Sergey Korolev

ABAP™ Development for Financial Accounting

Custom Enhancements

SAP" Essentials

ABAP" Development for
Financial Accounting:
Custom Enhancements

b Provides tutorials for the custom development of your SAP system

» Covers validations and substitutions, user exits, BTEs, BAdls, and implicit
enhancements

b Includes discussions on report development, accounting document
processing, workflows, and more

Sergey Korolev -
gey S..
Galileo Press

[] .s
Galileo Press

Bonn « Boston

Contents at a Glance

1 Enhancement TYpesccccivmiiimmiiininsninsisns s 17
2 Master Data Enhancementscccceiiiiniieniceninsinnseensnns 39
3 Posting to Accounting ..., 111
4 Enhancements in Reportsccovvmmmiiiiiinnnsnns s 151
5 Inbound Scenarios in Financial Accountingcccccoviiiieininns 167
6 Outbound Scenarios in Financial Accountingcccceicivniinns 197

7 WOrkflow as @ USEr EXIt ..cceuiveeireeireeiremrrmsrensrenrenssemsssmnssmsssnnns 227

Contents

INtrodUCtion ... 13
Acknowledgments ... 15

1 Enhancement Types

11

1.2

13

1.4
1.5

Customer Enhancements (CMOD/SMOD)cccccccviiiiiiciiiinnnne 17
111 Function Module Exitccccocoiiiiiiii 18
11.2 Menu EXIt o 19
11.3 Customer Exit Subscreencccooviiiiiiiiiiiiiiieee, 20
11.4 Finding Customer Enhancementscccccccooiiiiiiiinne 21
11.5 Enhancements SUMMaryccccociiiiiiiiiiiieeiiiiee e, 23
Business Transaction Events (BTE) ...ccouviieieiiiieee e 24
1.2 Events and ProCeSSescoccveieeiiiiiiieeiiiiiiee e 24
1.2.2 Configuration ... 25
1.2.3 Finding Business Transaction Events 30
1.2.4 Business Transaction Events Summaryccccceeeeeene 31
Business Add-In (BAAI) ..ooeiieee e 31
1.3 Classic BAD ..o 32
1.3.2 Kernel-Based BAdIcccoeiiiiiiiiiiiiiccee e 34
1.3.3 Filtered BAdIS ..o 35
1.3.4 BAdI Subscreen and Function Codescccccoceeennn. 36
1.3.5 Finding BAdIS ..o 37
1.3.6 BAI SUMMANY ..o 37
Implicit Enhancements ..o 38
SUMMATY et 38

Master Data Enhancements

21

General Ledger ACCOUNESoooiiiiiiiiiiiiicciei e 39
211 Main Transaction Codes for General Ledger

Account Master Data ... 40
21.2 Data Enhancement of General Ledger Account

Master Data Tablescccccoooiiiiiiiiiiiii 41
21.3 Screen Layout Enhancementccccccoiiiiiiiiiiiiinininnen. 52

Contents

2.2

23

2.4

25

2.6

31

21.4 Other Enhancements Available in General Ledger

Account Master Datacccccoeoiiiiiii
215 General Ledger Summary ...
Accounts Payable and Accounts Receivableccccooeiiiis
2.21 Maintenance Transactionscccccccceeeiiiiiiiiiiiiennnn.n.
2.2.2 Data Enhancementscococcciiiiiiiiiiiiiie e
2.2.3 Screen Layout Enhancementsccccooeeeiiiiiiieiiiiineene
Accounts Receivable (CUStOMErs)ccccoiiiiiiiiiiiiiiiciiiceens
231 Define Your Own Subscreencccocovviiiiiiiiiiiinnnnn,
2.3.2 Define Tabstrip Layout (Customer Screen Group)
2.3.3 Activating a Screen Group via a BAdI Implementation
2.3.4 Linking Your Own Subscreencccccoeiiiiiiiiiiiinnn.
2.3.5 Making the Screen Field Transaction Mode Aware and

Updatable ..o
2.3.6 Calling Moments of BAdI Methodsc.ccccoveviiiennnnnne
2.3.7 GUI Status Enhancement with Open FI (BTE)
2.3.8 Other Open FI (BTE) Eventsccccccoiiiiiiiiiiiiieeiiiieeeee
2.3.9 Function Module EXitscccoviiiiiiiiiiii e
Customer Credit Management Data and Screen Enhancement ...
2.41 GUI Status Enhancementccooiiiiiiiiiiiiiiiicc e
2.4.2 Data Enhancementccoooiiiiiiiiiiiiii e
2.4.3 Status Screen Enhancementcccociiiiiiiiiiciii
2.4.4 Defining and Activating Partner Products in

Transaction FIBF ...,
2.4.5 Setting External Partner Functionsccccccciiviinnenne
2.4.6 Further GUI Status Enhancement with Table TO61V
2.4.7 Additional Credit Management Data User Exits
Accounts Payable (Vendors)ccccccviiiiiiiiiiiiiiiiiiicc e
2.51 Screen and GUI Status Enhancement with Function

Group FARI
2.5.2 BAdI DefiNitionsccueeeiiiiiiiiieiiiiiie e
2.5.3 Business Transaction Events ...
2.5.4 Function Module EXitsccccoooiiiiiiiiiiiiiii
SUMMATY i
The Technical Structure of an Accounting Document
310 The Header oo

3.2

3.3
3.4

3.5

3.6

3.7

3.8

41

Contents

312 HEMS
31.3 Parked Document Tables ...
31.4 Secondary INdiCeScccoiiiiiiiiiiii
315 Total Tables ..o
Core Program Modules of Accountingcccoovviiiiiieniiiiiiieenn,
3.21 Screen Enhancement of Accounting Posting

Transactionscccccciiiiiiiii
3.2.2 Screen Enhancement of General Ledger Posting

Enjoy Transactions with BAd! ...,
3.2.3 Screen Enhancement of Customer or Vendor Enjoy

Transactions with BAdI ...
Accounting Document Data Enhancement ...
Data Processing Enhancements during Dialog Processing
3.41 Data Processing BTESooiiiiiiiiiiiiciie,
3.4.2 BTE Processesccccccccciiiiiiiiiiiiiiiiiiciiiiicn e
343 BAdD
3.4.4 Substitutions and Validations ...
Data Processing Enhancements during Document Saving
351 BTEEveNts ..o
3.5.2 BTE Processescccccccciiiiiiiiiiiiiiiiiiiiiiiiien e
3.5.3 BAdIS o

SAP Internal Techniques for Processing Accounting Data
FIOW (RWIN) ot

3.6 RWIN SUMmMary ...
Differences in Data Processing between Dialog Transactions

and Program FUNCHiONS ...
3.71 Additional BAdI AC_DOCUMENTccovviiiiiiiniiieiieeen
3.7.2 BTEs That Are Not Calledocoiiiiiiiii
3.7.3 Ending BTE 00001050 (POST DOCUMENT:

Accounting Interface)cccooiviiiiiiiiii
SUMMAATY e
Technical Architecture of the Line-ltem Reportc..cccoeeeeen.
411 Header and Footer Output Enhancement
41.2 Menu Enhancement with BTE Eventsccccccvinnneennn
41.3 Menu Enhancement with BAd!ccooiiiiiiiiiie

Contents

10

4.2

4.3

41.4 Output Layout Enhancementcccoooviiiiiiiiiciniinneen 161
New SAP General Ledger Account Line-ltem Report

ENhancements ... 163
421 Header and Footer Output Enhancement 164
4.2.2 Extended Authorization Check ... 164
4.2.3 Menu Enhancement ... 164
4.2.4 Enhancing the Output Layoutccccooiiiiiiiiiiiiinns 165
SUMMATY o 166

Inbound Scenarios in Financial Accounting

51

5.2

53

Master Data Migration and Distributionccccccoviiiiiiinn. 167
510 Batch INput o 167
51.2 HR Master Data ... 177
513 ALE/IDOC i 178
Postings Inbound Scenariosccccovcveiiiiiiiiiiiiici e 186
5.21 Batch-Input or Direct Inputccccoovviiiiiiiiie e 186
5.2.2 Payroll ReSUltsccccoiiiiiiiiiiiii e 187
5.2.3 Postings via IDOCccocciiiiiii 188
5.2.4 Electronic Bank Statementccccoiiiiiiiiii 189
SUMMAATY e 195

Outbound Scenarios in Financial Accounting

6.1

6.2

6.3

6.4

Master Data Distribution ... 197
611 Batch Input ..o 197
61.2 ALE/IDOC t0OIS .oiiiiiiiiiiiiiiiiee e 198
DUNNING oo 203
6.21 BTEsin Transaction F150ccccccoociiiiiiiiiiiiiis 203
6.2.2 BTEs during the Dunning RUNcoccoiiiiiiiiiieiniiieeeee, 207
6.2.3 Dunning SUummary ... 216
Payment Program ... 216
6.3.1 User Exits in Transaction F110cccccoiiiiiiii, 217
6.3.2 User Exits in Payment Program SAPF110S 219
SUMMATY i 224

Contents

7 Workflow as a User Exit

71 Workflow Events: Linking System Actions with External

APPLICALIONS ooiiiiiiiii i 228

711 Event Handling ... 228

71.2 Event Creation Optionscccccceiiiiiiiiiiiiii 231

71.3 Application Development Implicationsc.cccccoeeene 231

7.2 Practical EXamplecccccoiiiiiiiiiiii e 232
7.2 Prerequisites ... 232

7.2.2 Workflow-Enabled Classcccccceviiiiiiiiiiiiiiiiiieeeee 233

7.2.3 Standard Taskcccccoiiiiiiiiiii 236

7.2.4 Event Creation ... 240

725 Now Test! .. 241

7.3 SUMMANY oo 243
The AULROT e 245
T Te =D SRR PTPPRTRPPPRR 247

m

As today's corporate ERP system landscape becomes more and more
distributed, you have to be prepared for different kinds of data that can flow
to and from external systems. With this in mind, the focus of this chapter is
inbound scenarios in Financial Accounting.

5 Inbound Scenarios in Financial Accounting

In this chapter, we consider data processing scenarios when the SAP system receives
accounting data from external systems. This can be master data from legacy systems
or posting data from, for example, an external payroll system. This chapter describes
how you can intervene in this process using various user exits.

51 Master Data Migration and Distribution

There could be no SAP ERP implementation project without an initial data migra-
tion procedure. Imagine how painful it would be if a company started its trading
activity by implementing SAP ERP and then entered its existing customers and
vendors one by one. As a rule, the moment a company implements SAP ERP, the
customer/vendor list (which is in some other legacy system) has to be prepared.
There are also scenarios in which accounting master data are loaded from external
systems on a regular basis.

In the following subsections, we'll discuss several ways to load master data into
an SAP system and how to seamlessly penetrate the standard data flow to address
specific requirements.

511 Batch Input

If you are familiar with the SAP Legacy System Migration Workbench (LSMW) and
have completed data migration projects, you probably recognize these standard SAP
programs for the mass uploading of customer and vendor master records: reports
RFBIDEOO and RFBIKROO.

167

5 | Inbound Scenarios in Financial Accounting

Both reports have the same selection screen as shown in Figure 5.1. Input data for
the report must be presented as a flat file located on the application server.

You can also pass a logical file name into the report by passing it through invisible
parameter LDS_NAME, which can be used in a SUBMIT statement. In this case, the value of
the visible file path name parameter is ignored.

=4 (==l
Program Edit Goto Swstem Help
@ 1 aBICaq DHE aDLaD BE @
Batch Input Interface for Customers
File path name |
Selection af structures that are used
[structures from Release = 4.0
Program caontral
[Jcheckfile anly
[]File has Mon-Unicode Farmat
Info Messages
(@ Dialog Box
OlLog
(O Mo Infarmation Message
I V[E75 (1) 800 (5| ec7senvers | INS | |7

Figure 51 Selection Screen of Report RFBIDEOO

By default, the maximum length of an input file line is 2,000 characters —this is the
length of dictionary structure BDIFIBIWA. If your input file has longer lines, you can
extend structure BDIFIBIWA by using customer include structure CI_BDIFIBIWA.

Keep in mind, however, that structure BDIFI1BIWA only defines the length of an input
file line, whereas the actual structure of the data being processed is defined according
to the first 31 characters of the line (see the structure shown in Figure 5.2).

The first character of each file line is a record type, which can take one of three values:
0, 1, or 2. Record type O marks the beginning of a session, record type 1 is the
beginning of one customer (or vendor) data for one transaction code, and record
type 2 is a data record. The next 30 characters of a file line contain a dictionary
structure name. For record type 0, the structure name is always BGR0O; for record
type 1, the structure name is always BKN00 for customers and BLF00 for vendors.

168

Master Data Migration and Distribution

Record type (1) Structure name (30) Unstructured data (1969)
"1 | BKnoo 4

Figure 5.2 The Structure of a Flat File Line

In the record with structure BGR00, you can denote the transaction code that will
be used to process the data. The record with structure BKN00 contains the customer
number and corresponding organizational assignment, such as company code, sales
market data, credit control area, and so on. In the record with structure BLF00,
the data contains information for the vendor number, company code, purchasing
organization, and so on.

File lines with record type 2 can contain standard and nonstandard structures. Stan-
dard batch-input structures mainly comply with the following naming convention:
character B followed by one of the master data table names. For example, BKNA1
is a batch-input structure for Table KNA1, BLFA1 is the batch-input counterpart for
LFA1, and so on.

The full list of all standard batch-input structures and supported transactions can be
found in SAP online help for reports RFBIDEOO and RFBIKROO.

In the next subsection, you'll see learn to extend data and amend its processing
using BAdIs. You'll also see a step-by-step example of loading extended data with
a standard SAP program.

Data Enhancement

You can enhance batch-input data either by defining your own fields in the corre-
sponding customer include, which you can find in all standard batch-input structures
(e.g., CI_BKNAL in BKNA1), or by defining your own data structures.

If you choose the second option, follow the same conventions found in the standard
structure:

» The first two fields of the customer include should be the same as in the standard
structure (STYPE and TABNAME).

» All fields must be characters (no numbers).

169

54

5

Inbound Scenarios in Financial Accounting

To make the customer-defined batch-input structure available in SAP LSMW, you must
insert a corresponding entry in the customizing table SXDA2.

Using BAdIs
If your custom-defined fields are part of an additional screen layout (see Chapter 2,

Master Data Enhancements), then you have to apply user exits to make the system
process additional data in customer or vendor loading reports.

Customer loading report RFBIDEOO uses the following BAdI definitions and
methods:

> Definition: CUSTOMER_ADD_DATA

> Method CHECK_ADD_ON_ACTIVE is called in the initialization phase of the report.
Other BAdI methods are called only if at least one add-on is active.

» Definition: CUSTOMER_ADD_DATA_BI

> Method CHECK_DATA_ROW is called for any nonstandard file line with record
type 2 and an unknown structure name. The method can be used to check
the input contents for nonstandard structures.

> Method FILL_FT_TABLE_USING_DATA_ROWS is called at the end of transactions
processing (only for Transactions XDO1 and XD02). The method can be used
to amend or extend generated batch-input screens and field sequences to
incorporate add-on screens and fields.

Vendor loading report RFBIKROO uses the following BAdI definitions: VENDOR_ADD_
DATA and VENDOR_ADD_DATA_BI. Method names and their purposes are the same as
in report RFBIDEOO; and logical method FILL_FT_TABLE_USING_DATA_ROWS is only
called for Transactions XK01 and XKO02.

Example

To illustrate the enhancement usage in our IDES system, let's incorporate the
example from Chapter 2, where we enhanced customer master data, into the
standard loading program, RFBIDEOO. We extended the company code view of the

170

Master Data Migration and Distribution | 541

customer master data by an additional field: Custom Account Class (with technical
name KNB1-ZZCUST_CLASS).

First, we extended the dictionary structure (BKNB1) by defining the customer include
(CI_BKNB1). As a result, the BKNB1 definition in Transaction SE11 should look like
Figure 5.3.

= E1E
Structure Edit Goto Utilities Edras Environment System Help
& 34 EH G DHR Dhoan BER @F
Dictionary: Display Structure
| |12 |12/ 8) | v e | Acpons S|
Structure BENEL Active
Short Description Customer Master Record Company Code Data (Batch Input)
Attributes Entry helpicheck | Currencylquantity fields
IZ - I I = | |@ '@lEl‘ﬁI Predefined Type B5 ¢ 76
Camponent RTy |Component type Cata Type |Length |Decim_|Short Description E‘
[LFNS! [[rLems CHAR 30 0lsccounting elerk's telephane number at business partner [<]
CESSI0N KZ [CE3SION EZ CHAR 2 mAccounts Receivable Pledging Indicatar I_Z_‘
GMVEED [[GMVEZD CHAR 1 0/Custamer is in execution
. INCLULE [|81 _AND CI EENEL [==x] 1] 0Structure for Including 31 and Cl Includes in BEMB1
. INCLUDE [[gI_IS0IL_BKNBL o o
. INCLUDE [] |s1_EENBL P3 o o
 INCLUDE ["] |s1_EENBL _EE o o
. INCLULE [] |s1_EENBL D1 a a
. INCLUDE [|s1_BENBL IS o o
. INCLUDE [[c1_EmBL oo 0 0Ehancements in Financials il
EECUST CLASS [[zACC_CUST CLASS [CHAR 1 0/Custam Account Class
SENDE [l SENDE BI ICHAR 1 0|Record End Indicatar for Bateh Input Interface
[+]
-
LD I I[1[+]
[b [E75 (2800 e[ec7serers (NS [[

Figure 5.3 Extended BKNB1 Dictionary Structure

When preparing the example for Chapter 2, we implemented BAdI CUSTOMER_ADD_
DATA. Now we need to use BAdI definition CUSTOMER_ADD_DATA_BI. Because we
haven't created our own batch-input structure, but extended a standard structure
instead, we don't need to implement the CHECK_DATA_ROW method. We do need
to code an addition to the screen and field sequence, which will save our data
into the customer master record. To do this, we need to examine how the screen
sequence might look by using an old batch-input recording, which can be found
in Transaction SHDB.

171

5 Inbound Scenarios in Financial Accounting

We record the following actions of Transaction XD02 with the following steps:

1. Enter the customer number and company code.
2. Select the enhanced screen layout (defined in Chapter 2).

3. Change the value in the CusTAccCLass field (no matter from which to which;
we just need a value change).

4. Save.

Figure 5.4 shows the combined sequence of screenshots of these steps.

=4 EEE
Customer Edit Gota Extras Environment System Help

@ B3dABCEe SHEB aDL0 RE @0
Customer Change: Initial Screen

Customer T-L63402 [G)Etelko Text
Campany Code 1000/ IDESAG
Sales Organization
Distribution Channel [=4 BE=H
Division Customer Edit Goto Extras Environment System Help
@ Previous Tah Page o HER BD e
Ganetal Data Company Cade D3ta | cystomer Ck RErfrer e ®
[Address [¥] Accounting info General Data L
[control [#IPayment ransacti @@ Company Code B
Marketing orespondence | o o | ccsdrea G
Paymenttransactions surance Enhancements » Additional Data, Empties
[] Unloading points: [Flwiithholding Tax | 35255 Back Fa Additional Data, DSD
[Foreign Trade o ST Sales Area Infammation, DSD
Contart persons Gales Area Data Data for Invoice Summary (Japar)
[15ales s P RSN BEE Gy
[JUse central address management [Cshipping City Mainz
[Billing District
i Country oE
[Partner functions
Communication
Language Key DE Telex number | G
Telephane 1 FaxNumper | Customer Edit Goto Extras Emvironment System Help
ALECprencE2 G B ICe@ SHE DD aE

InternetAdd

Change Customer: Company Code Data (Enhanced)

Customer T-L6380Z Etelko Texti Mainz
Compary Code 1000 IDES AG

Enhancement data

CusthceClass IClass 2 =]
1 Class 1

1 Class 2

3 Exceptional 5

[I [E75 (3) 800][ecTsenvers | NS | |

Figure 5.4 Recorded Screen Sequence of Transaction XD02

172

Master Data Migration and Distribution 51

The result of the recording is shown in Figure 5.5.

= HOE
Recording Edit Goto System Help

@ JTH SO DHE an E

Transaction Recorder: Change Recording XD02

7| [Ba Recors |68 Process | | B/ | 2] | IR

Frogram Screen |5t |Field name Fiald value
EDC_DECODE]
RFOZD-FUNNE. T-LE3ADZ
RFOZD-EUERS 1000

RFOZD-DOZ10

SAPMFOZD 0210

EBOC_CURSOR KMNBT-ZUAWA
EDC_OECODE FAQDS
FHNE1-ZUAWA (i]ue}
[FNE]1-FDGRV Efi
[FNB1-VZSEE 0z
FNE1-ZINRT 1
SAPMFOZD 4000
EDC_OECODE EUPDA
BOC_SUESCR SAPMFOZD TO02SUBSCREEMN_H
EDC_SUEBACE ZGLACC_EXT 02005UBSCREEM_.
EDC_CURSOR KMNB1-ZZCUST_CLASS

FNE1-ZZICUST_CLASS K]

(<101 I I (| (5]

[S (1 +]

tne | a -| 20 |Ffr.| zo|

| b | E75 (4) 800 PEl| ecTservers | INS | |

Figure 5.5 The Recording of Transaction XD02

Asyou analyze the recording, you see that on the starting data screen SAPMFD02/200,
we executed function code A005, which has taken us into the enhanced screen lay-
out. There we entered a value of 3 into the field KNB1-ZZCUST_CLASS and clicked
SAVE (function code UPDA).

Now we are ready to implement the code of method FILL_FT_TABLE_USING_DATA_
ROWS.

173

5

Inbound Scenarios in Financial Accounting

Ty. | Parameter Type spec Cescription
po | IT_DATA_ROWS TYPE BOIFIBIA_T Transfer Structure Custorervendor Batch Input (Table Type)
po | WALUE(_BRMOD) TYFE BKMOO Customer Master Record Transaction Data for Bateh Input
po | WALUE(I_NODATA) TYPE NODATA_BI Sign for NODATA
pp |ET_FT TvPE BDCDATA_TAB Tahle Type for BDCDATA
R I]

Figure 5.6 The Interface of Method FILL_FT_TABLE_USING_DATA_ROWS

Figure 5.6 shows the interface of method FILL_FT_TABLE_USING_DATA_ROWS. You can
see that we have current BKN00 data (with customer number and other organizational
assignment data) as input parameter I_BKN00; we also have all file lines related to
the current transaction in input parameter IT_DATA_ROWS. Finally, we have one
export table typed parameter, ET_FT, which we will amend according to our logic.
ET_FT has line type of BDCDATA structure, which is a well-known structure used in
batch-input statement CALL TRANSACTION USING.

The algorithm should do the following:
> Find the first entry of structure BKNB1 in the file data.
> Insert function code A005 into the previous screen: BDC data.

» Start a new screen in BDC data.

> Set new field values according to BKNB1 contents that were found.

Always keep in mind that there can be other active BAdI implementations, so you
shouldn't include any function codes in the batch input because this can end the
transaction. In our example, we don't insert the function code UPDA, which is seen
in our sample recording (refer back to Figure 5.5).

Listing 5.1 shows the source code of our method implementation.

METHOD if_ex_customer_add_data_bi~fill_ft_table_using_data_rows.
FIELD-SYMBOLS: <wa> TYPE bknbl.

DATA: ft TYPE bdcdata.

174

Master Data Migration and Distribution 541

LOOP AT it_data_rows ASSIGNING <wa> CASTING.

CHECK <wa>-stype = ‘2’ AND <wa>-thnam = ‘BKNB1’.

* Insert function code to select Enhanced screen layout
* This will be added to the last processed screen in BDC data

CLEAR ft.
ft-fnam = ‘BDC_OKCODE’
ft-fval = “=A005".

APPEND ft TO et_ft.

* Start new screen
CLEAR ft.
ft-program = *SAPMF02D’.
ft-dynpro = *4000".
ft-dynbegin = X’
APPEND ft TO et_ft.

* Enter field value on the custom defined screen
CLEAR ft.
ft-fnam “KNB1-7ZCUST_CLASS”.
ft-fval = <wa>-zzcust_class.
APPEND ft TO et_ft.

EXIT.
ENDLOOP.
ENDMETHOD.

Listing 51 Method FILL_FT_TABLE_USING_DATA_ROWS Source

After activating the BAdI implementation, we can now test the new fields with a small
SAP LSMW project. The goal of this project is to update field KNB1-2ZCUST_CLASS
using the batch-input loading program RFBIDEOQO. After defining the appropriate
target object and source structure, you can see in the SAP LSMW field-mapping
step that our field is included in the target structure (see Figure 5.7). Note that all
uninitialized fields are turned off to make the view more compact.

175

5

Inbound Scenarios in Financial Accounting

=g
Field Mapping Edit Goto Ewras

& El

Utiities Systarn Help

18 ¢a@ CHE D0L80 HEE @3

=4

LSM Workbench: Change Field Mapping and Conversion Rules

| ‘D Source Field || T Source Field ||$@ Rule ‘ | |

| Position ‘ | |@3 Initial H@@ Constant ||$@ Marve |

El
USERES - EOOK - CUSTOMERS Check BI input method 12
=
Field Mapping and Eule @
= EGROD Batch Input Structure for Session Data @
Fields
= BENOO Customer Master Record Transaction Data for Batch Input @
= Fields
TCODE @ @ Transaction Code
Rule : Conatant
Code: EBENOO-TCODE '¥DOz'.
[EUNNE @ @ Customer Number 1
Source: ENHANCEDDATA-EUNNE (Customer Mumber 1)
Rule : Tranzfer (MOVE)
Code: EENOO-EUNNE = ENHANCEDDATA-KUNHE.
BUFRS @ @ Company Code
Source: ENHANCEDDATA-BUKRS (Company Code)
Rule : Tranzfer (MOVE)
Code: EIN00-EUKRS = ENHANCEDDATA-EUFRS.
= BrmAl General Customer Master Record Part 1 (Batch Input) Q’
Fields
—E BKNE1 Customer Master Record Company Code Data (Batch Input) @
3= Fields
ZZCUST_CLASS (@ % tustow Account Class
dource: ENHANCEDDATA-ZZCUST CLASS (Custom Account Class)
Fule : Transfer [(MOVE) L
Code: BENEL-ZZCUST_CLASS = ENHANCEDDATA-ZEZCUST _CLASS. =
* Caution: Source field is longer than target field z
K [[«
[I [E75 () 800 B[ecteeners (s | [2

Figure 5.7 LSMW Field Mapping View for the Customer Master

The CREATE BATCH INPUT SESSION step in the SAP LSMW project is actually a call
of the program RFBIDEOO. We tested it with only one record in the input file to
update customer T-L63A02 in company code 1000. Now change the CuSTAccCLASS
field to 3. After generating the batch-input session, we can inspect it in Transaction
SM35. Figure 5.8 shows the screen list of the session with an opened field value

list. Our added field is in its place.

176

Master Data Migration and Distribution | 541

A EEE
Anahze session Edit Goto System Help

@ A AHICEe CHE DDhLan BEE @m
Analysis of Session CUSTOMERS
Choose ||affy Options ||£% Logs | ‘ |@ Gueue Dump H& Faolder Header | | |ﬁ Field list || EEEE

Transaction
L X0z
Index |Program Scr. |Fld Wal. D
USE_Za¥
2 SAPMFDZD D11l vl
3 SAPMFDZD 120
4 SAPMFDZD 125
5 [SAPMFOZD 0130
& SAPMFOZD 0340
7 [SAPMFOZD 0370
& SAPMFOZD 0zZ10
3 SAPMFDZD 0215
10 SAPMFOZD 220 =
11 SAPMFOZD D230 il
12 SAPMFOZD n&10
EDC_OECODE EAODS
13 SAPMFOZD 4000
FNEL-ZZICUST CLASS 3
EDC_OECODE 11
[l I |[«[¥]
[I [E75 () 800 B[ecteeners (s | [

Figure 5.8 Batch-Input Session Analysis in Transaction SM35

51.2 HR Master Data

In some HR payroll instances, an employee has his own HR master record, which
generates a corresponding vendor master record or customer master record for
that employee in the financials department of the company. From the formal
accounting point of view, when the company pays the salary to that employee, he
should be treated as a company vendor because that employee sells his services
to the company (in the form of an everyday job). If HR Payroll and FI are installed
as separate systems, you must set up a task of regularly distributing HR employee
data into an FI system to form vendor or customer master records.

177

5 | Inbound Scenarios in Financial Accounting

In brief, the standard process of HR data distribution, which is based on ALE
(application link enabling) technology, looks as follows:

1. Several structures of employee data (called infotypes) from the external HR system
are copied into the FI system, in the form of an IDoc (depending on the HR
system version, it can be an IDoc type from HRMD_A01 to HRMD_A07).

2. The receiving FI system regularly runs report RPRAPAOO, which prepares the
locally available HR data for loading with the standard report RFBIKROO.

3. Inside report RPRAPAOO, a BAdI definition BADI_EXITS_RPRAPAQO is used to
intercept the standard logic when preparing a data file for the following run of the
report RFBIKROO. The list of available BAdI methods is shown in Table 5.1.

SET_VALUES_FOR_BLFBW Exit for BLFBW: Vendor master, withholding tax types
SET_VALUES_FOR_BLF00 Exit for BLF00: Vendor master

SET_VALUES_FOR_BLFAL Exit for BLFAL: Vendor master, general data part 1
SET_VALUES_FOR_BLFBK Exit for BLFBK: Vendor master, bank details
SET_VALUES_FOR_BLFB1 Exit for BLFB1: Vendor master, company code data
SET_VALUES_FOR_BLFB5 Exit for BLFB5: Vendor master, dunning data
SET_VALUES_FOR_BGR00 Exit for BGR00: Batch-input structure for session data

Table 54 Interface Methods of the BAdI Definition BADI_EXITS_RPRAPAOO

Each method has an employee number (PERNR) as an input parameter and a respec-
tive batch-input structure as a changing parameter. The structure name is clearly
shown by the method name.

Because report RPRAPAOO works on the local HR data, you can use standard HR
functionality to access employee infotypes. All the BAdI methods are called in the
end of each employee number processing.

513 ALE/IDoc

The batch-input data loading techniques discussed earlier are based on a file as a
data carrier. This is a somewhat outdated technology, and while it is robust and

178

Master Data Migration and Distribution | 541

stable, it's less flexible and less secure compared to ALE/IDoc technology. IDoc
processing logic is completely separated from the data transferring media, which
is much more suitable to the modern distributed environments with its variety of
data transferring protocols. In essence, ALE/IDoc technology is more welcome in
modern integration projects involving B2B (business to business), A2A (application
to application), and mobile scenarios.

When it comes to making a decision on what type of technology to employ in an
integrating project of almost any nature, we recommend choosing IDocs over files.
ALE/IDoc technology is highly configurable, and depending on corporate-specific
requirements, you can completely intercept the IDoc processing of any individual

type.

The structure of an IDoc is identified by its basic type, which is an ordered set of seg-
ments. For simplicity, the notion of an IDoc segment can be treated as an equivalent of
the dictionary structure. Basic type defines not only a simple order of its segments but
also their hierarchy relations, cardinality, and necessity. In other words, the basic type
defines the syntax of IDoc, which is controlled by the runtime ALE system layer. The
IDoc basic type structure can be displayed using Transaction WE3O.

For the sake of simplicity, we can also say that a pair of objects—logical message code
and basic type —together define IDoc processing logic via assignment to a specific ABAP
function module, workflow template, or task. These assignments are stored in configura-
tion table EDIFCT, which is accessible via Transaction WE57.

SAP delivers the following logical messages for master data distribution via ALE:
CREMAS and CRECOR for vendors, and DEBMAS and DEBCOR for customers. Figure 5.9
shows the IDoc processing module configuration for customer-related messages
and IDoc types.

If youlook into the default IDoc configuration table EDIFCT (via Transaction WE57),
you can see that standard processing logic for inbound IDoc transferring customer
and vendor master data is hidden in two function modules: IDOC_INPUT_DEBI-
TOR and IDOC_INPUT_CREDITOR. These function modules are assumed to process
IDoc basic types from CREMAS01 to CREMAS05, and from DEBMASO1 to DEBMASOS,
CRECORO01, and DEBCORO1L. In this notation, the numeric suffix is the version of the
IDoc structure.

179

Inbound Scenarios in Financial Accounting

= Rl W

Tahle View Edit Goto Selection LUtilities Systern Help
(V] AN @@ SHE DDhLoa HE @E
Display View "IDoc: Assignment of FM to Log. Message and IDoc Type": O
N

IDoc: Assignment of FM to Log. Message and IDac Type _l

FM Marne Functi |BasicType |Enhanc. |Messg.Type [War |Fot |Ohbject |+ |Dn

IDOC_INPUT _DEEITOR F F.. ZI[DEECOROL DEECOR} o BUsL0..|. B [Cc[]

ID0C INPUT DEEITOR F F. EDEECOROL DEECOR FNLL .l CE@

ID0C INPUT DEEITOR F F. ZDEEMASOL A SAPSLL/DE .. EUSLO.. |.E|CL

ID0C INPUT DEEITOR F F. ZDEEMASOL /SAPSLL/DE .. FNLL LECL

ID0C INPUT DEEITOR F F. ZDEEMASOL DEEMAS EUSLO.. | B |CL

ID0C INPUT DEEITOR F F. ZDEEMASOL DEEMAS FNLl LEl|CL

ID0C INPUT DEEITOR F F. EDEEMASOZ A SAPSLL/DE .. FNLL LECL

ID0C INPUT DEEITOR F F. ZDEEMASOZ DEEHMAS FNLl LEl|CL

ID0C INPUT DEEITOR F F. ZDEEMASOZ /SAPSLL/DE .. FNLl LElCL

ID0C INPUT DEEITOR F F. ZDEEMASOZ DEEMAS FNLl LEl|CL

ID0C INPUT DEEITOR F F. EDEEMAS04 DEEMAS FNLl LEl|CL

ID0C INPUT DEEITOR F F. ZDEEMASOS DEEMAS FNLl LEl|CL]

ILOC_INPUT DEEITOR F F. E DEEMASOS DEEBMAS AL LEl|CL

ILOC_INPUT DEEITOR F F. E|0ILDEEOZ OILDEE Al LBl |IS-

IL0OC_INPUT DEEITOR F F. E|0ILDEEOZ OILDEE AL LBl |IS-

ILOC_INPUT DEEITOR F F. E[0ILDEEOS OILDEE AL &l IS-|§|
| |IDOC_INPUT_DEEITOR_MDM |F F.. ZI DEEMAS0Z /SAPSLL/IE .. BHAL |ElCL[+]

ES Position.. Entry 1,647 o 2,141

[[E75 2800 B[ec7serers [ns | | 2

Figure 5.9 The Contents of Table EDIFCT

Both function modules work the same way. They first analyze the system type; if
it's an ERP system, the function modules call an ERP-specific function: ERP_IDOC_
INPUT_CREDITOR for a vendor and ERP_IDOC_INPUT_DEBITOR for a customer. There
is also a function call for a standalone HR system, but it's quite simple. Because HR
doesn't need any advanced customer or vendor master data manipulations, you'll
find just a direct update of the corresponding tables.

The main secret of standard IDoc processing logic is that it updates or creates
individual master record by means of batch input. If you dive into the source code
of ERP_IDOC_INPUT_DEBITOR or ERP_IDOC_INPUT_CREDITOR, you'll find the corre-
sponding CALL TRANSACTION statement. In a way, they repeat the logic of reports
RFBIDEOO and RFBIKROO; but instead of a flat file, these functions process IDocs,
and each segment can be treated as an equivalent of a file line. You can also see that

180

Master Data Migration and Distribution | 541

after processing IDoc segments, the function gathers information into an internal

table of structure BDIFIBIWA.

In IDoc processing, SAP provides calling moments for the same BAdI definition as in

RFBIDE0O and RFBIKROO.

Next, we'll discuss working with IDoc data structures—segments—and how you

can affect the processing logic in standard SAP functions.

Working with Segments

The structure of the IDoc type you are planning to process can be displayed in
Transaction WE30. Figure 5.10 shows the structure of IDoc basic type CREMAS05.

As you can see, there are three levels of segment hierarchy.

=4
Development object Edit Goto Extras Environment Utilites System Help

] B dH e DHE fDo0 EE @B

=

Display basic type: CREMAS05

[=]
CREMASDS Vendor master data distribution L
= E1LFalM Fegment for general wendor data
ELLFAlE Seguent for CCR Wendor Data
E1LFAlA Feguent for standard vendor data - enhancement
= EILFAIH Vendor Master Basic Data: Texts, Header
E1LFALL Vendor Master Basic Data: Text Lines
= ELLFE1N Segquent for company code data for wendors SMD
E1LFBUM Segquent for withholding tax types in vendor master
E1LFESH Rewinder data for wendor 3MD
— 3 EILFB1H Vendor Master Company Code: Texts, Header
ELLFEIL Vendor Master Company Code: Text Lines
—E ELLFM1N Segquent for purchasing organization data wendor SMD
E1LFEFM Jegument for bank details of wendor 3MD
E1LFASN Seqment for EU cax mumbers vendors
—E ELWYT1H Segquent for vendor sub-range MMS SMD
[«]
[-]
Kl L[]
[b [E75 4y 00 [l ec7servers [INs | [

Figure 510 The Structure of IDoc Type CREMAS05

181

5 | Inbound Scenarios in Financial Accounting

By double-clicking on an arbitrary segment name, you can drill down to the seg-
ment editor where you can see the list of segment fields. You can see an example
of segment structure in the segment editor in Figure 5.11.

=

B E
Segrment definition Edit Goto Systern Help

] 3 4H Qa8 LEE HDhLH0 EE @
Development segments: Display segment definition E2ZLFATM002
Seqgrment ty

pe attributes

E1LFALM [Qualified segment

Segment for general vendor data

Segrm. definition EZLFAINO0Z Fl Released
Last Changed By SAP

RE=l

Field MNarne Data elernent 150 co_|Exp

SEFN

SGEFN

LIFNR

LIFNR

ANFED

ANFED

EBAHNS

EAHITS

BEBNR

BEBHNR

EBESNR

EBESHR

ARREEEEEE

BEGRELT

BRGELT

BR3CH

BRICH

49

EUEKE

EUEEZ

10

DATLT

DATLT

11

DTAMS

DTAMS

12
D]

DTATS

o | o o} o o | | | o o } o
] s e = |

DTATS

I [E75 () 800 (2| ectserers N5 | [7

Figure 511 The Structure of the Segment E1LFATM

When you develop a brand new segment, the final point of the development is
the act of releasing the segment. At the moment of release, the system generates
a dictionary structure with the same name and all of the segment's fields, which
means that the segment can be used officially. All standard segments also have a
dictionary structure of the same name. So if an IDoc type defined in your system
contains a segment E1LFAIM, you can declare a variable in your program of the
type ELLFAIM.

IDoc has a single primary key field—its 16-digit number. We recommend accessing
an individual IDoc by the standard function module IDOC_READ_COMPLETELY. Besides
the control data (which are outside of our current discussion), the function returns
all of the IDoc segments in the form of an internal table of structure, EDIDD.

182

Master Data Migration and Distribution

Each record contains exactly one segment; the segment's name is stored in field
SEGNAM, while segment data are located in an unstructured field, SDATA. An example
of a code snippet for IDoc segment processing is provided in Listing 5.2.

DATA: 1t_edidd TYPE TABLE OF edidd,
IDoc_number TYPE edidc-docnum,
ls_ellfalm_segment TYPE ellfalm,
1s_ellfblm_segment TYPE ellfblm.

FIELD-SYMBOLS: <edidd> TYPE edidd.

CALL FUNCTION ‘IDOC_READ_COMPLETELY”’

EXPORTING

document_number = IDoc_number
TABLES

int_edidd = 1t_edidd
EXCEPTIONS

OTHERS = 3.

IF sy-subrc <> 0.
MESSAGE ID sy-msgid TYPE sy-msgty NUMBER sy-msgno
WITH sy-msgvl sy-msgv? sy-msgv3 sy-msgv4.
ENDIF.

LOOP AT 1t_edidd ASSIGNING <edidd>.
CASE <edidd>-segnam.
WHEN “E1LFAIM’.
1s_ellfalm_segment = <edidd>-sdata.
B Processing. ..

WHEN “E1LFBIM’.
1s_ellfblm_segment = <edidd>-sdata.
* Processing. ..

WHEN OTHERS.
* Processing non-standard segments. ..

ENDCASE.
ENDLOOP.

Listing 5.2 IDoc Segment Processing Code

183

5

Inbound Scenarios in Financial Accounting

Note that you can freely use direct assignment between unstructured field EDIDD-
SDATA and the structured field of the segment despite the Unicode. This is possible
because IDoc segment structure contains only character fields; EDIDD-SDATA is
character typed as well.

Available BAdIs in Customer Data IDoc Processing

SAP standard batch-input program RFBIDEOQO is called from within the function
module ERP_IDOC_INPUT_DEBITOR. First, it calls method CHECK_ADD_ON_ACTIVE of
BAdI definition CUSTOMER_ADD_DATA. All other methods of the BAdI definition
CUSTOMER_ADD_DATA_BI are only called if there is at least one active add-on.

During the IDoc processing, function ERP_IDOC_INPUT_DEBITOR invokes the follow-
ing methods of the BAdI definition CUSTOMER_ADD_DATA_BI:

> PASS_NON_STANDARD_SEGMENT
This method is called when the system encounters an unknown segment during
the main loop of IDoc segments processing. This call allows you to convert a
nonstandard segment into an internal structure for later processing. The segment
name and segment data are passed to the method as import parameters.

> MODIFY_BI_STRUCT_FROM_STD_SEG
This method is called after fulfilling all standard processing for each standard
segment. The method uses the segment name and segment data as import param-
eters, and one changing parameter with an already known structure, BDIFIBIWA.
By the moment of the call, structure BDIFIBIWA is filled with standard values,
and you can change it according to your requirements.

» FILL_BI_TABLE_WITH_OWN_SEGMENT
This method is called when all standard batch-input data are saved into the inter-
nal table of structure BDIFIBIWA. This method has a changing table parameter with
this structure and an import parameter of dictionary structure CUSTOMER_ORG_DATA.
When this method is called, you should process the data that were prepared
earlier and saved by the PASS_NON_STANDARD_SEGMENT method.

> CHECK_DATA_ROW
When all segments are processed and all of the data gathered into the batch-
input table of structure BDIFIBIWA, the system checks the data before starting the
batch input. This method is called for each line of batch-input data if it contains
the name of a nonstandard structure. The method has import parameter of
structure BDIFIBIWA and a flag parameter for passing the data check status (“X"

184

Master Data Migration and Distribution | 541

for success and a blank space for failure). If some of the data have not passed
the check, the method can return an error message through the corresponding
export parameters.

> FILL_FT_TABLE_USING_DATA_ROWS
This method is called just before calling the transaction in batch-input mode.
It allows the user to make final alterations into the batch-input screen and field
value sequence. Note that this method is only called if the transaction to be
called is either XDO1 or XD02. This method has a changing table parameter
typed with structure BDCDATA.

Available BAdIs in Vendor Data IDoc Processing

Function module ERP_IDOC_INPUT_CREDITOR works with BAdIs in a slightly differ-
ent way: It calls BAdI VENDOR_ADD_DATA and method CHECK_ADD_ON_ACTIVE after
gathering information into an intermediary internal table of structure BDIFIBIWA,
instead of at the beginning of IDoc processing.

The following methods of BAdI definition VENDOR_ADD_DATA_BI are called during
the processing of the vendor master IDoc:

> PASS_NON_STANDARD_SEGMENT

> MODIFY_BI_STRUCT_FROM_STD_SEG

> FILL_BI_TABLE_WITH_OWN_SEGMENT

> CHECK_DATA_ROW

> FILL_FT_TABLE_USING_DATA_ROWS

Enhancement Spots

Function group VV02 has two entries of enhancement spot ES_SAPLVV02CORE. One
source code plug-in entry of this spot is located in the top include of the function
group and allows you to use your own includes here. Another spot entry can be
found at the beginning of the function code ERP_IDOC_INPUT_DEBITOR. On the vendor
side, there is an enhancement spot—ES_SAPLKD02 —with the same functionality.

Function Module Exits

There are also components of old-styled function module exit VSv00001, which
you can examine in Transaction SMOD. Customer function EXIT_SAPLKD02_001 is
called after the vendor data IDoc is completely processed and allows you to save

185

5 | Inbound Scenarios in Financial Accounting

additional data in the database. Customer function EXIT_SAPLYV02_001 has the same
purpose; it is called after processing the customer data IDoc.

5.2 Postings Inbound Scenarios

Now let's examine how accounting document data can come from the external
world and what we can do with it.

5.21 Batch-Input or Direct Input

As with master data, an initial stage of an SAP ERP implementation project virtually
always requires loading initial accounting transaction data. A traditional tool for this
activity is the standard SAP report RFBIBLOO. Input data for the report are provided
in the form of a flat file located on the application server. The report is suitable for
use with SAP LSMW, which effectively hides all the file preparation issues.

Internally, the report uses function modules of group FIPI, which are listed in

Table 5.2.
POSTING_INTERFACE_CLEARING Post with clearing (FB05) using internal posting
interface.
POSTING_INTERFACE_DOCUMENT Post document using the internal posting interface.
POSTING_INTERFACE_END The ending function of the group. Should be called

in the end of the process.
POSTING_INTERFACE_RESET_CLEAR Reset clearing via posting interface.
POSTING_INTERFACE_REVERSE_DOC Cancel document via posting interface.
POSTING_INTERFACE_START Initial information for internal accounting interface.

Table 5.2 FIPI Function Group Modules

These functions actually make postings through batch input by generating sessions
or calling a transaction directly. The function modules also have detailed system
documentation. Unfortunately, report RFBIBLOO does not contain a user-exit call,
although you can rely on the user exits available inside the transactions that are
called during processing.

186

Postings Inbound Scenarios

5.2.2 Payroll Results

Note that the payroll result posting interface is fully equipped with specific user exits.
However, it's worth seeing the overall process outline so that you can understand
where and when the process should (or should not) be intercepted, depending on
your business requirements.

If the company has SAP HR Payroll implemented, then in every payroll period
(weekly or monthly), there must be an interface running that posts payroll results
to the Financials department. SAP recommends implementing HR as a separate
system to improve data security because payroll data are among the most sensitive
corporate data.

If you are implementing a payroll results posting from SAP HR into SAP FI, then
in the end, the posting will be performed with the same tools.

The whole process of HR payroll posting looks like this:

1. The responsible person in HR creates a payroll posting run with report RPCIPEQO.
The report creates a preliminary posting document stored in Tables PPDHD,
PPDIT, and others.

2. Someone then checks and approves all of the resulting posting documents (they
are not accounting documents) by editing particular payroll runs with Transac-
tion PCPO.

3. Finally, someone runs report RPCIPPOO to transfer values into accounting.

The last step can be performed either via ALE/IDoc interfaces (if HR Payroll works
as a separate system), or locally—by direct call of an accounting BAPI. By default,
all of HR Payroll IDocs are processed in the receiving system by the same BAPI.
Let's trace the chain.

The HR system generates three types of postings:
> Employee expenses
For example, travel and accommodation when on a business trip.

> Employee vendor items
For example, an employee can be treated as a corporate vendor or service pro-
vider to justify salary payment; thus the document is generated as an Account
Payables item.

187

5.2

5

Inbound Scenarios in Financial Accounting

> Employee customer items
If an employee has debts that are not settled, he might appear in the role of a cor-
porate customer; the document is generated as an Account Receivables item.

If an HR Payroll component is implemented as a separate system, then it generates
three types of IDocs: ACC_EMPLOYEE_PAY02, ACC_EMPLOYEE_REC02, and ACC_EMPLOYEE_
EXP02. In the receiving system, these IDocs are linked by default via the ALE/
BAPI-generated interface to the following function modules:

> 1DOC_INPUT_ACC_EMPLOYEE_EXP for employee expenses

> IDOC_INPUT_ACC_EMPLOYEE_PAY for employee payments

> IDOC_INPUT_ACC_EMPLOYEE_REC for employee debts
The accounting documents are generated with BAPI calls:

> BAPI_ACC_EMPLOYEE_EXP_POST for employee expenses

> BAPI_ACC_EMPLOYEE_PAY_POST for employee payments

> BAPI_ACC_EMPLOYEE_REC_POST for employee debts

Finally, each of the BAPIs call function modules AC_DOCUMENT_CREATE and AC_DOCU-
MENT_POST as a low-level accounting interface utility. Thus, you can employ any

user exit (BAdI or BTE) appearing in the AC_DOCUMENT_CREATE function module (see
Chapter 3, Posting to Accounting), including substitutions and validations.

At the call point of a user exit during the document generation, you can distinguish
SAP standard HR Payroll postings from any others by the contents of the field
BKPF-GLVOR:

> HRP1 for employee expenses
> HRP3 for employee payments (Account Payables)
> HRP2 for employee debts (Accounts Receivable)

5.2.3 Postings via IDoc

The SAP system delivers dozens of IDoc types to be used for posting different fla-
vors of accounting documents: direct posting to a general ledger account, posting
of incoming vendor invoice, and so on. You can find corresponding IDoc types in
Transaction WE30 (Executing the Search Help with Mask ACC*). However, if you
look into the processing function modules, you'll notice that they aren't equipped
with user exits. If you thoroughly trace the chain of calls, you'll see that this chain

188

Postings Inbound Scenarios

is ended at the same function modules mentioned in the previous section: AC_DOCU -
MENT_CREATE and AC_DOCUMENT_POST. Thus, you should rely on already-known user
exits discussed in Chapter 3.

5.2.4 Electronic Bank Statement

The process of loading a bank statement file consists of two phases: importing the
bank statement file in Transaction FF_5, and posting the bank statement through
Transaction FEBP.

Importing the Bank Statement File

Loading program RFEBKAOO, which is linked to Transaction FF_5, parses incoming
bank files according to a selected format, such as Multicash or SWIFT MT940, which
are widely used in bank communication. Each individual file format is parsed in
an external program, although the code in report RFEBKAOO that is responsible for
choosing the format parsing program is quite static; there is just a CASE statement
with no configuration.

However, if you look into the source code of format SWIFT MT940 parsing routine
program RFEKA400, you can discover an old-fashioned user exit, EXIT_RFEKA400_001,
belonging to function module exit FEB00004. The enhancement can be used for
preprocessing raw file data, which is passed to the user exit in the form of a table
parameter with a length of 512 unstructured lines. Listing 5.3 shows the interface
of the user exit.

FUNCTION EXIT_RFEKA400_001.

7”lokale Schnittstelle:

x” TABLES

x” T_RAW_DATA STRUCTURE RAW_DATA
x” EXCEPTIONS

x” ERROR_OCCURED

B

INCLUDE ZXFO1U06 .

ENDFUNCTION.
Listing 5.3 EXIT_RFEKA400_001 Interface

189

5.2

5

Inbound Scenarios in Financial Accounting

You can also see that EXIT_RFEKA400_001 has one exception, which signals the host
program to stop processing the file any further.

Report RFEBKAOO gathers parsed data into the following bank statement database
tables:

» FEBKO (electronic bank statement header records)
» FEBEP (electronic bank statement line items)

» FEBRE (reference record for electronic bank statement line item)

Posting the Bank Statement

When you link report RFEBKA30 to Transaction FEBP, it interprets data in bank
statement tables and makes an accounting posting. A bank statement is a list of
operations of what the bank did with your money on your behalf, such as company
payments to vendors, bank charges for its services, interest payments, payments from
your customers, and so on. All of these operations should be correctly reflected in
the company's financial accounting to make sure that the money flow is consistent
and correct.

At the same time, the bank’s statement can use different identification for the same
objects presented in your system; also, it's possible that some valuable data in the
context of your SAP ERP system may be omitted in the statement for one reason
or another. During the interpretation phase, report RFEBKA3O0 is trying to fill these
gaps automatically, for example, to determine the business partner number for the
bank transaction or even more important to determine the clearing reference (e.g.,
payment against invoice) document numbers.

Report RFEBKA3O0 actually is only a wrapper for another report, RFEBBU10, which
performs the interpretation. The algorithm runs through header-item relation of
two tables, FEBKO and FEBEP. For each FEBEP internal loop run, the report calls
different user exits that can help discover missing statement data.

Now let's walk through the available BTEs you can employ during the processing
of a bank statement.

BTE 00002810 and Process 00002820

First, the system calls BTE 00002810 (you can see its interface in Listing 5.4). The
event has a pair of parameters for the header record and for the line item of the
bank statement that is being processed. The parameter with suffix EXT contains

190

Postings Inbound Scenarios | 5.2

fields with external data (records that were sent by the bank), whereas suffix INT
signifies that this data is internal. As a result of its run, each function module that
is subscribed to the 00002810 event must return a registration flag in one of two
export parameters: E_REGISTER_AREA_1 or E_REGISTER_AREA_2.

”” okale Schnittstelle:
*” IMPORTING

*” VALUE(I_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
*” VALUE(I_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
*” VALUE(I_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
*” VALUE(CI_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
*” VALUECI_TESTRUN) TYPE XFLAG OPTIONAL

*” EXPORTING

*” VALUE(E_REGISTER_AREA_1) LIKE BOOLE-BOOLE

*” VALUE(E_REGISTER_AREA_2) LIKE BOOLE-BOOLE

x” VALUE(E_SUPPR_STD_AREA_1) LIKE BOOLE-BOOLE

*” VALUE(E_SUPPR_STD_AREA_2) LIKE BOOLE-BOOLE

*” TABLES

x” T_FEBRE STRUCTURE FEBRE_BF

x” T_FEBCL STRUCTURE FEBCL_BF

K

Listing 5.4 The Interface of BTE 00002810

Note that subscribers to event 00002810 are called from within function FEB_OPEN_
FI_CALL_1. This function allows only one application ID to be registered for each
of the two areas. The application ID in the BTE framework is used to distinguish
SAP internal and partner application areas. Customer-defined P&S modules and
processes can have blank application IDs. Therefore, you should make sure that
for this particular line item of the bank statement, your function is the only one
registered, or an error will be reported. Another pair of event flag parameters,
E_SUPPR_STD_AREA_1 and E_SUPPR_STD_AREA_1, will prevent execution of interpreta-
tion algorithm if they are assigned X.

Process 00002820 is called just after the event and only for registered application
IDs. You can see the process interface in Listing 5.5. Note that there are export
parameters to allow changing values in bank statement headers and items. Note
that your changed data will be taken into account only if you assign X to the export
parameter E_UPDATE_FEB.

191

5 Inbound Scenarios in Financial Accounting

K s
7”okale Schnittstelle:
*” IMPORTING
x” VALUE(I_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
x” VALUE(CI_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
x VALUECI_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
x” VALUECI_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
x” VALUECI_TESTRUN) TYPE XFLAG OPTIONAL
*” EXPORTING
x VALUE(E_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
x” VALUE(E_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
x VALUE(CE_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
x VALUE(CE_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
x VALUECE_UPDATE_FEB) LIKE BOOLE-BOOLE
*” TABLES
x T_FEBRE STRUCTURE FEBRE_BF
x T_FEBCL STRUCTURE FEBCL_BF
K o
Listing 5.5 The Interface of BTE Process 00002820
Besides header and item data, you can also fill in clearing data in table parameter
T_FEBCL.

Ty. | Parameter Type spec. Description

po | I_TESTRUN TYPE XFELD Checkhox

»o | T_FEBRE TYPE STAMDARD TABLE

o» |E_SUBRC TYPE SY-S5UBRC Return Walue, Return Yalue After ABAP Statements

or |E_MSGID TYPE SY-MSGID Messages, Message Class

op |E_MSGTY TYPE SY-MSGTY Messages, Message Type

op |E_MSGHO TYPE SY-MSGMOD Messages, Message Mumber

op | E_MSGW TYPE SY-M3GW1 Meszages, Message Variable

op |E_MSGVZ TYPE SYv-M3GV2 Meszages, Message Variable

op |E_MEGWI TYPE SYv-M3GV3 Messages, Message Variable

op |E_MSGV4 TYPE SY-M5GV4 Messages, Message Variable

pop | C_FEBKD TYPE FEBKD Electronic Bank Statement Header Records

pop | C_FEBEP TYPE FEBEP Electronic Bank Statement Line ltems

pop | T_FEBCL TYPE STAMDARD TABLE

Figure 512 The Signature of Method CHANGE_DATA of BAdI FIEB_CHANGE_BS_DATA
BAdI Definitions

Progressing to business transaction events and processes, the system calls BAdI
definition FIEB_CHANGE_BS_DATA and method CHANGE_DATA. Figure 5.12 shows the

192

Postings Inbound Scenarios | 5.2

interface (or signature) of the method. Notice that the method has three changing
parameters: C_FEBKO and C_FEBEP for the header and item of the bank statement,
and table parameter T_FEBCL for clearing data from the statement.

The method can also return error code and error message attributes to be reported
in the log and prevent the statement from being processed further.

Another BAdI definition, FIEB_CHANGE_STATEMNT, is called after all of the inter-
pretation is executed, and the system has done everything it can. You can see the
interface of the BAdI method CHANGE_DATA in Figure 5.13.

Ty. | Parameter Type spec. Description

pa | ID_TESTRUN TYPE HFELD Checkbox

»o | IT_FEBRE TYPE STAMDARD TABLE OFTIOMAL Fayment Motes

po | IT_FEBEF TYPE STAMDARD TABLE Line lterms

po | IT_FEBCL TYPE STAMDARD TABLE OFTIOMAL Clearing Information

po | WALUE(FLT WAL TYPE LAND Farameter FLT_VAL of Method CHANGE_DATA
op |ED_SUBRC TYPE SY-SUBRC Return Value, Return Value After ABAP Staternents
op |ED_MSGID TYPE SY-MSGID Messages, Message Class

op |ED_MSGTY TYPE SY-MEGTY Messages, Message Type

or | ED_MSGMNO TYPE SY-MSGMNO Messages, Message Number

or |ED_M3GY1 TYPE SY-mMSGEW1 Messages, Message Yariahle

op |ED_MEGY2 TYPE SY-M5GY2 hMessages, Message Variahle

op |ED_MSGWV3 TYPE SY-MSGY3 Messages, Message Variahle

op |ED_MEGWY TYPE SYv-M3GY4 Messages, Message Variahle

= ENEEEEEER TYPE STAMDARD TABLE Changed Line lterms

or |ET_FEBCL TYPE STAMDARD TABLE Changed Clearing Information

o» |ET_DELETE_FEBCL TYPE STANDARD TABLE Deleted Clearing Infarmation

pop | CS_FEBKO TYPE FEBKD Electronic Bank Staternent Header Records

Figure 513 The Signature of Method CHANGE_DATA of the BAdI FIEB_CHANGE_STATEMNT

Customer-Defined Interpretation Algorithm

After calling BTEs and the first BAdI, the system runs the interpretation proper. Each
bank statement item can have its own interpretation algorithm, which is defined
by the field FEBEP- INTAG value. Therefore, the individual item algorithm can be set
during a user exit run: either BTE or BAdIL.

A full list of interpretation algorithm numbers and descriptions can be found in
the INTAG_EB domain fixed values. INTAG_EB is numeric 3. It is assumed that all
SAP system algorithms belong to the range of INTAG values from 000 to 899, and
everything above 900 is a customer-defined interpretation.

193

Inbound Scenarios in Financial Accounting

To implement a customer-defined interpretation, you have to create a function
module with a predefined name structure—z_FIEB_NNN_ALGORITHM—where NNN is
the algorithm number.

This function module must have the interface shown in Listing 5.6.

FUNCTION Z_FIEB_901_ALGORITHM.

””|ocal Interface:
*” IMPORTING

x” REFERENCE(I_NOTE_TO_PAYEE) TYPE STRING

x” VALUE(CI_COUNTRY) TYPE T001-LANDI

*” TABLES

x” T_AVIP_IN STRUCTURE AVIP

*” T_AVIP_OUT STRUCTURE AVIP

*” T_FILTERL

*” T_FILTERZ

K L L L L f e f e oo oo
ENDFUNCTION.

Listing 5.6 Sample Interpretation Algorithm Function

Based on the payment note passed to the function in parameter I_NOTE_TO_PAYEE
and document references in T_AVIP_IN, the algorithm is expected to produce
reasonable results in table structure T_AVIP_0UT, which has the structure of the
payment advice line item. Table structure T_AVIP_OUT is then used to update the
clearing reference data for the statement item.

Function Module Exit

After the interpretation algorithm and just before the second BAdI call, the system
invokes a component (function module) EXIT_RFEBBU10_001 of the old-fashioned
function module exit FEB00001. Its interface is shown in Listing 5.7.

FUNCTION EXIT_RFEBBUI0_001.
K e e e e e e e e e e e e e e — -
””|okale Schnittstelle:
IMPORTING
VALUE(I_FEBEP) LIKE FEBEP STRUCTURE FEBEP
VALUE(I_FEBKO) LIKE FEBKO STRUCTURE FEBKO
VALUECI_TESTRUN) TYPE XFLAG
EXPORTING
VALUE(E_FEBEP) LIKE FEBEP STRUCTURE FEBEP

bR S S S S

194

Summary

*” VALUECE_FEBKO) LIKE FEBKO STRUCTURE FEBKO
*” VALUECE_MSGTEXT) LIKE FEBMKA-MESSG

*” VALUECE_MSGTYP) LIKE FEBMKA-MSTYP

*” VALUE(E_UPDATE) LIKE FEBMKA-MSTYP

*” TABLES

*” T_FEBCL STRUCTURE FEBCL

*” T_FEBRE STRUCTURE FEBRE

K

INCLUDE ZXFO1UOI.

ENDFUNCTION.
Listing 5.7 The Interface of EXIT_RFEBBU10_001

This is another point where you can intercept the standard flow of the bank state-
ment processing.

5.3 Summary

In this chapter, we discussed several inbound interfaces of Financial Accounting,
which cover some of the general corporate activities. Thanks to the SAP design in
all of these scenarios, you can find ways to seamlessly tailor the standard process
for specific corporate needs.

In the next chapter, you'll see what user-exit techniques are available for develop-
ment in outbound scenarios when the system sends accounting data to external
systems.

195

5.3

Index

A BAdI definition, 84
CUSTOMER_ADD_DATA, 184
ABAP Objects class CUSTOMER_ADD_DATA_BI, 184
CL_EXITHANDLER, 32 FAGL_AUTHORITY_CHECK, 164
Account assignment, 135 FAGL_ITEMS_CH_DATA, 165
Accounts Payable, 68 FI_ITEMS_MENUEO1, 157
Accounts Receivable, 68 FI_ITEMS_MENUEO2, 157
Account type, 116 VENDOR_ADD_DATA, 185
ALV list, 153 VENDOR_ADD_DATA_BI, 185
Append structure, 51, 69, 93 Batch input, 167, 197
Application code, 25 Binding, 239
Breakpoint, 22, 30
BSEG
B DMBTR, 115
BTE, 24, 28, 124
BAdI, 31 00001005, 138, 144
AC_DOCUMENT, 149 00001011, 138
BADI_FDCB_SUBBASO01, 131 00001020, 144
BADI_FDCB_SUBBASO05, 131 00001025, 144
CALL BADI, 34 00001030, 145
Classic, 31 00001050, 149
CUSTOMER_ADD_DATA, 72, 76, 85, 86, 00001070, 122, 124
90, 170 00001080, 122, 138
CUSTOMER_ADD_DATA_BI, 170, 200 00001085, 138
CUSTOMER_ADD_DATA_CS, 72, 79, 81, 00001140, 137
85, 86, 107 00001310, 89
FAGL_DERIVE_PSEGMENT, 140 00001320, 90
FAGL_DERIVE_SEGMENT, 139 00001321, 91
FAGL_ITEMS_MENUEO1, 164 00001330, 88
FAGL_ITEMS_MENUEO2, 164 00001340, 90
FAGL_PERIOD_CHECK, 139 00001350, 90
FI_F110_SCHEDULE_JOB, 217 00001360, 90
FI_HEADER_SUB_1300, 129 00001410, 109
FI_LIMIT_ACCOUNT, 66 00001420, 109
FI_TRANS_DATE_DERIVE, 139 00001421, 109
GET BADI, 34 00001430, 109
GET_INSTANCE, 37 00001440, 109
Kernel-based, 31 00001450, 109
TR_GET_ACCNT_ASSIGN, 140 00001460, 109
VENDOR_ADD_DATA, 72, 106, 108 00001510, 92, 102
VENDOR_ADD_DATA_BI, 202 00001520, 102
VENDOR_ADD_DATA_CS, 72, 107, 108 00001550, 92

247

Index

00001610, 156
00001620, 156
00001630, 162, 165
00001640, 153, 164
00001650, 162, 163, 165
00001703, 208
00001705, 213
00001719, 214
00001751, 203
00001762, 209
00001763, 210
00001764, 212
00002105, 218
00002310, 65
00002810, 190
Sample function module, 30

BTE application code, 25, 29

BTE configuration, 28

BTE customer event, 29

BTE partner event, 28

BTE process, 24, 29
00001020, 213
00001030, 215
00001040, 215

00002820, 190
Default function name, 24
Multiple subscription, 30
Sample function module, 30
BTE product code, 26
Business Add-In, 31
Business Transaction Event, 24

C

Change document, 69, 87
Chart of accounts, 42
Classic BAdI, 32
Classic ledger, 118
Cluster table, 113
Coding block, 135

BSEG, 135

CI_COBL, 135
Custom defined fields, 135
CUSTOMER_ADD_DATA

CHECK_ADD_ON_ACTIVE, 184

CUSTOMER_ADD_DATA_BI
CHECK_DATA_ROW, 184

00001050, 211 FILL_BI TABLE WITH_OWN_SEGMENT,
00001053, 209 184

00001060, 209 MODIFY_BI_STRUCT_FROM_STD_SEG,
00001061, 210 184

00001068, 211 PASS_NON_STANDARD_SEGMENT, 184
00001074, 211 Customer enhancements, 17, 18, 21
00001076, 211 Customer function module component, 20

00001100, 139
00001110, 138
00001120, 145
00001130, 146
00001150, 146
00001170, 146
00001809, 223
00001810, 220, 223
00001811, 224
00001815, 223
00001819, 218
00001820, 219
00001821, 221
00001830, 220
00001831, 222

248

Customer product, 26

D

Data element, 42
Data enhancements, 68
Dialog processing, 137
Domain

List of values, 42

Value table, 42
Dunning, 203
Dunning printout phase, 212
Dunning run, 206, 207
Dynamic assign, 62, 68, 110

E

Electronic bank statement, 189
Enhancement Framework, 34, 35
Enhancement project, 18
Enhancement spot, 35, 185, 200
Enhancement techniques, 17
Enjoy transactions, 121, 124
Event creation, 231

Event handling, 228

Event processing, 231

Export parameters, 163

F

FI Business Framework, 24
Filtered BAdI, 35

Flexible General Ledger, 117, 118, 119, 120,

140, 151

Flow logic, 53, 61, 93

Foreign key, 46

Function group, 103, 148
ATAB, 55, 59
FAGL_ITEMS_SELECT, 163
FARI, 103
FI_ITEMS, 153
FIPI, 186
GL_ACCOUNT_MASTER_MAINTAIN, 50,
64
RWCL, 121, 147, 148

Function module, 100
AC_DOCUMENT_CREATE, 148, 188
AC_DOCUMENT_GENERATE, 148
AC_DOCUMENT_POST, 148, 188
BAPI_ACC_EMPLOYEE_EXP_POST, 188
BAPI_ACC_EMPLOYEE_PAY_POST, 188
BAPI_ACC_EMPLOYEE_REC_POST, 188
BF_FUNCTIONS_READ, 30
DATE_TO_PERIOD_CONVERT, 119
ERP_IDOC_INPUT_CREDITOR, 180
ERP_IDOC_INPUT_DEBITOR, 180, 184
EXIT_RFEBBU10_001, 194
EXIT_RFEKA400_001, 189
EXIT_SAPLKDO02_001, 185
EXIT_SAPLVV01_001, 200

Index

EXIT_SAPLVV02_001, 186
EXIT_SAPMF02D_001, 110
EXIT_SAPMFO02H_001, 66
EXIT_SAPMFO02K_001, 109
FAGL_ITEMS_DISPLAY, 163
FI_ITEMS_DISPLAY, 153, 163
FI_PRINT DUNNING_NOTICE, 215
FI_PRINT DUNNING_NOTICE_PDF, 215
FI_PRINT DUNNING_NOTICE_SMARTEF,
215
GET_DUNNING_CUSTOMIZING, 215
GL_ACCT_MASTER_MAINTAIN, 40
IDOC_INPUT_ACC_EMPLOYEE_EXP, 188
IDOC_INPUT_ACC_EMPLOYEE_PAY, 188
IDOC_INPUT_ACC_EMPLOYEE_REC, 188
IDOC_INPUT_CREDITOR, 179
IDOC_INPUT_DEBITOR, 179
IDOC_READ_COMPLETELY, 182
MASTERIDOC_CREATE_CRECOR, 202
MASTERIDOC_CREATE_CREMAS, 202
MASTERIDOC_CREATE_DEBCOR, 200
MASTERIDOC_CREATE_DEBMAS, 200
MASTERIDOC_CREATE_GLCORE, 199
MASTERIDOC_CREATE_GLMAST, 199
MASTER_IDOC_DISTRIBUTE, 199
MODX_FUNCTION_ACTIVE_CHECK, 22
OUTBOUND_CALL_00002310_E, 65
PC_FUNCTIONS_READ, 30
RWIN_CHECK_SUBSET, 147
TABSTRIP_INIT, 41
TABSTRIP_LAYOUT_READ, 41, 55, 72

Function module exit
FEB00004, 189
VSsv00001, 185

Functional method, 236

Funds Management, 140

G

General ledger, 39
GET BADI, 37
GUI status enhancement, 121

249

Index

IDoc processing, 184, 185
Implicit enhancement, 38
Import parameters, 163
Interface
BI_OBJECT, 233
BI_PERSISTENT, 233, 234
IF_WORKFLOW, 233

K

Kernel-based BAdI, 34

L

Legacy System Migration Workbench
(LSMW), 167
Line-item report, 151
Local Persistent Object Reference (LPOR), 234
Logical database, 117, 152
DDF 117
KDF, 117, 152
LDF, 152
SDF, 117, 152
Logical messages, 179
LPOR, 234

M

Maintenance view, 46
V_T80D, 141
VWTYGBO1, 142
Maintenance view cluster
VC_TAMLAY_00, 55, 58
VC_TAMLAYA_00, 55
V_T004_B, 60
Master data enhancements, 39
Menu enhancement, 157, 164
Menu exit, 19
Module pool, 107
Module pool SAPMF05A, 121
Multicash, 189

250

o

Open FI, 24
Output layout enhancement, 161

P

PAI modules, 64, 137
Partner functions, 97
Partner products, 26, 96
Payment method, 217
Payment proposal, 217
Payment run, 219
PBO modules, 63, 64, 82, 85, 137
Program
RBDSECRE, 202
RBDSEGLM, 198
RFBIBLOO, 186
RFBIDEOO, 169, 170, 184
RFBIDE10, 198
RFBIKRO0O0, 167, 169, 170
RFBIKR10, 198
RFEBKAO00, 189
RFEKA400, 189
RFBISA10, 198
RGGBS000, 142
RPCIPE0O, 187
SAMFO02D, 68
SAMFO02K, 68
SAPF110V, 217
SAPF150S82, 207
SAPLFAGL_ITEMS_DISPLAY, 165
SAPGL_ACCOUNT_MASTER_START, 40
SAPLFDCB, 133
SAPMF02C, 92, 93
SAPMFO02D, 87
SAPMFO02H, 65, 66
SAPMFO05A, 121, 147
Publish and subscribe (P&S), 23, 24, 89, 137

R

Record type, 168
Relational Database Management System
(RDBMS), 111

Report development, 151

Repository Information System, 113

RW Interface (RWIN), 146, 147
TRWPR, 147

S

SAP Business Workflow, 227
SAP HR Payroll, 187
SAP LSMW, 170
SAP NetWeaver Master Data Management,
197
SAP Smart Form, 214
Secondary indices, 116
Segmental reporting, 140
SEPA, 224
Standard logic, 41
Standard task, 228, 236
Structure
BDIFIBIWA, 168, 181
BGRO0O, 168
BKNO0O, 168
BKNA1, 169
BLFO00, 168
CUSTOMER_ORG_DATA, 184
GLACCOUNT_CCODE_DATA, 51
INVFO, 135
RF61B, 93
SIBFLPOR, 234
Subroutine, 141, 142
Substitution, 142
SWIFT MT940, 189

T

Table
BKPFE, 112
BSAD, 117
BSAK, 117
BSAS, 117
BSEC, 114
BSED, 114
BSEG, 113, 114
BSES, 114
BSET, 114, 115

Index

BSID, 117

BSIK, 117

BSIS, 117
EDIFCT, 179
FAGLFLEXT, 119
FEBEP, 190
FEBKO, 190
FEBRE, 190
GBO01, 142
GLTO, 118
KONV, 113
KNA1, 69
KNB1, 69, 86
KNC1, 119
KNKK, 93, 94, 96
KNVV, 86

LFA1, 69

LFB1, 69

LFC1, 119
MHND, 207
MHNK, 207
PPDHD, 187
PPDIT, 187
SKA1, 41, 50
SKB1, 41, 50, 51, 64
SXDA2, 170
T004, 42

T020, 96

T061S, 97, 99, 103
T061V, 99, 103
7881, 119
TAMLAY1, 55
TAMLAY2, 55
TAMLAYA, 55
TAMLAYB, 55
TBEO1, 24, 25
TBE11, 26
TBE12, 26
TBE22, 26
TBE23, 26
Technical settings, 44
TPSO01, 24, 25
VBKPF, 116
VBSEC, 116
VBSEGA, 116
VBSEGD, 116
VBSEGK, 116

251

Index

VBSEGS, 116
VBSET, 116
Tabstrip, 58
Total tables, 117
Transaction
BD12, 199
BD14, 201
BD18, 198
CMOD, 18
FBO1, 129
F-02, 121, 142
F-42, 121
F110, 217
F150, 203, 217
FAGLLO3, 151, 163
FBO1, 142
FB50, 121, 129
FB50, 142
FB60, 121, 124, 130, 142
FB70, 124, 130
FBD1, 129
FBD5, 129
FBL1N, 151
FBL3N, 151, 160
FBL5N, 151
FD32, 92, 93, 98
FD33, 92, 93
FIBF, 25, 65, 96
FS00, 40, 66
FSO01, 41
FS02, 41
FS03, 41
FSPO, 40
FSS0, 40, 61, 64
PCPO, 187
PFTC, 236
RBDSECRE, 201
RBDSEDEB, 199
SE11, 47, 50, 113
SE18, 31
SE24, 233

252

SE80, 52
SM30, 49, 97
SM34, 58
SM59, 230
SMOD, 18, 109
SPRO, 74
SWEC, 240
SWEL, 241
SWELS, 241
SWo1, 228
SWU3, 232
WE30, 179, 181
WES57, 179
XD02, 72
XDO03, 72
XKO01, 170
XK02, 170

Vv

Validation, 142

VENDOR_ADD_DATA
CHECK_ADD_ON_ACTIVE, 185

VENDOR_ADD_DATA_BI
CHECK_DATA_ROW, 185
FILL_BI TABLE WITH_OWN_SEGMENT,
185
FILL_FT_TABLE_USING_DATA_ROWS, 185
MODIFY_BI_STRUCT_FROM_STD_SEG,
185
PASS_NON_STANDARD_SEGMENT, 185

Vendor control data, 105

Vendor master enhancements, 103

W

Where-used list, 35
Workflow event, 229
Workflow template, 228

	SAP PRESS – reading sample

	ABAP Development for Financial Accounting
	Sergey Korolev
	--
	Contents at a Glance
	Contents
	--
	chapter 5: Inbound Scenarios in Financial Accounting
	5.1 Master Data Migration and Distribution
	5.1.1 Batch Input
	5.1.2 HR Master Data
	5.1.3 ALE/IDoc

	5.2 Postings Inbound Scenarios
	5.2.1 Batch-Input or Direct Input
	5.2.2 Payroll Results
	5.2.3 Postings via IDoc
	5.2.4 Electronic Bank Statement

	5.3 Summary

	--
	Index
	--
	www.sap-press.de
	© Galileo Press GmbH 2011

