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This chapter describes methods for analyzing individual ABAP programs,
for example, using tools such as performance trace and ABAP runtime
analysis, debugger, and code inspector. It also provides information on
optimizing ABAP code.
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Chapter5
Optimization of ABAP Programs

This chapter explains how to perform a detailed performance analysis of
programs and transactions that you’ve already identified as expensive. In
other words, you’ve performed a workload analysis, consulted users, and
discovered that the performance of these programs isn’t satisfactory.

To begin the analysis of expensive ABAP programs, examine the single sta-
tistical records, which will give you an overview of the response times of a
transaction. For more in-depth analysis, use SAP performance trace for
detailed analysis of database accesses, remote function calls (RFCs), and
lock operations (enqueues). If you still can’t find the problem after using
these methods, you can use ABAP trace and ABAP debugger as additional
analysis methods. You should also routinely use the Code Inspector, which
has numerous statistical performance checks.

When Should You Read This Chapter?

You should read this chapter if you've identified a program or transaction
as being critical for performance and you now want to perform a detailed
analysis of it.

5.1 Performance Trace

Performance trace is a powerful tool for analyzing the runtime of ABAP
programs. It enables you to record a program runtime for the following
operations: database access (i.e., SQL user statements), RFCs, enqueue oper-
ations, and accesses to SAP buffers. Performance trace is a tool that was
developed by SAP and is thus identical for all database systems, except in
the fine details.

Runtime analysis of
ABAP programs
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Information on
activating a trace

To navigate to the initial performance trace screen, select System « Utilities »
Performance Trace or use Transaction STO5. In this view, you'll find buttons
to start, stop, and evaluate performance trace. You can also find checkboxes
for selecting the trace modes SQL-Trace, Enqueue Trace, RFC Trace, HTTP
Trace (as of SAP Basis version 7.10), and Buffer Trace. Only the field for the
SQL trace is marked by default. For standard analysis of a program, we rec-
ommend that you activate the SQL trace, enqueue trace, HTTP trace, and RFC
trace.

5.1.1 Activating a Performance Trace

You can start and stop a performance trace by clicking the Trace On and
Trace Off buttons in Transaction STO5. You can only create one perfor-
mance trace per application server at a time. In the State of Trace field, you
can see whether a trace is already activated and which user has activated
the trace. When you start a trace, a selection screen appears where you can
enter users for whom the trace should be activated. The name with which
you logged on is usually the user name entered here. Use a different name
if you want to trace the actions of another user. The user who activates the
trace doesn’t have to be the same one whose actions are being traced.

Keep in mind the following points when activating a trace:

® Ensure that the user whose actions are to be recorded only carries out
one action during the trace; otherwise, the trace won'’t be clear. You
should also ensure that no background jobs or update requests are run-
ning for this user.

® The performance trace is activated in the application server. For each
database operation, data is written to a trace file in the file system on the
application server. You must therefore ensure that you've logged on to
the same application server as the user to be monitored. This is particu-
larly important if you want to record an update request or a background
job and are working in a system with distributed updating or distributed
background processing. In this case, you won't know where the request
will be started, and, as a result, you'll have to start the trace on all appli-
cation servers with update or background work processes.
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®m The SQL trace only displays accesses to the database. SQL statements
that can be satisfied from data in the SAP buffer don’t appear in the trace.
If you want to analyze SAP buffer accesses, activate the SAP buffer trace.

m However, buffer load processes are also recorded in the SQL trace.
Because you're normally not interested in recording the buffer load pro-
cess in the SQL trace, first execute a program once without activating the
trace to allow the buffers to be loaded (i.e., the SAP buffers and database
buffers). Then run the program again with the SQL trace activated, and
use the results of this trace for evaluation.

® During the trace, look at the following monitors: the work process over-
view (for general monitoring), the operating system monitor of the data-
base server (for monitoring possible CPU bottlenecks on the database
server), and the database process monitor for direct monitoring of the
executed SQL statements. It makes no sense to watch these monitors
during the trace if you're logged on as the user being traced. The SQL
statements of the monitors would appear in the trace and thus make the
trace unreadable.

® The default trace file name is set with the SAP profile parameter rstr/
file. In the initial screen, you can assign a different name to the trace
file. Writing to the trace file is cyclical in the sense that when the file is
full, the oldest entries are deleted to make room for new entries. The size
of the trace file (in bytes) is specified by the SAP profile parameter rstr/
max_diskspace, for which the default value is 16,384,000 bytes (16 MB).

® You can also store recorded traces. For this purpose, select Performance
Trace « Save Trace or Performance Trace « Display Saved Trace to retrieve
a saved trace again.

5.1.2 Evaluating an SQL Trace

To evaluate a performance trace, select Display Trace in the initial screen. A
selection screen is displayed, and you can specify the part of the trace which
you want to analyze in the Trace Type field. In this and the following sec-
tions, we’ll discuss the evaluation of each of the trace types separately. In
practice, you can analyze all trace modes together. Table 5.1 lists other fields
you can use to restrict SQL trace analysis.
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Trace Filename  Name of the trace file. Normally this name should not be Operation The operation executed on the database, for example,
changed. PREPARE (preparation “parsing”) of a statement), OPEN (open a
database cursor), FETCH (transfer of data from the database),
Trace Type The default trace mode setting is SQL-Trace. To analyze an RFC and so on
trace, enqueue trace, HTTP trace, and buffer trace, select the i
corresponding checkboxes. Curs Database cursor number.
Trace Period Period in which the trace runs. Records Number of records read from the database.
User Name User whose actions have been traced. RC Database system-specific return code.
Object Name Names of specific tables to which the display of trace results is Statement Short form of the executed SQL statement. The complete
to be restricted. Note that, by default, the tables D010*, D020%*, statement can be displayed by double-clicking the correspond-
and DDLOG aren’t shown in the trace results. These tables con- ing row.

tain the ABAP coding and the buffer synchronization data.
Table 5.2 Fields in an SQL Trace (Cont.)

Execution time  Restricts the display to SQL statements that have a certain

execution time.
[& Tracelist Edit Goto  Swstern  Help W
Operation Restricts the trace data to particular database operations. G | FldB e@@ DHE DDOoO BE W
Frace List
Table 5.1 Fields in the Dialog Box for Evaluating a Trace o] e e DD O
(&)[F]6)5EFL) [BLIEL) [S]E . . 18]
. : s : s : s HHMM:SS.MS £ Durtn Program Narme Object name op. Curs Array IHits  RC Conn Statement
ExeCUtlng trace NeXt' Clle the ExeCUte bUtton' The baSIC SQL trace IISt 1S dlsplayed Flgure 16:11:13.358 476 ZTS_USEALW VBAK OPEN 1 a o 0 Rf3 SELECT WHERE "MANDT" ='900' AND "WBELN" ='1000034700" -
: . . s s 18:11:13.350 155 ZTS_USEALY yEAK FETCH 1 o1 ORaE -
5.1 shows an example of a basic trace list. Table 5.2 explains the fields dis- T e Nt e T
: 18:11:13.350 12 ZTS_USEALY yEAK Qo 1 00 0RaE
played 1n an SQL trace. M6:11113.359 ] 637 ZTS_USEALV VBAP OPEM 9D 0 0 0 Rf3 SELECT WHERE "MANDT" ='900' AND "VBELM" ='1000034700°
16:11:13.360 1,407 ZTS_USEALY VBAP FETCH 90 a 5 0 Rf3
18:11:13.362 9 ZTS_USEALY YEAP FETCH o0 1 0 100 Ry3
181113362 26,563 ZTS_USEALV yEAK OPEM 135 0 0 0 Rj3 SELECT WHERE "MANDT® ='000' AND "ERMAM" ='SCHNEIDERT'
. . . T 16:11:13.388 27 ZTS_USEALW VBAK FETCH 125 a 1 0 Rf3
hh:mm:ss.ms Time stamp in the form hour:mmute:second:mllllsecond. 16:11:13.388 8 ZTS_USEALW WBAK FETCH 125 1 0 100 R/3
18:11:12.380 13 ZTS_USEALY yEAK CQOSE 135 0 0 0 R3S
. . . . 16:11:13.430 0 SAPLCHDP Client o o o f54110_PTQ_76 2 Client OP_PUT_CLIENT_TABLE4SA 1481 6
Duration Runtime of an SQL statement in microseconds (|J-5)~ If the run- 16:11:13.438 0 SAPLCHDP Client o] o] 0 f54110_PTQ_76 # Client DP_PUT_CLIENT_TABLE4SA 2240 6
t. . th .I 50 000 th d . d t 16:11:13.442 0 SAPLCMDP Client a o o fs4110_PTOQ 76 ? Client DP_PUT_CLIEMT_TABLE4SA 1676 6
Ime Is more an ’ P’S‘ € Correspon Ing row is re 0 16:11:13.448 0 SAPLCMDP Client a a a fs4110_PTOQ_76 ? Client DP_PUT_CLIENT_TABLE45A 1496 6
identify that the SQL statement has a long runtime. However, 18:11:13.45 0 SAPLCNDP et T fs4110_PTQ_76 # Client DP_PUT _CLIENT_TABLE4SA 1703 6
y g : 4 16:11:13.462 0 SAPLCMDP Client o o a fz4110_PTO 76 ? Client DP_PUT_CLIEMT_TABLE4SA 1971 6
the value 150,000 ps is a somewhat random boundary. 18:11:13.467 0 SAPLCNDP et ER T fs4110_PTQ_76 7 Client DP_PUT _CLIENT_TABLE4SA 1878 6
’ 16:11:13.473 0 SAPLCMDP Client o o o fz4110_PTO 76 ? Client DP_PUT_CLIEMT_TABLE4SA 1676 6
18:11:13.477 0 SAPLCNDP et o0 oo f4110_PTQ_76 7 Client DP_PUT _CLIENT_TABLE4SA 1887 6
program Name Name of the program from which the SQL statement Ol’igi- 16:11113.493 78,080 SAPLOLEA WOFNDO2462624 Client o| o] o fe4110_PTQ_76 WOFNDO2462624 Clent OLE_FLUSH_CALL 8422 3361
16:11:13.494 659 SAPLOLEA EXECSTA a o 0 Rf3 COMMIT WORK =
nates. 181115440 0,435 SAPLOLEA WORNOD2452628, Client o0 oo f4110_PTQ_76 WOFNOI2462624 Client OLE_FLUSH_CALL 1715 1080 .
i i
Object Name Name of the database table or database view. 4
Table 5.2 Fields in an SQL Trace Figure 5.1 Basic Performance Trace List with Entries from SQL Trace and RFC Trace
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Direct read

Sequential read

Maximum number
of records

An SQL statement that appears in Figure 5.1 accesses table VBAK. The fields
specified in the WHERE clause are key fields in the table. The result of the
request can therefore only be either one record (Rec = 1) or no record (Rec =
0), depending on whether a table entry exists for the specified key. SQL
statements in which all fields of the key of the respective table are specified
as “same” are called fully qualified accesses or direct reads. A fully qualified
database access should not take more than about 2 to 10 ms. However, in
individual cases, an access may last up to 10 times longer, such as when
blocks can’t be found in the database buffer and must be retrieved from the
hard drive.

The database access consists of two database operations, an OPEN/REOPEN
operation and a FETCH operation. The REOPEN operation transfers the con-
crete values in the WHERE clause to the database. The FETCH operation locates
the database data and transfers it to the application server.

A second access in Figure 5.1 takes place in table VBAP. Not all key fields in the
WHERE clause are clearly specified with this access. As a result, multiple
records can be transferred. However, in our example, five records are trans-
ferred (Rec = 5). The data records are transferred to the application server in
packets, in one or more fetches (array fetch). An array fetch offers better
performance for applications than transferring individual records in a cli-
ent/server environment.

The second access takes place via an efficient index, thus the duration of
execution also remains significantly less than 10 ms. The third access (again
in table VBAK) takes place via a field for which there is no efficient index.
Thus, the duration of this statement is significantly longer than that of the
previous statement.

The maximum number of records that can be transferred in a FETCH opera-
tion is determined by the SAP database interface as follows: every SAP work
process has an I/O buffer for transferring data to or from the database. The
SAP profile parameter dbs/io _buf size specifies the size of this buffer. The
number of records transferred from the database by a fetch is calculated as
follows:

Number of records = dbs/io buf size +length of 1record in bytes

The number of records per fetch depends on the SELECT clause of the SQL
statement. If the number of fields to be transferred from the database is
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restricted by a SELECT list, more records fit into a single fetch than when
SELECT *is used. The default value for the SAP profile parameter dbs/io _buf
sizeis 33,792 bytes and shouldn’t be changed unless recommended explic-
itly by SAP.

Guideline Value for Array Fetch
The guideline response time for optimal array fetches is less than 10 ms

per selected record. The actual runtime greatly depends on the WHERE
clause, the index used, and how effectively the data is stored.

Other database operations that may be listed in the SQL trace are DECLARE,
PREPARE, and OPEN. The DECLARE operation defines what is known as a cursor
to manage data transfer between ABAP programs and a database, and also
assigns an ID number to the cursor. This cursor ID is used for communica-
tion between SAP work processes and the database system.

In the subsequent PREPARE operation, the database process determines the
access strategy for the statement. In the Statement field, the statement is to
be seen with a variable (INSTANCE =:A0, not shown in Figure 5.1). To reduce
the number of relatively time-consuming PREPARE operations, each work
process of an application server retains a certain number of already parsed
SQL statements in a special buffer (SAP cursor cache). Each SAP work pro-
cess buffers the operations DECLARE, PREPARE, OPEN, and EXEC in its SAP cursor
cache. After the work process has opened a cursor for a DECLARE operation,
the same cursor can be used repeatedly until it’s displaced from the SAP
cursor cache after a specified time because the size of the cache is limited.

The database doesn’t receive the concrete values of the WHERE clause (MANDT
=100, etc.) until the OPEN operation is used. A PREPARE operation is only nec-
essary for the first execution of a statement, as long as that statement
hasn’t been displaced from the SAP cursor cache. Subsequently, the state-
ment, which has already been prepared (parsed), can always be reaccessed
with OPEN or REOPEN.

Figure 5.1 shows the SQL trace for the second run of the same report.
Because the DECLARE and PREPARE operations are executed in the report’s
first run, our example shows only the OPEN operation.
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Network problems

Compression

If you've identified an SQL statement with a long runtime, you should acti-
vate the trace again for further analysis. It's useful to perform the trace at a
time of high system load and again at a time of low system load. If you find
that the response times for database accesses are high only at particular
times, this indicates throughput problems in the network or in database
access (e.g., an I/0 bottleneck). For detailed information, see Chapter 2, Sec-
tion 2.2.2. If, on the other hand, the response times for database access are
poor in general (not only at particular times), the cause is probably an inef-
ficient SQL statement, which should be optimized.

When evaluating database response times, remember that the processing
times of SQL statements are measured on the application server. The run-
time shown in the trace includes not only the time required by the database
to furnish the requested data but also the time required to transfer data
between the database and the application server. If there is a performance
problem in network communication, the runtimes of SQL statements will
increase.

Trace Comparison

You can best recognize network problems between the database and the
application server by comparing traces as follows: First, execute the same
SQL trace at least twice—once on the application server that is on the
same computer as the database and is directly connected to the database,
and once on an application server that is connected to the database via the
TCP/IP network. Compare the two SQL traces. If there are significantly
higher response times (greater by 50% or more) on the application server
connected via the network, you have a network problem. Perform this test
at a time of low system load, and repeat it several times to rule out run-
time differences due to the buffer-load process on the database and appli-
cation servers. This test works only when your application server is
connected to the database via IPC.

5.1.3 Other Functions in the SQL Trace

Using the Summary function of the SQL trace, you can get an overview of
the most expensive SQL accesses. If you navigate via Trace List - Compress
Trace according to SQL Statements, a list is displayed, which shows the data
listed in Table 5.3 for each statement. Sort the list according to the runtimes
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of the SQL statements. The SQL statements with the longest runtimes
should be optimized first.

Field Explanation

Executions Number of executions

Redundancy Number of redundant (identical) executions

Duration Runtime for all executions of an SQL statement in micro-
seconds

Object Name Name of the table

Statement Short form of the executed SQL statement

Table 5.3 Fields in the Compressed Summary of an SQL Trace

Inefficient programs are often characterized by the fact that they read iden-
tical data from the database several times in succession. To help you iden-
tify these identical SQL statements, choose Trace list « Display Identical
Selects to see a list of identical selects that tells you how often each identi-
cal select was executed. By using this function in conjunction with the com-
pressed data, you can roughly see how much of an improvement in
performance can be gained by avoiding identical SQL statements via more
skillful programming.

After this preliminary evaluation using the SQL trace, you have all of the
information necessary for a more detailed analysis:

® Program name and transaction of the executed program
Using the ABAP Display button in the trace list, you can jump directly to
the code location that executes the SQL statement.

® Table name
The DDIC Info button gives a summary of the most important dictionary
information for this table.

® WHERE clause in the SQL statement.

= Analysis
Detailed analysis of the SQL statement, for example, EXPLAIN function.

For more information on these functions, see Chapter 11.
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Procedure for  For customer-developed ABAP programs, perform (at least) the following
quality control - checks as a form of program quality control:

1. For each customer-developed ABAP program, perform an SQL trace
either on the production system or on a system with a representative
volume of test data.

2. From the basic trace list display, create a compressed summary to find
the SQL statements with the longest runtimes: Trace List « Compress
Trace according to SQL Statements.

3. Display a list of identical accesses to find SQL statements that are exe-
cuted several times in succession: Trace List « Display Identical Selects.

4. Use these lists to decide whether the program should be approved or
whether it needs to be improved by the responsible ABAP developer.

5. Save a copy of the lists along with the program documentation. If pro-
gram performance diminishes at a later date (whether due to a modifica-
tion or due to the growing data volume), perform another SQL trace, and
compare it to the earlier one. Monitor performance in this way after each
significant program modification.

These measures can be used not only to monitor customer-developed pro-
grams but also to regularly monitor frequently used, standard SAP transac-
tions that are critical to performance. If the runtimes of particular SQL
statements increase over time, you may need to archive the corresponding
table.

5.1.4 Evaluating a Buffer Trace

Table 5.4 contains and explains the fields that are displayed in a buffer trace.
The last three columns are only displayed if you click the More Info button.
You can find more detailed explanations on SAP table buffering in Chapter
12.

hh:mm:ss.ms Time stamp in the form hour:minute:second:millisecond

Duration Runtime of an SQL statement in microseconds

Table 5.4 Fields of a Buffer Trace
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Program Name  Name of the program that has triggered the buffer call

Object Name Name of the database table or database view
Operation Name of the function that was executed on the buffer
Records Number of records that were read from the buffer

RC Return code:

B 0: Function executed correctly

B 64: No further records available

B 256: Records not available in the buffer

B 1024: Records not available in the buffer, buffer is loaded
(for parallel read accesses)

Statement In the OPEN operation, the buffering type is indicated:

® G: Generic buffering

® P:Single-record buffering

R: Full buffering

S: Export/import buffer

C: CUA buffer

O: OTR buffer

E: Export/import buffering in shared memory

Table 5.4 Fields of a Buffer Trace (Cont.)

5.1.5 Evaluating a Remote Function Call Trace

Table 5.5 lists the fields displayed in an RFC trace.

hh:mm:ss.ms Time stamp in the form hour:minute:second:millisecond.
Duration RFC runtime in microseconds.
Program Name  Name of the program from which the RFC originates.

Object Name Name of the recipient, for example, the SAP instance or com-
puter that was called.

Table 5.5 Fields in an RFC Trace
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Detailed analysis in
the RFC trace

Operation For entry Client: RFC sent, that is, the instance on which the
trace is executed is the client (sender).

For entry Server: RFC received, that is, the instance on which
the trace is executed is the server (recipient).

Records Not used.
RC Return code (for successful execution: 0 [zero]).
Statement Additional information on the RFC, including the names of the

sender and recipient; name of the RFC module; and amount of
data transferred.

You can view all information on the RFC by double-clicking the
corresponding row in the RFC trace.

Table 5.5 Fields in an RFC Trace (Cont.)

Figure 5.1 shows an example of an RFC (OLE_FLUSH CALL).

Like the SQL trace, the RFC trace provides several detailed analysis func-
tions:

® By double-clicking a row of the RFC trace or by clicking the Details but-
ton, you can obtain complete information on the RFC, including the
names and IP addresses of the sender and recipient, the name of the RFC
module, and the transferred data quantity.

® By clicking the ABAP Display button, you can view the source text of the
corresponding ABAP program.

5.1.6 Evaluating an HTTP Trace

Table 5.6 contains and explains the fields that are displayed in an HTTP
trace. You'll find more detailed descriptions of HTTP calls in Chapter 8.

hh:mm:ss.ms Time stamp in the form hour:minute:second:millisecond.

Duration Runtime of the HTTP call in microseconds.

Table 5.6 Fields of an HTTP Trace
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Program Name  Name (logical path) of the executed HTTP call.
Object Name Name of the recipient, for example, the SAP instance called.

Object Name For entry Client: HTTP sent, that is, the instance on which the
trace is executed is the client (sender).
For entry Server: HTTP received, that is, the instance on which
the trace is executed is the server (recipient).

RC HTTP return code (200 for successful execution, 401 for failed
authentication, etc.).

Statement Additional information on the HTTP, including the names of
the sender and recipient, name of the HTTP call, and amount
of data transferred.

You can view all information on the HTTP call by double-click-
ing the corresponding row in the HTTP trace.

Table 5.6 Fields of an HTTP Trace (Cont.)

5.1.7 Evaluating an Enqueue Trace

Table 5.7 contains and explains the fields that are displayed in an enqueue
trace. The last three columns are only displayed if you click the More Info
button. You can find more detailed explanations of the SAP enqueue con-
cept in Chapter 10.

hh:mm:ss.ms Time stamp in the form hour:minute:second:millisecond.
Duration Runtime of the enqueue/dequeue statement in microseconds.

Program Name  Name of the program from which the enqueue statement
originates.

Object Name Name of the enqueue object. To see details of the correspond-
ing object, call the ABAP Data Dictionary (using Transaction
SE12) and enter the object name in the field under Lock
Objects. To view the properties of the objects, select Display.

Table 5.7 Fields in an Enqueue Trace
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Field Explanation

Operation Operation ENQUEUE: Enqueue(s) set.
Operation DEQUEUE: Individual enqueues are released.

Operation DEQ ALL with specific object entry in the Object col-
umn: All enqueues for the object in question are released.
Operation DEQALL with no object entry in the Object column
(entry {{{{{{{{{{): All enqueues for the transaction in ques-
tion are released (end of a transaction).

Operation ENQPERM: At the end of the dialog part of a transac-
tion, enqueues are passed on to update management.

5.2 Performance Analysis with ABAP Trace (Runtime Analysis)

5.2.1 Activating an ABAP Trace

You activate an ABAP trace for an SAP GUI transaction as follows:

1.

Use the following menu path to access the initial screen of the ABAP
trace: System « Utilities « Runtime Analysis  Execute. Alternatively, select
Transaction SAT.

. In the upper part of the screen, under Measure, enter a transaction, pro-

gram name, or function module, and then select Execute to start the
measuring process. You can also click the In Parallel Mode button to
access a process list, where you can activate the ABAP trace for the cur-
rently active work process.

3. The system starts to measure the runtime and creates a file with the
Records Number of enqueues that are set or released.
resulting measurement data.
RC R e e 4. When you want to return to the initial runtime analysis screen, simply
Statement More detailed information on the enqueue: exit the transaction, function module, or program as normal, or start the

Entries Excl or Shared: Exclusive or “shared” locks; name of
locked unit, (e.g., “MARC 900SD000002”: Material SD000002
is locked in table MARC, in client 900). The entries in this row
correspond with the properties of the enqueue object defined
in the ABAP Data Dictionary.

Table 5.7 Fields in an Enqueue Trace (Cont.)

5.2 Performance Analysis with ABAP Trace
(Runtime Analysis)

runtime analysis again.

If a runtime measurement is to be performed for a transaction that is

started via a web browser or an external system, follow these steps:

1
2.

Start the ABAP runtime analysis transaction as previously described.

Select the Schedule button under User/Service. The Overview of Schedu-
led Measurements screen is displayed.

Select Schedule Measurement, and enter the following data in the dialog
box:

— User, client, and server

Process type, for example, dialog, background processing, or HTTP

For SAP GUI
transactions

For web browser or
external systems

You should use an ABAP trace, also referred to as ABAP runtime analysis,
when the runtime of the programs to be analyzed consists mainly of CPU

Object type (e.g., transaction, report, or URL) and object name

time. During an ABAP trace, not only the runtime of database accesses ~ Maximum number of scheduled measurements

(SELECT, EXEC SQL, etc.) is measured but also the time required for individual
modularization units (MODULE, PERFORM, CALL FUNCTION, SUBMIT, etc.), internal
table operations (APPEND, COLLECT, SORT, READ TABLE), and other ABAP state-
ments.

- Note here that an end-to-end transaction may involve multiple
measurements. To ensure that all parts are recorded, you should
specify multiple measurements here.

Expiry date, time, and description

User interfaces are available in SAP GUI (Transaction SAT) and in the 4. Close the window with the confirmation Schedule Measurement. The
Eclipse-based ABAP development environment—the underlying tracing
technology is identical.

measurement is then scheduled and appears in the overview list.
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For BSP and
Web Dynpro ABAP
applications

D]

Activating traces
in Eclipse

5. Start the transaction to be analyzed. While the transaction is running,
the columns Started and Status indicate whether measurement files are
created.

6. When the transaction has ended, you evaluate the measurement files as
described in the next section. If a measurement is still open because, for
example, the web browser wasn't properly closed, you can stop a mea-
surement by clicking Stop Active Measurement (on the Evaluate tab, as
discussed later).

To start a runtime analysis for Business Server Pages (BSPs) and Web Dyn-
pro ABAPapplications, call Transaction SICF (Service Maintenance). Select
the service to analyze in the navigation tree, and activate the runtime
analysis via Edit - Runtime Analysis - Activate.

As of version 6.40, you can restrict the procedure to a user name during
activation and specify a variant to use for recording. Here, it’s also possible
to specify the measurement accuracy.

Information on Measurement Accuracy

In the initial screen, a traffic light on the Measure tab indicates whether
the runtime measurement can determine reliable times. If the traffic light
is red, it means this isn’t possible because of nonsynchronized CPUs in a
computer with multiple processors. Therefore, you must perform the time
measurements with low accuracy (Settings « Measurement Accuracy -
Low). You can find further operating system-specific information in SAP
Notes 20097 and 87447. If you want to perform a runtime analysis in paral-
lel mode, refer to SAP Note 729520.

When you're activating an ABAP trace, filter functions enable you to restrict
the trace to a particular function module or group of ABAP statements or to
adjust an aggregation. Section 5.2.3 explains how to use these options.

To activate a trace in an Eclipse-based ABAP development environment,
select the ABAP Profiling perspective in Eclipse first. This perspective con-
tains the ABAP Trace Requests and ABAP Traces views. In the ABAP Trace
Requests view, select a system and choose Create Trace Requests in the con-
text menu. You can now define in a dialog box which actions are supposed
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to be recorded. The options are the same as described for the SAP GUI inter-
face.

You can activate the runtime analysis either in SAP GUI or in Eclipse. The
analyses recorded can be evaluated with both interfaces.

When you activate an ABAP trace, bear the following points in mind (which
are similar to those that apply to an SQL trace):

® Because you're normally not interested in recording the buffer load pro-
cess in the trace, you should first execute a program once without acti-
vating the trace, thereby allowing the buffers to be loaded (i.e., the SAP
and database buffers). Then run the program again with the ABAP trace
activated, and use the results of this trace for evaluation.

® Perform the trace at a time of low system load to ensure that the mea-
sured times aren’t influenced by a temporary system overload (e.g., a
CPU overload).

® To enable runtime analysis, the system requires the SAP profile parame-
ters abap/atrapath and abap/atrasizequota. These parameters are set
when the system is installed. The profile parameter abap/atrapath indi-
cates in which directory the trace files are written. You can restrict the
maximum size of all ABAP trace files by using the parameter abap/atra-
sizequota. The trace files are deleted after 30 days if you don’t change the
deletion date (Evaluate tab).

5.2.2 Evaluating an ABAP Trace

To display the results of an analysis, select the desired file under the
Evaluate tab in Transaction SAT. In Eclipse, select the file in the ABAP Traces
view.

The runtime analysis presents different views of the measurement results
in list form or as graphics.

® (Click the Hit List button to view alist that displays the execution time for
each statement. This list is sorted in decreasing order of net times (see
Figure 5.2).

® Via the Hierarchy button, you obtain a presentation of the chronological
sequence of the recorded parts of the program.
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m Other buttons will display specific evaluations that, for example, catego-
rize database tables or modularization units.

If you've generated an ABAP trace, first display the Hit List. Sort the hit list
according to net time to get an overview of statements with the highest net
runtimes. If the ABAP trace was recorded in aggregate form, only the Hit List
is available as an evaluation option.
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Figure 5.2 ABAP Runtime Analysis: Aggregated Hit List of Call Locations Sorted
according to Net Time

The runtime analysis establishes the gross and/or net times of individual
program calls in microseconds (us). Gross time is the total time required for
the call. This includes the times of all modularization units and ABAP state-
ments in this call. The net time is the gross time minus the time required
for the called modularization units (MODULE, PERFORM, CALL FUNCTION, CALL
SCREEN, CALL TRANSACTION, CALL DIALOG, SUBMIT) and separately specified ABAP
statements if logging was activated for them. For “elementary” statements
such as APPEND or SORT, the gross time is the same as the net time. If the gross
and net times for a call differ, this call contains other calls or modulariza-
tion units. For example, if a subroutine shows a gross time of 100,000 ps
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and a net time of 80,000 ps, this means 80,000 ps are used for calling the
routine itself, and 20,000 ps are assigned to other statements in the rou-
tine, which were logged separately. The Eclipse-based evaluation interface
uses the terms Total Time and Own Time as synonyms.

Figure 5.2 shows the analysis of a sample program. In this program, data
records were read from tables VBAK and VBAP and were displayed via the
ABAP List Viewer (ALV; SAP class CL_SALV TABLE). The Hit List contains the
ALV display function (program SAPLOLEA) with 39% net time and access to
table VBAK at the fore with 8%.

Resource Requirement Due to Runtime Analysis

The runtime analysis involves a lot of work; generating the analysis can as
much as double the runtime of a program (compared to a program run
without runtime analysis activated). The runtime analysis takes this into
account and displays correspondingly adjusted runtimes in the lists. How-
ever, if you look at the statistical record created while the runtime analysis
was active, you'll see that it’s clearly distorted when compared to a pro-
gram run without runtime analysis. In contrast, letting a performance
trace run simultaneously doesn’t involve much extra load —less than 5%.

5.2.3 Using Variations

When you execute the ABAP trace function, you can use variants to adjust
how the trace is carried out. We highly recommend the use of variants. It’s
particularly advisable to try out these options when analyzing a complex
program because data quantities of several megabytes can be generated
very quickly, much of which is often completely irrelevant to the analysis.
Using variants, you can determine more precisely what you want to ana-
lyze.

You can see the currently selected variant in the initial screen of the run-
time analysis under Measurement. The DEFAULT variant is already set in the
system. You can save your personal settings as your own variant.

The Display Variants or Change Variants button takes you to the screen
where you can enter the settings for a variant:
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® Aggregation type

On the Duration and Type tab, you can, among other things, set the type
of aggregation. Aggregation is always relevant when a statement is called
numerous times in a program, for example, an SQL statement within a
loop. If aggregation isn’t activated, an entry will be written to the trace
measurement file each time the SQL statement is called. If aggregation is
activated, only one entry will be recorded, in which the runtimes for each
execution are added together. On the Duration and Type tab, you're
offered two options:
— No Aggregation
An entry is written to the measurement file each time the statement
is called.

— Aggregation According to Call Location
The runtimes for individual executions of a statement are added
together in one entry. However, if a statement appears several times
in a program at several locations in the program text, one entry is
written for each time it appears in the program text. This option is
activated in the default variant.

In general, activating aggregation dramatically reduces the size of the
measurement file, and, in many cases, an analysis of long program
sequences is only possible with aggregation. When you use aggregation,
some evaluation functions (e.g., the hierarchy list) are lost and therefore
no longer available for evaluation.

Trace on remote systems

Moreover, you specify on the Duration and Type tab whether RFCs and
update calls are supposed to be recorded as well. If you activate the cor-
responding option, this information is forwarded to the corresponding
processes. To be able to record an RFC in an external system, that system
must accept external trace calls. You configure this using the rstr/
accept remote trace parameter, which you must set to true. The trace
file is then written to the external system. If you use the end-to-end (E2E)
trace in SAP Solution Manager, this function is activated automatically,
and the E2E trace automatically reads all trace files.

Filter operations
The settings on the Statements tab determine which operations will be
monitored in the runtime analysis.
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Tip

If you want to analyze operations on internal tables such as Append, Loop,
or Sort, activate the Read Operations and Change Operations checkboxes
under Int. Tables. These settings aren’t activated in the default variant.

® Filter program parts

On the Program Parts tab, you can set which parts of the program to ana-
lyze. If you select the Restrict to Program Parts option, you can restrict
the trace to selected classes, function groups, and programs, and their
subcomponents, methods, function modules, and form routines.

Procedure for More Complex Programs

How should you carry out an analysis of more complex programs? We rec-
ommend that you first carry out an analysis of the entire program with
aggregation according to call location and without analyzing operations
on internal tables (default variant settings). The objective of this analysis is
to find the modularization units with the highest runtimes. After this ini-
tial analysis, sort the hit list according to net times and identify the modu-
larization units or statements with high runtime.

If you can’t deduce recommendations for optimizing the program from
this first analysis, perform a more detailed analysis, setting variants to
limit the analysis to these modularization units. Simultaneously, activate
the trace for operations from internal tables and deactivate the aggrega-
tion.

5.2.4 Using Timeline Views

The Eclipse-based interface provides an exclusive view, which displays the
program flow on a timeline. This view indicates the number of nesting lev-
els of the program and the calls with a high net time.

To use the timeline view, follow these steps:

1. Choose the ABAP Profiling perspective and ABAP Traces view in the
Eclipse-based ABAP development environment. Select a file, and open
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the Call Timeline view. The system displays the time line of the runtime
analysis (see Figure 5.3).

2. You can use navigation tools such as zoom settings and the preview to
navigate in the lower part of the view. Calls with a high net time are dis-
played as long horizontal bars in the view.

3. Select one of the critical calls. A window shows the following informa-
tion about the call:

— Operation
— Calling program and program that is called
— Gross and net time

4. Using the functions in the context menu, you can navigate to other
views, such as Hit List and Call Hierarchy.

5. To improve the display of the overview, define your own coloring
schema. For this purpose, select Edit Coloring Schemas from the context
menu. Assign specific colors to the program groups. For example, assign
programs with the “Z” schema to the color “Red” to identify program
parts that begin with a prefix. Figure 5.3 shows a colored timeline view.
You can store coloring schemas as local files and upload them to the sys-
tem.

B

Call Timeline ~

|as ms
|

JTWBER [FM_MGW_HANDLE_REGUEST 57 =8

Overview | Candensed Hit List [Hit List | Agoregated Call Tree [ Call Sequence | Call Timeline [ Database Accesses |

Figure 5.3 ABAP Runtime Analysis: Timeline View
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5.3 Analyzing Memory Usage with ABAP Debugger and
in the Memory Inspector

In addition to expensive SQL statements, one of the most important causes
of performance problems is internal tables with many entries. Large inter-
nal tables consume massive amounts of memory and CPU, for example,
during copy, sort, or search operations.

You can use the ABAP debugger to create an overview of all internal tables
of a program. ABAP debugger is a tool for performing functional trouble-
shooting in programs. You can find more detailed descriptions of the
debugger in SAP literature under ABAP programming. You'll find informa-
tion on main memory usage both in the classic and the new debugger. You
can set the debugger in the ABAP Editor (Transaction SE38) via Utilities »
Settings - Debugging.

Performance analysis using the ABAP debugger isn’t a standard procedure
and is best performed by an ABAP developer.

Rules When Debugging

Take the following advice into account when working with the ABAP de-
bugger. During the debugging process, the ABAP program may terminate
and display the error message Invalid interruption of a database selection,
or the system may automatically trigger a database commit. In either case,
an SAP Logical Unit of Work (LUW) has been interrupted, and this may lead
to inconsistencies in the application tables. Therefore, you should only de-
bug on a test system or in the presence of someone who is very familiar
with the program being analyzed and who can manually correct inconsis-
tencies in the database tables if necessary. See “Debugging Programs in
the Production Client” in SAP Online Help for the ABAP debugger.

You perform a performance analysis with the debugger as follows:

1. Start the program to be analyzed. Then open a second session. Here you
can monitor the program to be analyzed in the work process overview
(Transaction SM50). Enter the debugger from the work process overview
by selecting the Debugging function. By using the debugger several
times in succession, you can identify the parts of the program that cause

249

[

]

Steps for perfor-
mance analysis




5 Optimization of ABAP Programs

Memory Inspector

Evaluating the
memory extract

high CPU consumption. Often, these sections consist of LOOP ... ENDLOOP
statements that affect large internal tables.

2. Todisplay the current memory requirements (in the “classic” debugger),
select Goto » Other Screens « Memory Use.

3. Check for cases of unnecessary memory consumption that may have
been caused by a nonoptimal program or inefficient use of a program. As
a guideline, bear in mind that a program being used by several users in
dialog mode should not allocate more than 100 MB.

4. As of SAP NetWeaver AS ABAP 6.20, you can use the classic debugger to
create a list of program objects located in the memory by selecting Goto «
Status Display - Memory Use. Under Memory Consumption, the Ranking
Lists tab contains a list of objects and their memory consumption.

In SAP NetWeaver AS ABAP versions 4.6 und 6.10, you can obtain a mem-
ory consumption list by choosing Goto « System « System Areas. Enter
“ITAB-TOP25” in the Area field. This way, you'll obtain a list of the 25 larg-
est internal tables.

5. In the “new” debugger, you first display the memory analysis tool by
clicking the button for the new tool and then selecting Memory Analysis
from the tools on offer in the Memory Management folder. The initial
screen then displays how much memory is allocated or used by the ana-
lyzed internal session. Click the Memory Objects button to go to the list
of the largest memory objects, which can be the internal tables, objects,
anonymous data objects, or strings.

Moreover, you can create and then analyze a memory extract, that is, an
overview of the objects that occupy memory space. You can create a mem-
ory extract in any transaction by selecting System « Utilities - Memory Ana-
lysis « Create Memory Extract or simply enter function code “/HMUSA”. The
third option is to create a memory extract from program coding. Refer to
SAP Help for a description of the system class CL_ABAP_MEMORY UTILITIES.

To evaluate the memory extract, start the Memory Inspector by selecting
System . Utilities « Memory Analysis -« Compare Memory Extracts in any
transaction or via Transaction S MEMORY INSPECTOR. The Memory
Inspector lists all memory extracts in the upper part of the screen. In the
lower part of the screen, you can find details about the individual memory
extract. Here, a distinction is made among the object types, programs,
classes, dynamic memory request of a class, table bodies, strings, and types
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of anonymous data objects. You're provided with different ranking lists,
according to which you can sort the objects. For each memory object,
you're provided with the values of bound allocated, bound used, referenced
allocated, and referenced used memories. You can find a detailed descrip-
tion of the ranking lists and the displayed values in SAP Help.

Using the Memory Inspector

The Memory Inspector is particularly useful for examining transactions
over a long period of time, as is the case in a customer interaction center.
Here, users frequently enter a transaction at the beginning of their work-
day and exit it when they go home. In these “long-term” transactions, da-
ta often remains, and therefore memory consumption continuously in-
creases.

Figure 5.4 shows an example of a memory extract. The dominator tree
shows the hierarchical program structure and the memory used by the pro-
gram parts. With a size of 494 MB, table LT MEM is conspicuous. The next
largest object is the CL_GUI ALV GRID class with a size of 250 KB. Below this
class, 130 KB are used by table MT DATA.
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Figure 5.4 Memory Inspector: Dominator Tree
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5.4 Code Inspector

The Code Inspector tool checks ABAP programs and other repository
objects statically for problems. Its meaning for the quality analysis of ABAP
programs goes far beyond the meaning for performance analysis, to which
the following description is restricted. The Code Inspector performs a static
analysis, that is, the code doesn’t need to be executed and is therefore inde-
pendent of test or production data. It has been generally available as of SAP
Basis version 6.10.

You call the Code Inspector from the development tools of the ABAP Work-
bench for programs, function modules, or ABAP classes (Transactions SE38,
SE37, or SE24) using the menu path Program/Function Module/Class « Check
Code Inspector or directly using Transaction SCIL

Table 5.8 summarizes which checks are performed in the Performance cate-
gory and where you can find further information on the checks. The checks
reveal standard errors and problems. They can’t indicate how seriously
they will affect the performance. For this purpose, you require the runtime
checks described previously. The verification of these checks should never-
theless be part of the quality control of ABAP programs.

Analysis of the WHERE Checks that the SQL statements include a WHERE

clause clause and that they have index support. Buffered
tables, joins, and views aren’t covered by this
check. For more information, see Chapter 11, Sec-
tion 11.2.

Analysis of table buffer Checks whether SQL statements to buffered

accesses tables will access the database and pass the buf-
fer. For more information, see Chapter 12, Section
12.1.2.

SELECT statements with Checks whether SELECT/ENDSELECT loops include

CHECK a CHECK statement. This statement can often be
integrated in the WHERE clause and thus reduce
the read data quantity from the start. For detailed
information, see Chapter 11, Section 11.2.

Table 5.8 Performance Checks in the Code Inspector
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Code Inspector

SQL statements in loops

Nested loops

Copying large data objects

Inefficient operations on
internal tables

Inefficient parameter
transfers

EXIT or no ABAP com-
mands in SELECT/
ENDSELECT loop

Instance generation of
Business Add-Ins (BAdIs)

Check of table properties

Checks whether SQL statements are in loops.
These result in an increased communication
effort and can possibly be replaced by bundled
accesses. For more information on this, see Chap-
ter 11, Section 11.2.

Checks the system for nested loops where nonlin-
ear runtime behavior can occur.

Sends alerts on high copy costs for large data
objects, for instance, nested internal tables. How-
ever, this check only refers to structures with a
width of more than 1,000 bytes; it can’t consider
how long a table will be at runtime.

Sends alerts on inefficient read accesses to inter-
nal tables.

Examines whether there is a better way to trans-
fer parameters when you call a form, function
module, method, or event.

Checks whether SELECT/ENDSELECT loops include
an EXIT statement or no ABAP coding at all. With
this type of code, you often check the existence of
records in a database table, which can be
designed to be more efficient. For detailed infor-
mation, see Chapter 11, Section 11.2.

As of SAP Basis version 7.0, you should use the

statement GET BADI instead of the method call
CALLMETHOD c1_exithandler=>get instance
for performance reasons.

Examines the technical settings such as trans-
portability, buffering, and indices of database
tables.

Table 5.8 Performance Checks in the Code Inspector (Cont.)
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Frequent perfor-
mance problems

Check Variants in the Performance Environment

The Code Inspector offers check variants that bundle checks for specific
areas. For performance analysis, the following variants are available:

® PERFORMANCE CHECKLIST
Minimum checklist with performance checks.
® PERFORMANCE CHECKLIST HDB
Checklist with SAP HANA-specific performance checks.
® PERFORMANCE CHECKLIST XL
Advanced checklist with performance checks.
= PERFORMANCE DB
Checklist of database-specific performance checks.

The following checklist can be used in the context of the migration from a
traditional database to SAP HANA and comprise function checks (e.g., for
code that might include programming on database-specific functions) and
performance checks (code that might lead to performance issues:

® FUNCTIONAL DB and FUNCTIONAL DB ADDITION
Classic and advanced checklist for the migration to SAP HANA.

5.5 Tips and Tricks for High-Performance ABAP Programs

In the SAP online help for the ABAP programming environment and in the
ABAP runtime environment (Transaction SAT), the “Tips and Tricks” sec-
tion provides detailed information on high-performance ABAP program-
ming, which you can use to get familiar with the sample code introduced
there.

There are three common programming errors that cause large memory or
CPU requirements for programs:

®m  Missing REFRESH or FREE statements
The ABAP statements REFRESH and FREE delete internal tables and release
the memory that was allocated to them. If these statements are missing,
memory resources may be unnecessarily tied up, and the operations
being executed (READ or LOOP) will require an unnecessarily large amount
of time.

254

5.5 Tips and Tricks for High-Performance ABAP Programs

What Effect Do CLEAR, REFRESH, FREE, and DELETE Have?

The ABAP statements CLEAR, REFRESH, FREE, and DELETE have the following
effect on the allocated memory:

m A CLEAR or REFRESH statement causes the release of the table content
and—if available—of the indexes. The header information of the table
remains unchanged. Note that the CLEAR statement only deletes the
header row in internal tables with a header row. Use this statement if
the table is to be used again as the program proceeds.

m A FREE statement causes the complete release of the table content
and—if available—of the indexes. Use this statement if the table isn’t
to be used again as the program proceeds.

®m ADELETE statementin an internal table causes no release of memory! If
you reduce an internal table with a large number of entries to very few
entries using DELETE statements, the memory still remains allocated.
When you copy such a table, the “memory image” is copied; that is, the
copied table has the same size as the original table. To solve this prob-
lem, build a new small table instead of thinning out a large table using
DELETE.

Inefficient reading in larger internal tables

The ABAP statement READ TABLE ... WITH KEY ... enables you to search
internal tables. If you use this statement by itself for a standard table, the
search is sequential. For large tables, this is a time-consuming process.
You can significantly improve search performance by adding the clause
... BINARY SEARCH, thereby specifying a binary search. However, the table
must be sorted (see ABAP Help for the statement READ TABLE).

You can optimize the performance of operations on large tables by using
sorted tables (SORTED TABLE) or hash tables (HASHED TABLE). If a READ state-
ment is executed on a sorted table, the ABAP processor automatically
performs a binary search. It's important that the key fields used for the
search correspond to the sort criteria for the table. For a sorted table, the
search effort increases logarithmically with the size of the table. For hash
tables, constant access costs exist if the ABAP statement READ TABLE ...
WITH TABLE KEY is used. However, efficient access to hash tables is only
possible if you enter the complete key.
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5.5 Tips and Tricks for High-Performance ABAP Programs

® Nested loops
Nested loops are frequently used for processing dependent tables (e.g.,
header and position data):

LOOP AT HEADER INTO WA HEADER.
LOOP AT POSITION INTO WA POSITION
WHERE KEY = WA HEADER-KEY.
"Processing ...
ENDLOOP.
ENDLOOP.

IfHEADER and POSITION are standard tables in this case, then for each entry
in the HEADER table, the ABAP processor loops across all entries in the
POSITION table and checks if the WHERE clause is fulfilled for all entries.
This is especially time-consuming if the tables HEADER and POSITION con-
tain many entries. However, if you use SORTED tables, the ABAP processor
determines the data to be processed by performing a binary search and
only loops across those areas that fulfill the WHERE clause. Sorting is only
useful, however, if the WHERE clause contains the first fields of the sort
key.

As an alternative, you can use index operations that are much less time-
consuming. To use index operations, it’s necessary to sort the internal
tables HEADER and POSITION by the KEY field as follows:

I=1.
LOOP AT HEADER INTO WA HEADER.
LOOP AT POSITION INTO WA POSITION FROM I.
IF WA POSITION-KEY <> WA HEADER-KEY.
I = SY-TABIX.
EXIT.
ENDIF.
ENDLOOP.
ENDLOOP.
Table 5.9 summarizes the most important performance properties of stan-
dard tables, sorted tables, and hash tables in ABAP. It provides information
on how access costs increase when the size of the table increases (see also
the “Scalability of a Program” section). Based on these properties, you can
determine which table type is ideal for your specific application.
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Populate (mass operation)

APPEND LINES ...

INSERT LINES ...

Depending on
position and
size due to
movement costs

Depending on
position and
size due to
movement costs

Populate (single record)

APPEND

INSERT ... INTO...

INDEX

INSERT ... INTO...

TABLE

Read (areas)

LOOP ... ENDLOOP
(all rows)

Constant

Depending on
position and
size due to
movement costs

Constant

Linear

Depending on
position and
size due to
movement costs
(check required)

Depending on
position and
size due to
movement costs
(check required)

Constant
(higher than
standard as
check required)

Depending on
position and
size due to
movement costs
(higher than
standard as
check required)

Logarithmic

Linear

Depending on
position and
size due to
movement costs

Depending on
position and
size due to
movement costs

Constant
(higher than
standard due to
hash manage-
ment)

Linear

Table 5.9 Most Important Performance Properties of Standard Tables, Sorted
Tables, and Hash Tables in ABAP
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LOOP ... WHERE END-  Linear
LOOP (complete key)

LOOP ... WHERE END-  Linear
LOOP (incomplete key
with initial section)

LOOP ... ENDLOOP Linear
WHERE (incomplete

key without initial

section)

LOOP ... FROM ... TO Constant
Read (individual rows)
READ ... INDEX Constant

READ ... WITHKEY Linear, logarith-
(complete key) mic for binary
search

LOOP ... WHERE END- Linear, logarith-
LOOP (incompletekey  mic for binary
with initial section) search

LOOP ... WHERE END-  Linear
LOOP (incomplete key

without initial sec-

tion)

Change (analogously, delete)

MODIFY ... TRANS- Linear
PORTING ... WHERE
(complete key)

Logarithmic

Logarithmic

Linear

Constant

Constant

Logarithmic

Logarithmic

Linear

Logarithmic

Constant

Linear

Linear

Constant

Linear

Linear

Constant

Table 5.9 Most Important Performance Properties of Standard Tables, Sorted

Tables, and Hash Tables in ABAP (Cont.)
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5.5 Tips and Tricks for High-Performance ABAP Programs

MODIFY ... TRANS- Linear Logarithmic Linear
PORTING ... WHERE

(incomplete key with

initial section)

MODIFY ... TRANS- Linear Logarithmic Linear
PORTING ... WHERE

(incomplete key

without initial sec-

tion)

MODIFY ... FROM Constant Constant -
<wa> (index access)

MODIFY TABLE ... Linear Logarithmic Constant

FROM <wa >

COLLECT (table com-  Linear Logarithmic Constant

pression)

SORT Runtime inten- (already sorted) Runtime inten-
sive, depending sive, depending
on size and sort- on size and sort-
ing ing

Table 5.9 Most Important Performance Properties of Standard Tables, Sorted
Tables, and Hash Tables in ABAP (Cont.)

[«]

Scalability of a Program

Scalability of a program refers to the dependency of a program’s runtime
from the data quantity. Many operations depend linearly on the data
quantity (t = O(n)); that is, the runtime increases linearly to the data quan-
tity. Examples include the database selections in large tables without or
with inappropriate index support and loops via internal tables in the pro-
gram. Linear scalability is acceptable for the processing of medium data
quantities. If they can’t be avoided in programs that are supposed to pro-
cess large data quantities, you must consider parallelization.
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Performance trace

ABAP trace and
ABAP debugger

Of course, constant runtimes (t = O(7)) or a logarithmic dependency (t =
O(log n)) is better for performance than a linear scalability. Logarithmic
dependencies occur, for example, for database selections in large tables
with optimal index support or for read operations in internal tables with
binary search. Because the logarithm function increases only very slowly,
in real life, you don’t need to differentiate between constant and logarith-
mically increasing runtimes.

Quadratic dependencies (t = O(n x n)) and anything beyond are inaccept-
able for the processing of medium and large data quantities. However,
problems with quadratic dependencies through intelligent programming
can usually be traced back to dependencies of t = O(n x log n). An example
is the comparison of two tables that both grow with a factor of n. A com-
parison of the unsorted tables would result in a quadratic dependency, a
comparison with sorted tables in dependency t = O(n x log n). Because the
logarithm function increases only very slowly, in real life, you don’t need to
differentiate between an increase of t = O(n x log n) and a linear increase.

5.6 Summary

This chapter discussed monitors that enable detailed analysis of individual
ABAP programs. SQL trace is the recommended tool for analyzing SQL
statements in ABAP programs. Evaluating the trace enables you to identify
network problems or throughput bottlenecks in the database. You'll find
further information on optimizing SQL statements in Chapter 11.

You use REC trace to analyze the performance of sent and received RFCs.
As of SAP NetWeaver AS ABAP 7.10, you also have an HTTP trace at hand
to record HTTP statements. For more information, see Chapter 7 and
Chapter 8.

The enqueue trace is a means for selecting analyses of lock operations
(enqueue/dequeue operations). For detailed information, see Chapter 10.

You trace inefficient table buffering with the buffer trace. For detailed infor-
mation, see Chapter 12.

For high CPU consumption problems, use an ABAP trace. In contrast to an
SQL trace, an ABAP trace enables time measurements for operations on
internal tables (LOOP, READ, SORT, etc.).
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5.7 Questions

As an alternative, you can monitor CPU-consuming programs using the
ABAP debugger, which you can call from the work process overview. How-
ever, only developers should perform this analysis.

You should examine ABAP programs proactively using the Code Inspector,
which implements static checks of the program and sends alerts on stan-
dard performance errors and problems.

Important Concepts

After studying this chapter, you should be familiar with the following con-
cepts:

m Performance trace: SQL trace, buffer trace, RFC trace, HTTP trace,
enqueue trace

®m ABAP trace
®m  ABAP debugger
®m Code Inspector

® |nternal tables and their performance attributes

5.7 Questions

Appendix C, Section C.1, provides the answers to these questions.

1. What do you have to consider when you perform an SQL trace?

a) There is only one trace file in each SAP system. Therefore, only one
SQL trace can be created per SAP system.

b) The user whose actions are being traced should not run multiple pro-
grams concurrently.

¢) You should perform the SQL trace on a second execution of a program
because the relevant buffers will already have been loaded.

d) SQL traces are useful on the database server but not on application
servers, which yield inexact results due to network times.

2. When should you perform an ABAP trace?
a) If a problem occurs with the table buffer
b) For programs with high CPU requirements

) For analyzing I/O problems on hard drives
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