.5 SDQ Processing in the ORDERSO5 Translation 353
8.3.6 Duplicate Checking Enhancementccccocoiiiiienne. 367
8.4 EDI Configuration in SAPccccciiiiiiiiii e 373
8.4.1 EDPARENEres ... 373
8.4.2 EDSDCENtry ..o 373
8.4.3 ZEDIXREF Entries ..., 374
8.4.4 Partner Profile ... 375

Building the ORDRSP-855 Outbound

9.1 Functional Specificationscccooiiiiiiiiiiii 377
9.1.1 Process OVEIVIEWcccceviiiiiiiiiiiiiiicecieen e 378
9.1.2 RequiremMents ... 378
9.1.3 DePENdENCIES ...cvevieieiiiie ettt 379
9.1.4 AsSSUMPLIONS ..o 380
9.1.5 Data That Will Be Passed to Order Confirmation 380
9.1.6 Enhancements to the Processcccocieviiiiiiiiiininennnenn, 381
9.1.7 Enhancement Detailscccccooiiiiiiiiiiiiiii 381
9.1.8 Reconciliation Procedureccccevviiiiiniiiiiciiiiee e 382
9.1.9 Errors and Error Handling ... 383
9.2 End-to-End Process FIOWccccooiiiiiiiiiiiiiiiiiic e 383
9.3 Technical Specificationsccceiiiiiiiiieei e 387
9.3.1 Short Descriptionccceeiiiiiieiiiiie e 387
9.3.2 Interface SUMMAIYcccoiiiiiiiiiiiieeiiee e 387
9.3.3 Technical Requirementsccccooiiiiiiiiiiii e 388

12

9.4
9.5

Contents

9.3.4 Dependenciesccoiiiiiiiiiiii e 388
9.3.5 ASSUMPLIONS ..oooiiiiiiiiiiiii 389
9.3.6 Extended IDoc Type ZORSDQOTcccvviiiiiiiniiieiiieeiieenieee 389
9.3.7 SDQ Bundling and IDoc Output Programcccccccoeuneeen. 396
Mapping Specifications — The ORDERSO5_ZORSDQO01-855 Map ... 417
EDI Configuration in SAP 420
9.5.1 EDPAR ENtHES ...oooiiiiiiiiiiiiciiic e 420
9.5.2 ZEDIXREF ENtriesccccooiiiiiiiiiiiiiciiee e, 421
9.5.3 Standard ORDRSP Configuration: No SDQc.cceeeeernene 421
9.5.4 Custom ORDRSP Configuration: SDQ Processing 425

Building the SHPORD-830 Outbound

10.1

10.2
10.3

10.4
10.5

Functional Specificationscccccoiiiiiiiiiiei e 432
10.1.1 Process OVErVIEWcccccooiiiiiiiiiiiiiiiiiiiiece e 432
10.1.2 Requirementscccccciiiiiiiiii 432
10.1.3 DePeNndENnCIesccoiiuiiiiiiiiieeiiiiee et 434
10.1.4 ASSUMPLIONSooiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 434
10.1.5 Data That Passes to the IDoc from the Delivery 436
10.1.6 Enhancements to the Processccccoooiiiiiiiciiiciiieenn 437
10.1.7 Reconciliationcccccoiiiiiiiiiiiii 438
10.1.8 Errors and Error Handlingcccooviiiiiiiiiinicicce e 438
End-to-End Process FIOWcccoiiiiiiiiiiiice e 439
Technical Specifications ..o 442
10.3.1 Short Descriptioncccoiiiiiiiiiii i 442
10.3.2 Interface SUMMArYccccoiiiiiiiiiieiie e 442
10.3.3 Technical Requirementscccccoviiiiiiiiiiieeie e 443
10.3.4 Dependenciescccceviiuiiieiiiiiiie et 444
10.3.5 ASSUMPLIONS ..ooooiiiiiiiiii 444
Mapping Specifications — The SHPORD-830 Mapccccccoeeerueeene 445
EDI Configuration in SAPccooiiiiiiiii e 450
10.5.1 EDPAR ENErEescooooiiiiiiiiiiccc e 450
10.5.2 ZEDIXREF ENtriesccooiiiiiiiiiee e 450
10.5.3 SHPORD Configurationcccccoiiiiiiiiiiiiii e 450

Building the 856-SHPCON Inbound
11.1

Functional Specificationsccccooiiiiiiiiii 456
11.1.1 Process OVEIVIEWcccoiiiiiiiiiiiii s 456

13

Contents

11.1.2 Requirementsccccciiiiiiiiiiiiii e 456
11.1.3 Dependenciesocceieiuiiiiiiiiie e 458
11.1.4 ASSUMPLIONS ..oviiiiiiiiiiiiiiiiiiiiiiiii e 458
11.1.5 Data Required to Update a Delivery Document 459
11.1.6 Enhancements to the Processccccoooiiiiiiiiiiinnnn. 461
11.1.7 Reconciliation ..o 461
11.1.8 Errors and Error Handlingcccoocooiiiiiiiiiii 462
11.2 End-to-End Process FIOWcccoociiiiiiiiiiiiiic i 462
11.3 Technical Specificationsccceeiiiiiiiiiiiii e 465
11.3.1 Short Descriptioncccvviiviiiiiiiiiiccic e 465
11.3.2 Interface SUMMArYcccoiiiiiiiiii e 466
11.3.3 Technical Requirementsccccooiiiiiiiiiiiiciiii e 466
11.3.4 DePeNdENCIesccciiuuieeiiiiiiieiiiiie et 467
11.3.5 Assumptions ... 467
11.4 Mapping Specifications — The 856-SHPCON Mapcccccvvvrrnenn. 468
11.5 EDI Configuration in SAP ..o 475
11.5.1 EDPAR ENEresocooiiiiiiiiiiic e 476
11.5.2 ZEDIXREF Entriescocoiiiiiiiiiii 476
11.5.3 Partner Profile ... 476

12 Building the DESADV-856 Outbound

12.1 Functional Specificationscccoceiiiiiiiiiiii 480
12.1.1 Process OVEIVIEWcccoiiiiiiiiiiieiiiiiiiic e 480
12.1.2 Requirements ..o, 480
12.1.3 DePENdENCIESooeiiuiiieiiiiiie ittt 481
12.1.4 AssumPpPLionS ... 482
12.1.5 Data That Passes to the IDoc from the Delivery 483
12.1.6 Enhancements to the Processcccoiiiiiiiiiiiciinnen. 485
12.1.7 ReconCiliationcccciiiiiiiiiii e 485
12.1.8 Errors and Error Handlingcccoociiniiiiiiciiiece 485

12.2 End-to-End Process FIOWcccooiiiiiiiiiiiici e 486
12.2.1 Outbound DESADV Processing FIOWc..cccceeviiiiernnnnnnn. 486
12.2.2 Output Control ... 488

12.3 Technical Specificationsccccoiiiiiiiiiiii 493
12.3.1 Short Descriptioncioviiieiiiiiiiee it 493
12.3.2 Interface SUMMArYcoooviiiiiiiie e 493
12.3.3 Technical Requirementsc.ccocoiiiiiiiiiiiiiic e 494

14

12.4

12.5

Contents

12.3.4 Dependenciesocccoiiuiiiiiiiiii e 495
12.3.5 AsSUMPLIONSoooiiiiiiii 495
Mapping Specificationscoceiiiiiiiiiiii 496
12.4.1 The DESADV-856 Mapccccocoiiiiiiiiiiiiiiiccie e 496
EDI Configuration in SAPccooiiiiiiiiiii e 500
12.5.1 EDPAR ENLri€scoccoiiiiiiiiiiiii 500
12.5.2 PUMA ENLriES ..coiiiiiiiiiicccc e 500
12.5.3 ZEDIXREF Entriesccccooiiiiiiii e, 501
12.5.4 DESADV Configurationcccccceeriiiniiiniienicciiceee 501

Building the INVOIC-810 Outbound
131

13.2

13.3

13.4
13.5

Functional Specificationscccccoviiiiiiiniiii 508
13.1.1 Process OVEIVIEWcoooviiiiiiiiiieieiiiiiiicn e 508
13.1.2 Requirementscccccciiiiiiiiii 509
13.1.3 Dependenciescocouceiiiiiiieniie e 510
13.1.4 ASSUMPLIONS ..ouiiiiiiiiiiiiiii 511
13.1.5 Data That Passes to the IDoc from the Delivery 512
13.1.6 Enhancements to the Processccccoviiiiiiiiiiiciinnenn 513
13.1.7 Enhancement Detailscccooiiiiiiiiiiii 514
13.1.8 Reconciliationcccccceiiiiiiiiiiiii 515
13.1.9 Errors and Error Handlingccccovviiiiiiiiiiinic e 515
End-to-End Process FIOW ..o 516
13.2.1 Outbound INVOIC Processing Flowc.ccccooviiiniinnn. 516
13.2.2 Generating the INVOICeSccocoiiiiiiiiiiiii e 518
13.2.3 Output Controlcooouiiiiiiiiiiii e 519
Technical Specificationsccoviiiiiiiiiii 525
13.3.1 Short Descriptionccocciieiiiiiiiiic e 525
13.3.2 Interface SUMMArYcccoiiiiiiiiiii e 525
13.3.3 Technical Requirementsc.ccccoooiiiiiiiiiiiiniicic e 526
13.3.4 DepPendencCiescccceiiiiiiiiiiiiiiieeaiee e 526
13.3.5 AssumMPpPLioNs ... 527
13.3.6 PO Number Mass Change Reportccceevvcrireenninineennnn. 527
Mapping Specifications — The INVOIC-810 Mapcccceceernenne 554
EDI Configuration in SAP ... 557
13.5.1 EDPAR ENEriescccoiiiiiiiiiiiic e 557
13.5.2 ZEDIXREF ENtriesccoooiiiiiiiii e 558
13.5.3 INVOIC Configurationccccceomeeeriieiiiiiniie e 558

15

Contents

14 Building the 820-REMADYV Inbound

14.1 Functional Specificationsccocoiiiiiiiiiiii 564
14.1.1 Process OVEIVIEWcoocuiiiiiiiiiiiiiiiie e 564
14.1.2 Requirements ... 565
14.1.3 Dependencisccccovuriiiiiiuiieiiiiiie et 566
14.1.4 Assumptions ... 567
14.1.5 Data Required to Update a Delivery Document 568
14.1.6 Enhancements to the Processcccooiiiiiiiiiiiiiiiinn, 570
14.1.7 Reconciliation ... 570
14.1.8 Errors and Error Handlingccocooiiiniiiiiniiiiciicc 570

14.2 End-to-End Process FIOWccooiiiiiiiiiiiiicc e 571

14.3 Technical Specificationsccccoiiiiiiiiiiiii e 575
14.3.1 Short Descriptioncccoceiiiiiiiiiiiiceee e 575
14.3.2 Interface SUMMArYcooooiiiiiiiii e 575
14.3.3 Technical Requirementscocoiiiiiiiiiiii e 575
14.3.4 Dependenciescoceeiiieiiiiiiiiieeiee e 576
14.3.5 ASSUMPLIONS ..ooviiiiiiiiiiiiiiiiiiiiiiii e 577
14.3.6 EDI Process to Split Very Large 820scocceveeniiireennnnn. 577
14.3.7 User Transaction Code for the SAP Split Program 583

14.4 Mapping Specifications — The 820-REMADV Mapcccccceeeueene 583

14.5 EDI Configuration in SAP ... 589
14.5.1 EDPAR ENEHEsooooiiiiiiiiiiiiiiic e 589
14.5.2 Link Sold-to Partner to Acme Company Code 589
14.5.3 ZEDIXREF ENtriescooiiiiiiiiiiii e 590
14.5.4 Partner Profile ... 590

Act 4: Finishing Touches

15 Extending the Interface: Custom IDoc Tools

15.1 Mass Upload of Partner Profiles to SAPccccccoiiiniiiiiieiiiccins 596
1511 TR ISSUE .o 597
15.1.2 The Solution ... 597
15.1.3 DePENdENCIESoeviiiiiiiiiiiiie ettt 599
15.1.4 Program ZEDI_UPLDPP ... 600
15.1.5 Further Automating Partner Profile Processing 608

15.2 EDI Trading Partner to Control Segment ..., 611
15.2.71 TRE ISSUE .viiiiiiiiiie ittt 611

16

15.3

15.4

Contents

15.2.2 The Solution ... 612
15.2.3 Program FIOWoccoiiiiiiiiiii e 613
Mass Transfer of IDocs Between Systemsccccevveeeiiieiiieeninnee 619
15.3.1 The ISSUE .ooiiiiiiiii e 619
15.3.2 The Solution ... 620
15.3.3 Dependenciescoccociiiiiiiiiiiie e 620
15.3.4 Program ZEDI_TRNSFIDOCScccoiiiiiiiiiiiiiiiiiien, 620
Changing 1D0C StatUSceeiiiiiiiiieiiie e 626
15.4.1 The ISSUE .ooiiiiiiiiiii i 626
15.4.2 The Solution ... 626
15.4.3 Program ZEDI_CHNGSTATUS ... 627

16 Testing the EDI System in SAP
16.1

16.2

16.3

16.4

16.5

IDOC TSt TOOIS .. 632
16.1.1 WET9 — ID0C Test TOOI .uvvviiiiiiiiiiiiiiiciice e 632
16.1.2 WE16 - Inbound Processing of IDoc Filecccceevniennnn. 636
16.1.3 WE15 — Outbound from Message Controlc.cccceeenee. 636
16.1.4 WE14 — Outbound from IDOCccccovvviiiiiiiiiiiiieiee 637
Interface Testing Strategyccooiiiiiiiiiiiii 638
16.2.1 Testing Environmentscccoocoiiii 639
16.2.2 Break-Fix Proceduresccccoveiiiiiiniieniieiiiienie e 641
16.2.3 Test Teams and Responsibilitiesccccccevviiiiiiiincnnn, 642
16.2.4 Documenting Testscccciiiiiiiiiiiiii i, 644
UNnit Testingcovvviiiii 647
T6.3.71 SCOPE e 648
16.3.2 Criteria for SUCCESSoiviiiriiiiiiicriie e 648
16.3.3 Dependenciscccceviiiiieiiiiiieiiiiee e 648
16.3.4 EXECUtiONooooiiiiiiiiiiiiic 649
String Testing ..o 649
T6.4.71 SCOPE e 650
16.4.2 Criteria for SUCCESSiiviiiiiiiiiiiciiie e 651
16.4.3 Dependenciscccceevruiiieiiiiiiiiiiiee e 651
16.4.4 EXECULIONooooiiiiiiiiiiiii 652
Interface Testingccccoiiiiiiiiii i 656
T6.5.1 SCOPE o 657
16.5.2 Criteria for SUCCESSiiiiiiiiiiiiieiie e 658
16.5.3 Dependenciescccccevvcuiiieiiiiiieiiiiee e 659
16.5.4 EXeCUtiONoooiiiiiiiiiiii 660

17

Contents

16.6 Integration Testing ... 663
16.6.T SCOPE .iiiiiiiiiiii 664
16.6.2 Criteria for SUCCESSoooiiiiiiiiiiieiie e 665
16.6.3 Dependenciesccccoecuiieiiiiiiieiiiiiie e 666
16.6.4 Executionccccooiiiiiiiiii 667

16.7 Stress TeStiNG .ovvvviiiii 676
T16.7.1 SCOPE i 676
16.7.2 Criteria for SUCCESSoooiiiiiiiiiiieiic e 677
16.7.3 Dependenciesccccoecuriiiiiiiieiiiiiie e 677
16.7.4 Execution ..o 678

17 Troubleshooting and Recovery

171 1dentifying ISSUEScouviiiiiiiiiiieiiie it 682
17.1.1 Definition of SUCCESScooiiiiiiii 682
17.1.2 Definition of Failurecccccoviiiiiiiiiiicee 684
17.1.3 Functional or Business Failureccccccooiiiiiiiiiinnnnn 687
17.2 Monitoring and Recovery TOOIScccociiiiiiiiiiiiiieecceeee 690
17.2.1 Monitoring and Processing IDocs with BD87 691
17.2.2 Listing IDocs with Transactions WEO2 and WEO5 708
17.2.3 Processing Log for Output Controlcccoveiiniiiiinnn, 709
17.2.4 Viewing Errors with Transaction WEO7cccccoeevvenninnn. 710
17.2.5 Searching for IDocs by Field Contents with Transaction
WEQ9 ... 711
17.2.6 ldentify an Interrupted File with Transaction WEOS 712
17.3 Identifying Key Points of Failureccocoiiiiiiiiiiniiicc 713
17.3.1 Technical Troubleshootingccccceiiiiiiiiiiii, 713
17.3.2 Functional Troubleshootingc.ccccccoiiiiiiiiiiic, 720
EPIlOgUE e 727
The AULROT ..o 731
INAEX . s 733

18

Ordering product is the heart of the business, and Darryl Q would have
understood the need for an effective process. It's time then to step through
the 850-ORDERS interface build. We'll provide the specs and go over the
business process, mapping requirements, and custom development and con-
figuration in SAP.

8 Building the 850-ORDERS Inbound

We've been through the blueprint phase and looked at Acme's business and leg-
acy systems. We have a design for our new SAP EDI system and have learned a
little bit about EDI and the IDoc interface.

The time has come to build some interfaces.

The seven chapters of Act 3 are written as functional and technical specs for the
key interfaces in the order-to-cash cycle between Acme Pictures and its most im-
portant customer Gordy's Galaxy of Games & B Flix.

They're not formal specifications. They present requirements for building our in-
terfaces, including EDI to IDoc mapping and a discussion of any custom code or
configuration that may need to be developed.

We'll begin with the inbound EDI X12 850 PO to ORDERS IDoc interface, the
foundational process in the order-to-cash cycle.

The wrinkle is that Acme and Gordy are VMI (vendor managed inventory) part-
ners, so they exchange two types of orders, both of which post to sales orders in
SAP against a customer PO.

These are straight EDI for new release: X12 850 PO to ORDERS IDoc and VMI or-
ders for replenishment and catalog. VMI is a two-step process:

» An X12 852 feed to Acme's VMI system used to support calculation of sug-
gested customer orders

» VMI flat file with suggested customer PO to ORDERS IDoc

339

8 | Building the 850-ORDERS Inbound

We'll look at both processes in this chapter. The end result is the same: Sales or-
ders are created in SAP by an ORDERS IDoc.

8.1 Functional Specifications

Inbound EDI 850 POs or VMI orders make up the sole means of creating sales or-
ders for Gordy's Galaxy in Acme's new SAP system. Data to create SAP sales or-
ders are mapped from the 850 or the VMI order file to an IDoc using the ORDERS
message with ORDERSO5 basic type.

8.1.1 Process Overview
The process begins with an EDI transmission, either an 852 POS to VMI or an 850
PO directly to SAP after being translated to an ORDERS IDoc.

The 852 is used in the VMI system to support calculations based on a variety of
data feeds that generate suggested POs for Gordy's Galaxy. The VMI orders are
then mapped to an ORDERS IDoc and sent into SAP to create sales orders.

Both EDI and VMI sales orders generate an acknowledgement in an ORDRSP IDoc
that is sent to Gordy's Galaxy.

8.1.2 Requirements

Sales orders for Gordy's Galaxy are posted in SAP from customer POs sent either
as 850 X12 EDI transmissions or as VMI orders in flat files from the VMI system.
SAP sales orders are created for one sold-to and one ship-to partner and are iden-
tified by order type:

» ZEDI for EDI orders with no SDQ

» ZEDS for EDI orders with SDQ

» ZVMI for VMI orders

Other requirements include

» There is no duplicate posting of customer POs.

» The order type comes into the sales order from the IDoc.

340

Functional Specifications | 84

» All dates sent by Gordy in the EDI 850 are posted to the sales order in SAP.
Those that can't be accommodated in a standard date field are stored in a text
element.

» Delivery dates for VMI orders are sent from the VMI system.

» Delivery plants for VMI orders are sent from the VMI system. They can be
changed after the sales order is created but before delivery documents are gen-
erated.

» An order acknowledgement is created when the sales order is completed and
is sent to the EDI system as an ORDRSP IDoc.

» Conditions that can lead to an incomplete order include
Customer credit check fails.

ATP (item availability) check for the ordered product fails to find sufficient
inventory to fulfill the order.

8.1.3 Dependencies

The 850-ORDERS interface is dependent on master data, configuration, and de-
velopment objects in SAP and the EDI RIM. This includes

» Master data objects required to create sales orders, including:

GL chart of accounts: Assigned to the company code to record dollar values
for costs and revenues for the accounting system.

Customers: For sold-to and ship-to partners, payment terms, shipping con-
ditions, and credit checks, assigned to Acme sales organization, distribu-
tion channel, and division.

Delivery plants: For assignment of vendor plants for shipping.

Materials: For finished movies on DVD ordered at the item level and for
component materials in sales BOMs.

Bills of materials: Identifying components in ordered finished goods.

Customer material info records (table KNMT) : Not required for Gordy's
Galaxy because it sends Acme's item numbers. But this is required for all
customers who send their own internal item numbers.

Pricing conditions: For header-level and item-level standard prices, taxes,
discounts, credits, promotions, freight charges, and so on.

341

8 | Building the 850-ORDERS Inbound

EDPAR: Partner mapping from external to internal customer numbers en-
suring identification of SAP sold-to and ship-to partners.

EDSDC: Sales organization data will be mapped for the SAP sold-to partner
and the customer's vendor number for Acme.

Partner profiles: To identify the sold-to partner for the incoming IDoc or-
der. Partner profiles will be at the sold-to partner level; there will be only
one partner profile per EDI customer.
IDoc configuration completed in SAP to support inbound ORDERS for Gordy's
Galaxy.

EDI maps built for 852 VMI and 850 order translations.

Business process models (BPMs) built in the EDI RIM to route ORDERS IDocs
to SAP.

8.1.4 Assumptions

Sales orders are created from ORDERS IDocs that have been processed by a sched-
uled job in SAP. There is only one sold-to and ship-to partner for each sales order,
although a customer PO can generate multiple sales orders.

Other key assumptions include

>

Supporting master data is loaded into SAP and a process defined for adding
new sold-to and ship-to partners, materials, and BOM:s.

Gordy's Galaxy sends GLNs for its sold-to and ship-to partners.

Gordy sends UPC numbers and Acme's internal SAP material numbers for all
goods ordered.

VMI order pricing is determined by the pricing conditions called when the
sales order is created.

Pricing for EDI orders is determined when the sales order is created in SAP by
comparing the prices sent in Gordy's PO to the price proposed by the pricing
conditions set for the material ordered.

If the two match or are within a tolerance limit, Gordy's price posts to the
sales order.

If the difference between the two prices exceeds tolerance, the reason for
the difference is identified, and the correct price is used.

The base unit of measure for items ordered is EA (eaches).

342

Functional Specifications

» All data that must be returned to the customer in the invoice must post to the
sales order from the IDoc. Data that can't be accommodated in a standard field
in the order goes into a text element.

» A customer credit check is run when the sales order is created. A new credit
check is run only if pricing or quantities are changed in the order.

» Business users are responsible for addressing application errors in the ORDERS
IDocs.

» Incomplete sales orders are saved for manual editing.
» All errors in the EDI system are handled by the EDI team.

» EDI and VMI orders are sent into SAP immediately, and the IDocs are posted
to sales orders within no more than an hour.

» EDI errors or issues that may affect the timeliness of order creation are com-

municated to the business users immediately.

8.1.5

Data Required to Create a Sales Order

SAP sales orders are created with Transaction VAO1. At a minimum, the fields in
Table 8.1 must be populated to create a sales order.

VBAK AUART Order type

VBAK VKORG Sales organization 0010

VBAK VTWEG Distribution channel 10

VBAK KUNNR Sold-to partner GRDYO01
VBPA PARVW Partner qualifier — ship-to WE

VBPA KUNNR Ship-to partner GRDY01001
VBKD BSTKD Customer PO number 9997895
VBKD BSTDK Customer PO date 20081202
VBAK VDATU Requested delivery date 20081204
VBAP MATNR SAP material number 999284
VBAP XXXX Customer item number (UPC) 9998989989121
VBAP KWMENG Order quantity 230

Table 8.1 Fields That Are Populated When a Sales Order Is Created

343

8 | Building the 850-ORDERS Inbound

8.1.6 Reconciliation Procedure

Successful import of the ORDERS IDoc is confirmed through any of the IDoc mon-
itoring tools such as BD87 or WEO5.

IDoc status should be 64 — IDoc ready to be transferred to application —before the
scheduled processing job is kicked off and 53 — Application document posted —
after.

The EDI team confirms the data in the IDoc against the data in the X12 850 trans-
action set sent from the customer, and the users validate that the sales order was
created against the data sent in the IDoc.

8.1.7 Enhancements to the Process

An enhancement is required during sales order creation to ensure that a customer
PO posts only once. This may be a little like squaring the circle. Each PO can con-
tain product-ordering information for multiple store locations at the line-item
level, whereas each SAP sales order only carries ordering information for one
store.

This means that we must be able to create multiple sales orders for each PO while
ensuring that the same customer PO doesn't post to a second batch of sales orders,
which is a common issue on SAP EDI sites.

Double-posting results in double-ordering and duplicate shipments to the cus-
tomer leading to unnecessary costs, returns, and customer dissatisfaction with
Acme'’s service.

8.1.8 Enhancement Details

The duplicate PO check occurs in code during IDoc processing and is transparent
to the user. It checks sold-to, ship-to, PO number, and PO date. If it finds existing
sales orders against the PO, it checks if an ORDRSP IDoc was generated from it.

If an IDoc has been generated, the PO has already posted, its sales orders have
completed, and an acknowledgement has been sent back to the customer. The in-
coming order is a dupe PO. It should trigger an error in the IDoc and stop it from
posting.

344

End-to-End Process Flow

8.1.9 Errors and Error Handling

Errors that may occur during processing of the inbound 850-VMI-ORDERS inter-
face include

» The IDoc will fail if the sold-to or ship-to partners don't exist in SAP, or if the
sales organization can't be determined. If these errors occur, the customer or
sales org data are entered, and the IDoc reruns.

» The IDoc will fail if SAP can't identify the material number from the item num-
ber sent in the EDI transaction. The customer is asked to resend the PO, or the
IDoc is edited and reprocessed.

» A customer PO that has already posted will trigger an error in the IDoc if it tries
to post again. If the PO needs to be reposted, the sales orders that posted in the
initial run are deleted.

» If there isn't enough inventory to fulfill an order when the sales order is cre-
ated, it will be put on hold and deliveries won't be generated until inventory
is entered and the order is released.

» Ifa customer credit check fails during sales order creation, the order will be put
on hold until the credit department releases it.

Sales order or IDoc errors will be communicated to the responsible business user
immediately. There is a service level agreement with the partner mandating how
quickly shipments need to be sent after orders are received.

Standard IDoc monitoring programs such as WE05 or even B87 will be used to
track and monitor IDocs.

8.2 End-to-End Process Flow

An overview of the end-to-end process flow for creating SAP sales orders from
EDI transmissions is outlined in Figure 8.1.

Two processes are at work here for Gordy's Galaxy: new release with EDI orders
and replenishment, and catalog with VMI orders. The two processing flows merge
with the creation of one ORDERS IDoc instance for each sales order that will be
created in SAP.

345

8 | Building the 850-ORDERS Inbound

850 PO 852 POS/INV

1 1
EDI X12 850 EDI X12 852:
1PO POS/Inv/RPO

2 2 2A
i VMI Flat File
Mapping SD .
urf)rzvegllingQ Mapping P 852 Structure
\/\
3 2C 2B
3 - VMI system
OIRDE[;S. J Mapping SDQ | VMI orde(:s
sales orders unravelling suggeste
4 5
IDoc i_nterface RBDAPPOA:
store in DB at »
status 64 process IDocs
6
OK
7
Dupe Fail Throw error
check
OK
9 8

Post sales
END: to)
ORDRSP-855 orders on PO \47 oK Fail
Figure 8.1 The Inbound EDI/VMI Order Creation Process

This is easier said than done: The 850 PO and the VMI order file include all order-
ing data for each of Gordy's 2,000 store locations at the item level. Ordering quan-
tity for each location is stored in the 850 in one or many SDQ segments that occur
as children to item-level segment PO1, which contains item numbers for the prod-
uct being ordered.

346

End-to-End Process Flow

The SDQ segment can hold order quantities for up to 10 stores. The VMI order
file is structured in a similar manner. But an SAP sales order can only be created
for one sold-to and one ship-to location. So we need to build one ORDERS IDoc
for each store that orders product. And we must include every item that it's or-
dering in the IDoc.

This can be handled in an ABAP program if we build an ORDERSO5 basic type
with an SDQ segment to bring the PO data into SAP.

We're going to look at the logic for doing this, whether in a map through a Java
exit, a script, or in ABAP. The logical problem is the same, but the specifics of
doing it vary from tool to tool. Many mapping tools have robust programming or
rules languages that allow conditional processing, looping, indexing, and also sup-
port arrays and even Java objects.

As long as the mapping tool has access to all of the source structures and data, it
should be able to unravel the SDQ into multiple orders with the help of a little
creative coding.

VMI Processing

The VMI process flow begins with an 852 transmission from Gordy's Galaxy by
AS2 into the EDI RIM. The 852 carries three types of data:

» Store-level point of sales (POS) data transmitted every night. The 852 POS is a
consolidation of check-out scans of items sold in each store throughout the day.

» Store inventory levels sent once a week.

» Open reserved PO numbers (RPOs) sent intermittently, before Acme runs out

of PO numbers for VMI orders.

Regardless of the data it holds, the 852 is mapped to an internal flat file that has
a structure similar to the 852 and is sent into the VMI system.

In VMI, POS and inventory data support calculations that generate POs for replen-
ishment of goods and catalog product for Gordy's stores. The RPO file is used to
assign PO numbers to the calculated orders.

The POS and inventory feeds are also sent to StoreData for use in store-level re-
plenishment calculations.

347

8 | Building the 850-ORDERS Inbound

The final orders calculation is also based on a number daily feeds from SAP, in-
cluding but not restricted to

» Customer store locations

» Finished goods master data

» BOMs and BOM changes since the last feed

» Inventory levels at the vendor's warehouse

» Open and changed sales orders

» Open deliveries

» Returns

» Open vendor POs for manufacture of finished goods

There are also daily extracts from StoreData and other backend systems, including

shelf location and dimensions in all of Gordy's stores, titles ordered by store and
item number, and minimum and maximum order levels per store.

VMI calculates a PO for each of Gordy's stores. A PO number is pulled from a
table populated by the RPO feed. RPO is then marked as consumed and is no
longer available for use.

The VMI order is extracted to an ASCII file by VMI. The file has a flatter structure
than an 850 PO but includes an SDQ-like record with order item quantity for up
to six stores in each segment, that is, a child to an item header that identifies the
product being ordered.

The following key values are mapped to the IDoc:
» The SAP sold-to partner number for Gordy to the send partner field in the con-
trol record EDIDC-SNDPRN.

» Order type OR for standard orders to field E1EDK14-ORGID with qualifier 012
in field QUALF.

» The RPO number to field EIEDKO2-BELNR with qualifier 001 in field QUALF.

» Gordy's store location GLN to E1EDKA1-LIFNR with qualifier WE in field
PARVW.

» The quantity to be ordered for each item in field EIEDPO1-MENGE.

» The SAP material number for each movie ordered in field E1EDP19-IDTNR
with qualifier 002 in field QUALF.

348

End-to-End Process Flow

» The item's UPC code in field E1EDP19-IDTNR with qualifier 003 in field
QUALF.

» Gordy's item number in field E1EDP19-IDTNR with qualifier 001 in field
QUALF.

The VMI order file is exported to the EDI RIM, where it's identified as a VMI
order for Gordy's Galaxy. RIM calls a map that unravels the store-level data and
builds one ORDERS IDoc for each store and each product being ordered by that
store.

The IDocs are batched together into a file and, at this point, the VMI process ends,
and the IDoc is sent into SAP through the IDoc adapter.

EDI 850 Processing

The EDI processing flow begins with receipt of an 850 PO transmission from
Gordy's Galaxy by AS2 into the EDI RIM. RIM identifies the 850 from Gordy and
calls the map to translate it.

Gordy uses the SDQ segment at the item level to identify each store and the quan-
tity of product being ordered. As with the VMI file, the map unravels order data
from the item level and builds one ORDERS IDoc for each store and each product
being ordered by that store.

The same key values are mapped to the IDoc as for the VMI order.

The IDocs are batched into a file and sent by RIM into SAP through the IDoc
adapter by calling function EDI_DATA_INCOMING.

At this point, the VMI and EDI processes merge. The SAP IDoc interface kicks in,
confirms that the file contains IDocs, checks that there are matching partner pro-
files, and writes the IDocs to the database at status 64.

The IDocs are processed by program RBDAPPO1, which is scheduled to pick up
Gordy's orders every hour. RBDAPPO1 reads the IDoc database and identifies all
ORDERS IDocs at status 64 where EDIDC-SNDPRN equals Gordy's SAP sold-to
partner.

It then identifies the IDoc function — IDOC_INPUT_ORDERS — from the process
code ORDE in the inbound partner profile for Gordy's Galaxy message type OR-
DERS and calls it to post the IDocs to sales orders. IDOC_INPUT_ORDERS takes over
and loops through the IDoc.

349

8 | Building the 850-ORDERS Inbound

When it hits segment EIEDKA1, it reads EDPAR to convert Gordy's GLN to the
SAP ship-to partner.

If the EDPAR read fails, an error is thrown, IDoc processing stops, and a status 51
application error is added to the IDoc status record. In most cases, this error oc-
curs because either the location has not been added as a ship-to partner in SAP,
or it doesn't yet exist for the sales organization posting the order.

The user creates the ship-to record or extends it to the sales org in the customer
master and updates EDPAR to create the link among Gordy's sold-to, ship-to, and
GLN. The IDoc is then reprocessed.

After the successful EDPAR conversion of Gordy's GLN to the SAP ship-to partner,
a duplicate order check is run to ensure that the customer PO hasn't already
posted a sales order for the current sold-to and ship-to partners.

Table VBAK is read for the sales org, order type, SAP sold-to partner, customer PO
number, and date. If there's no hit, there's no dupe, and IDoc processing contin-
ues to the next check.

If there is a hit, table VBPA is read with the sales order number and sold-to partner
to identify the ship-to. VBPA stores complete partner data for all sales documents.
If there's no hit, PO duplicate check processing exits.

If there is a hit, we have a possible dupe. We need to check if the sales order gen-
erated an ORDRSP IDoc, proving that it was completed and generated an ac-
knowledgement to the customer.

This is done by calling function NREL_GET_NEIGHBOURHOOD, which links the sales
order number — the object key — and its object type — BUS2032 — to all IDocs
that either created or were generated from it.

If it returns an ORDRSP IDoc number, then the PO is a dupe, and an error is
thrown. IDoc processing stops and a status 51 application error is added to the
IDoc status record.

The responsible user then checks the sales order and confirms. If it's a dupe, ei-
ther the IDoc or the posted sales order is marked for deletion. If the sales order is
deleted, the IDoc is reprocessed.

If the PO number is incorrect, it's corrected in the IDoc and reprocessed.

350

Technical Specifications

The next check is on the item with the SAP material number checked first. Gordy
sends Acme's SAP number, so this check should pass. Gordy gets a daily finished
goods synchronization extract from SAP and should always have Acme's most up-
to-date catalog.

If it fails, the customer info record is checked in table KNMT, which will fail be-
cause we're not maintaining CMIR for Gordy.

The final check is on the UPC number, which Gordy also sends. If the item check
fails, an error is thrown, IDoc processing stops, and a status 51 application error
is added to the IDoc status record.

If the material exists in SAP but has not been extended to the sales org posting the
order, the check fails. Extend the material and reprocess the IDoc. If the material
doesn't exist in SAP, the error is in the EDI file.

The business contacts Gordy and confirms the product ordered and its quantity.
The responsible user then changes the material in the IDoc using Transaction
BD87 or one of the other standard IDoc list programs discussed in Chapter 17,
Troubleshooting and Recovery. The IDoc is then reprocessed.

In some cases, Gordy is asked to resend the order.

The IDoc function also checks table EDSDC for sales org data. Because this is a
one-time data entry job, there should be no error unless someone deleted the
record from EDSDC.

If all checks are passed, or errors are corrected, and the IDoc reprocessed, the func-
tion passes data from the IDoc to an internal table referencing Data Dictionary struc-
ture BDCDATA. This data is then used to create the sales order through a call to
Transaction VAO1. As the order is saved, the system does its ATP and credit checks.

The process ends when output control kicks in and generates an ORDRSP IDoc to
send to Gordy to acknowledge posting of its PO or VMI order.

8.3 Technical Specifications

This technical specification describes interface configuration and custom program
support in the EDI RIM and SAP for the delivery, translation, and creation of EDI
and VMI sales orders in SAP.

351

8 | Building the 850-ORDERS Inbound

8.3.1 Interface Summary

The summary specifications for this interface are outlined in Table 1.2.

e Jospion

Type of Interface
Logical Message Type
Basic Type

Custom ABAP 1

Short Description
Interface Direction
Source File
Trading Partner
Map

Custom Map Logic

Source System

Target System

997 Acknowledgment
Frequency

Schedule

X12 EDI or VMI to IDoc
ORDERS
ORDERSO5

User exit in enchancement VEDAOOO1 in modification
project ZEDISOO1

Dupe PO check on ship-to and PO number
Inbound

850 (PO), 852 (VMI), VMI proposed orders flat file
Gordy's Galaxy

X12 850 vers. 5010 — ORDERS.ORDERS05
VMI orders FF — ORDERS.ORDERS05

One-to-many mapping; unbundle store order quantity per
material in SDQ segments into one IDoc per store

Gordy's Galaxy EDI via AS2

Acme SAP via EDI RIM

Outbound function code PO at transaction detail level
Daily, on demand

RBDAPPO1: Every hour, posts IDocs to sales orders

Table 8.2 Base Specifications for Inbound EDI Orders

8.3.2 Technical Requirements

One ORDERS IDoc is generated by the translation map for each store location and
all items ordered by that location for standard order type OR.

User exit coding blocks duplicate posting of customer POs to SAP sales orders.

Configuration in the EDI RIM and SAP support inbound orders and outbound 997

acknowledgements.

352

Technical Specifications

8.3.3 Dependencies

The 850-VMI-ORDERS interface is dependent on a number of development ob-
jects in SAP and the EDI RIM:

» Inbound envelopes set up in RIM for Gordy's 850 and 852 version 5010 EDI
transactions

» Outbound envelopes set up in RIM for 997 FA to be generated for Gordy's Gal-
axy during deenveloping of the inbound 850 and 852

» Custom cross-reference table ZEDIXREF populated in SAP to read the SAP send
and receive partners for the inbound 850 from Gordy

» Job set up in the SAP Job Scheduler (SM36) to post ORDERS IDocs with pro-
gram RBDAPPO1 with variants to select for Gordy's Galaxy

8.3.4 Assumptions

POs from Gordy's Galaxy post from 850 EDI transactions and VMI orders. Gordy
sends both SDQ and non-SDQ POs.

The map, a script, or a custom external or ABAP program extract store-level or-
dering data in the SDQ segment into an indexed array and build one ORDERS
IDoc for each store location.

RIM maps the EDI send and receive trading partner IDs to the IDoc control record
fields SNDLAD and RCVLAD. These fields are read by an exit in the IDoc interface
to identify the SAP sold-to partner for field EDIDC-SNDPRN.

During the EDPAR check on partner segment E1EDKA1, the SAP sold-to partner
is read from EDIDC-SNDPRN.

EDI errors are tracked and addressed in the EDI system. Technical errors in the
IDoc interface, such as syntax or partner profile errors, are tracked and corrected
by the EDI team.

8.3.5 SDQ Processing in the ORDERSO05 Translation

SDQ records at the item level of the VMI order and the EDI 850 PO contain order
quantities for each store by product. The map, with a little custom coding, extracts
item and quantity data for each location, identified by GLN in the SDQ record,
and build one ORDERS IDOC for each store.

353

8 | Building the 850-ORDERS Inbound

GLN for the store is inserted into field EIEDKA1-LIFNR with qualifier WE at the
header level of the ORDERS IDoc. The basic principle is that each SAP sales order
includes all DVD movies ordered by one sold-to partner — Gordy's Galaxy — for
one ship-to — Gordy's store location.

The map has a one-to-many relationship between the input and the output. In ad-
dition, it moves the store’'s GLN from the item level of the input to the header
level of the output.

This is a common issue in EDI implementations. SDQ is widely used in the 850
PO, 852 POS, and 855 confirmation. Most mapping tools that handle this do so
with custom code. We'll look at a logical process that uses an indexed array and
some looping that can be used to build one IDoc for each store in an SDQ segment.

To better understand where we're coming from and where we want to go, we
need to look at our mapping spec for the 850 SDQ PO to the ORDERS IDoc, as
outlined in Table 8.3. This spec is focused on the application data. We won't look
at the IDoc control record or at any of the key fields of the control area of the data
records.

The spec has been simplified for clarity, including the use of abbreviations for
IDoc segment names. Header-level segments begin with K, and item-level seg-
ments with P. This is pretty consistent in SAP. EDI data elements are identified
with their segment name and position number.

Before we begin, note that common usage is for the EDI transaction to be on the
left, regardless of whether it's the source or the target structure. We'll follow this
practice for consistency.

Source rarget v [commenis]

Unmapped IDoc Constants
KO1-BSART NB Purchasing doc type.
K14-QUALF 12 Order type.
K14-ORGID TA Standard sales order.

BEG — Begin Segment for PO Create — Mandatory — Max 1
KO02-QUALF 001 Customer PO.

BEGO3 KO02-BELNR PO number.

Table 8.3 Simplified Mapping Spec for 850 SDQ PO to ORDERS IDoc

354

Technical Specifications | 8.3

Souce [arget_vatecommens

BEGO5 KO2-DATUM PO date.
DTM — Date Segment — Mandatory — Delivery Date — Instance 1 of 2

DTMO1 KO3-IDDAT 002 Identifies requested delivery date where DTMO1 =
010.

DTMO02 KO3-DATUM Customer delivery date.

DTM — Date Segment — Mandatory — Shipping Date — Instance 2 of 2

DTMO1 KT1-TDID ZSHD Identifies ship date where DTMO1 = 010.
DTMO02 KT2-TDLINE Ship date posts to orders as text.

N1 Looping Group Begin — Partner Identification - Mandatory — 1 to 200

N1 — Partner ID Segment — Mandatory — Max 1 per loop — Loop 1

N101 KA1-PARVW LF Customer vendor number, where N101 = SU.

N103 UL Identifies GLN for partner.
N104 KA1-LIFNR Acme GLN.
N7 Loop 2

N101 KA1-PARVW WE Customer ship-to number where N101 = ST. Non-SDQ
only. Won't be present in SDQ.

N103 UL Identifies GLN number for partner.
N104 KA1-LIFNR Gordy store location GLN. Non-SDQ.
N1 Looping Group End

PO1 Looping Group Begin - Item Detail - Mandatory — 1 to N

PO1 — Baseline Item Data — Mandatory — Max 1 per PO1 loop

PO101 PO1-POSEX Item no.

PO102 PO1-MENGE Quantity ordered. Non-SDQ only.

PO103 PO1-MENEE EA Base unit of measure eaches. Non-SDQ only.
PO104 PO1-VPREI Unit price.

PO106 P19-QUALF 001 Customer material number where PO106 = IN.
PO107 P19-IDTNR Customer's product number.

PO108 P19-QUALF 003 UPC for material where PO108 = UP.

PO109 P19-IDTNR UPC for material.

Table 8.3 Simplified Mapping Spec for 850 SDQ PO to ORDERS IDoc (cont.)

355

8 | Building the 850-ORDERS Inbound

Source [rarget—vate|commens

PO110 P19-QUALF 002 Acme SAP material number where PO110 = VN.

PO111 P19-IDTNR

SAP material number.

SDQ - Store Location Order Quantity Data— Option — 1 to N per PO1 loop

SDQO01 PO1-MENEE EA Base unit of measure = eaches.

SDQ02 KO1-PARVW WE SAP ship-to partner function by GLN = UL. Inserted in
header E1EDKA1 segment of each ORDERS IDoc. For
all stores in SDQ.

SDQO3 KO1-LIFNR Store location GLN for ORDERS IDoc 1.

SDQ04 PO1-MENGE Quantity to ORDERS IDoc 1.

SDQO05 KO1-LIFNR If exists, store location GLN to IDoc 2.

SDQO6 PO1-MENGE Quantity ordered to IDoc 2.

SDQO7 KO1-LIFNR If exists, store location GLN to IDoc 3.

SDQO08 PO1-MENGE Quantity ordered to IDoc 3.

SDQO09 KO1-LIFNR If exists, store location GLN to IDoc 4.

SDQ10 PO1-MENGE Quantity ordered to IDoc 4.

SDQ11 KO1-LIFNR If exists, store location GLN to IDoc 5.

SDQ12 PO1-MENGE Quantity ordered to IDoc 5.

SDQ13 KO1-LIFNR If exists, store location GLN to IDoc 6.

SDQ14 PO1-MENGE Quantity ordered IDoc 6.

SDQ15 KO1-LIFNR If exists, store location GLN to IDoc 7.

SDQ16 PO1-MENGE Quantity ordered to IDoc 7.

SDQ17 KO1-LIFNR If exists, store location GLN to IDoc 8.

SDQ18 PO1-MENGE Quantity ordered to IDoc 8.

SDQ19 KO1-LIFNR If exists, store location GLN to IDoc 9.

SDQ20 PO1-MENGE Quantity ordered to IDoc 9.

SDQ21 KO1-LIFNR If exists, store location GLN to IDoc 10.

SDQ22 PO1-MENGE Quantity ordered to IDoc 10.

PO1 Looping Group End

Table 8.3 Simplified Mapping Spec for 850 SDQ PO to ORDERS IDoc (cont.)

356

Technical Specifications

Mapping Structures

The mapping specs help us visualize our data. We need to see the data to make
this work. So let's visualize our 850 file.

We'll take a two-step approach. First we'll map the 850 input data to a flat struc-
ture in a temporary looping group with one header and multiple item records that
we'll use to build one IDoc for each SDQ store location.

The temporary group will mimic and simplify the ORDERSO5 basic type structure.
This is where our custom code will collect and assemble the IDoc data before pass-
ing it to the relevant fields in the target IDoc.

The code will unravel the SDQ segments by store and quantity pair and build in
the temporary group one IDoc per location with the store’s GLN in the header-
level KA1-LIFNR field. We'll then map each field in the temporary looping group
to the IDoc.

The temporary looping group will contain everything we need to build an IDoc,
including control segment fields in the header and control key values for the data
records at both header and item levels.

Assuming a mapping tool that supports this, we'll append the temporary looping
group to the end of our input at the same level as the transaction. It will contain
a header section with only one record and another looping group for the item-
level data.

The target IDoc is also set up as a looping group with the same hierarchy as our
temporary flattened IDoc, allowing generation of multiple instances of the IDoc
for each X12 850 transaction. This ensures that the looping levels in the tempo-
rary input structure and the IDoc output are compatible. In other words, parent-
child relationships and the number of looping iterations for each group will be
identical on both sides.

Repeating IDoc segments, such as EIEDKA1, will be copied into single instances
of the segment specific to one qualifier for one-to-one mapping. For example, the
[Doc will have two instances of E1EDKA1: for the vendor (PARVW = LF) and the
ship-to partner (PARVW = WE).

We'll also need to put logic in the SEGNUM field of the control key area of each
data record to increment a counter that will provide a sequential number for each

357

8 | Building the 850-ORDERS Inbound

IDoc segment, regardless of hierarchy. We declare a global variable and increment
it each time SEGNUM is processed:

SEGNUM = seg_cnt + 1.

Mapping specifications for the temporary looping group and the IDoc are detailed
in Table 8.4. We'll use the same approach for the VMI order, which also has an
SDQ record so we don't need to repeat the details here.

TMP_ORDERS Looping Group Begin —IDoc Mapping Structure — 1to N
IDOC_HDR — Header Level Data — Mandatory — Max 1

DC40_MANDT EDI_DC40-MANDT 100 SAP target client
DC40_DOCREL EDI_DC40-DOCREL 620 SAP version
DC40_DIRECT EDI_DC40-DIRECT 2 Inbound
DC40_IDOCTYP EDI_DC40-IDOCTYP ORDERSO5 Basic type
DC40_MESTYP EDI_DC40-MESTYP ORDERS Message type
DC40_STD EDI_DC40-STD X EDI standard
DC40_STDVRS EDI_DC40-STDVRS 005010 EDI version
DC40_STDMES EDI_DC40-STDMES 850 EDI transaction
DC40_SNDPOR EDI_DC40-SNDPOR EDI_IDOC Sender file port
DC40_SNDPRT EDI_DC40-SNDPRT KU Customer
DC40_SNDPFC EDI_DC40-SNDPFC AG Sold-to partner
DC40_SNDPRN EDI_DC40-SNDPRN GRDYO1 Gordy's sold-to
DC40_SNDLAD EDI_DC40-SNDLAD Gordy's TP ID
DC40_RCVPOR EDI_DC40-RCVPOR SAPDEV Receiver port
DC40_RCVPRT EDI_DC40-SNDPRT LS Logical system
DC40_RCVPRN EDI_DC40-SNDPRN SAPDEV100 Logical client

DC40_RCVLAD
DC40_REFINT
DC40_REFGRP

EDI_DC40-RCVLAD
EDI_DC40- REFINT
EDI_DC40- REFGRP

Acme's TP ID
ISA Cntrl number
GS Grp Cntrl number

Table 8.4 Mapping the Temporary ORDERS Flat IDoc Structure to the Target ORDERS IDoc for

SDQ Processing

358

Technical Specifications | 8.3

DC40_REFMES
KO1_HLEVEL
KO1_BSART
K14_HLEVEL
K14_QUALF
K14_ORGID
KO3_HLEVEL
KO3_IDDAT
KO3_DATUM
KA1_LF_HLEVEL
KA1_LF
KA1_LF_LIFNR
KA1_WE_HLEVEL
KA1_WE
KA1_WE_LIFNR

KO2_HLEVEL
KO2_QUALF
KO2_BELNR
KO2_DATUM
KT1_TDID
KT2_TDLINE

EDI_DC40- REFMES
KO1-HLEVEL
KO1-BSART
KO1-HLEVEL
K14-QUALF
K14-ORGID
KO3-HLEVEL
KO3-IDDAT
KO3-DATUM
KA1-HLEVEL
KA1-PARVW
KAT-LIFNR
KA1-HLEVEL
KA1-PARVW
KAT-LIFNR

KO2-HLEVEL
KO02-QUALF
KO2-BELNR
KO2-DATUM
KT1-TDID
KT2-TDLINE

NB

12

TA

002

LF

WE

001

ST Txn ID
Hierarchy level
Purchase doc type
Hierarchy level
Order type
Standard order
Hierarchy level
Req. delivery date
Date

Hierarchy level
Cust vendor number

Acme GLN

Hierarchy level
Cust. ship-to number

Gordy ship-to from
SDQ segment

Hierarchy level
Customer PO

PO no

PO date

Ship date text ID
Ship date to PO text

IDOC_ITEM_Grp Looping Group Begin — Item Detail - Mandatory — 1to N

IDOC_ITEM — Item Details Max 1 per IDOC_ITEM loop

PO1_HLEVEL
PO1_POSEX

PO1_MENGE
PO1_MENEE

PO1-HLEVEL
PO1-POSEX

PO1-MENGE
PO1-MENEE

2

EA

Hierarchy level
Item number
SDQ qty
Uuom

Table 8.4 Mapping the Temporary ORDERS Flat IDoc Structure to the Target ORDERS IDoc for

SDQ Processing (cont.)

359

8 | Building the 850-ORDERS Inbound

PO1_VPREI PO1-VPREI Unit price

P19 _HLEVEL_002 P19-HLEVEL 3 Hierarchy level
P19_QUALF_002 P19-QUALF 002 Acme SAP item
P19_IDTNR P19-IDTNR Material number
P19_HLEVEL_001 P19-HLEVEL 3 Hierarchy level
P19_QUALF_001 P19-QUALF 001 Customer item

P19 _IDTNR P19-IDTNR Material number
P19_HLEVEL_003 P19-HLEVEL 3 Hierarchy level
P19_QUALF_003 P19-QUALF 003 UPC

P19_IDTNR P19-IDTNR UPC product number

IDOC_ITEM Looping Group End
TMP_ORDERS Looping Group End

Table 8.4 Mapping the Temporary ORDERS Flat IDoc Structure to the Target ORDERS IDoc for
SDQ Processing (cont.)

As you can see, everything we need to build an IDoc is in this temporary structure
in two segments. All we need to do is unravel store and order quantity pairs from
the SDQ segment associated with each item, move the store GLN to the header of
the IDoc, and move the order UPC and quantity to the item level of our structure.
Then we map each field to the target IDoc.

We're building an IDoc in memory through code that we'll then map to the target
IDoc. To do this, we have to write code, whether it's inside the map or outside
the map. The capabilities of your mapping tool have to be considered. But this
logic can be applied in any scripting or programming language that can read and
process an input to build an output, including ABAP.

So let's give it a try.

Program Logic

Our basic working assumption is that the entire 850 input file is available for pro-
cessing before we map our data to the ORDERS IDoc output. This can happen in
memory in a user exit or within the mapping program's normal processing flow.

360

Technical Specifications | 8.3

We're also assuming that we can declare an indexed array in our mapping tool
and that the code can be written and called from a user exit or external program
or class file.

We'll process the 850 file in three loops with the help of a number of key indexes.
The IDocs are built in the temporary looping structure during the deepest loop,
at the item level, after the store and quantity data in the SDQ segments have been
moved into an indexed array.

The logical processing flow for creating one ORDERS IDoc for each store in an
SDQ 850 PO is outlined in Figure 8.2. There's a lot of stuff happening here, but
it's not as complex as it might seem.

Py— txnidx=1
egin loop build header

on 850 txn record 1
2 l 3 A 4 4 l

BEG PO data + DTM delivery N1 loop 1:
IDoc constants date LF vendor
5 h 4

N1 loop 2:
check for store

No Yes
s I

SDQ processing Store in header:
w polldx =
PO1loopon |« o1ldx + 1 standard map
item P 1850t0 1 IDoc
7 y 8 v
PO1: Item: UPC/ SDQ: Build store| ORDERS 05
vendor/cust & qty array with IDoc
unit price common index
9 v
L
00p on amay - hdrldx=last
read store key storekeyldx=1
build IDocs ylax=
11 10 vy
Collect items/ Copy header
price from PO1 [« add store from
qty from array array to KA1 WE|
[
ARNERS A
- ApnCes o
> Write index ORDERS 05
hdrldx/po1ldx IDocs

Figure 8.2 Logical Processing Flow for SDQ Orders

361

8 | Building the 850-ORDERS Inbound

The code loops through the input one 850 transaction at a time, setting the trans-
action-level index — TXNIDX — to 1. All other indexes are reset to 0. This index
identifies common header data pulled from the current 850 transaction that will
be written to the IDOC_HDR record of each IDoc that we build for each store in
our SDQ segments.

The BEG segment is read first. Base PO data is moved into the K02 fields of the
IDOC_HDR record using index TXNIDX:

» BELNR: Customer PO number from BEGO3.

» DATUM: PO date from BEGO5.

» QUALF: PO qualifier 001.

Constant IDoc header values are also passed to the header records:

» EDI_DC40: All IDoc control record fields.

» KO1: HLEVEL 1 and BSART NB.

» K14: HLEVEL 2, QUALF 12, and ORGID TA.

» KO2: HLEVEL 2.

The DTM segment is read next. DTMO01 is checked for qualifier 010. If it's found,
the following values are written to the K03_002 fields with index TXNIDX:

» HLEVEL: 2.

» IDDAT: Qualifier 002 identifying the requested delivery date.

» DATUM: Date from DTMO2.

A translation error is thrown if qualifier 010 isn't found in DTMO1. The delivery
date is a mandatory field for the SAP sales order.

The N1 looping group is read next. N103 is checked for qualifier SU. If it's found,
the vendor number is passed to the IDOC_HDR KA1_LF fields using index TXNIDX:
» HLEVEL: 2.

» PARVW: Qualifier LF.

» LIFNR: Acme's GLN from N104.

During loop read 2 of the N1 Group, N103 is checked for qualifier ST store loca-

tion. If it's found, there are no SDQ segments, and standard processing proceeds.
One IDoc is generated for each 850 transaction using index TXNIDX to write the

362

Technical Specifications

header segments and P011DX to write the items. Gordy is very good about this and
never sends a store in the N1 loop with an SDQ order. In the real world, things
aren't always so clean.

If the ST qualifier isn't found in the N1 loop, an SDQ flag is set, and SDQ process-
ing proceeds.

The PO1 looping group is processed. It's read in a loop with segment PO1 the first
to be read. The item index P01IDX is incremented. PO11DX is used with TXNIDX to
write item data to the IDOC_ITEM record, linking the PO1 item to the header
record of the first IDoc being written.

The following values are passed from the PO1 segment to the PO1 fields of the
IDOC_ITEM record using index TXNIDX.PO1IDX:

» HLEVEL: 2.

» POSEX: Item number from PO101.

» VPREL Unit price from PO104.

The ordered items are passed next to the P19 fields of the IDOC_ITEM record
using index TXNIDX.P01IDX. They are read from the PO1 segment of the 850:

» HLEVEL: 3. In the IDoc, segment E1EDP19 is a child to E1EDPO1.

» QUALF_002: Qualifier 002 where PO110 = VN.

» IDTNR: Acme's SAP material number from PO111.

» QUALF_001: Qualifier 001 where PO106 = IN.

» IDTNR: Gordy's material number from PO107.

» QUALF_003: Qualifier 003 where PO108 = UP.

» IDTNR: UPC number for the material from PO109.

Qualifier 002 is passed first because Gordy sends Acme's SAP item number, and
this eliminates material determination during IDoc processing.

The values that we've collected into our temporary IDoc so far serve as the tem-
plate that we'll use to build each IDoc that we'll create for each store and quantity
pair in the SDQ segment within the current item loop. These values will be com-
mon to all IDocs that we create from this 850 for each store regardless of items
and quantity ordered.

363

8 | Building the 850-ORDERS Inbound

Now we come to the fun part. The SDQ segments are read, one at a time. They
hold the store locations as GLNs paired with an order quantity for the material in
the parent PO1 segment.

Each store location and quantity pair is moved into an indexed array in memory
— an internal table in ABAP — that we'll loop through to create one IDoc for each
store. Different programming tools handle this task differently but the array could
look something like Table 8.5.

1 9997495958768 23
2 9997495959876 12
3 9997495960786 6

4 9997495961986 45
5 9997495962686 20

Table 8.5 Indexed Array with Store Order Quantity Pairs

This unravels the SDQ into a tabular structure with one record per store and quan-
tity pair.

We can now loop through this array within our current loop on the 850 PO1 item
and match the store and quantity to the material being ordered for it.

All SDQ segments within the PO1 group are at runtime processed one at a time
in the order in which they appear in the group. The logic to build the SDQ array
would look something like this in pseudo code:

IF SDQON IS NOT NULL THEN
MOVE SDQON TO SDQ_ARRAY COLZ
MOVE SDQONN TO SDQ_ARRAY COL3
SDQIDX = SDQIDX + 1
MOVE SDQIDX TO SDQ_ARRAY COL1
STORECNT = SDQIDX.

ENDIF.

Each store location and quantity pair in each SDQ segment is treated in the same
way. SDQON is the number of the location data element beginning with SDQO03
and ending with SDQ21. SDQONN is the number of the quantity data element be-
ginning with SDQ04 and ending with SDQ22.

364

Technical Specifications

We also need to get a total count of all store-quantity pairs in the SDQ array. We'll
put this into a counter called STORECNT, which equals 5 in our example in Table
8.5.

After all SDQ segments have been read, and the SDQ array built with all store-
quantity pairs for the current item, the PO1 loop ends. Before we begin to loop
on the next PO1 group, another loop is kicked off on the SDQ array.

This is where we build our IDocs, one for each store, regardless of the number of
items ordered by each store.

At the top of each loop of the SDQ array, a Java hash map object or other array or
internal table — STORE_MAP — is searched for the store GLN being processed by
the current loop pass.

If the store GLN isn't found in STORE_MAP, an IDoc for that store hasn't been cre-
ated. A new IDoc will be built for store.

First we copy each field of the IDOC_HDR record into our new IDoc and move
the store's GLN into the KA1T_WE_LIFNR field. We assign a new IDoc header
index — STOREIDX — to the IDOC_HDR record being built for the store. All further
items ordered by that store will be written to the same IDoc, which will be iden-
tified by that STOREIDX.

Next the item data that was collected from the current 850 PO1 group are written
to a new IDOC_ITEM record using index STOREIDX.P011DX.

The order quantity for that store is then moved from the SDQ array to the PO1_
MENGE field in the new IDOC_ITEM record being written using index STORE-
IDX.PO1IDX.

Last, but not least, the STOREIDX index and the store GLN are appended to STORE_
MAP. If the store GLN is found in STORE_MAP, an IDoc already exists for that store,
and we'll append our item data to it.

STOREIDX is pulled from the STORE_MAP key array. The item data collected from the
current 850 P01 group is appended to the IDOC_ITEM record of the existing
IDOC_HDR record for the store using the STOREIDX we pulled from STORE_MAP to
identify it and the current P011DX item index to write it.

365

8 | Building the 850-ORDERS Inbound

Then the order quantity for the store is read from the SDQ array and written to
the PO1_MENGE field in the IDOC_ITEM record being appended to the existing
IDoc with write index STOREIDX.P01IDX.

Pseudo code for this loop follows in Listing 8.1.

loop at sdq_array.
read store_map for key store_GLN.
if exists get storeldx from store_map.
append current IDOC_ITEM_PO01 fields to existing IDoc
using index storeldx.p0lIdx
move quantity from SDQ array to
IDOC_ITEM-POI_MENGE using index storeldx.p0lIdx
copy current IDOC_ITEM_P19_002 fields to existing IDoc
using index storeldx.p0lIldx
copy current IDOC_ITEM_P19_001 fields to existing IDoc
using index storeldx.p0lIldx
copy current IDOC_ITEM_P19_003 fields to existing IDoc
using index storeldx.p0lIldx
else does not exist create new IDoc.
move store to store_map.
storeldx = Tast storeldx + 1.
move storeldx to store_map.
copy current IDOC_HDR_DC40 fields to new IDoc
using index storeldx.
copy current IDOC_HDR_KO01 fields to new IDoc
using index storeldx
copy current IDOC_HDR_K14 fields to new IDoc
using storeldx
copy current IDOC_HDR_KO03 fields to new IDoc
using index storeldx
copy current IDOC_HDR_KAI_LF fields to new IDoc
using index storeldx
move WE to IDOC_HDR-KA1_WE in new IDoc
using index storeldx
move store GLN from current SDQ array to
IDOC_HDR-KATI_WE_LIFNR in new IDoc
using index storeldx
copy current IDOC_HDR_KO02 fields to new IDoc
using index hdrlIdx.p0lIdx
append current IDOC_ITEM_P01 fields to new IDoc
using index storeldx.p0lIdx

366

Technical Specifications | 8.3

move quantity from current SDQ array to
IDOC_ITEM-PO1_MENGE using index storeldx.p0lIldx

copy current IDOC_ITEM_P19_002 fields to new IDoc
using index storeldx.p0lIldx

copy current IDOC_ITEM_P19_001 fields to new IDoc
using index storeldx.p0lIldx

copy current IDOC_ITEM_P19_003 fields to new IDoc
using index storeldx.p0lIldx

end if.
endloop

Listing 8.1 Pseudo Code to Support Building One IDoc for Each Store and Quantity Pair in Item-
Level SDQ Segments

These IDocs are being assembled into a file in memory. The index identifies the
current location of the IDoc and its segments.

» The STOREIDX index identifies the IDoc and links together all of its segments.
The header segments of the IDoc are written only once but copied into each
new IDoc for each store.

» The P01IDX index identifies the current EIEDPO1 group segments being ap-
pended to the existing header and items of the IDoc.

This allows us to write only one ORDERS IDoc for each location with the store's
GLN in the header-level E1IEDKA1_WE segment and each product being ordered
for it occupying its own E1EDPO1 group.

8.3.6 Duplicate Checking Enhancement

The enchancement for checking duplicates is a straightforward user exit that pre-
vents duplicate custom POs from posting to sales orders in SAP.

The issue here is that if the same PO posts twice for the same store location, dou-
ble the number of goods that were ordered could be shipped, resulting in higher
shipment costs, increased returns, and poor customer service.

There are times when we need to post a customer PO a second time because of
errors in an initial transmission that have been fixed. But this scenario will be
known in advance, and all sales orders that posted against the initial transmission
will be deleted.

367

8 | Building the 850-ORDERS Inbound

This enhancement is aimed at eliminating the accidental reposting of a PO that has
already posted. The basic rule is that no customer PO should be allowed to post
twice to an SAP sales order for the same ship-to partner.

The code will be written in CUSTOMER-FUNCTION '011" in the IDoc processing func-
tion IDOC_INPUT_ORDERS.

We'll need to create two objects to enable this enhancement:
» Error message flagging the duplicate PO, ship-to partner, and sales order num-
ber

» CMOD modification project to code the exit

Create Error Message

We previously created our custom messages in the 900 and above range in stan-
dard message class IDOC_ADAPTER. To create our new message, follow these
steps:

1. Go to the SAP Repository with Transaction SE80.

2. CLICK REPOSITORY INFORMATION SYSTEM.

3. Open the folder OTHER OBJECTS.
4

. Double-click MESSAGE CLASSES, and enter "IDOC_ADAPTER" in the STANDARD
SELECTIONS screen. Execute to open the REPOSITORY INFO SYSTEM: MESSAGE
CLASSES FIND screen.

5. Double-click IDOC_ADAPTER to load the MESSAGE MAINTENANCE screen, and
click the MESSAGES tab.

6. Click DisPLAY <-> CHANGE, and scroll down to message 902, which should be
blank.

7. Enter the following message into 902:
Duplicate PO & for ship-to & in sales order &.

8. Save the message, and assign it to a change request.

Create Modification Project

To create the modification project, follow these steps:

1. Go to CMOD, and enter project name “ZEDISOO1". Click CREATE.

368

Technical Specifications | 8.3

2. Enter a description in the SHORT TEXT field of the ATTRIBUTES screen. Save the
project and assign it to a change request.

3. Click ENHANCEMENT ASSIGNMENTS, and get enhancement VEDAOOO1 (see Fig-
ure 8.3).

4. Click ComPONENTS, and select function set EXIT_SAPLVEDA_011 with function
CUSTOMER-FUNCTION '011".

«li| Enhancement assignments Iﬂ Enhancement

project | | | [momsostoweroenesx]
Eohancenert | 10p1] @ [Exp |VEDABOR1 5D EDT Incoming drders (Custoner Extensions)|

Function exit EXIT_SAFLYEDA_@O1
EXIT_SAPLVEDA_BO2
EXIT_SAPLVEDA_DO3
EXIT_SAPLVEDA_DO4
EXIT_SAPLYEDA_DDS

EX1T_SAPLYEDA_AAG
EX1T_SAPLYEDA_QAT
EXI1T_SAPLYEDA_00E
EXI1T_SAPLVEDA_0AG
EXIT_SAPLYEDA_1@
BXIT_SAPLYEDA_ 071
EXI1T_SAPLYEDA_@12

Figure 8.3 Enhancement VEDAOOO1

5. Double-click the exit name to open the exit in the source code editor of the
Function Builder (see Figure 8.4).

Figure 8.4 EXIT_SAPLVEDA_011 in the Source Code Editor

369

8 | Building the 850-ORDERS Inbound

6. Double-click ZXVEDU13 to create the include program that we'll use to write our
code. The system will throw up the message:

Program names ZX... are reserved for includes of exit function groups

7. Press to bypass the message and create the program. You'll be prompted
to assign it to a change request.

8. The ABAP Editor opens to a blank screen. The project must be activated after
completing the code. Click the activation icon at the top of the screen in the
CMOD selection screen, or select menu option PROJECT « ACTIVATE PROJECT.

Program Flow

CUSTOMER-FUNCTION '011" is called after the ORDERS IDoc has been processed and
confirmed and before the call transaction to Transaction VAO1 to create the sales
order.

This customer function is the last opportunity to check application data pulled
from the IDoc for errors and to pass those errors to the IDoc status record before
creating the sales order through the call transaction.

There are 2 import and 11 table parameters available to the exit. For our purposes,
we are only interested in

» Import parameter DXVBAK
Brings sales order header data into the exit. Has the structure of VBAK, the sales
order header table, with a number of additional fields.

» Table parameter DERRTAB
Collects error messages to pass to the IDoc status record.

» Table parameter XVBPA
Holds SAP partner type and ID data for all partners in the sales order. This in-
ternal table is populated by partner determination processing during the ED-
PAR read.

The sold-to partner and customer PO number are pulled from fields KUNNR and
BSTKD in XVBAK. The ship-to partner is pulled from field KUNNR in XVBPA
where the qualifier PARVW = WE.

The exit then reads table VBAK in SAP with the PO number and sold-to partner
as the key. The SQL will look like Listing 8.2, where S_VBELN is a variable to hold
the sales order number.

370

Technical Specifications

select single vbeln into s_vbeln from vbak
where vkorg = xvbak-vkorg
and vtweg = xvbak-vtweg
and spart = xvbak-spart
and bstnk = xvbak-bstdk
and kunnr = xvbak-kunnr.
if sy-subrc <> 0.
exit. * No dupe end processing.
else.
check for ship-to partner.
endif.

Listing 8.2 Selecting Sales Order from VBAK for Dupe PO Exit Check

If there is no hit, the PO has not posted, and exit processing ends.

If there is a hit, table VBPA is read with the sales order number pulled from VBAK
and the ship-to number from XVBPA. The code will look something like Listing
8.3.

read table xvbpa with key parvw = "WE'.
if sy-subrc = 0.
s_kunnr = xvbpa-kunnr
else.
exit. * No dupe end processing.
endif.
select single kunnr into s_kunnr from vbpa
where vbeln = s_vbeln
and parvw = "WE'
and posnr = '000000"
and kunnr = s_kunnr.
if sy-subrc <> 0.
exit. * No dupe end processing.
else.
* write error message to derrtab.
endif.

Listing 8.3 Determining If the Ship-To Partner Exists for the Sales Order in Table VBPA

If there is no hit, the incoming PO has not yet posted for that ship-to partner.
There is no dupe, and exit processing ends.

If there is a hit, the customer PO has already posted for that ship-to partner. Next
we check if ORDRSP IDoc has been generated. To do this, we call a function —

37

8 | Building the 850-ORDERS Inbound

NREL_GET_NEIGHBOURHOOD — that checks all objects linked to the sales order we
pulled from VBAK. If we find an ORDRSP IDoc, a dupe PO error is raised. The
function call is

CALL FUNCTION "NREL_GET_NEIGHBOURHOOD'

EXPORTING

IS_OBJECT = s_object
TABLES

LINKS = i_links.

s_object has the structure of Data Dictionary type BORIDENT. It needs two val-
ues:

» OBJKEY
Object key: the sales order number with leading Os.

» OBJTYPE
Object type: BUS2032, the business object for sales order.

The object links are returned in internal table I_LINKS with the structure of Data
Dictionary type RELGRAPHLK. The object type 100C would be in field 0BJTYPE_B,
and the number in 0BJKEY_B. You then use OBJKEY_B to read table EDIDC and
check field MESTYP for message type ORDRSP.

If there's no hit, we have no dupe, and exit processing ends. If we have a hit, the
PO is treated as a dupe, and an error is raised. Error message variables are then
written to internal table DERRTAB, and exit processing ends. The values in Listing
8.4 are passed.

DERRTAB-ARBGB = 'IDOC_ADAPTER".
DERRTAB-CLASS = "E".
DERRTAB-MSGNR = '902".
DERRTAB-MSGV1 = xvbak-bstdk.
DERRTAB-MSGV2 = s_kunnr.
DERRTAB-MSGV3 = s_vbeln.

append DERRTAB.

Listing 8.4 Writing an Error Message to DERRTAB

v

ARBGB identifies our message class.

v

CLASS identifies the error type.

v

MSGNR is our custom message number.

v

MSGV1 passes the customer PO number to our message.

372

EDI Configuration in SAP | 8.4

» MSGV2 passes the customer SAP ship-to partner from VBPA.

» MSGV3 passes the sales order number.

8.4 EDI Configuration in SAP

Now let's look at IDoc configuration for the inbound ORDERS message type for
Gordy's Galaxy.

8.4.1 EDPAR Entries

Go to Transaction VOE4, and enter one record for each of Gordy's stores and dis-
tribution centers that will be receiving product from Acme Studios, as in Table
8.6.

v osapion]

KUNNR GRDYO1 Gordy sold-to partner from IDoc

PARVW WE Partner function ship-to

EXPNR 0098857055556 External partner for ship-to — Gordy's GLN
INPNR GRDY010987 Internal SAP ship-to partner number

Table 8.6 We'll Need One EDPAR Entry for Each Stores to Handle Inbound ORDERS from Gordy's
Galaxy

This maps Gordy's sold-to partner, from the control segment of the IDoc, to
Gordy's store GLN from the N1 or SDQ segments of the 850, to the SAP ship-to
partner.

Because there are no checks on its data, and EDPAR isn't linked to any other tables
or programs, it can be safely loaded with a custom ABAP that inserts data directly
into it. It can also be loaded through an LSMW project or CATT script on Trans-
action VOE4.

8.4.2 EDSDC Entry

Go to Transaction VOE2, and enter the following record for Gordy, as in Table
8.7.

373

8 | Building the 850-ORDERS Inbound

Fild—Juatie —Jowsapion

KUNNR GRDYO01 Gordy sold-to partner from IDoc.

LIFNR 564567 Acme vendor number in Gordy's system.

VKORG 0010 Acme sales organization.

VTWEG 010 Distribution channel.

SPART 00 Division.

AUART Sales order type: if blank, uses the default OR (TA). Can be
used to create different order types for different trading
partners.

Table 8.7 EDSDC Entry for Gordy's Galaxy

LIFNR is Gordy's number for Acme Studios, although it doesn't have to be. It does
need to be a number that always comes in the ORDERS IDoc translated from
Gordy's 850 PO.

This table entry maps Gordy's sold-to partner to the SAP sales organization that
will exchange EDI data with them.

8.4.3 ZEDIXREF Entries

We don't need to populate ZEDIXREF for the 852 because it doesn't post to SAP.
We do need to add the information from Table 8.8 to custom table ZEDIXREF for
the inbound 850 interface from Gordy:

I T

DIRECT 2 Direction inbound
STDMES 850 EDI transaction
MESTYP ORDERS IDoc message type
IDOCTP ORDERSO5 IDoc basic type
CIMTYP IDoc extension
SNDPRN GRDYO1 SAP send partner
RCVPRN DEVCLNT100 SAP receive partner

Table 8.8 ZEDIXREF Entry for the Inbound 850 from Gordy

374

EDI Configuration in SAP

T T

SNDLAD 99934567999 EDI send trading partner ID
RCVLAD 99999998889 EDI receive trading partner ID

Table 8.8 ZEDIXREF Entry for the Inbound 850 from Gordy (cont.)

8.4.4 Partner Profile

Go to Transaction WE20. The partner profile for the inbound ORDERS interface
for Gordy's Galaxy uses the values in Table 8.9.

Screen Group Parameter Value

Partner Header Partner number GRDYO1
Partn.Type KU
General Partn.funct. SP
Message type ORDERS
Message code
Inbound Options Process code ORDE
Processing Trigger by background program X

Table 8.9 Partner Profile Values for Inbound ORDERS from Gordy

Process code ORDE links to function module IDOC_INPUT_ORDERS and message
type ORDERS in Transaction WE42. Don't forget to save.

See Chapter 6, Section 6.3.6, Partner Profiles, for further details about creating
partner profiles.

Once a sales order has successfully posted to SAP, an order confirmation must be
generated and sent to Gordy in an 855 EDI transaction. We will now look at the
challenges that this interface presents.

375

Index

A

ABAP Data Dictionary 84, 91
and IDoc architecture 236-240
Data Elements 238
Domains 236
Fields 238
Segments 239
ABAP Programs
RBDAPPO1 275, 349, 353, 464, 573, 577,
721
RBDINPUT 706
RBDMONOO 691
RBDOUTPU 706
RCSBIO10 91
RFBIDEOO 87-88
RFBIKROO 89
RMDATIND 90
RSEIDOCY9 712
RSEOUTO0 285, 386, 389, 441, 444, 492,
495, 637, 718, 725
RSNASTO0 386, 637
RSNASTED 282, 284, 503, 520
RSOUTO00 524,526
RSTETESTD 627
RV14BTCI 92
RVV50R10C 440, 444
SAPMSEDIPARTNER 596
SAPMV45B 384
SAPMV50A 440
SDBILLDL 517
SPLIT_ PAYMENT_ADVICE 568-570, 574,
576, 583
ZE1DI_ORDRSPSDQ 382, 386, 388, 396,
400, 428
ZEDI_TRNSFIDOCS 619-626
ZEDI_UPLDPP 596-611
ZSDCHINVOIC 527-554
American National Standards Institute (ANSI)
127
AS2 profile 181

B

Billing Due List 106, 110
BPEL (Business Process Execution Language)
39
BPM (Business Process Model) 39, 175, 179,
181
BPML (Business Process Modeling Language)
39-40, 81, 179, 181
Business Object Repository (BOR) 301
Business process
Billing 94, 105
Catalog planning 94, 98
Delivery 94, 103
Payment 94,107
Purchasing 94, 101
Replication 67
VMI (Vendor managed inventory) 38, 56
VMI orders 94
Business process flow
Catalog 52
New release 49
Purchasing 33, 48, 67
Sales 34
Sales and Distribution 53
Business process model (BPM) 39, 175, 179,
181

C

Communications IDoc 235
Communications Protocols

AS2 33,66, 69-70,72, 74, 81, 84, 139,

169,172, 181

FTP 68,71, 74, 81, 84, 138

FTP/S 81

HTTP 81, 84, 139

HTTP/S 69-70, 81, 139, 183

VAN (value added network) 84

VAN (value added networks) 66
Correlation data 180, 188, 199, 201
Custom 846 Inventory Report 312

733

Index

D

Data conversion strategy 85

Delivery Due list 104

DISA (Data Interchange Standards Association)
125, 127-128, 150

E

EAN (European Article Number) 90, 269
EDI (Electronic Data Interchange)
Architecture 44
Archive strategy 189
Batch processing 43
Buying and selling 29
Codes and qualifiers 155
Data Dictionary 150
Implementation guidelines 149
Mapping strategy 45
Metadata formats 179
Trading partners, description 84
EDI envelope
GS Group 141,143
ISA Interchange 141, 143
ST Transaction Set 141-142
EDI history 123-140
Accredited Standards Committee (ASC) X12
127
Berlin Airlift 123
Edward A. Guilbert 125
FTD (Florists’ Telegraph Delivery) 123
Stockholm conference standards 130
The birth of EDI 125
Transportation Data Coordinating Committee
(TDCCO) 126
United Nations committees 130
EDI interface
997 status codes 186
Deenveloping 185
Envelopes 69, 71
Enveloping 68, 180
Legacy process flow 68
Process flow 168
Process flow inbound 211
Process flow outbound 213
SDQ segment 38, 58, 96, 98, 109

734

EDI interface (cont.)
Status code 69
Transaction Set Identifier Code 69
Translation map 68, 71, 82, 145, 179, 188
EDI RIM Workflows 81
EDI standards
ANSIASCX12 33,125,127, 129, 169
EDIFACT 129, 131-133, 141
ODETTE 134
SMMT 136
TRADACOMS 136
VDA 135
EDI system
Adapters 39
Business process modeling tool 40
Generic 39
SAP IDoc adapter 40
Services 39
EDI Trading Partner ID
Receiver 69, 71, 85, 144, 178, 180, 185
Sender 69, 71, 85, 144, 178, 180, 185
EDIFACT Messages
CONTRL Syntax and Service Report 206
DESADV Dispatch Advice 133
INVOIC Customer Invoice 131, 133
ORDERS Purchase Order 133
REMADYV Remittance Advice 133
Extending ORDRSP with BOM 325

F

Field symbols 410-411
Function groups
EDI6 596
EDIMEXT 82
FRAD 109
V50K 440
ZEDINVRP 317
Function modules
APPLICATION_IDOC_POST_IMMEDIAT
277
BAPI_GOODSMVT_CREATE 102
BAPI_REQUIREMENTS_CHANGE 100
BAPI_REQUIREMENTS_CREATE 100
COMMUNICATION_AREA_KOMKBV2 488
COMMUNICATION_IDOC_CREATE 284

Function modules (cont.)

EDI_AGREE_IN_MESSTYPE_INSERT 294
EDI_AGREE_OUT_IDOC_INSERT 294, 607
EDI_AGREE_OUT_IDOC_UPDATE 607
EDI_AGREE_OUT_MESSTYPE_INSERT 294,
606
EDI_AGREE_OUT_MESSTYPE_UPDATE 606
EDI_AGREE_PARTNER_INSERT 293, 606
EDI_CHANGE_DATA_SEGMENT 552
EDI_CONTROL_RECORD_MODIFY 274
EDI_DATA_INCOMING 41, 178, 188, 213,
274, 285, 349, 464, 467, 573, 576, 578,
712,716
EDI_DOCUMENT_CLOSE_CREATE 275
EDI_DOCUMENT_CLOSE_EDIT 552
EDI_DOCUMENT_CLOSE_PROCESS 629
EDI_DOCUMENT_CLOSE_READ 407, 538~
539
EDI_DOCUMENT_OPEN_FOR_CREATE
275, 616
EDI_DOCUMENT_OPEN_FOR_EDIT 552
EDI_DOCUMENT_OPEN_FOR_PROCESS
629
EDI_DOCUMENT_OPEN_FOR_READ 538
EDI_DOCUMENT_STATUS_SET 275, 629
EDI_DOCUMENT_TREE_DISPLAY 553, 697
EDI_IDOC_SYNTAX_GET 234
EDI_OUTPUT_NEW 175
EDI_PARTNER_CREATE_SYPART01 608
EDI_PARTNER_READ_OUTGOING 282,
384, 440, 489, 520
EDI_PARTNER_SEND_IDOC 609-610
EDI_PATH_CREATE_MESTYP_DOCNUM
244
EDI_PORT_READ 286
EDI_SEGMENTS_ADD_BLOCK 275
EDI_SEGMENTS_GET_ALL 539
GUI_UPLOAD 604
IDOC_CONTROL_OUTBOUND_CONVERT
235
IDOC_CREATE_ON_DATABASE 284, 616
IDOC_CTRL_INBOUND_CONVERT 235,274
IDOC_DATA_INBOUND_CONVERT 235,
274
IDOC_DATA_OUTBOUND_CONVERT 235
IDOC_INBOUND_FROM_FILE 274

Index

Function modules (cont.)

IDOC_INBOUND_PROCESS_DATA_GET
274-275, 277
IDOC_INBOUND_WRITE_TO_DB 274
IDOC_INPUT 318
IDOC_INPUT_DELVRY 464,477
IDOC_INPUT_ORDERS 265, 269, 273, 277,
349, 368, 375
IDOC_INPUT_REMADV 573, 591
IDOC_OUTPUT_DELIVRY 484
IDOC_OUTPUT_DELVRY 441, 453, 489,
491, 500, 504
IDOC_OUTPUT_INVOIC 283,520, 523, 561
IDOC_OUTPUT_ORDRSP 292, 385
IDOC_READ_COMPLETELY 712
IDOC_RECORD_READ 82
IDOC_START_INBOUND 277
IDOC_STATUS_WRITE_TO_DATABASE 415
IDOC_TYPE_READ 234
IDOCS_OUTPUT_TO_FILE 243, 286
IDOCTYPE_READ_COMPLETE 82
MASTER_IDOC_DISTRIBUTE 175,386,413,
552, 610
MESSAGING 281, 488
NREL_GET_NEIGHBOURHOOD 350, 372
NUMBER_GET_NEXT 275
PARTNER_CONVERSION_INT_TO_EXT 491
REMADV_INSERT 574, 589
REMADV_SPLIT_PAYMENT_ADVICE 109
REUSE_ALV_HIERSEQ_LIST_DISPLAY 404,
416
REUSE_ALV_LIST_DISPLAY 604, 607, 626,
629
RFC_REMOTE_EXEC 243, 286
RPY_MESSAGE_COMPOSE 540
RV_CUSTOMER_MATERIAL_READ 270
RV_CUSTOMER_MATERIAL_UPDATE 91
RV_DOCUMENT_ADD 519
RV_INVOICE_CREATE 519
RV_INVOICE_DOCUMENT_ADD 281
RV_PRICE_PRINT_HEAD 521
RV_PRICE_PRINT_ITEM 521
RV_READ_INVOICE_INDEX 518
RV_SALES_DOCUMENT_ADD 384
SD_COLLECTIVE_RUN_EXECUTE 519
SD_COND_ACCESS 282

735

Index

Function modules (cont.) IDoc development (cont.)
SD_INT_TO_EXT_PARTNER_NUMBER 284, Attributes 302
522 Configure custom IDoc 306
SD_OBJECT_TYPE_DETERMINE 284 Enhancements Definition 299
SHP_BAPI_DELIVERY_REPLICA 440 Enhancements Project Management 300
SHP_EXTENDED DUE_LIST VIEW 440 Extendz'ng an IDoc 307
SPLIT_ PAYMENT_ADVICE 109 Function Editor 293
WS_DELIVERY_UPDATE_2 465 Function Groups 292
ZCHANGE_IDOC_STATUS 553 Identifying Exits 308
ZIDOC_INPUT_SYPART 611 IDoc function API 296
ZIDOC_INPUT_ZINVRPT 318-319 IDoc Type Editor 291
Functional acknowledgement 181, 185 Inbound Process Code 302
Link Function to IDoc 300
G Link Message to Basic Type 292
Logical Message Type 291
GLN (Global Location Number) 136, 262, Outbound Process Code 304
266, 342, 348, 350, 357, 360, 365, 367, Segment Editor 290
379, 391, 406, 420 Work Flow 304
GS Functional Group envelope described 147 IDoc enhancement 97
GTIN (Global Trade Item Number) 136, 262, Bundling sales orders 98
269 IDoc extended type 234
Z_ORDERSO5 234
| ZORDRS01 325
ZORSDQO1 379, 381, 386, 388-389, 391,
IDoc basic type 82, 232 393, 395, 397, 405, 408, 417, 428
DELVRY03 432, 456, 494 IDoc interface
INVOICO2 214, 280, 526, 558 inbound lifecycle 232
ORDERS05 233, 236, 263, 287, 325, 340, outbound lifecycle 232
347, 357, 378, 381, 389, 394, 417 Process flow inbound 272-279
PEXR2002 565, 575 Process flow outbound 279-286
SYPARTO1 608, 610 IDoc Message type
SYSTATO1 191, 301 ADRMAS 104
ZINVRPTO01 312 BOMMAT 95, 101
IDoc configuration DEBMAS 95, 104
Condition records 252 DESADV 95,110, 246, 456, 480, 483, 486,
Defining message control 246-257 489, 492, 495, 500, 657, 665, 673
EDI user name 241 INVOIC 106, 110, 178, 201, 214, 247, 258,
File port 44,178, 243 263, 280, 283, 508, 510, 514, 516, 520,
Logical System 241 526-527, 536, 558, 651, 654, 657, 665,
Message code 95 674,693, 725
Partner profile 44, 87, 95, 257-261, 301 MATMAS 95
RFC destination 175-176, 242 MBGMCR 95,102
IDoc control record keys 144, 214 ORDERS 95-98, 102, 109, 144, 168, 183
IDoc development 188, 223, 227, 261, 266, 272, 301, 339-
ABAP Data Dictionary 289 340, 345, 349, 352, 360, 370, 373, 651~
ABAP Editor 298 652, 657-658, 665, 683, 688, 692, 711,
721

736

IDoc Message type (cont.)

ORDRSP 97-98, 102, 109, 246, 287, 340,
344, 350, 371, 378-379, 382, 389, 394,
397, 407, 420, 657, 692, 699

REMADV 108, 110, 563, 565, 569, 572~
573, 575,577,582, 589, 657-658, 665,
675

SHPCON 105, 110, 456, 458, 464, 467,
657-658, 665, 672, 688, 693

SHPORD 104-105, 110, 432, 434, 436~
437, 441, 444, 450, 657, 665, 669

STATUS 191, 197, 200-201, 215, 694

SYPART 608, 610-611

ZINVRPT 312

ZREQTS 100

IDoc metadata 82
EDIFECS gXML 82
Parser format 82
IDoc modification project
ZEDITPXR 611-619
IDoc monitoring and recovery tools 690-713

BD87 691-708

WEO5 708

WEO07 710

WEO8 712

WE09 711

IDoc processing programs by status code

Inbound 705

Outbound 706

IDoc record types

Control record external representation 221

Control record internal representation 227

Data record external representation 224

Data record internal representation 229

Status record external representation 225

Status record internal representation 230

IDoc Segment Editor 100

IDoc segments 220-232
E1EDPO1 98

IDoc structures

Control record 82, 95

Data element 82

Data record 82

EDI_DC40 82,144,178,197, 201, 221, 235

Index

IDoc structures (cont.)

EDI_DD40 82, 224, 235

EDI_DS40 82, 225

Segment 82

Status record 82
IDoc test tools 632-637

WE14 637

WE15 636

WE16 636

WE19 632
IDoc view

ZORSDQO1_BAS 395, 397, 429
[Docs 218-236, 234
IDocs and EDI 30
IDocs, as intelligent messages 133, 218
IDocs, compared to EDIFACT 133
Integration testing 663-676
Interface testing 656-663
Interface strategy 41
Internet Engineering Task Force (IETF) 139
ISA Interchange envelope described 146

J

Java 39, 81,175

JCo (Java Connector) 41, 81, 174, 176-177,
214, 653, 656, 677

JCo classes 188

JDBC (Java Database Connectivity) 81

K

Key project plan tasks 111

L

Legacy interfaces 60

Legacy systems 38, 60
DVD Repository 62
EDI 65, 68,74
Finance 64
Legacy SD 63,73
Manufacturing 53, 63, 68, 71
Promotions 62
Release Planning 62
StoreData 59, 65, 73, 96, 99

737

Index

Legacy systems (cont.)
Title Master 62
VMI 65,73

Logical message type 219

M

Master data
Bill of materials 80, 86, 91, 100-101
CMIR (Customer material info records) 86, 90
Customers 80, 86-87
Finished goods 80, 95, 101
General Ledger Chart of Accounts 86
LSMW 85, 87-88, 90-92
Materials 86, 89, 100
Pricing conditions 86, 92
Raw materials 80, 95, 101
Vendors 80, 86, 88

MDN (message disposition notification) 69-
70, 183

Message code BND 98

Multiple message types linked to one basic
type 233

o

Order-to-cash cycle 37, 61,72, 88, 109, 171,
173

Order-to-cash functional spec
820-REMADV IB 564
850-ORDERS IB 340
856-SHPCON IB 456
DESADV-856 ASN OB 480
INVOIC-810 OB 508
ORDRSP-855 OB 377
SHPORD-830 OB 432

Order-to-cash IDoc configuration
820-REMADV IB 589
850-ORDERS IB 373
856-SHPCON IB 475
DESADV-856 ASN OB 500
INVOIC-810 OB 557
ORDRSP-855 OB 420
SHPORD-830 OB 450

Order-to-cash mapping spec
820-REMADV IB 583

738

Order-to-cash mapping spec (cont.)
850-ORDERS IB 354
856-SHPCON IB 468
DESADV-856 ASN OB 496
INVOIC-810 OB 554
ORDRSP-855 OB 417
SHPORD-830 OB 445

Order-to-cash process flow
820-REMADV IB 571
850-ORDERS IB 345
856-SHPCON IB 462
DESADV-856 ASN OB 486
INVOIC-810 OB 516
ORDRSP-855 OB 383
SHPORD-830 OB 439

Order-to-cash SDQ processing
850-ORDERS IB 353
ORDRSP-855 OB 389

Order-to-cash technical spec
820-REMADV IB 575
850-ORDERS IB 351
856-SHPCON IB 465
DESADV-856 ASN OB 493
INVOIC-810 OB 525
ORDRSP-855 OB 387
SHPORD-830 OB 442

P

PGI (post goods issue) 105

Picking 457

Plan Q from Outer Space 36, 79, 215

POS (point of sales) 33, 52, 55-56, 95, 99,
171

Post Goods Issue (PGI), description 458

R

Reporting EDI Status to SAP 191-209, 230
RFC (Remote Function Call) 44, 81, 175
RFC registered program 175
RIM 78-85

Enveloping 199

Reporting status to SAP 191

RFC listener 214

role in Acme's architecture 173

RIM (cont.)
Routing 181
SAP IDoc adapter 81,175,177
Trading partner managment 170
RPO (Reserved purchase order number) 58,
171

S

SAP base IDoc configuration 240-261

SAP Job Scheduler 44

SAP Netweaver PI 39

SAP Status Codes 191

ST Transaction Set envelope described 148
STATUS IDoc map 195-199

StoreData 79, 171

Stress testing 676-679

String testing 649-656

System design philosophy 210

I

Tables, Application
AVIK 108, 569, 573-574
AVIP 108, 569, 573-574
AVIR 108, 569, 574
BPIM 100
BSEG 488
KNVP 45
KONP 513
LIKP 436, 461, 484, 489-490
LIPS 436, 461, 484, 490
SADR 284
T158G 102
VBAK 278, 350, 370, 490
VBAP 278, 490
VBDKR 283-284
VBDPR 283
VBFA 457, 461, 488, 490
VBKD 437, 484, 490
VBPA 266, 278, 283-284, 350, 371, 373,

440, 490, 513

VBRK 513, 520
VBRP 513
VBUK 461, 490, 519
VBUP 569

Index

Tables, Application (cont.)
VKDFS 518
VKEP 484
Tables, Data Dictionary
DDO1L 238, 289
DDO1T 238, 289
DDO02L 239, 289
DDO0O2T 239, 289
DDO3L 238
DDO3T 84
DD04L 84, 238, 289
DD04T 84, 238, 289
DDO7L 84, 238
DDO7T 84, 238
Tables, Enhancements
MODACT 300
MODSAP 300, 311
MODSAPT 300
MODTEXT 300
Tables, IDoc interface
CIMCSYN 83
EDBAS 239
EDCIM 239
EDE1IT 304
EDE2T 304
EDID4 226, 229-230, 234
EDIDC 226-227, 229, 234, 285, 372, 537
EDIDS 226, 229, 234, 537
EDIFCT 301
EDIFI2 274
EDIMSG 83, 292
EDIPOD 243, 245, 274, 286
EDIPP1 257
EDIQO 285
EDISEGMENT 84
EDK21 274
EDP12 597, 603
EDP13 596, 603
EDP21 597, 603
EDPAR 45, 262, 264, 266, 268, 278, 284,
342, 370, 373, 491, 510, 522, 557
EDPP1 293-294, 596, 602, 605, 610
EDPP12 257
EDPP13 257
EDPP21 257
EDSDC 265, 267, 278, 342, 351, 373

739

Index

Tables, IDoc interface (cont.) Tables, output
IDOCSYN 83, 239, 291 TPAR 265
PUMA 482, 486, 491, 500 NAST 282-284, 384, 440-441, 488-489,
RFCDES 243 492, 519, 521, 523, 637
T6821 282 Tables, output conditions
TBD51 302 B000 254
TBD52 277 B001 488-489
TBDLS 241 B006 254, 384, 519
TBDLST 241 B021 440
TEDE1 283 NACH 254, 489, 520
TEDE2 304 Test strategy 638-647
TMSG1 304 Title Master 79
TMSG2 304 Title, definition 50, 62
TOJTB 301 Trading partner management 169
ZED1XREF 612 Transaction codes
ZEDIXREF 271-272, 353, 374, 389, 444, BD51 323
450, 467, 476, 495, 501, 526, 558, 577, BD54 241
590, 613, 618 BD57 302
Tables, Master Data BD87 345,351, 527, 570, 655, 690
KNA1 87,600 BDBG 100
KNB1 87 CMOD 300, 308, 325, 328, 596
KNKA 87 cso1 91
KNKK 87 F-28 109, 566
KNMT 91, 268, 270, 341, 351 FBE1 108, 565, 568, 574
KNMTK 91, 268, 270 FBE3 569
KNVP 87-88 MB01 102-103
KNVV 87 MBO03 672
KONH 93 MMO1 90
KONP 93 NACE 248, 250, 333, 422-423, 426, 451-
LFAT 89, 491, 600 452, 502-503, 558
LFB1 89 OBCA 589
LFM1 89 SALE 240
MARA 90, 95 SCAT 678
MARC 90 SE11 224-225, 229-230, 232, 238, 289,
MARD 90 305, 530, 613
MARM 90 SE16 289, 309, 311
MAST 92 SE37 82,292-293, 305, 308, 311
MBEW 90 SE38 298, 621, 628
MVKE 90 SE41 545, 547
STAS 92 SE51 542, 545
STKO 92 SE80 288,317, 368, 401, 530, 542, 545,
STPO 92 554, 583, 608, 613, 621, 628
TO000 242 SE93 416, 554, 583, 608, 626, 629
T001 590 SM30 495, 612, 616
TO53E 589 SM36 389, 444, 464, 467, 509, 526, 573,
TO076B 589 577,678

740

Transaction codes (cont.)

SM37 276

SM59 242,719

SMOD 274,299, 308

SPRO 251

SU01 241

V/27 251

VAO1 246, 268, 279, 343, 351, 370, 380,
384, 678

VAO02 246

VD51 91, 270

VD52 91, 270

VD53 270

VFO01 246, 258, 280, 519

VF02 246, 654

VF03 515

VF04 106, 246, 509, 517, 674, 678

VF10 280

VF31 511

VF33 516

VL01 440

VLOIN 246

VL02 678

VLO2N 246, 459

VLO3N 438, 485

VL10 104, 246, 432, 439, 678

VNPU 486, 501

VOE2 268,373,722

VOE4 45, 266, 373, 420

VV11 334,388, 424, 426

vVv11, vv21, vv31 307

VV21 440, 444, 452, 489, 504

VV22 438

VV23 486

VV31 255,520, 560

WEOQO5 345,570

WE09 527

WE14 655, 673

WE19 651, 690

WE20 84,87, 89, 246, 307, 324, 335, 375,
424,428, 453, 476, 486, 504, 516, 561,
590

WE21 244

WE30 233, 239, 291, 305, 307, 314, 326,
391

Index

Transaction codes (cont.)

WE31 100, 238, 290, 305, 307, 313, 326,
390

WE32 395
WE38 401
WE41 304, 427, 504, 561
WE42 302, 307, 323, 375
WE47 232
WE57 300, 306, 308, 322
WE60 82,221
WE81 291, 305, 316
WES82 292,308, 317, 328, 394
WEDI 288
XD01 87-88
XD02 88
XK01 89
ZEDINV 514, 530, 554
ZEDIPP 596, 608
ZEDISTAT 596, 629
ZEDIXFR 596, 620, 626
Z5DQO0 382,416
ZSPLIT 570, 574

Transactions
SM36 44

Trouble shooting and recovery
Defining failure 684
Defining success 682
Functional and business issues 720
Technical issues 713

U

UN/CEFACT 131

Uniform Communication Standard (UCS) 127

Unit testing 647

United States Census Bureau EDI Statistics
116

UPC (Universal product code) 58, 62,90, 262,
269

\Y

Value added networks (VANs) 138
VMI relationship 172
VMI system 65, 79, 109, 171, 340

741

Index

w

WebEDI 139

X

X12 820 Payment Advice, reconciliation pro-
cess 570, 582, 588, 642
X12 820 Payment Advice, structure 577
X12 850 structure described 151
X12 997 FA-STATUS interface 193, 195, 206,
215
X12 and EDIFACT, differences 158
X12 dialects 127
X12 grammar and syntax 149
X12 interchange, elements 141
X12 Transaction Sets
810 Customer Invoice 72,75,103, 106, 110,
142,173,178, 181, 201-202, 204, 206,
214-215, 508, 511, 513, 515, 524, 526,
555, 563, 651, 654, 656-657, 661, 665,
674-675, 683, 689, 724
812 Debit/Credit Memo 75, 564, 579-580
816 Organizational Relationships 104
820 Payment Advice 43,75, 107-108, 110,
485, 563, 565, 567, 569-570, 572, 576,
657, 665, 675
824 Application Advice 485, 493, 507-508,
689
830 Ship Order 104, 110, 431, 437, 441,
443-444
832 Catalog 101
846 Inventory Report 287,312

742

X12 Transaction Sets (cont.)
850 Customer PO 68-69, 96, 144, 169, 183,
185-186, 188, 212, 263, 272, 340, 344,
349, 354, 361-362, 433, 645, 651-652,
657, 662, 665, 669
850 Customer PO, anatomy 140
850 Vendor PO 70, 102, 383, 405, 683,
688, 720, 725
852 POS 57,59, 72-73, 95-96, 99, 109,
138,171, 173, 339, 342, 347, 353-354,
374
855 Order Confirmation 70, 74, 97-98, 102,
110, 287, 354, 377, 379, 389, 394, 397,
417, 421
856 ASN 75,105, 110, 480, 483, 485-486,
492, 494-496, 501, 507-508, 516, 657,
665, 673, 689
856 Ship Confirm 74, 105, 110, 456, 459,
462, 642, 657, 665
864 Text Report 75,105, 107, 515, 517,
524, 563, 689
867 Product Transfer and Resale Report 71
940 Warehouse Ship Order 74
944 Stock Transfer 102
944 Warehouse Stock Transfer Receipt 72
997 FA 69,71,75, 85,106, 171, 180-181,
185, 188-189, 191, 200-201, 206, 208~
209, 212, 215, 352, 387, 389, 432, 435,
441, 444, 464, 466-467, 492, 495, 507,
515, 517, 524, 563, 572, 576, 658, 661,
670, 672, 683, 685, 690, 720
Stock Transfer 103
X12Transaction Sets

824 Application Advice 105
XML 39, 81-82
XPath 179, 191, 210

	SAP PRESS – reading sample

	Architecting EDI with SAP IDocs
	Emmanuel Hadzipetros
	--
	Contents at a Glance
	Contents
	--
	chapter 8: Building the 850–ORDERS Inbound
	8.1 Functional Specifications
	8.1.1 Process Overview
	8.1.2 Requirements
	8.1.3 Dependencies
	8.1.4 Assumptions
	8.1.5 Data Required to Create a Sales Order
	8.1.6 Reconciliation Procedure
	8.1.7 Enhancements to the Process
	8.1.8 Enhancement Details
	8.1.9 Errors and Error Handling

	8.2 End-to-End Process Flow
	8.3 Technical Specifications
	8.3.1 Interface Summary
	8.3.2 Technical Requirements
	8.3.3 Dependencies
	8.3.4 Assumptions
	8.3.5 SDQ Processing in the ORDERS05 Translation
	8.3.6 Duplicate Checking Enhancement

	8.4 EDI Configuration in SAP
	8.4.1 EDPAR Entries
	8.4.2 EDSDC Entry
	8.4.3 ZEDIXREF Entries
	8.4.4 Partner Profile

	--
	Index
	--
	www.sap-press.de
	Galileo Press GmbH 2009

