
Reading Sample
In this reading sample, we look at Chapter 5, Introduction to OData
Service Creation, which provides an overview of the service develop-
ment and service generation process. The benefits of each method is
presented along with the individual sub-steps in the processes. This
chapter forms the foundation for Chapter 6 and 7.

Carsten Bönnen, Volker Drees, André Fischer, Ludwig Heinz, Karsten
Strothmann

SAP Gateway and OData
785 Pages, 2016, $79.95
ISBN 978-1-4932-1263-7

 www.sap-press.com/3904

First-hand knowledge.

“Introduction to OData Service

Creation”

Contents

Index

The Authors

http://www.sap-press.com/3904

179

Chapter 5

This chapter explains the end-to-end cycle and the specific tools
for creating SAP Gateway services, both for service development
and for service generation.

5 Introduction to OData Service
Creation

Out-of-the-box
OData services

As you’ll recall from Chapter 2, OData services are what implement the
OData protocol and expose an endpoint that allows access to data. The
number of OData services shipped with SAP Gateway is limited and will
likely remain rather low because, by nature, OData services are granular
and mostly tailored to individual use cases. More commonly, services
are shipped as part of products such as SAP Fiori, SAP S/4HANA, or SAP
Mobile solutions. A large amount of development time can go into
building the right OData service, so understanding this process is
essential.

The central interface that is used to define and implement services
within SAP Gateway is the Service Builder (Transaction SEGW). After
you’ve created a service in the Service Builder, it can be used directly in
any interface. The Service Builder is a one-stop shop with respect to SAP
Gateway service development and is supplemented by additional sup-
port tools. In certain cases, it even allows you to perform selected steps
in third-party tools and then import the results (e.g., usage of an OData
modeler for the model definition).

The main objective of this chapter is to give you an overview of the pro-
cess of service creation, which we then discuss in more detail in Chapter
6 and Chapter 7. To achieve this, in Section 5.1, we give you a brief over-
view of the two methods used to create OData services in SAP Gateway
(service development and service generation) and continue in Section
5.2 to explain the main steps in the process of service creation. In

Introduction to OData Service Creation5

180

Section 5.3, we look at the main tool involved in service creation: Ser-
vice Builder. We then complement this first look at the Service Builder
with a quick look at some of SAP Gateway’s other tools that support ser-
vice creation and maintenance. This section will give you an idea of the
tools that are available to assist with tasks during the service creation
process.

In Section 5.4, we then dig deeper into service creation and look in more
detail at the three main steps in service creation: data model definition,
service implementation, and service maintenance. Also, we look at addi-
tional topics related to service creation such as redefining services and
reusing existing SAP Gateway services in extension scenarios to create
custom OData services based on OData services that have been delivered
by SAP. Finally, we give you an introduction to the development para-
digm used for service development: the OData channel (Section 5.5).

5.1 Methods for Creating an OData Service

There are two ways to create OData services with SAP Gateway:

Development
versus generation

� Service development
The classic option is the code-based development of SAP Gateway ser-
vices. This ABAP-based option is extremely flexible and allows you to
develop highly efficient and specialized services, but it also requires
some significant technical know-how.

� Service generation
The second way is the generation of SAP Gateway services. There are
four main methods of service generation:

� Mapping to a data source: Allows you to generate a service by map-
ping the CRUD-Q methods of an entity set to a data source. This is
supported for the following data sources

– Remote function call (RFC)/Business Object Repository (BOR)
function modules

– Search help (only READ and QUERY method)

– Core Data Services (CDS) views (only READ and QUERY method)

Methods for Creating an OData Service 5.1

181

� Redefinition: Allows you to define a service based on an existing
data source or an existing SAP Gateway service.

� Referenced data sources: Allows you to define a service based on a
CDS view.

� Creating CDS views with Eclipse: Generate an OData service without
the Service Builder by creating CDS views using Eclipse and setting
the OData publish:true option.

Of these two approaches, service generation is the quicker approach and
requires a lot less effort. On the other hand, it’s more limited, and thus is
primarily recommended for developing very straightforward services.
Service generation doesn’t give you much optimization potential because,
without custom coding, you’re restricted to what the service generators
offer. In most real-world situations, you’ll want to opt for service develop-
ment because the advantages are well worth the effort. Still, if you have
search helps, CDS views, Generic Interaction Layer (GenIL) or Service Pro-
vider Interface objects, analytical queries such as SAP Business Ware-
house (BW) Easy Queries, or a suitable RFC function module or Business
Application Programming Interface (BAPI) and are aiming for a quick
result, this might be an option for you.

Service creation
process

However, with the advent of SAP S/4HANA, OData services based on
CDS views can be generated to support the draft infrastructure. As
shown in Figure 5.1, option 1 will become the preferred approach for
OData service development. Because this kind of service will also be
able to support smart templates for user interface (UI) development, a
lot of scenarios in SAP S/4HANA won’t require SAPUI5 coding but the
development of appropriate CDS views and Business Object Processing
Framework (BOPF) objects.

Even when using OData services that are generated from CDS views, the
execution of the Service Adaptation Definition Language (SADL) inter-
face can be fine-tuned by implementing its query application program-
ming interface (API) or by adding additional business logic in the data
provider extension class. (We’ll go into more detail about these specific
options in Chapter 7, where we discuss service generation in detail.)

Introduction to OData Service Creation5

182

In systems that are based on SAP NetWeaver 7.50, it’s still possible to
develop OData services using service development and the mapping of
data sources (see Figure 5.1, 2). This way, customers will be able to
leverage their existing resources such as ABAP classes and RFC function
modules when using SAP Business Suite EHP 8 or higher or when using
SAP S/4HANA on-premise.

Figure 5.1 SAP Gateway OData Service Provisioning for SAP Fiori:
The Transformation to SAP S/4HANA

SAP HANA

Browser
(Fiori Launchpad)

SAP Fiori App

SAPUI5

Frontend-Server

UI App
(BSP Repo)

LaunchpadSAP Gateway Hub
(OData Service)

SAP NetWeaver 7.50
(ABAP OData Provider)

SAP Gateway OData Provider
(BEP)

Query (SADL)

Draft
Engine
(BOPF)

Backend Business Logic
(Classes, BAPI, …)

CDS View Draft Table Appl. Table

Trusted RFC

HTTPS
HTML/OData

Read & write

Read Write

Read & write

Write

Service Creation Process Overview 5.2

183

Service creation
process

Whether you’re using service development or service generation, you
create an OData service by following the SAP Gateway service creation
process, as discussed next.

5.2 Service Creation Process Overview

In this section, we’ll introduce the general steps in OData service cre-
ation and explain how the two methods for creating an OData service
(service development and service generation) fit into this process. This
explanation of the service creation process is somewhat simplified in an
effort to explain it with distinct and sequential steps (a waterfall
approach). In reality, some of the steps can also be performed out of
order (an incremental approach). We’ll go into a bit more detail about
this at the end of this section, after presenting the simplified process.

This process consists of three main phases: data model definition, service
implementation, and service maintenance. Depending on whether you
go for service development or service generation, the individual phases
of the service creation process can have different flavors. These flavors
result in different paths that can be taken during the actual process.

Before you can start with this process, you have to complete the process
of service definition as a prerequisite. This is the process of identifying
what service to create and specifying its details. Ideally, you’ve done all
of this together with the client developers so that you know exactly
what data they require and how this works with the artifacts in the SAP
Business Suite that will be the basis for your SAP Gateway service. After
you have the service definition, you can start with the three develop-
ment phases of the service creation process.

Data model defini-
tion phase

In the first phase, data model definition, you define the model your ser-
vice is based on. That is, you define the required artifacts such as entity
types, entity sets, associations, and other components that your service
will use (refer to Chapter 2 for explanations of these components). After
data model definition, you must generate the repository objects and reg-
ister them in the SAP Business Suite system so that you can proceed with
the next main phase, service implementation.

Introduction to OData Service Creation5

184

Service
implementation

phase

In the service implementation phase, the operations that are supported
by the service are implemented. Here the different tracks for service
development and service generation come into play:

� For service development, operations that are supported by the service
are implemented using ABAP coding.

� For service generation, there are four paths depending on the type of
generation chosen:

� If you use data source mapping, service implementation takes place
by mapping the OData model to the methods of an RFC function
module, search help, or CDS view.

� If you use redefinition, there is no service implementation step.
You only have to perform the model definition step because the
implementation of the service is generated based on the customiz-
ing that has been performed in the model definition step.

� If you reference a data source, there is again no service implemen-
tation step. Instead, you include one or more existing entity sets
and associations of a CDS view into a data model.

� If you use Eclipse to create a CDS view by setting the OData.pub-
lish:true option, there is no service implementation step. Based
on the CDS view definition, the implementation of the service is
generated.

Service
maintenance phase

The third phase of the service creation process, service maintenance, pub-
lishes the service so that it becomes visible in the service catalog of the
SAP Gateway system. In effect, this means that the created OData service
can then be consumed.

The three phases—data model definition, service implementation, and
service maintenance—are depicted in Figure 5.2. Steps that are only
performed in service development are marked with one color, and
steps that are only executed in service generation are marked with a dif-
ferent color. Steps that have to be performed in both the development
and generation of OData services in SAP Gateway are marked with both
colors.

Service Creation Process Overview 5.2

185

Figure 5.2 Service Creation Process

Although we clearly delineate the two methods of service creation (ser-
vice generation and service development), it’s actually possible to mix
these in a way that suits you best. For example, you can create an OData
service where one entity set is implemented using the RFC/BOR Gener-
ator (service generation), while a second entity set is implemented using
code-based implementation (service development). It’s also possible to
generate a read-only OData service based on an SAP BW query and
extend the same via code-based implementation so that it also supports
updating business data.

Incremental service
creation process

As previously mentioned, we’ve presented the service creation process
in a very structured and clearly sequential way. This waterfall approach
allows you to easily understand what the different phases are for. In
real-world projects, after you’ve understood how it works, you can
adjust the sequence to what fits you best (within certain boundaries).
The one exception to this rule is the service maintenance phase—this is

Data Model
Definition

Service
Maintenance

OData Service
Definition in

SEGW

Import
Data Model

(EDMX)

Import
DDIC Structure/

Table

Import RFC/
BOR Interface/
Search Help/

CDS View
Redefine

Data Source
Service

(GenIL, SPI,
BW Easy

Query, MDX)
Code-Based Implementation

Code-Based Extensions
Map RFC/BOR Operation, Search

Help, CDS View

Service Registration
and Hub Activation

Reference
CDS views
as a data
source

Declarative
Model

Definition

Service
Implementation

= Service development

= Service generation

Introduction to OData Service Creation5

186

almost always a one-time activity. As soon as a service is registered and
activated (published), you don’t have to touch these settings anymore,
even if the implementation and/or model definition changes.

Exception

The service publication is a one-time activity as long as you don’t perform
major changes. Registering the service for additional SAP Business Suite sys-
tems, for example, is such an activity in which you have to go back to the ser-
vice maintenance phase. Again, though, changes in the implementation of an
already published service or in the data model can be used in the already pub-
lished service without any further activities.

For all other phases, you’ll typically always follow an incremental
approach: you build a service—or part of it—execute and test it, and
then go back and refine that same service until it fits all of your needs.
During the creation of an OData service, you may change the model
and/or the service implementation multiple times.

Furthermore, an approach often used in real-world projects is to per-
form the service implementation and the service maintenance in a
different order. Performing the service maintenance with a service
implementation stub before the actual service implementation allows
you to browse metadata (service document and service metadata doc-
ument), even if the service itself doesn’t yet have any functionality.
You’ve basically started with a service stub and can then fill this stub
in an incremental way.

Figure 5.3 depicts the incremental service creation process. It’s based on
Figure 5.2 and adds incremental steps to the original process. These
incremental steps are displayed by the solid line arrows that depict
potential transitions among the three phases of data model definition,
service implementation, and service maintenance, which are symbol-
ized by the horizontal boxes. The dotted line stands for the one-time
activity of service publication as part of the service maintenance phase.

SAP Gateway Toolset 5.3

187

Figure 5.3 Incremental Service Creation

5.3 SAP Gateway Toolset

SAP Gateway provides a set of tools to address all needs from develop-
ment to testing to operations. For now, we’ll skip tools targeted at
operating SAP Gateway and focus specifically on tools related to ser-
vice creation. In this section, we’ll take a look at Service Builder—the
central, one-stop development tool for SAP Gateway services—and the
additional, well-integrated tools that support you during the SAP Gate-
way service creation process.

Redefine
Data Source

Service

Reference
CDS views
as a data
source

Data Model Definition

Service Implementation

Service Maintenance

One-time

Incremental

Map RFC/BOR Operation, Search
Help, CDS View

Service Registration
and Hub Activation

Import
Data Model

(EDMX)

Import
DDIC Structure/

Table

Import RFC/
BOR Interface/
Search Help/

CDS View

Declarative
Model

Definition

Code-Based Implementation
Code-Based Extensions

OData Service
Definition

Introduction to OData Service Creation5

188

5.3.1 Service Builder

Supports develop-
ment lifecycle of an

OData service

The Service Builder contains all relevant functions for modeling and
developing OData services in SAP Gateway. This includes both code-
based development of services and the generation of OData services.
Also, it provides direct access to additional development-related func-
tions such as service registration/activation and service validation. The
Service Builder supports the entire development lifecycle of an OData
service in SAP Gateway, and you can start it using Transaction SEGW
(Figure 5.4).

Figure 5.4 Service Builder

Overall, the Service Builder addresses the needs of both experienced
and less experienced developers, as well as nondevelopers. Whereas
experienced developers can develop their own source code with maxi-
mum flexibility in their service implementation, they still can use the
built-in OData modeler and other tools to simplify the development pro-
cess. Less experienced developers will appreciate the ability to use tools
that generate OData services without having to write a single line of
code.

Service Builder allows for centrally displaying and creating the defini-
tion of an OData service. This includes runtime artifacts (model provider
class [MPC], data provider class [DPC], model, and service), OData arti-
facts (entity set, entity type, and properties), as well as data sources and
models.

SAP Gateway Toolset 5.3

189

Project-based
development

The modeling environment follows a project-based approach, and all
relevant data are consolidated in these projects. Development using the
Service Builder is therefore organized in projects, and creating a project
is the starting point of every service development using the Service
Builder. Projects are used to bundle all artifacts that are needed for ser-
vice development in one central place, thereby providing a means to
organize the development process. The Service Builder allows the devel-
oper to open several projects at the same time as shown in Figure 5.5 (in
this example, ZPRODUCT and ZSALESORDER).

Figure 5.5 Project-Based Development

Note

From a technical system perspective, the Service Builder is used in a system
where the Business Enablement Provisioning (BEP) component is installed,
which is typically an SAP Business Suite system (refer to Chapter 4 for a dis-
cussion of the different deployment options for SAP Gateway). The BEP com-
ponent is delivered as the IW_BEP add-on until SAP NetWeaver release 7.31.

Introduction to OData Service Creation5

190

As of SAP NetWeaver release 7.40 SP 02, the BEP component is included in
SAP NetWeaver itself as part of the SAP_GWFND component. As a result, it’s
possible to perform development of OData services using the Service Builder
without additional effort in all systems after they run on top of SAP NetWea-
ver 7.40 SP 02 or later.

Because the Service Builder is part of the BEP component that is typically (but
not necessarily) installed on the SAP Business Suite system, you define the
service model (i.e., MPC) as well as the service logic (i.e., DPC) on the same
system where the BEP component is deployed. This is important to under-
stand if it comes to referencing other ABAP Repository objects such as Data
Dictionary (DDIC) elements (e.g., structures or data elements) that are
required when calling, for example, an RFC or BAPI.

Comprehensive
support for build-

ing OData services

The objective of the Service Builder is to provide comprehensive sup-
port for building OData services in a declarative way or by reusing exist-
ing business objects in the SAP Business Suite system. However, there
are restrictions in what can be declared or generated. Advanced OData
features may need to be implemented manually, and certain operations
aren’t available in a refined business object. The result of what you do in
the Service Builder will always be ABAP classes, which are based on the
OData channel programming model of SAP Gateway (covered in Section
5.5). You can always drill down to understand what is going on during
service execution or tweak the code.

5.3.2 Beyond the Service Builder: Supporting Tools during
the Service Creation Process

As stated, the main tool during the service creation process is the Service
Builder. At the same time, SAP Gateway provides additional tools that
are very useful during the development of SAP Gateway services. These
tools allow, for example, for early testing of services or tracing what is
happening when calling a service. As such, this section aims to briefly
introduce you to some of the functionalities. For a more comprehensive
description of the development support and administration toolset of
SAP Gateway, see Chapter 14.

SAP Gateway Toolset 5.3

191

SAP Gateway Client

Testing and
troubleshooting

The SAP Gateway client can be used for both testing and troubleshoot-
ing and is a Representational State Transfer (REST) client built into
SAP Gateway. It can be started from within SAP GUI using Transaction
/IWFND/GW_CLIENT. After you’ve created a service, you can use this
tool for a first test, as shown in Figure 5.6.

Figure 5.6 SAP Gateway Client: Create Request

First, select an HTTP method such as GET, POST, PUT, PATCH, MERGE, or
DELETE 1. Then enter the URI of your request into the Request URI

input field 2. You can also set a certain HTTP header if needed. The
body of an HTTP request can be entered either manually or uploaded
from a file 3. In addition, it’s possible to use the Request function to
create, for example, an update request based on the response 4 of a read
request that has been issued against the URI before. Finally, perform the
HTTP request by choosing Execute 5.

Test casesA very useful feature of the SAP Gateway client is that test cases can be
stored in a database. The test case shown in Figure 5.6 is one of more
than 70 sample test cases that are delivered in the CORE_SAMPLES test
group for the TEA_TEST_APPLICATION and RMTSAMPLEFLIGHT stan-
dard test services. Note that the test cases of the CORE_SAMPLES test

HTTP Request Body

Execute Button Request URI Input Field

HTTP Response Body

HTTP Method

Introduction to OData Service Creation5

192

group have to be manually created from within the SAP Gateway client
by selecting 1 SAP Gateway Client and 2 Create Core Samples from
the menu as shown in Figure 5.7.

Figure 5.7 Creating Core Samples from within the SAP Gateway Client

If you’ve saved a request as a test case, you can add or change the
expected HTTP return code. A request can return multiple HTTP return
codes that are valid (e.g., 200, 401, 402, and 403). Therefore, multiple sta-
tuses, including status ranges separated by a dash, can be entered (e.g.,
201 401-403). In addition, it’s possible to use payload validation so that
the payload of an HTTP response can be compared with the expected
result set and not only with the expected HTTP return code.

One or more test cases can then be run using the SAP Gateway client.
The results are displayed in a table indicated by a traffic light icon
together with the expected and actual HTTP return code.

Error Log

The error log is the second tool the developer will find very useful when
it comes to troubleshooting. The error log can be called using Transac-
tion /IWFND/ERROR_LOG in the SAP Gateway server system. There is
also an SAP Business Suite system error log with a similar UI available
that can be used to analyze errors that occurred in the SAP Business
Suite system via Transaction /IWBEP/ERROR_LOG.

The error log is tightly integrated with the SAP Gateway client, so it’s
possible to rerun a request sent by a consumer that led to errors by
selecting Replay � SAP Gateway Client as shown in Figure 5.8.

SAP Gateway Toolset 5.3

193

Figure 5.8 Transaction /IWFND/ERROR_LOG

Logging and
tracing

As another way to dig into potential problems, monitoring log entries
can be generated for the system log and the application log of SAP Gate-
way. To access the system log, use Transaction SM21; to access the appli-
cation log, use Transaction /IWFND/APPS_LOG.

SAP Gateway Statistics and Payload Trace

When developing an OData service or a client application, the developer
will want to know about the performance of the service. The SAP perfor-
mance statistics can be obtained by an OData client by adding ?sap-sta-
tistics=true at the end of the request URL or by adding the HTTP request
header sap-statistics=true. The SAP Gateway framework provides
the performance statistic data to the client in the HTTP response header
sap-statistics. The response time data is also automatically stored by
the SAP Gateway framework for every incoming OData request in the
SAP Gateway server.

Based on this data, Transaction /IWFND/STATS (SAP Gateway Statistics)
provides a detailed statistics view of each service call handled by SAP

Introduction to OData Service Creation5

194

Gateway. The data are aggregated on a regular basis so that statistical
data for each service can be analyzed easily. In a productive system, the
transaction is of great value for the system administrator to check the
performance of the OData services (see Figure 5.9).

Figure 5.9 Transaction /IWFND/STATS

Via Transaction /IWFND/TRACES, not only you can trace system perfor-
mance at the service call level for backend and hub systems but also the
payload of a request (see Figure 5.10).

Figure 5.10 Transaction /IWFND/TRACES

SAP Gateway Toolset 5.3

195

Using the payload trace, it’s even possible to monitor the payload that is
sent by the client and the data that the client receives as a response from
the server. The traced data can also be used to replay service calls using
the SAP Gateway client.

Payload trace to
create test cases

The replay capability can also be used to create test cases in the SAP
Gateway client for your service in a convenient way. To use the perfor-
mance and payload trace, it’s necessary to activate those traces.

We’ll discuss the SAP Gateway statistics transaction and the SAP Gate-
way performance and payload trace tool in more detail in Appendix A.

Catalog Service

Each SAP Gateway system provides a catalog service that can be used to
retrieve a list of all available services on SAP Gateway (Figure 5.11). The
catalog service is an OData service, and the list of available services can
be accessed via the following URL:

http://<server>:<port>/sap/opu/odata/iwfnd/CATALOGSERVICE/Catalog
Collection

Figure 5.11 Service Catalog: Service Document

Introduction to OData Service Creation5

196

OpenSearch The catalog service supports OpenSearch. Developers or development
tools are thus able to use a free-text search to find services based on the
service description that can be retrieved using the following URL:
http://<server>:<port>/sap/opu/odata/iwfnd/CATALOGSERVICE/Service-
Collection/OpenSearchDescription.xml.

5.3.3 ABAP Development Tools for SAP NetWeaver
and CDS Views

CDS views –
one concept,

two flavors

A CDS view, as the name indicates, is a view that can be defined to
retrieve an application-specific projection on the underlying business
data. This is needed because business data are usually distributed across
several database tables.

CDS provide a specification for an SQL-based Data Definition Language
(DDL). With SAP HANA CDS and ABAP CDS, there are two flavors of
this specification available. Whereas SAP HANA CDS views only need to
run on top of SAP HANA, ABAP CDS views have to support multiple
databases. This is similar to the ABAP Open SQL syntax, which is the last
common denominator of the different SQL dialects supported by SAP
NetWeaver AS ABAP.

Additional Resources

You’ll find a comprehensive and detailed comparison between ABAP CDS
views and SAP HANA CDS views at http://scn.sap.com/community/abap/blog/
2015/07/20/cds--one-model-two-flavors.

Let’s look at the example in Listing 5.1 of an ABAP CDS view, which was
taken from SAP online documentation at (http://help.sap.com/saphelp_
nw75/helpdata/en/7c/078765ec6d4e6b88b71bdaf8a2bd9f/content.htm).

SAP Gateway Toolset 5.3

197

@AbapCatalog.sqlViewName: 'CUSTOMER_VW'

DEFINE VIEW cust_book_view_entity AS SELECT FROM scustom
JOIN sbook
ON scustom.id = sbook.customid
{

scustom.id,
scustom.name,
sbook.bookid

}

Listing 5.1 Example of an ABAP CDS View

The CDS cust_book_view_entity entity creates a join on the two data-
base tables scustom and sbook, which are part of the SFLIGHT demo data
model. As a result, it’s possible to access the data via the ABAP Open
SQL statement in Listing 5.2.

SELECT id name bookid
FROM cust_book_view_entity
INTO TABLE @DATA(result_data)
WHERE

Listing 5.2 Using ABAP CDS Views in ABAP Code

ABAP Develop-
ment Tools for
SAP NetWeaver

A CDS view can be defined using the Eclipse-based ABAP Development
Tools for SAP NetWeaver using the ABAP CDS statement DEFINE VIEW.
This will create two objects in the ABAP DDIC, namely an SQL view and
the CDS entity, as shown in Figure 5.12.

Figure 5.12 ABAP CDS View Building Architecture

SAP NetWeaver AS ABAPABAP Development Tools
ABAP Dictionary

SQL View

CDS Entity

Table
Definition

DDL Source

DDL Editor

'CUSTOMER_VW'

Create
Activate

Define

Realize

Refer

Save

@AbapCatalog.sqlViewName: 'SQL VIEW'

define view CDS_ENTITY …

…

as select from …

User action

Introduction to OData Service Creation5

198

Note

The SQL view and the CDS entity are created in the same namespace in the
ABAP DDIC. As a result, both names have to be different. In Listing 5.1, the
SQL view is therefore denoted as CUSTOMER_VW, whereas the CDS entity is
denoted as cust_book_view_entity.

5.4 Steps in the Service Creation Process

In Section 5.2, we introduced the SAP Gateway service creation process,
which consists of three phases: data model definition, service imple-
mentation, and service maintenance. You can take different tracks for
creating your services depending on whether you go for service devel-
opment or service generation. Now let’s take a closer, more technical
look at the different tracks and the individual steps in these tracks. Due
to the various options for creating SAP Gateway services, you’ll find it
useful to refer to Figure 5.2 throughout this section.

5.4.1 Data Model Definition in the Service Builder

The first phase of the service creation process is the data model defini-
tion phase. The goal of this phase is to use the Service Builder to create
a data model that contains all information about the OData model of a
service, such as entity types, complex types, properties, and associa-
tions. So, when developing an SAP Gateway service (service develop-
ment) or when generating an SAP Gateway service by mapping a data
source (one specific type of service generation), the first main process
step is to create a data model.

Note

When using the second method of service generation, which is to redefine an
existing service, the data model isn’t defined but rather redefined based on
the existing business objects. For information about that kind of data model
building, see Section 5.4.5.

Steps in the Service Creation Process 5.4

199

You can define a data model in several ways with the Service Builder,
each of which addresses a specific use case.

Four options
for defining an
OData model

The first option is the manual creation of the various components of an
OData model, which is called a declarative model definition. Entity types,
associations, and association sets in this approach are created manually.

The second option is the import of data models in the entity data model
XML (EDMX) format that have either been defined by the OData Model
Editor of the SAP Web IDE or the entity data modeler provided by
Microsoft Visual Studio. In addition, it’s possible to import the service
metadata document of an existing OData service.

The third and fourth options, which are much more convenient for an
ABAP developer, are to create entity types by reusing data models that
already exist in the SAP Business Suite system. This can be done by the
import of DDIC structures/tables or by the generation of new entity
types based on an RFC/BOR interface or a search help.

Next, we’ll discuss all four options in a bit more detail.

Declarative Data Model

Entity typesA declarative data model is created manually using the Service Builder.
This method is mainly used to create entity types based on manually cre-
ated properties, which can be based on existing DDIC types. (To model
an OData service from scratch in WYSIWYG style, alternative OData
modeling tools, such as the SAP Web IDE [see Chapter 9] and Microsoft
Visual Studio, are better. However, in these cases, the model has to then
be imported into the Service Builder.)

Import Data Model via EDMX

Using the import model option, the developer can import a complete
OData model stored in an EDMX file, or a metadata document of an
existing OData service, into the Service Builder. This includes the defini-
tion of entity types, entity sets, associations, and other components. You
can import data model files that have been defined by graphical OData

Introduction to OData Service Creation5

200

modeling tools or service metadata files of an existing OData service. If
you perform an import on a service metadata document or an EDMX file
for an existing project into the Service Builder, the Service Builder pro-
vides the option to reimport the data model files. A dialog will appear
that shows which artifacts will be added to and which will be deleted
from the data model.

Import Data Model via the Data Dictionary

DDIC type support To reduce the time required to create entity types and complex types in
your data model and to leverage existing data structures in your SAP
Business Suite system, you can import the following DDIC types into the
Service Builder:

� Views

� Database tables

� Structures

Beautification

When creating an entity type from a DDIC type, the name of the entity type
and the names of the properties of the entity type suggested by the Service
Builder are derived from the original names of the DDIC type and its fields by
removing the underscores and generating a name with camel case notation
instead. For example, when using a structure such as BAPI_EPM_PRODUCT_
HEADER, the Service Builder will propose the name BapiEpmProductHeader
for the entity type. The same naming convention for proposals is used for the
property names of the generated entity type—so that instead of the original
field name SUPPLIER_NAME, the field name of the generated entity type
becomes SupplierName.

The name of the entity set and its properties should be easy to understand
because they are visible to the consumer, and the names of the properties of
an entity set are derived from the property names of the underlying entity
type.

During the process of importing a DDIC structure or even afterward, the
developer can start a process called beautification. Through this process, you
can reduce the number of properties of an entity type by simply removing sin-
gle properties from it. In addition, you can maintain the names of the proper-
ties of an entity type.

Steps in the Service Creation Process 5.4

201

Reducing the number of properties to those that are absolutely necessary and
maintaining the names that are visible to the outside world are important for
creating services that are easy to consume. Publishing existing DDIC struc-
tures as-is to the outside world is usually not very beneficial.

Beautification is discussed in more detail in Chapter 7, Section 7.4.1.

Import Data Model via RFC/BOR

Function module
and BAPI
parameters

The Service Builder also enables you to create entity types from function
module parameters and BAPI parameters. A wizard is provided to guide
you through the process. Using the interface of an RFC function module
or a BOR interface is beneficial if they are being used to access the data
in the SAP Business Suite system. Both code-based implementation and
using the RFC/BOR Generator are possible with this approach.

Import Data Model via Search Help

Finally, the Service Builder also allows you to create entity types from
Search Helps. Again a wizard is provided to guide you through the pro-
cess. This wizard even performs the mapping of the READ and QUERY
method in the same step so that there’s no need for a separate service
implementation step.

5.4.2 Service Registration in the SAP Business Suite System

After the data model is defined, it must then be registered. Service reg-
istration in the SAP Business Suite manifests the data model definition
phase’s results. This means that the runtime objects required for an SAP
Gateway service are generated using the Service Builder. For the conve-
nience of the developer, the Service Builder also performs the necessary
tasks to register the service in the SAP Business Suite.

Service Registration versus Service Maintenance

As you may recall from Section 5.2, the service maintenance phase of service
creation involves activating and registering the service on the SAP Gateway
server. This isn’t to be confused with service registration in the SAP Business
Suite system, which is a process that occurs after the data model definition. In

Introduction to OData Service Creation5

202

this section, we’re focusing on service registration in the SAP Business Suite
system. In Section 5.4.4, we’ll discuss service maintenance.

The difference between service registration and service maintenance is as fol-
lows:

� Service registration is an activity during service development that results in
the creation of artifacts needed for development.

� Service maintenance is an activity during the deployment/operation of an
SAP Gateway service that activates the service for consumption.

Stub class creation Based on the data model that has been created, the Service Builder gen-
erates a corresponding MPC and DPC, as well as extension classes. The
MPC contains the coding that programmatically declares the data model
being used by your service. The implementation of the service operations
is performed in the DPC. The extension classes that have been generated
by the Service Builder can be used to redefine methods of the generated
base classes by custom code because the base classes are always regener-
ated when the model has been changed. (For more information on MPC
and DPC, see Section 5.5.)

Service registration To be used as a service, some configuration steps have to be per-
formed, which are supported by the Service Builder (Figure 5.13).

Figure 5.13 Model and Service Definition Using Service Builder

Steps in the Service Creation Process 5.4

203

When generating a project for the first time, the developer has to specify
the names of the MPC and its extension class and the DPC and its exten-
sion class. In addition, the developer has to specify the Technical

Model Name and the Technical Service Name. The latter becomes the
external service name that is later used for publishing the service on the
SAP Gateway.

MPC and DPCThe MPC and the DPC are thus combined into an SAP Gateway service
by means of configuration, not coding. These configuration steps are
facilitated for you by the Service Builder when the project is generated
for the first time. The model and service definition process is depicted in
Figure 5.14. In addition to the MPC (covered in detail in Section 5.5.1)
and the DPC (see Section 5.5.2), two additional repository objects for
the model and the service are created as part of the registration process
of a service in the SAP Business Suite.

Figure 5.14 Register Service and Model

5.4.3 Service Implementation

During the service implementation phase of the service creation pro-
cess, operations that are to be supported by the SAP Gateway services
are implemented via ABAP code or by mapping the methods of a data
source on the properties of an OData model. Operations are executed on
the defined data model during runtime and encompass CREATE, READ,

SAP Business Suite

SAP Gateway Service

Registered Service Registered Model

Data Provider
Class

Model Provider
Class

External Service
Name

Introduction to OData Service Creation5

204

UPDATE, DELETE, and QUERY methods (CRUD-Q methods) when using RFC
function modules or BAPIs, or they are limited to READ and QUERY when
using Search Help or CDS views.

It’s important to note that the service implementation phase applies
only to service development and to one of the service generation
options: data source mapping. For service generation using redefinition
or referencing of a CDS view as a data source, the service implementa-
tion step isn’t necessary because the implementation of the service will
be generated based on the customizing that has been performed in the
model definition step.

Note

We provide an introduction to service generation using redefinition in Sec-
tion 5.4.5 and to service generation by referencing a CDS view as a data
source in Section 5.4.6.

Next, we’ll give you a brief overview of the service implementation
phase for both scenarios where the phase is relevant: service develop-
ment and service generation via data source mapping.

Implementation for Service Development

Remember that during the service registration of the data model defini-
tion phase, a data provider extension class was created. Also during the
service implementation phase, operations that are to be supported by
the SAP Gateway services are being implemented.

To implement the supported SAP Gateway services using ABAP coding,
you have to manually redefine the respective methods of the data pro-
vider extension class, which should remind you of the CRUD-Q opera-
tions:

� <ENTITY_SET_NAME>_CREATE_ENTITY

� <ENTITY_SET_NAME>_GET_ENTITY

� <ENTITY_SET_NAME>_UPDATE_ENTITY

Steps in the Service Creation Process 5.4

205

� <ENTITY_SET_NAME>_DELETE_ENTITY

� <ENTITY_SET_NAME>_GET_ENTITYSET

Expand CRUD-Q
methods

Access to these methods is offered in a very convenient way by the Ser-
vice Builder. This takes place by expanding the service implementation
node as depicted in Figure 5.15.

Figure 5.15 Code-Based Implementation

From there, you can navigate to the respective entry of an entity set,
expanding all CRUD-Q methods of an entity set. Selecting Go to ABAP

Workbench allows the developer to switch seamlessly to the Class
Builder (Transaction SE24) to implement an operation.

In addition, it might be necessary to redefine additional methods in the
data provider extension class that aren’t specific to an entity set such as
the CRUD-Q methods mentioned earlier (if, e.g., deep insert should be
supported by the OData service).

Implementation for Mapping RFC/BOR Interfaces

The process of implementation for mapping RFC/BOR interfaces is dif-
ferent from that of service development. To start the mapping process,

Introduction to OData Service Creation5

206

you have to select Map to Data Source in the context menu of a CRUD-Q
method of an entity set in the Service Implementation folder (Figure
5.16). The mapping dialog of the Service Builder then allows you to
define relations between the interface parameters of a function module
or BAPI and the properties of an entity set.

Figure 5.16 Mapping the Methods of an Entity Set to a Data Source

CRUD-Q You can map the CREATE, READ, UPDATE, DELETE, and QUERY (CRUD-Q)
methods of each entity set separately. The actual service implementa-
tion, that is, the coding in the CRUD-Q methods mentioned earlier, will
be generated by the Service Builder based on the mapping you’ve per-
formed. The Service Builder supports the developer by providing map-
ping proposals if the entity type has been created by importing a BOR
interface or an RFC interface. For example, as shown in Figure 5.17, the
Service Builder suggested a mapping between the SoId property in the
SalesOrderSet entity set and the SO_ID property of the SOHEADERDATA
export parameter of the BAPI_EPM_SO_GET_LIST BAPI. This mapping can
automatically be suggested because the entity type on which the Sale-
sOrderSet entity set is based has been created by importing the
SOHEADERDATA interface parameter.

Steps in the Service Creation Process 5.4

207

Figure 5.17 Mapping Proposals: RFC Function Module

If additional methods for the entity sets are mapped, the Service Builder
checks the already existing mappings and derives proposals for them. If
you, for example, started to map the QUERY operation (GET_ENTITYSET) of
your entity set and now want to map the READ operation (GET_ENTITY),
the Service Builder provides a proposal for those properties that have
already been mapped in the GET_ENTITYSET method.

Implementation for Mapping Core Data Services Views

The implementation process for mapping CDS views is different from
that of mapping RFC/BOR interfaces. To start the mapping process, you
must select Map to Data Source in the context menu of an entity set in
the Service Implementation folder, rather than selecting the single
CRUD-Q methods.

The mapping dialog in the Service Builder then allows you to define
relations between the data source elements of a CDS view and the prop-
erties of an entity set (see Figure 5.18), as well as mapping an association
of a CDS view to a navigation property of an entity set as shown in
Figure 5.19.

Propose Mapping Button Mapping Proposals

Introduction to OData Service Creation5

208

Figure 5.18 Mapping a CDS View: Properties

Figure 5.19 Mapping a CDS View: Association to Navigation Property

As a result, the READ and QUERY method of an entity set are mapped. The
implementation of CREATE, UPDATE, and DELETE methods (CUD) is still
possible via a code-based implementation or via mapping of appropriate
RFC function modules to the CUD methods.

Steps in the Service Creation Process 5.4

209

Implementation for Mapping Search Help

The implementation for mapping a search help is even easier than map-
ping RFC/BOR interfaces or CDS views. This is already included in the
data model definition step when creating an entity type based on a
search help. The wizard that is used to import a search help not only
offers to create an entity set but also already performs the mapping of
the Read and Query method as well (see Figure 5.20).

Figure 5.20 Import Search Help Wizard: Automatic Mapping of Query and Read
Methods

As with entity sets, where the service implementation is based on CDS
views, the implementation of the CUD methods can be performed via a
code-based implementation or via mapping of RFC function modules
that offer write access.

5.4.4 Service Maintenance

The service maintenance phase primarily consists of the service activa-
tion and service registration step in the SAP Gateway system. For SAP
Gateway to consume a service using an OData client, this service has to
be activated. This activation takes place in the SAP Gateway server and
makes the service ready for consumption.

Activate and
maintain service

The registration and activation of services in the hub is performed using
Transaction /IWFND/MAINT_SERVICE (Activate and Maintain Service).

Introduction to OData Service Creation5

210

Transaction /IWFND/MAINT_SERVICE is also used to maintain all acti-
vated services on the SAP Gateway server. Services have to be changed if
they’ve been registered in several/additional connected SAP Business
Suite systems, or they can simply be deactivated.

Because the Service Builder is the one-stop shop for service develop-
ment, functionality has been added that allows the developer to directly
call the transaction for service maintenance from within the Service
Builder. This is even possible for remote systems.

The developer can either select a SAP Gateway system in the Service

Maintenance node (Figure 5.21) or can click on the Register button.

Figure 5.21 Registering a Service in the Hub from the SAP Business Suite

Service Generation

As outlined earlier in this chapter, when performing service generation via
redefinition, referenced data sources, or using Eclipse to create CDS views
with the OData.publish:true option, there is no service implementation
step. There is only the data modeling phase, and the service can be published
afterwards.

Steps in the Service Creation Process 5.4

211

5.4.5 Service Generation via Redefinition

As explained in Section 5.2, redefinition is the process of generating a
service based on an existing data source. This is done using a wizard and
combines both the data model definition phase and the service imple-
mentation phase into the single phase of redefinition. The resulting gen-
erated service has to be registered and activated in the SAP Gateway
server system (the service maintenance phase) and can then be con-
sumed. The goal of redefinition is to allow for service creation with less
effort.

Existing business
objects

There are quite a number of existing business objects in an SAP sys-
tem; SAP Customer Relationship Management (SAP CRM), SAP Prod-
uct Lifecycle Management (SAP PLM), and SAP Enterprise Asset
Management (EAM)—for example—all use a form of business object.
Although these business object models have been designed for differ-
ent use cases, all of them define objects, relations, actions, and que-
ries similar to those that can be found in the OData protocol. It there-
fore comes as no surprise that a lot of these business objects can be
used to generate OData services.

ExtensibilityIt’s also possible to generate SAP Gateway services from existing SAP
Gateway services. This scenario is used if a customer wants to extend an
OData service delivered by SAP, for example, the OData service used by
a SAP Fiori application. The extensibility of SAP Fiori applications is dis-
cussed end to end in Chapter 10.

Third-party OData
services

On top of integrating existing SAP Business Suite business objects, it’s
also possible to integrate third-party OData services. However, this inte-
gration scenario has some technical restrictions.

Redefinition
wizard

The wizard for generating an OData service using redefinition is almost
identical for all integration scenarios. Selecting one of the available
options (based on the installed add-on) starts a wizard that guides you
through the following three steps:

1. Select the business object.

2. Select artifacts of the data source (data model definition).

3. Generate runtime artifacts and service registration in the backend
(service implementation).

Introduction to OData Service Creation5

212

In other words, the wizard starts with the data model definition part but
automatically performs the steps that belong to the service implementa-
tion phase. After the service has been registered and implemented in the
SAP Business Suite, it has to be activated in the SAP Gateway server.

The different integration scenarios described in this section are partly
based on specific add-ons listed in Table 5.1. If these add-ons have been
deployed to the SAP Business Suite system, the related context menu
options in the Service Builder are visible as shown in Figure 5.22.

Figure 5.22 Context Menu Options to Create a Data Model Using Redefinition

Most of the scenarios are also remote-enabled, which means that the
business object that is to be consumed (e.g., a Service Provider Interface

Name of Add-On Integration Scenario Remote-Enabled

IW_GIL Generic Interaction Layer
(GenIL)

IW_SPI Service Provider Interface X

SAP_GWFND or IW_BEP Analytical Queries X

SAP_GWFND or IW_BEP
and IW_FND

OData service (external) X

SAP_GWFND or IW_BEP OData service (SAP Gateway) X

Table 5.1 Add-Ons for Generating a Service Based on an Existing Data Source

Steps in the Service Creation Process 5.4

213

object) doesn’t have to exist in the same system in which the BEP com-
ponent is deployed. As a result, these scenarios can be implemented in
the SAP Gateway server (assuming you’re using hub deployment with
development on the hub).

Next, let’s look at the different possible sources for suitable business
objects in detail.

Generic Interaction Layer

Wrapper around
existing business
logic

Integration of GenIL with SAP Gateway offers the possibility of generat-
ing OData services based on existing GenIL components. GenIL is meant
to be a wrapper around existing business logic. It provides access to all
business objects via a unified interface for consuming application logic
in the UI layer by using the Business Object Layer (BOL) API. The BOL
consists of two pieces:

� GenIL
The lower layer is a “dispatcher” that manages GenIL components and
their models at runtime and distributes requests from above to the
respective components implementing the requested objects.

� BOL
The stateful layer provides optimized performance by avoiding expen-
sive repetitive access to the APIs and thus acts as a buffer for the UI.

While BOL was built for the SAP CRM Web Client, the role of GenIL is
different because it can be used for other integration scenarios as well.
The consumption of SOAP-based web services using the Web Service
tool that directly consumes GenIL is an example of such additional inte-
gration.

Similarly, SAP Gateway allows you to generate OData services leverag-
ing GenIL (as shown in Figure 5.23). The nodes, relations, and queries in
the GenIL model are transformed to the corresponding entities in an
OData model, as shown in Figure 5.24.

Introduction to OData Service Creation5

214

Figure 5.23 Integration of GenIL with SAP Gateway

Figure 5.24 Mapping between the GenIL and OData Model

Although BOL (and thus GenIL) are frequently used for SAP CRM Web
Client, it has also been used in other SAP Business Suite applications
such as SAP ERP Financials and SAP ERP Human Capital Management
(SAP ERP HCM). The integration is contained in the IW_GIL add-on.

GenIL

Model StorageApplication Backend/API

Application Layer
Inherits from CL_CRM_GENIL_ABSTR_COMPONENT

Implements <IF_GENIL_APPL_MODEL>

SAP CRM Web Client

BOL SAP Gateway

R

R

RR

R

GenIL Layer

Node

Attribute Structure

Key Structure

Relations

SAP Gateway Layer

Entity

Properties

Keys

Navigation Properties
(Associations)

Steps in the Service Creation Process 5.4

215

This must be deployed locally on the SAP Business Suite system (e.g.,
SAP CRM) on top of the BEP component.

Note

The GenIL integration scenario isn’t remote enabled. To use services that are
generated based on GenIL objects, the IW_BEP add-on component (SAP_
GWFND starting from SAP NetWeaver release 7.40) has to be deployed on
the SAP Business Suite system.

Service Provider Interface

The Service Provider Interface was originally developed for SAP Product
Lifecycle Management (PLM). Service Provider Interface is a framework
generated within the application layer that has different consumers. The
framework is currently used not only by the applications for which it
was originally developed but also for various other applications within
the SAP Business Suite.

Service Provider Interface objects can be called remotely. As a result, it
isn’t mandatory to deploy the SAP Gateway IW_SPI add-on for Service
Provider Interface on the SAP Business Suite system. Because the add-on
calls the RFC interface of the Service Provider Interface layer, it can be
deployed on the SAP Gateway server system. The IW_GIL add-on
instead must be deployed locally on the SAP Business Suite system (e.g.,
SAP CRM). The integration of Service Provider Interface with SAP Gate-
way allows Service Provider Interface application building blocks to be
provisioned as OData services.

Further Resources

For more information about this topic, we recommend the following:

� SPI wiki on SCN: https://wiki.scn.sap.com/wiki/display/SPI

� SAP Online Help: http://help.sap.com/saphelp_crm70/helpdata/en/7c/
0f77e9f297402aacb48ca7110c7f2a/frameset.htm

Analytic Queries

Analytic queries are the main tools for consuming analytical data that
are embedded in business applications such as the SAP Business Suite

Introduction to OData Service Creation5

216

and in data warehouses such as SAP BW. While analytic queries in SAP
Business Suite provide access to consistent operational data, analytic
queries in the SAP BW hub offer access to consistent, highly aggregated
data across the enterprise.

SAP Gateway and SAP BW integration allows you to publish SAP BW
content as an OData service that has been defined using multidimen-
sional expressions (MDX) or SAP BW Easy Queries. While the MDX
approach can also be used for SAP BW systems starting with 7.0, the SAP
BW Easy Query approach is only supported for release 7.30 and higher.
SAP BW Easy Queries are, however, easier to understand and to handle,
so they are recommended.

SAP BW Easy
Queries

SAP BW Easy Queries are analytic queries that meet certain criteria. For
a given SAP BW Easy Query, an RFC module is created in the system.
This is done automatically by the system, based on the available SAP BW
query definition. Using this RFC, an SAP BW Easy Query interface can
be defined as an OData service.

To release an analytical query as an SAP BW Easy Query, you have to
mark the corresponding checkbox in the query properties in the BEx
Query Designer (see Figure 5.25).

Figure 5.25 Defining an SAP BW Easy Query in the BEx Query Designer

Steps in the Service Creation Process 5.4

217

After this has been done, and the query is saved, the generation of the
RFC is triggered. General rules that apply for SAP BW Easy Queries are
that characteristics are on the rows, key figures are on the columns, and
free characteristics aren’t mapped to OData.

Analytical
annotations

Dimensions, dimension attributes, and measures are represented as
properties of an entity type. The entity type representing the results of
an MDX or an SAP BW Easy Query is annotated as sap:seman-
tics=aggregate. Table 5.2 shows how SAP BW objects such as dimen-
sions, dimension attributes, and measures are represented in OData.
The table shows only the main annotations.

External OData Service

OSCIOData Services Consumption and Integration (OSCI) is an additional
integration scenario that aims at enabling consumption and integration
of any OData service. With SP 07 of SAP Gateway 2.0, this functionality
is fully integrated with the Service Builder. The integration has to be
implemented on the SAP Gateway server system, where the IW_BEP
add-on also has to be deployed. This is required because you need the
OData library for the consumption of an OData service, and this library
only resides on the SAP Gateway server. In addition, you also need IW_
BEP for service development on the SAP Gateway server.

As of SAP NetWeaver ABAP 7.40 SP 02, this prerequisite will be fulfilled
by any SAP NetWeaver ABAP system because the SAP_GWFND soft-
ware component comprises the required functionality.

SAP BW Objects OData Representation SAP Annotation

Cube of type Query Entity type sap:semantics=aggregate

Dimension Property sap:aggregation-role=
dimension

Dimension attribute Property sap:attribute-for=
<dimension name>

Measure Property sap:aggregation-role=
measure

Table 5.2 Analytical Annotations

Introduction to OData Service Creation5

218

OData Service (SAP Gateway)

The Service Builder allows you to generate a service based on an existing
OData service in SAP Gateway. This integration scenario can be used to
extend an existing service. It creates a new service with the same inter-
face as the original service but with a changed behavior, which is accom-
plished by redefining methods in the new DPC extension class. The
extension of an OData service and an SAPUI5 application delivered by
SAP as part of the SAP Fiori reference apps is discussed in detail in Chap-
ter 10.

5.4.6 Service Generation via Referenced Data Sources

With the advent of SAP HANA, there was a paradigm shift in how
business applications were developed at SAP. Data provisioning in
SAP S/4HANA is based on CDS and OData. This is possible because
CDS not only addresses read-only scenarios but also transactional,
analytical, and search use cases. Using CDS, it’s possible to define
semantically reach data models by providing annotations that can be
leveraged by Smart Templates. These are smart in a sense that the UI
will provide an input field automatically if a property is marked as
sap:updatable. CDS views can easily be extended by extending the
view. The Referenced Data Source option allows ABAP developers
to define dynamic OData services based on CDS view definitions in
Transaction SEGW (see Figure 5.26).

Figure 5.26 CDS View as a Referenced Data Source in Transaction SEGW

OData Channel Development Paradigm 5.5

219

This means that any change in the underlying CDS view is automatically
reflected in the OData service that has been generated using the refer-
enced data source concept. In the Service Builder, you can select a CDS
view and select those entities and associations that should be part of the
OData Service.

5.4.7 Service Generation via OData.publish:true

Similar to the referenced data sources, OData.publish:true allows you
to publish CDS views as OData services directly from within the ABAP
Development Tools in Eclipse. By setting one simple annotation
(@OData.publish:true), you can publish a CDS view as an OData ser-
vice. Technically, a MPC and a DPC are generated, and these classes are
registered as an OData service in the SAP Business Suite backend. To
publish the registered service, a developer or administrator has to use
Transaction /IWFND/MAINT_SERVICE. In contrast to all other options
for creating OData services that we’ve shown thus far, this option
doesn’t make use of the Service Builder.

It’s planned that the @OData.publish:true option won’t only be suitable
for read-only and analytical services but will also be used for transac-
tional services by generating appropriate BOPF objects alongside the
OData service. By performing a code-based implementation of those
objects, the generated OData service will also support the capability to
create, update, and delete business data.

5.5 OData Channel Development Paradigm

Now that we’ve discussed the basics of the different tracks for the SAP
Gateway service creation process, let’s look a little closer at the OData
channel development paradigm, which is a specific approach for service
development. This introduction lays the theoretical foundation for
Chapter 6, which goes into great detail about service development. The
OData channel is part of the SAP Gateway basics if you plan on using
service development.

Introduction to OData Service Creation5

220

The OData channel for SAP Gateway allows you to develop content by
defining object models and registering a corresponding runtime DPC.
The advantage of the OData channel paradigm is a certain freedom with
respect to development; entire DDIC definitions and local interfaces of
the SAP Business Suite can be used to develop SAP Gateway services. In
addition, OData query options can be leveraged in the SAP Business
Suite systems so that only data that has been requested by the client are
selected from the SAP Business Suite system and sent back over the
wire. This results in highly optimized services and major performance
improvements due to a lower transferred data size.

Four components
of an SAP Gateway

service

SAP Gateway services with respect to the OData programming model
consist of four components:

� MPC
Implemented to provide the runtime representation of your model
definition.

� DPC
Called at runtime to perform data requests.

� Technical service name
Used to register the service in the SAP Business Suite system together
with the technical model name.

� Technical model name
Used to register the service in the SAP Business Suite system together
with the technical service name.

The technical service name and technical model name are automatically
generated with the MPC and DPC when generating a project using the
Service Builder.

5.5.1 Model Provider Class

The MPC is an ABAP class that provides the runtime representation of
your model definition; that is, the MPC defines the EDM of a service. As
such, all model information that you’ve defined in your project is gener-
ated into the MPC. As a consequence, you have to regenerate the MPC
every time you change the model definition in your project. The MPC is
important because everything you find in the service metadata document

OData Channel Development Paradigm 5.5

221

of an OData service published via SAP Gateway has programmatically
been defined in the MPC.

Technically, the model definition is actually generated into two classes:

� Base class
Technically, the base class is derived from the /IWBEP/CL_MGW_PUSH_
ABS_MODEL superclass and has suffix _MPC.

� Extension class
The extension class has the base class as the superclass and has the suf-
fix _MPC_EXT. The extension class will be registered via the technical
model name. In the extension class, you can choose which methods to
redefine and which methods to inherit from the base class.

In most cases, there’s no need for a developer to touch the MPC that has
been generated by the Service Builder. The exception to that rule is, for
example, if you want to build SAP Gateway services with features that
can’t (yet) be modeled using SAP Gateway tools. In this case, the devel-
oper can redefine methods in the model provider extension class (see
Figure 5.27).

Figure 5.27 Model Provider Class

Model Provider Base Class

Superclass of the model
provider extension class

Overwrites the DEFINE method

Inherits from /IWBEP/CL_
MGW_PUSH_ABS_MODEL

Introduction to OData Service Creation5

222

Model Provider Class Deep Dive

Usually, there’s no need for a developer to tap into the coding of the MPC
being generated by the Service Builder. Let’s still take a closer look at the
methods being generated to get a better understanding of the underlying
framework.

The DEFINE method in the MPC generated by the Service Builder contains
calls to the entity type-specific define_<entity_type> methods and in addi-
tion a call to the define_Association method that creates the associations,
association sets, referential constraints, and navigation properties.

The GET_LAST_MODIFIED method is the basis for a handshake between the
SAP Business Suite and SAP Gateway to start a refresh of the cached metadata
of the service on the SAP Gateway backend and the SAP Gateway server after
the class has been changed. This method shouldn’t be changed manually.

In the entity type-specific DEFINE methods, the Service Builder generates the
coding that creates the parts of the OData model that define the entity types
and the entity sets that are based on entity type. The properties are created,
and those properties that have been marked as a key field in the Service
Builder are set as key fields in the coding:

lo_property = lo_entity_type->
create_property(iv_property_name = 'ProductID'
iv_abap_fieldname = 'PRODUCT_ID').
lo_property->set_is_key().

Finally, the entity type is bound to a DDIC structure, and one or more entity
sets are created. Note that an entity type that is bound to an existing DDIC
structure can leverage conversion exits as well as the labels of the data ele-
ments from the DDIC. The medium field label of a data element is used as
sap:label by default:

...
lo_entity_type->
bind_structure(iv_structure_name =
'BAPI_EPM_PRODUCT_HEADER' iv_bind_conversions = 'X').
...
lo_entity_set = lo_entity_type->
create_entity_set('Products')

In the DEFINE_ASSOCIATION method, you can find the generated code that
defines associations, association sets, referential constraints, and navigation
properties of an OData model.

OData Channel Development Paradigm 5.5

223

5.5.2 Data Provider Class and Data Provider Extension Class

The DPC is an ABAP class that provides all methods required to handle
OData requests. It’s called at runtime to perform these requests; essen-
tially, we’re talking about the runtime representation of your service
implementation. For instance, a DPC executes CREATE, READ, UPDATE,
DELETE, QUERY, and many more operations.

Again, you can find an extension class (suffix _DPC_EXT) and a base class
(suffix _DPC). The data provider extension class inherits from the DPC
base class (see Figure 5.28). The DPC extension class is registered via the
technical service name. So the extension class is executed in your OData
service.

Figure 5.28 Data Provider Extension Class Interface

Entity set-specific
methods

It’s important to note that in the DPC, there are methods that are and are
not specific to an entity set.

Data Provider
Extension Class

Inherits from the data
provider base class

Superclass of the model
provider extension class

Inherited methods
for CRUD and query

operations

Redefined method
for code-based
implementation

Introduction to OData Service Creation5

224

Data Provider Class Deep Dive

For each entity set, the Service Builder creates methods that are called by the
framework if a CREATE, READ, UPDATE, or DELETE (CRUD) method is sent to
this entity set. For an entity set called <ENTITYSET>, the methods created in
the base class are shown in Table 5.3.

There are additional methods available that apply not only for a single entity
set but for all of them (nonentity set-specific methods). Examples of these
methods are the methods handling $EXPAND statements, deep insert state-
ments, or those that are called when a function import is performed. Let’s
take a closer look at these examples:

� GET_EXPANDED_ENTITY, GET_EXPANDED_ENTITYSET
Handling of $expand statements is offered by the SAP Gateway framework
out of the box in a generic way after you’ve modeled the appropriate nav-
igation property and implemented the handling of navigation properties.
There might be situations where you instead handle $expand requests by a
specific application implementation. Examples are certain BAPIs such as
BAPI_EPM_SO_GET_LIST that, along with the header data, also retrieve
line items. In this case, when retrieving the sales order header data for a
certain sales order, the corresponding sales order items are also read. If the
entity set is also called to expand the line items alongside the sales order
header, this results in unnecessary database requests.

� CREATE_DEEP_ENTITY
The counterpart of the $expand statement is the deep insert statement,
which calls the CREATE_DEEP_ENTITY method. A typical example is the
case where a sales order can only be created alongside at least one sales
order item. In contrast to the $expand statement, there’s no generic han-
dling of a deep insert request. The developer has to implement this
method.

� EXECUTE_ACTION
The EXECUTE_ACTION method is a nonentity set-specific method as well.

DPC Method Name HTTP Verb Target

<ENTITYSET>_CREATE_ENTITY POST Entity set

<ENTITYSET>_DELETE_ENTITY DELETE Entity

<ENTITYSET>_GET_ENTITY GET Entity

<ENTITYSET>_GET_ENTITYSET GET Entity set

<ENTITYSET>_UPDATE_ENTITY UPDATE or PATCH Entity

Table 5.3 Entity Set-Specific CRUD Method Implementation in the DPC

Summary 5.6

225

It’s rather service semantic and is called if a function import into an OData
service is called. Function imports allow you to execute functions that can
read and/or write data. Function imports are suitable whenever the busi-
ness scenario requires data to be read or changed that can’t be modeled
into an entity where you can use the CRUD-Q methods.

5.5.3 Technical Considerations

OData channel development can either take place on the SAP Business
Suite system or on the SAP Gateway server, as shown in Figure 5.29.
Both options are suited for certain use cases and have their advantages.
Wherever you develop, the BEP component has to be installed there, or
you have to use a system based on SAP NetWeaver 7.40 or higher.

Figure 5.29 OData Channel Development on the Hub or on SAP Business Suite

5.6 Summary

Building OData services with SAP Gateway is done by following the SAP
Gateway service creation process. This process is strongly supported and
facilitated by the central SAP Gateway service creation tool: the Service
Builder. In this chapter, we introduced you to the tool and the process to
establish a base of knowledge for the more technical step-by-step
instructions in Chapter 6 and Chapter 7, which focus in detail on the

SAP Business Suite

RFC

RFC BOR BW WF

Consumers

HTTPS

SAP Gateway Hub

OData Runtime & OData Design Time & Service Provider Runtime

GW_CORE and IW_FND or
SAP_GWFND

IW_BEP or SAP_GWFND

RFC

Consumers

SAP Gateway Hub

OData Runtime

GW_CORE and IW_FND or
SAP_GWFND

SAP Business Suite

RFC BOR BW WF

OData Design Time & Service Provider Runtime

IW_BEP or SAP_GWFND

Development on the Hub Development on SAP Business Suite

Introduction to OData Service Creation5

226

processes of service development and service generation. In Chapter 6,
you’ll also be able to take advantage of the OData channel programming
paradigm that you’ve learned about here.

7

Contents

Foreword by Bernd Leukert .. 17
Introduction ... 19
Acknowledgments .. 23

PART I Getting Started

1 Introduction to SAP Gateway 29

1.1 Modern Business Applications 30
1.1.1 User Interfaces ... 31
1.1.2 Infrastructures .. 39

1.2 SAP Gateway for Modern Business Applications 42
1.3 Installation and Deployment .. 48

1.3.1 Installation ... 49
1.3.2 Deployment ... 51

1.4 SAP Gateway and Related Products 54
1.4.1 SAP Gateway for Microsoft 55
1.4.2 SAP Enterprise Portal 56
1.4.3 SAP Mobile Platform .. 58
1.4.4 SAP HANA ... 60
1.4.5 SAP Process Integration and SAP Process

Orchestration ... 60
1.4.6 SAP Business Warehouse 61
1.4.7 SAP Fiori .. 62
1.4.8 SAP API Management 62

1.5 Summary ... 62

2 Introduction to OData .. 65

2.1 OData and REST .. 65
2.1.1 What Is REST? .. 65
2.1.2 What Is OData? .. 69

2.2 Structure of an OData Service .. 74
2.2.1 Service Document .. 78
2.2.2 Service Metadata Document 82

2.3 OData Operations ... 84
2.3.1 Create .. 85

Contents

8

2.3.2 Read ... 85
2.3.3 Update ... 87
2.3.4 Delete .. 87

2.4 OData Query Options .. 88
2.4.1 Filtering and Projecting ($filter and $select) 90
2.4.2 Sorting ($orderby) .. 93
2.4.3 Client-Side Paging ($top, $skip, and

$inlinecount) .. 94
2.4.4 Counting ($count) .. 98
2.4.5 Inlining ($expand) .. 98
2.4.6 Formatting ($format) .. 102

2.5 OData in SAP Solutions ... 105
2.5.1 Mobile Productivity Applications 107
2.5.2 SAP Fiori .. 107
2.5.3 SAP Jam ... 107
2.5.4 SAP Enterprise Portal .. 108
2.5.5 SAP Gateway for Microsoft 108
2.5.6 SAP Solution Manager 109
2.5.7 SAP HANA ... 109
2.5.8 SAP S/4HANA .. 112
2.5.9 SAP-Certified Partner Solutions 112

2.6 SAP Gateway OData Features .. 113
2.7 What’s New with OData 4.0? .. 115

2.7.1 New JavaScript Object Notation Format 115
2.7.2 Powerful Query Language 117
2.7.3 Cross-Service Navigation 118
2.7.4 Actions and Functions 118
2.7.5 Vocabularies and Annotations 119

2.8 Summary ... 119

3 Architecture and Integration 121

3.1 Gateway Principles ... 121
3.2 Architecture ... 123

3.2.1 Consumer Tier .. 126
3.2.2 SAP Gateway Tier ... 127
3.2.3 SAP Business Suite Tier 129
3.2.4 Add-On Structure Evolution 130

3.3 Integration with Other Technologies 133
3.3.1 Remote Function Call 134
3.3.2 Business Object Repository 134

Contents

9

3.3.3 Service Provider Infrastructure 135
3.3.4 SAP BW InfoCubes ... 135
3.3.5 Multidimensional Expressions 135
3.3.6 SAP BW Easy Query ... 136
3.3.7 Generic Interaction Layer 136
3.3.8 SAP Business Process Management 137
3.3.9 SAP Business Workflow 137
3.3.10 Core Data Services .. 137

3.4 Summary ... 138

4 Deployment Options, Installation, and
Configuration ... 139

4.1 Introduction to SAP Gateway Deployment 139
4.1.1 Hub Deployment with Development in

SAP Business Suite ... 142
4.1.2 Hub Deployment with Development on

the Hub .. 143
4.1.3 Embedded Deployment 146
4.1.4 Comparison of Deployment Options 148
4.1.5 Mixed Deployment Options 150

4.2 Preparing for Installation and Configuration 152
4.3 Quick Start Guide .. 154

4.3.1 Step 1: Deploy the SAP Gateway Add-Ons
for Older SAP NetWeaver Versions 156

4.3.2 Step 2: Activate SAP Gateway 156
4.3.3 Step 3: Create an SAP System Alias 156
4.3.4 Step 4: Create an SAP Gateway Alias 158
4.3.5 Step 5: Activate the OPU Node 159
4.3.6 Step 6: Test Your Settings 160

4.4 Installation and Configuration in Detail 161
4.4.1 Installing the SAP Gateway Add-Ons 163
4.4.2 Basic Configuration Settings 163
4.4.3 OData Channel Configuration 166
4.4.4 Business Enablement Provisioning

Configuration ... 172
4.4.5 Smoke Testing .. 173

4.5 Summary ... 175

Contents

10

PART II Service Creation

5 Introduction to OData Service Creation 179

5.1 Methods for Creating an OData Service 180
5.2 Service Creation Process Overview 183
5.3 SAP Gateway Toolset ... 187

5.3.1 Service Builder .. 188
5.3.2 Beyond the Service Builder: Supporting Tools

during the Service Creation Process 190
5.3.3 ABAP Development Tools for SAP NetWeaver

and CDS Views ... 196
5.4 Steps in the Service Creation Process 198

5.4.1 Data Model Definition in the Service Builder 198
5.4.2 Service Registration in the SAP Business Suite

System ... 201
5.4.3 Service Implementation 203
5.4.4 Service Maintenance .. 209
5.4.5 Service Generation via Redefinition 211
5.4.6 Service Generation via Referenced Data

Sources ... 218
5.4.7 Service Generation via OData.publish:true 219

5.5 OData Channel Development Paradigm 219
5.5.1 Model Provider Class .. 220
5.5.2 Data Provider Class and Data Provider

Extension Class ... 223
5.5.3 Technical Considerations 225

5.6 Summary ... 225

6 Service Development ... 227

6.1 Data Model Definition ... 228
6.1.1 Creating a Project ... 229
6.1.2 Creating a Data Model 232

6.2 Service Registration in the SAP Business Suite System 258
6.3 Service Stub Generation ... 264
6.4 Service Maintenance .. 267
6.5 Incremental Service Implementation and Model

Enhancement ... 272
6.5.1 Feed (GET_ENTITYSET) 273
6.5.2 Single Read (GET_ENTITY) 278

Contents

11

6.5.3 Query Options ... 282
6.5.4 Navigation Properties 291
6.5.5 Create, Update, and Delete Methods 299
6.5.6 Function Imports .. 308
6.5.7 Media Resources .. 315
6.5.8 Expand/Self-Expand ... 326
6.5.9 Deep Insert .. 335
6.5.10 Batch ... 339

6.6 Summary ... 344

7 Service Generation .. 345

7.1 Generation via RFC/BOR Interface 348
7.1.1 Data Model Definition 351
7.1.2 Service Registration: Stub Creation 357
7.1.3 Service Maintenance .. 357
7.1.4 Service Implementation:

SalesOrderHeaderSet .. 360
7.1.5 Service Implementation:

SalesOrderLineItemSet 374
7.1.6 Conclusion ... 384

7.2 Generation via Search Help .. 384
7.3 Generation via CDS Views ... 387

7.3.1 Modeled Data Sources 393
7.3.2 Reference Data Sources 399

7.4 Generation via Redefinition ... 404
7.4.1 SAP BW Easy Query ... 407
7.4.2 Service Provider Interface 417

7.5 Summary ... 423

PART III Application Development

8 SAPUI5 Application Development 427

8.1 Building Blocks of Web Application Development 428
8.2 Introduction to SAP Fiori and SAPUI5 429

8.2.1 SAP Fiori .. 429
8.2.2 SAPUI5 .. 433

8.3 Installing SAPUI5 ... 436
8.4 Creating an SAPUI5 Application 437

8.4.1 Manual Creation .. 438
8.4.2 Using the Eclipse Development Environment ... 440

8.5 Summary ... 445

Contents

12

9 SAP Web IDE ... 447

9.1 Installation and Access ... 448
9.1.1 Installing On-Premise via the Local Version 448
9.1.2 Accessing On-Demand via SAP HANA Cloud

Platform ... 453
9.2 Connecting to SAP Gateway .. 456

9.2.1 Connecting the Local Installation to
SAP Gateway .. 456

9.2.2 Connecting SAP Web IDE on SAP HANA
Cloud Platform to SAP Gateway 458

9.3 OData Sample Services .. 459
9.4 Developing SAPUI5 Applications 461
9.5 SAP Fiori Reference Apps ... 467
9.6 OData Model Editor .. 470

9.6.1 Activating the OData Model Editor 471
9.6.2 Importing Files via the OData Model Editor 473

9.7 Summary ... 474

10 Extensibility .. 475

10.1 Redefining and Extending OData Services 475
10.1.1 Redefinition .. 476
10.1.2 Field Extensibility ... 481
10.1.3 Node Extensibility .. 482

10.2 Extending SAPUI5 Applications 482
10.3 Extending SAP Fiori Applications 485

10.3.1 Extending the OData Service 486
10.3.2 Extending the SAPUI5 Application 510

10.4 Summary ... 520

11 Mobile Application Development 521

11.1 Overview ... 523
11.2 Native Application Development 524
11.3 Hybrid Application Development 524

11.3.1 Prerequisites ... 526
11.3.2 Download and Installation 529
11.3.3 Create an SAP HANA Cloud Platform Mobile

Service App .. 541
11.3.4 Developing a Hybrid App 544

11.4 Summary ... 553

Contents

13

12 Social Media Application Development 555

12.1 PHP ... 556
12.2 Facebook ... 560
12.3 Twitter .. 567
12.4 Sina Weibo (新浪微博) ... 571
12.5 Summary ... 582

13 Enterprise Application Development 583

13.1 SAP Gateway for Microsoft .. 584
13.1.1 SAP Gateway for Microsoft Installation 585
13.1.2 SAP Gateway for Microsoft Excel 2010

Add-In ... 591
13.1.3 SAP Gateway for Microsoft Outlook 2010

Add-In ... 598
13.2 Microsoft Excel .. 606

13.2.1 PowerPivot .. 606
13.2.2 $format=xlsx .. 610

13.3 Microsoft SharePoint/Office 365 610
13.4 Microsoft LightSwitch .. 617
13.5 Microsoft Active Server Pages (ASP) .NET 622
13.6 Summary ... 623

PART IV Administration

14 Lifecycle Management: Testing, Service Deployment,
and Operations .. 627

14.1 Testing .. 628
14.1.1 Testing SAP Gateway Services 629
14.1.2 Testing a Client Application 633
14.1.3 Best Practices for Testing in SAP Gateway 635

14.2 Service Deployment ... 637
14.2.1 Transport of Repository Objects between

SAP Business Suite Systems 639
14.2.2 Transport of Repository Objects and

Customizing Entries between SAP Gateway
Server Systems ... 640

14.2.3 Versioning .. 644
14.2.4 Activate and Maintain Service Transaction 644

14.3 Operations .. 646

Contents

14

14.3.1 Periodic Cleanup Tasks 646
14.3.2 Monitoring Overview 647

14.4 Summary ... 656

15 Security .. 657

15.1 Network and Communication Security 657
15.1.1 Transport Protection ... 658
15.1.2 Input Validation ... 661

15.2 User Management and Authorizations 667
15.3 Single Sign-On and Authentication Options 669

15.3.1 Basic Authentication ... 671
15.3.2 SAP Logon Tickets with SAP Enterprise Portal ... 672
15.3.3 X.509 Client Certificates 673
15.3.4 SAML 2.0 Browser Protocol 674
15.3.5 OAuth .. 676
15.3.6 Kerberos: Integrated Windows

Authentication ... 678
15.4 Recommended Authentication Options 678

15.4.1 HTML5 Web Application 679
15.4.2 Desktop Application ... 681
15.4.3 Mobile Application (Direct Access) 682
15.4.4 SAP Mobile Platform .. 684
15.4.5 Cloud ... 686
15.4.6 Web Server ... 687
15.4.7 Business-to-Consumer Scenario 688

15.5 Read Access Logging .. 694
15.6 Summary ... 697

PART V Roadmap

16 Recent and Future Developments 701

16.1 Cloud Computing: HCI OData Provisioning 701
16.1.1 Cloud Applications ... 702
16.1.2 Cloud Platforms .. 703
16.1.3 Business Networks .. 704
16.1.4 Infrastructure and Lifecycle Management 704

16.2 Gamification .. 705
16.3 Internet of Things .. 707
16.4 API Management ... 708
16.5 Summary ... 709

Contents

15

Appendices ... 711

A Advanced Topics .. 713
A.1 Connecting Multiple SAP Business Suite Systems 713
A.2 Configuring Notifications in SAP Gateway 719
A.3 Using the Error Log .. 723
A.4 Analyzing Performance and SAP Gateway Statistics 731
A.5 Delta Query Support in Offline Scenarios 736
A.6 Server-Side Caching ... 741
A.7 Summary ... 742

B SAP Gateway and SAP API Management 743
B.1 Application Programming Interfaces 743
B.2 Architecture .. 744
B.3 Consuming an SAP Gateway Service with SAP API

Management ... 746
B.4 Summary ... 768

C The Authors ... 769

Index .. 773

773

Index

.edmx file, 471

.NET, 622

.NET Framework, 617
$count, 98
$expand, 98
$filter, 90
$format, 102
$format=xlsx, 610
$inlinecount, 95
$orderby, 93
$select, 90
$skip, 95
$top, 95

A

ABAP
CDS, 138, 392

ABAP Class Builder, 228, 265
ABAP Development Tools, 196, 197,

219, 388
Access token, 562
Addressable, 241
Agentry SAP Framework, 738, 739, 740
Analytical

annotation, 217
app, 431

Annotation Model for Referenced
Service, 231

Apache, 527
API, 522, 743

analyze, 768
configure, 757
create, 746, 752
developer, 746
discover, 762
documentation, 755
management, 708
portal, 747
publish, 760
test, 756

Append structure, 487

Application
design, 31
log, 648

Application Log Viewer, 651
Application requirements, 30

infrastructure, 39
user interface, 31

Approve Purchase Orders app, 485, 510
Architecture, 121

consumer tier, 123, 124, 126
SAP Business Suite tier, 123, 124, 129
SAP Gateway Server tier, 123
SAP Gateway tier, 124, 127

Assign Structure checkbox, 255
Association, 76, 84, 403

define, 355
set, 356, 503

Atom, 30, 113
AtomPub, 69, 71
Authentication, 669, 671

anonymous access, 689
basic, 671
for B2C, 688
for cloud, 686
for desktop applications, 681
for mobile applications, 682
for SAP Mobile Platform, 684
for web applications, 679
for web server, 687
Kerberos, 678
OAuth, 676
recommendations, 678
SAML, 691
SAML 2.0 browser protocol, 674
SAP logon tickets and SAP Enterprise

Portal, 672
user self-service, 689
X.509 client certificate, 673

Authorizations, 667
Availability, 38

Index

774

B

Backwards compatibility, 73
BAPI, 53, 130, 345
Base class, 221
Batch, 339
Batch handling, 113
Beautification, 200, 415
BEx Query Designer, 61, 136, 408
BOL, 213
BOR, 130, 133, 134, 135, 232, 251, 345
Bower, 527
Breakpoint, 727
Bring your own device (BYOD), 34
Browser protocol, 143
Business Application Programming

Interfaces � BAPI
Business Enablement Provisioning (BEP),

167, 172

C

C#, 33
Camel case, 415
Cascading Style Sheets Level 3 (CSS3),

428, 434
Catalog service, 195
CCMS, 647, 648
CDS entity, 197
CDS view, 181, 196, 347, 394, 395,

397, 497
architecture, 197
modeled data source, 347
referenced data source, 347
service generation, 387

Central User Administration (CUA), 661
Client server architecture, 66
Client-side paging, 94
Cloud, 41, 42

application, 702
business network, 704
hybrid, 42
infrastructure and lifecycle

management, 704
private, 42
public, 42

Consumer, 126, 168
connection settings, 168

Controller
extend, 516

Conversion exit, 367
Cordova, 526
Core components, 127
Counting, 98
Creatable, 236, 237, 240
Create operation, 85
Cross-service navigation, 118
Cross-site request forgery (XSRF),

662, 663
Cross-site scripting (XSS), 662
CRUD, 69, 113
CRUD-Q, 84, 261, 275
CUD method, 299

create, 299
delete, 306
media resources, 113
update, 303

Custom field, 494
service implementation, 495

D

Data Definition Language (DDL),
389, 391

Data model, 76, 232
after import, 246
create, 232
DDIC, 247
declarative, 233
EDMX, 243
import, 243
RFC/BOR, 251, 258

Data model definition, 183, 198,
227, 398
create model, 232
create project, 229
declarative model, 199
import DDIC, 200
import EDMX, 199
import RFC/BOR, 201
RFC/BOR interface, 351
service registration, 201

Index

775

Data Model from File option, 244
Data provider class (DPC), 102, 202, 203,

228, 260
Data provider extension class, 223

interface, 223
Data provisioning, 218
Data store variety, 73
Database management systems, 110
DDIC, 142, 232, 248

beautification, 200
structure, 247
table, 250

Deep insert, 114, 335
Degradation, 73
Deletable, 236, 240
DELETE, 67
Delta query protocol, 736, 737
Delta request log component, 738
Delta support, 736
Deployment, 51, 139, 141

comparison, 148
costs, 149
development effort, 149
embedded, 51, 141
hub, 52, 141
installation and configuration, 149
introduction, 139
maintenance, 149
mixed deployment, 150
performance, 149
use cases, 149

Desktop, 634
Developer Portal, 762, 764
Digital economy, 744
Digital transformation, 31, 34, 744
Dispatcher method, 482
DPC, 223, 224, 357

base class, 265, 267
Duet Enterprise, 55, 126

E

Eclipse, 219, 388, 436, 442
edm:Action, 118
edm:Function, 119
EDMX, 232

Embedded deployment, 141, 146,
149, 151
advantages, 147
disadvantages, 148
release consideration, 148
use cases, 147

Enterprise application development, 583
Microsoft ASP.NET, 622
Microsoft LightSwitch, 617
Microsoft Office 365, 610
Microsoft SharePoint, 610

Enterprise Procurement Model
(CRUD-Q), 460

Enterprise Procurement Model
(read-only), 461

Entity, 75
data model, 83
with media resource information, 322

Entity set, 75, 78, 83, 86
attributes, 240
create, 233, 234
custom, 499, 504

Entity type, 75, 84
attributes, 234, 236
create, 233
media, 318
supplier, 293

Environment variable, 526
Error, 297
Error log, 647, 649, 723, 725, 729
Event, 128
Expand, 114
Extensibility, 475

mode, 511
pane, 514

Extension
class, 221, 260
code, 515
include, 481
project, 482, 511, 512

Extension point, 484
contact details, 519
second UI element, 518
total weight, 516
UI element, 514

Index

776

F

Facebook development, 560
basic application settings, 561
create application, 560
create developer account, 560

Fact sheet app, 431
Feeds, 113, 273
Field extensibility, 481
File system, 463
Filterable, 237
Filters, 90, 114
Flight example (read-only), 461
Floorplan Manager (FPM), 135
Formatting, 102
Framework template, 167
Free-text searches, 111
Function import, 308

create, 308
return cardinality, 310
return types, 309

Function module, 96

G

Gamification, 33, 705
as innovation, 706

Gateway as a Service (GWaaS), 701
Gateway principle, 121

division of work, 123
ease of consumption, 123
openness, 122
timelessness, 122
user focus, 123

Gateway Productivity Accelerator
(GWPA), 436, 453

Generic channel, 128
Generic Interaction Layer � GenIL
GenIL, 53, 133, 136, 213, 215, 345, 347

mapping with OData, 214
object, 53

GET, 66
GET_ENTITY, 295
GET_ENTITYSET, 273
GETDETAIL method, 87

Git repository, 454
GW_CORE, 129, 131, 132, 140, 156

H

Headerdata, 256
Hello World, 438
HTML5/SAPUI5, 33, 35, 53, 107, 181,

218, 427, 428, 429, 433, 447, 455, 522
browsers, 429
button, 444
creation via the Eclipse development

environment, 440
Eclipse minimum requirements, 435
extending applications, 510
extensibility, 482
framework platforms, 438
Hello World!, 439
hiding UI elements, 512
installation, 436
iViews, 57
JavaScript file, 438
library, 535
manual creation, 438
Master Detail Kapsel Application, 545
Master Detail Kapsel Offline

Application, 545
operations, 483
project, 442
SAP Web IDE, 461
Starter Kapsel Application, 545

HTTP
body, 369
method, 87, 310
status code, 113

Hub deployment, 141, 151, 638
advantages, 143, 145
development in SAP Business Suite, 142
development on the hub, 143, 149
development on the SAP Business Suite

system, 149
disadvantages, 143, 146
on the backend system, 52
on the hub, 53
release considerations, 143, 146
use case, 142, 145

Index

777

Hybrid app, 524, 544
prerequisites, 526
test on Android Emulator, 549
test on Cordova Facade, 549

Hybrid container app, 523
Hypermedia link, 68

I

idempotency, 113
Industry trends

gamification, 705
Internet of Things, 707

InfoCube, 133, 135
Infrastructure as a Service (IaaS), 41
Infrastructures

point-to-point solutions, 43
Inlining, 98
Input mapping, 363
Installation and configuration, 49, 139

activate services, 165
activation, 156
add-ons, 156, 163
Business Enablement Provisioning, 172
information gathering, 154
node OPU, 159
OData channel, 166
profile parameters, 164
Quick Start Guide, 139, 154
SAP Gateway alias, 158
SAP system alias, 156
settings, 163
smoke testing, 173
steps, 162
test settings, 160
trust relationship, 169

Integrated development environment
(IDE), 126

Integration, 121
Internet Communication Framework

(ICF), 164, 671
Internet Communications Manager

(ICM), 671
Internet of Things, 707
iViews, 108
IW_BEP, 131, 132, 140, 156, 360

IW_CBS, 131
IW_CNT, 131
IW_FND, 129, 131, 132, 140, 156
IW_FNDGC, 131
IW_GIL, 132, 133
IW_HDB, 129, 131, 132, 140
IW_PGW, 133
IW_SCS, 131
IW_SPI, 132, 133

J

Java, 33
Java Development Toolkit (JDK), 526
Java SE 7, 450
JavaScript, 427, 428
Jetty, 443
jQuery, 434
JSON, 71, 113, 115, 126

K

Kapsel CLI, 526
Kerberos, 143, 678

M

Map to data source, 180, 368
Mapping, 361
MDX, 61
Media resource, 315
Merge/patch, 114
Metadata component, 127
Microsoft ASP.NET, 622
Microsoft Excel development, 584

PowerPivot, 606
Microsoft LightSwitch, 584, 617

development, 617
minimum requirements, 617

Microsoft LightSwitch Designer, 621
Microsoft Office 365, 610, 616

minimum requirements, 611
Microsoft SharePoint development, 583

specify source, 614
MIME type, 316

Index

778

Mixed deployment
use cases, 150

Mobile application development, 107,
521, 633

Mobile services
SAP HCP, 541

Model provider class (MPC), 203,
228, 260
base class, 262

Modeled data sources (MDS), 393
Model-View-Controller (MVC), 434, 484
Modifying request, 118
Monitoring, 128, 647
MPC, 220, 221, 222, 353, 394
Multichannel

access, 72
support, 62

Multidimensional expressions (MDX),
133, 135, 216

Multiorigin/multidestination, 115
Multiple origin composition (MOC),

713, 715
My Inbox app, 133
MySQL, 556

N

Native application development, 524
pros and cons, 524

Navigation property, 291, 328, 502
definition, 296

Node extensibility, 482
Nondisruptiveness, 39
Nonmodifying request, 118
Northwind service (read only), 461
Notification

configuring, 719
pull, 720
push, 720

NuGet, 586
Nullable, 237

O

OASIS, 70
OAuth, 569, 676

2.0, 676
OData, 30, 43, 44, 46, 54, 60

access, 106
building block, 73
client library, 74
consumer, 71
custom entity set, 504
custom field service implementation, 495
data model, 73
design principle, 73
do and don't, 119
introduction, 65
mobile applications, 107
producer, 71
protocol, 73
query options, 88
REST-based protocol, 65
SAP Business Suite on SAP HANA, 110
SAP Enterprise Portal, 108
SAP Fiori, 107
SAP HANA, 109
SAP HANA XS, 111
SAP Jam, 107
SAP S/4HANA, 112
SAP Solution Manager, 109
SAP solutions, 105
SAP-certified partner solutions, 112
server, 466
service document, 78
service metadata document, 82
vs. OData 4.0, 115

OData 4.0, 115
actions and functions, 118
annotation, 119
cross-service navigation, 118
JSON format, 115
nonmodifying and modifying

request, 118
query language, 117
roadmap, 115
vocabularies and annotations, 119
vs. OData 2.0, 115

Index

779

OData channel
activate SAP Gateway, 170
activate services, 170

OData channel (Cont.)
authorization configuration, 167
configuration, 166
SAP system alias, 169
settings for service development, 171
template, 167

OData channel development paradigm,
219, 225
data provider class, 223
model provider class, 220
technical considerations, 225

OData client library, 126
OData Model Editor, 76, 470

activation, 471
graphical viewer, 473
model-based code assist, 472
schema-based code assist, 472

OData operation, 84
client-side paging, 94
counting, 98
create, 85
delete, 87
filtering and projecting, 90
formatting, 102
inlining, 98
query operation, 85
single read, 86
sorting, 93
update, 87

OData programming model, 220
OData protocol, 126

GW_CORE, 132
OData sample service, 459

functionalities, 460
read/write, 461
read-only, 461

OData service, 74, 136, 179, 218
create, 180, 183
custom entity set, 499
custom fields, 494
extensibility, 475, 486
options, 477
redefine, 475, 489

OData service (Cont.)
register and publish service, 491
replace, 514
runtime object, 491
service document, 74
service metadata document, 74
structure, 74
test redefined service, 493
third-party, 211
ZGWSAMPLE_SRV, 77

OData software development kit (SDK)
for PHP, 556

Offline scenario, 736
OLAP, 110, 135
OLTP, 110
Online Database Connectivity, 69
Open Data Protocol (OData), 69
Open standards, 41, 43
OpenSearch, 105, 196

description, 113
OpenUI5, 428
Operations, 646

application log, 646
daily jobs, 646
periodic tasks, 646
troubleshooting tips, 656

Order by, 114
Orion, 451, 454

P

p2, 449
Pageable, 240
Paging, 114
Parameter

BAPI return, 254
changing, 254
export, 254
import, 254
select options, 254
tables, 254

PATCH, 67, 87
Performance trace, 648, 653, 731
Perl, 556
PHP development, 556

download links, 557

Index

780

PHP development (Cont.)
generate proxy class, 557

Platform as a Service (PaaS), 41
Policy Designer, 757
POST, 66
PowerPivot, 606

minimum requirements, 606
plug-in, 608

Principal entity, 356
Product availability matrix (PAM), 153
ProductCollection, 239, 271, 278
Projecting, 90, 387
Properties

attribute flags, 236
navigation, 75, 80, 81, 84

PUT, 66, 87

Q

QR code, 707
Query language, 117

analytical query options, 117
filter expanded entities, 117

Query option
$filter, 283
$inlinecount, 286
$orderby, 290
$select, 282
$skip, 286
$top, 286

Quick Start Guide installation, 154
steps, 155

Quota, 757

R

RAL, 694
$batch, 695
configuration, 695
monitor, 697

Read
media resources, 113
operation, 85

Redefinition, 181, 347, 404, 475, 476,
480
beautification, 415

Redefinition (Cont.)
GenIL, 405
Operational Data Provisioning

(ODP), 405
SAP BW, 405
SAP BW Easy Query, 407, 409
Service Provider Interface, 405,

417, 418
three steps, 406
URLs, 477

Reference data sources (RDS), 181,
218, 399

Referential constraint, 328, 355
Remote function call � RFC
Repeatable requests, 113
Repository object, 350, 641

transport, 639, 640
Representational State Transfer, 65
REST, 30, 43, 54, 65, 126

architecture, 67
command, 66
link, 68
multiple representations of a

resource, 69
principles, 73
stateless communication, 69
uniform interface, 69
URI, 67

RFC, 40, 53, 129, 133, 134, 144,
169, 232
function module, 264
wrapper function module, 377

RFC/BOR generation
create, 368, 379
data model definition, 351
delete, 373, 383
process flow, 350
query, 360
service implementation, 360
service maintenance, 357
single read, 366, 376
stub creation, 357
update, 371, 382

RFC/BOR Generator, 345
RFC/BOR interface, 348, 374

Index

781

Role, 168
administrator, 168
developer, 168
user, 168

Routing, 714
Runtime

artifacts, 259, 262
component, 127

S

SAML (Security Assertion Markup
Language), 143, 674

SAML 2.0 browser protocol, 674
SAP Add-On Installation Tool, 156
SAP annotations, 354
SAP API Management, 62, 124, 743

architecture, 744
consuming SAP Gateway services, 746
Developer Portal, 762

SAP AppBuilder, 447
SAP Ariba Network, 704
SAP Business Process Management

(BPM), 133, 137
SAP Business Suite, 51, 52, 58, 140, 141,

142, 144, 201, 432
connecting to SAP Gateway, 168

SAP Business Suite on SAP HANA,
60, 110

SAP Business Suite tier, 129
components, 132

SAP Business Workflow, 133, 137
SAP BW, 61, 110, 133, 135

MDX, 61
SAP BW Easy Query, 133, 136, 407

activate service, 412
redefine, 409
regenerate service, 416

SAP BW on SAP HANA, 109
SAP Community Network (SCN), 706
SAP Customer Relationship Management

(SAP CRM), 88, 136
SAP Developer Center, 48
SAP Enterprise Portal, 56, 57, 108, 672

iView, 57

SAP ERP
SAP S/4HANA, 112

SAP ERP Human Capital Management
(SAP ERP HCM), 107, 136

SAP Fiori, 62, 107, 124, 133, 211,
427, 429
application layers, 432
application types, 431
architecture, 431
create reference app, 467
designers, 467
developers, 467
extensibility, 485
introduction, 429
manage products, 470
mockdata, 469
reference apps, 218, 467, 486
SAP Web IDE, 433
service, 469
Smart Business cockpit, 111

SAP Fiori Apps Reference Library, 468
SAP Fiori Launchpad, 430
SAP Gateway, 29, 139, 140, 432

add-on structure, 130, 140
advanced topics, 713
Analytics Service Generator, 136
application creation workflow, 44
application requirements, 46
architecture, 121, 123
Atom, 30
client, 629, 631
configuration, 139
connecting to SAP Business Suite, 168
consumer, 126
deployment, 51, 139
extending OData service, 477
future developments, 701
hardware requirements, 49, 152
installation and configuration, 49, 139,

152, 161
integration, 121
integration with other technologies, 133
introduction, 19, 29
Java, 59
lifecycle management, 627
modern business applications, 42

Index

782

SAP Gateway (Cont.)
monitoring, 647
OData, 30
OData 4.0 roadmap, 115
OData features, 113
open standard, 43
operations, 627, 646
prerequisites, 152
related products, 54
REST, 30
SAP API Management, 743
SAP NetWeaver 7.40, 51
SAP S/4HANA, 112
security, 657
service, 129, 750
service deployment, 627
service enablement, 158
service explorer, 590
software components, 140
software requirements, 49, 153
solution lifecycle, 628
testing, 627
versioning, 644

SAP Gateway components
GW_CORE, 49
IW_BEP, 49
IW_FND, 49, 50
IW_FNDGC, 50
IW_GIL, 50, 51
IW_HDB, 50
IW_PGW, 50
IW_SCS, 50
IW_SPI, 50
SAP_GWFND, 49

SAP Gateway Developer Center, 77
SAP Gateway for Microsoft, 55, 108, 584

cloud, 56
extension and update manager, 588
installation, 585
prerequisites, 584
SAP services, 588

SAP Gateway for Microsoft
Excel 2010, 591

SAP Gateway for Microsoft Outlook
2010, 598

SAP Gateway Productivity Accelerator
for Microsoft (GWPAM), 584

SAP Gateway tier, 132
SAP GUI, 35, 36
SAP HANA, 60, 109

CDS, 137, 138
SAP HANA cloud connector, 455
SAP HANA Cloud Platform, 433, 686
SAP HANA Cloud Platform cockpit, 454
SAP HANA cloud solutions, 703
SAP HANA Live, 111
SAP HANA Studio, 111
SAP HANA XS, 111
SAP HCP, 438, 448, 462, 746, 749

connecting to SAP Gateway, 458
documentation, 453
installing the SAP Web IDE, 453
login, 455

SAP HCPms
app, 541
create application, 543
device configuration, 546

SAP Hybrid App Toolkit Companion, 525
SAP Hybrid App Toolkit Connector, 525
SAP Interactive Forms by Adobe, 135
SAP Jam, 107
SAP logon ticket, 672
SAP Mobile Platform, 58, 59, 109,

124, 126
download and install SDK, 529
SDK, 526, 530

SAP NetWeaver 7.0, 166
SAP NetWeaver 7.01, 166
SAP NetWeaver 7.02, 166
SAP NetWeaver 7.31, 143, 166
SAP NetWeaver 7.40, 51, 54, 140,

142, 166
SAP NetWeaver 7.50, 182
SAP Partner Finder, 112
SAP PI, 60
SAP Quick Sizer, 174
SAP River RDE, 447
SAP S/4HANA, 60, 110, 112, 181,

218, 347
cloud-based, 112
on-premise, 112

Index

783

SAP S/4HANA (Cont.)
SAP Gateway, 112

SAP Service Marketplace, 48, 153
SAP Single Sign-On, 673
SAP Solution Manager, 109, 648,

652, 661
SAP Store, 522
SAP StreamWork, 107
SAP SuccessFactors, 108
SAP test drive, 459
SAP Web IDE, 433, 438, 447, 522

connect to SAP Gateway, 456, 458
creating a project, 511
developing SAPUI5 applications, 461
environment, 454
hybrid app, 545
install on-demand via SAP HCP, 453
installation, 448
local installation (on-premise), 448
local installation for SAP Gateway, 456
plug-in, 525
template customization, 465
welcome screen, 463

SAP Web IDE hybrid app toolkit
add-on, 525
activate, 538
download, 531
install, 531
run, 539

SAP_GWFND, 131, 132, 140, 141,
156, 360

SAP-certified partner solutions, 112
SAPUI5 � HTML5/SAPUI5
Search help

service generation, 384
service implementation, 387

Searchable, 241
Security, 657

cross-site request forgery, 662
cross-site scripting, 662
input validation, 658, 661
network and communication, 657
transport protection, 658
virus scan interface, 666

Service Adaptation Definition Language
(SADL), 396

Service Builder, 77, 129, 136, 158, 171,
179, 188, 251, 345, 471, 502
catalog service, 195
create project, 230, 232
error log, 192
functionality, 188
integrated test environment, 191
project, 189, 229
project tree, 235
service maintenance, 210
service registration, 202
supporting tools, 190

Service Catalog, 463
Service creation, 179, 183, 186

data model definition, 183, 198
incremental, 187
process overview, 198
service implementation, 184, 203
service maintenance, 184, 209
steps, 183
waterfall approach, 227

Service definition, 183
Service deployment, 637
Service development, 179, 180, 185,

204, 227
data model definition, 228
example, 228
navigation property, 291
service implementation, 272
service maintenance, 267
service registration, 258, 268
stub generation, 264

Service document, 77, 413
Service generation, 179, 180, 181, 185,

345, 346
CDS views, 347, 387
OData.publish:true, 219
redefinition, 211, 347, 404
referenced data sources, 218
RFC/BOR Generator, 345, 348
Search Help, 346, 384

Service implementation, 184, 203, 227
CDS view, 395
RFC generation, 205, 207, 209
RFC/BOR interface, 360, 374
service development, 204

Index

784

Service maintenance, 184, 186, 209,
227, 267
RFC/BOR interface, 357

Service Maintenance node, 160
Service metadata document, 77
Service provider, 130
Service Provider Infrastructure, 135
Service Provider Interface, 215, 345, 417

activate service, 421
create new project, 418

Service redefinition, 180, 181, 211
analytic queries, 215
data sources, 213
GenIL, 213
main process steps, 211
Service Provider Interface, 215

Service registration, 201, 203, 258, 263
RFC/BOR interface, 357

Service registry, 128
Service URL, 463
Service validation tool, 632
Service with SAP Annotations, 231
Service with vocabulary-based

annotations, 231
Sina Weibo development, 555, 571

create application, 575
create user account, 571
PHP SDK, 579

Single read, 86, 278, 281, 366
Single sign-on, 669
Skip token, 114
SOAP, 745
Social media development, 555

Facebook, 560
PHP, 556
Sina Weibo, 571
strategy, 556
Twitter, 567

Soft state
soft state-based query result cache, 742

Software development kit (SDK), 524
Software-as-a-Service (SaaS), 41
Sortable, 237
Sorting, 93
Source URI, 316
SQL view, 391, 392

SQRC, 742
Statelessness, 66
Stub creation, 357
Subscribable, 241
SupplierCollection, 293
Supportability, 128
System alias

transport, 642, 643

T

Technical model name, 203, 220
Technical service name, 203, 220
test.html, 469
testFLP.html, 469
testFLPService.html, 469
Testing, 628

best practices, 635
client application, 633
services, 629

Throttling, 718
Tracing, 128
Transaction

/IWFND/APPS_LOG, 193
/IWFND/ERROR_LOG, 192
/IWFND/GW_CLIENT, 191, 270
/IWFND/MAINT_SERVICE, 267
/IWFND/MAINT_SERVICES, 170
/IWFND/STATS, 193
/IWFND/TRACES, 194
RSRT, 416
SAINT, 156
SE11, 487
SE24, 228
SEGW, 129, 158, 171, 179, 229,

418, 476
SICF, 159, 164

Transactional app, 431
Twitter development, 555, 567

create developer account, 567
OData tweet, 570
SDKs, 567
TwitterOAuth-library, 567

Index

785

U

UI, 30
agility, 35
appeal, 32
availability, 35
business orientation, 33
component, 432
innovation, 34
integration, 36
intuitive, 31
maintainability, 37
nondisruptiveness, 38
reduced TCO, 38
requirements, 31
security, 37
technology, 30

UI element
add second to extension point, 518
extension point, 514
hiding, 512

Updatable, 236, 237, 240
Update operation, 306
Upgrade, 151
URI, 67, 68
User management, 667

V

Versioning, 644
View, 387

create, 441
Visual Basic, 617
Visual C#, 617
Visual Studio, 613

Microsoft LightSwitch, 617
Visual Studio 2010, 622
Visual Studio 2012, 617

W

Web application development, 428
Web services, 40
Web view, 525
Workspace, 463

X

X.509 client certificate, 668, 673
XAMPP, 556
Xcode, 33, 528
XML, 68, 126, 650
XSRF token-based protection, 115

First-hand knowledge.

Carsten Bönnen, Volker Drees, André Fischer, Ludwig Heinz, Karsten
Strothmann

SAP Gateway and OData
785 Pages, 2016, $79.95
ISBN 978-1-4932-1263-7

 www.sap-press.com/3904

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usage
and exploitation rights are reserved by the author and the publisher.

Carsten Bönnen has been a member of the SAP NetWeaver
Gateway product team since 2012. He currently coordinates
go-to-market activities for SAP Gateway and SAP API Ma-
nagement, and works on the SAP API Management product
management team.

Ludwig Heinz is the CIO of the Europe-wide acting recy-
cling company, Theo Steil GmbH. In addition, he works as a
college lecturer and supports students working on bachelor’s
theses that focus on mobile UI technologies.

Volker Drees works as a product expert for SAP Gateway in
the Products & Innovation Technology, Core Platform Gate-
way Division. He studied electrical engineering at Fachhoch-
schule in Wiesbaden, Germany, and holds a degree in com-
munications engineering (Nachrichtentechnik).

Karsten Strothmann is the global head of SAP Gateway
Customer and Product Success (CPS) at SAP SE in Walldorf,
Germany. Karsten has more than 17 years of experience in
the software industry, 15 of those at SAP.

André Fischer has worked in product management for SAP
Gateway since the launch of the product in 2011. Over the
past 10 years at SAP, André has focused on the interoper-
ability of SAP NetWeaver and Microsoft technologies, SAP
Enterprise Search, single sign-on (SSO), and SAP Gateway.

http://www.sap-press.com/3904

