
Günther Färber and Julia Kirchner

ABAP™ Basics

Bonn � Boston

369 Book_M.indb 3 11/2/10 4:59:09 PM

Contents at a Glance

1 Technical Overview and Getting Started
in the System ... 19

2 Working with the Development Environ ment:
SAP Object Navigator .. 55

3 Procedural Language Elements .. 117

4 Defining and Managing Database Tables 205

5 Screen Input and Output ... 243

6 Object-Oriented Language Elements 343

7 Practice Scenario—Automated Accounting for
Corporate Subsidiaries ... 421

A Programming Guidelines and Tools 479

B Glossary ... 491

C Sources and Literature Recommendations 495

D The Authors .. 497

369 Book_M.indb 5 11/2/10 4:59:09 PM

7

Contents

Preface ... 11
Introduction ... 13

1 Technical Overview and Getting Started in the
 System ... 19

1.1 Overview of SAP Software and Architecture 19
1.2 Notes for Setting Up Access to SAP Software 24

1.2.1 Regular System ... 25
1.2.2 Test Systems ... 26

1.3 Programmer’s Checklist for Getting Started 27
1.4 Logon, Getting Started, and System Setup 32

2 Working with the Development Environ ment:
 SAP Object Navigator .. 55

2.1 Getting Started with the SAP Object Navigator 59
2.2 Development Classes and Packages 68
2.3 Namespaces .. 72
2.4 First Program: “Hello World”—REPORT, INCLUDE,

and Application Menu .. 78
2.5 Online Help, help.sap.com, service.sap.com, and

SAP Notes .. 105

3 Procedural Language Elements 117

3.1 Basic Commands and Fields—WRITE, PARAMETERS,
MOVE, SY Fields ... 120

3.2 Data and Data Types—DATA, PARAMETERS,
CONSTANTS, FIELD SYMBOLS, TYPE, CREATE,
Text Elements ... 127

3.3 Structures and Internal Tables—TABLE, MOVE-
CORRESPONDING, INSERT, APPEND, READ, MODIFY,
DELETE, LOOP ... 151

369 Book_M.indb 7 11/2/10 4:59:09 PM

8

Contents

3.4 Subprograms and Functions—FORM, FUNC TION,
EXCEPTIONS .. 163

3.5 Branches and Logical Expressions—IF, CASE 183
3.6 Loops—WHILE, DO .. 198

4 Defining and Managing Database Tables 205

4.1 Field Properties—DATA ELEMENT, DOMAIN 207
4.2 Defining and Processing Database Tables—SELECT,

INSERT, UPDATE, DELETE ... 222

5 Screen Input and Output ... 243

5.1 Simple Input and Output Interfaces—SELECTION
SCREEN, SELECT-OPTIONS, CALL SELECTION SCREEN,
SAP List Viewer .. 245

5.2 Complex Input and Output Interfaces—Dynpros 278

6 Object-Oriented Language Elements 343

6.1 Classes and Objects—CLASS, CREATE OBJECT,
METHOD .. 345

6.2 Inheritance and Polymorphism—INHERITING FROM,
REDEFINITION ... 377

6.3 EVENTS .. 396

7 Practice Scenario—Automated Accounting for
 Corporate Subsidiaries ... 421

7.1 Defining the Requirements and a List of Functions for
the Application ... 422
7.1.1 List of Functions ... 424
7.1.2 Selection List .. 425

7.2 Software Architecture ... 427
7.3 Software Design .. 430

7.3.1 Rough Design ... 431
7.3.2 Detailed Design .. 435

7.4 Implementation .. 445

369 Book_M.indb 8 11/2/10 4:59:09 PM

9

Contents

7.4.1 Dictionary Objects .. 445
7.4.2 Programs .. 451
7.4.3 Function Groups ... 453

Appendices .. 477

A Programming Guidelines and Tools ... 479
A.1 Programming guideline ... 479
A.2 Program Check Tools ... 489

B Glossary ... 491
C Sources and Literature Recommendations 495
D The Authors ... 497

Index ... 501

369 Book_M.indb 9 11/2/10 4:59:09 PM

205

In contrast to traditional programming languages, programs and
data in ABAP are always stored in a database, and only in rare
exceptions are files used. This concept brings with it comparatively
high costs; however, there are also clear advantages to this
concept that become apparent, especially during the processing
and evalua tion of business mass data.

Defining and Managing 4	
Database Tables

Section 1.1, Overview of SAP Software and Architecture, explained that
the SAP NetWeaver Application Server (SAP NetWeaver AS) manages all
programs and data in a database, which is respon sible for the long-term
storage and correct retrieval. The strength of ABAP Objects is the inte-
gration of database accesses into the ABAP Objects lan guage (see Figure
4.1), and this option is precisely what this chapter focuses on.

Database

1: DATA:
2: l_tab_cus TYPE TABLE OF customers.
3: * do something
4: SELECT * FROM TABLE customers INTO TABLE l_tab_cus.
5: * do something else
6: UPDATE customers FROM TABLE l_tab_cus.

Table
Products

Table
Orders

Table
Customers

Main Memory:

46

2

Integrating Database Accesses into the ABAP Objects LanguageFigure	4.1	

369 Book_M.indb 205 11/2/10 5:01:28 PM

206

4 Defining and Managing Database Tables

Field Properties—DATA ELEMENT, DOMAIN4.1	

The most frequently used data types in ABAP development are not the
ABAP data types defined in Section 3.2, Data and Data Types—DATA,
PARAMETERS, CONSTANTS, FIELD SYMBOLS, TYPE, CREATE, Text Ele-
ments, such as i, c, or p, but data elements based on the data types in
the database. They ensure considerably stricter type checking, defined
value lists, brief descriptions, online help, and other features that far
surpass the options of the ABAP data types (see Figure 4.2). This allows
them to contribute a great deal to operational convenience and runtime
stability.

Features of SAP Systems Based on Data ElementsFigure	4.2	

Data elements are not based on the ABAP data types (see Section 3.2, Data
and Data Types—DATA, PARAMETERS, CONSTANTS, FIELD SYMBOLS,
TYPE, CREATE, Text Elements), but on the data types of the underlying

Of course, there are a few necessary conditions that this type of data stor-
age needs to satisfy because, in a (relational) database, data can only be
stored in the form of tables. These tables must first be created, and their
internal row struc ture must be determined, in such a way as to meet the
requirements of your application. This process is called database design,
and in some enterprises, there are entire departments devoted to this
process. In the world of science, there are academic disciplines that are
concerned solely with the question of finding the optimum distribu-
tion of data in tables so that the read, process ing, and write speed of
the application can meet requirements optimally. A detailed excursion
in that direction exceeds the scope of this book. Therefore, Section 4.2,
Defining and Processing Database Tables—SELECT, INSERT, UPDATE,
DELETE, simply limits itself to a few significant and basic aspects of this
topic.

In other programming languages, like Delphi or Java, the creation of
database applications is normally carried out using two separate tools.
On the one hand, the development interface of the programming lan-
guage is used for the crea tion of the program; on the other hand, the
administrative interface of a database is used to create the tables required.
Then you use a database driver to create a connection between the pro-
gram and the database; you can use special functions to exchange data
between the two.

In ABAP programming, this separation doesn’t exist. Instead, database
tables are normal development objects in the same way that programs,
include files, or text symbols are, and, all together, they are treated as
an application, transported from one system to another if necessary,
and so on. You don’t need to set up a driver, and you need to use ABAP
commands only to exchange data directly between memory in your pro-
gram and the database. You don’t need to worry about whether this
combination of program and database table will run or not because the
ABAP runtime environment ensures compatibility with a broad selec-
tion of platforms (operating system plus database manage ment system
plus hardware).

Tips for those
familiar with other

programming
languages

369 Book_M.indb 206 11/2/10 5:01:28 PM

207

Field Properties—DATA ELEMENT, DOMAIN 4.1

Field Properties—DATA ELEMENT, DOMAIN4.1	

The most frequently used data types in ABAP development are not the
ABAP data types defined in Section 3.2, Data and Data Types—DATA,
PARAMETERS, CONSTANTS, FIELD SYMBOLS, TYPE, CREATE, Text Ele-
ments, such as i, c, or p, but data elements based on the data types in
the database. They ensure considerably stricter type checking, defined
value lists, brief descriptions, online help, and other features that far
surpass the options of the ABAP data types (see Figure 4.2). This allows
them to contribute a great deal to operational convenience and runtime
stability.

F4 Help (Value Help)

F1 Help (Online Help)

Value Check

Features of SAP Systems Based on Data ElementsFigure	4.2	

Data elements are not based on the ABAP data types (see Section 3.2, Data
and Data Types—DATA, PARAMETERS, CONSTANTS, FIELD SYMBOLS,
TYPE, CREATE, Text Elements), but on the data types of the underlying

Basics

369 Book_M.indb 207 11/2/10 5:01:31 PM

208

4 Defining and Managing Database Tables

database, the dictionary data types. They are used to define the individual
columns of a database table; fur thermore, they can be used as data types
in the ABAP programs. The latter is covered in this chapter; Section 4.2,
Defining and Processing Database Tables—SELECT, INSERT, UPDATE,
DELETE, and details their use in tables.

Data elements ensure better readability and clarity of the program because
the programmer has not only additional descriptions and help, but also a
func tion of the Object Navigator, which can show all uses within source
code and tables at the click of a button (the usage explanation, a button
that is displayed on the toolbar of the SAP Object Navigator). So working
with data ele ments in an ABAP program works entirely to your advan-
tage. In professional ABAP, development data elements are used almost
exclusively for the typing of data. The entire concept has become so fun-
damental that SAP is also port ing it for Java development. This is reason
enough to look a little more closely at data elements and their possible
uses in ABAP programs.

The path from the definition of a data element to its use in a program
gener ally includes several steps (see Figure 4.3), each of which will be
examined in the following subsections:

Selection of a dictionary data type1.

Definition of a domain referring to the dictionary data type2.

Definition of a data element referring to the domain3.

Declaration of data within the program source code, referring to the 4.
data element as the data type

SAP supports this path with convenient user interfaces in the SAP Object
Naviga tor for entry of the information required, along with the activa-
tion mecha nism already familiar from working with source code, which
greatly simpli fies working in teams.

From dictionary
data type to data
type in a program

369 Book_M.indb 208 11/2/10 5:01:31 PM

209

Field Properties—DATA ELEMENT, DOMAIN 4.1

DATA:
xxx TYPE dte1,

yyy TYPE dte2,

zzz TYPE dte3,

aaa TYPE I.

dte1

dte2

dte3

dom1

dom2

c

Data Elements Domain Data Types

p

i

..

Hierarchy of Data, Data Elements, and DomainsFigure	4.3	

The ABAP programming language provides an entire series of dictionary
data types, but they cannot be used directly in a program. Instead, they
must serve as basic components. Table 4.1 shows the most important
diction ary data types and the mapping between the dictionary data type
and an ABAP data type.

Dictionary
Data Type

Charac ters
Permitted

Description ABAP Data Type

CHAR n 1 – 255 Character string C(n)

CLNT 3 Client C(3)

CUKY 5 Currency key, referenced by
CURR fields

C(5)

CURR n, m, s 1 – 17 Currency field, stored as DEC P((n + 2) / 2) DECIMALS m
[NO-SIGN]

DEC n, m, s 1 – 31, in
tables 1 – 17

Computed or amount field
with decimal point and sign

P((n + 2) / 2)
DECIMALS m [NO-SIGN]

DATS 8 Date field (Y Y Y YMMDD),
stored as CHAR(8)

D

FLTP 16 Floating point number with
eight bytes precision

F

INT4 10 Four-byte integer, whole
number with sign

I

Built-in Dictionary Data TypesTable	4.1	

Selecting a
dictionary data
type—determining
basic properties

369 Book_M.indb 209 11/2/10 5:01:31 PM

210

4 Defining and Managing Database Tables

Dictionary
Data Type

Charac ters
Permitted

Description ABAP Data Type

NUMC n 1 – 255 Character string with digits
only

N(n)

QUAN n, m, s 1 – 17 Quantity field, shows a unit
field with format UNIT

P((n + 2) / 2)
DECIMALS m [NO-SIGN]

STRING 256 – ... Character string with
variable length

STRING

TIMS 6 Time field (HHMMSS),
stored as CHAR(6)

T

UNIT n 2 – 3 Unit key for QUAN fields C(n)

Table	4.1	 Built-in Dictionary Data Types (Cont.)

Dictionary data types serve as the basis for the definition of domains.
Domains refer to the dictionary data type, thus defining their basic tech-
nical suitability as amount field, quantity field, numeric field, text field,
and so on. Fur thermore, you can also define additional technical proper-
ties (for instance, that amounts can only have positive signs, numbers
may only take values from a certain range, or values must already be
present in a different table, that is, a master data check). Newcomers
know these kinds of technical properties as constraints, but what you are
doing here is nothing more than defining limitations, which are largely
automatically checked during execution of the programmer. Once a
domain is activated, it can be used as the basis for the defi nition of data
elements.

Data elements generally refer to a domain and determine their technical
characteristics in that way. Moreover, they also define descriptive prop-
erties like text labels in different lengths for optimum output in places
with little or a lot of room, brief descriptions for output as tooltips, and
online help for detailed description with links to related topics. If you
look at the richness of the terms used in the departments of today’s
enterprises and the software to support them, you will quickly realize
that this kind of descriptive property is very important. It’s important to
know, when needed, what a “legal unit,” an “accounting metric,” or an
“inventory conversion component” is and how that information needs to
be entered. All the texts in a data element are auto matically added to the

Defining a
domain—

determining
technical

properties

Defining a data
element—

determining
descriptive
properties

369 Book_M.indb 210 11/2/10 5:01:32 PM

211

Field Properties—DATA ELEMENT, DOMAIN 4.1

worklist for the translator, and ABAP is careful when displaying input
and output fields to select the proper local language. Once a data element
is activated, it can be used in program code as a data type.

Within the program code, data elements are treated in the same way
as ABAP data types, and can be used to type constants, variables, field
symbols, and interface parameters. For instance, if you’ve defined a
zroom_num ber data element to store the room number in a hotel, the
declaration will hardly be different from that of the corresponding ABAP
data type:

PARAMETERS:
 p_room_number TYPE zroom_number OBLIGATORY VALUE
 CHECK,
 p_room_number2(3) TYPE numc.

Assuming that the zroom_number is ultimately based on a dictionary data
type numc with three characters, during processing you won’t see any
difference as long as you don’t try to store invalid room numbers in the
zroom_number domain. If you do, the user will automatically see an error
message during input, but in the second case your program must take
care of the checking and output of appropriate messages itself. This data
check actually only takes place during input, and is performed by the
program user interface. In the program, you can assign both parameters
any numeric values with three digits without the check stopping you or
even noticing. An example in Section 7.4.3, Function Groups, in Func-
tion ZPTB00_OBJ_BTC_CHECK shows how you can implement this kind
of checking in the program.

The totality of all technical and descriptive properties of a data element
is called its metadata, and in this respect ABAP cannot be compared with
any other familiar programming language. ABAP easily gets top marks
when it comes to data consistency, type safety, and runtime stability,
because when only carefully selected and defined data can be input and
processed, the prob ability that you’ll also get the right results is much
higher.

Take a look at the practical aspects of working with domains and data
elements, as well as the processing in programs.

Declaring
data—using
data elements
as data types

Metadata, type
checking, and
type safety

369 Book_M.indb 211 11/2/10 5:01:32 PM

212

4 Defining and Managing Database Tables

Exercise 4.1

Create the program ZPTB00_ROOM_CHECKER. As input parameters, request
the arrival and departure dates, as well as the room number desired, and
check these against those actually available, namely 001–004, 101–104, and
201–204. Use a data element to perform the check.

If the room number has been entered correctly, print a booking confirma tion
on the screen.

Let’s start by creating the domain.

In the context menu of the package or development class, select the Ee

Create • DDIC Object • Domain menu option.

A dialog box appears, where you must specify the name of the domain.

Enter “ZPTB00_Room_Number” as the name of the domain.Ee

A window is displayed in the tools area of the SAP Object Navigator
where you can maintain the domain properties.

As the brief description, enter “Hotel room number”, enter “NUMC” Ee

as the data type, and “3” as the number of digits (see Figure 4.4).

Editing the Properties of Domain ZPTB00_Room_NumberFigure	4.4	

Creating domains

369 Book_M.indb 212 11/2/10 5:01:33 PM

213

Field Properties—DATA ELEMENT, DOMAIN 4.1

Select the Ee Value range tab.

The configuration options on the Value range tab are displayed (see Fig-
ure 4.5). There, use the setting options under Single vals to ensure that
a check is automatically per formed on the entered values afterwards.

Under Ee Single vals, enter the room numbers 001 through 004, 101
through 104, and 201 through 204, together with a brief description,
and click Save.

Editing More Properties of Domain ZPTB00_Room_NumberFigure	4.5	

A transport dialog box opens, where you must define the request for
logging the domain.

Copy the settings unchanged, and click the Ee Continue button.

You can now check and activate the domain.

Click Ee Check, and then click Activate.

Next create a data element based on this domain. Creating a data
element

369 Book_M.indb 213 11/2/10 5:01:34 PM

214

4 Defining and Managing Database Tables

Select Ee Create • DDIC Object • Data Element in the context menu.

A dialog box appears, where you must specify the name of the data
element.

Enter “ZPTB00_Room_Number” as the name of the domain.Ee

In the tool area of the SAP Object Navigator, a window appears in which
you can edit the properties of the data element (see Figure 4.6).

Enter “Hotel room number” as the brief description, “ZPTB00_Room_Ee

Number” as the domain, and then select the Field label tab.

Editing the Properties of Domain ZPTB00_Room_NumberFigure	4.6	

The setting options in the Field label tab are displayed. Specify field
labels of varying lengths for the data element here in order to be able to
use the data element in all possible input and output screens.

Under Ee Short enter the label “RoomNo”, under Medium enter “Room
num ber”, under Long enter “Hotel room number”, and under Head-
ing also enter “Hotel room number”. The dialog box fills the length
information automatically (see Figure 4.7).

369 Book_M.indb 214 11/2/10 5:01:35 PM

215

Field Properties—DATA ELEMENT, DOMAIN 4.1

Click the Ee Save button.

A transport dialog box opens, where you must define the request for
logging the data element.

Copy the settings unchanged, and click the Ee Continue button.

You are now supposed to maintain the documentation for the data ele-
ment to ensure that the user can call online help for this input field.

Click the Ee Documentation button.

A new window appears, where you can enter the documentation for the
data element.

Editing More Properties of Data Element ZPTB00_Room_NumberFigure	4.7	

Accept the documentation from Figure 4.8.Ee

Click the Ee Save Active button and then select the Back button.

369 Book_M.indb 215 11/2/10 5:01:36 PM

216

4 Defining and Managing Database Tables

Editing the Documentation for the Data ElementFigure	4.8	 ZPTB00_Room_Number

You can now check and activate the data element.

Click the Ee Check button, then click Activate.

After this preparation, you can start with the actual program.

Create a new program in the usual way, named “ZPTB00_ROOM_Ee

CHECKER”, without a TOP include.

Give it the title “Room checker” and leave all the other program prop-Ee

erties unchanged. The transport request is also accepted as preset.

As usual, the SAP Object Navigator creates a skeleton program that you
can fill out to check the hotel room number, check-in day, and check-out
day entries for correctness, and print the data to the screen if the result
is positive.

Type the following code under the comment lines of the program Ee

skeleton and save:

REPORT zptb00_room_checker.
PARAMETERS:
 p_room TYPE zptb00_room_number OBLIGATORY
 VALUE CHECK,
 p_chkin TYPE d OBLIGATORY,
 p_chkout TYPE d OBLIGATORY.
WRITE: / ‘Room Reservation’,
 / ‘Hotel room number:’, p_room,

Creating a program

369 Book_M.indb 216 11/2/10 5:01:36 PM

217

Field Properties—DATA ELEMENT, DOMAIN 4.1

 / ‘Check in day :’, p_chkin,
 / ‘Check out day :’, p_chkout.

Source Code for the Program ZPTB00_ROOM_CHECKERListing	4.1	

The parameter p_room is based on the data element zptb00_room_number
you’ve defined. So that a check of the fixed values entered in the domain
will take place, you have to use the OBLI GATORY and VALUE CHECK clauses.
At runtime, then, entries are checked and a value help is also available
that the user can call up using the [F4] key. Of course, the online help
for the entry field is also availa ble, and is displayed when the [F1] key is
pressed. The other parameters accept the check-in and check-out dates,
and, because these are date fields, a value help is automatically gener-
ated for them.

Once all the data has been correctly entered, the information collected
is shown on the screen.

Tip

After activation of the program, if you still make changes to the individual
allowed values in the domains, they won’t appear automatically in the value
help. Instead, you must provide a little manual help by temporarily renaming
the parameter, activating the program again, and then changing the name
back. Only then is the compiler forced to redo the generation and take into
account the current individual values from the domain.

For the clarity of the program, it makes sense to give the parameters
descrip tive labels. Let’s take care of this important step, which is essen-
tial for profes sional ABAP programming.

From the menu, select Ee Goto • Text elements • Selection texts.

A dialog box opens, displaying fields in which all the parameters are
already entered and only the texts need to be entered.

For the parameter Ee p_chkin, enter the text “Check in day“, and for p_
chkout, enter the text “Check out day“.

Select the Ee Dictionary reference checkbox for the parameter p_room,
which will automatically accept the heading already given in the data
element, which in this example is “Hotel room number“ (see Figure
4.9).

Explanation of
the source code

Editing the
selection text

369 Book_M.indb 217 11/2/10 5:01:36 PM

218

4 Defining and Managing Database Tables

Click the Ee Activate button, and then click Back.

Editing Selection Texts for the Program ZPTB00_ROOM_CHECKERFigure	4.9	

Now check the effectiveness of your settings in the running program.

As usual, click the Ee Check button, then Activate, and finally the Direct
but ton to start the program immediately.

The program starts, prompting you for the room number and the check-
in and check-out dates.

Enter “401” as the room number, 1.1.2014 for the check-in date, and Ee

1.2.2014 for the check-out date (see Figure 4.10).

Confirm your input with Ee [Enter].

Testing the
program

369 Book_M.indb 218 11/2/10 5:01:37 PM

219

Field Properties—DATA ELEMENT, DOMAIN 4.1

1.1.2014
1.2.2014

Entries in the Program ZPTB00_ROOM_CHECKERFigure	4.10	

The selection form determines the invalid room number, prints an error
mes sage in the status line, and locks all the input fields except for the
hotel room number.

Call the online help for this input field with the Ee [F1] key (see Figure
4.11).

Online Help for the Hotel Room Number Input FieldsFigure	4.11	

The user can get information here about the correct input values for this
input field. Particularly for developers, it can also be helpful for testing
to call up information about the underlying data element.

Click the Ee Technical Information button (see Figure 4.12).

369 Book_M.indb 219 11/2/10 5:01:38 PM

220

4 Defining and Managing Database Tables

Technical Information about the Input FieldFigure	4.12	

From there, you can also navigate to the data element, for instance,
to make corrections. However, you want to continue to test your
program.

Click the Ee Close button in the Technical Information dialog. This
makes the original help window active again.

Close the online help and press the Ee [F4] key or click the button to the
right of the Hotel room number input field.

The value help appears on the screen and offers you the values entered
in the domain for selection (see Figure 4.13).

Select the hotel room number “201” and click the Ee Copy button.

369 Book_M.indb 220 11/2/10 5:01:38 PM

221

Field Properties—DATA ELEMENT, DOMAIN 4.1

Input Help for the Hotel Room Number FieldFigure	4.13	

The selection is copied into the input field.

Click the Ee Execute button (see Figure 4.14).

1.1.2014
1.2.2014

Corrected Hotel Room NumberFigure	4.14	

All entries now pass the test perfectly, and the test results are printed on
the screen (see Figure 4.15).

369 Book_M.indb 221 11/2/10 5:01:39 PM

222

4 Defining and Managing Database Tables

01012014
201

01022014

Results of the Program ZPTB00_ROOM_CHECKERFigure	4.15	

Tip

In professional ABAP development, the importance of completely maintained
data elements, domains, and text elements cannot be overstated. ABAP de-
rives a large part of its runtime stability and flexibility from the metadata
edited there. Up to 20 percent of project effort regularly goes toward the
mainte nance and documentation of data. Two of the most important do-
mains used by all ABAP developers are WAERS and MEINS. The former is of
type CUKY and uses a value table to define all the currency units used world-
wide (for instance, EUR, USD, YEN, and so on). The latter is of type QUAN and
uses a value table to define the most commonly used ISO units, like units and
hours, and so on.

Defining and Processing Database Tables—4.2	
SELECT, INSERT, UPDATE, DELETE

Relational databases manage information in tables that consist of rows
(records) and columns (fields). Once stored, you can retrieve information
quickly, selectively, and by different applications at the same time. They
are especially designed for reading and writing access by many users,
and far exceed the capabilities of files.

In the early 1980s, the triumphant success of the computer in the busi-
ness word would have been impossible without relational databases;
enterprises like Oracle owe their success to this very fact. While home
computers and PCs stored most data as files, whose data formats were
completely different and often not even published, most enterprises

Basics

369 Book_M.indb 222 11/2/10 5:01:40 PM

223

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

bought a database management system and installed it in a central
location so they could work with it via the network from their indi-
vidual workplaces. In the beginning, simple com mand line scripts and
text-based user interfaces for the writing and reading out of data from
perhaps a few dozen tables dominated; however, over the years, these
gave way to increasingly more refined programs with Graphical User
Interfaces (GUIs), which made the greater part of ever more compli-
cated business logic and the consequent necessary multiplication of the
tables trans parent to the user. Today, a current installation of SAP ERP
can reach 109,000 tables, required for the storage and data for over 40
business modules (such as Purchasing, Production, Sales, and so on), and
that number doesn’t even include the more than 20 new SAP (industry)
solutions.

The greater part of the data in these tables is closely related to other parts
of the data; that is, the data is relational. For instance, one table may store
the addresses of customers, the next table the purchase orders for those
customers, and another the information about the products ordered (see
Figure 4.16).

Customer ID Customer Address ...

1 Miller Main Road 15 ...

2 Fisherman Hill Road 27 ...

...

Customers
Product ID Product Color ...

1 PC gray ...

2 Keyboard gray ...

...

...

Products

Order_ID Customer_ID Product_ID Quantity Net_Price Currency ...

1 1 1 10 399 USD ...

2 1 2 10 19 USD ...

3 2 4711 3 1199 EURO ...

...

Orders

Tables for the Storage of Data and RelationsFigure	4.16	

369 Book_M.indb 223 11/2/10 5:01:40 PM

224

4 Defining and Managing Database Tables

In custom-developed ABAP programs, which don’t use the tables or even
the data management functions of existing SAP applications, you still
have to think through the same kind of relational network of tables
that you’ll be using in your program to store and read data. As shown
in Figure 4.17, fields with identical content are used to compare data
in different tables. The trick of this relational database design is noth-
ing new for the newcomer to ABAP. Every row in a table has one field
with a value unique in the table, the key. If you want to refer to the data
in this row from another table, you only need to include a field in the
other table in which this value can be stored, the foreign key. If you need
the information referenced by the foreign key later on, you only have to
look for the row with that value in the original table.

Customer ID Customer Address ...

1 Miller Main Road 15 ...

2 Fisherman Hill Road 27 ...

...

Customers

Product ID Product Color ...

1 PC gray ...

2 Keyboard gray ...

...

Products

Orders

m:n1:n

Customer ID Credit Rating ...

1 bad ...

2 good ...

...

Credit Rating

1:1

Order_ID Customer_ID Product_ID Quantity Net_Price Currency ...

1 1 1 10 399 USD ...

2 1 2 10 19 USD ...

3 2 4711 3 1199 EURO ...

...

Three Types of Relation: 1:n, 1:1, and m:nFigure	4.17	

This results in relational networks between tables that break down into
three types:

1:n relationEE
One row in table A is referenced by 0, 1, or several (n) rows in another
table B. Examples are the relation between customers and orders,

Relational
database design

369 Book_M.indb 224 11/2/10 5:01:41 PM

225

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

between a room in a school and the children in the class taught there,
between a schoolchild and the child’s books, and so on.

1:1 relationEE
One row in table A is referenced by exactly one row in another table
B. Examples are the relation between the inhabitant of a country and
his main place of residence, between the VIN number of a car and its
license plate, between a corporation and its trade register entry, and
so on.

m:n relationEE
One row in table A is referenced by 0, 1, or more rows of another
table B, while one row in table B can also be referenced by 0, 1, or
more rows in table A. To model this relation, you require a third table,
C, which has a 1:n relation with both tables A and B, where the n side,
that is, the foreign key, is stored in table C. So actually an m:n relation
is split up into two 1:n rela tions in order to model it in a relational
database.

These three basic types of relation allow all possible relationships
between data in tables, regardless of how complicated the relationships
are between the data in the tables. The art of database design consists
of solving this task for the data at hand as elegantly as possible, without
duplicated data storage (no redundancy) and suitably for fast read or
write access.

The individual columns (also called fields) of a database table are pro-
vided with as descriptive a name as possible, which must adhere to
similar rules in ABAP as the names of variables (e.g., only a Roman let-
ter at the start, fol lowed by a sequence of letters, digits, and underscores,
with a maximum length of 30 characters). The data type of each column
is usually determined by providing a data element that controls all the
technical and descriptive properties, except for its use as a key or for-
eign key. The latter information is added directly by the table (see Figure
4.18). Because the same data elements can also be used in the ABAP pro-
gram, there is a basic compatibility when transferring values.

Database tables
and data elements

369 Book_M.indb 225 11/2/10 5:01:41 PM

226

4 Defining and Managing Database Tables

Data Type

Data Element

Using Data Elements to Determine Technical and Descriptive Properties Figure	4.18	
of Fields

Within an ABAP program, you should prepare your data in the form of
suitable internal tables and structures (see Section 3.3, Structures and
Internal Tables—TABLE, MOVE-CORRESPONDING, INSERT, APPEND,
READ, MODIFY, DELETE, LOOP) because only in this form can the data
be written to the database and retrieved again. Ideally, you should use
internal tables and structures for this purpose that correspond structur-
ally to the database tables. In ABAP there is nothing easier because you
can specify the database table as a data type. A short code fragment
makes a good example:

DATA:
 l_tab_flight TYPE STANDARD TABLE OF sflight,
 l_str_flight TYPE sflight.
l_str_flight-planetype = ‘A320-200’.
* ... more assignments ...
INSERT sflight FROM l_str_flight.
* ... or insert table instead of structure like this ...
l_str_flight-carrid = ‘AA’.
APPEND l_str_flight TO l_tab_flight.
INSERT sflight FROM TABLE l_tab_flight.

Data transfer
between memory
and the database

369 Book_M.indb 226 11/2/10 5:01:41 PM

227

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

In the first declaration instruction, the variable l_tab_flight is defined
as an internal table of type sflight, so that it can accept multiple rows
with the same row structure as the database table sflight. This allows
you to write mul tiple records to the table at once, as you do in the two
INSERT statements. In the second declaration instruction, the variable
l_str_flight is defined as a struc ture of type sflight, so that it has
the same row structure as the database table sflight. The fields in the
structure only need to be assigned values, and in the next statement their
content can already be inserted as a row into the data base.

The following commands are the most important for the transfer of
data between one or more database tables and data in memory, and are
grouped together by SAP under the term Open SQL because they provide
a common sub set of the statements that work under all databases (see
Figure 4.19).

Branches Execute Code Only Under Certain Circumstances

SELECT result FROM source INTO target WHERE condition
INSERT target FROM source

UPDATE target SET source WHERE condition
MODIFY target FROM source
DELETE target FROM source

COMMIT WORK.
ROLLBACK WORK.

Output example

ID number flightdate airfare model of aircraft capacity taken

L 400 1995-02-28 899.00 A319 350 4

LH 454 1995-11-17 1,499.00 A319 350 2

LH 455 1995-06-06 1,090.00 A319 220 1

LH 455 1996-12-31 1,919.00 DC-10-10 380 190

LH 2402 1997-08-21 555.00 A319 300 100

LH 2402 1997-08-22 590.00 A330-300 300 250

LH 2402 1997-08-25 490.00 A330-300 300 290

LH 2402 1997-08-30 485.00 A330-300 300 290

LH 3577 1995-04-28 6,000.00 A319 220 1

Overview of Open SQL CommandsFigure	4.19	

Open SQL

Using Data Elements to Determine Technical and Descriptive Properties Figure	4.18	
of Fields

Within an ABAP program, you should prepare your data in the form of
suitable internal tables and structures (see Section 3.3, Structures and
Internal Tables—TABLE, MOVE-CORRESPONDING, INSERT, APPEND,
READ, MODIFY, DELETE, LOOP) because only in this form can the data
be written to the database and retrieved again. Ideally, you should use
internal tables and structures for this purpose that correspond structur-
ally to the database tables. In ABAP there is nothing easier because you
can specify the database table as a data type. A short code fragment
makes a good example:

DATA:
 l_tab_flight TYPE STANDARD TABLE OF sflight,
 l_str_flight TYPE sflight.
l_str_flight-planetype = ‘A320-200’.
* ... more assignments ...
INSERT sflight FROM l_str_flight.
* ... or insert table instead of structure like this ...
l_str_flight-carrid = ‘AA’.
APPEND l_str_flight TO l_tab_flight.
INSERT sflight FROM TABLE l_tab_flight.

369 Book_M.indb 227 11/2/10 5:01:42 PM

228

4 Defining and Managing Database Tables

SELECTEE —Reading data from database tables
The SELECT command reads data from a database table into a structure
or internal table. Its basic syntax is

SELECT result FROM source INTO target WHERE condition.

After the WHERE clause, you can define logical expressions that the data
to be read in must match, thus limiting the result set. There is also a
SELECT ... ENDSELECT form, which works similarly to a LOOP instruc-
tion, reading and processing the lines from the database one by one.

Over the years, the SELECT command has grown more and more pow-
erful, and it now supports a whole series of clauses that can also be
found in the SQL 92 standard, including nested selects, joins, and
aggregation. If you would like to learn more about the functionality
of the SELECT command, we recommend looking at http://help.sap.
com. In the two following exam ples of SELECT commands, demo tables
from SAP (flight data tables) are used, in the first case to read out all
information (* wildcard) on Lufthansa flights, and in the second case,
only to read the first line, and only the col umns CARRID and CONNID
from American Airlines:

DATA:
 l_tab_sflight TYPE STANDARD TABLE OF sflight,
 l_str_sflight TYPE sflight.
* read potentially more than one line into internal
* table
SELECT * FROM sflight INTO TABLE l_tab_sflight
WHERE carrid = ‘LH’.
* read single line and only two fields into structure
SELECT SINGLE carrid connid FROM sflight INTO
 l_str_sflight
WHERE carrid = ‘AA’.

INSERTEE —Inserting data into database tables
The INSERT command inserts data into a database table without affect-
ing the existing data. Here, you must be absolutely sure that the key
field of the data to be inserted contains a value not yet inserted into
the table; otherwise, the command will stop with an error message.
The INSERT command has the syntax

 INSERT target FROM source.

369 Book_M.indb 228 11/2/10 5:01:42 PM

229

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

and inserts into table target the data from the internal table or struc-
ture source. The two following examples show the insertion of values
from a structure and an internal table:

DATA:
 l_tab_flight TYPE STANDARD TABLE OF sflight,
 l_str_flight TYPE sflight.
l_str_sflight-carrid = ‘LH’.
l_str_sflight-connid = ‘0400’.
l_str_sflight-fldate = ‘1.8.2003’.
l_str_sflight-planetype = ‘A320-200’.
APPEND l_str_sflight TO l_tab_sflight.
* ... more assignments here to fill internal table ...
* insert lines of internal table into database table
INSERT sflight FROM TABLE l_tab_sflight.
* insert structure into database table ...
l_str_sflight-carrid = ‘AA’.
INSERT sflight FROM l_str_sflight.

UPDATEEE —Changing data in database tables
The UPDATE command changes the content of one or more existing
records in the database by overwriting it with data from individual
variables, a structure, or an internal table. The syntax of the UPDATE
command can cor respondingly vary considerably, depending on
whether data in the main memory (without considering the key field)
should be written to multiple records in the database table or only
applies to exactly one row in the data base (taking the key field into
consideration). In the first case, the syntax is

UPDATE target SET source WHERE condition.

and in the second case

UPDATE target FROM source.

The three following examples show the update of records between
internal tables in memory and database tables, update between a
structure in mem ory and a row in the database table, and the modifi-
cation of all records from the carrier Lufthansa where the airplane
should be set to “Airbus 320-200.”

369 Book_M.indb 229 11/2/10 5:01:42 PM

230

4 Defining and Managing Database Tables

 DATA:
 l_tab_flight TYPE STANDARD TABLE OF sflight,
 l_str_flight TYPE sflight.
* ... assignments to fill structure and internal table ...
* update identification by key ...
UPDATE sflight FROM TABLE l_tab_sflight.
UPDATE sflight FROM l_str_sflight.
* update identification by condition ...
UPDATE sflight SET planetype = l_str_sflight-planetype
 WHERE carrid = ‘LH’.

MODIFYEE —Insert or change data in database tables
The MODIFY command is a combination of the INSERT and UPDATE com-
mands. An attempt is first made to insert the rows from a structure or
an internal table into the database. Any rows whose key fields refer to
an already existing value in the table are instead modified using an
UPDATE command. The data passed is thus always in the database in
either case. The MODIFY command has the syntax

MODIFY target FROM source.

Here, target is the name of the database table and source, as before,
is a structure or an internal table. The following two examples show
the use of the com mand in a single database row or multiple database
rows:

DATA:
 l_tab_flight TYPE STANDARD TABLE OF sflight,
 l_str_flight TYPE sflight.
* ... assignments to fill structure and internal table ...
* modify one line in the database table
MODIFY sflight FROM l_str_sflight.
* modify more lines in the database table
MODIFY sflight FROM TABLE l_tab_sflight.

DELETEEE —Deleting data from database tables
The DELETE command is used to delete one or more rows from a data-
base table. The syntax of the DELETE command differs depending on
whether a structure or internal table with key values, or a logical
expression, is used to identify the rows to be deleted. In the first case,
the syntax is

369 Book_M.indb 230 11/2/10 5:01:42 PM

231

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

DELETE target FROM source.

and in the second case

DELETE FROM target WHERE condition.

The next three examples show the use of the DELETE command using
a structure, an internal table, and a logical expression:

DATA:
 l_tab_flight TYPE STANDARD TABLE OF sflight,
 l_str_flight TYPE sflight.
* fill keys into structure
l_str_sflight-carrid = ‘LH’.
l_str_sflight-connid = ‘0400’.
l_str_sflight-fldate = ‘1.8.2003’.
* delete line defined in structure
DELETE sflight FROM l_str_sflight.
 * delete lines defined in internal table
APPEND l_str_sflight TO l_tab_sflight.
DELETE sflight FROM TABLE l_tab_sflight.
* delete lines, where carrid is ‘LH’
DELETE FROM sflight WHERE carrid = ‘LH’.

For the sake of completeness, it should be mentioned at this point that
besides the Open SQL commands described, SAP also has a few com-
mands with explicit database cursor management (OPEN CURSOR, FETCH,
CLOSE CURSOR) as well as native SQL commands, with which multiple data-
bases can be used at the same time, and all the SQL commands can
be used. These commands are then no longer database-independent, of
course, which is why they are not further discussed in this book. SAP
itself uses native SQL only in absolutely exceptional cases, for instance,
when accessing customer data from other systems in SAP CRM.

Each database table defined in SAP must be equipped with a primary
key by marking the columns required for unique access to a row (for
instance, the unique postal code, street, and house number for address-
ing a letter). The other col umns in a table (also called attributes) can then
be found using this primary key.

Secondary keys can be defined for database tables in SAP, but they don’t
have to be. They define alternative sets of columns, which can be used

Primary key and
secondary key of
database tables

369 Book_M.indb 231 11/2/10 5:01:42 PM

232

4 Defining and Managing Database Tables

to limit retrieval to a few rows or one row in the database (like a P.O.
box), which can be used as an alternative when addressing a letter. And
just like a P.O. box, which can be used by a single person or shared by
several, secondary keys can reference one row uniquely, but they don’t
have to.

Another important concept regarding database access, and one of the
out standing features of ABAP, is the SAP LUW concept.

Once an application needs to use more than one database table, there is
the basic problem that the data managed in these tables may not be in
a consist ent state at any given time. For instance, when an amount in
accounting is transferred between accounts, it is first debited from one
and then credited to the other. Between the two posting steps, the state
of the data is inconsistent because the amount to be posted is not in the
data inventory: It is “on its way.” If the computer were to crash exactly
between these two steps, the data would be permanently inconsistent.
To avoid this kind of permanent incon sistency, SAP supports the LUW
concept (Logical Unit of Work), also called the “all-or-nothing” principle.
Its goal is to perform logically related write accesses (in actuality, the
Open SQL commands INSERT, UPDATE, MODIFY, and DELETE) to tables
either completely and successfully, or not at all. Thus, write accesses are
largely automatically bundled in ABAP source code and per formed at
a time determined by the programmer, namely when the COMMIT WORK
command is called, or they are discarded when the ROLLBACK WORK com-
mand is called. If the user doesn’t call these commands and there was no
runtime error, the COMMIT WORK command is automatically called at the
end of a program or dialog step (see Chapter 5, Screen Input and Out-
put). The rest of the application examples are based on the framework
of this automatic mechanism.

Exercise 4.2

Create the program ZPTB00_HOTEL_RESERVATION and use the parame ter
declarations from the program ZPTB00_RESERVATION_CHECKER. Remove
the OBLIGATORY clause from all the parameters. In addition to the parameter
p_name to request the customer’s name, add three radio buttons that the
user can use to decide whether to insert, delete, or display reser vations.

Before inserting a reservation, check whether the room is still unused.

SAP LUW concept

369 Book_M.indb 232 11/2/10 5:01:42 PM

233

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

To identify a reservation to be deleted, take the input data from the param-
eters.

Always show all reservations on the screen.

Let’s take a practical look at the definition of tables and access using
Open SQL commands.

First, the domains and data elements must be created; you need them to
cre ate the table. The exact procedure is described in Section 4.1, Field
Properties—DATA ELEMENT, DOMAIN, so this description here is lim-
ited to the changes, based on which you can per form the steps needed
yourself. In Table 4.2, for better orientation, the specifications for the
data element and domain ZPTB00_ROOM_NUMBER from Section 4.1 are
shown. Create all the other domains and data elements analogously.

Data Element or Domain Dictionary Type Short Label Long Label

ZPTB00_Reservation_ID char 32 ID Reservation ID

(ZPTB00_Room_Number) numc 3 Room No. Hotel room number

ZPTB00_Checkin dats 8 Check in Check in

ZPTB00_Checkout dats 8 Check out Check out

ZPTB00_Customer_Name char 40 Name Customer name

Data Elements and Domains from the ExampleTable	4.2	

After you have created and activated all the domains and data elements
named, you can start creating the table.

In the context menu of the package or development class, select the Ee

Create • DDIC Object • Database Table menu option.

A dialog box subsequently opens, prompting you to enter the name of
the database table that you want to create.

Enter “ZPTB00_HRESERVAT” as the table name and confirm your Ee

entry with the OK button.

In the tool area, a window is displayed where you can maintain all
proper ties of the table.

Creating the
domain and
data elements

Creating the table

369 Book_M.indb 233 11/2/10 5:01:43 PM

234

4 Defining and Managing Database Tables

Enter “Hotel reservations” as the brief description, and “A” as the Ee

delivery class (see Figure 4.20).

Switch to the Ee Fields tab.

Entering Table Properties for ZPTB00_HReservatFigure	4.20	

Specify the names of all fields here that are supposed to appear as col-
umns in the table.

Enter the fields Ee Client, ID, Room_Number, Checkin, Checkout, and
Customer_Name, along with the corresponding data elements. For
the Client field, select the predefined data element MANDT.

Check the Ee Key checkbox for the fields Client and ID, and click the
Technical settings button. You have now defined the table’s primary
key (see Figure 4.21).

A dialog box opens, prompting you to confirm whether you want to
save the table.

Click Ee Yes to confirm the prompt.

369 Book_M.indb 234 11/2/10 5:01:43 PM

235

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

Abbildung 4.21

Entering Field Properties for ZPTB00_HReservatFigure	4.21	

You‘re now asked for the package to which you want to assign the data-
base table.

The package is already preset, so you can simply confirm your ent ries Ee

by clicking the Save button.

Next, you’re asked for the transport request for the table.

Accept the existing transport request without changing it, and con-Ee

firm with the Yes button.

The usual transport dialog follows.

Accept the existing transport request without changing it and confirm Ee

with the Continue button.

The technical settings must be specified before you activate the table and
con tain information about the data class and size category in particular.

369 Book_M.indb 235 11/2/10 5:01:44 PM

236

4 Defining and Managing Database Tables

Enter “APPL1” as the data class because this is data that is changed Ee

fre quently.

Select “0” as the size category (this corresponds to 0 – 3,200 records) Ee

because you can hardly expect more than a few hundred reservations
at such a small hotel (see Figure 4.22).

Editing the Technical Properties for Table ZPTB00_HReservatFigure	4.22	

Click the Ee Save button and then on Back.

All the necessary properties for table ZPTB00_HRESERVAT have now
been set up, and you can activate it.

Click the Ee Back button, and then click Activate.

After these preparations, you can begin writing the program.

Create a program called “ZPTB00_HOTEL_RESERVATION” in the Ee

usual way, without a TOP include. The title should be “Hotel reserva-
tion” and the rest of the program properties can stay unchanged. The
transport request is also accepted as preset.

Creating a program

369 Book_M.indb 236 11/2/10 5:01:45 PM

237

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

The SAP Object Navigator creates a skeleton program, which you can
now fill out in order to take the inputs Hotel room number, Check-in,
Check-out, and Cus tomer name, together with the actions Add, Delete,
and Show, to build a little database application.

Type the following code under the comment lines, and save it.Ee

REPORT zptb00_hotel_reservation.
PARAMETERS:
* Reservation data
 p_room TYPE zptb00_room_number VALUE CHECK,
 p_chkin TYPE zptb00_checkin,
 p_chkout TYPE zptb00_checkout,
 p_name TYPE zptb00_customer_name,
* Application menu
 p_add TYPE c RADIOBUTTON GROUP grp1 DEFAULT ‘X’,
 p_delete TYPE c RADIOBUTTON GROUP grp1,
 p_show TYPE c RADIOBUTTON GROUP grp1.
DATA:
* For working with table zptb00_hreservat
 l_str_reservation TYPE zptb00_hreservat,
 l_tab_reservation TYPE STANDARD TABLE OF
 zptb00_hreservat.

IF p_add = ‘X’.
* Check whether period is free
 SELECT * FROM zptb00_hreservat INTO TABLE
 l_tab_reservation
 WHERE (room_number = p_room)
 AND ((checkin BETWEEN p_chkin and p_chkout)
 OR (checkout BETWEEN p_chkin AND p_chkout)).
 IF sy-dbcnt > 0.
 WRITE: / ‘Period already reserved’.
 ELSE.
* Make reservation
 CALL FUNCTION ‘GUID_CREATE’
 IMPORTING
* EV_GUID_16 =
* EV_GUID_22 =
 ev_guid_32 = l_str_reservation-id.
 l_str_reservation-room_number = p_room.
 l_str_reservation-checkin = p_chkin.

369 Book_M.indb 237 11/2/10 5:01:45 PM

238

4 Defining and Managing Database Tables

 l_str_reservation-checkout = p_chkout.
 l_str_reservation-customer_name = p_name.
 INSERT zptb00_hreservat FROM l_str_reservation.
 WRITE: / ‘Reservation made’.
 ENDIF.
ELSEIF p_delete = ‘X’.
* Delete reservation
 DELETE FROM zptb00_hreservat WHERE room_number =
 p_room
 AND checkin = p_chkin AND checkout = p_chkout.
 WRITE: / ‘Reservation deleted’.
ELSEIF p_show = ‘X’.
* Show reservations
 SELECT * FROM zptb00_hreservat INTO TABLE
 l_tab_reservation
 ORDER BY room_number checkin customer_name.
 WRITE: / ‘Room Reservations’.
 LOOP AT l_tab_reservation INTO l_str_reservation.
 WRITE: / ‘Room:’, l_str_reservation-room_number,
 ‘Check in:’, l_str_reservation-checkin,
 ‘Check out:’, l_str_reservation-checkout,
 ‘Customer name:’, l_str_reservation-
 customer_name.
 ENDLOOP.
ENDIF.

Source Code for the Program ZPTB00_Hotel_ReservationListing	4.2	

The parameters read the information needed to insert or delete records
and are only used for the display of reservations. You define the three
parameters for the radio buttons in a shared group grp1, so that only
one radio but ton can be selected at any time. The two variables with the
structure and the internal table for ZPTB00_HRESERVAT are needed to
insert using the INSERT command or to read the data using the SELECT
command.

Depending on the content of the radio buttons, use an IF statement to
branch to different code segments. First, the insertion of a reservation is
processed. For this, as required in the exercise, any possible overlap with
other reservations must be ruled out, for which we use a correspond-
ing SELECT statement. Only if no record with overlapping check-in/

Explanation of
the source code

369 Book_M.indb 238 11/2/10 5:01:45 PM

239

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

check-out dates is found (sy-dbcnt is 0) does the insertion of the new
reservation take place.

Deletion of a reservation, as a “sanity check,” requires at least the speci-
fication of the room number and the check-in and check-out dates. Only
then can the database be uniquely determined and deleted using the
DELETE statement.

To display all reservations, they must first be read from the database into
an internal table using the SELECT command. We use a LOOP to copy each
record into the l_str_hreservat structure, where a WRITE command is
used to write the content to the screen.

Now you need to test the functional efficiency of your source code in
the running program.

Click the Ee Check button, then Activate, and finally the Direct button
to start the program immediately.

The program starts and asks for the action to be performed. First, you are
supposed to insert a record.

Enter “201” as the room number, 1.01.2014 for the check-in date, Ee

1.02.2014 for the check-out date, and “John Smith” as the customer
name.

Select the Ee p_add parameter and click Execute.

01.01.2014
01.02.2014

Performing a ReservationFigure	4.23	

Testing the
program

369 Book_M.indb 239 11/2/10 5:01:46 PM

240

4 Defi ning and Managing Database Tables

The result screen appears, where the reservation is confi rmed (see Figure
4.24).

Confi rming the ReservationFigure	4.24	

Click the Ee Back button.

Now check whether duplicates can be detected.

Enter “201” as the room number, 1.31.2014 for the check-in date, Ee

2.11.2014 for the check-out date, and “Roman Herzog” as the cus-
tomer name.

Select the Ee p_add parameter and click Execute.

The program determines the overlap and prints a corresponding message
to the screen (see Figure 4.25).

Click the Ee Back button.

Rejection Notice for the ReservationFigure	4.25	

To fi nd out more about the overlap, you can have the system display the
reservations.

Click the parameter Ee p_show.

The program shows the reservations on the screen (see Figure 4.26).

Click the Ee Back button.

369 Book_M.indb 240 11/2/10 5:01:48 PM

241

Defining and Processing Database Tables—SELECT, INSERT, UPDATE, DELETE 4.2

01.02.201401.01.2014

All Reservations Are ListedFigure	4.26	

You now know that you first need to delete this reservation.

Enter “201” as the room number, 1.01.2014 for the check-in date, Ee

and 1.02.2014 for the check-out date (see Figure 4.27).

Select the Ee p_delete parameter and click Execute.

1.01.2014
1.02.2014

Deleting the ReservationFigure	4.27	

You receive a confirmation of the deletion in the form of a message on
the screen (see Figure 4.28).

Deletion Confirmation for the ReservationFigure	4.28	

369 Book_M.indb 241 11/2/10 5:01:49 PM

242

4 Defining and Managing Database Tables

This example program could be tested much more thoroughly. However,
this testing is not within the scope of this book.

Tip

In professional ABAP development, not only tables but all possible types
are created and managed globally in the ABAP Dictionary. The procedure is
nearly identical to the creation of tables. This form is especially popular when
used for very generic applications—applications that may determine only
which data they must process and store during customization for a particular
customer—because it means that the customer can have a direct influence
on content

369 Book_M.indb 242 11/2/10 5:01:49 PM

501

Index

1:1 relation, 225
3GL language, 117
4GL language, 117

A

AB, 17
ABAP, 20, 119, 491

debugger, 87
Dictionary, 491
Editor, 52, 85
Objects, 13, 24, 344
runtime environment, 24, 491
Workbench, 27, 60, 62, 491

ABAP/4, 22
Adapter, 491
ALV, 251
Ancestor, 378
ANY TABLE, 156
API (Application Programming
Interface), 491

layer, 428
APPEND, 157
Application, 491
application base, 17
Application menu, 95
Application toolbar, 279
Area menu

create, 95
Array, 117
AS CHECKBOX, 130
Assignment, 121
Attribute, 348
Authentication, 36
Avoiding redundancy, 164

B

Back end, 25, 27
Backward navigation, 51
BAdI, 32

BAPI (Business Application
Programming Interface), 31, 491
BEGIN OF, 152
BEGIN OF BLOCK, 246
BEGIN OF SCREEN, 246
Branching instruction, 184
Browser area, 60
Build, decentralized, 57
Business module, 21
Business process, 491
Business scenario, 491
Business Server Page, 60, 491

C

Call by Reference, 169
Call by Value, 170
CALL METHOD, 354
CALL SCREEN, 283
CALL SELECTION-SCREEN, 249
CALL SUBSCREEN, 283
CASE ... WHEN, 192
Casting, 130
CHAIN ... ENDCHAIN, 282
CHANGING, 168
Changing parameter, 167
Character, 131
Checklist for Programmers, 27
Checkman check, 490
Child class, 378
Class, 346, 347

attribute, 355
create, 366
definition, 348
hierarchy, 377
implementation, 351
method, 355
redefine method, 390

CLASS_CONSTRUCTOR, 354
CLASS-DATA, 355
CLASS-EVENTS, 399
CLASS-METHODS, 355

369 Book_M.indb 501 11/2/10 5:04:40 PM

502

Index

Client, 21, 29, 37, 492
CLOSE CURSOR, 231
COLLECT, 157
Command line, 41
Comment, 30
Comment language, 30
Comparison operator

IS SUPPLIED, 190
BETWEEN, 186
CA, 187
CN, 187
CO, 187
CP, 188
CS, 188
EQ, 185
GE, 186
GT, 185
IS ASSIGNED, 189
IS BOUND, 189
IS INITIAL, 190
IS REQUESTED, 190
IS SUPPLIED, 190
LE, 185
NA, 187
NE, 186
NP, 189
NS, 188

Component, 492
Constant, 129
Constraint, 210
CONSTRUCTOR, 354

static, 354
CONTINUE, 199
Control example, 60
CONTROLS , 287
Counting loop, 199
CREATE DATA, 128, 136
CREATE OBJECT, 347, 352

D

Data, 127, 348
Database design , 205
Database table, 225

fields, 225

Data element, 207
create, 213, 233, 294
define, 210
edit documentation, 216
tables, 225

Data instances, 347
Data transfer, 227
Data type, 131

any, 149
Boolean, 135
c, 131
d, 134
f, 133
i, 132
n, 132
p, 133
string, 135
t, 134
x, 133
xstring, 135

DB layer, 428
Debugging, 56, 86
Declaration, 127
DEFINITION, 349
DELETE, 155, 159, 230
Derived class , 378
Descendent, 378
DESCRIBE FIELD, 356
Descriptive properties, 210
DESTINATION , 166
Developer key, 25, 27
Development class, 68

create, 75
Development language, 30
Development object, 55
Development system, 29
Dictionary data type, 207, 484

built-in, 209, 210
select, 209

Directory, 492
DNS address, 35
DO ... ENDDO, 198
Domain, 210

create, 292
Drag-and-Drop, 32
DUPLICATES, 159

369 Book_M.indb 502 11/2/10 5:04:40 PM

503

Index

Dynamic data, 128, 136
Dynpro, 278, 492

flow logic, 119, 330

E

ENDFORM , 164
ENDING AT, 249
END OF, 152, 246
END OF BLOCK, 246
Engine, 492
Enhancement ID, 100
EnjoySAP, 251
ERP (Enterprise Resource Planning), 21
Event, 396, 397

declare, 399
trigger, 401

Exception, 167, 168
EXIT, 199
EXPORTING, 168, 169, 350

F

F1 help, 61
F4 help, 65
FETCH, 231
FIELD, 281
FIELD-SYMBOLS, 130
Flat structure, 153
Floating point number, 133
Font convention, 16
Foreign key, 224
FORM, 164
Forward navigation, 51
Framework, 377
Front end, 25, 27

integration, 33
Function, 163, 165, 348
Function group, 165

create, 305
Function module, 165

create, 306

G

Garbage collector, 136, 352
General report-formatting processor, 20
GET, 120
GET CURSOR, 121, 287
GET PF-STATUS, 285
GET PROPERTY OF, 120
GET REFERENCE OF, 121, 128
GET TIME, 120
Global class

create, 389
declare an event, 411
define a method, 368
define attributes, 370
define event-handler methods, 412
defining attributes, 390

Global table types, 365
Glue-Logic, 396
GUID (Globally Unique Identifier), 17
GUI (Graphical User Interface), 492
GUI status, 254, 256, 278

create, 310
GUI title

create, 309

H

Handler class, 399
Handler method, 398

declare, 399
register, 401

Hardware, 26
Hash algorithm, 156
HASHED TABLE, 156
help.sap.com, 105
Hexadecimal, 133
Hierarchical database, 20

I

IF ... ELSE, 192
IMPLEMENTATION, 351
IMPORTING, 168, 169, 350

369 Book_M.indb 503 11/2/10 5:04:40 PM

504

Index

IN, 248
INCLUDE, 79, 165
INDEX TABLE, 156
Inheritance, 378
INHERITING FROM, 378
Input elements, 129
Input interface, 246
Input parameter, 167
INSERT, 155, 157, 228
Instance constructor, 354
Integer, 132
Interface, 31, 166
Interface element

create, 312
Interface parameter, 164, 166
Internal table, 151
Internal table types

generic, 156
Internet standard, 492
Internet technology, 18

J

Java, 18
JEE (Java Platform, Enterprise Edition),
493
Just-In-Time Compiler, 52

K

Key, 224
Knowledge warehouse, 109

L

Layer model, 427
LEAVE SCREEN, 289
Library, 377
License renewal, 27
List, 78
Listener concept, 397
List header, 138
List of functions, 424

Local Class, 356
Local language, 211
Logical expression, 184
Logon, 32
Logon transaction, 36
Loop, 158, 198
LOOP AT SCREEN, 285
LOOP ... ENDLOOP, 282

M

m:n relation, 225
Main memory, 127
Main package , 69
MAPI layer, 427
Mapping, 209
Massachusetts Institute of Technology
(MIT), 343
Mass data, 151
Master data check, 210
MDI window, 32
Menu bar, 278
Menu system, 40
Message, 249

create, 260
define, 307
output, 249

Message class, 250
create, 260, 307

Message server, 36
Metadata, 136, 211
Method, 345, 347, 348, 355, 399

define transfer parameters, 369
Method pointer concept, 397
Method redefinition, 379
Microsoft, 19
Microsoft.NET, 493
MODIFY, 155, 158, 230
MODIFY SCREEN, 286
Modularization, 164
MODULE, 281
Module pool, 78
MOVE, 121
MOVE-CORRESPONDING, 153

369 Book_M.indb 504 11/2/10 5:04:40 PM

505

Index

N

n:1 relation, 224
Name conflict, 72
Namespace, 31, 72

customer, 481
Name

technical, 44
Naming convention

constants, 483
Dictionary data types, 484
error messages, 487
function groups, 485
function modules, 486
general, 480
message classes, 487
messages, 487
modules, 488
program-local data types, 484
screens, 488
subprograms, 487
variables and parameters, 481
warnings, 488

Native SQL, 231, 493
Nested structure, 152
NON-UNIQUE KEY, 156
Notation rule, 119
Numeric, 132

O

Object, 343, 346, 347
create, 352
dereferencing, 353
instance, 347
list area, 60
orientation, 343
referencing, 352
type, 347

OBJ layer, 428
OBLIGATORY, 130
Offset, 121
Online help, 105, 106
OPEN CURSOR, 231
Open SQL, 227, 493

Operator, 185
AND, 191
NOT, 191
OR, 191

Oracle, 19
Original class, 378
Original language, 30
Output parameter, 167

P

Package, 68
Packed, 133
PARAMETERS, 86, 120, 129, 246, 248
Parent class, 378
passed data, 166
passed parameter, 166
passed variable, 166
Password, 37
pattern, 180
PERFORM, 165
Performance example, 61
Polymorphism, 377, 379
Pretty Printer, 85
PRIVATE SECTION, 349
Procedure, 163
PROCESS, 280

AFTER INPUT, 280
BEFORE OUTPUT, 280
ON HELP-REQUEST, 280
ON VALUE-REQUEST, 280

Production system, 29
Program, 78, 80

copy, 145
create, 82
enter transport request, 83

Program check
extended, 489
tools, 489

Programming
guideline, 31, 479
object-oriented, 344
procedural, 163, 344

Programming model, declarative, 117
Program start, 48
Property, 350

369 Book_M.indb 505 11/2/10 5:04:41 PM

506

Index

PROTECTED SECTION, 348
PUBLIC SECTION, 348
Publish and subscribe, 397

R

R/1, 19
R/2, 20
R/3, 21
RAD tools, 396
RAISE EVENT, 401
RAISING, 165, 168
RAM, 127
Rapid application development, 396
READ, 155, 158
Record, 151, 222
REDEFINITION, 379

class constructors, 381
instance constructors, 380
methods, 379

REDEFINITION, 355
Reference variable, 128, 136
REFRESH CONTROL, 288
REF TO, 130

OBJECT, 352
Relational database design, 224
Relational type, 224
Release, 493
Report, 78, 79, 89
Repository, 493
Repository info system, 62
RETURNING, 350
Return value, 121
REUSE_ALV_GRID_DISPLAY, 252
REUSE_ALV_GRID_LAYOUT_INFO_
rGET, 253
REUSE_ALV_GRID_LAYOUT_INFO_
rSET, 254
RFC (Remote Function Call), 493
RTTI, 357

S

SAP, 13
SAP access

setup, 24
SAP Basis, 20
SAP Basis system, 22
SAP Business Suite, 23
SAP Customer Relationship
Management, 13
SAP Easy Access, 39, 494
SAP ERP, 13
SAP GUI, 36, 494
SAP Help Portal, 105, 108
SAP Library, 110
SAP List Viewer, 243, 251
SAP Menu Painter, 278
SAP NetWeaver, 22
SAP NetWeaver Application Server, 17,
22
SAP NetWeaver Process Integration, 426
SAP Notes, 106, 113
SAP Object Navigator, 55

browser area, 60
getting started, 59
object list area, 60
tool area, 60

SAP screen painter, 25, 278
SAP Service Marketplace, 106, 112
SAP Supply Chain Management, 13
SAP system, 494

back end, 25
front end, 25
hardware, 25
Linux, 26

SAP Web Application Server, 17, 24
Save, 41
Screen, 279

components, 278
create, 312
flow logic, 278, 280, 326

SELECT, 228
Selection help, 65
Selection list, 425
SELECTION-SCREEN, 246
SELECTION-SCREEN COMMENT, 246
SELECTION-SCREEN PUSHBUTTON, 246
SELECTION-SCREEN ULINE, 246
Selection text, 138

edit, 217
SELECT-OPTIONS, 247

369 Book_M.indb 506 11/2/10 5:04:41 PM

507

Index

Server cluster, 35
Session, 42

new, 49
SET, 121

CURSOR, 286
EXTENDED CHECK ON/OFF, 121
HANDLER, 401
HOLD DATA, 289
PARAMETER, 121
PF-STATUS, 284
SCREEN, 284
TITLEBAR, 285

Signature, 166
Single server, 35
SORTED TABLE, 155
Specification, 422
SSO (Single Sign-on), 38, 494
Stack list, 88
Standard software, business, 13
STANDARD TABLE, 155
Standard toolbar, 40, 278
STARTING AT, 249
Static attribute, 354
Static method, 354
Static variable, 128
Status bar, 280
Status line, 42
Stop transaction, 40
Structure, 151, 152

create, 303
deep, 153

Structure package, 69
Subprogram, 163
subprogram return code, 122
SUPPRESS DIALOG, 289
SY, 121

sy-dbcnt, 122
sy-host, 122
sy-index, 122, 199, 200
sy-subrc, 121, 168
sy-tabix, 122
sy-uname, 122

System
field, 121
information, 42
requirement, 17
setup, 32

status, 46

T

Table
create, 233, 297
internal, 154

Table control, 282
Table control wizard, 318
Table key, 156
TABLE OF, 155
TABLES, 168
Table type

create, 301
global, 242
internal, 155

Table view , 282
Technical property, 210
Test system, 29
Text element, 137
Text symbol, 138

create, 306
TIME ZONE, 126
Title bar, 279
Tool area, 60
Top-down approach, 427
Transaction, 44, 64, 92, 93

SE80, 490
Transformation layer, 426
TRANSPORTING, 158
Transport management system, 67
Transport Organizer, 67
Transport request, 76
Transport system, 58
TYPE, 128
Type casting, 358
Type checking, 211
TYPE REF TO, 128
TYPES, 152
Type safety, 211

U

Unicode, 17
UNIQUE KEY, 156

369 Book_M.indb 507 11/2/10 5:04:41 PM

508

Index

Rich Heilman, Thomas Jung

Next Generation ABAP Development

After reading this book, you will be able to assess and employ the new
tools and features of ABAP within SAP NetWeaver 7.0 to 7.0 EHP2. The
updated and revised second edition assumes a scenario where a fictive
university has just converted from SAP R/3 4.6C to SAP NetWeaver 7.0
(SAP Business Suite 7.0), this time with the default installation option
of EHP2. Readers will experience the entire development process of
applications – design, development and testing of all areas – through
the eyes of a developer, and will walk away with a firm understanding
of many of the newer technologies or design techniques that were not
previously available in ABAP.

approx. 695 pp., 2. edition, with CD, 69,95 Euro / US$ 69.95

ISBN 978-1-59229-352-0, Dec 2010

>> www.sap-press.com

Presents the most recent ABAP
technologies and tools through the
eyes of a developer

Includes new topics like syntax
enhancements, ABAP Test Cockpit,
AJAX, SAP BusinessObjects
integration, XML processing, Rich
Islands, NWBC 3.0, and many more

 www.sap-press.com

UPDATE, 229
Usage explanation, 207
User name, 37
USING, 168

V

VALUE, 128, 350
Value help, 65
Variable, 127
Visibility, 348

W

Web Dynpro, 34, 119, 244, 494
Web service, 494
WHERE, 228
WHILE ... ENDWHILE, 199
Workplace computer, 21
WRITE, 83, 120

Z

ZPTB00_BUSINESS_TRANSACTION, 290
ZPTB00_HELLO_WORLD, 81
ZPTB00_HOTEL_RESERVATION, 232
ZPTB00_HOTEL_RESERVATION_COOL,
254
ZPTB00_INTERNAL_TABLE_JUGGLER,
159
ZPTB00_PERFORMANCE_TESTER, 171
ZPTB00_PRODUCT_CONFIGURATOR_
GLOBAL, 365
ZPTB00_PRODUCT_ENHANCER_GL,
389
ZPTB00_PRODUCT_EVENT_GL, 411
ZPTB00_PROVISION_CALCULATOR,
193
ZPTB00_ROOM_CHECKER, 212
ZPTB00_SALES_ORDER, 138
ZPTB00_SALES_ORDER_DYNAMIC,
144
ZPTB00_SAVINGS_CALCULATOR, 200
ZPTB00_SYSTEM_INFORMATION, 123

369 Book_M.indb 508 11/2/10 5:04:42 PM

	SAP PRESS – reading sample
	ABAP Basics
	Günther Färber and Julia Kirchner

	Contents at a Glance
	Contents

	chapter 4: Defining and Managing Database Tables
	4.1 Field Properties—DATA ELEMENT, DOMAIN
	4.2 Defining and Processing Database Tables — SELECT, INSERT, UPDATE, DELETE

	Index

	www.sap-press.de
	(c) Galileo Press GmbH 2011

