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Chapter 5 

This chapter explains the end-to-end cycle and the specific tools 
for creating SAP Gateway services, both for service development 
and for service generation.

5 Introduction to OData Service 
Creation 

Out-of-the-box 
OData services

As you’ll recall from Chapter 2, OData services are what implement the
OData protocol and expose an endpoint that allows access to data. The
number of OData services shipped with SAP Gateway is limited and will
likely remain rather low because, by nature, OData services are granular
and mostly tailored to individual use cases. More commonly, services
are shipped as part of products such as SAP Fiori, SAP S/4HANA, or SAP
Mobile solutions. A large amount of development time can go into
building the right OData service, so understanding this process is
essential.

The central interface that is used to define and implement services
within SAP Gateway is the Service Builder (Transaction SEGW). After
you’ve created a service in the Service Builder, it can be used directly in
any interface. The Service Builder is a one-stop shop with respect to SAP
Gateway service development and is supplemented by additional sup-
port tools. In certain cases, it even allows you to perform selected steps
in third-party tools and then import the results (e.g., usage of an OData
modeler for the model definition).

The main objective of this chapter is to give you an overview of the pro-
cess of service creation, which we then discuss in more detail in Chapter
6 and Chapter 7. To achieve this, in Section 5.1, we give you a brief over-
view of the two methods used to create OData services in SAP Gateway
(service development and service generation) and continue in Section
5.2 to explain the main steps in the process of service creation. In
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Section 5.3, we look at the main tool involved in service creation: Ser-
vice Builder. We then complement this first look at the Service Builder
with a quick look at some of SAP Gateway’s other tools that support ser-
vice creation and maintenance. This section will give you an idea of the
tools that are available to assist with tasks during the service creation
process.

In Section 5.4, we then dig deeper into service creation and look in more
detail at the three main steps in service creation: data model definition,
service implementation, and service maintenance. Also, we look at addi-
tional topics related to service creation such as redefining services and
reusing existing SAP Gateway services in extension scenarios to create
custom OData services based on OData services that have been delivered
by SAP. Finally, we give you an introduction to the development para-
digm used for service development: the OData channel (Section 5.5).

5.1 Methods for Creating an OData Service

There are two ways to create OData services with SAP Gateway:

Development
versus generation

� Service development  
The classic option is the code-based development of SAP Gateway ser-
vices. This ABAP-based option is extremely flexible and allows you to
develop highly efficient and specialized services, but it also requires
some significant technical know-how.

� Service generation  
The second way is the generation of SAP Gateway services. There are
four main methods of service generation:

� Mapping to a data source: Allows you to generate a service by map-
ping the CRUD-Q methods of an entity set to a data source. This is
supported for the following data sources

– Remote function call (RFC)/Business Object Repository (BOR)
function modules

– Search help (only READ and QUERY method)

– Core Data Services (CDS) views (only READ and QUERY method)
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� Redefinition: Allows you to define a service based on an existing
data source or an existing SAP Gateway service.

� Referenced data sources: Allows you to define a service based on a
CDS view.

� Creating CDS views with Eclipse: Generate an OData service without
the Service Builder by creating CDS views using Eclipse and setting
the OData publish:true option.

Of these two approaches, service generation is the quicker approach and
requires a lot less effort. On the other hand, it’s more limited, and thus is
primarily recommended for developing very straightforward services.
Service generation doesn’t give you much optimization potential because,
without custom coding, you’re restricted to what the service generators
offer. In most real-world situations, you’ll want to opt for service develop-
ment because the advantages are well worth the effort. Still, if you have
search helps, CDS views, Generic Interaction Layer (GenIL) or Service Pro-
vider Interface objects, analytical queries such as SAP Business Ware-
house (BW) Easy Queries, or a suitable RFC function module or Business
Application Programming Interface (BAPI) and are aiming for a quick
result, this might be an option for you.

Service creation 
process

However, with the advent of SAP S/4HANA, OData services based on
CDS views can be generated to support the draft infrastructure. As
shown in Figure 5.1, option 1 will become the preferred approach for
OData service development. Because this kind of service will also be
able to support smart templates for user interface (UI) development, a
lot of scenarios in SAP S/4HANA won’t require SAPUI5 coding but the
development of appropriate CDS views and Business Object Processing
Framework (BOPF) objects.

Even when using OData services that are generated from CDS views, the
execution of the Service Adaptation Definition Language (SADL) inter-
face can be fine-tuned by implementing its query application program-
ming interface (API) or by adding additional business logic in the data
provider extension class. (We’ll go into more detail about these specific
options in Chapter 7, where we discuss service generation in detail.)
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In systems that are based on SAP NetWeaver 7.50, it’s still possible to
develop OData services using service development and the mapping of
data sources (see Figure 5.1, 2). This way, customers will be able to
leverage their existing resources such as ABAP classes and RFC function
modules when using SAP Business Suite EHP 8 or higher or when using
SAP S/4HANA on-premise.

Figure 5.1  SAP Gateway OData Service Provisioning for SAP Fiori: 
The Transformation to SAP S/4HANA
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Service creation 
process

Whether you’re using service development or service generation, you
create an OData service by following the SAP Gateway service creation
process, as discussed next.

5.2 Service Creation Process Overview

In this section, we’ll introduce the general steps in OData service cre-
ation and explain how the two methods for creating an OData service
(service development and service generation) fit into this process. This
explanation of the service creation process is somewhat simplified in an
effort to explain it with distinct and sequential steps (a waterfall
approach). In reality, some of the steps can also be performed out of
order (an incremental approach). We’ll go into a bit more detail about
this at the end of this section, after presenting the simplified process. 

This process consists of three main phases: data model definition, service
implementation, and service maintenance. Depending on whether you
go for service development or service generation, the individual phases
of the service creation process can have different flavors. These flavors
result in different paths that can be taken during the actual process.

Before you can start with this process, you have to complete the process
of service definition as a prerequisite. This is the process of identifying
what service to create and specifying its details. Ideally, you’ve done all
of this together with the client developers so that you know exactly
what data they require and how this works with the artifacts in the SAP
Business Suite that will be the basis for your SAP Gateway service. After
you have the service definition, you can start with the three develop-
ment phases of the service creation process.

Data model defini-
tion phase

In the first phase, data model definition, you define the model your ser-
vice is based on. That is, you define the required artifacts such as entity
types, entity sets, associations, and other components that your service
will use (refer to Chapter 2 for explanations of these components). After
data model definition, you must generate the repository objects and reg-
ister them in the SAP Business Suite system so that you can proceed with
the next main phase, service implementation.
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Service
implementation

phase

In the service implementation phase, the operations that are supported
by the service are implemented. Here the different tracks for service
development and service generation come into play:

� For service development, operations that are supported by the service
are implemented using ABAP coding.

� For service generation, there are four paths depending on the type of
generation chosen:

� If you use data source mapping, service implementation takes place
by mapping the OData model to the methods of an RFC function
module, search help, or CDS view.

� If you use redefinition, there is no service implementation step.
You only have to perform the model definition step because the
implementation of the service is generated based on the customiz-
ing that has been performed in the model definition step.

� If you reference a data source, there is again no service implemen-
tation step. Instead, you include one or more existing entity sets
and associations of a CDS view into a data model.

� If you use Eclipse to create a CDS view by setting the OData.pub-
lish:true option, there is no service implementation step. Based
on the CDS view definition, the implementation of the service is
generated.

Service
maintenance phase

The third phase of the service creation process, service maintenance, pub-
lishes the service so that it becomes visible in the service catalog of the
SAP Gateway system. In effect, this means that the created OData service
can then be consumed.

The three phases—data model definition, service implementation, and
service maintenance—are depicted in Figure 5.2. Steps that are only
performed in service development are marked with one color, and
steps that are only executed in service generation are marked with a dif-
ferent color. Steps that have to be performed in both the development
and generation of OData services in SAP Gateway are marked with both
colors.
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Figure 5.2  Service Creation Process
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almost always a one-time activity. As soon as a service is registered and
activated (published), you don’t have to touch these settings anymore,
even if the implementation and/or model definition changes.

Exception

The service publication is a one-time activity as long as you don’t perform
major changes. Registering the service for additional SAP Business Suite sys-
tems, for example, is such an activity in which you have to go back to the ser-
vice maintenance phase. Again, though, changes in the implementation of an
already published service or in the data model can be used in the already pub-
lished service without any further activities.

For all other phases, you’ll typically always follow an incremental
approach: you build a service—or part of it—execute and test it, and
then go back and refine that same service until it fits all of your needs.
During the creation of an OData service, you may change the model
and/or the service implementation multiple times.

Furthermore, an approach often used in real-world projects is to per-
form the service implementation and the service maintenance in a
different order. Performing the service maintenance with a service
implementation stub before the actual service implementation allows
you to browse metadata (service document and service metadata doc-
ument), even if the service itself doesn’t yet have any functionality.
You’ve basically started with a service stub and can then fill this stub
in an incremental way.

Figure 5.3 depicts the incremental service creation process. It’s based on
Figure 5.2 and adds incremental steps to the original process. These
incremental steps are displayed by the solid line arrows that depict
potential transitions among the three phases of data model definition,
service implementation, and service maintenance, which are symbol-
ized by the horizontal boxes. The dotted line stands for the one-time
activity of service publication as part of the service maintenance phase.
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Figure 5.3  Incremental Service Creation
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5.3.1 Service Builder

Supports develop-
ment lifecycle of an

OData service

The Service Builder contains all relevant functions for modeling and
developing OData services in SAP Gateway. This includes both code-
based development of services and the generation of OData services.
Also, it provides direct access to additional development-related func-
tions such as service registration/activation and service validation. The
Service Builder supports the entire development lifecycle of an OData
service in SAP Gateway, and you can start it using Transaction SEGW
(Figure 5.4).

Figure 5.4  Service Builder

Overall, the Service Builder addresses the needs of both experienced
and less experienced developers, as well as nondevelopers. Whereas
experienced developers can develop their own source code with maxi-
mum flexibility in their service implementation, they still can use the
built-in OData modeler and other tools to simplify the development pro-
cess. Less experienced developers will appreciate the ability to use tools
that generate OData services without having to write a single line of
code.

Service Builder allows for centrally displaying and creating the defini-
tion of an OData service. This includes runtime artifacts (model provider
class [MPC], data provider class [DPC], model, and service), OData arti-
facts (entity set, entity type, and properties), as well as data sources and
models.
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Project-based 
development

The modeling environment follows a project-based approach, and all
relevant data are consolidated in these projects. Development using the
Service Builder is therefore organized in projects, and creating a project
is the starting point of every service development using the Service
Builder. Projects are used to bundle all artifacts that are needed for ser-
vice development in one central place, thereby providing a means to
organize the development process. The Service Builder allows the devel-
oper to open several projects at the same time as shown in Figure 5.5 (in
this example, ZPRODUCT and ZSALESORDER).

Figure 5.5  Project-Based Development

Note

From a technical system perspective, the Service Builder is used in a system
where the Business Enablement Provisioning (BEP) component is installed,
which is typically an SAP Business Suite system (refer to Chapter 4 for a dis-
cussion of the different deployment options for SAP Gateway). The BEP com-
ponent is delivered as the IW_BEP add-on until SAP NetWeaver release 7.31.
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As of SAP NetWeaver release 7.40 SP 02, the BEP component is included in
SAP NetWeaver itself as part of the SAP_GWFND component. As a result, it’s
possible to perform development of OData services using the Service Builder
without additional effort in all systems after they run on top of SAP NetWea-
ver 7.40 SP 02 or later.

Because the Service Builder is part of the BEP component that is typically (but
not necessarily) installed on the SAP Business Suite system, you define the
service model (i.e., MPC) as well as the service logic (i.e., DPC) on the same
system where the BEP component is deployed. This is important to under-
stand if it comes to referencing other ABAP Repository objects such as Data
Dictionary (DDIC) elements (e.g., structures or data elements) that are
required when calling, for example, an RFC or BAPI.

Comprehensive
support for build-

ing OData services

The objective of the Service Builder is to provide comprehensive sup-
port for building OData services in a declarative way or by reusing exist-
ing business objects in the SAP Business Suite system. However, there
are restrictions in what can be declared or generated. Advanced OData
features may need to be implemented manually, and certain operations
aren’t available in a refined business object. The result of what you do in
the Service Builder will always be ABAP classes, which are based on the
OData channel programming model of SAP Gateway (covered in Section
5.5). You can always drill down to understand what is going on during
service execution or tweak the code.

5.3.2 Beyond the Service Builder: Supporting Tools during 
the Service Creation Process

As stated, the main tool during the service creation process is the Service
Builder. At the same time, SAP Gateway provides additional tools that
are very useful during the development of SAP Gateway services. These
tools allow, for example, for early testing of services or tracing what is
happening when calling a service. As such, this section aims to briefly
introduce you to some of the functionalities. For a more comprehensive
description of the development support and administration toolset of
SAP Gateway, see Chapter 14.
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SAP Gateway Client

Testing and 
troubleshooting

The SAP Gateway client can be used for both testing and troubleshoot-
ing and is a Representational State Transfer (REST) client built into
SAP Gateway. It can be started from within SAP GUI using Transaction
/IWFND/GW_CLIENT. After you’ve created a service, you can use this
tool for a first test, as shown in Figure 5.6.

Figure 5.6  SAP Gateway Client: Create Request

First, select an HTTP method such as GET, POST, PUT, PATCH, MERGE, or
DELETE 1. Then enter the URI of your request into the Request URI

input field 2. You can also set a certain HTTP header if needed. The
body of an HTTP request can be entered either manually or uploaded
from a file 3. In addition, it’s possible to use the Request function to
create, for example, an update request based on the response 4 of a read
request that has been issued against the URI before. Finally, perform the
HTTP request by choosing Execute 5.

Test casesA very useful feature of the SAP Gateway client is that test cases can be
stored in a database. The test case shown in Figure 5.6 is one of more
than 70 sample test cases that are delivered in the CORE_SAMPLES test
group for the TEA_TEST_APPLICATION and RMTSAMPLEFLIGHT stan-
dard test services. Note that the test cases of the CORE_SAMPLES test
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group have to be manually created from within the SAP Gateway client
by selecting 1 SAP Gateway Client and 2 Create Core Samples from
the menu as shown in Figure 5.7.

Figure 5.7  Creating Core Samples from within the SAP Gateway Client

If you’ve saved a request as a test case, you can add or change the
expected HTTP return code. A request can return multiple HTTP return
codes that are valid (e.g., 200, 401, 402, and 403). Therefore, multiple sta-
tuses, including status ranges separated by a dash, can be entered (e.g.,
201 401-403). In addition, it’s possible to use payload validation so that
the payload of an HTTP response can be compared with the expected
result set and not only with the expected HTTP return code.

One or more test cases can then be run using the SAP Gateway client.
The results are displayed in a table indicated by a traffic light icon
together with the expected and actual HTTP return code.

Error Log

The error log is the second tool the developer will find very useful when
it comes to troubleshooting. The error log can be called using Transac-
tion /IWFND/ERROR_LOG in the SAP Gateway server system. There is
also an SAP Business Suite system error log with a similar UI available
that can be used to analyze errors that occurred in the SAP Business
Suite system via Transaction /IWBEP/ERROR_LOG.

The error log is tightly integrated with the SAP Gateway client, so it’s
possible to rerun a request sent by a consumer that led to errors by
selecting Replay � SAP Gateway Client as shown in Figure 5.8.
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Figure 5.8  Transaction /IWFND/ERROR_LOG

Logging and 
tracing

As another way to dig into potential problems, monitoring log entries
can be generated for the system log and the application log of SAP Gate-
way. To access the system log, use Transaction SM21; to access the appli-
cation log, use Transaction /IWFND/APPS_LOG.

SAP Gateway Statistics and Payload Trace

When developing an OData service or a client application, the developer
will want to know about the performance of the service. The SAP perfor-
mance statistics can be obtained by an OData client by adding ?sap-sta-
tistics=true at the end of the request URL or by adding the HTTP request
header sap-statistics=true. The SAP Gateway framework provides
the performance statistic data to the client in the HTTP response header
sap-statistics. The response time data is also automatically stored by
the SAP Gateway framework for every incoming OData request in the
SAP Gateway server.

Based on this data, Transaction /IWFND/STATS (SAP Gateway Statistics)
provides a detailed statistics view of each service call handled by SAP
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Gateway. The data are aggregated on a regular basis so that statistical
data for each service can be analyzed easily. In a productive system, the
transaction is of great value for the system administrator to check the
performance of the OData services (see Figure 5.9).

Figure 5.9  Transaction /IWFND/STATS

Via Transaction /IWFND/TRACES, not only you can trace system perfor-
mance at the service call level for backend and hub systems but also the
payload of a request (see Figure 5.10).

Figure 5.10  Transaction /IWFND/TRACES
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Using the payload trace, it’s even possible to monitor the payload that is
sent by the client and the data that the client receives as a response from
the server. The traced data can also be used to replay service calls using
the SAP Gateway client.

Payload trace to 
create test cases

The replay capability can also be used to create test cases in the SAP
Gateway client for your service in a convenient way. To use the perfor-
mance and payload trace, it’s necessary to activate those traces.

We’ll discuss the SAP Gateway statistics transaction and the SAP Gate-
way performance and payload trace tool in more detail in Appendix A.

Catalog Service

Each SAP Gateway system provides a catalog service that can be used to
retrieve a list of all available services on SAP Gateway (Figure 5.11). The
catalog service is an OData service, and the list of available services can
be accessed via the following URL:

http://<server>:<port>/sap/opu/odata/iwfnd/CATALOGSERVICE/Catalog
Collection

Figure 5.11  Service Catalog: Service Document
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OpenSearch The catalog service supports OpenSearch. Developers or development
tools are thus able to use a free-text search to find services based on the
service description that can be retrieved using the following URL:
http://<server>:<port>/sap/opu/odata/iwfnd/CATALOGSERVICE/Service-
Collection/OpenSearchDescription.xml.

5.3.3 ABAP Development Tools for SAP NetWeaver 
and CDS Views

CDS views –
one concept,

two flavors

A CDS view, as the name indicates, is a view that can be defined to
retrieve an application-specific projection on the underlying business
data. This is needed because business data are usually distributed across
several database tables.

CDS provide a specification for an SQL-based Data Definition Language
(DDL). With SAP HANA CDS and ABAP CDS, there are two flavors of
this specification available. Whereas SAP HANA CDS views only need to
run on top of SAP HANA, ABAP CDS views have to support multiple
databases. This is similar to the ABAP Open SQL syntax, which is the last
common denominator of the different SQL dialects supported by SAP
NetWeaver AS ABAP.

Additional Resources

You’ll find a comprehensive and detailed comparison between ABAP CDS
views and SAP HANA CDS views at http://scn.sap.com/community/abap/blog/
2015/07/20/cds--one-model-two-flavors.

Let’s look at the example in Listing 5.1 of an ABAP CDS view, which was
taken from SAP online documentation at (http://help.sap.com/saphelp_
nw75/helpdata/en/7c/078765ec6d4e6b88b71bdaf8a2bd9f/content.htm).
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@AbapCatalog.sqlViewName: 'CUSTOMER_VW'

DEFINE VIEW cust_book_view_entity AS SELECT FROM scustom
JOIN sbook
ON scustom.id = sbook.customid
{

scustom.id,
scustom.name,
sbook.bookid

}

Listing 5.1  Example of an ABAP CDS View 

The CDS cust_book_view_entity entity creates a join on the two data-
base tables scustom and sbook, which are part of the SFLIGHT demo data
model. As a result, it’s possible to access the data via the ABAP Open
SQL statement in Listing 5.2.

SELECT id name bookid
FROM cust_book_view_entity
INTO TABLE @DATA(result_data)
WHERE ... .

Listing 5.2  Using ABAP CDS Views in ABAP Code 

ABAP Develop-
ment Tools for 
SAP NetWeaver

A CDS view can be defined using the Eclipse-based ABAP Development
Tools for SAP NetWeaver using the ABAP CDS statement DEFINE VIEW.
This will create two objects in the ABAP DDIC, namely an SQL view and
the CDS entity, as shown in Figure 5.12.

Figure 5.12  ABAP CDS View Building Architecture
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Note

The SQL view and the CDS entity are created in the same namespace in the
ABAP DDIC. As a result, both names have to be different. In Listing 5.1, the
SQL view is therefore denoted as CUSTOMER_VW, whereas the CDS entity is
denoted as cust_book_view_entity.

5.4 Steps in the Service Creation Process

In Section 5.2, we introduced the SAP Gateway service creation process,
which consists of three phases: data model definition, service imple-
mentation, and service maintenance. You can take different tracks for
creating your services depending on whether you go for service devel-
opment or service generation. Now let’s take a closer, more technical
look at the different tracks and the individual steps in these tracks. Due
to the various options for creating SAP Gateway services, you’ll find it
useful to refer to Figure 5.2 throughout this section.

5.4.1 Data Model Definition in the Service Builder

The first phase of the service creation process is the data model defini-
tion phase. The goal of this phase is to use the Service Builder to create
a data model that contains all information about the OData model of a
service, such as entity types, complex types, properties, and associa-
tions. So, when developing an SAP Gateway service (service develop-
ment) or when generating an SAP Gateway service by mapping a data
source (one specific type of service generation), the first main process
step is to create a data model.

Note

When using the second method of service generation, which is to redefine an
existing service, the data model isn’t defined but rather redefined based on
the existing business objects. For information about that kind of data model
building, see Section 5.4.5.
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You can define a data model in several ways with the Service Builder,
each of which addresses a specific use case.

Four options 
for defining an 
OData model

The first option is the manual creation of the various components of an
OData model, which is called a declarative model definition. Entity types,
associations, and association sets in this approach are created manually.

The second option is the import of data models in the entity data model
XML (EDMX) format that have either been defined by the OData Model
Editor of the SAP Web IDE or the entity data modeler provided by
Microsoft Visual Studio. In addition, it’s possible to import the service
metadata document of an existing OData service.

The third and fourth options, which are much more convenient for an
ABAP developer, are to create entity types by reusing data models that
already exist in the SAP Business Suite system. This can be done by the
import of DDIC structures/tables or by the generation of new entity
types based on an RFC/BOR interface or a search help.

Next, we’ll discuss all four options in a bit more detail.

Declarative Data Model

Entity typesA declarative data model is created manually using the Service Builder.
This method is mainly used to create entity types based on manually cre-
ated properties, which can be based on existing DDIC types. (To model
an OData service from scratch in WYSIWYG style, alternative OData
modeling tools, such as the SAP Web IDE [see Chapter 9] and Microsoft
Visual Studio, are better. However, in these cases, the model has to then
be imported into the Service Builder.)

Import Data Model via EDMX

Using the import model option, the developer can import a complete
OData model stored in an EDMX file, or a metadata document of an
existing OData service, into the Service Builder. This includes the defini-
tion of entity types, entity sets, associations, and other components. You
can import data model files that have been defined by graphical OData
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modeling tools or service metadata files of an existing OData service. If
you perform an import on a service metadata document or an EDMX file
for an existing project into the Service Builder, the Service Builder pro-
vides the option to reimport the data model files. A dialog will appear
that shows which artifacts will be added to and which will be deleted
from the data model.

Import Data Model via the Data Dictionary

DDIC type support To reduce the time required to create entity types and complex types in
your data model and to leverage existing data structures in your SAP
Business Suite system, you can import the following DDIC types into the
Service Builder:

� Views

� Database tables

� Structures

Beautification

When creating an entity type from a DDIC type, the name of the entity type
and the names of the properties of the entity type suggested by the Service
Builder are derived from the original names of the DDIC type and its fields by
removing the underscores and generating a name with camel case notation
instead. For example, when using a structure such as BAPI_EPM_PRODUCT_
HEADER, the Service Builder will propose the name BapiEpmProductHeader
for the entity type. The same naming convention for proposals is used for the
property names of the generated entity type—so that instead of the original
field name SUPPLIER_NAME, the field name of the generated entity type
becomes SupplierName.

The name of the entity set and its properties should be easy to understand
because they are visible to the consumer, and the names of the properties of
an entity set are derived from the property names of the underlying entity
type.

During the process of importing a DDIC structure or even afterward, the
developer can start a process called beautification. Through this process, you
can reduce the number of properties of an entity type by simply removing sin-
gle properties from it. In addition, you can maintain the names of the proper-
ties of an entity type.
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Reducing the number of properties to those that are absolutely necessary and
maintaining the names that are visible to the outside world are important for
creating services that are easy to consume. Publishing existing DDIC struc-
tures as-is to the outside world is usually not very beneficial.

Beautification is discussed in more detail in Chapter 7, Section 7.4.1.

Import Data Model via RFC/BOR

Function module 
and BAPI 
parameters

The Service Builder also enables you to create entity types from function
module parameters and BAPI parameters. A wizard is provided to guide
you through the process. Using the interface of an RFC function module
or a BOR interface is beneficial if they are being used to access the data
in the SAP Business Suite system. Both code-based implementation and
using the RFC/BOR Generator are possible with this approach.

Import Data Model via Search Help

Finally, the Service Builder also allows you to create entity types from
Search Helps. Again a wizard is provided to guide you through the pro-
cess. This wizard even performs the mapping of the READ and QUERY
method in the same step so that there’s no need for a separate service
implementation step.

5.4.2 Service Registration in the SAP Business Suite System

After the data model is defined, it must then be registered. Service reg-
istration in the SAP Business Suite manifests the data model definition
phase’s results. This means that the runtime objects required for an SAP
Gateway service are generated using the Service Builder. For the conve-
nience of the developer, the Service Builder also performs the necessary
tasks to register the service in the SAP Business Suite.

Service Registration versus Service Maintenance

As you may recall from Section 5.2, the service maintenance phase of service
creation involves activating and registering the service on the SAP Gateway
server. This isn’t to be confused with service registration in the SAP Business
Suite system, which is a process that occurs after the data model definition. In
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this section, we’re focusing on service registration in the SAP Business Suite
system. In Section 5.4.4, we’ll discuss service maintenance.

The difference between service registration and service maintenance is as fol-
lows:

� Service registration is an activity during service development that results in
the creation of artifacts needed for development.

� Service maintenance is an activity during the deployment/operation of an
SAP Gateway service that activates the service for consumption.

Stub class creation Based on the data model that has been created, the Service Builder gen-
erates a corresponding MPC and DPC, as well as extension classes. The
MPC contains the coding that programmatically declares the data model
being used by your service. The implementation of the service operations
is performed in the DPC. The extension classes that have been generated
by the Service Builder can be used to redefine methods of the generated
base classes by custom code because the base classes are always regener-
ated when the model has been changed. (For more information on MPC
and DPC, see Section 5.5.)

Service registration To be used as a service, some configuration steps have to be per-
formed, which are supported by the Service Builder (Figure 5.13).

Figure 5.13  Model and Service Definition Using Service Builder
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When generating a project for the first time, the developer has to specify
the names of the MPC and its extension class and the DPC and its exten-
sion class. In addition, the developer has to specify the Technical

Model Name and the Technical Service Name. The latter becomes the
external service name that is later used for publishing the service on the
SAP Gateway.

MPC and DPCThe MPC and the DPC are thus combined into an SAP Gateway service
by means of configuration, not coding. These configuration steps are
facilitated for you by the Service Builder when the project is generated
for the first time. The model and service definition process is depicted in
Figure 5.14. In addition to the MPC (covered in detail in Section 5.5.1)
and the DPC (see Section 5.5.2), two additional repository objects for
the model and the service are created as part of the registration process
of a service in the SAP Business Suite.

Figure 5.14  Register Service and Model

5.4.3 Service Implementation

During the service implementation phase of the service creation pro-
cess, operations that are to be supported by the SAP Gateway services
are implemented via ABAP code or by mapping the methods of a data
source on the properties of an OData model. Operations are executed on
the defined data model during runtime and encompass CREATE, READ,
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SAP Gateway Service
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Data Provider
Class
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UPDATE, DELETE, and QUERY methods (CRUD-Q methods) when using RFC
function modules or BAPIs, or they are limited to READ and QUERY when
using Search Help or CDS views.

It’s important to note that the service implementation phase applies
only to service development and to one of the service generation
options: data source mapping. For service generation using redefinition
or referencing of a CDS view as a data source, the service implementa-
tion step isn’t necessary because the implementation of the service will
be generated based on the customizing that has been performed in the
model definition step.

Note

We provide an introduction to service generation using redefinition in Sec-
tion 5.4.5 and to service generation by referencing a CDS view as a data
source in Section 5.4.6.

Next, we’ll give you a brief overview of the service implementation
phase for both scenarios where the phase is relevant: service develop-
ment and service generation via data source mapping.

Implementation for Service Development

Remember that during the service registration of the data model defini-
tion phase, a data provider extension class was created. Also during the
service implementation phase, operations that are to be supported by
the SAP Gateway services are being implemented.

To implement the supported SAP Gateway services using ABAP coding,
you have to manually redefine the respective methods of the data pro-
vider extension class, which should remind you of the CRUD-Q opera-
tions:

� <ENTITY_SET_NAME>_CREATE_ENTITY

� <ENTITY_SET_NAME>_GET_ENTITY

� <ENTITY_SET_NAME>_UPDATE_ENTITY
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� <ENTITY_SET_NAME>_DELETE_ENTITY

� <ENTITY_SET_NAME>_GET_ENTITYSET

Expand CRUD-Q 
methods

Access to these methods is offered in a very convenient way by the Ser-
vice Builder. This takes place by expanding the service implementation
node as depicted in Figure 5.15.

Figure 5.15  Code-Based Implementation

From there, you can navigate to the respective entry of an entity set,
expanding all CRUD-Q methods of an entity set. Selecting Go to ABAP

Workbench allows the developer to switch seamlessly to the Class
Builder (Transaction SE24) to implement an operation.

In addition, it might be necessary to redefine additional methods in the
data provider extension class that aren’t specific to an entity set such as
the CRUD-Q methods mentioned earlier (if, e.g., deep insert should be
supported by the OData service).

Implementation for Mapping RFC/BOR Interfaces

The process of implementation for mapping RFC/BOR interfaces is dif-
ferent from that of service development. To start the mapping process,
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you have to select Map to Data Source in the context menu of a CRUD-Q
method of an entity set in the Service Implementation folder (Figure
5.16). The mapping dialog of the Service Builder then allows you to
define relations between the interface parameters of a function module
or BAPI and the properties of an entity set.

Figure 5.16  Mapping the Methods of an Entity Set to a Data Source

CRUD-Q You can map the CREATE, READ, UPDATE, DELETE, and QUERY (CRUD-Q)
methods of each entity set separately. The actual service implementa-
tion, that is, the coding in the CRUD-Q methods mentioned earlier, will
be generated by the Service Builder based on the mapping you’ve per-
formed. The Service Builder supports the developer by providing map-
ping proposals if the entity type has been created by importing a BOR
interface or an RFC interface. For example, as shown in Figure 5.17, the
Service Builder suggested a mapping between the SoId property in the
SalesOrderSet entity set and the SO_ID property of the SOHEADERDATA
export parameter of the BAPI_EPM_SO_GET_LIST BAPI. This mapping can
automatically be suggested because the entity type on which the Sale-
sOrderSet entity set is based has been created by importing the
SOHEADERDATA interface parameter.

Steps in the Service Creation Process 5.4

207

Figure 5.17  Mapping Proposals: RFC Function Module

If additional methods for the entity sets are mapped, the Service Builder
checks the already existing mappings and derives proposals for them. If
you, for example, started to map the QUERY operation (GET_ENTITYSET) of
your entity set and now want to map the READ operation (GET_ENTITY),
the Service Builder provides a proposal for those properties that have
already been mapped in the GET_ENTITYSET method.

Implementation for Mapping Core Data Services Views

The implementation process for mapping CDS views is different from
that of mapping RFC/BOR interfaces. To start the mapping process, you
must select Map to Data Source in the context menu of an entity set in
the Service Implementation folder, rather than selecting the single
CRUD-Q methods.

The mapping dialog in the Service Builder then allows you to define
relations between the data source elements of a CDS view and the prop-
erties of an entity set (see Figure 5.18), as well as mapping an association
of a CDS view to a navigation property of an entity set as shown in
Figure 5.19.

Propose Mapping Button Mapping Proposals
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Figure 5.18  Mapping a CDS View: Properties

Figure 5.19  Mapping a CDS View: Association to Navigation Property

As a result, the READ and QUERY method of an entity set are mapped. The
implementation of CREATE, UPDATE, and DELETE methods (CUD) is still
possible via a code-based implementation or via mapping of appropriate
RFC function modules to the CUD methods.
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Implementation for Mapping Search Help

The implementation for mapping a search help is even easier than map-
ping RFC/BOR interfaces or CDS views. This is already included in the
data model definition step when creating an entity type based on a
search help. The wizard that is used to import a search help not only
offers to create an entity set but also already performs the mapping of
the Read and Query method as well (see Figure 5.20).

Figure 5.20  Import Search Help Wizard: Automatic Mapping of Query and Read 
Methods

As with entity sets, where the service implementation is based on CDS
views, the implementation of the CUD methods can be performed via a
code-based implementation or via mapping of RFC function modules
that offer write access.

5.4.4 Service Maintenance

The service maintenance phase primarily consists of the service activa-
tion and service registration step in the SAP Gateway system. For SAP
Gateway to consume a service using an OData client, this service has to
be activated. This activation takes place in the SAP Gateway server and
makes the service ready for consumption.

Activate and 
maintain service

The registration and activation of services in the hub is performed using
Transaction /IWFND/MAINT_SERVICE (Activate and Maintain Service).
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Transaction /IWFND/MAINT_SERVICE is also used to maintain all acti-
vated services on the SAP Gateway server. Services have to be changed if
they’ve been registered in several/additional connected SAP Business
Suite systems, or they can simply be deactivated.

Because the Service Builder is the one-stop shop for service develop-
ment, functionality has been added that allows the developer to directly
call the transaction for service maintenance from within the Service
Builder. This is even possible for remote systems.

The developer can either select a SAP Gateway system in the Service

Maintenance node (Figure 5.21) or can click on the Register button.

Figure 5.21  Registering a Service in the Hub from the SAP Business Suite

Service Generation

As outlined earlier in this chapter, when performing service generation via
redefinition, referenced data sources, or using Eclipse to create CDS views
with the OData.publish:true option, there is no service implementation
step. There is only the data modeling phase, and the service can be published
afterwards.
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5.4.5 Service Generation via Redefinition 

As explained in Section 5.2, redefinition is the process of generating a
service based on an existing data source. This is done using a wizard and
combines both the data model definition phase and the service imple-
mentation phase into the single phase of redefinition. The resulting gen-
erated service has to be registered and activated in the SAP Gateway
server system (the service maintenance phase) and can then be con-
sumed. The goal of redefinition is to allow for service creation with less
effort.

Existing business 
objects

There are quite a number of existing business objects in an SAP sys-
tem; SAP Customer Relationship Management (SAP CRM), SAP Prod-
uct Lifecycle Management (SAP PLM), and SAP Enterprise Asset
Management (EAM)—for example—all use a form of business object.
Although these business object models have been designed for differ-
ent use cases, all of them define objects, relations, actions, and que-
ries similar to those that can be found in the OData protocol. It there-
fore comes as no surprise that a lot of these business objects can be
used to generate OData services.

ExtensibilityIt’s also possible to generate SAP Gateway services from existing SAP
Gateway services. This scenario is used if a customer wants to extend an
OData service delivered by SAP, for example, the OData service used by
a SAP Fiori application. The extensibility of SAP Fiori applications is dis-
cussed end to end in Chapter 10.

Third-party OData 
services

On top of integrating existing SAP Business Suite business objects, it’s
also possible to integrate third-party OData services. However, this inte-
gration scenario has some technical restrictions.

Redefinition 
wizard

The wizard for generating an OData service using redefinition is almost
identical for all integration scenarios. Selecting one of the available
options (based on the installed add-on) starts a wizard that guides you
through the following three steps:

1. Select the business object.

2. Select artifacts of the data source (data model definition).

3. Generate runtime artifacts and service registration in the backend
(service implementation).
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In other words, the wizard starts with the data model definition part but
automatically performs the steps that belong to the service implementa-
tion phase. After the service has been registered and implemented in the
SAP Business Suite, it has to be activated in the SAP Gateway server.

The different integration scenarios described in this section are partly
based on specific add-ons listed in Table 5.1. If these add-ons have been
deployed to the SAP Business Suite system, the related context menu
options in the Service Builder are visible as shown in Figure 5.22.

Figure 5.22  Context Menu Options to Create a Data Model Using Redefinition

Most of the scenarios are also remote-enabled, which means that the
business object that is to be consumed (e.g., a Service Provider Interface

Name of Add-On Integration Scenario Remote-Enabled

IW_GIL Generic Interaction Layer 
(GenIL)

IW_SPI Service Provider Interface X

SAP_GWFND or IW_BEP Analytical Queries X

SAP_GWFND or IW_BEP 
and IW_FND

OData service (external) X

SAP_GWFND or IW_BEP OData service (SAP Gateway) X

Table 5.1  Add-Ons for Generating a Service Based on an Existing Data Source
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object) doesn’t have to exist in the same system in which the BEP com-
ponent is deployed. As a result, these scenarios can be implemented in
the SAP Gateway server (assuming you’re using hub deployment with
development on the hub).

Next, let’s look at the different possible sources for suitable business
objects in detail.

Generic Interaction Layer

Wrapper around 
existing business 
logic

Integration of GenIL with SAP Gateway offers the possibility of generat-
ing OData services based on existing GenIL components. GenIL is meant
to be a wrapper around existing business logic. It provides access to all
business objects via a unified interface for consuming application logic
in the UI layer by using the Business Object Layer (BOL) API. The BOL
consists of two pieces:

� GenIL 
The lower layer is a “dispatcher” that manages GenIL components and
their models at runtime and distributes requests from above to the
respective components implementing the requested objects.

� BOL 
The stateful layer provides optimized performance by avoiding expen-
sive repetitive access to the APIs and thus acts as a buffer for the UI.

While BOL was built for the SAP CRM Web Client, the role of GenIL is
different because it can be used for other integration scenarios as well.
The consumption of SOAP-based web services using the Web Service
tool that directly consumes GenIL is an example of such additional inte-
gration.

Similarly, SAP Gateway allows you to generate OData services leverag-
ing GenIL (as shown in Figure 5.23). The nodes, relations, and queries in
the GenIL model are transformed to the corresponding entities in an
OData model, as shown in Figure 5.24.
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Figure 5.23  Integration of GenIL with SAP Gateway

Figure 5.24  Mapping between the GenIL and OData Model

Although BOL (and thus GenIL) are frequently used for SAP CRM Web
Client, it has also been used in other SAP Business Suite applications
such as SAP ERP Financials and SAP ERP Human Capital Management
(SAP ERP HCM). The integration is contained in the IW_GIL add-on.
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This must be deployed locally on the SAP Business Suite system (e.g.,
SAP CRM) on top of the BEP component.

Note

The GenIL integration scenario isn’t remote enabled. To use services that are
generated based on GenIL objects, the IW_BEP add-on component (SAP_
GWFND starting from SAP NetWeaver release 7.40) has to be deployed on
the SAP Business Suite system.

Service Provider Interface

The Service Provider Interface was originally developed for SAP Product
Lifecycle Management (PLM). Service Provider Interface is a framework
generated within the application layer that has different consumers. The
framework is currently used not only by the applications for which it
was originally developed but also for various other applications within
the SAP Business Suite.

Service Provider Interface objects can be called remotely. As a result, it
isn’t mandatory to deploy the SAP Gateway IW_SPI add-on for Service
Provider Interface on the SAP Business Suite system. Because the add-on
calls the RFC interface of the Service Provider Interface layer, it can be
deployed on the SAP Gateway server system. The IW_GIL add-on
instead must be deployed locally on the SAP Business Suite system (e.g.,
SAP CRM). The integration of Service Provider Interface with SAP Gate-
way allows Service Provider Interface application building blocks to be
provisioned as OData services.

Further Resources

For more information about this topic, we recommend the following:

� SPI wiki on SCN: https://wiki.scn.sap.com/wiki/display/SPI

� SAP Online Help: http://help.sap.com/saphelp_crm70/helpdata/en/7c/
0f77e9f297402aacb48ca7110c7f2a/frameset.htm

Analytic Queries

Analytic queries are the main tools for consuming analytical data that
are embedded in business applications such as the SAP Business Suite
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and in data warehouses such as SAP BW. While analytic queries in SAP
Business Suite provide access to consistent operational data, analytic
queries in the SAP BW hub offer access to consistent, highly aggregated
data across the enterprise.

SAP Gateway and SAP BW integration allows you to publish SAP BW
content as an OData service that has been defined using multidimen-
sional expressions (MDX) or SAP BW Easy Queries. While the MDX
approach can also be used for SAP BW systems starting with 7.0, the SAP
BW Easy Query approach is only supported for release 7.30 and higher.
SAP BW Easy Queries are, however, easier to understand and to handle,
so they are recommended.

SAP BW Easy
Queries

SAP BW Easy Queries are analytic queries that meet certain criteria. For
a given SAP BW Easy Query, an RFC module is created in the system.
This is done automatically by the system, based on the available SAP BW
query definition. Using this RFC, an SAP BW Easy Query interface can
be defined as an OData service.

To release an analytical query as an SAP BW Easy Query, you have to
mark the corresponding checkbox in the query properties in the BEx
Query Designer (see Figure 5.25).

Figure 5.25  Defining an SAP BW Easy Query in the BEx Query Designer
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After this has been done, and the query is saved, the generation of the
RFC is triggered. General rules that apply for SAP BW Easy Queries are
that characteristics are on the rows, key figures are on the columns, and
free characteristics aren’t mapped to OData.

Analytical 
annotations

Dimensions, dimension attributes, and measures are represented as
properties of an entity type. The entity type representing the results of
an MDX or an SAP BW Easy Query is annotated as sap:seman-
tics=aggregate. Table 5.2 shows how SAP BW objects such as dimen-
sions, dimension attributes, and measures are represented in OData.
The table shows only the main annotations.

External OData Service

OSCIOData Services Consumption and Integration (OSCI) is an additional
integration scenario that aims at enabling consumption and integration
of any OData service. With SP 07 of SAP Gateway 2.0, this functionality
is fully integrated with the Service Builder. The integration has to be
implemented on the SAP Gateway server system, where the IW_BEP
add-on also has to be deployed. This is required because you need the
OData library for the consumption of an OData service, and this library
only resides on the SAP Gateway server. In addition, you also need IW_
BEP for service development on the SAP Gateway server.

As of SAP NetWeaver ABAP 7.40 SP 02, this prerequisite will be fulfilled
by any SAP NetWeaver ABAP system because the SAP_GWFND soft-
ware component comprises the required functionality.

SAP BW Objects OData Representation SAP Annotation

Cube of type Query Entity type sap:semantics=aggregate

Dimension Property sap:aggregation-role=
dimension

Dimension attribute Property sap:attribute-for=
<dimension name>

Measure Property sap:aggregation-role=
measure

Table 5.2  Analytical Annotations
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OData Service (SAP Gateway)

The Service Builder allows you to generate a service based on an existing
OData service in SAP Gateway. This integration scenario can be used to
extend an existing service. It creates a new service with the same inter-
face as the original service but with a changed behavior, which is accom-
plished by redefining methods in the new DPC extension class. The
extension of an OData service and an SAPUI5 application delivered by
SAP as part of the SAP Fiori reference apps is discussed in detail in Chap-
ter 10.

5.4.6 Service Generation via Referenced Data Sources

With the advent of SAP HANA, there was a paradigm shift in how
business applications were developed at SAP. Data provisioning in
SAP S/4HANA is based on CDS and OData. This is possible because
CDS not only addresses read-only scenarios but also transactional,
analytical, and search use cases. Using CDS, it’s possible to define
semantically reach data models by providing annotations that can be
leveraged by Smart Templates. These are smart in a sense that the UI
will provide an input field automatically if a property is marked as
sap:updatable. CDS views can easily be extended by extending the
view. The Referenced Data Source option allows ABAP developers
to define dynamic OData services based on CDS view definitions in
Transaction SEGW (see Figure 5.26).

Figure 5.26  CDS View as a Referenced Data Source in Transaction SEGW
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This means that any change in the underlying CDS view is automatically
reflected in the OData service that has been generated using the refer-
enced data source concept. In the Service Builder, you can select a CDS
view and select those entities and associations that should be part of the
OData Service.

5.4.7 Service Generation via OData.publish:true

Similar to the referenced data sources, OData.publish:true allows you
to publish CDS views as OData services directly from within the ABAP
Development Tools in Eclipse. By setting one simple annotation
(@OData.publish:true), you can publish a CDS view as an OData ser-
vice. Technically, a MPC and a DPC are generated, and these classes are
registered as an OData service in the SAP Business Suite backend. To
publish the registered service, a developer or administrator has to use
Transaction /IWFND/MAINT_SERVICE. In contrast to all other options
for creating OData services that we’ve shown thus far, this option
doesn’t make use of the Service Builder.

It’s planned that the @OData.publish:true option won’t only be suitable
for read-only and analytical services but will also be used for transac-
tional services by generating appropriate BOPF objects alongside the
OData service. By performing a code-based implementation of those
objects, the generated OData service will also support the capability to
create, update, and delete business data.

5.5 OData Channel Development Paradigm

Now that we’ve discussed the basics of the different tracks for the SAP
Gateway service creation process, let’s look a little closer at the OData
channel development paradigm, which is a specific approach for service
development. This introduction lays the theoretical foundation for
Chapter 6, which goes into great detail about service development. The
OData channel is part of the SAP Gateway basics if you plan on using
service development.



Introduction to OData Service Creation5

220

The OData channel for SAP Gateway allows you to develop content by
defining object models and registering a corresponding runtime DPC.
The advantage of the OData channel paradigm is a certain freedom with
respect to development; entire DDIC definitions and local interfaces of
the SAP Business Suite can be used to develop SAP Gateway services. In
addition, OData query options can be leveraged in the SAP Business
Suite systems so that only data that has been requested by the client are
selected from the SAP Business Suite system and sent back over the
wire. This results in highly optimized services and major performance
improvements due to a lower transferred data size.

Four components
of an SAP Gateway

service

SAP Gateway services with respect to the OData programming model
consist of four components:

� MPC 
Implemented to provide the runtime representation of your model
definition.

� DPC 
Called at runtime to perform data requests.

� Technical service name 
Used to register the service in the SAP Business Suite system together
with the technical model name.

� Technical model name 
Used to register the service in the SAP Business Suite system together
with the technical service name.

The technical service name and technical model name are automatically
generated with the MPC and DPC when generating a project using the
Service Builder.

5.5.1 Model Provider Class

The MPC is an ABAP class that provides the runtime representation of
your model definition; that is, the MPC defines the EDM of a service. As
such, all model information that you’ve defined in your project is gener-
ated into the MPC. As a consequence, you have to regenerate the MPC
every time you change the model definition in your project. The MPC is
important because everything you find in the service metadata document
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of an OData service published via SAP Gateway has programmatically
been defined in the MPC.

Technically, the model definition is actually generated into two classes:

� Base class 
Technically, the base class is derived from the /IWBEP/CL_MGW_PUSH_
ABS_MODEL superclass and has suffix _MPC.

� Extension class 
The extension class has the base class as the superclass and has the suf-
fix _MPC_EXT. The extension class will be registered via the technical
model name. In the extension class, you can choose which methods to
redefine and which methods to inherit from the base class.

In most cases, there’s no need for a developer to touch the MPC that has
been generated by the Service Builder. The exception to that rule is, for
example, if you want to build SAP Gateway services with features that
can’t (yet) be modeled using SAP Gateway tools. In this case, the devel-
oper can redefine methods in the model provider extension class (see
Figure 5.27).

Figure 5.27  Model Provider Class

Model Provider Base Class

Superclass of the model
provider extension class

Overwrites the DEFINE method

Inherits from /IWBEP/CL_
MGW_PUSH_ABS_MODEL
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Model Provider Class Deep Dive

Usually, there’s no need for a developer to tap into the coding of the MPC
being generated by the Service Builder. Let’s still take a closer look at the
methods being generated to get a better understanding of the underlying
framework.

The DEFINE method in the MPC generated by the Service Builder contains
calls to the entity type-specific define_<entity_type> methods and in addi-
tion a call to the define_Association method that creates the associations,
association sets, referential constraints, and navigation properties.

The GET_LAST_MODIFIED method is the basis for a handshake between the
SAP Business Suite and SAP Gateway to start a refresh of the cached metadata
of the service on the SAP Gateway backend and the SAP Gateway server after
the class has been changed. This method shouldn’t be changed manually.

In the entity type-specific DEFINE methods, the Service Builder generates the
coding that creates the parts of the OData model that define the entity types
and the entity sets that are based on entity type. The properties are created,
and those properties that have been marked as a key field in the Service
Builder are set as key fields in the coding:

lo_property = lo_entity_type->
create_property( iv_property_name = 'ProductID'
iv_abap_fieldname = 'PRODUCT_ID' ).
lo_property->set_is_key( ).

Finally, the entity type is bound to a DDIC structure, and one or more entity
sets are created. Note that an entity type that is bound to an existing DDIC
structure can leverage conversion exits as well as the labels of the data ele-
ments from the DDIC. The medium field label of a data element is used as
sap:label by default:

...
lo_entity_type->
bind_structure( iv_structure_name =
'BAPI_EPM_PRODUCT_HEADER' iv_bind_conversions = 'X' ).
...
lo_entity_set = lo_entity_type->
create_entity_set( 'Products' )

In the DEFINE_ASSOCIATION method, you can find the generated code that
defines associations, association sets, referential constraints, and navigation
properties of an OData model.
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5.5.2 Data Provider Class and Data Provider Extension Class

The DPC is an ABAP class that provides all methods required to handle
OData requests. It’s called at runtime to perform these requests; essen-
tially, we’re talking about the runtime representation of your service
implementation. For instance, a DPC executes CREATE, READ, UPDATE,
DELETE, QUERY, and many more operations.

Again, you can find an extension class (suffix _DPC_EXT) and a base class
(suffix _DPC). The data provider extension class inherits from the DPC
base class (see Figure 5.28). The DPC extension class is registered via the
technical service name. So the extension class is executed in your OData
service.

Figure 5.28  Data Provider Extension Class Interface
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Data Provider Class Deep Dive

For each entity set, the Service Builder creates methods that are called by the
framework if a CREATE, READ, UPDATE, or DELETE (CRUD) method is sent to
this entity set. For an entity set called <ENTITYSET>, the methods created in
the base class are shown in Table 5.3.

There are additional methods available that apply not only for a single entity
set but for all of them (nonentity set-specific methods). Examples of these
methods are the methods handling $EXPAND statements, deep insert state-
ments, or those that are called when a function import is performed. Let’s
take a closer look at these examples:

� GET_EXPANDED_ENTITY, GET_EXPANDED_ENTITYSET 
Handling of $expand statements is offered by the SAP Gateway framework
out of the box in a generic way after you’ve modeled the appropriate nav-
igation property and implemented the handling of navigation properties.
There might be situations where you instead handle $expand requests by a
specific application implementation. Examples are certain BAPIs such as
BAPI_EPM_SO_GET_LIST that, along with the header data, also retrieve
line items. In this case, when retrieving the sales order header data for a
certain sales order, the corresponding sales order items are also read. If the
entity set is also called to expand the line items alongside the sales order
header, this results in unnecessary database requests.

� CREATE_DEEP_ENTITY 
The counterpart of the $expand statement is the deep insert statement,
which calls the CREATE_DEEP_ENTITY method. A typical example is the
case where a sales order can only be created alongside at least one sales
order item. In contrast to the $expand statement, there’s no generic han-
dling of a deep insert request. The developer has to implement this
method.

� EXECUTE_ACTION 
The EXECUTE_ACTION method is a nonentity set-specific method as well.

DPC Method Name HTTP Verb Target

<ENTITYSET>_CREATE_ENTITY POST Entity set

<ENTITYSET>_DELETE_ENTITY DELETE Entity

<ENTITYSET>_GET_ENTITY GET Entity

<ENTITYSET>_GET_ENTITYSET GET Entity set

<ENTITYSET>_UPDATE_ENTITY UPDATE or PATCH Entity

Table 5.3  Entity Set-Specific CRUD Method Implementation in the DPC
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It’s rather service semantic and is called if a function import into an OData
service is called. Function imports allow you to execute functions that can
read and/or write data. Function imports are suitable whenever the busi-
ness scenario requires data to be read or changed that can’t be modeled
into an entity where you can use the CRUD-Q methods.

5.5.3 Technical Considerations

OData channel development can either take place on the SAP Business
Suite system or on the SAP Gateway server, as shown in Figure 5.29.
Both options are suited for certain use cases and have their advantages.
Wherever you develop, the BEP component has to be installed there, or
you have to use a system based on SAP NetWeaver 7.40 or higher.

Figure 5.29  OData Channel Development on the Hub or on SAP Business Suite
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Gateway service creation process. This process is strongly supported and
facilitated by the central SAP Gateway service creation tool: the Service
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processes of service development and service generation. In Chapter 6,
you’ll also be able to take advantage of the OData channel programming
paradigm that you’ve learned about here.
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