® Rheinwerk

First-hand knowledge. Publishing

Reading Sample

This chapter describes methods for analyzing individual ABAP programs,
for example, using tools such as performance trace and ABAP runtime
analysis, debugger, and code inspector. It also provides information on
optimizing ABAP code.

“Optimization of ABAP Programs”
Contents

@ Index

9 The Authors

SAP’ Performance Optimization Guide

Analyzing and Tuning SAP Systems

Learn how to make your SAP system run quickly and efficiently

Master core concepts like sizing, memaory management, nd

Explore new innovations in SAP Fiori, SAP Gateway, and

. ovations in SAP HANA .
innovations In >A Thomas Schneider

SAP Performance Optimization Guide:
Analyzing and Tuning SAP Systems

892 Pages, 2018, $89.95
ISBN 978-1-4932-1524-9

.
1)
.
-
0
]
J
!'.\.}
J
A
)

Thomas Schneider g RhEiﬂWEI’k
Publishing

-E www.sap-press.com/4370

https://www.sap-press.com/sap-performance-optimization-guide_4370/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse%20The%20Book&utm_content=1524

Chapter5
Optimization of ABAP Programs

This chapter explains how to perform a detailed performance analysis of
programs and transactions that you’ve already identified as expensive. In
other words, you’ve performed a workload analysis, consulted users, and
discovered that the performance of these programs isn’t satisfactory.

To begin the analysis of expensive ABAP programs, examine the single sta-
tistical records, which will give you an overview of the response times of a
transaction. For more in-depth analysis, use SAP performance trace for
detailed analysis of database accesses, remote function calls (RFCs), and
lock operations (enqueues). If you still can’t find the problem after using
these methods, you can use ABAP trace and ABAP debugger as additional
analysis methods. You should also routinely use the Code Inspector, which
has numerous statistical performance checks.

When Should You Read This Chapter?

You should read this chapter if you've identified a program or transaction
as being critical for performance and you now want to perform a detailed
analysis of it.

5.1 Performance Trace

Performance trace is a powerful tool for analyzing the runtime of ABAP
programs. It enables you to record a program runtime for the following
operations: database access (i.e., SQL user statements), RFCs, enqueue oper-
ations, and accesses to SAP buffers. Performance trace is a tool that was
developed by SAP and is thus identical for all database systems, except in
the fine details.

Runtime analysis of
ABAP programs

5 Optimization of ABAP Programs

Information on
activating a trace

To navigate to the initial performance trace screen, select System « Utilities »
Performance Trace or use Transaction STO5. In this view, you'll find buttons
to start, stop, and evaluate performance trace. You can also find checkboxes
for selecting the trace modes SQL-Trace, Enqueue Trace, RFC Trace, HTTP
Trace (as of SAP Basis version 7.10), and Buffer Trace. Only the field for the
SQL trace is marked by default. For standard analysis of a program, we rec-
ommend that you activate the SQL trace, enqueue trace, HTTP trace, and RFC
trace.

5.1.1 Activating a Performance Trace

You can start and stop a performance trace by clicking the Trace On and
Trace Off buttons in Transaction STO5. You can only create one perfor-
mance trace per application server at a time. In the State of Trace field, you
can see whether a trace is already activated and which user has activated
the trace. When you start a trace, a selection screen appears where you can
enter users for whom the trace should be activated. The name with which
you logged on is usually the user name entered here. Use a different name
if you want to trace the actions of another user. The user who activates the
trace doesn’t have to be the same one whose actions are being traced.

Keep in mind the following points when activating a trace:

® Ensure that the user whose actions are to be recorded only carries out
one action during the trace; otherwise, the trace won'’t be clear. You
should also ensure that no background jobs or update requests are run-
ning for this user.

® The performance trace is activated in the application server. For each
database operation, data is written to a trace file in the file system on the
application server. You must therefore ensure that you've logged on to
the same application server as the user to be monitored. This is particu-
larly important if you want to record an update request or a background
job and are working in a system with distributed updating or distributed
background processing. In this case, you won't know where the request
will be started, and, as a result, you'll have to start the trace on all appli-
cation servers with update or background work processes.

228

5.1

Performance Trace

®m The SQL trace only displays accesses to the database. SQL statements
that can be satisfied from data in the SAP buffer don’t appear in the trace.
If you want to analyze SAP buffer accesses, activate the SAP buffer trace.

m However, buffer load processes are also recorded in the SQL trace.
Because you're normally not interested in recording the buffer load pro-
cess in the SQL trace, first execute a program once without activating the
trace to allow the buffers to be loaded (i.e., the SAP buffers and database
buffers). Then run the program again with the SQL trace activated, and
use the results of this trace for evaluation.

® During the trace, look at the following monitors: the work process over-
view (for general monitoring), the operating system monitor of the data-
base server (for monitoring possible CPU bottlenecks on the database
server), and the database process monitor for direct monitoring of the
executed SQL statements. It makes no sense to watch these monitors
during the trace if you're logged on as the user being traced. The SQL
statements of the monitors would appear in the trace and thus make the
trace unreadable.

® The default trace file name is set with the SAP profile parameter rstr/
file. In the initial screen, you can assign a different name to the trace
file. Writing to the trace file is cyclical in the sense that when the file is
full, the oldest entries are deleted to make room for new entries. The size
of the trace file (in bytes) is specified by the SAP profile parameter rstr/
max_diskspace, for which the default value is 16,384,000 bytes (16 MB).

® You can also store recorded traces. For this purpose, select Performance
Trace « Save Trace or Performance Trace « Display Saved Trace to retrieve
a saved trace again.

5.1.2 Evaluating an SQL Trace

To evaluate a performance trace, select Display Trace in the initial screen. A
selection screen is displayed, and you can specify the part of the trace which
you want to analyze in the Trace Type field. In this and the following sec-
tions, we’ll discuss the evaluation of each of the trace types separately. In
practice, you can analyze all trace modes together. Table 5.1 lists other fields
you can use to restrict SQL trace analysis.

229

5 Optimization of ABAP Programs 5.1 Performance Trace

Trace Filename Name of the trace file. Normally this name should not be Operation The operation executed on the database, for example,
changed. PREPARE (preparation “parsing”) of a statement), OPEN (open a
database cursor), FETCH (transfer of data from the database),
Trace Type The default trace mode setting is SQL-Trace. To analyze an RFC and so on
trace, enqueue trace, HTTP trace, and buffer trace, select the i
corresponding checkboxes. Curs Database cursor number.
Trace Period Period in which the trace runs. Records Number of records read from the database.
User Name User whose actions have been traced. RC Database system-specific return code.
Object Name Names of specific tables to which the display of trace results is Statement Short form of the executed SQL statement. The complete
to be restricted. Note that, by default, the tables D010*, D020%*, statement can be displayed by double-clicking the correspond-
and DDLOG aren’t shown in the trace results. These tables con- ing row.

tain the ABAP coding and the buffer synchronization data.
Table 5.2 Fields in an SQL Trace (Cont.)

Execution time Restricts the display to SQL statements that have a certain

execution time.
[& Tracelist Edit Goto Swstern Help W
Operation Restricts the trace data to particular database operations. G | FldB e@@ DHE DDOoO BE W
Frace List
Table 5.1 Fields in the Dialog Box for Evaluating a Trace o] e e DD O
(&)[F]6)5EFL) [BLIEL) [S]E . . 18]
. : s : s : s HHMM:SS.MS £ Durtn Program Narme Object name op. Curs Array IHits RC Conn Statement
ExeCUtlng trace NeXt' Clle the ExeCUte bUtton' The baSIC SQL trace IISt 1S dlsplayed Flgure 16:11:13.358 476 ZTS_USEALW VBAK OPEN 1 a o 0 Rf3 SELECT WHERE "MANDT" ='900' AND "WBELN" ='1000034700" -
: . . s s 18:11:13.350 155 ZTS_USEALY yEAK FETCH 1 o1 ORaE -
5.1 shows an example of a basic trace list. Table 5.2 explains the fields dis- T e Nt e T
: 18:11:13.350 12 ZTS_USEALY yEAK Qo 1 00 0RaE
played 1n an SQL trace. M6:11113.359] 637 ZTS_USEALV VBAP OPEM 9D 0 0 0 Rf3 SELECT WHERE "MANDT" ='900' AND "VBELM" ='1000034700°
16:11:13.360 1,407 ZTS_USEALY VBAP FETCH 90 a 5 0 Rf3
18:11:13.362 9 ZTS_USEALY YEAP FETCH o0 1 0 100 Ry3
181113362 26,563 ZTS_USEALV yEAK OPEM 135 0 0 0 Rj3 SELECT WHERE "MANDT® ='000' AND "ERMAM" ='SCHNEIDERT'
. . . T 16:11:13.388 27 ZTS_USEALW VBAK FETCH 125 a 1 0 Rf3
hh:mm:ss.ms Time stamp in the form hour:mmute:second:mllllsecond. 16:11:13.388 8 ZTS_USEALW WBAK FETCH 125 1 0 100 R/3
18:11:12.380 13 ZTS_USEALY yEAK CQOSE 135 0 0 0 R3S
. . . . 16:11:13.430 0 SAPLCHDP Client o o o f54110_PTQ_76 2 Client OP_PUT_CLIENT_TABLE4SA 1481 6
Duration Runtime of an SQL statement in microseconds (|J-5)~ If the run- 16:11:13.438 0 SAPLCHDP Client o] o] 0 f54110_PTQ_76 # Client DP_PUT_CLIENT_TABLE4SA 2240 6
t. . th .I 50 000 th d . d t 16:11:13.442 0 SAPLCMDP Client a o o fs4110_PTOQ 76 ? Client DP_PUT_CLIEMT_TABLE4SA 1676 6
Ime Is more an ’ P’S‘ € Correspon Ing row is re 0 16:11:13.448 0 SAPLCMDP Client a a a fs4110_PTOQ_76 ? Client DP_PUT_CLIENT_TABLE45A 1496 6
identify that the SQL statement has a long runtime. However, 18:11:13.45 0 SAPLCNDP et T fs4110_PTQ_76 # Client DP_PUT _CLIENT_TABLE4SA 1703 6
y g : 4 16:11:13.462 0 SAPLCMDP Client o o a fz4110_PTO 76 ? Client DP_PUT_CLIEMT_TABLE4SA 1971 6
the value 150,000 ps is a somewhat random boundary. 18:11:13.467 0 SAPLCNDP et ER T fs4110_PTQ_76 7 Client DP_PUT _CLIENT_TABLE4SA 1878 6
’ 16:11:13.473 0 SAPLCMDP Client o o o fz4110_PTO 76 ? Client DP_PUT_CLIEMT_TABLE4SA 1676 6
18:11:13.477 0 SAPLCNDP et o0 oo f4110_PTQ_76 7 Client DP_PUT _CLIENT_TABLE4SA 1887 6
program Name Name of the program from which the SQL statement Ol’igi- 16:11113.493 78,080 SAPLOLEA WOFNDO2462624 Client o| o] o fe4110_PTQ_76 WOFNDO2462624 Clent OLE_FLUSH_CALL 8422 3361
16:11:13.494 659 SAPLOLEA EXECSTA a o 0 Rf3 COMMIT WORK =
nates. 181115440 0,435 SAPLOLEA WORNOD2452628, Client o0 oo f4110_PTQ_76 WOFNOI2462624 Client OLE_FLUSH_CALL 1715 1080 .
i i
Object Name Name of the database table or database view. 4
Table 5.2 Fields in an SQL Trace Figure 5.1 Basic Performance Trace List with Entries from SQL Trace and RFC Trace

230 231

5 Optimization of ABAP Programs

Direct read

Sequential read

Maximum number
of records

An SQL statement that appears in Figure 5.1 accesses table VBAK. The fields
specified in the WHERE clause are key fields in the table. The result of the
request can therefore only be either one record (Rec = 1) or no record (Rec =
0), depending on whether a table entry exists for the specified key. SQL
statements in which all fields of the key of the respective table are specified
as “same” are called fully qualified accesses or direct reads. A fully qualified
database access should not take more than about 2 to 10 ms. However, in
individual cases, an access may last up to 10 times longer, such as when
blocks can’t be found in the database buffer and must be retrieved from the
hard drive.

The database access consists of two database operations, an OPEN/REOPEN
operation and a FETCH operation. The REOPEN operation transfers the con-
crete values in the WHERE clause to the database. The FETCH operation locates
the database data and transfers it to the application server.

A second access in Figure 5.1 takes place in table VBAP. Not all key fields in the
WHERE clause are clearly specified with this access. As a result, multiple
records can be transferred. However, in our example, five records are trans-
ferred (Rec = 5). The data records are transferred to the application server in
packets, in one or more fetches (array fetch). An array fetch offers better
performance for applications than transferring individual records in a cli-
ent/server environment.

The second access takes place via an efficient index, thus the duration of
execution also remains significantly less than 10 ms. The third access (again
in table VBAK) takes place via a field for which there is no efficient index.
Thus, the duration of this statement is significantly longer than that of the
previous statement.

The maximum number of records that can be transferred in a FETCH opera-
tion is determined by the SAP database interface as follows: every SAP work
process has an I/O buffer for transferring data to or from the database. The
SAP profile parameter dbs/io _buf size specifies the size of this buffer. The
number of records transferred from the database by a fetch is calculated as
follows:

Number of records = dbs/io buf size +length of 1record in bytes

The number of records per fetch depends on the SELECT clause of the SQL
statement. If the number of fields to be transferred from the database is

232

5.1

Performance Trace

restricted by a SELECT list, more records fit into a single fetch than when
SELECT *is used. The default value for the SAP profile parameter dbs/io _buf
sizeis 33,792 bytes and shouldn’t be changed unless recommended explic-
itly by SAP.

Guideline Value for Array Fetch
The guideline response time for optimal array fetches is less than 10 ms

per selected record. The actual runtime greatly depends on the WHERE
clause, the index used, and how effectively the data is stored.

Other database operations that may be listed in the SQL trace are DECLARE,
PREPARE, and OPEN. The DECLARE operation defines what is known as a cursor
to manage data transfer between ABAP programs and a database, and also
assigns an ID number to the cursor. This cursor ID is used for communica-
tion between SAP work processes and the database system.

In the subsequent PREPARE operation, the database process determines the
access strategy for the statement. In the Statement field, the statement is to
be seen with a variable (INSTANCE =:A0, not shown in Figure 5.1). To reduce
the number of relatively time-consuming PREPARE operations, each work
process of an application server retains a certain number of already parsed
SQL statements in a special buffer (SAP cursor cache). Each SAP work pro-
cess buffers the operations DECLARE, PREPARE, OPEN, and EXEC in its SAP cursor
cache. After the work process has opened a cursor for a DECLARE operation,
the same cursor can be used repeatedly until it’s displaced from the SAP
cursor cache after a specified time because the size of the cache is limited.

The database doesn’t receive the concrete values of the WHERE clause (MANDT
=100, etc.) until the OPEN operation is used. A PREPARE operation is only nec-
essary for the first execution of a statement, as long as that statement
hasn’t been displaced from the SAP cursor cache. Subsequently, the state-
ment, which has already been prepared (parsed), can always be reaccessed
with OPEN or REOPEN.

Figure 5.1 shows the SQL trace for the second run of the same report.
Because the DECLARE and PREPARE operations are executed in the report’s
first run, our example shows only the OPEN operation.

233

[«]

Declare, prepare,
open operations

Prepare operation

First and subse-
quent executions

5 Optimization of ABAP Programs

Network problems

Compression

If you've identified an SQL statement with a long runtime, you should acti-
vate the trace again for further analysis. It's useful to perform the trace at a
time of high system load and again at a time of low system load. If you find
that the response times for database accesses are high only at particular
times, this indicates throughput problems in the network or in database
access (e.g., an I/0 bottleneck). For detailed information, see Chapter 2, Sec-
tion 2.2.2. If, on the other hand, the response times for database access are
poor in general (not only at particular times), the cause is probably an inef-
ficient SQL statement, which should be optimized.

When evaluating database response times, remember that the processing
times of SQL statements are measured on the application server. The run-
time shown in the trace includes not only the time required by the database
to furnish the requested data but also the time required to transfer data
between the database and the application server. If there is a performance
problem in network communication, the runtimes of SQL statements will
increase.

Trace Comparison

You can best recognize network problems between the database and the
application server by comparing traces as follows: First, execute the same
SQL trace at least twice—once on the application server that is on the
same computer as the database and is directly connected to the database,
and once on an application server that is connected to the database via the
TCP/IP network. Compare the two SQL traces. If there are significantly
higher response times (greater by 50% or more) on the application server
connected via the network, you have a network problem. Perform this test
at a time of low system load, and repeat it several times to rule out run-
time differences due to the buffer-load process on the database and appli-
cation servers. This test works only when your application server is
connected to the database via IPC.

5.1.3 Other Functions in the SQL Trace

Using the Summary function of the SQL trace, you can get an overview of
the most expensive SQL accesses. If you navigate via Trace List - Compress
Trace according to SQL Statements, a list is displayed, which shows the data
listed in Table 5.3 for each statement. Sort the list according to the runtimes

234

5.1

Performance Trace

of the SQL statements. The SQL statements with the longest runtimes
should be optimized first.

Field Explanation

Executions Number of executions

Redundancy Number of redundant (identical) executions

Duration Runtime for all executions of an SQL statement in micro-
seconds

Object Name Name of the table

Statement Short form of the executed SQL statement

Table 5.3 Fields in the Compressed Summary of an SQL Trace

Inefficient programs are often characterized by the fact that they read iden-
tical data from the database several times in succession. To help you iden-
tify these identical SQL statements, choose Trace list « Display Identical
Selects to see a list of identical selects that tells you how often each identi-
cal select was executed. By using this function in conjunction with the com-
pressed data, you can roughly see how much of an improvement in
performance can be gained by avoiding identical SQL statements via more
skillful programming.

After this preliminary evaluation using the SQL trace, you have all of the
information necessary for a more detailed analysis:

® Program name and transaction of the executed program
Using the ABAP Display button in the trace list, you can jump directly to
the code location that executes the SQL statement.

® Table name
The DDIC Info button gives a summary of the most important dictionary
information for this table.

® WHERE clause in the SQL statement.

= Analysis
Detailed analysis of the SQL statement, for example, EXPLAIN function.

For more information on these functions, see Chapter 11.

235

Identical selects

Other functions

5 Optimization of ABAP Programs

Procedure for For customer-developed ABAP programs, perform (at least) the following
quality control - checks as a form of program quality control:

1. For each customer-developed ABAP program, perform an SQL trace
either on the production system or on a system with a representative
volume of test data.

2. From the basic trace list display, create a compressed summary to find
the SQL statements with the longest runtimes: Trace List « Compress
Trace according to SQL Statements.

3. Display a list of identical accesses to find SQL statements that are exe-
cuted several times in succession: Trace List « Display Identical Selects.

4. Use these lists to decide whether the program should be approved or
whether it needs to be improved by the responsible ABAP developer.

5. Save a copy of the lists along with the program documentation. If pro-
gram performance diminishes at a later date (whether due to a modifica-
tion or due to the growing data volume), perform another SQL trace, and
compare it to the earlier one. Monitor performance in this way after each
significant program modification.

These measures can be used not only to monitor customer-developed pro-
grams but also to regularly monitor frequently used, standard SAP transac-
tions that are critical to performance. If the runtimes of particular SQL
statements increase over time, you may need to archive the corresponding
table.

5.1.4 Evaluating a Buffer Trace

Table 5.4 contains and explains the fields that are displayed in a buffer trace.
The last three columns are only displayed if you click the More Info button.
You can find more detailed explanations on SAP table buffering in Chapter
12.

hh:mm:ss.ms Time stamp in the form hour:minute:second:millisecond

Duration Runtime of an SQL statement in microseconds

Table 5.4 Fields of a Buffer Trace

236

5.1

Performance Trace

Program Name Name of the program that has triggered the buffer call

Object Name Name of the database table or database view
Operation Name of the function that was executed on the buffer
Records Number of records that were read from the buffer

RC Return code:

B 0: Function executed correctly

B 64: No further records available

B 256: Records not available in the buffer

B 1024: Records not available in the buffer, buffer is loaded
(for parallel read accesses)

Statement In the OPEN operation, the buffering type is indicated:

® G: Generic buffering

® P:Single-record buffering

R: Full buffering

S: Export/import buffer

C: CUA buffer

O: OTR buffer

E: Export/import buffering in shared memory

Table 5.4 Fields of a Buffer Trace (Cont.)

5.1.5 Evaluating a Remote Function Call Trace

Table 5.5 lists the fields displayed in an RFC trace.

hh:mm:ss.ms Time stamp in the form hour:minute:second:millisecond.
Duration RFC runtime in microseconds.
Program Name Name of the program from which the RFC originates.

Object Name Name of the recipient, for example, the SAP instance or com-
puter that was called.

Table 5.5 Fields in an RFC Trace

237

5 Optimization of ABAP Programs

Detailed analysis in
the RFC trace

Operation For entry Client: RFC sent, that is, the instance on which the
trace is executed is the client (sender).

For entry Server: RFC received, that is, the instance on which
the trace is executed is the server (recipient).

Records Not used.
RC Return code (for successful execution: 0 [zero]).
Statement Additional information on the RFC, including the names of the

sender and recipient; name of the RFC module; and amount of
data transferred.

You can view all information on the RFC by double-clicking the
corresponding row in the RFC trace.

Table 5.5 Fields in an RFC Trace (Cont.)

Figure 5.1 shows an example of an RFC (OLE_FLUSH CALL).

Like the SQL trace, the RFC trace provides several detailed analysis func-
tions:

® By double-clicking a row of the RFC trace or by clicking the Details but-
ton, you can obtain complete information on the RFC, including the
names and IP addresses of the sender and recipient, the name of the RFC
module, and the transferred data quantity.

® By clicking the ABAP Display button, you can view the source text of the
corresponding ABAP program.

5.1.6 Evaluating an HTTP Trace

Table 5.6 contains and explains the fields that are displayed in an HTTP
trace. You'll find more detailed descriptions of HTTP calls in Chapter 8.

hh:mm:ss.ms Time stamp in the form hour:minute:second:millisecond.

Duration Runtime of the HTTP call in microseconds.

Table 5.6 Fields of an HTTP Trace

238

5.1

Performance Trace

Program Name Name (logical path) of the executed HTTP call.
Object Name Name of the recipient, for example, the SAP instance called.

Object Name For entry Client: HTTP sent, that is, the instance on which the
trace is executed is the client (sender).
For entry Server: HTTP received, that is, the instance on which
the trace is executed is the server (recipient).

RC HTTP return code (200 for successful execution, 401 for failed
authentication, etc.).

Statement Additional information on the HTTP, including the names of
the sender and recipient, name of the HTTP call, and amount
of data transferred.

You can view all information on the HTTP call by double-click-
ing the corresponding row in the HTTP trace.

Table 5.6 Fields of an HTTP Trace (Cont.)

5.1.7 Evaluating an Enqueue Trace

Table 5.7 contains and explains the fields that are displayed in an enqueue
trace. The last three columns are only displayed if you click the More Info
button. You can find more detailed explanations of the SAP enqueue con-
cept in Chapter 10.

hh:mm:ss.ms Time stamp in the form hour:minute:second:millisecond.
Duration Runtime of the enqueue/dequeue statement in microseconds.

Program Name Name of the program from which the enqueue statement
originates.

Object Name Name of the enqueue object. To see details of the correspond-
ing object, call the ABAP Data Dictionary (using Transaction
SE12) and enter the object name in the field under Lock
Objects. To view the properties of the objects, select Display.

Table 5.7 Fields in an Enqueue Trace

239

5 Optimization of ABAP Programs

Field Explanation

Operation Operation ENQUEUE: Enqueue(s) set.
Operation DEQUEUE: Individual enqueues are released.

Operation DEQ ALL with specific object entry in the Object col-
umn: All enqueues for the object in question are released.
Operation DEQALL with no object entry in the Object column
(entry {{{{{{{{{{): All enqueues for the transaction in ques-
tion are released (end of a transaction).

Operation ENQPERM: At the end of the dialog part of a transac-
tion, enqueues are passed on to update management.

5.2 Performance Analysis with ABAP Trace (Runtime Analysis)

5.2.1 Activating an ABAP Trace

You activate an ABAP trace for an SAP GUI transaction as follows:

1.

Use the following menu path to access the initial screen of the ABAP
trace: System « Utilities « Runtime Analysis Execute. Alternatively, select
Transaction SAT.

. In the upper part of the screen, under Measure, enter a transaction, pro-

gram name, or function module, and then select Execute to start the
measuring process. You can also click the In Parallel Mode button to
access a process list, where you can activate the ABAP trace for the cur-
rently active work process.

3. The system starts to measure the runtime and creates a file with the
Records Number of enqueues that are set or released.
resulting measurement data.
RC R e e 4. When you want to return to the initial runtime analysis screen, simply
Statement More detailed information on the enqueue: exit the transaction, function module, or program as normal, or start the

Entries Excl or Shared: Exclusive or “shared” locks; name of
locked unit, (e.g., “MARC 900SD000002”: Material SD000002
is locked in table MARC, in client 900). The entries in this row
correspond with the properties of the enqueue object defined
in the ABAP Data Dictionary.

Table 5.7 Fields in an Enqueue Trace (Cont.)

5.2 Performance Analysis with ABAP Trace
(Runtime Analysis)

runtime analysis again.

If a runtime measurement is to be performed for a transaction that is

started via a web browser or an external system, follow these steps:

1
2.

Start the ABAP runtime analysis transaction as previously described.

Select the Schedule button under User/Service. The Overview of Schedu-
led Measurements screen is displayed.

Select Schedule Measurement, and enter the following data in the dialog
box:

— User, client, and server

Process type, for example, dialog, background processing, or HTTP

For SAP GUI
transactions

For web browser or
external systems

You should use an ABAP trace, also referred to as ABAP runtime analysis,
when the runtime of the programs to be analyzed consists mainly of CPU

Object type (e.g., transaction, report, or URL) and object name

time. During an ABAP trace, not only the runtime of database accesses ~ Maximum number of scheduled measurements

(SELECT, EXEC SQL, etc.) is measured but also the time required for individual
modularization units (MODULE, PERFORM, CALL FUNCTION, SUBMIT, etc.), internal
table operations (APPEND, COLLECT, SORT, READ TABLE), and other ABAP state-
ments.

- Note here that an end-to-end transaction may involve multiple
measurements. To ensure that all parts are recorded, you should
specify multiple measurements here.

Expiry date, time, and description

User interfaces are available in SAP GUI (Transaction SAT) and in the 4. Close the window with the confirmation Schedule Measurement. The
Eclipse-based ABAP development environment—the underlying tracing
technology is identical.

measurement is then scheduled and appears in the overview list.

240 241

5 Optimization of ABAP Programs

For BSP and
Web Dynpro ABAP
applications

D]

Activating traces
in Eclipse

5. Start the transaction to be analyzed. While the transaction is running,
the columns Started and Status indicate whether measurement files are
created.

6. When the transaction has ended, you evaluate the measurement files as
described in the next section. If a measurement is still open because, for
example, the web browser wasn't properly closed, you can stop a mea-
surement by clicking Stop Active Measurement (on the Evaluate tab, as
discussed later).

To start a runtime analysis for Business Server Pages (BSPs) and Web Dyn-
pro ABAPapplications, call Transaction SICF (Service Maintenance). Select
the service to analyze in the navigation tree, and activate the runtime
analysis via Edit - Runtime Analysis - Activate.

As of version 6.40, you can restrict the procedure to a user name during
activation and specify a variant to use for recording. Here, it’s also possible
to specify the measurement accuracy.

Information on Measurement Accuracy

In the initial screen, a traffic light on the Measure tab indicates whether
the runtime measurement can determine reliable times. If the traffic light
is red, it means this isn’t possible because of nonsynchronized CPUs in a
computer with multiple processors. Therefore, you must perform the time
measurements with low accuracy (Settings « Measurement Accuracy -
Low). You can find further operating system-specific information in SAP
Notes 20097 and 87447. If you want to perform a runtime analysis in paral-
lel mode, refer to SAP Note 729520.

When you're activating an ABAP trace, filter functions enable you to restrict
the trace to a particular function module or group of ABAP statements or to
adjust an aggregation. Section 5.2.3 explains how to use these options.

To activate a trace in an Eclipse-based ABAP development environment,
select the ABAP Profiling perspective in Eclipse first. This perspective con-
tains the ABAP Trace Requests and ABAP Traces views. In the ABAP Trace
Requests view, select a system and choose Create Trace Requests in the con-
text menu. You can now define in a dialog box which actions are supposed

242

5.2 Performance Analysis with ABAP Trace (Runtime Analysis)

to be recorded. The options are the same as described for the SAP GUI inter-
face.

You can activate the runtime analysis either in SAP GUI or in Eclipse. The
analyses recorded can be evaluated with both interfaces.

When you activate an ABAP trace, bear the following points in mind (which
are similar to those that apply to an SQL trace):

® Because you're normally not interested in recording the buffer load pro-
cess in the trace, you should first execute a program once without acti-
vating the trace, thereby allowing the buffers to be loaded (i.e., the SAP
and database buffers). Then run the program again with the ABAP trace
activated, and use the results of this trace for evaluation.

® Perform the trace at a time of low system load to ensure that the mea-
sured times aren’t influenced by a temporary system overload (e.g., a
CPU overload).

® To enable runtime analysis, the system requires the SAP profile parame-
ters abap/atrapath and abap/atrasizequota. These parameters are set
when the system is installed. The profile parameter abap/atrapath indi-
cates in which directory the trace files are written. You can restrict the
maximum size of all ABAP trace files by using the parameter abap/atra-
sizequota. The trace files are deleted after 30 days if you don’t change the
deletion date (Evaluate tab).

5.2.2 Evaluating an ABAP Trace

To display the results of an analysis, select the desired file under the
Evaluate tab in Transaction SAT. In Eclipse, select the file in the ABAP Traces
view.

The runtime analysis presents different views of the measurement results
in list form or as graphics.

® (Click the Hit List button to view alist that displays the execution time for
each statement. This list is sorted in decreasing order of net times (see
Figure 5.2).

® Via the Hierarchy button, you obtain a presentation of the chronological
sequence of the recorded parts of the program.

243

Rules when
activating traces

Evaluation views

5 Optimization of ABAP Programs

m Other buttons will display specific evaluations that, for example, catego-
rize database tables or modularization units.

If you've generated an ABAP trace, first display the Hit List. Sort the hit list
according to net time to get an overview of statements with the highest net
runtimes. If the ABAP trace was recorded in aggregate form, only the Hit List
is available as an evaluation option.

Desktop 1 Hit List

[ppplication Edit Goto System Heln

) B IC@@ CHE nnoas BE @0

Runtime Analysis: Display Measurament

=]

DatefTime 13-01-02 / 16:05:56 Object ZTS_USEALY System PTQ
User SCHMEIDERT Description DEFALLT

DE tables Profl. Times

(R =300 03 = 012 =0 7 A 5 = ==
Hit List
Hits | Gross [microsec] Met [microsec] Gross [%] Met [%] Statement/Event Program Called Calling Program
2 88,497 88,497 31.54 31.83 wait for RFC SAPLOLEA SAPLOLEA
i, 26,427 26,427 9.42 9.50 DB: Open YBAK [ZTS_USEALV 3ZTS_USEALV
2 114,457 25,960 40.79 9.34 Rfc OLE_FLUSH_CALL SAPLOLEA SAPLOLEA
9 6,513 5,026 2.32 1.81 Rft DP_PUT_CLIENT _TABLE4SA SAPLCNDP SAPLCHDP
342 9,883 4,990 352 1.72 Perform CONVERT _TO_VARIANT SAPLOLES SAPLOLEA
53 7,205 4,502 257 162 CalM {OE6*CL_SALY_FUNCTIONS} CL_SALV_FUNCTIONS=_ CL_SALW_FUMCTIONS=============(P
342 4,297 4,297 1.52 1.55 Perform COLLECT_ARS SAPLOLER SAPLOLEA
1 216,520 E7EE 77.16 1,36 Cal Screen 0500 SAPLSLYC_FULLSCREEM SAPLSLWC_FULLSCREEM
242 3,705 3,705 1.32 1.33 Perform COLLECT_VARS SAPLOLEA SAPLOLEA
1 280,546 3,668 99.98 1.32 Submit Report ZTS_USEALY SAPLS_ABAP_TRACE D SAPLS_ABAR_TRACE_DATA
1,495 2,427 2,427 086 087 CalM {O:7*CL_SALY_FUNCTION}- CL_SALV_FUNCTION==__ CL_SALW_FUNMCTIONS
2 5,218 2,369 1.00 0.85 Call M. LCL_MYXMLPARSER=>ABAP_ CL_GUI_DATAMAMNAGER —CL_GUI DATAMANAGER====
62 5,843 2,335 244 0.84 Call Function AC_CALL_METHOD SAPLOLEA SAPLOLEA,

Gross and net time

Figure 5.2 ABAP Runtime Analysis: Aggregated Hit List of Call Locations Sorted
according to Net Time

The runtime analysis establishes the gross and/or net times of individual
program calls in microseconds (us). Gross time is the total time required for
the call. This includes the times of all modularization units and ABAP state-
ments in this call. The net time is the gross time minus the time required
for the called modularization units (MODULE, PERFORM, CALL FUNCTION, CALL
SCREEN, CALL TRANSACTION, CALL DIALOG, SUBMIT) and separately specified ABAP
statements if logging was activated for them. For “elementary” statements
such as APPEND or SORT, the gross time is the same as the net time. If the gross
and net times for a call differ, this call contains other calls or modulariza-
tion units. For example, if a subroutine shows a gross time of 100,000 ps

244

5.2 Performance Analysis with ABAP Trace (Runtime Analysis)

and a net time of 80,000 ps, this means 80,000 ps are used for calling the
routine itself, and 20,000 ps are assigned to other statements in the rou-
tine, which were logged separately. The Eclipse-based evaluation interface
uses the terms Total Time and Own Time as synonyms.

Figure 5.2 shows the analysis of a sample program. In this program, data
records were read from tables VBAK and VBAP and were displayed via the
ABAP List Viewer (ALV; SAP class CL_SALV TABLE). The Hit List contains the
ALV display function (program SAPLOLEA) with 39% net time and access to
table VBAK at the fore with 8%.

Resource Requirement Due to Runtime Analysis

The runtime analysis involves a lot of work; generating the analysis can as
much as double the runtime of a program (compared to a program run
without runtime analysis activated). The runtime analysis takes this into
account and displays correspondingly adjusted runtimes in the lists. How-
ever, if you look at the statistical record created while the runtime analysis
was active, you'll see that it’s clearly distorted when compared to a pro-
gram run without runtime analysis. In contrast, letting a performance
trace run simultaneously doesn’t involve much extra load —less than 5%.

5.2.3 Using Variations

When you execute the ABAP trace function, you can use variants to adjust
how the trace is carried out. We highly recommend the use of variants. It’s
particularly advisable to try out these options when analyzing a complex
program because data quantities of several megabytes can be generated
very quickly, much of which is often completely irrelevant to the analysis.
Using variants, you can determine more precisely what you want to ana-
lyze.

You can see the currently selected variant in the initial screen of the run-
time analysis under Measurement. The DEFAULT variant is already set in the
system. You can save your personal settings as your own variant.

The Display Variants or Change Variants button takes you to the screen
where you can enter the settings for a variant:

245

[«]

Settings

5 Optimization of ABAP Programs

5.2 Performance Analysis with ABAP Trace (Runtime Analysis)

® Aggregation type

On the Duration and Type tab, you can, among other things, set the type
of aggregation. Aggregation is always relevant when a statement is called
numerous times in a program, for example, an SQL statement within a
loop. If aggregation isn’t activated, an entry will be written to the trace
measurement file each time the SQL statement is called. If aggregation is
activated, only one entry will be recorded, in which the runtimes for each
execution are added together. On the Duration and Type tab, you're
offered two options:
— No Aggregation
An entry is written to the measurement file each time the statement
is called.

— Aggregation According to Call Location
The runtimes for individual executions of a statement are added
together in one entry. However, if a statement appears several times
in a program at several locations in the program text, one entry is
written for each time it appears in the program text. This option is
activated in the default variant.

In general, activating aggregation dramatically reduces the size of the
measurement file, and, in many cases, an analysis of long program
sequences is only possible with aggregation. When you use aggregation,
some evaluation functions (e.g., the hierarchy list) are lost and therefore
no longer available for evaluation.

Trace on remote systems

Moreover, you specify on the Duration and Type tab whether RFCs and
update calls are supposed to be recorded as well. If you activate the cor-
responding option, this information is forwarded to the corresponding
processes. To be able to record an RFC in an external system, that system
must accept external trace calls. You configure this using the rstr/
accept remote trace parameter, which you must set to true. The trace
file is then written to the external system. If you use the end-to-end (E2E)
trace in SAP Solution Manager, this function is activated automatically,
and the E2E trace automatically reads all trace files.

Filter operations
The settings on the Statements tab determine which operations will be
monitored in the runtime analysis.

246

Tip

If you want to analyze operations on internal tables such as Append, Loop,
or Sort, activate the Read Operations and Change Operations checkboxes
under Int. Tables. These settings aren’t activated in the default variant.

® Filter program parts

On the Program Parts tab, you can set which parts of the program to ana-
lyze. If you select the Restrict to Program Parts option, you can restrict
the trace to selected classes, function groups, and programs, and their
subcomponents, methods, function modules, and form routines.

Procedure for More Complex Programs

How should you carry out an analysis of more complex programs? We rec-
ommend that you first carry out an analysis of the entire program with
aggregation according to call location and without analyzing operations
on internal tables (default variant settings). The objective of this analysis is
to find the modularization units with the highest runtimes. After this ini-
tial analysis, sort the hit list according to net times and identify the modu-
larization units or statements with high runtime.

If you can’t deduce recommendations for optimizing the program from
this first analysis, perform a more detailed analysis, setting variants to
limit the analysis to these modularization units. Simultaneously, activate
the trace for operations from internal tables and deactivate the aggrega-
tion.

5.2.4 Using Timeline Views

The Eclipse-based interface provides an exclusive view, which displays the
program flow on a timeline. This view indicates the number of nesting lev-
els of the program and the calls with a high net time.

To use the timeline view, follow these steps:

1. Choose the ABAP Profiling perspective and ABAP Traces view in the
Eclipse-based ABAP development environment. Select a file, and open

247

[+]

[+]

5 Optimization of ABAP Programs

the Call Timeline view. The system displays the time line of the runtime
analysis (see Figure 5.3).

2. You can use navigation tools such as zoom settings and the preview to
navigate in the lower part of the view. Calls with a high net time are dis-
played as long horizontal bars in the view.

3. Select one of the critical calls. A window shows the following informa-
tion about the call:

— Operation
— Calling program and program that is called
— Gross and net time

4. Using the functions in the context menu, you can navigate to other
views, such as Hit List and Call Hierarchy.

5. To improve the display of the overview, define your own coloring
schema. For this purpose, select Edit Coloring Schemas from the context
menu. Assign specific colors to the program groups. For example, assign
programs with the “Z” schema to the color “Red” to identify program
parts that begin with a prefix. Figure 5.3 shows a colored timeline view.
You can store coloring schemas as local files and upload them to the sys-
tem.

B

Call Timeline ~

|as ms
|

JTWBER [FM_MGW_HANDLE_REGUEST 57 =8

Overview | Candensed Hit List [Hit List | Agoregated Call Tree [Call Sequence | Call Timeline [Database Accesses |

Figure 5.3 ABAP Runtime Analysis: Timeline View

248

5.3 Analyzing Memory Usage with ABAP Debugger and in the Memory Inspector

5.3 Analyzing Memory Usage with ABAP Debugger and
in the Memory Inspector

In addition to expensive SQL statements, one of the most important causes
of performance problems is internal tables with many entries. Large inter-
nal tables consume massive amounts of memory and CPU, for example,
during copy, sort, or search operations.

You can use the ABAP debugger to create an overview of all internal tables
of a program. ABAP debugger is a tool for performing functional trouble-
shooting in programs. You can find more detailed descriptions of the
debugger in SAP literature under ABAP programming. You'll find informa-
tion on main memory usage both in the classic and the new debugger. You
can set the debugger in the ABAP Editor (Transaction SE38) via Utilities »
Settings - Debugging.

Performance analysis using the ABAP debugger isn’t a standard procedure
and is best performed by an ABAP developer.

Rules When Debugging

Take the following advice into account when working with the ABAP de-
bugger. During the debugging process, the ABAP program may terminate
and display the error message Invalid interruption of a database selection,
or the system may automatically trigger a database commit. In either case,
an SAP Logical Unit of Work (LUW) has been interrupted, and this may lead
to inconsistencies in the application tables. Therefore, you should only de-
bug on a test system or in the presence of someone who is very familiar
with the program being analyzed and who can manually correct inconsis-
tencies in the database tables if necessary. See “Debugging Programs in
the Production Client” in SAP Online Help for the ABAP debugger.

You perform a performance analysis with the debugger as follows:

1. Start the program to be analyzed. Then open a second session. Here you
can monitor the program to be analyzed in the work process overview
(Transaction SM50). Enter the debugger from the work process overview
by selecting the Debugging function. By using the debugger several
times in succession, you can identify the parts of the program that cause

249

[

]

Steps for perfor-
mance analysis

5 Optimization of ABAP Programs

Memory Inspector

Evaluating the
memory extract

high CPU consumption. Often, these sections consist of LOOP ... ENDLOOP
statements that affect large internal tables.

2. Todisplay the current memory requirements (in the “classic” debugger),
select Goto » Other Screens « Memory Use.

3. Check for cases of unnecessary memory consumption that may have
been caused by a nonoptimal program or inefficient use of a program. As
a guideline, bear in mind that a program being used by several users in
dialog mode should not allocate more than 100 MB.

4. As of SAP NetWeaver AS ABAP 6.20, you can use the classic debugger to
create a list of program objects located in the memory by selecting Goto «
Status Display - Memory Use. Under Memory Consumption, the Ranking
Lists tab contains a list of objects and their memory consumption.

In SAP NetWeaver AS ABAP versions 4.6 und 6.10, you can obtain a mem-
ory consumption list by choosing Goto « System « System Areas. Enter
“ITAB-TOP25” in the Area field. This way, you'll obtain a list of the 25 larg-
est internal tables.

5. In the “new” debugger, you first display the memory analysis tool by
clicking the button for the new tool and then selecting Memory Analysis
from the tools on offer in the Memory Management folder. The initial
screen then displays how much memory is allocated or used by the ana-
lyzed internal session. Click the Memory Objects button to go to the list
of the largest memory objects, which can be the internal tables, objects,
anonymous data objects, or strings.

Moreover, you can create and then analyze a memory extract, that is, an
overview of the objects that occupy memory space. You can create a mem-
ory extract in any transaction by selecting System « Utilities - Memory Ana-
lysis « Create Memory Extract or simply enter function code “/HMUSA”. The
third option is to create a memory extract from program coding. Refer to
SAP Help for a description of the system class CL_ABAP_MEMORY UTILITIES.

To evaluate the memory extract, start the Memory Inspector by selecting
System . Utilities « Memory Analysis -« Compare Memory Extracts in any
transaction or via Transaction S MEMORY INSPECTOR. The Memory
Inspector lists all memory extracts in the upper part of the screen. In the
lower part of the screen, you can find details about the individual memory
extract. Here, a distinction is made among the object types, programs,
classes, dynamic memory request of a class, table bodies, strings, and types

250

5.3 Analyzing Memory Usage with ABAP Debugger and in the Memory Inspector

of anonymous data objects. You're provided with different ranking lists,
according to which you can sort the objects. For each memory object,
you're provided with the values of bound allocated, bound used, referenced
allocated, and referenced used memories. You can find a detailed descrip-
tion of the ranking lists and the displayed values in SAP Help.

Using the Memory Inspector

The Memory Inspector is particularly useful for examining transactions
over a long period of time, as is the case in a customer interaction center.
Here, users frequently enter a transaction at the beginning of their work-
day and exit it when they go home. In these “long-term” transactions, da-
ta often remains, and therefore memory consumption continuously in-
creases.

Figure 5.4 shows an example of a memory extract. The dominator tree
shows the hierarchical program structure and the memory used by the pro-
gram parts. With a size of 494 MB, table LT MEM is conspicuous. The next
largest object is the CL_GUI ALV GRID class with a size of 250 KB. Below this
class, 130 KB are used by table MT DATA.

[«]

0 “r 4

[E Memory Snapshot Edit Goto System Help W
& FdB @@ CHE Do BHE @0
Memory Inspector - Memaory Use Analysis
(o] t_0) O (] A%Memury’ Snapshots T:ENawgatlUn Chamge Mumber of Hits
(S0 (5] (=)@ @] [[
File Mame Date Time Lser Program Transacti... Syst.. Client | Host
- Jusr{sapfPTQ/DVEBMGS?76 datafabDboMernory_014_0012013-02-11 19:38:02 SCHHEIDERT ZTS_USEALWZ SE3E PTQ 00 54110
- @fusr[sap]PTQ]DVEEMGS76]data]abDbgMEmDry_D17_00\ 2013-02-11 19:35:05 SCHNEIDERT RSTPDAMAIN SESSION_... PTQ Q00 fs4110 -
4r “r oA 4| ¥
Memary Snapshot |(t,l]) j Display Lirnit |RUUt Memary Objects ;I IIDD
() (e L (&) =) (e e]
Mermory Snapshot | View Mermory Object Ra... References | M... Bound {Allocated) Bound {Used) = .
- 3oy ~ [JDominatar Tree
~ A Roll Area + [H [479233x1024] :LT_MEM 1\PROGRAM. .. 404,584,112 481,226,300
. 4)% Qverview ~ @ {0:162*0L_GUI_ALV_GRID} 2 \FUNCTION. .. D:—' 259,564 241,862
. Dominator Tree + [H [400%320] :MT_DATA 1{163M L., 134,208 128,332
v [Ranking List v @ {00183%CL_ALV_WARIANT} 2 {0:163M0L. .. EG' 55,480 55,156
+ [Ranking List by Type - [[3x2260] :MT_FIELDCAT _LOCA 3{0:1E3M. .. 9,176 5,892
+ [HTables » @ {01914 _CTMENUT 4 {O:163M L. . 3,536 2,896
- @ Classes . E [100%20] :MT_START _INDEX S {0:163ML. .. 2,816 2,216
v 8% Programs - v [H [12:x20] :PROPERTY_CACHE 6 {00163\ CL... 2,402 1,234 a
v &y Expert - . E [3x472] :MT_INFO 7 {0e3ML.. 2,024 1,528 -

4“0

Figure 5.4 Memory Inspector: Dominator Tree

251

5 Optimization of ABAP Programs

Performance
checks in the
Code Inspector

5.4 Code Inspector

The Code Inspector tool checks ABAP programs and other repository
objects statically for problems. Its meaning for the quality analysis of ABAP
programs goes far beyond the meaning for performance analysis, to which
the following description is restricted. The Code Inspector performs a static
analysis, that is, the code doesn’t need to be executed and is therefore inde-
pendent of test or production data. It has been generally available as of SAP
Basis version 6.10.

You call the Code Inspector from the development tools of the ABAP Work-
bench for programs, function modules, or ABAP classes (Transactions SE38,
SE37, or SE24) using the menu path Program/Function Module/Class « Check
Code Inspector or directly using Transaction SCIL

Table 5.8 summarizes which checks are performed in the Performance cate-
gory and where you can find further information on the checks. The checks
reveal standard errors and problems. They can’t indicate how seriously
they will affect the performance. For this purpose, you require the runtime
checks described previously. The verification of these checks should never-
theless be part of the quality control of ABAP programs.

Analysis of the WHERE Checks that the SQL statements include a WHERE

clause clause and that they have index support. Buffered
tables, joins, and views aren’t covered by this
check. For more information, see Chapter 11, Sec-
tion 11.2.

Analysis of table buffer Checks whether SQL statements to buffered

accesses tables will access the database and pass the buf-
fer. For more information, see Chapter 12, Section
12.1.2.

SELECT statements with Checks whether SELECT/ENDSELECT loops include

CHECK a CHECK statement. This statement can often be
integrated in the WHERE clause and thus reduce
the read data quantity from the start. For detailed
information, see Chapter 11, Section 11.2.

Table 5.8 Performance Checks in the Code Inspector

252

54

Code Inspector

SQL statements in loops

Nested loops

Copying large data objects

Inefficient operations on
internal tables

Inefficient parameter
transfers

EXIT or no ABAP com-
mands in SELECT/
ENDSELECT loop

Instance generation of
Business Add-Ins (BAdIs)

Check of table properties

Checks whether SQL statements are in loops.
These result in an increased communication
effort and can possibly be replaced by bundled
accesses. For more information on this, see Chap-
ter 11, Section 11.2.

Checks the system for nested loops where nonlin-
ear runtime behavior can occur.

Sends alerts on high copy costs for large data
objects, for instance, nested internal tables. How-
ever, this check only refers to structures with a
width of more than 1,000 bytes; it can’t consider
how long a table will be at runtime.

Sends alerts on inefficient read accesses to inter-
nal tables.

Examines whether there is a better way to trans-
fer parameters when you call a form, function
module, method, or event.

Checks whether SELECT/ENDSELECT loops include
an EXIT statement or no ABAP coding at all. With
this type of code, you often check the existence of
records in a database table, which can be
designed to be more efficient. For detailed infor-
mation, see Chapter 11, Section 11.2.

As of SAP Basis version 7.0, you should use the

statement GET BADI instead of the method call
CALLMETHOD c1_exithandler=>get instance
for performance reasons.

Examines the technical settings such as trans-
portability, buffering, and indices of database
tables.

Table 5.8 Performance Checks in the Code Inspector (Cont.)

253

5 Optimization of ABAP Programs

D]

Frequent perfor-
mance problems

Check Variants in the Performance Environment

The Code Inspector offers check variants that bundle checks for specific
areas. For performance analysis, the following variants are available:

® PERFORMANCE CHECKLIST
Minimum checklist with performance checks.
® PERFORMANCE CHECKLIST HDB
Checklist with SAP HANA-specific performance checks.
® PERFORMANCE CHECKLIST XL
Advanced checklist with performance checks.
= PERFORMANCE DB
Checklist of database-specific performance checks.

The following checklist can be used in the context of the migration from a
traditional database to SAP HANA and comprise function checks (e.g., for
code that might include programming on database-specific functions) and
performance checks (code that might lead to performance issues:

® FUNCTIONAL DB and FUNCTIONAL DB ADDITION
Classic and advanced checklist for the migration to SAP HANA.

5.5 Tips and Tricks for High-Performance ABAP Programs

In the SAP online help for the ABAP programming environment and in the
ABAP runtime environment (Transaction SAT), the “Tips and Tricks” sec-
tion provides detailed information on high-performance ABAP program-
ming, which you can use to get familiar with the sample code introduced
there.

There are three common programming errors that cause large memory or
CPU requirements for programs:

®m Missing REFRESH or FREE statements
The ABAP statements REFRESH and FREE delete internal tables and release
the memory that was allocated to them. If these statements are missing,
memory resources may be unnecessarily tied up, and the operations
being executed (READ or LOOP) will require an unnecessarily large amount
of time.

254

5.5 Tips and Tricks for High-Performance ABAP Programs

What Effect Do CLEAR, REFRESH, FREE, and DELETE Have?

The ABAP statements CLEAR, REFRESH, FREE, and DELETE have the following
effect on the allocated memory:

m A CLEAR or REFRESH statement causes the release of the table content
and—if available—of the indexes. The header information of the table
remains unchanged. Note that the CLEAR statement only deletes the
header row in internal tables with a header row. Use this statement if
the table is to be used again as the program proceeds.

m A FREE statement causes the complete release of the table content
and—if available—of the indexes. Use this statement if the table isn’t
to be used again as the program proceeds.

®m ADELETE statementin an internal table causes no release of memory! If
you reduce an internal table with a large number of entries to very few
entries using DELETE statements, the memory still remains allocated.
When you copy such a table, the “memory image” is copied; that is, the
copied table has the same size as the original table. To solve this prob-
lem, build a new small table instead of thinning out a large table using
DELETE.

Inefficient reading in larger internal tables

The ABAP statement READ TABLE ... WITH KEY ... enables you to search
internal tables. If you use this statement by itself for a standard table, the
search is sequential. For large tables, this is a time-consuming process.
You can significantly improve search performance by adding the clause
... BINARY SEARCH, thereby specifying a binary search. However, the table
must be sorted (see ABAP Help for the statement READ TABLE).

You can optimize the performance of operations on large tables by using
sorted tables (SORTED TABLE) or hash tables (HASHED TABLE). If a READ state-
ment is executed on a sorted table, the ABAP processor automatically
performs a binary search. It's important that the key fields used for the
search correspond to the sort criteria for the table. For a sorted table, the
search effort increases logarithmically with the size of the table. For hash
tables, constant access costs exist if the ABAP statement READ TABLE ...
WITH TABLE KEY is used. However, efficient access to hash tables is only
possible if you enter the complete key.

255

[«]

5 Optimization of ABAP Programs

5.5 Tips and Tricks for High-Performance ABAP Programs

® Nested loops
Nested loops are frequently used for processing dependent tables (e.g.,
header and position data):

LOOP AT HEADER INTO WA HEADER.
LOOP AT POSITION INTO WA POSITION
WHERE KEY = WA HEADER-KEY.
"Processing ...
ENDLOOP.
ENDLOOP.

IfHEADER and POSITION are standard tables in this case, then for each entry
in the HEADER table, the ABAP processor loops across all entries in the
POSITION table and checks if the WHERE clause is fulfilled for all entries.
This is especially time-consuming if the tables HEADER and POSITION con-
tain many entries. However, if you use SORTED tables, the ABAP processor
determines the data to be processed by performing a binary search and
only loops across those areas that fulfill the WHERE clause. Sorting is only
useful, however, if the WHERE clause contains the first fields of the sort
key.

As an alternative, you can use index operations that are much less time-
consuming. To use index operations, it’s necessary to sort the internal
tables HEADER and POSITION by the KEY field as follows:

I=1.
LOOP AT HEADER INTO WA HEADER.
LOOP AT POSITION INTO WA POSITION FROM I.
IF WA POSITION-KEY <> WA HEADER-KEY.
I = SY-TABIX.
EXIT.
ENDIF.
ENDLOOP.
ENDLOOP.
Table 5.9 summarizes the most important performance properties of stan-
dard tables, sorted tables, and hash tables in ABAP. It provides information
on how access costs increase when the size of the table increases (see also
the “Scalability of a Program” section). Based on these properties, you can
determine which table type is ideal for your specific application.

256

Populate (mass operation)

APPEND LINES ...

INSERT LINES ...

Depending on
position and
size due to
movement costs

Depending on
position and
size due to
movement costs

Populate (single record)

APPEND

INSERT ... INTO...

INDEX

INSERT ... INTO...

TABLE

Read (areas)

LOOP ... ENDLOOP
(all rows)

Constant

Depending on
position and
size due to
movement costs

Constant

Linear

Depending on
position and
size due to
movement costs
(check required)

Depending on
position and
size due to
movement costs
(check required)

Constant
(higher than
standard as
check required)

Depending on
position and
size due to
movement costs
(higher than
standard as
check required)

Logarithmic

Linear

Depending on
position and
size due to
movement costs

Depending on
position and
size due to
movement costs

Constant
(higher than
standard due to
hash manage-
ment)

Linear

Table 5.9 Most Important Performance Properties of Standard Tables, Sorted
Tables, and Hash Tables in ABAP

257

5 Optimization of ABAP Programs

LOOP ... WHERE END- Linear
LOOP (complete key)

LOOP ... WHERE END- Linear
LOOP (incomplete key
with initial section)

LOOP ... ENDLOOP Linear
WHERE (incomplete

key without initial

section)

LOOP ... FROM ... TO Constant
Read (individual rows)
READ ... INDEX Constant

READ ... WITHKEY Linear, logarith-
(complete key) mic for binary
search

LOOP ... WHERE END- Linear, logarith-
LOOP (incompletekey mic for binary
with initial section) search

LOOP ... WHERE END- Linear
LOOP (incomplete key

without initial sec-

tion)

Change (analogously, delete)

MODIFY ... TRANS- Linear
PORTING ... WHERE
(complete key)

Logarithmic

Logarithmic

Linear

Constant

Constant

Logarithmic

Logarithmic

Linear

Logarithmic

Constant

Linear

Linear

Constant

Linear

Linear

Constant

Table 5.9 Most Important Performance Properties of Standard Tables, Sorted

Tables, and Hash Tables in ABAP (Cont.)

258

5.5 Tips and Tricks for High-Performance ABAP Programs

MODIFY ... TRANS- Linear Logarithmic Linear
PORTING ... WHERE

(incomplete key with

initial section)

MODIFY ... TRANS- Linear Logarithmic Linear
PORTING ... WHERE

(incomplete key

without initial sec-

tion)

MODIFY ... FROM Constant Constant -
<wa> (index access)

MODIFY TABLE ... Linear Logarithmic Constant

FROM <wa >

COLLECT (table com- Linear Logarithmic Constant

pression)

SORT Runtime inten- (already sorted) Runtime inten-
sive, depending sive, depending
on size and sort- on size and sort-
ing ing

Table 5.9 Most Important Performance Properties of Standard Tables, Sorted
Tables, and Hash Tables in ABAP (Cont.)

[«]

Scalability of a Program

Scalability of a program refers to the dependency of a program’s runtime
from the data quantity. Many operations depend linearly on the data
quantity (t = O(n)); that is, the runtime increases linearly to the data quan-
tity. Examples include the database selections in large tables without or
with inappropriate index support and loops via internal tables in the pro-
gram. Linear scalability is acceptable for the processing of medium data
quantities. If they can’t be avoided in programs that are supposed to pro-
cess large data quantities, you must consider parallelization.

259

5 Optimization of ABAP Programs

Performance trace

ABAP trace and
ABAP debugger

Of course, constant runtimes (t = O(7)) or a logarithmic dependency (t =
O(log n)) is better for performance than a linear scalability. Logarithmic
dependencies occur, for example, for database selections in large tables
with optimal index support or for read operations in internal tables with
binary search. Because the logarithm function increases only very slowly,
in real life, you don’t need to differentiate between constant and logarith-
mically increasing runtimes.

Quadratic dependencies (t = O(n x n)) and anything beyond are inaccept-
able for the processing of medium and large data quantities. However,
problems with quadratic dependencies through intelligent programming
can usually be traced back to dependencies of t = O(n x log n). An example
is the comparison of two tables that both grow with a factor of n. A com-
parison of the unsorted tables would result in a quadratic dependency, a
comparison with sorted tables in dependency t = O(n x log n). Because the
logarithm function increases only very slowly, in real life, you don’t need to
differentiate between an increase of t = O(n x log n) and a linear increase.

5.6 Summary

This chapter discussed monitors that enable detailed analysis of individual
ABAP programs. SQL trace is the recommended tool for analyzing SQL
statements in ABAP programs. Evaluating the trace enables you to identify
network problems or throughput bottlenecks in the database. You'll find
further information on optimizing SQL statements in Chapter 11.

You use REC trace to analyze the performance of sent and received RFCs.
As of SAP NetWeaver AS ABAP 7.10, you also have an HTTP trace at hand
to record HTTP statements. For more information, see Chapter 7 and
Chapter 8.

The enqueue trace is a means for selecting analyses of lock operations
(enqueue/dequeue operations). For detailed information, see Chapter 10.

You trace inefficient table buffering with the buffer trace. For detailed infor-
mation, see Chapter 12.

For high CPU consumption problems, use an ABAP trace. In contrast to an
SQL trace, an ABAP trace enables time measurements for operations on
internal tables (LOOP, READ, SORT, etc.).

260

5.7 Questions

As an alternative, you can monitor CPU-consuming programs using the
ABAP debugger, which you can call from the work process overview. How-
ever, only developers should perform this analysis.

You should examine ABAP programs proactively using the Code Inspector,
which implements static checks of the program and sends alerts on stan-
dard performance errors and problems.

Important Concepts

After studying this chapter, you should be familiar with the following con-
cepts:

m Performance trace: SQL trace, buffer trace, RFC trace, HTTP trace,
enqueue trace

®m ABAP trace
®m ABAP debugger
®m Code Inspector

® |nternal tables and their performance attributes

5.7 Questions

Appendix C, Section C.1, provides the answers to these questions.

1. What do you have to consider when you perform an SQL trace?

a) There is only one trace file in each SAP system. Therefore, only one
SQL trace can be created per SAP system.

b) The user whose actions are being traced should not run multiple pro-
grams concurrently.

¢) You should perform the SQL trace on a second execution of a program
because the relevant buffers will already have been loaded.

d) SQL traces are useful on the database server but not on application
servers, which yield inexact results due to network times.

2. When should you perform an ABAP trace?
a) If a problem occurs with the table buffer
b) For programs with high CPU requirements

) For analyzing I/O problems on hard drives

261

Code Inspector

[«]

Contents

Preface and Acknowledgements 19
Introduction 21
1 Performance Management of
an SAP Solution 35
1.1 SAP Solution Architecture 36
111 SAP Solutions and SAP Components 36
1.1.2 Application Scenarios for SAP HANA 39
1.1.3 Client/Server Architecture 43
1.2 Monitoring and Optimization Plan for an SAP Solution 52
121 Requirements of a Monitoring and Optimization Plan 52
122 Service Level Management 56
123 Plan for Continuous Performance Optimization 62
1.2.4 Tools and Methods for the Monitoring and
Optimization Plan 68
125 SAP Solution Manager 71
1.3 Summary 73
2 Analysis of Hardware, Database, and
ABAP Application Server 77
2.1 BasicTerms 78
2.2 Hardware Monitoring 79
2221 Analysis of a Hardware Bottleneck (CPU and
Main Memory) 81
2.2.2 Identifying Read/Write (Input/Output) Problems 88
2.2.3 Parameter Changes and Network Checkcccccouecvonnecuuenn. 89

Contents

2.3 Database MONItoringcrnccennseemnesseeseseesees 91
2.3.1 Performance Monitor in the Database Administration
COCKPIT coreieeeieeiecieineiiese ettt saees 92
2.3.2 Analyzing the Database Main Memory ... 94
2.3.3 Identifying Expensive SQL Statements ... 96
2.3.4 |dentifying Read/Write (Input/Output) Problems 103
2.3.5 Other Database Checks ..., 105
2.4 Analyzing SAP Memory Configuration 113
241 Analyzing SAP BUTTEIS ..coviirceiecereceiceiecreecsssesseecsiseennes 114
242 Analyzing SAP Extended Memory, SAP Heap Memory,
and SAP ROl MEMOTYvreeenerineciieceisesiecesssessenessasennes 116
243 Displaying Allocated MemOrycnecrneernecriecnnes 118
2.4.4 Other Monitors for Detailed Analysiscccvecenneernecrinecnnes 120
2.5 Analyzing SAP WOrk Processescccomceomncermonneseceseenneene 122
251 Work Process Overview Fields ... 122
2.5.2 Analyzing Work Processes 126
253 Monitoring the Dispatcher Queue ... 129
2.6 Analysis of the Internet Communication Manager 131
2.7 SUMMAIY ..o sssssssssssss s sssssssss s sessscasssos 132
2.8 QUESTIONS ... ssssesssss s ssiese s sesees 133
3 Workload Analysis 135
3.1 Basics of Workload Analysis and Runtime Analysis 136
3.2 Workload Monitor ..., 138
321 Working with the Workload Monitor ..., 139
3.2.2 Technical Settings for the Workload Monitorcccccuece. 141
3.3 Workload Analysismincrrminecsmmineesessenessesssennne 142
331 Transaction Step Cycle ... 142
3.3.2 Other Time COMPONENTScocvumeeeucrmcerireenieeeeseseeesnsseseaeens 145
3.3.3 Interpreting Response TIMESceneerneerneerereesnaennes 147
3.34 Activity, Throughput, and LOadcccvecneeemnecennecenneceneceneces 149

3.4 Performing Workload Analysesccommmccmnncccrcnnen 151
341 Analyzing General Performance Problemsccccoccceneces 151
3.4.2 Analyzing Specific Performance Problemscccccocecuece 158
3.5 Single-Record Statistics ..., 161
3.6 End-to-End Workload Analysisccccccconeevonrcrncnnen. 166
3.6.1 Basics of End-to-End Workload Analysisccceenecrnecene. 166
3.6.2 Central Workload Monitorcccceccenucvuuen. 167
3.6.3 End-to-End Workload Monitor and Runtime Analysis
in SAP Solution Manager 172
3.6.4 Central Single-Record Statistics 172
3.6.5 End-to-End Runtime Analysis in SAP Solution Manager ... 176
3.7 SUMMANY ..o sisens 180
3.8 QUESLIONS ... 182
4 Hardware Sizing and Component
Distribution 185
4.1 Initial Hardware Sizingocrneecineeeesesseeeeeesseseseseonns 186
411 Overview of the Project for Initial Sizing . .. 187
412 SiZING METNOMS ..ot 192
413 Performing a Sizing Project in Detail ... 197
4.1.4 SAPStandard Application Benchmarksccccocovriinncninane. 200
4.2 Sizing to Deal with Increased Workload, Change of Release,
OF MiBrationccoorcceincccriineeecenieneesesseeseeesenes 206
4.2.1 Asizing Project in an Installation Environment Already
INUSE < 206
4.2.2 Performing Sizing in Installation Environments Used
in Productionconmececnnecees 208
4.2.3 SAP HANA Migration ..., 215
4.3 Planning the System Landscapeccocccommncceunnnn. 217
431 Virtualization and Hardware Consolidation 218
432 Scaling at the Database Level for SAP HANAccccomeuunne. 221
4.3.3 Distribution of SAP Application Instancesccoeconeeunne. 224
9

Contents

Contents

4.4 Summary ... 225
4.5 Questions 225
5 Optimization of ABAP Programs 227
5.1 Performance Trace 227
511 Activating a Performance Trace 228
512 Evaluatingan SQL Trace 229
5.1.3 Other Functions in the SQL Trace 234
514 Evaluating a Buffer Trace 236
5.1.5 Evaluating a Remote Function Call Tracecccoccovevereverrnecns 237
51.6 Evaluating an HTTP Tracecccoeccmmeerneceneces 238
5.1.7 Evaluating an Enqueue Trace 239
5.2 Performance Analysis with ABAP Trace (Runtime Analysis) 240
521 Activating an ABAP Trace 241
5.2.2 Evaluating an ABAP Trace 243
523 USING Variationscrnrenernenecnneeinenieeiessseesesessesssesseeees 245
524 Using Timeline Views 247
5.3 Analyzing Memory Usage with ABAP Debugger and in the
Memory Inspector ... 249
5.4 Code INSPectoreenceeeeieeeeeseeeenens 252
5.5 Tips and Tricks for High-Performance ABAP Programs 254
5.6 SUMMANYcooooiicireceeirecceereccesieeseesseesneseseesaeesenens 260
5.7 QUESTIONScccoieccrrrinccceierenceeieesesseesieseessenseesesssenes 261
6 Memory Management 263
6.1 Memory Management Fundamentals 263
6.1.1 BasicTerms 263
6.1.2 Memory Areas of the SAP Instance 265
6.1.3 Zero Administration Memory Management ..., 268
6.1.4 Technical Implementation in Detailcccccooecvveuunece 268

10

6.1.5 Summary 278
6.2 Configuring and Monitoring Memory Areascoccccemecernees 279
6.2.1 Monitoring Swap Space 280
6.2.2 Configuring and Monitoring SAP Memory Areas 282
6.2.3 Assistance with Troubleshooting 285
6.3 SUMMALIYooooiiiociccereeceersccenieesessecenesenees 292
6.4 QueStioNs ... 294
7 Load Distribution, Remote Function Calls,
and SAP GUI 297
7.1 Services of SAP NetWeaver Application Serverc...... 298
7.2 Load Distribution within the ABAP Instancescccccoonuuccenne. 301
7.21 Distributing Message and Enqueue Services 303
7.2.2 Distributing Dialog, Background, and Spool Work
Processes 303
7.2.3 Distributing Users and Work Processes over CPU
Resources 304
7.2.4 Dynamic User Distribution: Configuring Logon Groups ... 307
7.2.5 Load Distribution Concept for Dialog Work Processes 310
7.2.6 Limiting Resources per USerenennne. 313
7.2.7 Operation Modes 314
7.2.8 Configuring Dynamic Work Processescceneenen. 315
7.2.9 Background Processing 315
7220 UPAALE oo 316
7.3 Remote Function Calls 323
7.3.1 Fundamentals and Concepts 324
7.3.2 Remote Function Call Cyclencmcronecenenrrecriecnnns 327
7.3.3 Configuring and Testing Remote Function Call
Destinations 330
7.3.4 Selecting Serialization 334
7.3.5 Monitoring Inbound and Outbound Loadsccccoucercnen. 336
7.3.6 Configuring Parallel Processes with Asynchronous
Remote Function Calls 341
n

Contents

Contents

7.3.7 Monitoring Data Transfer with Transactional

Remote FUNCEION Calls ... 342
7.3.8 Background Remote Function Callscccccoveencrincrinncnnn. 343
7.4 SAP Graphical User Interface ... 344
741 Interaction Model and Performance Measurement 344
7.4.2 Analyzing and Optimizing the Performance of GUI
COMMUNICATION oottt sieesase i 347
7.5 SUMMALY ... sosens 352
7.6 QUESLIONScoooirrrreeiiicsrecccrceeeiesi s eeceessesss e 355
8 Internet Connection and SAP Fiori 357
8.1 SAP Web Applicationsoooecencecierceeeeeeseseessesennns 358
8.2 Analyses on the Presentation Server ..., 362
821 Performance Tools of Internet Browsersccoovcenecrnecnne. 365
8.2.2 SAP Statistics in the HTTP Requestcoocvenerneceneenecenecnnne 366
8.2.3 Continuously Monitoring Web Applications ... 369
8.3 Buffering of Web Documents ... 370
8.3.1 Browser Buffer (Browser Cache)coeeeorevereeereereeenene. 370
8.3.2 Bufferin the Internet Communication Manager and
SAP Web Dispatcher ... 373
8.3.3 Content Delivery Networkcncnceonccrnecrnncnnns 375
8.3.4 Summary: Using Buffers in Web Applicationscc..c.... 376
8.4 Performance Analysis of Web Applications on
SAP NetWeaver AS ABAP ..., 376
8.41 HTTPTrace in the Internet Communication Manager 377
8.4.2 Performance Analysis of ABAP Web Applications 378
8.4.3 Monitoring Web Service Calls ... 381
8.5 BSPs, Web Dynpro for ABAP, and Integrated ITScccoconnee. 381
8.5.1 Business Server Pages and Web Dynpro ABAP 382
8.5.2 Integrated Internet Transaction Servercncenn. 385
8.6 SAP Fiori, SAPUI5, and OData Services 386
8.6.1 Basic Principles of SAP Fiori, SAPUIS, and OData 387

12

8.6.2 Structure of an SAP Fiori System Landscapeccccuuvennecee 388
8.6.3 General Performance Aspects of SAP Fiori, SAPUIS,
AN ODAtA ..o 392
8.6.4 SAP Fiori, SAPUI5, and OData on the SAP NetWeaver
Application Server ABAPmeneconecrinecns 395
8.7 CONCIUSION ...t sssissessesssassessssssssessssssessesssssees 402
8.8 QUESTIONSoovecireviiccrericcreiisceeriies s sesssesessssseese e ssnees 403
9 Optimizing Java Programs 405
9.1 Garbage Collection ... 407
9.11 Construction of the Java Heapcccoccnncceene. 407
9.1.2 Garbage Collection Algorithmsccccconneeuune. 409
9.1.3 Selection Of COIECLOrSorreerireceiseeiseerieeeresecsieenens 410
9.14 Parameterization of Java Heap Memory and Garbage
ColleCtion ... 411
9.1.5 Logging Garbage Collectionsccecmneuuune. 413
9.2 Just-in-Time Compiler ..., 413
9.3 SAP Management Consolemccnnn. 415
9.4 SAP Java Virtual Machine Profiler ... 417
9.4.1 ArchiteCture ... 417
9.4.2 Establishing the Connectionccccovuvenncnuane. 418
9.43 Allocation Analysisecenecnnecnone. 421
9.4.4 Performance HotSpot ANalysiscenecrnnecrnecrinecnnns 427
9.45 Method Parameter Analysisccccccouueunnenuane. 431
9.4.6 Synchronization Analysis ..., 434
9.4.7 File and Network Input/Output Analysiscccomeeermeveuenn. 436
9.4.8 Garbage Collection ANalYSiscnecrmnerrreceiseesenecnens 438
9.49 Class Statistics and Heap Dumpcccccovevueenne. 441
9.5 Memory Analyzer ... 443
951 Creating HPROF Filescooevvmervmeverecrrecerrernane. 443
9.5.2 Analysis of the Java Heap with the Memory Analyzer 444
13

Contents

Contents

9.6 Other Tools for Performance Analysis on the
SAP NetWeaver AS Java 446
9.7 Summary 448
9.8 Questions 449
10 Locks 451
10.1 Lock Concepts of Database System and SAP System 452
10.1.1 Database LOCKScrremecreemeeeeieseseeeecesiseseessseeseseseseessnecs 452
10.1.2 SAP Enqueues 453
10.1.3 Read Consistency 455
10.2 Monitoring Locks 457
10.2.1 Database LOCKSeerereerrecemmireereemecereeenees 457
10.2.2 SAP Enqueues 462
10.2.3 Read Consistency 465
10.3 Number Range Buffering 466
10.3.1 Fundamentals. 466
10.3.2 Activating Number Range Bufferingccccoecovveceneces 471
10.3.3 Monitoring Number Range Buffering ... 472
10.4 Locking with Quantities and the Available-to-Promise
SEIVET ... ssssssssssssssanas 473
1041 FUNAAMENTALS oo eeeanene 474
10.4.2 Configuring the Available-to-Promise Serverccccceeeee 475
10.4.3 Monitoring the Available-to-Promise Server 478
10.5 Summary ... 479
10.6 Questions 479
11 Optimizing SQL Statements 481
11.1 Identifying and Analyzing Expensive SQL Statements 483
1111 Identification and Preliminary Analysis 483
11.1.2 Detailed Analysis 485

14

11.2 Optimizing SQL Statements in Programs 490
11.2.1 The Five Golden Rules for Efficient SQL Programming 490
11.2.2 Example of Optimizing an SQL Statement in an

ABAP Program 496
11.2.3 Presetting Field Values in Report Transactionsc........ 506
11.3 Optimizing SQL Statements through Secondary Indexes 511
11.3.1 Database Organization Fundamentals ... 511
11.3.2 Administration for Indexes and Table Access Statistics ... 522
11.3.3 Rules for Creating or Changing Secondary Indexes 528
11.4 Summary 537
11.5 Questions 539
12 SAP Buffering 543
12.1 Table Buffering Fundamentals 545
12.1.1 Buffering Types 545
12.1.2 Buffer ACCESSING .. 548
12.1.3 Buffer Synchronization 550
12.1.4 Activating Buffering 553
12.1.5 Which Tables Should Be Buffered? ... 555
12.2 Monitoring Table Buffering on the ABAP Server 557
1221 Table Access Statistics 558
12.2.2 Analyzing Buffered Tables 562
12.2.3 Analyzing Tables That Are Not Buffered Currently 566
12.2.4 Detailed Table ANalysiscocmcenecrnecenncnnes 568

12.2.5 Monitoring Buffer Synchronization (Table DDLOG
Entries) 571
12.2.6 Expensive SQL Statements Due to Incorrect Buffering 573
12.3 Monitoring Object-Oriented Application Bufferscccccccecee. 574
12,4 SUMMALY ... seeeecenesenees 580
12,5 QUESLIONS ... 581
15

Contents

Contents

13 Optimizing Database Queries
with SAP HANA 583
13.1 Basic Principles of the Main Memory Database
I SAP HANA et ssssiseesessssssesssssssssessssssessessssseesnssssenes 585
13.1.1 Column-Based Data Storage 587
13.1.2 Data Compression 588
13.1.3 Data Storage in Main Memory 592
13.14 INAEXING weorvvrevreceieerreerieceirecsieesieeeseecsasenses 594
13.1.5 Text Search and Categorization 597
13.2 Architecture of SAP HANA 598
13.3 Data Modeling from a Performance View 601
13.3.1 Table and Index Design 601
13.3.2 Designing Database Views and SELECT Statements 603
13.3.3 Design of Writing Applicationsccccvccvecennecnnecennecineceneces 613
13.4 SAP HANA Administration Tools for Performance
Optimization 614
13.4.1 Analyzing Main Memory and CPU ReSOUICESccccomvcuenece 618
13.4.2 Identifying Expensive SQL Statementscccccemcruunn. 625
13.43 Analyzing Expensive SQL Statements: Execution Plan
and Plan Visualization 634
13.5 Technical Optimization Options in Detailcocccoovvrrrncennn. 651
13.5.1 Monitoring Table Size, Loading, and Unloading 653
13.5.2 Monitoring Delta Indexes 659
13.5.3 Creating Indexes . 665
13.5.4 SAP HANA Cached Views 668
13.5.5 Partitioning and SCaliNgcccoveevmecrmmeernecrnecernecineces 675
13.5.6 Reducing Data via Deletion or Displacementc........ 680
13.5.7 Replication 688
13.6 Summary ... 691
13.7 Questions 693

16

14 Optimizing Queries in SAP Business

Warehouse 695
14.1 Fundamentals of SAP Business Warehouse ..., 696
14.1.1 Overview of the Most Important Concepts in SAP BW 697
14.1.2 InfoCubes and Extended Star Schemascccooconeccnevcenneces 701
14.1.3 DataStore Objects 713
1414 Data Modeling from a Performance Viewcccoueceee. 716
14.1.5 AQuery Execution .. 719

14.2 SAP BW Administration Tools for Performance
Optimization 721
14.2.1 Analysis of Expensive SAP BW Queries 722
14.2.2 SAP BW Statistics in the Workload Monitorcccccceee. 727
14.3 Technical Optimization Options in Detailcccooovcorrrnreennn. 730
1431 Managing Indexing and Database Statistics 732
14.3.2 Settings on Data Selection 739
14.3.3 Compressing the Fact Table 740
14.3.4 Monitoring the OLAP Cacheccccovccrnecrnecnnn. 742
14.3.5 Optimizing Reports 746
14.3.6 Aggregates 747
14.4 Summary 757
14.5 Questions 759
Appendices 543
A Database Monitors 763
B Important Transaction Codes 825
C Review Questions and ANSWETSmrcemionecceemmenneeceonns 831
D Glossary 837
E Information Sources 849
F The Author 871
INAEX oottt bbb bt 873
17

Index

64-bit 264
64-bit architecturecenecens 280
A
ABAP
application instance
debugger ... 227,249, 260, 261
instance 353
objects 577
shared object 288
trace 69, 227, 240
trace variant 245
ABAP Class Buildercooonmeecennens 577
ABAP Class LIbrary ... 827

ABAP Data Dictionary 108,522, 543,574,
837
display 827
table 827
ABAP Development Workbench 458
BSP development
ABAP Dictionary ...
ABAP Editor ...
ABAP List Viewer ..
ABAP program ...
quality analysis
runtime analysis
termination

286
ABAP runtime analysis 240, 243, 260, 490
ABAP runtime analysis for Web

Dynpro applications cceee. 242,381
ABAP Runtime Error ...
ABAP Server 137,144
ABAP Workbench ... 252,510, 827
Access plan 786
ACID principles 837
Action profile 169
Activation QUEUE ..o, 715
Active data 715
Active session history ... 813
Activity — throughput

Adaptive Server Enterprise — ASE

Address Spacecenneceeicnnecenns 264, 837
AGate and WGatevcecvnicnerrcennnns 841
Agent 167,784,786
Agent private memory ... 784
Aggregate ... 487,583,603, 747, 754
compress 756
create 751
function 491
indexing 755
maintenance 755
suggestion 753
Aggregation 246
ALE 837
AdMINISEIALION .o 825
Alert Monitor 837
Allocation
analysis 421
rate 426
trace 448
ALV Control 344
American National Standards
Institute 837
Analysis
linguistic 27,597
Analytical applications ..., 696
ANSI 837
Appliance 222
Application
analysis 135,829
error 288
layer 45
optimization 22
support layer 784
tuning 32,66
Application buffer
object-oriented 543,574, 580
Application Link Enablingcccccoeeceee. 837
Application Server 78,144,234, 837
Archiver stuck ... 109, 154
Array fetch 232
ASE 777

873

Index

ATP
logic 451,473
server 473-475
service 298, 303
Attribute
display attribute

navigation attribute ..
vector

Automatic workload repository 813
Auxiliary storage pool ... 801
Availability ... 53,169, 302
check 473,577
B
B* tree 735
Background
load 154
PYOCESSING oo 828,837
PrOGraM ...ooeoeececrereseerenanas 195, 460
service 298, 303
Background job
SAP_COLLECTOR_FOR_
PERFORMANCE ... 142
Scheduling Monitor ... 826
Backup 54,58
Bandwidth 594
BAPI 837
Batch input ...ccoveceeennecerinneceirecneens 195, 837
Benchmark .. 201, 204, 845

BEx Web Analyzer ...
bgRFC monitor
Big data
Binary search ...
Blade server

Block
Bottleneck analysis ... 135, 306
Browser 837
BSP applications, runtime
analysis 242,381
Buffer 48,94, 543
access 548
buffer hierarchy ... 49
catalog buffer

communication buffer ..
data buffer

874

Buffer (Cont.)
database bUfferomnceeconnens 48
management 548

metadata buffer 779
object-oriented application buffer ... 48
operating system buffer ..
package buffer
process DUSfereeconeceronnenns
quality
setting
single-record buffer ...
status

storage subsystem .

synchronization
synchronization monitor 571
TABL 548
table buffer 548
TABLP 548
trace 228,236
types 543
Buffer pool 784
Buffer trace 228
Buffering — SAP buffering
Business
hours 57
process 52

Business Application Programming
Interface — BAPI

Business Server Pages (BSPs) ... 45,357,
359,381

BUSIinesSODJECtSccceeeeeeeeenccrveneceriinecns 838

Button 838

BW Administrator Workbench 826

BW Aggregate Maintenance ...

BW Check Report .
BW Query Monitor ..
BWA — SAP BW Accelerator

C

CA Wily INtroSCopecovcveeemeeeeveererrennenns 449
Cache — buffer

Calculation enginecccoeceueeeees 600, 612
CALL 266
Catalog cacheimneceennens 768,784

CBO — Cost-Based Optimizer (CBO)

Index

CCMS e 32,37,68,526, 838
Monitor 334
System Component Repository

(SCR) 168

Central monitoring system 168

Central SAP monitor ... 70, 827

Central single-record statistics 172

Change 559,567
log 715
logical 154
request 553
run 757

Change and Transport Organizing ... 838

Change and Transport System 553

Characteristiccccooeeevennnee. 697,704,717

Characterizing parameter 136

Checking group 476

Checkpoint 95

Class
loader 407
statistic 448

CLEAR statementcooevvvvenerervinnnenns 255

Client 838
destination statistics records ... 339
StAtIStICS TECOVAS .o 339

Client/server architectureccooo...... 43
scalability

Cloud applications
Cluster coding
Clustered iINdeXcoueeeeemerceveneecereneeeens

Code
cache 414
completion 626
Code Inspector 227,252,261, 550

Code push-down
Column store — Column-based
data storage
Column-based data storage 583,585,
587, 600, 654

COM routine 145
Command MONItOTccereeeemneererecrrnennes 770
Common Programming Interface
Communication ... 838
Compilation 413
Compressibilityreonererinnecens 602

Compression
cluster coding ...
prefix coding
run-length coding
sparse coding

Computer

Computer Center Management
System — CCMS

Concordance 598
Concurrent mark-sweep collector 410
Condition tableooeeeeereeeeeenne 556,573
Container 92
Context SWitch ...coccoeeveeviceennee 82, 265, 838
Continuous performance
optimization 62
Controls 297
CO-PA Acceleratorereceeeeeeeeeenrs 41
Core 82,779
Cost-Based Optimizer (CBO)ccoouweeeeee 517
Coupling
hard 324
soft 325
Coupling, Application Link Enabling 325
CPI-C 838
CPU 51, 82,838
Bottleneck 107
DOLtIeNeck ... 87,155
Load 85
load 81, 156, 209
reqQUITEMENT ... 205, 352
resources 304
time .. 146, 149, 152, 157, 165, 305
trace 240
utilization 107
wait time 306
CPU bottleneck 83
CTO 838
Cursor 233
Cursor cache 264
Cursor ID 233
Customer interaction center 251
Customizing 838
data 556

875

Index

D

Data
archiving 838
buffer ... 95, 768, 784, 804, 810, 819
(ol Lol L= 95, 768, 819
locality 676
mining 27,697
package 757
warehouse 697

Data Control Language
Data Definition Language

Data Manipulation Language 839
Data modeling
SAP HANA ... 601, 603
Data volume 774
transferred 346
Database 78
access, fully qualified 232
administration ... 111
analysis 77,91
Analyzer 774
buffer 94, 585
errorlog file ..., 106, 788
global mMemory ..., 784
heap 784
index, missing ...
instance .
load 494
Monitor ... 69,91, 119,458, 763
object, MISSING —.........cccomnrevrecicrrennneennn 825
operation 232
optimizer .. 108,514, 516, 534, 634, 839
optimizer, cost-based (CBO) 108
procedure

procedure callceomnecvecrnenen.

procedure subrecord ..

procedure time

process 86, 627

process monitor 97,125,229, 446,449,
769, 780, 793, 805, 811, 821

processor 107
query, parallelization 586
response time

long 126
server 50, 78, 839

876

Database (Cont.)

service 352
standstill 109
table 695
task 769
tIMe oo 144,152,156, 157
tuning 32
view . 504,584,766,776,783,790, 808,
817,823
Database Administrator Cockpit
— DBA Cockpit
Database lock 105,447,452,453,457,
788, 838
IBM DB2 fOr Z/OS ..ouvomecevvvvrirmnsecsverrnenn 805
monitor 125,457
SAP MaxDB 773
SQL Server 821
Database optimizer ... 843
Database performance
monitor 92,828
problem 156
Database systemcccccoveceeennees 452, 838
parallel 78
DatabaseDatabase layer ... 838
Datafile 92
DataStore Object
indexing 738
SAP HANA-optimized ... 715
DataStore object ... 698,713,717
DB2 for LUW 785
DB2 — DB2
DBA 839

DBA Cockpit ... 70,92, 125,458,523, 524

DB2 for IBM I ... 763,767,793
DBAlog 825
DBA Planning Calendar ... 524
DBACOCKPITccoomerrvvrirrinnenns 69, 764, 767
DCL 839
DDL 839
Deadlock 461, 839
Debugger 249,414
DELETE statement 255

Delta index

...592, 659, 665

Demilitarized zone (DMZ) 46,300

Deoptimization
Dequeue module

Index

Destinationeeveeeeeenns 325,330
Developer log 290
Developer trace 829
Development Workbenchcccoccoees 37
DIAG protocol 839
Dialog
load 154
TeSPONSE tIME ... 321
SCIVICE ..o 298,302, 303
user 194,314
WOTR PrOCESS ..oveeeeveers 144,310, 839
WOIR PIOCESS. ..ooeevvvereeeeeineserriseseeniniens 317
Dialog step — Transaction step
Dictionary 595, 596
coding 588
Difference codingooecvmneecerrveccens 591
Dimension ID 701
Dimension table ... 701
index 736
Direct read 232,766,775,782,806
Direct reading — Direct read
disp+work 298
Dispatcher 302, 839
process 298
queue 129, 143
wait time ... 143,152,157,306
Dispatching 298
Displacement (SWap)cccoomeeeeeeeeennne 115
Displacement — Swap
Display attributecmccnnnccens 704

Distributed Statistic Record — Statistics
record distributed
Distributed statistics record (DSR) 166

DML 839
Documentation 66
Dominator tree 445
Drilldown 699
Dump 286
Dynamic statement cache ... 804
Dynamic user distribution 307
Dynpro 839
E

E fact table 741

E2E trace — End-to-end trace

EarlyWatch Alert — SAP EarlyWatch Alert

Easy Web Transaction ... 385, 839
Eclipse 839
Eden 407,409
EDI 839
EDM
DSC cache 804
pool 804
Electronic Data Interchange 839
End User Experience Monitoring 59
End-to-end
diagnostics 71
runtime analysis ... 172,176,178, 182
trace 246,378
End-User Experience Monitoring 369
Enqueue 452,839
module 454
operation 227
SCYVICE e 298,301, 303
trace 228,239
Enterprise JavaBean ... 46
Entity 839
Error code
DBIF RSQL NO_MEMORY ... 292
EXPORT NO SHARED_
MEMORY 287
EXSORT NOT ENOUGH _
hMEMORY 292
PXA NO SHARED MEMORY ... 286
SET PARAMETER _MEMORY _
OVERFLOW ... 287
STORAGE _PARAMETERS _
WRONG_SET ... 286, 289, 292
SYSTEM_NO_MORE_PAGING .. 276

SYSTEM_NO _ROLL ...
TSV_TNEW_PAGE_ALLOC_

hFAILED 286
TSV_TNEW PG _CREATE FAILED .. 276
Escalation procedure ... 61
ETL process 701
Event 384
Event data 27
EWT 839
Exclusive database lockcccceuuuue.... 105
877

Index

Exclusive lock wait 105,113,134,
457,479
SQL Server ...oneeeeecene 130, 805, 821
Execution plan ... 513,514, 634,765, 839
IBM DB2 for z/OSucevveeccirnnneens 806
Microsoft SQL Server ... 822
Oracle 815
Executive Information System (EIS) . 695
Expert monitor 68
Export/import buffer ... 475,544,574
Export/import SHM buffer 287, 544, 574
Extended memory area (EM) 288,
289, 839
Extended Storage server 599
Extensible Markup Language 847
Extraction 701
F
F fact table 741
Fact table 701, 756
compress 740
index 736
SAP HANA 710
Failover solution ..., 303
FDDI 839
FE Net Time 346
FETCH operation 232,500, 559
Fiber Distributed Data Interchange ... 839
File and network I/O analysis 436
File operation 436
File system cache ... 87
Files statistics 436
Firewall 839
Flow 698
FOR ALL ENTRIEScooevvirrieenee 500, 504
Fragmentation ... 569, 579
FREE statement 254
Frontend
time 346
trace 176
Full table scan 515,522,530, 734,765
Function Buildervcererreennee 321
Function modulecoooeereerrcerieereenneae 320

Functional trace — Single-record
statistics, central

878

G
Garbage collection 406,407,448,
840, 842
analysis 438,448
collector 410
compacting 409
full 408
log 413
Mark And COPY ...womeweecmmecercereceerene 409
mark and SWeep —......coceeconeceeennnn. 409
partial 408
SAP JVM 407
Gateway MONItor ..., 328
Gateway SeIVICEcormereeneceueeniinens 298
Generation 407
Generation time ... 144
Global cache hit ratio ... 805

Globally Unique Identifier (GUID) 840
GoinglLive Check — SAP GoingLive Check

GUI 840
COMMUNICALION ..o 347
controls 344
|21 T 145, 165, 346, 349

GUID 840

H

HANA — SAP HANA

Hard disk 594

Hard disk monitor ... 774,821

Hardware 51
analysis 77
DOLEIENECR oo 84,155
capacity 156
consolidation ..., 217,218
landscape 302
MONILOTING ..o 79, 81
partner 186, 188
sizing 185,186,476
tuning 32

Hash table 255

Heap 265

Heap dump 444
analysis 448

Heap memory 840

Index

Hierarchy 706,718
High availability 302, 303, 840
High water mark ... 116
Hint 534
Hit ratio 95
Hot sSpot ... 103,428,677,821
HotSpot Java Virtual Machine 409
HPROF file 443
HTML 840
HTML business templateccccoecce.. 386
HTTP 840
HTTP call 381
HTTP trace ...eevvevennnees 238, 260, 377
HybridProvider 698
Hypertext Markup Language 840

Hypertext Transfer Protocol

|
I/0 bottleneckccoveeeeeennnne 88,103, 234
I/O operation 448
IBM DB2
forIBM i 791
Jor Linux, UNIX, and Windows ... 784,
785
forz/OS 803
IBM i 791,792, 801
ICM monitor ... 69, 132,377,378
IDES 840
IDoc 840
IMG 840
Implementation Guide 744, 840
50 Vo =3 QRO 583, 603, 665, 749
administration ... 522
B*index 595
B* tree index 738
bitmap index ..., 735,738
concatenatedeeeeeeeeeeenen. 595,597
create 522
efficient 232
Jragmentationenececoneennn. 527
inverted 595, 596
maintain 522
missing 108
primary iNdexcccceeecconnneenns 109
quality 527

Index (Cont.)
rANGE SCAN ..uuoonvreverirrrnrirrinns 515,522
reorganize 527
scan 734
server 599
unique scan 514
Indexing 732
InfoCube ... 698,701, 717, 750
HANA migration ... 826
optimization 730
Overview 826
tables 707
transactional 736
InfoObject 697
InfoProvider ... 698,717,743
InfoSet 698
Initial sizing 191
In-memory
application 39
COMPULING ..o 583,586
database 594
Installation
central 302
distributed 302
Instance — SAP instance.
Integer ID 588
Integrity 53
Inter Process Communication 841

Interaction model
Interface

Internal Documentcccceevveervenrennen. 840
International Demo and Education
System 840
Internet Communication
Framework (ICF) 382,385
Internet Communication
Manager (ICM) 131,298,376,377,
381, 382
Internet Communication Manager,
Monitor 828
Internet connection 357

Internet of things ...
Internet Pricing and
Configuration (IPC)cceeeeeevermsseceeens

879

Index

Internet Transaction Server (ITS) 309,
358, 385
Integrated ... 275,385
integrated 828
performance analysis ... 378
Interpreter 413
Intranet 841
Introscope statistics ...
Invalidation ... 115,553
IPC 841
iSeries 801
ITS monitor 69
ITS — Internet Transaction Server (ITS)
ITS status MONItOrcccocvvvervecciueneens 386
J
J2EE Engine — SAP NetWeaver
Application Server Java
Java 841
application instance ... 78
bytecode 413
Dictionary 543
heap 407,412
heap analysis ... 444, 448
runtime 418
servlet 45,357
statistics 167

trace
workload monitor
Java Development Kit (JDK)
Java Server Page

Java Server Pages ... 357,359
Java Virtual Machine ... 405, 448, 841, 846

memory area 407

work process 415
JavaScript 600
JIT compileroccomecermnecerrneecenns 405,413
Job Analysis 828
Job overview 756
Join 718,734

engine 600, 612

Just-in-time compiler 405, 406, 413, 428

880

K
Key figure 136, 697
L
LAN
check
Landscape replication ...
Large I/O pool 779
Latency timeccceeeeenerunes 361, 437,594
Leaf 735
Line item dimension 711,717
Linearity 196
Linux 277
liveCache 764
Load 149,159
external SyStemcvceccvnsneennee, 169
inbound 336
outbound 336
Load distribution 137,155, 297
ABAP 301
TNCOTTECE e 84,128,156
Load distribution concept
new 310
Load profile 137
Load time 144
Loading 701
Local Area Network (LAN)cccooooeereeeene. 841
Local memory
Lock
database Iockwconeveecmnecrennnne.
escalation
handler
list
lock concept
lock conflict
lock object

lock with quantities
locks with quantities ...

monitoring

SAP enqueueceneneans

shared lock

table lock 461

WaIt STTUALION ..o, 451
Log area 109,774

Index

Logical analysis 65
Logical Unit of Work (LUW) 342, 842
Logistic Information
System (LIS) ...
LOgon roupcceeeenens
maintenance 828
monitor 302
Loop, nested 256
Low speed connection ... 352
LRU 841
M
Machine code 413
Main memory ... 51, 583, 585, 594
bottleneck 155
buffering 467
profile 158
reqUITEMEeNtcccooemeeerveerre. 208, 282
sizing 196, 215
utilization 83
virtual 293
Main memory bottleneck 83, 84, 87
Main memory configuration
monitor 208
Maintain Profile Parameters
(By Profile) 826
Maintenance view
DBDIFFVIEW 524
Mark-and-copy collector ... 410
Master
data 555
data table, indexing ... 738
service 678
Memory
allocated ... 118,619
allocation 271
area 279, 292
available 280
CoONfiguration ..., 113,263
extract 250
fixed allocated (HEAP)ccceeeeen. 288
INSPECtor ... 249, 250
[eAR .o 443, 446, 448, 449
local 264, 841
MAanagementcncenennnne 842

Memory (Cont.)
physical 119,619
pipe 132,384
shared 264
used 619
virtual ... 263,619, 846

virtual required ...
Memory Analyzer ...

Memory Configuration Monitor 113,
284,289,478, 566,576,579, 828

Memory management 117,157
IBM i 791, 801
integrated 407
Linux 277

Merge 592, 659
auto merge 660
Critical Merge ..., 661
hard merge 660
smart merge 661

Message server
Message service ...

297,298
.. 298,303, 353

Metadata 94

Method 413,448
memory requirement ... 423
parameter trace

Microsoft SQL Server

Microsoft Windows

Migration

Missing index

Mode
list 284
PRIV MOAE ..o 272,284

Model View Controller (MVC) 382

Modularization unit
Monitor RFC destination
Monitoring
agent
central
plan
system, Central ...
Moore’s law
Multicore processor
Multilingualism
MultiProvider
Multithreaded CPU
MVC

881

N
Name server 599
Nametab buffer 544
Navigation attributeccoecccee. 704,718
Nested l0oop join ...ccccoovevveeueee 506, 734, 783
Net Time 346
NEetWOrk oo 89, 234, 305
graphic 826
I/O and file I/O trace ... 448
operation 436
problem 234
tuning 32
Number Range
buffering 828
Number range 466
buffer 474
buffer mode 472
buffering ..., 466,467,471
interval 466
number range level ... 471
object 466
(0
Object Linking and Embedding (OLE) 843
OLAP 205, 696, 843
engine 600, 612
processor 719
OLAP cache .. 577,719
configuration 743,826
MONTLOT o 744,746, 826
monitoring 742
Old generation ... 407,411
collectors 410
OLE 843
OLTP 205, 696, 843
Open object 820
OPEN operation ... 232

Operating mode 314

Operating system 843
command 827
configuration parameter ... 286
file 825
limit 289
paging 265

Operating system (Cont.)

parameter 89
process 85
swap space 286

Operating system monitor 68,79, 88,
208, 229, 350, 792

PTOCESS OVEIVIEW ...ucoervvevvaecrrserian 125
Operation modecccmeeeeenens 828,843
Optimization

plan 52,55

technical 22
Optimizer — Database optimizer
Oracle 810
Oracle wait eventeccecnnecns 812
OS Monitor 828
P
Package cache 784
Package dimension ... 707
Page-in 846
Page-out 846
Pages 95
Paging 843

rate 84,87,791
Paging file — Swap space
Parallelization ... 586, 675
Parameter

change

characterizingoccnneceeenn.

maintenance

rsdb/obj/buffersize

rsdb/obj/max_objects .

Parsing
Partitioning 318,675,679

area-based 676

round robin 676
PASE runtime environment 802

Passport
Pending period .
Performance
Jorum
measurement
trace ..., 227,228, 348,729
Performance HotSpot analysis 428
Performance HotSpot tracec..... 448

Index

Performance management ... 35
proactive 23
Performance problem
general 151
permanent 152
specific 151,158
temporary 152
Performing sizing projectccccccoueeee. 197
Permanent generation 407,412
Physical main memory (RAM) ... 279, 293
Pivoting 699
Planning application ... 696
Pop-up

Position
Prefix coding
PREPARE statement
Prepared statement
Preparsed template
Preprocessor
Presentation layer
Presentation server
analysis 362

Primary index ... 512,524, 766
Priority class 311
PRIV Mode 273
PRIV mode 127
Private mode 272
Probe 447
Procedure cachereereceeeeennnns 819
Process

complete 128

external 87

stopped 127
Process chain 701
Process ID 125
Processing time ... 146, 149, 152
Processoreeceeeeeens 82,214,838
Processor threadcccooeervcenvnnrrrennnns 354
Profile parameter

abap/atrapath ... 243

abap/atrasizequota ... 243

abap/heap_area_dia
289,291

abap/heap_area_nondia ... 271,273,
289,291

abap/heap _area_total ... 271,281,289

271,273,

Profile parameter (Cont.)
abap/heaplimit
dbs/io_buf size
em/address_space_MB
em/blocksize_KB
em/initial _size MB ...

283,289
em/max_size_ MBcccommnneeceens 277
maintenance 827
PHYS MEMSIZE
rdisp/atp_server

rdisp/bufrefmode ...

rdisp/bufreftime

rdisp/engname
rdisp/max_wprun_time 308
rdisp/mshost 303
1iSP/PG_MAXES oo 276

rdisp/PG_SHM
rdisp/ROLL_MAXFS ...
rdisp/ROLL SHM
rdisp/vb_dispatching ..
rdisp/vbstart
rsdb/max_blocking_faktor ...
rstr/file
rstr/max_diSRSPACE ecceeveevnrsneceees
setting
stat/dbprocrec
ztta/roll area ..
ztta/roll _extension ...
289,293
ztta/roll_extension_dia ... 270,284
ztta/roll_extension_nondia ...270,284
Ztta/roll_firsSt ..cocccveercmnnecees 271-273
Profile parameters ... 286
Program
buffer
counter
error
RSCOLLOO
SAPOSCOL
termination
Program Global Area (PGA)
Promotion
PTF package

883

Index

Q

Quadratic dependency ...
Quality analysis ...
Quantity structure ...
Query

analytical 592
Quick Sizer
Quick Sizer project

R
Radio Frequency Identification (RFID) 26
RAID 843
Ranking 598
RBO — Rule-Based Optimizer (RBO)
RDBMS 843
Reaction time 59
Read

record-by-recordoneceecinnens 521

sequential 521
Read access 473

logical 95

physical 95
Read random hit ratioceececrvecrenene 804
READ TABLE 255
READ TABLE ... WITHKEYceeeee. 255
Read/write (I/O) problem 88,103, 788
Recoverability 54
Recovery 58
Recursive call 811
Redo log file 154
Region, generic 547
Relational database ..., 38
Relational Database Management

System 843
Remote Function Call (RFC) 45,195,

227,310, 843

ABAP coding

Asynchronous (aRFC) .

asynchronous (aRFC)

background RFC (bgRFC) 325,343

client profile 339

CONNECEION e 330, 828

cycle 327

Jundamentals ... 323

884

Remote Function Call (RFC) (Cont.)

queued (QRFC) ..cecmmceevvvrirnnsecseens 325
RFC time 330
statistics 338
synchronous 325
trace 165, 228
transactional (tRFC) 325,342, 846
RemoteCube 743
REOPEN operation ... 232
Reorganization 679
Replication 601
Reporting
precalculation
Repository browser .
Repository Information System 827
Request 559, 567
Required field 507
Resource
monitor 773
reqUITEMENtSocveveveeveveennens 186,196
Response time 59, 135,147, 304, 305, 764
average 159
distribution 169
RFC — Remote Function Call (RFC)
RFID 843
Roll buffer 283

Roll memory — SAP roll memory
Roll wait time ... 145, 165, 329, 346

Roll-in 143,267,838
ROI-OUL oo 143,267,838
Rollup 699
Root recognition ... 598
Roundtrip 346,438
Row
cache 810
ID 513
store 600, 658
Row-based data storage ... 585
RSRCACHE 744
Rule-Based Optimizer (RBO) 517,519
Run-length coding ..., 591
Runtime 427
ANALYSIS v 136,227,447
constant 260
logarithmically increasing 260

Index

S

SAP application

architecture 36
SAP application instance — SAP instance
SAP Application Performance

Standard 202
SAP ASE
data buffer 778
database ProCesseconeeene 779
engine 779, 780
execution plan ... 782
SAP Basis 37
SAP BEX analyzer ... 700
SAP buffer ... 114, 145, 282,292
access 227
trace 229
SAP buffering ... 495,543, 546
activate 553
full 546
generic 546
type 545
SAP Business Suite
architecture 36
Introduction 217
SAP HANA 39

SAP Business Warehouse ... 137,362,577,
695, 843

administration tools ... 721
analysis 722
data selectionuccecennecens 739
frontend 700
high database response times 728
indexing 732
load profiles 728
optimization 730
performance optimization 716
query 696, 700
SAP HANA 39
statistics 724
workload statistics ... 721
SAP BusinessObjects comreerernecens 700
analysis 700
Business Intelligence ... 700
Dashboards 701
Explorer 701

SAP BusinessObjects (Cont.)

Web Intelligence ... 700
SAP BW 38
SAP BW Accelerator 39, 584,721, 843
SAP BW Accelerator Monitor ... 826
SAP BW Administrator

Workbench 721,722,736,740,753
SAP client plug-inccoeceeeveecervenecns 177,182
SAP component 36
SAP Crystal Reports.ovveeurcisnnnneees 700
SAP cursor cachemeceenneeeennneees 233
SAP Customer Relationship Management

(SAP CRM) 841

SAP EarlyWatch Alert 27, 61, 73, 207, 290

SAP Easy Access menu 352
SAP EG memory 275
SAP enqueue .. 453,462,473
SAP enqueue monitor 478

SAP Enterprise Portal

SAP ERP SD benchmarkcccccoveveeunnecns 201

SAP extended global (EG) memory ... 386

SAP extended memory ... 116,270,272,
275,283,292

SAP GoingLive Check 27,187,188,
206, 290
SAP GoingLive Functional
Upgrade Checkoooccomeeveeonecceennnn. 207
SAP GoingLive Functional
Upgrade Serviceomneceeen. 213
SAP GoingLive Migration Check 207
SAP GUI 360, 843
controls 297,344
for HTML 360
forJava environment 44,360
for Windows ... 44,360
transaction, end-to-end runtime
analysis 178
SAPHANA ... 496, 583, 843
AdMinisStrationcneceeenn. 712
compression 588
database platform ... 584
indexing 594
main Memory areq ... 619
scalability 496
scaling 52
sizing 196
885

Index

SAP HANA Studio
SAP HANA XS server ...
SAP heap memory ... 116,270, 289, 292

SAP host agent 793
SAP Implementation Guide (IMG) ... 828
SAP Instance 841

maintenance 826

overview 828
SAP instance 78,140, 221, 224, 282
SAP Internet Transaction Server

(SAPITS) 45,841
SAP Java Virtual Machine (JVM) 406

SAP Java Virtual Machine Profiler 417,
444,448
SAP kernel 290
SAP List Viewer Control ...
SAP liveCacheccommeeeuenneces
SAP Logical Unit of Work
SAP Management Console ...
SAP MaxDB
command monitor
execution plan
resource monitor .
SAP memory area

SAP memory configuration 113,126
SAP Memory Configuration

11%/00) 3V L0) SRR 69,113,744
SAP memory management ..
SAP NetWeaver

release 7.40 550

Release 7.50 33
SAP NetWeaver Administrator 68,70

SQL trace 447
SAP NetWeaver Application

Server 45,358

services 298
SAP NetWeaver Application

Server ABAP 78
SAP NetWeaver Application Server

Java 37,78, 405
SAP NetWeaver AS Java

server node 418

SQL trace 447
SAP NetWeaver Enterprise

Search 38, 844

886

SAP paging 265

MEMOTY .o 275,579, 843
SAP parameter, change 120
SAP Performance Menu ... 829

SAP performance trace

SAP Process Integration ... 38
SAPR/3 24
SAP roll
buffer 269
file 269
MEMOTY .o 116, 289, 292
SAProll area
local 269
shared 269
SAP SEIVICE oo 297,302
SAP Service Marketplace, service 72
SAP solution 36
SAP solution landscapeccooeceenecens 45
SAP Solution Manager 138,167,176,
182, 246, 369, 764
analysis 71
monitoring 71
performance optimization ... 72
SLM 61
tracing 71
workload analysis ... 71
SAP Standard Application
Benchmark ...

SAP Support Portal

SAP system
service 844
trace 828
SAP System Identifier ... 845
SAP transaction 453
SAP Web Dispatcher 46, 297-299, 309
SAP work process ... 85,105,122, 283,
293,768
overview 122
SAPCCMSR 172
SAProuter 844
SAPS 202, 844
Savepoint 95
Scalability .oooveceenmeecrrrneceeine 196, 678, 844
horizontal ... 51,844
program 256, 259
vertical 51,844

Index

Secondary index ... 511, 513,522,524
change 528
create 528

Security 54

SELECT
*clause 500
identical 235
nested 499

Selection SCreencerecnrrcnnrernnenns 506

Selectivity ...vnecreennnens 518,519,529

Semaphore 125

Send System Messageomeennecens 827

Sensor data 26

Sequential read 232,765,775,782,
789, 806, 807, 816, 822

Serialization 125

Server 79, 844

Server consolidation ... 218

Server destination statistics records . 339

Server profile 156

Service 301

Service Level Agreement ..o 56

Service Level Management
(SLM) 56,74, 844

Service maintenance 242,377,381

Service-level report ... 56,58, 61,74

Session 266, 845
external 266
internal 266
monitor 811

Shadow processcmeceeens 811,812

Shared cursor cache ... 810, 813

Shared memory 264,286,384,474,
577,784, 845

Shared objects 574
Area configuration ... 578
AYea MONILOT e 578
buffering ... 544,577

Shared pool 810

Shared SQL
area 813
cache 813

SID 705, 845
table 705

Simulation application ... 696

Single point of failure (SPOF) 303

Single-core processor ...

Single-level storage
Single-record buffer

Single-record statistics

181, 227,329, 347,558, 722, 829
central 168,172
Sizing 185,196
initial 187
process 186
sizing plausibility check 188
throughput-based ... 194
T-shirt sizing 192
user-based 193
Skeleton 804
Slave service 679
Slice & dice 699
Social network 26
Socket statistics 436
Solution MONItoriNgccoeeeverreeeeeerrecereenne 52
Sparse coding 591
SPOOL SEIVICE ..ccveerveeerrrerircceniinns 298, 303
SQL 845
editor 626
native SQL 536
OpenSQL 536
plan cache ... 629, 632, 633, 635

trace ... 69,163,228, 229, 234, 260, 449,
483,484,487,491, 496,573

SQL code

SQL programming
efficient

golden rules ...

............... 490, 588,

SQL Server

primary index

499

490
691
819

SQL statement 72,98,227,481, 490,
511,529, 531, 634, 765, 770, 810, 812
buffer 779
dynamic 804
eXPensive ... 96, 483, 788, 829
nested 500
optimize 481

SQL statistics 98, 447,483,485, 488,
537,573,629, 813,828
analysis 102
DB2 786,787
IBM DB2 fOr Z/OS cooooveevccccvcvvvvvrernnnns 805

887

Index

SQL statistics (Cont.)
SAP MaxDB 770
SQL Server 821
SQL TraceSQL trace
SQLScript 603
Stack pointer 82
Star join execution plan ... 733
Star schemacoovvvveeveeveennnee. 590, 698
extended 701
Statement cache ..o 819,821
Statement Stringcocnececnncenns 804
Statistics
derived 426
record 845
server 679
single record 181,227
Statistics record 161, 166, 349
distributed ...
Stemming
Stock
Stop-the-world
Stored procedure

Stored Procedures ...
Structured Query Language
SUBMIT

Subrecord 137,145

Suite Accelerator

Support package ..

Survivor

Swap 553,557

Swap space ... 83,117, 263,279, 280,
293, 801

Sybase 846

Synchronization analysis ..

Synchronization trace

System availability

System buffer

System Global Area (SGA)cccoomeveeenne 810

System landscape ... 217,846

System load analysis, global 168

System Log 827

System monitoring

888

T

Table
analysis 568, 825
ARFCSDATA 342
ARFCSSTATE 342
ATAB 574
buffered 562, 566
condition table ...
created by SAP ...
custom 564, 568
Do10* 574
DO10S 573
DO020* 574
DBDIFF 524
DBSTATC 525
DDLOG ..o 551,571,577
DDNTF 567,574
DDNTT 567,574
hash table 255
internal 249, 856
KAPOL 561,574
NRIV e 457,466,472
NRIV_LOKAL 468
reorganize 527
RESB 66,473,527
sorted 255
SWNCMONI 142
TCURR 569
update table ... 318,322
VBBE 473
VBDATA 318
VBHDR 318,567
VBMOD 318

Table Access Statistics
Table access statistics ...
558,562, 567, 826

Table buffer ...

generic (TABL)

partial (TABLP) .
Table buffering 545

ABAP server 557
Table maintenanceccccco...... 524, 668
Table operation 240
Table pool

ATAB 573

Index

Table pool (Cont.)

KAPOL 573
Table size 567
Tablespace 92
Tag 383
Task type 140
TCP/IP 846
Technical analysiscercnnecens 65
Teraspace 802
Text dictionary 591
Text edit controlocneceecnreecennns 344
Think time 304, 305
Threadccc..... 81, 82, 448,627,768, 779

dump 416

hardware 82

monitor 629

software 82
Throughputccccmnecerinecenns 149, 159, 451
Time dependency ... 705,718
Time dimensioncneceennn. 707
Time profile 169
Time-based samplingoccccomueceeeen. 428
TMS 846
Trace

frontend 176

level 178
Training 850
Transactionncenneccennns 453, 846

ALIl 825

AL1I2 825

BALE 825

code 846

critical 58

data 555

DBOI ..o 93,105, 457,479

DBO2 93,519, 825

DBO5 569, 825

DBI12 93, 825

DBI3 93, 825

DBI3C 93

DB20 825

DB21 525

DB24 93

DBACOCKPIT ... 70,92,125,458,523,
524,614, 825, 839
DWDM 345

Transaction (Cont.)

722,826
827

507

79

79

79

79

826

158

response time
721,722,724,736,753, 826

826

826

RSDDBWAMON

RSMIGRHANADB

721,826
712,826

826

826

826

826

826

826

378, 826
827

SBGRFCCONF

70,334,827

240,254
344

344

252

498,522,524, 827

239

523, 827
827

724, 827
252,827
69

252,321

... 252,291, 458, 508, 827
... 384,510, 827

827

578

578

242,376,377,381

889

Index

Transaction (Cont.)
SITSMON

SITSPMON coovvevrecnnns
SMO1

SMO2

827

SM0O4

328, 827

464,478, 827
... 110,126, 318, 827
.. 110,126, 271, 827

577

524

827

738,756,827

828

SM50 ... 69,122,249, 290, 302, 321,

327,378, 458,769, 828

SMB51 e 79,122,129, 828
SM56 471, 828
SM58 342,828
SM59 .. 330, 331, 334, 343, 828
SM63 828
SM65 828
SM66 ... 122,126,302,321,327,378,
769, 828

SM69 828
SMGW 328
SMICM .. . 69,132,377,378, 828

... 128,302,308, 828
SNRO 471
SPRO 476, 828
SQLM 828
STO1 828

STO2 ... 69,113,208, 280, 284, 287, 289,

478, 566, 576, 828

STO3 ... 69,137,138,168,302,329, 336,

378,721,724,727, 828

STO3G ..o 69,167,168
STO3N 138,210
STO4 93,119, 828
STOS oo 228,348,483, 828
STO6 ... 68,79, 85,88,103,119,125,
208, 280, 350, 791, 828
STO6N 79
STO7 828
STI0 828
STl 828
890

Transaction (Cont.)

ST14 829

ST22 286, 829

STAD ... 137,161, 168, 329, 338, 347

STAD/STATS 829

STAT 558

STATTRACE ... 167,168

step 141,142, 265

STMS 829

STUN 68,829

SWLT 103, 829

SXMB_MONI 829

TREXADMIN ..o 125, 829

TUOZ 829

VAO1 159,162

variant 509

VLOIN 162
Transformation 701
Transmission Control Protocol/

Internet Protocolricnnreenn. 846
Transport 846
Transport Management System 829, 846
Tree 735
Tree control 344
TREX 38,843, 846

Administration

compression

search functions
tRFC table
Troubleshooting

T-shirt sizing
Tune summary
Tuning
application
application tuning ...
program optimization .
technical
Tuple reconstructionceececeneceeees

)

|80 Talo Yo [N 212,264,282
conversion 213

Uniform Resource Locator 846

Unit dimension 707

UNIX 306

Index

UNIX standard implementation 278
UPAate .eveeecveeecerreenereriies 110, 316, 353
ASYNCRTONOUS ..o 317
deactivated 126
dispatching 319
local 321
priority decisSiononeceennn. 320
records 827
request 317
service 298,302
synchronous 321
table 317
update time 322
update type 319
V1 update 319
V2 update 319
V3 update 319
WOIR PIOCESS ..coueveveneeeeirneeeeinnns 317,318
Upgrade 212
URL 846
User
active 150
call 811
CONtext ...veeerenns 143, 265, 311, 846
exit 192
monitor 328
occasional 150
power user 151
profile 151,169
transactionalconnecceonnees 150
User interface, graphicalccconecen. 840
User kernel thread (UKT)ccooevvenece. 768
User List 827
User mode
Expert 139
Service Engineeronceenece. 140
Vv
Value per unit 698
Variant 245
Verification 66
Virtual
MAIN MEMOTY ..o 293
memory 263
provider 698

Virtual Machine Container (VMC) 298,
846

VMC service 298
W
WAN 847
Web application ... 360, 369
Web browser 837
Web Dynpro 847
Web Dynpro ABAP 45,242, 357,359
runtime analysisceeen. 382
Web Dynpro forJava ... 357,359
Web GUI 360
Web reporting 700

Web service
monitor calls
Web transactioneeoneeonnenn
WHERE clause
Wide Area Network (WAN)
Wide area network (WAN)
Wily Introscope
Windows
Work group
Work process 126, 128,267, 298, 304, 352
ABAP trace 241
increasing the number
Java Virtual Machine ...
monitor
nondialog work process 274
overview ... 69,97,122,229, 249, 290,
302, 327,458,769, 828
overview, global ... 828
WOTK Process typeccceeeecmmecceverreceenes 140
Workload analysis ... 27,62, 135,136,142,
151,447,449

Workload monitor 69,137,139,142,
158, 210, 302, 329, 378, 722, 828
Central 168
central 167
Java 172
role 139
SAP BW system workload 727

Workload overview ... 169

World Wide Web 847

WWW 847

891

Index

X
XML 847
Y
Young generation ... 407,411
Z

Zero Administration Memory
Management 117, 268, 280, 293

892

First-hand knowledge.

® Rheinwerk

Publishing

SAP’ Performance Optimization Guide

Analyzing and Tuning SAP Systems

=S P LI ELLL AT | A=

Thomas Schneider e Rheinwerk

Publishing

Thomas Schneider

SAP Performance Optimization Guide:
Analyzing and Tuning SAP Systems
892 Pages, 2018, $89.95

ISBN 978-1-4932-1524-9

-E www.sap-press.com/4370

Dr. Thomas Schneider started his career at SAP AG in 1996 Among other
things, he was in charge of the Center of Expertise for Performance in the Service
& Support group and the responsible Support Alliance manager for key accounts.
Since 2004 he has worked in the Research & Breakthrough Innovation group,
where he first was responsible for IT Service & Application Management. Since
2009 he has focused on the Partner Development Infrastructure in the SAP Cloud
organization as the responsible architect

We hope you have enjoyed this reading sample. You may recommend

or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usage
and exploitation rights are reserved by the author and the publisher.

https://www.sap-press.com/sap-performance-optimization-guide_4370/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse%20The%20Book&utm_content=1524

