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As today's corporate ERP system landscape becomes more and more
distributed, you have to be prepared for different kinds of data that can flow
to and from external systems. With this in mind, the focus of this chapter is
inbound scenarios in Financial Accounting.

5 Inbound Scenarios in Financial Accounting

In this chapter, we consider data processing scenarios when the SAP system receives
accounting data from external systems. This can be master data from legacy systems
or posting data from, for example, an external payroll system. This chapter describes
how you can intervene in this process using various user exits.

51  Master Data Migration and Distribution

There could be no SAP ERP implementation project without an initial data migra-
tion procedure. Imagine how painful it would be if a company started its trading
activity by implementing SAP ERP and then entered its existing customers and
vendors one by one. As a rule, the moment a company implements SAP ERP, the
customer/vendor list (which is in some other legacy system) has to be prepared.
There are also scenarios in which accounting master data are loaded from external
systems on a regular basis.

In the following subsections, we'll discuss several ways to load master data into
an SAP system and how to seamlessly penetrate the standard data flow to address
specific requirements.

511  Batch Input

If you are familiar with the SAP Legacy System Migration Workbench (LSMW) and
have completed data migration projects, you probably recognize these standard SAP
programs for the mass uploading of customer and vendor master records: reports
RFBIDEOO and RFBIKROO.
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5 | Inbound Scenarios in Financial Accounting

Both reports have the same selection screen as shown in Figure 5.1. Input data for
the report must be presented as a flat file located on the application server.

You can also pass a logical file name into the report by passing it through invisible
parameter LDS_NAME, which can be used in a SUBMIT statement. In this case, the value of
the visible file path name parameter is ignored.

=4 (==l
Program Edit Goto Swstem  Help
@ 1 aBICaq DHE aDLaD BE @
Batch Input Interface for Customers
File path name |
Selection af structures that are used
[ structures from Release = 4.0
Program caontral
[Jcheckfile anly
[]File has Mon-Unicode Farmat
Info Messages
(@ Dialog Box
OlLog
(O Mo Infarmation Message
I V[ E75 (1) 800 (5| ec7senvers | INS | |7

Figure 51 Selection Screen of Report RFBIDEOO

By default, the maximum length of an input file line is 2,000 characters —this is the
length of dictionary structure BDIFIBIWA. If your input file has longer lines, you can
extend structure BDIFIBIWA by using customer include structure CI_BDIFIBIWA.

Keep in mind, however, that structure BDIFI1BIWA only defines the length of an input
file line, whereas the actual structure of the data being processed is defined according
to the first 31 characters of the line (see the structure shown in Figure 5.2).

The first character of each file line is a record type, which can take one of three values:
0, 1, or 2. Record type O marks the beginning of a session, record type 1 is the
beginning of one customer (or vendor) data for one transaction code, and record
type 2 is a data record. The next 30 characters of a file line contain a dictionary
structure name. For record type 0, the structure name is always BGR0O; for record
type 1, the structure name is always BKN00 for customers and BLF00 for vendors.
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Master Data Migration and Distribution

Record type (1) Structure name (30) Unstructured data (1969)
"1 | BKnoo 4

Figure 5.2 The Structure of a Flat File Line

In the record with structure BGR00, you can denote the transaction code that will
be used to process the data. The record with structure BKN00 contains the customer
number and corresponding organizational assignment, such as company code, sales
market data, credit control area, and so on. In the record with structure BLF00,
the data contains information for the vendor number, company code, purchasing
organization, and so on.

File lines with record type 2 can contain standard and nonstandard structures. Stan-
dard batch-input structures mainly comply with the following naming convention:
character B followed by one of the master data table names. For example, BKNA1
is a batch-input structure for Table KNA1, BLFA1 is the batch-input counterpart for
LFA1, and so on.

The full list of all standard batch-input structures and supported transactions can be
found in SAP online help for reports RFBIDEOO and RFBIKROO.

In the next subsection, you'll see learn to extend data and amend its processing
using BAdIs. You'll also see a step-by-step example of loading extended data with
a standard SAP program.

Data Enhancement

You can enhance batch-input data either by defining your own fields in the corre-
sponding customer include, which you can find in all standard batch-input structures
(e.g., CI_BKNAL in BKNA1), or by defining your own data structures.

If you choose the second option, follow the same conventions found in the standard
structure:

» The first two fields of the customer include should be the same as in the standard
structure (STYPE and TABNAME).

» All fields must be characters (no numbers).

169

54



5

Inbound Scenarios in Financial Accounting

To make the customer-defined batch-input structure available in SAP LSMW, you must
insert a corresponding entry in the customizing table SXDA2.

Using BAdIs
If your custom-defined fields are part of an additional screen layout (see Chapter 2,

Master Data Enhancements), then you have to apply user exits to make the system
process additional data in customer or vendor loading reports.

Customer loading report RFBIDEOO uses the following BAdI definitions and
methods:

> Definition: CUSTOMER_ADD_DATA

> Method CHECK_ADD_ON_ACTIVE is called in the initialization phase of the report.
Other BAdI methods are called only if at least one add-on is active.

» Definition: CUSTOMER_ADD_DATA_BI

> Method CHECK_DATA_ROW is called for any nonstandard file line with record
type 2 and an unknown structure name. The method can be used to check
the input contents for nonstandard structures.

> Method FILL_FT_TABLE_USING_DATA_ROWS is called at the end of transactions
processing (only for Transactions XDO1 and XD02). The method can be used
to amend or extend generated batch-input screens and field sequences to
incorporate add-on screens and fields.

Vendor loading report RFBIKROO uses the following BAdI definitions: VENDOR_ADD_
DATA and VENDOR_ADD_DATA_BI. Method names and their purposes are the same as
in report RFBIDEOO; and logical method FILL_FT_TABLE_USING_DATA_ROWS is only
called for Transactions XK01 and XKO02.

Example

To illustrate the enhancement usage in our IDES system, let's incorporate the
example from Chapter 2, where we enhanced customer master data, into the
standard loading program, RFBIDEOO. We extended the company code view of the
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Master Data Migration and Distribution | 541

customer master data by an additional field: Custom Account Class (with technical
name KNB1-ZZCUST_CLASS).

First, we extended the dictionary structure (BKNB1) by defining the customer include
(CI_BKNB1). As a result, the BKNB1 definition in Transaction SE11 should look like
Figure 5.3.

= E1E
Structure  Edit Goto  Utilities  Edras  Environment  System  Help
& 34 EH G DHR Dhoan BER @F
Dictionary: Display Structure
| |12 |12/ 8) | v e | Acpons S|
Structure BENEL Active
Short Description Customer Master Record Company Code Data (Batch Input)
Attributes Entry helpicheck | Currencylquantity fields
IZ - I I = | |@ '@lEl‘ﬁI Predefined Type B5 ¢ 76
Camponent RTy |Component type Cata Type  |Length |Decim_|Short Description E‘
[LFNS! [ [rLems CHAR 30 0lsccounting elerk's telephane number at business partner  [<]
CESSI0N KZ [ CE3SION EZ CHAR 2 mAccounts Receivable Pledging Indicatar I_Z_‘
GMVEED [ [GMVEZD CHAR 1 0/Custamer is in execution
. INCLULE [ |81 _AND CI EENEL [==x] 1] 0Structure for Including 31 and Cl Includes in BEMB1
. INCLUDE [ [gI_IS0IL_BKNBL o o
. INCLUDE [] |s1_EENBL P3 o o
 INCLUDE ["] |s1_EENBL _EE o o
. INCLULE [] |s1_EENBL D1 a a
. INCLUDE [ |s1_BENBL IS o o
. INCLUDE [ [c1_EmBL oo 0 0Ehancements in Financials il
EECUST CLASS [ [zACC_CUST CLASS [CHAR 1 0/Custam Account Class
SENDE [l SENDE BI ICHAR 1 0|Record End Indicatar for Bateh Input Interface
[+]
-
LD I I[1[+]
[ b [E75 (2800 e[ ec7serers (NS [ [

Figure 5.3 Extended BKNB1 Dictionary Structure

When preparing the example for Chapter 2, we implemented BAdI CUSTOMER_ADD_
DATA. Now we need to use BAdI definition CUSTOMER_ADD_DATA_BI. Because we
haven't created our own batch-input structure, but extended a standard structure
instead, we don't need to implement the CHECK_DATA_ROW method. We do need
to code an addition to the screen and field sequence, which will save our data
into the customer master record. To do this, we need to examine how the screen
sequence might look by using an old batch-input recording, which can be found
in Transaction SHDB.
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5 Inbound Scenarios in Financial Accounting

We record the following actions of Transaction XD02 with the following steps:

1. Enter the customer number and company code.
2. Select the enhanced screen layout (defined in Chapter 2).

3. Change the value in the CusTAccCLass field (no matter from which to which;
we just need a value change).

4. Save.

Figure 5.4 shows the combined sequence of screenshots of these steps.

=4 EEE
Customer Edit Gota Extras Environment System Help

@ B3dABCEe SHEB aDL0 RE @0
Customer Change: Initial Screen

Customer T-L63402 [G)Etelko Text
Campany Code 1000/ IDESAG
Sales Organization
Distribution Channel [=4 BE=H
Division Customer Edit Goto Extras Environment System Help
@ Previous Tah Page o HER BD e
Ganetal Data Company Cade D3ta | cystomer Ck RErfrer e ®
[ Address [¥] Accounting info General Data L
[ control [#IPayment ransacti @@ Company Code B
Marketing orespondence | o o | ccsdrea G
Paymenttransactions surance Enhancements » Additional Data, Empties
[] Unloading points: [Flwiithholding Tax | 35255 Back Fa Additional Data, DSD
[ Foreign Trade o ST Sales Area Infammation, DSD
Contart persons Gales Area Data Data for Invoice Summary (Japar)
[15ales s P RSN BEE Gy
[JUse central address management [Cshipping City Mainz
[Billing District
i Country oE
[Partner functions
Communication
Language Key DE Telex number | G
Telephane 1 FaxNumper | Customer Edit Goto Extras Emvironment System  Help
ALECprencE2 G B ICe@ SHE DD aE

InternetAdd

Change Customer: Company Code Data (Enhanced)

Customer T-L6380Z Etelko Texti Mainz
Compary Code 1000 IDES AG

Enhancement data

CusthceClass IClass 2 =]
1 Class 1

1 Class 2

3 Exceptional 5

[ I [E75 (3) 800 ][ ecTsenvers | NS | |

Figure 5.4 Recorded Screen Sequence of Transaction XD02
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Master Data Migration and Distribution 51

The result of the recording is shown in Figure 5.5.

= HOE
Recording  Edit Goto  System Help

@ JTH SO DHE an E

Transaction Recorder: Change Recording XD02

7| [Ba Recors |68 Process | | B/ | 2] | IR

Frogram Screen |5t |Field name Fiald value
EDC_DECODE ]
RFOZD-FUNNE. T-LE3ADZ
RFOZD-EUERS 1000

RFOZD-DOZ10

SAPMFOZD 0210

EBOC_CURSOR KMNBT-ZUAWA
EDC_OECODE FAQDS
FHNE1-ZUAWA (i]ue}
[FNE]1-FDGRV Efi
[FNB1-VZSEE 0z
FNE1-ZINRT 1
SAPMFOZD 4000
EDC_OECODE EUPDA
BOC_SUESCR SAPMFOZD TO02SUBSCREEMN_H
EDC_SUEBACE ZGLACC_EXT 02005UBSCREEM_.
EDC_CURSOR KMNB1-ZZCUST_CLASS

FNE1-ZZICUST_CLASS K]

(<101 I I (| (5]

[ S (1 +]

tne | a -| 20 |Ffr.| zo|

| b | E75 (4) 800 PEl| ecTservers | INS | |

Figure 5.5 The Recording of Transaction XD02

Asyou analyze the recording, you see that on the starting data screen SAPMFD02/200,
we executed function code A005, which has taken us into the enhanced screen lay-
out. There we entered a value of 3 into the field KNB1-ZZCUST_CLASS and clicked
SAVE (function code UPDA).

Now we are ready to implement the code of method FILL_FT_TABLE_USING_DATA_
ROWS.
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Ty. | Parameter Type spec Cescription
po | IT_DATA_ROWS TYPE BOIFIBIA_T Transfer Structure Custorervendor Batch Input (Table Type)
po | WALUE(_BRMOD ) TYFE BKMOO Customer Master Record Transaction Data for Bateh Input
po | WALUE(I_NODATA) TYPE NODATA_BI Sign for NODATA
pp |ET_FT TvPE BDCDATA_TAB Tahle Type for BDCDATA
R I ]

Figure 5.6 The Interface of Method FILL_FT_TABLE_USING_DATA_ROWS

Figure 5.6 shows the interface of method FILL_FT_TABLE_USING_DATA_ROWS. You can
see that we have current BKN00 data (with customer number and other organizational
assignment data) as input parameter I_BKN00; we also have all file lines related to
the current transaction in input parameter IT_DATA_ROWS. Finally, we have one
export table typed parameter, ET_FT, which we will amend according to our logic.
ET_FT has line type of BDCDATA structure, which is a well-known structure used in
batch-input statement CALL TRANSACTION USING.

The algorithm should do the following:
> Find the first entry of structure BKNB1 in the file data.
> Insert function code A005 into the previous screen: BDC data.

» Start a new screen in BDC data.

> Set new field values according to BKNB1 contents that were found.

Always keep in mind that there can be other active BAdI implementations, so you
shouldn't include any function codes in the batch input because this can end the
transaction. In our example, we don't insert the function code UPDA, which is seen
in our sample recording (refer back to Figure 5.5).

Listing 5.1 shows the source code of our method implementation.

METHOD if_ex_customer_add_data_bi~fill_ft_table_using_data_rows.
FIELD-SYMBOLS: <wa> TYPE bknbl.

DATA: ft TYPE bdcdata.
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Master Data Migration and Distribution 541

LOOP AT it_data_rows ASSIGNING <wa> CASTING.

CHECK <wa>-stype = ‘2’ AND <wa>-thnam = ‘BKNB1’.

* Insert function code to select Enhanced screen layout
* This will be added to the last processed screen in BDC data

CLEAR ft.
ft-fnam = ‘BDC_OKCODE’
ft-fval = “=A005".

APPEND ft TO et_ft.

* Start new screen
CLEAR ft.
ft-program = *SAPMF02D’.
ft-dynpro = *4000".
ft-dynbegin = X’
APPEND ft TO et_ft.

* Enter field value on the custom defined screen
CLEAR ft.
ft-fnam “KNB1-7ZCUST_CLASS”.
ft-fval = <wa>-zzcust_class.
APPEND ft TO et_ft.

EXIT.
ENDLOOP.
ENDMETHOD.

Listing 51 Method FILL_FT_TABLE_USING_DATA_ROWS Source

After activating the BAdI implementation, we can now test the new fields with a small
SAP LSMW project. The goal of this project is to update field KNB1-2ZCUST_CLASS
using the batch-input loading program RFBIDEOQO. After defining the appropriate
target object and source structure, you can see in the SAP LSMW field-mapping
step that our field is included in the target structure (see Figure 5.7). Note that all
uninitialized fields are turned off to make the view more compact.
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=g
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—E BKNE1 Customer Master Record Company Code Data (Batch Input) @
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dource: ENHANCEDDATA-ZZCUST CLASS (Custom Account Class)
Fule : Transfer [(MOVE) L
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* Caution: Source field is longer than target field z
K [ [«
[ I [E75 () 800 B[ ecteeners (s | [ 2

Figure 5.7 LSMW Field Mapping View for the Customer Master

The CREATE BATCH INPUT SESSION step in the SAP LSMW project is actually a call
of the program RFBIDEOO. We tested it with only one record in the input file to
update customer T-L63A02 in company code 1000. Now change the CuSTAccCLASS
field to 3. After generating the batch-input session, we can inspect it in Transaction
SM35. Figure 5.8 shows the screen list of the session with an opened field value

list. Our added field is in its place.
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A EEE
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Figure 5.8 Batch-Input Session Analysis in Transaction SM35

51.2 HR Master Data

In some HR payroll instances, an employee has his own HR master record, which
generates a corresponding vendor master record or customer master record for
that employee in the financials department of the company. From the formal
accounting point of view, when the company pays the salary to that employee, he
should be treated as a company vendor because that employee sells his services
to the company (in the form of an everyday job). If HR Payroll and FI are installed
as separate systems, you must set up a task of regularly distributing HR employee
data into an FI system to form vendor or customer master records.
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In brief, the standard process of HR data distribution, which is based on ALE
(application link enabling) technology, looks as follows:

1. Several structures of employee data (called infotypes) from the external HR system
are copied into the FI system, in the form of an IDoc (depending on the HR
system version, it can be an IDoc type from HRMD_A01 to HRMD_A07).

2. The receiving FI system regularly runs report RPRAPAOO, which prepares the
locally available HR data for loading with the standard report RFBIKROO.

3. Inside report RPRAPAOO, a BAdI definition BADI_EXITS_RPRAPAQO is used to
intercept the standard logic when preparing a data file for the following run of the
report RFBIKROO. The list of available BAdI methods is shown in Table 5.1.

SET_VALUES_FOR_BLFBW Exit for BLFBW: Vendor master, withholding tax types
SET_VALUES_FOR_BLF00 Exit for BLF00: Vendor master

SET_VALUES_FOR_BLFAL Exit for BLFAL: Vendor master, general data part 1
SET_VALUES_FOR_BLFBK Exit for BLFBK: Vendor master, bank details
SET_VALUES_FOR_BLFB1 Exit for BLFB1: Vendor master, company code data
SET_VALUES_FOR_BLFB5 Exit for BLFB5: Vendor master, dunning data
SET_VALUES_FOR_BGR00 Exit for BGR00: Batch-input structure for session data

Table 54 Interface Methods of the BAdI Definition BADI_EXITS_RPRAPAOO

Each method has an employee number (PERNR) as an input parameter and a respec-
tive batch-input structure as a changing parameter. The structure name is clearly
shown by the method name.

Because report RPRAPAOO works on the local HR data, you can use standard HR
functionality to access employee infotypes. All the BAdI methods are called in the
end of each employee number processing.

513 ALE/IDoc

The batch-input data loading techniques discussed earlier are based on a file as a
data carrier. This is a somewhat outdated technology, and while it is robust and
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stable, it's less flexible and less secure compared to ALE/IDoc technology. IDoc
processing logic is completely separated from the data transferring media, which
is much more suitable to the modern distributed environments with its variety of
data transferring protocols. In essence, ALE/IDoc technology is more welcome in
modern integration projects involving B2B (business to business), A2A (application
to application), and mobile scenarios.

When it comes to making a decision on what type of technology to employ in an
integrating project of almost any nature, we recommend choosing IDocs over files.
ALE/IDoc technology is highly configurable, and depending on corporate-specific
requirements, you can completely intercept the IDoc processing of any individual

type.

The structure of an IDoc is identified by its basic type, which is an ordered set of seg-
ments. For simplicity, the notion of an IDoc segment can be treated as an equivalent of
the dictionary structure. Basic type defines not only a simple order of its segments but
also their hierarchy relations, cardinality, and necessity. In other words, the basic type
defines the syntax of IDoc, which is controlled by the runtime ALE system layer. The
IDoc basic type structure can be displayed using Transaction WE3O.

For the sake of simplicity, we can also say that a pair of objects—logical message code
and basic type —together define IDoc processing logic via assignment to a specific ABAP
function module, workflow template, or task. These assignments are stored in configura-
tion table EDIFCT, which is accessible via Transaction WE57.

SAP delivers the following logical messages for master data distribution via ALE:
CREMAS and CRECOR for vendors, and DEBMAS and DEBCOR for customers. Figure 5.9
shows the IDoc processing module configuration for customer-related messages
and IDoc types.

If youlook into the default IDoc configuration table EDIFCT (via Transaction WE57),
you can see that standard processing logic for inbound IDoc transferring customer
and vendor master data is hidden in two function modules: IDOC_INPUT_DEBI-
TOR and IDOC_INPUT_CREDITOR. These function modules are assumed to process
IDoc basic types from CREMAS01 to CREMAS05, and from DEBMASO1 to DEBMASOS,
CRECORO01, and DEBCORO1L. In this notation, the numeric suffix is the version of the
IDoc structure.
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Figure 5.9 The Contents of Table EDIFCT

Both function modules work the same way. They first analyze the system type; if
it's an ERP system, the function modules call an ERP-specific function: ERP_IDOC_
INPUT_CREDITOR for a vendor and ERP_IDOC_INPUT_DEBITOR for a customer. There
is also a function call for a standalone HR system, but it's quite simple. Because HR
doesn't need any advanced customer or vendor master data manipulations, you'll
find just a direct update of the corresponding tables.

The main secret of standard IDoc processing logic is that it updates or creates
individual master record by means of batch input. If you dive into the source code
of ERP_IDOC_INPUT_DEBITOR or ERP_IDOC_INPUT_CREDITOR, you'll find the corre-
sponding CALL TRANSACTION statement. In a way, they repeat the logic of reports
RFBIDEOO and RFBIKROO; but instead of a flat file, these functions process IDocs,
and each segment can be treated as an equivalent of a file line. You can also see that
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after processing IDoc segments, the function gathers information into an internal

table of structure BDIFIBIWA.

In IDoc processing, SAP provides calling moments for the same BAdI definition as in

RFBIDE0O and RFBIKROO.

Next, we'll discuss working with IDoc data structures—segments—and how you

can affect the processing logic in standard SAP functions.

Working with Segments

The structure of the IDoc type you are planning to process can be displayed in
Transaction WE30. Figure 5.10 shows the structure of IDoc basic type CREMAS05.

As you can see, there are three levels of segment hierarchy.
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Figure 510 The Structure of IDoc Type CREMAS05
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By double-clicking on an arbitrary segment name, you can drill down to the seg-
ment editor where you can see the list of segment fields. You can see an example
of segment structure in the segment editor in Figure 5.11.
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Figure 511 The Structure of the Segment E1LFATM

When you develop a brand new segment, the final point of the development is
the act of releasing the segment. At the moment of release, the system generates
a dictionary structure with the same name and all of the segment's fields, which
means that the segment can be used officially. All standard segments also have a
dictionary structure of the same name. So if an IDoc type defined in your system
contains a segment E1LFAIM, you can declare a variable in your program of the
type ELLFAIM.

IDoc has a single primary key field—its 16-digit number. We recommend accessing
an individual IDoc by the standard function module IDOC_READ_COMPLETELY. Besides
the control data (which are outside of our current discussion), the function returns
all of the IDoc segments in the form of an internal table of structure, EDIDD.
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Each record contains exactly one segment; the segment's name is stored in field
SEGNAM, while segment data are located in an unstructured field, SDATA. An example
of a code snippet for IDoc segment processing is provided in Listing 5.2.

DATA: 1t_edidd TYPE TABLE OF edidd,
IDoc_number TYPE edidc-docnum,
ls_ellfalm_segment TYPE ellfalm,
1s_ellfblm_segment TYPE ellfblm.

FIELD-SYMBOLS: <edidd> TYPE edidd.

CALL FUNCTION ‘IDOC_READ_COMPLETELY”’

EXPORTING

document_number = IDoc_number
TABLES

int_edidd = 1t_edidd
EXCEPTIONS

OTHERS = 3.

IF sy-subrc <> 0.
MESSAGE ID sy-msgid TYPE sy-msgty NUMBER sy-msgno
WITH sy-msgvl sy-msgv? sy-msgv3 sy-msgv4.
ENDIF.

LOOP AT 1t_edidd ASSIGNING <edidd>.
CASE <edidd>-segnam.
WHEN “E1LFAIM’.
1s_ellfalm_segment = <edidd>-sdata.
B Processing. ..

WHEN “E1LFBIM’.
1s_ellfblm_segment = <edidd>-sdata.
* Processing. ..

WHEN OTHERS.
* Processing non-standard segments. ..

ENDCASE.
ENDLOOP.

Listing 5.2 IDoc Segment Processing Code
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Note that you can freely use direct assignment between unstructured field EDIDD-
SDATA and the structured field of the segment despite the Unicode. This is possible
because IDoc segment structure contains only character fields; EDIDD-SDATA is
character typed as well.

Available BAdIs in Customer Data IDoc Processing

SAP standard batch-input program RFBIDEOQO is called from within the function
module ERP_IDOC_INPUT_DEBITOR. First, it calls method CHECK_ADD_ON_ACTIVE of
BAdI definition CUSTOMER_ADD_DATA. All other methods of the BAdI definition
CUSTOMER_ADD_DATA_BI are only called if there is at least one active add-on.

During the IDoc processing, function ERP_IDOC_INPUT_DEBITOR invokes the follow-
ing methods of the BAdI definition CUSTOMER_ADD_DATA_BI:

> PASS_NON_STANDARD_SEGMENT
This method is called when the system encounters an unknown segment during
the main loop of IDoc segments processing. This call allows you to convert a
nonstandard segment into an internal structure for later processing. The segment
name and segment data are passed to the method as import parameters.

> MODIFY_BI_STRUCT_FROM_STD_SEG
This method is called after fulfilling all standard processing for each standard
segment. The method uses the segment name and segment data as import param-
eters, and one changing parameter with an already known structure, BDIFIBIWA.
By the moment of the call, structure BDIFIBIWA is filled with standard values,
and you can change it according to your requirements.

» FILL_BI_TABLE_WITH_OWN_SEGMENT
This method is called when all standard batch-input data are saved into the inter-
nal table of structure BDIFIBIWA. This method has a changing table parameter with
this structure and an import parameter of dictionary structure CUSTOMER_ORG_DATA.
When this method is called, you should process the data that were prepared
earlier and saved by the PASS_NON_STANDARD_SEGMENT method.

> CHECK_DATA_ROW
When all segments are processed and all of the data gathered into the batch-
input table of structure BDIFIBIWA, the system checks the data before starting the
batch input. This method is called for each line of batch-input data if it contains
the name of a nonstandard structure. The method has import parameter of
structure BDIFIBIWA and a flag parameter for passing the data check status (“X"
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for success and a blank space for failure). If some of the data have not passed
the check, the method can return an error message through the corresponding
export parameters.

> FILL_FT_TABLE_USING_DATA_ROWS
This method is called just before calling the transaction in batch-input mode.
It allows the user to make final alterations into the batch-input screen and field
value sequence. Note that this method is only called if the transaction to be
called is either XDO1 or XD02. This method has a changing table parameter
typed with structure BDCDATA.

Available BAdIs in Vendor Data IDoc Processing

Function module ERP_IDOC_INPUT_CREDITOR works with BAdIs in a slightly differ-
ent way: It calls BAdI VENDOR_ADD_DATA and method CHECK_ADD_ON_ACTIVE after
gathering information into an intermediary internal table of structure BDIFIBIWA,
instead of at the beginning of IDoc processing.

The following methods of BAdI definition VENDOR_ADD_DATA_BI are called during
the processing of the vendor master IDoc:

> PASS_NON_STANDARD_SEGMENT

> MODIFY_BI_STRUCT_FROM_STD_SEG

> FILL_BI_TABLE_WITH_OWN_SEGMENT

> CHECK_DATA_ROW

> FILL_FT_TABLE_USING_DATA_ROWS

Enhancement Spots

Function group VV02 has two entries of enhancement spot ES_SAPLVV02CORE. One
source code plug-in entry of this spot is located in the top include of the function
group and allows you to use your own includes here. Another spot entry can be
found at the beginning of the function code ERP_IDOC_INPUT_DEBITOR. On the vendor
side, there is an enhancement spot—ES_SAPLKD02 —with the same functionality.

Function Module Exits

There are also components of old-styled function module exit VSv00001, which
you can examine in Transaction SMOD. Customer function EXIT_SAPLKD02_001 is
called after the vendor data IDoc is completely processed and allows you to save
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additional data in the database. Customer function EXIT_SAPLYV02_001 has the same
purpose; it is called after processing the customer data IDoc.

5.2 Postings Inbound Scenarios

Now let's examine how accounting document data can come from the external
world and what we can do with it.

5.21  Batch-Input or Direct Input

As with master data, an initial stage of an SAP ERP implementation project virtually
always requires loading initial accounting transaction data. A traditional tool for this
activity is the standard SAP report RFBIBLOO. Input data for the report are provided
in the form of a flat file located on the application server. The report is suitable for
use with SAP LSMW, which effectively hides all the file preparation issues.

Internally, the report uses function modules of group FIPI, which are listed in

Table 5.2.
POSTING_INTERFACE_CLEARING Post with clearing (FB05) using internal posting
interface.
POSTING_INTERFACE_DOCUMENT Post document using the internal posting interface.
POSTING_INTERFACE_END The ending function of the group. Should be called

in the end of the process.
POSTING_INTERFACE_RESET_CLEAR Reset clearing via posting interface.
POSTING_INTERFACE_REVERSE_DOC Cancel document via posting interface.
POSTING_INTERFACE_START Initial information for internal accounting interface.

Table 5.2 FIPI Function Group Modules

These functions actually make postings through batch input by generating sessions
or calling a transaction directly. The function modules also have detailed system
documentation. Unfortunately, report RFBIBLOO does not contain a user-exit call,
although you can rely on the user exits available inside the transactions that are
called during processing.
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5.2.2 Payroll Results

Note that the payroll result posting interface is fully equipped with specific user exits.
However, it's worth seeing the overall process outline so that you can understand
where and when the process should (or should not) be intercepted, depending on
your business requirements.

If the company has SAP HR Payroll implemented, then in every payroll period
(weekly or monthly), there must be an interface running that posts payroll results
to the Financials department. SAP recommends implementing HR as a separate
system to improve data security because payroll data are among the most sensitive
corporate data.

If you are implementing a payroll results posting from SAP HR into SAP FI, then
in the end, the posting will be performed with the same tools.

The whole process of HR payroll posting looks like this:

1. The responsible person in HR creates a payroll posting run with report RPCIPEQO.
The report creates a preliminary posting document stored in Tables PPDHD,
PPDIT, and others.

2. Someone then checks and approves all of the resulting posting documents (they
are not accounting documents) by editing particular payroll runs with Transac-
tion PCPO.

3. Finally, someone runs report RPCIPPOO to transfer values into accounting.

The last step can be performed either via ALE/IDoc interfaces (if HR Payroll works
as a separate system), or locally—by direct call of an accounting BAPI. By default,
all of HR Payroll IDocs are processed in the receiving system by the same BAPI.
Let's trace the chain.

The HR system generates three types of postings:
> Employee expenses
For example, travel and accommodation when on a business trip.

> Employee vendor items
For example, an employee can be treated as a corporate vendor or service pro-
vider to justify salary payment; thus the document is generated as an Account
Payables item.
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> Employee customer items
If an employee has debts that are not settled, he might appear in the role of a cor-
porate customer; the document is generated as an Account Receivables item.

If an HR Payroll component is implemented as a separate system, then it generates
three types of IDocs: ACC_EMPLOYEE_PAY02, ACC_EMPLOYEE_REC02, and ACC_EMPLOYEE_
EXP02. In the receiving system, these IDocs are linked by default via the ALE/
BAPI-generated interface to the following function modules:

> 1DOC_INPUT_ACC_EMPLOYEE_EXP for employee expenses

> IDOC_INPUT_ACC_EMPLOYEE_PAY for employee payments

> IDOC_INPUT_ACC_EMPLOYEE_REC for employee debts
The accounting documents are generated with BAPI calls:

> BAPI_ACC_EMPLOYEE_EXP_POST for employee expenses

> BAPI_ACC_EMPLOYEE_PAY_POST for employee payments

> BAPI_ACC_EMPLOYEE_REC_POST for employee debts

Finally, each of the BAPIs call function modules AC_DOCUMENT_CREATE and AC_DOCU-
MENT_POST as a low-level accounting interface utility. Thus, you can employ any

user exit (BAdI or BTE) appearing in the AC_DOCUMENT_CREATE function module (see
Chapter 3, Posting to Accounting), including substitutions and validations.

At the call point of a user exit during the document generation, you can distinguish
SAP standard HR Payroll postings from any others by the contents of the field
BKPF-GLVOR:

> HRP1 for employee expenses
> HRP3 for employee payments (Account Payables)
> HRP2 for employee debts (Accounts Receivable)

5.2.3 Postings via IDoc

The SAP system delivers dozens of IDoc types to be used for posting different fla-
vors of accounting documents: direct posting to a general ledger account, posting
of incoming vendor invoice, and so on. You can find corresponding IDoc types in
Transaction WE30 (Executing the Search Help with Mask ACC*). However, if you
look into the processing function modules, you'll notice that they aren't equipped
with user exits. If you thoroughly trace the chain of calls, you'll see that this chain
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is ended at the same function modules mentioned in the previous section: AC_DOCU -
MENT_CREATE and AC_DOCUMENT_POST. Thus, you should rely on already-known user
exits discussed in Chapter 3.

5.2.4 Electronic Bank Statement

The process of loading a bank statement file consists of two phases: importing the
bank statement file in Transaction FF_5, and posting the bank statement through
Transaction FEBP.

Importing the Bank Statement File

Loading program RFEBKAOO, which is linked to Transaction FF_5, parses incoming
bank files according to a selected format, such as Multicash or SWIFT MT940, which
are widely used in bank communication. Each individual file format is parsed in
an external program, although the code in report RFEBKAOO that is responsible for
choosing the format parsing program is quite static; there is just a CASE statement
with no configuration.

However, if you look into the source code of format SWIFT MT940 parsing routine
program RFEKA400, you can discover an old-fashioned user exit, EXIT_RFEKA400_001,
belonging to function module exit FEB00004. The enhancement can be used for
preprocessing raw file data, which is passed to the user exit in the form of a table
parameter with a length of 512 unstructured lines. Listing 5.3 shows the interface
of the user exit.

FUNCTION EXIT_RFEKA400_001.

*7*”lokale Schnittstelle:

x” TABLES

x” T_RAW_DATA STRUCTURE RAW_DATA
x” EXCEPTIONS

x” ERROR_OCCURED

B

INCLUDE ZXFO1U06 .

ENDFUNCTION.
Listing 5.3 EXIT_RFEKA400_001 Interface

189

5.2



5

Inbound Scenarios in Financial Accounting

You can also see that EXIT_RFEKA400_001 has one exception, which signals the host
program to stop processing the file any further.

Report RFEBKAOO gathers parsed data into the following bank statement database
tables:

» FEBKO (electronic bank statement header records)
» FEBEP (electronic bank statement line items)

» FEBRE (reference record for electronic bank statement line item)

Posting the Bank Statement

When you link report RFEBKA30 to Transaction FEBP, it interprets data in bank
statement tables and makes an accounting posting. A bank statement is a list of
operations of what the bank did with your money on your behalf, such as company
payments to vendors, bank charges for its services, interest payments, payments from
your customers, and so on. All of these operations should be correctly reflected in
the company's financial accounting to make sure that the money flow is consistent
and correct.

At the same time, the bank’s statement can use different identification for the same
objects presented in your system; also, it's possible that some valuable data in the
context of your SAP ERP system may be omitted in the statement for one reason
or another. During the interpretation phase, report RFEBKA3O0 is trying to fill these
gaps automatically, for example, to determine the business partner number for the
bank transaction or even more important to determine the clearing reference (e.g.,
payment against invoice) document numbers.

Report RFEBKA3O0 actually is only a wrapper for another report, RFEBBU10, which
performs the interpretation. The algorithm runs through header-item relation of
two tables, FEBKO and FEBEP. For each FEBEP internal loop run, the report calls
different user exits that can help discover missing statement data.

Now let's walk through the available BTEs you can employ during the processing
of a bank statement.

BTE 00002810 and Process 00002820

First, the system calls BTE 00002810 (you can see its interface in Listing 5.4). The
event has a pair of parameters for the header record and for the line item of the
bank statement that is being processed. The parameter with suffix EXT contains

190



Postings Inbound Scenarios | 5.2

fields with external data (records that were sent by the bank), whereas suffix INT
signifies that this data is internal. As a result of its run, each function module that
is subscribed to the 00002810 event must return a registration flag in one of two
export parameters: E_REGISTER_AREA_1 or E_REGISTER_AREA_2.

*”*” okale Schnittstelle:
*”  IMPORTING

*” VALUE(I_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
*” VALUE(I_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
*” VALUE(I_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
*” VALUE(CI_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
*” VALUECI_TESTRUN) TYPE XFLAG OPTIONAL

*” EXPORTING

*” VALUE(E_REGISTER_AREA_1) LIKE BOOLE-BOOLE

*” VALUE(E_REGISTER_AREA_2) LIKE BOOLE-BOOLE

x” VALUE(E_SUPPR_STD_AREA_1) LIKE BOOLE-BOOLE

*” VALUE(E_SUPPR_STD_AREA_2) LIKE BOOLE-BOOLE

*”  TABLES

x” T_FEBRE STRUCTURE FEBRE_BF

x” T_FEBCL STRUCTURE FEBCL_BF

K

Listing 5.4 The Interface of BTE 00002810

Note that subscribers to event 00002810 are called from within function FEB_OPEN_
FI_CALL_1. This function allows only one application ID to be registered for each
of the two areas. The application ID in the BTE framework is used to distinguish
SAP internal and partner application areas. Customer-defined P&S modules and
processes can have blank application IDs. Therefore, you should make sure that
for this particular line item of the bank statement, your function is the only one
registered, or an error will be reported. Another pair of event flag parameters,
E_SUPPR_STD_AREA_1 and E_SUPPR_STD_AREA_1, will prevent execution of interpreta-
tion algorithm if they are assigned X.

Process 00002820 is called just after the event and only for registered application
IDs. You can see the process interface in Listing 5.5. Note that there are export
parameters to allow changing values in bank statement headers and items. Note
that your changed data will be taken into account only if you assign X to the export
parameter E_UPDATE_FEB.
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K s
*7*”okale Schnittstelle:
*”  IMPORTING
x” VALUE(I_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
x” VALUE(CI_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
x VALUECI_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
x” VALUECI_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
x” VALUECI_TESTRUN) TYPE XFLAG OPTIONAL
*”  EXPORTING
x VALUE(E_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
x” VALUE(E_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
x VALUE(CE_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
x VALUE(CE_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
x VALUECE_UPDATE_FEB) LIKE BOOLE-BOOLE
*”  TABLES
x T_FEBRE STRUCTURE FEBRE_BF
x T_FEBCL STRUCTURE FEBCL_BF
K o
Listing 5.5 The Interface of BTE Process 00002820
Besides header and item data, you can also fill in clearing data in table parameter
T_FEBCL.

Ty. | Parameter Type spec. Description

po | I_TESTRUN TYPE XFELD Checkhox

»o | T_FEBRE TYPE STAMDARD TABLE

o» |E_SUBRC TYPE SY-S5UBRC Return Walue, Return Yalue After ABAP Statements

or |E_MSGID TYPE SY-MSGID Messages, Message Class

op |E_MSGTY TYPE SY-MSGTY Messages, Message Type

op |E_MSGHO TYPE SY-MSGMOD Messages, Message Mumber

op | E_MSGW TYPE SY-M3GW1 Meszages, Message Variable

op |E_MSGVZ TYPE SYv-M3GV2 Meszages, Message Variable

op |E_MEGWI TYPE SYv-M3GV3 Messages, Message Variable

op |E_MSGV4 TYPE SY-M5GV4 Messages, Message Variable

pop | C_FEBKD TYPE FEBKD Electronic Bank Statement Header Records

pop | C_FEBEP TYPE FEBEP Electronic Bank Statement Line ltems

pop | T_FEBCL TYPE STAMDARD TABLE

Figure 512 The Signature of Method CHANGE_DATA of BAdI FIEB_CHANGE_BS_DATA
BAdI Definitions

Progressing to business transaction events and processes, the system calls BAdI
definition FIEB_CHANGE_BS_DATA and method CHANGE_DATA. Figure 5.12 shows the
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interface (or signature) of the method. Notice that the method has three changing
parameters: C_FEBKO and C_FEBEP for the header and item of the bank statement,
and table parameter T_FEBCL for clearing data from the statement.

The method can also return error code and error message attributes to be reported
in the log and prevent the statement from being processed further.

Another BAdI definition, FIEB_CHANGE_STATEMNT, is called after all of the inter-
pretation is executed, and the system has done everything it can. You can see the
interface of the BAdI method CHANGE_DATA in Figure 5.13.

Ty. | Parameter Type spec. Description

pa | ID_TESTRUN TYPE HFELD Checkbox

»o | IT_FEBRE TYPE STAMDARD TABLE OFTIOMAL Fayment Motes

po | IT_FEBEF TYPE STAMDARD TABLE Line lterms

po | IT_FEBCL TYPE STAMDARD TABLE OFTIOMAL Clearing Information

po | WALUE(FLT WAL TYPE LAND Farameter FLT_VAL of Method CHANGE_DATA
op |ED_SUBRC TYPE SY-SUBRC Return Value, Return Value After ABAP Staternents
op |ED_MSGID TYPE SY-MSGID Messages, Message Class

op |ED_MSGTY TYPE SY-MEGTY Messages, Message Type

or | ED_MSGMNO TYPE SY-MSGMNO Messages, Message Number

or |ED_M3GY1 TYPE SY-mMSGEW1 Messages, Message Yariahle

op |ED_MEGY2 TYPE SY-M5GY2 hMessages, Message Variahle

op |ED_MSGWV3 TYPE SY-MSGY3 Messages, Message Variahle

op |ED_MEGWY TYPE SYv-M3GY4 Messages, Message Variahle

= ENEEEEEER TYPE STAMDARD TABLE Changed Line lterms

or |ET_FEBCL TYPE STAMDARD TABLE Changed Clearing Information

o» |ET_DELETE_FEBCL TYPE STANDARD TABLE Deleted Clearing Infarmation

pop | CS_FEBKO TYPE FEBKD Electronic Bank Staternent Header Records

Figure 513 The Signature of Method CHANGE_DATA of the BAdI FIEB_CHANGE_STATEMNT

Customer-Defined Interpretation Algorithm

After calling BTEs and the first BAdI, the system runs the interpretation proper. Each
bank statement item can have its own interpretation algorithm, which is defined
by the field FEBEP- INTAG value. Therefore, the individual item algorithm can be set
during a user exit run: either BTE or BAdIL.

A full list of interpretation algorithm numbers and descriptions can be found in
the INTAG_EB domain fixed values. INTAG_EB is numeric 3. It is assumed that all
SAP system algorithms belong to the range of INTAG values from 000 to 899, and
everything above 900 is a customer-defined interpretation.
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To implement a customer-defined interpretation, you have to create a function
module with a predefined name structure—z_FIEB_NNN_ALGORITHM—where NNN is
the algorithm number.

This function module must have the interface shown in Listing 5.6.

FUNCTION Z_FIEB_901_ALGORITHM.

*”*”|ocal Interface:
*”  IMPORTING

x” REFERENCE(I_NOTE_TO_PAYEE) TYPE STRING

x” VALUE(CI_COUNTRY) TYPE T001-LANDI

*”  TABLES

x” T_AVIP_IN STRUCTURE AVIP

*” T_AVIP_OUT STRUCTURE AVIP

*” T_FILTERL

*” T_FILTERZ

K L L L L f e f e oo oo
ENDFUNCTION.

Listing 5.6 Sample Interpretation Algorithm Function

Based on the payment note passed to the function in parameter I_NOTE_TO_PAYEE
and document references in T_AVIP_IN, the algorithm is expected to produce
reasonable results in table structure T_AVIP_0UT, which has the structure of the
payment advice line item. Table structure T_AVIP_OUT is then used to update the
clearing reference data for the statement item.

Function Module Exit

After the interpretation algorithm and just before the second BAdI call, the system
invokes a component (function module) EXIT_RFEBBU10_001 of the old-fashioned
function module exit FEB00001. Its interface is shown in Listing 5.7.

FUNCTION EXIT_RFEBBUI0_001.
K e e e e e e e e e e e e e e — -
*”*”|okale Schnittstelle:
IMPORTING
VALUE(I_FEBEP) LIKE FEBEP STRUCTURE FEBEP
VALUE(I_FEBKO) LIKE FEBKO STRUCTURE FEBKO
VALUECI_TESTRUN) TYPE XFLAG
EXPORTING
VALUE(E_FEBEP) LIKE FEBEP STRUCTURE FEBEP

bR S S S S
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*” VALUECE_FEBKO) LIKE FEBKO STRUCTURE FEBKO
*” VALUECE_MSGTEXT) LIKE FEBMKA-MESSG

*” VALUECE_MSGTYP) LIKE FEBMKA-MSTYP

*” VALUE(E_UPDATE) LIKE FEBMKA-MSTYP

*”  TABLES

*” T_FEBCL STRUCTURE FEBCL

*” T_FEBRE STRUCTURE FEBRE

K

INCLUDE ZXFO1UOI.

ENDFUNCTION.
Listing 5.7 The Interface of EXIT_RFEBBU10_001

This is another point where you can intercept the standard flow of the bank state-
ment processing.

5.3 Summary

In this chapter, we discussed several inbound interfaces of Financial Accounting,
which cover some of the general corporate activities. Thanks to the SAP design in
all of these scenarios, you can find ways to seamlessly tailor the standard process
for specific corporate needs.

In the next chapter, you'll see what user-exit techniques are available for develop-
ment in outbound scenarios when the system sends accounting data to external
systems.
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