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Ordering product is the heart of the business, and Darryl Q would have
understood the need for an effective process. It's time then to step through
the 850-ORDERS interface build. We'll provide the specs and go over the
business process, mapping requirements, and custom development and con-
figuration in SAP.

8  Building the 850-ORDERS Inbound

We've been through the blueprint phase and looked at Acme's business and leg-
acy systems. We have a design for our new SAP EDI system and have learned a
little bit about EDI and the IDoc interface.

The time has come to build some interfaces.

The seven chapters of Act 3 are written as functional and technical specs for the
key interfaces in the order-to-cash cycle between Acme Pictures and its most im-
portant customer Gordy's Galaxy of Games & B Flix.

They're not formal specifications. They present requirements for building our in-
terfaces, including EDI to IDoc mapping and a discussion of any custom code or
configuration that may need to be developed.

We'll begin with the inbound EDI X12 850 PO to ORDERS IDoc interface, the
foundational process in the order-to-cash cycle.

The wrinkle is that Acme and Gordy are VMI (vendor managed inventory) part-
ners, so they exchange two types of orders, both of which post to sales orders in
SAP against a customer PO.

These are straight EDI for new release: X12 850 PO to ORDERS IDoc and VMI or-
ders for replenishment and catalog. VMI is a two-step process:

» An X12 852 feed to Acme's VMI system used to support calculation of sug-
gested customer orders

» VMI flat file with suggested customer PO to ORDERS IDoc
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We'll look at both processes in this chapter. The end result is the same: Sales or-
ders are created in SAP by an ORDERS IDoc.

8.1  Functional Specifications

Inbound EDI 850 POs or VMI orders make up the sole means of creating sales or-
ders for Gordy's Galaxy in Acme's new SAP system. Data to create SAP sales or-
ders are mapped from the 850 or the VMI order file to an IDoc using the ORDERS
message with ORDERSO5 basic type.

8.1.1  Process Overview
The process begins with an EDI transmission, either an 852 POS to VMI or an 850
PO directly to SAP after being translated to an ORDERS IDoc.

The 852 is used in the VMI system to support calculations based on a variety of
data feeds that generate suggested POs for Gordy's Galaxy. The VMI orders are
then mapped to an ORDERS IDoc and sent into SAP to create sales orders.

Both EDI and VMI sales orders generate an acknowledgement in an ORDRSP IDoc
that is sent to Gordy's Galaxy.

8.1.2 Requirements

Sales orders for Gordy's Galaxy are posted in SAP from customer POs sent either
as 850 X12 EDI transmissions or as VMI orders in flat files from the VMI system.
SAP sales orders are created for one sold-to and one ship-to partner and are iden-
tified by order type:

» ZEDI for EDI orders with no SDQ

» ZEDS for EDI orders with SDQ

» ZVMI for VMI orders

Other requirements include

» There is no duplicate posting of customer POs.

» The order type comes into the sales order from the IDoc.
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» All dates sent by Gordy in the EDI 850 are posted to the sales order in SAP.
Those that can't be accommodated in a standard date field are stored in a text
element.

» Delivery dates for VMI orders are sent from the VMI system.

» Delivery plants for VMI orders are sent from the VMI system. They can be
changed after the sales order is created but before delivery documents are gen-
erated.

» An order acknowledgement is created when the sales order is completed and
is sent to the EDI system as an ORDRSP IDoc.

» Conditions that can lead to an incomplete order include
Customer credit check fails.

ATP (item availability) check for the ordered product fails to find sufficient
inventory to fulfill the order.

8.1.3 Dependencies

The 850-ORDERS interface is dependent on master data, configuration, and de-
velopment objects in SAP and the EDI RIM. This includes

» Master data objects required to create sales orders, including:

GL chart of accounts: Assigned to the company code to record dollar values
for costs and revenues for the accounting system.

Customers: For sold-to and ship-to partners, payment terms, shipping con-
ditions, and credit checks, assigned to Acme sales organization, distribu-
tion channel, and division.

Delivery plants: For assignment of vendor plants for shipping.

Materials: For finished movies on DVD ordered at the item level and for
component materials in sales BOMs.

Bills of materials: Identifying components in ordered finished goods.

Customer material info records (table KNMT) : Not required for Gordy's
Galaxy because it sends Acme's item numbers. But this is required for all
customers who send their own internal item numbers.

Pricing conditions: For header-level and item-level standard prices, taxes,
discounts, credits, promotions, freight charges, and so on.
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EDPAR: Partner mapping from external to internal customer numbers en-
suring identification of SAP sold-to and ship-to partners.

EDSDC: Sales organization data will be mapped for the SAP sold-to partner
and the customer's vendor number for Acme.

Partner profiles: To identify the sold-to partner for the incoming IDoc or-
der. Partner profiles will be at the sold-to partner level; there will be only
one partner profile per EDI customer.
IDoc configuration completed in SAP to support inbound ORDERS for Gordy's
Galaxy.

EDI maps built for 852 VMI and 850 order translations.

Business process models (BPMs) built in the EDI RIM to route ORDERS IDocs
to SAP.

8.1.4 Assumptions

Sales orders are created from ORDERS IDocs that have been processed by a sched-
uled job in SAP. There is only one sold-to and ship-to partner for each sales order,
although a customer PO can generate multiple sales orders.

Other key assumptions include

>

Supporting master data is loaded into SAP and a process defined for adding
new sold-to and ship-to partners, materials, and BOM:s.

Gordy's Galaxy sends GLNs for its sold-to and ship-to partners.

Gordy sends UPC numbers and Acme's internal SAP material numbers for all
goods ordered.

VMI order pricing is determined by the pricing conditions called when the
sales order is created.

Pricing for EDI orders is determined when the sales order is created in SAP by
comparing the prices sent in Gordy's PO to the price proposed by the pricing
conditions set for the material ordered.

If the two match or are within a tolerance limit, Gordy's price posts to the
sales order.

If the difference between the two prices exceeds tolerance, the reason for
the difference is identified, and the correct price is used.

The base unit of measure for items ordered is EA (eaches).
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» All data that must be returned to the customer in the invoice must post to the
sales order from the IDoc. Data that can't be accommodated in a standard field
in the order goes into a text element.

» A customer credit check is run when the sales order is created. A new credit
check is run only if pricing or quantities are changed in the order.

» Business users are responsible for addressing application errors in the ORDERS
IDocs.

» Incomplete sales orders are saved for manual editing.
» All errors in the EDI system are handled by the EDI team.

» EDI and VMI orders are sent into SAP immediately, and the IDocs are posted
to sales orders within no more than an hour.

» EDI errors or issues that may affect the timeliness of order creation are com-

municated to the business users immediately.

8.1.5

Data Required to Create a Sales Order

SAP sales orders are created with Transaction VAO1. At a minimum, the fields in
Table 8.1 must be populated to create a sales order.

VBAK AUART Order type

VBAK VKORG Sales organization 0010

VBAK VTWEG Distribution channel 10

VBAK KUNNR Sold-to partner GRDYO01
VBPA PARVW Partner qualifier — ship-to WE

VBPA KUNNR Ship-to partner GRDY01001
VBKD BSTKD Customer PO number 9997895
VBKD BSTDK Customer PO date 20081202
VBAK VDATU Requested delivery date 20081204
VBAP MATNR SAP material number 999284
VBAP XXXX Customer item number (UPC) 9998989989121
VBAP KWMENG Order quantity 230

Table 8.1 Fields That Are Populated When a Sales Order Is Created
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8.1.6 Reconciliation Procedure

Successful import of the ORDERS IDoc is confirmed through any of the IDoc mon-
itoring tools such as BD87 or WEO5.

IDoc status should be 64 — IDoc ready to be transferred to application —before the
scheduled processing job is kicked off and 53 — Application document posted —
after.

The EDI team confirms the data in the IDoc against the data in the X12 850 trans-
action set sent from the customer, and the users validate that the sales order was
created against the data sent in the IDoc.

8.1.7 Enhancements to the Process

An enhancement is required during sales order creation to ensure that a customer
PO posts only once. This may be a little like squaring the circle. Each PO can con-
tain product-ordering information for multiple store locations at the line-item
level, whereas each SAP sales order only carries ordering information for one
store.

This means that we must be able to create multiple sales orders for each PO while
ensuring that the same customer PO doesn't post to a second batch of sales orders,
which is a common issue on SAP EDI sites.

Double-posting results in double-ordering and duplicate shipments to the cus-
tomer leading to unnecessary costs, returns, and customer dissatisfaction with
Acme'’s service.

8.1.8 Enhancement Details

The duplicate PO check occurs in code during IDoc processing and is transparent
to the user. It checks sold-to, ship-to, PO number, and PO date. If it finds existing
sales orders against the PO, it checks if an ORDRSP IDoc was generated from it.

If an IDoc has been generated, the PO has already posted, its sales orders have
completed, and an acknowledgement has been sent back to the customer. The in-
coming order is a dupe PO. It should trigger an error in the IDoc and stop it from
posting.
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8.1.9 Errors and Error Handling

Errors that may occur during processing of the inbound 850-VMI-ORDERS inter-
face include

» The IDoc will fail if the sold-to or ship-to partners don't exist in SAP, or if the
sales organization can't be determined. If these errors occur, the customer or
sales org data are entered, and the IDoc reruns.

» The IDoc will fail if SAP can't identify the material number from the item num-
ber sent in the EDI transaction. The customer is asked to resend the PO, or the
IDoc is edited and reprocessed.

» A customer PO that has already posted will trigger an error in the IDoc if it tries
to post again. If the PO needs to be reposted, the sales orders that posted in the
initial run are deleted.

» If there isn't enough inventory to fulfill an order when the sales order is cre-
ated, it will be put on hold and deliveries won't be generated until inventory
is entered and the order is released.

» Ifa customer credit check fails during sales order creation, the order will be put
on hold until the credit department releases it.

Sales order or IDoc errors will be communicated to the responsible business user
immediately. There is a service level agreement with the partner mandating how
quickly shipments need to be sent after orders are received.

Standard IDoc monitoring programs such as WE05 or even B87 will be used to
track and monitor IDocs.

8.2 End-to-End Process Flow

An overview of the end-to-end process flow for creating SAP sales orders from
EDI transmissions is outlined in Figure 8.1.

Two processes are at work here for Gordy's Galaxy: new release with EDI orders
and replenishment, and catalog with VMI orders. The two processing flows merge
with the creation of one ORDERS IDoc instance for each sales order that will be
created in SAP.
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Figure 8.1 The Inbound EDI/VMI Order Creation Process

This is easier said than done: The 850 PO and the VMI order file include all order-
ing data for each of Gordy's 2,000 store locations at the item level. Ordering quan-
tity for each location is stored in the 850 in one or many SDQ segments that occur
as children to item-level segment PO1, which contains item numbers for the prod-
uct being ordered.
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The SDQ segment can hold order quantities for up to 10 stores. The VMI order
file is structured in a similar manner. But an SAP sales order can only be created
for one sold-to and one ship-to location. So we need to build one ORDERS IDoc
for each store that orders product. And we must include every item that it's or-
dering in the IDoc.

This can be handled in an ABAP program if we build an ORDERSO5 basic type
with an SDQ segment to bring the PO data into SAP.

We're going to look at the logic for doing this, whether in a map through a Java
exit, a script, or in ABAP. The logical problem is the same, but the specifics of
doing it vary from tool to tool. Many mapping tools have robust programming or
rules languages that allow conditional processing, looping, indexing, and also sup-
port arrays and even Java objects.

As long as the mapping tool has access to all of the source structures and data, it
should be able to unravel the SDQ into multiple orders with the help of a little
creative coding.

VMI Processing

The VMI process flow begins with an 852 transmission from Gordy's Galaxy by
AS2 into the EDI RIM. The 852 carries three types of data:

» Store-level point of sales (POS) data transmitted every night. The 852 POS is a
consolidation of check-out scans of items sold in each store throughout the day.

» Store inventory levels sent once a week.

» Open reserved PO numbers (RPOs) sent intermittently, before Acme runs out

of PO numbers for VMI orders.

Regardless of the data it holds, the 852 is mapped to an internal flat file that has
a structure similar to the 852 and is sent into the VMI system.

In VMI, POS and inventory data support calculations that generate POs for replen-
ishment of goods and catalog product for Gordy's stores. The RPO file is used to
assign PO numbers to the calculated orders.

The POS and inventory feeds are also sent to StoreData for use in store-level re-
plenishment calculations.
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The final orders calculation is also based on a number daily feeds from SAP, in-
cluding but not restricted to

» Customer store locations

» Finished goods master data

» BOMs and BOM changes since the last feed

» Inventory levels at the vendor's warehouse

» Open and changed sales orders

» Open deliveries

» Returns

» Open vendor POs for manufacture of finished goods

There are also daily extracts from StoreData and other backend systems, including

shelf location and dimensions in all of Gordy's stores, titles ordered by store and
item number, and minimum and maximum order levels per store.

VMI calculates a PO for each of Gordy's stores. A PO number is pulled from a
table populated by the RPO feed. RPO is then marked as consumed and is no
longer available for use.

The VMI order is extracted to an ASCII file by VMI. The file has a flatter structure
than an 850 PO but includes an SDQ-like record with order item quantity for up
to six stores in each segment, that is, a child to an item header that identifies the
product being ordered.

The following key values are mapped to the IDoc:
» The SAP sold-to partner number for Gordy to the send partner field in the con-
trol record EDIDC-SNDPRN.

» Order type OR for standard orders to field E1EDK14-ORGID with qualifier 012
in field QUALF.

» The RPO number to field EIEDKO2-BELNR with qualifier 001 in field QUALF.

» Gordy's store location GLN to E1EDKA1-LIFNR with qualifier WE in field
PARVW.

» The quantity to be ordered for each item in field EIEDPO1-MENGE.

» The SAP material number for each movie ordered in field E1EDP19-IDTNR
with qualifier 002 in field QUALF.
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» The item's UPC code in field E1EDP19-IDTNR with qualifier 003 in field
QUALF.

» Gordy's item number in field E1EDP19-IDTNR with qualifier 001 in field
QUALF.

The VMI order file is exported to the EDI RIM, where it's identified as a VMI
order for Gordy's Galaxy. RIM calls a map that unravels the store-level data and
builds one ORDERS IDoc for each store and each product being ordered by that
store.

The IDocs are batched together into a file and, at this point, the VMI process ends,
and the IDoc is sent into SAP through the IDoc adapter.

EDI 850 Processing

The EDI processing flow begins with receipt of an 850 PO transmission from
Gordy's Galaxy by AS2 into the EDI RIM. RIM identifies the 850 from Gordy and
calls the map to translate it.

Gordy uses the SDQ segment at the item level to identify each store and the quan-
tity of product being ordered. As with the VMI file, the map unravels order data
from the item level and builds one ORDERS IDoc for each store and each product
being ordered by that store.

The same key values are mapped to the IDoc as for the VMI order.

The IDocs are batched into a file and sent by RIM into SAP through the IDoc
adapter by calling function EDI_DATA_INCOMING.

At this point, the VMI and EDI processes merge. The SAP IDoc interface kicks in,
confirms that the file contains IDocs, checks that there are matching partner pro-
files, and writes the IDocs to the database at status 64.

The IDocs are processed by program RBDAPPO1, which is scheduled to pick up
Gordy's orders every hour. RBDAPPO1 reads the IDoc database and identifies all
ORDERS IDocs at status 64 where EDIDC-SNDPRN equals Gordy's SAP sold-to
partner.

It then identifies the IDoc function — IDOC_INPUT_ORDERS — from the process
code ORDE in the inbound partner profile for Gordy's Galaxy message type OR-
DERS and calls it to post the IDocs to sales orders. IDOC_INPUT_ORDERS takes over
and loops through the IDoc.
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When it hits segment EIEDKA1, it reads EDPAR to convert Gordy's GLN to the
SAP ship-to partner.

If the EDPAR read fails, an error is thrown, IDoc processing stops, and a status 51
application error is added to the IDoc status record. In most cases, this error oc-
curs because either the location has not been added as a ship-to partner in SAP,
or it doesn't yet exist for the sales organization posting the order.

The user creates the ship-to record or extends it to the sales org in the customer
master and updates EDPAR to create the link among Gordy's sold-to, ship-to, and
GLN. The IDoc is then reprocessed.

After the successful EDPAR conversion of Gordy's GLN to the SAP ship-to partner,
a duplicate order check is run to ensure that the customer PO hasn't already
posted a sales order for the current sold-to and ship-to partners.

Table VBAK is read for the sales org, order type, SAP sold-to partner, customer PO
number, and date. If there's no hit, there's no dupe, and IDoc processing contin-
ues to the next check.

If there is a hit, table VBPA is read with the sales order number and sold-to partner
to identify the ship-to. VBPA stores complete partner data for all sales documents.
If there's no hit, PO duplicate check processing exits.

If there is a hit, we have a possible dupe. We need to check if the sales order gen-
erated an ORDRSP IDoc, proving that it was completed and generated an ac-
knowledgement to the customer.

This is done by calling function NREL_GET_NEIGHBOURHOOD, which links the sales
order number — the object key — and its object type — BUS2032 — to all IDocs
that either created or were generated from it.

If it returns an ORDRSP IDoc number, then the PO is a dupe, and an error is
thrown. IDoc processing stops and a status 51 application error is added to the
IDoc status record.

The responsible user then checks the sales order and confirms. If it's a dupe, ei-
ther the IDoc or the posted sales order is marked for deletion. If the sales order is
deleted, the IDoc is reprocessed.

If the PO number is incorrect, it's corrected in the IDoc and reprocessed.
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The next check is on the item with the SAP material number checked first. Gordy
sends Acme's SAP number, so this check should pass. Gordy gets a daily finished
goods synchronization extract from SAP and should always have Acme's most up-
to-date catalog.

If it fails, the customer info record is checked in table KNMT, which will fail be-
cause we're not maintaining CMIR for Gordy.

The final check is on the UPC number, which Gordy also sends. If the item check
fails, an error is thrown, IDoc processing stops, and a status 51 application error
is added to the IDoc status record.

If the material exists in SAP but has not been extended to the sales org posting the
order, the check fails. Extend the material and reprocess the IDoc. If the material
doesn't exist in SAP, the error is in the EDI file.

The business contacts Gordy and confirms the product ordered and its quantity.
The responsible user then changes the material in the IDoc using Transaction
BD87 or one of the other standard IDoc list programs discussed in Chapter 17,
Troubleshooting and Recovery. The IDoc is then reprocessed.

In some cases, Gordy is asked to resend the order.

The IDoc function also checks table EDSDC for sales org data. Because this is a
one-time data entry job, there should be no error unless someone deleted the
record from EDSDC.

If all checks are passed, or errors are corrected, and the IDoc reprocessed, the func-
tion passes data from the IDoc to an internal table referencing Data Dictionary struc-
ture BDCDATA. This data is then used to create the sales order through a call to
Transaction VAO1. As the order is saved, the system does its ATP and credit checks.

The process ends when output control kicks in and generates an ORDRSP IDoc to
send to Gordy to acknowledge posting of its PO or VMI order.

8.3 Technical Specifications

This technical specification describes interface configuration and custom program
support in the EDI RIM and SAP for the delivery, translation, and creation of EDI
and VMI sales orders in SAP.
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8.3.1 Interface Summary

The summary specifications for this interface are outlined in Table 1.2.

e Jospion

Type of Interface
Logical Message Type
Basic Type

Custom ABAP 1

Short Description
Interface Direction
Source File
Trading Partner
Map

Custom Map Logic

Source System

Target System

997 Acknowledgment
Frequency

Schedule

X12 EDI or VMI to IDoc
ORDERS
ORDERSO5

User exit in enchancement VEDAOOO1 in modification
project ZEDISOO1

Dupe PO check on ship-to and PO number
Inbound

850 (PO), 852 (VMI), VMI proposed orders flat file
Gordy's Galaxy

X12 850 vers. 5010 — ORDERS.ORDERS05
VMI orders FF — ORDERS.ORDERS05

One-to-many mapping; unbundle store order quantity per
material in SDQ segments into one IDoc per store

Gordy's Galaxy EDI via AS2

Acme SAP via EDI RIM

Outbound function code PO at transaction detail level
Daily, on demand

RBDAPPO1: Every hour, posts IDocs to sales orders

Table 8.2 Base Specifications for Inbound EDI Orders

8.3.2 Technical Requirements

One ORDERS IDoc is generated by the translation map for each store location and
all items ordered by that location for standard order type OR.

User exit coding blocks duplicate posting of customer POs to SAP sales orders.

Configuration in the EDI RIM and SAP support inbound orders and outbound 997

acknowledgements.
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8.3.3 Dependencies

The 850-VMI-ORDERS interface is dependent on a number of development ob-
jects in SAP and the EDI RIM:

» Inbound envelopes set up in RIM for Gordy's 850 and 852 version 5010 EDI
transactions

» Outbound envelopes set up in RIM for 997 FA to be generated for Gordy's Gal-
axy during deenveloping of the inbound 850 and 852

» Custom cross-reference table ZEDIXREF populated in SAP to read the SAP send
and receive partners for the inbound 850 from Gordy

» Job set up in the SAP Job Scheduler (SM36) to post ORDERS IDocs with pro-
gram RBDAPPO1 with variants to select for Gordy's Galaxy

8.3.4 Assumptions

POs from Gordy's Galaxy post from 850 EDI transactions and VMI orders. Gordy
sends both SDQ and non-SDQ POs.

The map, a script, or a custom external or ABAP program extract store-level or-
dering data in the SDQ segment into an indexed array and build one ORDERS
IDoc for each store location.

RIM maps the EDI send and receive trading partner IDs to the IDoc control record
fields SNDLAD and RCVLAD. These fields are read by an exit in the IDoc interface
to identify the SAP sold-to partner for field EDIDC-SNDPRN.

During the EDPAR check on partner segment E1EDKA1, the SAP sold-to partner
is read from EDIDC-SNDPRN.

EDI errors are tracked and addressed in the EDI system. Technical errors in the
IDoc interface, such as syntax or partner profile errors, are tracked and corrected
by the EDI team.

8.3.5 SDQ Processing in the ORDERSO05 Translation

SDQ records at the item level of the VMI order and the EDI 850 PO contain order
quantities for each store by product. The map, with a little custom coding, extracts
item and quantity data for each location, identified by GLN in the SDQ record,
and build one ORDERS IDOC for each store.
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GLN for the store is inserted into field EIEDKA1-LIFNR with qualifier WE at the
header level of the ORDERS IDoc. The basic principle is that each SAP sales order
includes all DVD movies ordered by one sold-to partner — Gordy's Galaxy — for
one ship-to — Gordy's store location.

The map has a one-to-many relationship between the input and the output. In ad-
dition, it moves the store’'s GLN from the item level of the input to the header
level of the output.

This is a common issue in EDI implementations. SDQ is widely used in the 850
PO, 852 POS, and 855 confirmation. Most mapping tools that handle this do so
with custom code. We'll look at a logical process that uses an indexed array and
some looping that can be used to build one IDoc for each store in an SDQ segment.

To better understand where we're coming from and where we want to go, we
need to look at our mapping spec for the 850 SDQ PO to the ORDERS IDoc, as
outlined in Table 8.3. This spec is focused on the application data. We won't look
at the IDoc control record or at any of the key fields of the control area of the data
records.

The spec has been simplified for clarity, including the use of abbreviations for
IDoc segment names. Header-level segments begin with K, and item-level seg-
ments with P. This is pretty consistent in SAP. EDI data elements are identified
with their segment name and position number.

Before we begin, note that common usage is for the EDI transaction to be on the
left, regardless of whether it's the source or the target structure. We'll follow this
practice for consistency.

Source rarget v [commenis ]

Unmapped IDoc Constants
KO1-BSART  NB Purchasing doc type.
K14-QUALF 12 Order type.
K14-ORGID  TA Standard sales order.

BEG — Begin Segment for PO Create — Mandatory — Max 1
KO02-QUALF 001  Customer PO.

BEGO3  KO02-BELNR PO number.

Table 8.3 Simplified Mapping Spec for 850 SDQ PO to ORDERS IDoc
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Souce [arget_vatecommens

BEGO5 KO2-DATUM PO date.
DTM — Date Segment — Mandatory — Delivery Date — Instance 1 of 2

DTMO1 KO3-IDDAT 002 Identifies requested delivery date where DTMO1 =
010.

DTMO02 KO3-DATUM Customer delivery date.

DTM — Date Segment — Mandatory — Shipping Date — Instance 2 of 2

DTMO1 KT1-TDID ZSHD Identifies ship date where DTMO1 = 010.
DTMO02 KT2-TDLINE Ship date posts to orders as text.

N1 Looping Group Begin — Partner Identification - Mandatory — 1 to 200

N1 — Partner ID Segment — Mandatory — Max 1 per loop — Loop 1

N101 KA1-PARVW LF Customer vendor number, where N101 = SU.

N103 UL Identifies GLN for partner.
N104  KA1-LIFNR Acme GLN.
N7 Loop 2

N101 KA1-PARVW WE  Customer ship-to number where N101 = ST. Non-SDQ
only. Won't be present in SDQ.

N103 UL Identifies GLN number for partner.
N104  KA1-LIFNR Gordy store location GLN. Non-SDQ.
N1 Looping Group End

PO1 Looping Group Begin - Item Detail - Mandatory — 1 to N

PO1 — Baseline Item Data — Mandatory — Max 1 per PO1 loop

PO101 PO1-POSEX Item no.

PO102 PO1-MENGE Quantity ordered. Non-SDQ only.

PO103 PO1-MENEE EA Base unit of measure eaches. Non-SDQ only.
PO104 PO1-VPREI Unit price.

PO106 P19-QUALF 001  Customer material number where PO106 = IN.
PO107 P19-IDTNR Customer's product number.

PO108 P19-QUALF 003  UPC for material where PO108 = UP.

PO109 P19-IDTNR UPC for material.

Table 8.3 Simplified Mapping Spec for 850 SDQ PO to ORDERS IDoc (cont.)

355



8 | Building the 850-ORDERS Inbound

Source [rarget—vate|commens

PO110 P19-QUALF 002 Acme SAP material number where PO110 = VN.

PO111 P19-IDTNR

SAP material number.

SDQ - Store Location Order Quantity Data— Option — 1 to N per PO1 loop

SDQO01 PO1-MENEE EA Base unit of measure = eaches.

SDQ02 KO1-PARVW WE  SAP ship-to partner function by GLN = UL. Inserted in
header E1EDKA1 segment of each ORDERS IDoc. For
all stores in SDQ.

SDQO3 KO1-LIFNR Store location GLN for ORDERS IDoc 1.

SDQ04 PO1-MENGE Quantity to ORDERS IDoc 1.

SDQO05 KO1-LIFNR If exists, store location GLN to IDoc 2.

SDQO6 PO1-MENGE Quantity ordered to IDoc 2.

SDQO7 KO1-LIFNR If exists, store location GLN to IDoc 3.

SDQO08 PO1-MENGE Quantity ordered to IDoc 3.

SDQO09 KO1-LIFNR If exists, store location GLN to IDoc 4.

SDQ10 PO1-MENGE Quantity ordered to IDoc 4.

SDQ11 KO1-LIFNR If exists, store location GLN to IDoc 5.

SDQ12 PO1-MENGE Quantity ordered to IDoc 5.

SDQ13 KO1-LIFNR If exists, store location GLN to IDoc 6.

SDQ14 PO1-MENGE Quantity ordered IDoc 6.

SDQ15 KO1-LIFNR If exists, store location GLN to IDoc 7.

SDQ16 PO1-MENGE Quantity ordered to IDoc 7.

SDQ17 KO1-LIFNR If exists, store location GLN to IDoc 8.

SDQ18 PO1-MENGE Quantity ordered to IDoc 8.

SDQ19 KO1-LIFNR If exists, store location GLN to IDoc 9.

SDQ20 PO1-MENGE Quantity ordered to IDoc 9.

SDQ21 KO1-LIFNR If exists, store location GLN to IDoc 10.

SDQ22 PO1-MENGE Quantity ordered to IDoc 10.

PO1 Looping Group End

Table 8.3 Simplified Mapping Spec for 850 SDQ PO to ORDERS IDoc (cont.)
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Mapping Structures

The mapping specs help us visualize our data. We need to see the data to make
this work. So let's visualize our 850 file.

We'll take a two-step approach. First we'll map the 850 input data to a flat struc-
ture in a temporary looping group with one header and multiple item records that
we'll use to build one IDoc for each SDQ store location.

The temporary group will mimic and simplify the ORDERSO5 basic type structure.
This is where our custom code will collect and assemble the IDoc data before pass-
ing it to the relevant fields in the target IDoc.

The code will unravel the SDQ segments by store and quantity pair and build in
the temporary group one IDoc per location with the store’s GLN in the header-
level KA1-LIFNR field. We'll then map each field in the temporary looping group
to the IDoc.

The temporary looping group will contain everything we need to build an IDoc,
including control segment fields in the header and control key values for the data
records at both header and item levels.

Assuming a mapping tool that supports this, we'll append the temporary looping
group to the end of our input at the same level as the transaction. It will contain
a header section with only one record and another looping group for the item-
level data.

The target IDoc is also set up as a looping group with the same hierarchy as our
temporary flattened IDoc, allowing generation of multiple instances of the IDoc
for each X12 850 transaction. This ensures that the looping levels in the tempo-
rary input structure and the IDoc output are compatible. In other words, parent-
child relationships and the number of looping iterations for each group will be
identical on both sides.

Repeating IDoc segments, such as EIEDKA1, will be copied into single instances
of the segment specific to one qualifier for one-to-one mapping. For example, the
[Doc will have two instances of E1EDKA1: for the vendor (PARVW = LF) and the
ship-to partner (PARVW = WE).

We'll also need to put logic in the SEGNUM field of the control key area of each
data record to increment a counter that will provide a sequential number for each
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IDoc segment, regardless of hierarchy. We declare a global variable and increment
it each time SEGNUM is processed:

SEGNUM = seg_cnt + 1.

Mapping specifications for the temporary looping group and the IDoc are detailed
in Table 8.4. We'll use the same approach for the VMI order, which also has an
SDQ record so we don't need to repeat the details here.

TMP_ORDERS Looping Group Begin —IDoc Mapping Structure — 1to N
IDOC_HDR — Header Level Data — Mandatory — Max 1

DC40_MANDT EDI_DC40-MANDT 100 SAP target client
DC40_DOCREL EDI_DC40-DOCREL 620 SAP version
DC40_DIRECT EDI_DC40-DIRECT 2 Inbound
DC40_IDOCTYP EDI_DC40-IDOCTYP ORDERSO5 Basic type
DC40_MESTYP EDI_DC40-MESTYP ORDERS Message type
DC40_STD EDI_DC40-STD X EDI standard
DC40_STDVRS EDI_DC40-STDVRS 005010 EDI version
DC40_STDMES EDI_DC40-STDMES 850 EDI transaction
DC40_SNDPOR EDI_DC40-SNDPOR EDI_IDOC Sender file port
DC40_SNDPRT EDI_DC40-SNDPRT KU Customer
DC40_SNDPFC EDI_DC40-SNDPFC AG Sold-to partner
DC40_SNDPRN EDI_DC40-SNDPRN GRDYO1 Gordy's sold-to
DC40_SNDLAD EDI_DC40-SNDLAD Gordy's TP ID
DC40_RCVPOR EDI_DC40-RCVPOR SAPDEV Receiver port
DC40_RCVPRT EDI_DC40-SNDPRT LS Logical system
DC40_RCVPRN EDI_DC40-SNDPRN SAPDEV100  Logical client

DC40_RCVLAD
DC40_REFINT
DC40_REFGRP

EDI_DC40-RCVLAD
EDI_DC40- REFINT
EDI_DC40- REFGRP

Acme's TP ID
ISA Cntrl number
GS Grp Cntrl number

Table 8.4 Mapping the Temporary ORDERS Flat IDoc Structure to the Target ORDERS IDoc for

SDQ Processing
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DC40_REFMES
KO1_HLEVEL
KO1_BSART
K14_HLEVEL
K14_QUALF
K14_ORGID
KO3_HLEVEL
KO3_IDDAT
KO3_DATUM
KA1_LF_HLEVEL
KA1_LF
KA1_LF_LIFNR
KA1_WE_HLEVEL
KA1_WE
KA1_WE_LIFNR

KO2_HLEVEL
KO2_QUALF
KO2_BELNR
KO2_DATUM
KT1_TDID
KT2_TDLINE

EDI_DC40- REFMES
KO1-HLEVEL
KO1-BSART
KO1-HLEVEL
K14-QUALF
K14-ORGID
KO3-HLEVEL
KO3-IDDAT
KO3-DATUM
KA1-HLEVEL
KA1-PARVW
KAT-LIFNR
KA1-HLEVEL
KA1-PARVW
KAT-LIFNR

KO2-HLEVEL
KO02-QUALF
KO2-BELNR
KO2-DATUM
KT1-TDID
KT2-TDLINE

NB

12

TA

002

LF

WE

001

ST Txn ID
Hierarchy level
Purchase doc type
Hierarchy level
Order type
Standard order
Hierarchy level
Req. delivery date
Date

Hierarchy level
Cust vendor number

Acme GLN

Hierarchy level
Cust. ship-to number

Gordy ship-to from
SDQ segment

Hierarchy level
Customer PO

PO no

PO date

Ship date text ID
Ship date to PO text

IDOC_ITEM_Grp Looping Group Begin — Item Detail - Mandatory — 1to N

IDOC_ITEM — Item Details Max 1 per IDOC_ITEM loop

PO1_HLEVEL
PO1_POSEX

PO1_MENGE
PO1_MENEE

PO1-HLEVEL
PO1-POSEX

PO1-MENGE
PO1-MENEE

2

EA

Hierarchy level
Item number
SDQ qty
Uuom

Table 8.4 Mapping the Temporary ORDERS Flat IDoc Structure to the Target ORDERS IDoc for

SDQ Processing (cont.)
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PO1_VPREI PO1-VPREI Unit price

P19 _HLEVEL_002 P19-HLEVEL 3 Hierarchy level
P19_QUALF_002 P19-QUALF 002 Acme SAP item
P19_IDTNR P19-IDTNR Material number
P19_HLEVEL_001 P19-HLEVEL 3 Hierarchy level
P19_QUALF_001 P19-QUALF 001 Customer item

P19 _IDTNR P19-IDTNR Material number
P19_HLEVEL_003 P19-HLEVEL 3 Hierarchy level
P19_QUALF_003 P19-QUALF 003 UPC

P19_IDTNR P19-IDTNR UPC product number

IDOC_ITEM Looping Group End
TMP_ORDERS Looping Group End

Table 8.4 Mapping the Temporary ORDERS Flat IDoc Structure to the Target ORDERS IDoc for
SDQ Processing (cont.)

As you can see, everything we need to build an IDoc is in this temporary structure
in two segments. All we need to do is unravel store and order quantity pairs from
the SDQ segment associated with each item, move the store GLN to the header of
the IDoc, and move the order UPC and quantity to the item level of our structure.
Then we map each field to the target IDoc.

We're building an IDoc in memory through code that we'll then map to the target
IDoc. To do this, we have to write code, whether it's inside the map or outside
the map. The capabilities of your mapping tool have to be considered. But this
logic can be applied in any scripting or programming language that can read and
process an input to build an output, including ABAP.

So let's give it a try.

Program Logic

Our basic working assumption is that the entire 850 input file is available for pro-
cessing before we map our data to the ORDERS IDoc output. This can happen in
memory in a user exit or within the mapping program's normal processing flow.
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We're also assuming that we can declare an indexed array in our mapping tool
and that the code can be written and called from a user exit or external program
or class file.

We'll process the 850 file in three loops with the help of a number of key indexes.
The IDocs are built in the temporary looping structure during the deepest loop,
at the item level, after the store and quantity data in the SDQ segments have been
moved into an indexed array.

The logical processing flow for creating one ORDERS IDoc for each store in an
SDQ 850 PO is outlined in Figure 8.2. There's a lot of stuff happening here, but
it's not as complex as it might seem.

Py— txnidx=1
egin loop build header

on 850 txn record 1
2 l 3 A 4 4 l

BEG PO data + DTM delivery N1 loop 1:
IDoc constants date LF vendor
5 h 4

N1 loop 2:
check for store

No Yes
s I

SDQ processing Store in header:
w polldx =
PO1loopon |« o1ldx + 1 standard map
item P 1850t0 1 IDoc
7 y 8 v
PO1: Item: UPC/ SDQ: Build store| ORDERS 05
vendor/cust & qty array with IDoc
unit price common index
9 v
L
00p on amay - hdrldx=last
read store key storekeyldx=1
build IDocs ylax=
11 10 vy
Collect items/ Copy header
price from PO1 [« add store from
qty from array array to KA1 WE|
[
ARNERS A
- ApnCes o
> Write index ORDERS 05
hdrldx/po1ldx IDocs

Figure 8.2 Logical Processing Flow for SDQ Orders
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The code loops through the input one 850 transaction at a time, setting the trans-
action-level index — TXNIDX — to 1. All other indexes are reset to 0. This index
identifies common header data pulled from the current 850 transaction that will
be written to the IDOC_HDR record of each IDoc that we build for each store in
our SDQ segments.

The BEG segment is read first. Base PO data is moved into the K02 fields of the
IDOC_HDR record using index TXNIDX:

» BELNR: Customer PO number from BEGO3.

» DATUM: PO date from BEGO5.

» QUALF: PO qualifier 001.

Constant IDoc header values are also passed to the header records:

» EDI_DC40: All IDoc control record fields.

» KO1: HLEVEL 1 and BSART NB.

» K14: HLEVEL 2, QUALF 12, and ORGID TA.

» KO2: HLEVEL 2.

The DTM segment is read next. DTMO01 is checked for qualifier 010. If it's found,
the following values are written to the K03_002 fields with index TXNIDX:

» HLEVEL: 2.

» IDDAT: Qualifier 002 identifying the requested delivery date.

» DATUM: Date from DTMO2.

A translation error is thrown if qualifier 010 isn't found in DTMO1. The delivery
date is a mandatory field for the SAP sales order.

The N1 looping group is read next. N103 is checked for qualifier SU. If it's found,
the vendor number is passed to the IDOC_HDR KA1_LF fields using index TXNIDX:
» HLEVEL: 2.

» PARVW: Qualifier LF.

» LIFNR: Acme's GLN from N104.

During loop read 2 of the N1 Group, N103 is checked for qualifier ST store loca-

tion. If it's found, there are no SDQ segments, and standard processing proceeds.
One IDoc is generated for each 850 transaction using index TXNIDX to write the
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header segments and P011DX to write the items. Gordy is very good about this and
never sends a store in the N1 loop with an SDQ order. In the real world, things
aren't always so clean.

If the ST qualifier isn't found in the N1 loop, an SDQ flag is set, and SDQ process-
ing proceeds.

The PO1 looping group is processed. It's read in a loop with segment PO1 the first
to be read. The item index P01IDX is incremented. PO11DX is used with TXNIDX to
write item data to the IDOC_ITEM record, linking the PO1 item to the header
record of the first IDoc being written.

The following values are passed from the PO1 segment to the PO1 fields of the
IDOC_ITEM record using index TXNIDX.PO1IDX:

» HLEVEL: 2.

» POSEX: Item number from PO101.

» VPREL Unit price from PO104.

The ordered items are passed next to the P19 fields of the IDOC_ITEM record
using index TXNIDX.P01IDX. They are read from the PO1 segment of the 850:

» HLEVEL: 3. In the IDoc, segment E1EDP19 is a child to E1EDPO1.

» QUALF_002: Qualifier 002 where PO110 = VN.

» IDTNR: Acme's SAP material number from PO111.

» QUALF_001: Qualifier 001 where PO106 = IN.

» IDTNR: Gordy's material number from PO107.

» QUALF_003: Qualifier 003 where PO108 = UP.

» IDTNR: UPC number for the material from PO109.

Qualifier 002 is passed first because Gordy sends Acme's SAP item number, and
this eliminates material determination during IDoc processing.

The values that we've collected into our temporary IDoc so far serve as the tem-
plate that we'll use to build each IDoc that we'll create for each store and quantity
pair in the SDQ segment within the current item loop. These values will be com-
mon to all IDocs that we create from this 850 for each store regardless of items
and quantity ordered.
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Now we come to the fun part. The SDQ segments are read, one at a time. They
hold the store locations as GLNs paired with an order quantity for the material in
the parent PO1 segment.

Each store location and quantity pair is moved into an indexed array in memory
— an internal table in ABAP — that we'll loop through to create one IDoc for each
store. Different programming tools handle this task differently but the array could
look something like Table 8.5.

1 9997495958768 23
2 9997495959876 12
3 9997495960786 6

4 9997495961986 45
5 9997495962686 20

Table 8.5 Indexed Array with Store Order Quantity Pairs

This unravels the SDQ into a tabular structure with one record per store and quan-
tity pair.

We can now loop through this array within our current loop on the 850 PO1 item
and match the store and quantity to the material being ordered for it.

All SDQ segments within the PO1 group are at runtime processed one at a time
in the order in which they appear in the group. The logic to build the SDQ array
would look something like this in pseudo code:

IF SDQON IS NOT NULL THEN
MOVE SDQON TO SDQ_ARRAY COLZ
MOVE SDQONN TO SDQ_ARRAY COL3
SDQIDX = SDQIDX + 1
MOVE SDQIDX TO SDQ_ARRAY COL1
STORECNT = SDQIDX.

ENDIF.

Each store location and quantity pair in each SDQ segment is treated in the same
way. SDQON is the number of the location data element beginning with SDQO03
and ending with SDQ21. SDQONN is the number of the quantity data element be-
ginning with SDQ04 and ending with SDQ22.
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We also need to get a total count of all store-quantity pairs in the SDQ array. We'll
put this into a counter called STORECNT, which equals 5 in our example in Table
8.5.

After all SDQ segments have been read, and the SDQ array built with all store-
quantity pairs for the current item, the PO1 loop ends. Before we begin to loop
on the next PO1 group, another loop is kicked off on the SDQ array.

This is where we build our IDocs, one for each store, regardless of the number of
items ordered by each store.

At the top of each loop of the SDQ array, a Java hash map object or other array or
internal table — STORE_MAP — is searched for the store GLN being processed by
the current loop pass.

If the store GLN isn't found in STORE_MAP, an IDoc for that store hasn't been cre-
ated. A new IDoc will be built for store.

First we copy each field of the IDOC_HDR record into our new IDoc and move
the store's GLN into the KA1T_WE_LIFNR field. We assign a new IDoc header
index — STOREIDX — to the IDOC_HDR record being built for the store. All further
items ordered by that store will be written to the same IDoc, which will be iden-
tified by that STOREIDX.

Next the item data that was collected from the current 850 PO1 group are written
to a new IDOC_ITEM record using index STOREIDX.P011DX.

The order quantity for that store is then moved from the SDQ array to the PO1_
MENGE field in the new IDOC_ITEM record being written using index STORE-
IDX.PO1IDX.

Last, but not least, the STOREIDX index and the store GLN are appended to STORE_
MAP. If the store GLN is found in STORE_MAP, an IDoc already exists for that store,
and we'll append our item data to it.

STOREIDX is pulled from the STORE_MAP key array. The item data collected from the
current 850 P01 group is appended to the IDOC_ITEM record of the existing
IDOC_HDR record for the store using the STOREIDX we pulled from STORE_MAP to
identify it and the current P011DX item index to write it.
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Then the order quantity for the store is read from the SDQ array and written to
the PO1_MENGE field in the IDOC_ITEM record being appended to the existing
IDoc with write index STOREIDX.P01IDX.

Pseudo code for this loop follows in Listing 8.1.

loop at sdq_array.
read store_map for key store_GLN.
if exists get storeldx from store_map.
append current IDOC_ITEM_PO01 fields to existing IDoc
using index storeldx.p0lIdx
move quantity from SDQ array to
IDOC_ITEM-POI_MENGE using index storeldx.p0lIdx
copy current IDOC_ITEM_P19_002 fields to existing IDoc
using index storeldx.p0lIldx
copy current IDOC_ITEM_P19_001 fields to existing IDoc
using index storeldx.p0lIldx
copy current IDOC_ITEM_P19_003 fields to existing IDoc
using index storeldx.p0lIldx
else does not exist create new IDoc.
move store to store_map.
storeldx = Tast storeldx + 1.
move storeldx to store_map.
copy current IDOC_HDR_DC40 fields to new IDoc
using index storeldx.
copy current IDOC_HDR_KO01 fields to new IDoc
using index storeldx
copy current IDOC_HDR_K14 fields to new IDoc
using storeldx
copy current IDOC_HDR_KO03 fields to new IDoc
using index storeldx
copy current IDOC_HDR_KAI_LF fields to new IDoc
using index storeldx
move WE to IDOC_HDR-KA1_WE in new IDoc
using index storeldx
move store GLN from current SDQ array to
IDOC_HDR-KATI_WE_LIFNR in new IDoc
using index storeldx
copy current IDOC_HDR_KO02 fields to new IDoc
using index hdrlIdx.p0lIdx
append current IDOC_ITEM_P01 fields to new IDoc
using index storeldx.p0lIdx
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move quantity from current SDQ array to
IDOC_ITEM-PO1_MENGE using index storeldx.p0lIldx

copy current IDOC_ITEM_P19_002 fields to new IDoc
using index storeldx.p0lIldx

copy current IDOC_ITEM_P19_001 fields to new IDoc
using index storeldx.p0lIldx

copy current IDOC_ITEM_P19_003 fields to new IDoc
using index storeldx.p0lIldx

end if.
endloop

Listing 8.1 Pseudo Code to Support Building One IDoc for Each Store and Quantity Pair in Item-
Level SDQ Segments

These IDocs are being assembled into a file in memory. The index identifies the
current location of the IDoc and its segments.

» The STOREIDX index identifies the IDoc and links together all of its segments.
The header segments of the IDoc are written only once but copied into each
new IDoc for each store.

» The P01IDX index identifies the current EIEDPO1 group segments being ap-
pended to the existing header and items of the IDoc.

This allows us to write only one ORDERS IDoc for each location with the store's
GLN in the header-level E1IEDKA1_WE segment and each product being ordered
for it occupying its own E1EDPO1 group.

8.3.6 Duplicate Checking Enhancement

The enchancement for checking duplicates is a straightforward user exit that pre-
vents duplicate custom POs from posting to sales orders in SAP.

The issue here is that if the same PO posts twice for the same store location, dou-
ble the number of goods that were ordered could be shipped, resulting in higher
shipment costs, increased returns, and poor customer service.

There are times when we need to post a customer PO a second time because of
errors in an initial transmission that have been fixed. But this scenario will be
known in advance, and all sales orders that posted against the initial transmission
will be deleted.
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This enhancement is aimed at eliminating the accidental reposting of a PO that has
already posted. The basic rule is that no customer PO should be allowed to post
twice to an SAP sales order for the same ship-to partner.

The code will be written in CUSTOMER-FUNCTION '011" in the IDoc processing func-
tion IDOC_INPUT_ORDERS.

We'll need to create two objects to enable this enhancement:
» Error message flagging the duplicate PO, ship-to partner, and sales order num-
ber

» CMOD modification project to code the exit

Create Error Message

We previously created our custom messages in the 900 and above range in stan-
dard message class IDOC_ADAPTER. To create our new message, follow these
steps:

1. Go to the SAP Repository with Transaction SE80.

2. CLICK REPOSITORY INFORMATION SYSTEM.

3. Open the folder OTHER OBJECTS.
4

. Double-click MESSAGE CLASSES, and enter "IDOC_ADAPTER" in the STANDARD
SELECTIONS screen. Execute to open the REPOSITORY INFO SYSTEM: MESSAGE
CLASSES FIND screen.

5. Double-click IDOC_ADAPTER to load the MESSAGE MAINTENANCE screen, and
click the MESSAGES tab.

6. Click DisPLAY <-> CHANGE, and scroll down to message 902, which should be
blank.

7. Enter the following message into 902:
Duplicate PO & for ship-to & in sales order &.

8. Save the message, and assign it to a change request.

Create Modification Project

To create the modification project, follow these steps:

1. Go to CMOD, and enter project name “ZEDISOO1". Click CREATE.
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2. Enter a description in the SHORT TEXT field of the ATTRIBUTES screen. Save the
project and assign it to a change request.

3. Click ENHANCEMENT ASSIGNMENTS, and get enhancement VEDAOOO1 (see Fig-
ure 8.3).

4. Click ComPONENTS, and select function set EXIT_SAPLVEDA_011 with function
CUSTOMER-FUNCTION '011".

«li| Enhancement assignments Iﬂ Enhancement

project | | | [momsostoweroenesx ]
Eohancenert | 10p1] @ [Exp |VEDABOR1 5D EDT Incoming drders (Custoner Extensions)|

Function exit EXIT_SAFLYEDA_@O1
EXIT_SAPLVEDA_BO2
EXIT_SAPLVEDA_DO3
EXIT_SAPLVEDA_DO4
EXIT_SAPLYEDA_DDS

EX1T_SAPLYEDA_AAG
EX1T_SAPLYEDA_QAT
EXI1T_SAPLYEDA_00E
EXI1T_SAPLVEDA_0AG
EXIT_SAPLYEDA_1@
BXIT_SAPLYEDA_ 071
EXI1T_SAPLYEDA_@12

Figure 8.3 Enhancement VEDAOOO1

5. Double-click the exit name to open the exit in the source code editor of the
Function Builder (see Figure 8.4).

Figure 8.4 EXIT_SAPLVEDA_011 in the Source Code Editor
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6. Double-click ZXVEDU13 to create the include program that we'll use to write our
code. The system will throw up the message:

Program names ZX... are reserved for includes of exit function groups

7. Press to bypass the message and create the program. You'll be prompted
to assign it to a change request.

8. The ABAP Editor opens to a blank screen. The project must be activated after
completing the code. Click the activation icon at the top of the screen in the
CMOD selection screen, or select menu option PROJECT « ACTIVATE PROJECT.

Program Flow

CUSTOMER-FUNCTION '011" is called after the ORDERS IDoc has been processed and
confirmed and before the call transaction to Transaction VAO1 to create the sales
order.

This customer function is the last opportunity to check application data pulled
from the IDoc for errors and to pass those errors to the IDoc status record before
creating the sales order through the call transaction.

There are 2 import and 11 table parameters available to the exit. For our purposes,
we are only interested in

» Import parameter DXVBAK
Brings sales order header data into the exit. Has the structure of VBAK, the sales
order header table, with a number of additional fields.

» Table parameter DERRTAB
Collects error messages to pass to the IDoc status record.

» Table parameter XVBPA
Holds SAP partner type and ID data for all partners in the sales order. This in-
ternal table is populated by partner determination processing during the ED-
PAR read.

The sold-to partner and customer PO number are pulled from fields KUNNR and
BSTKD in XVBAK. The ship-to partner is pulled from field KUNNR in XVBPA
where the qualifier PARVW = WE.

The exit then reads table VBAK in SAP with the PO number and sold-to partner
as the key. The SQL will look like Listing 8.2, where S_VBELN is a variable to hold
the sales order number.
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select single vbeln into s_vbeln from vbak
where vkorg = xvbak-vkorg
and vtweg = xvbak-vtweg
and spart = xvbak-spart
and bstnk = xvbak-bstdk
and kunnr = xvbak-kunnr.
if sy-subrc <> 0.
exit. * No dupe end processing.
else.
check for ship-to partner.
endif.

Listing 8.2 Selecting Sales Order from VBAK for Dupe PO Exit Check

If there is no hit, the PO has not posted, and exit processing ends.

If there is a hit, table VBPA is read with the sales order number pulled from VBAK
and the ship-to number from XVBPA. The code will look something like Listing
8.3.

read table xvbpa with key parvw = "WE'.
if sy-subrc = 0.
s_kunnr = xvbpa-kunnr
else.
exit. * No dupe end processing.
endif.
select single kunnr into s_kunnr from vbpa
where vbeln = s_vbeln
and parvw = "WE'
and posnr = '000000"
and kunnr = s_kunnr.
if sy-subrc <> 0.
exit. * No dupe end processing.
else.
* write error message to derrtab.
endif.

Listing 8.3 Determining If the Ship-To Partner Exists for the Sales Order in Table VBPA

If there is no hit, the incoming PO has not yet posted for that ship-to partner.
There is no dupe, and exit processing ends.

If there is a hit, the customer PO has already posted for that ship-to partner. Next
we check if ORDRSP IDoc has been generated. To do this, we call a function —
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NREL_GET_NEIGHBOURHOOD — that checks all objects linked to the sales order we
pulled from VBAK. If we find an ORDRSP IDoc, a dupe PO error is raised. The
function call is

CALL FUNCTION "NREL_GET_NEIGHBOURHOOD'

EXPORTING

IS_OBJECT = s_object
TABLES

LINKS = i_links.

s_object has the structure of Data Dictionary type BORIDENT. It needs two val-
ues:

» OBJKEY
Object key: the sales order number with leading Os.

» OBJTYPE
Object type: BUS2032, the business object for sales order.

The object links are returned in internal table I_LINKS with the structure of Data
Dictionary type RELGRAPHLK. The object type 100C would be in field 0BJTYPE_B,
and the number in 0BJKEY_B. You then use OBJKEY_B to read table EDIDC and
check field MESTYP for message type ORDRSP.

If there's no hit, we have no dupe, and exit processing ends. If we have a hit, the
PO is treated as a dupe, and an error is raised. Error message variables are then
written to internal table DERRTAB, and exit processing ends. The values in Listing
8.4 are passed.

DERRTAB-ARBGB = 'IDOC_ADAPTER".
DERRTAB-CLASS = "E".
DERRTAB-MSGNR = '902".
DERRTAB-MSGV1 = xvbak-bstdk.
DERRTAB-MSGV2 = s_kunnr.
DERRTAB-MSGV3 = s_vbeln.

append DERRTAB.

Listing 8.4 Writing an Error Message to DERRTAB

v

ARBGB identifies our message class.

v

CLASS identifies the error type.

v

MSGNR is our custom message number.

v

MSGV1 passes the customer PO number to our message.
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» MSGV2 passes the customer SAP ship-to partner from VBPA.

» MSGV3 passes the sales order number.

8.4 EDI Configuration in SAP

Now let's look at IDoc configuration for the inbound ORDERS message type for
Gordy's Galaxy.

8.4.1 EDPAR Entries

Go to Transaction VOE4, and enter one record for each of Gordy's stores and dis-
tribution centers that will be receiving product from Acme Studios, as in Table
8.6.

v osapion ]

KUNNR GRDYO1 Gordy sold-to partner from IDoc

PARVW WE Partner function ship-to

EXPNR 0098857055556 External partner for ship-to — Gordy's GLN
INPNR GRDY010987 Internal SAP ship-to partner number

Table 8.6 We'll Need One EDPAR Entry for Each Stores to Handle Inbound ORDERS from Gordy's
Galaxy

This maps Gordy's sold-to partner, from the control segment of the IDoc, to
Gordy's store GLN from the N1 or SDQ segments of the 850, to the SAP ship-to
partner.

Because there are no checks on its data, and EDPAR isn't linked to any other tables
or programs, it can be safely loaded with a custom ABAP that inserts data directly
into it. It can also be loaded through an LSMW project or CATT script on Trans-
action VOE4.

8.4.2 EDSDC Entry

Go to Transaction VOE2, and enter the following record for Gordy, as in Table
8.7.
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Fild—Juatie —Jowsapion

KUNNR GRDYO01 Gordy sold-to partner from IDoc.

LIFNR 564567 Acme vendor number in Gordy's system.

VKORG 0010 Acme sales organization.

VTWEG 010 Distribution channel.

SPART 00 Division.

AUART Sales order type: if blank, uses the default OR (TA). Can be
used to create different order types for different trading
partners.

Table 8.7 EDSDC Entry for Gordy's Galaxy

LIFNR is Gordy's number for Acme Studios, although it doesn't have to be. It does
need to be a number that always comes in the ORDERS IDoc translated from
Gordy's 850 PO.

This table entry maps Gordy's sold-to partner to the SAP sales organization that
will exchange EDI data with them.

8.4.3 ZEDIXREF Entries

We don't need to populate ZEDIXREF for the 852 because it doesn't post to SAP.
We do need to add the information from Table 8.8 to custom table ZEDIXREF for
the inbound 850 interface from Gordy:

I T

DIRECT 2 Direction inbound
STDMES 850 EDI transaction
MESTYP ORDERS IDoc message type
IDOCTP ORDERSO5 IDoc basic type
CIMTYP IDoc extension
SNDPRN GRDYO1 SAP send partner
RCVPRN DEVCLNT100 SAP receive partner

Table 8.8 ZEDIXREF Entry for the Inbound 850 from Gordy
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T T

SNDLAD 99934567999 EDI send trading partner ID
RCVLAD 99999998889 EDI receive trading partner ID

Table 8.8 ZEDIXREF Entry for the Inbound 850 from Gordy (cont.)

8.4.4 Partner Profile

Go to Transaction WE20. The partner profile for the inbound ORDERS interface
for Gordy's Galaxy uses the values in Table 8.9.

Screen Group Parameter Value

Partner Header Partner number GRDYO1
Partn.Type KU
General Partn.funct. SP
Message type ORDERS
Message code
Inbound Options Process code ORDE
Processing  Trigger by background program X

Table 8.9 Partner Profile Values for Inbound ORDERS from Gordy

Process code ORDE links to function module IDOC_INPUT_ORDERS and message
type ORDERS in Transaction WE42. Don't forget to save.

See Chapter 6, Section 6.3.6, Partner Profiles, for further details about creating
partner profiles.

Once a sales order has successfully posted to SAP, an order confirmation must be
generated and sent to Gordy in an 855 EDI transaction. We will now look at the
challenges that this interface presents.
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