
Reading Sample
Explore two chapters from this book! In the first chapter you’ll
learn about SAP S/4HANA’s new extensibility strategy and how it
differs from traditional approaches. Then, read on to find out how
to secure extension applications using microservices.

Herzig, Heitkötter, Wozniak, Agarwal, and Wust

Extending SAP S/4HANA: Side-by-Side Extensions
with the SAP S/4HANA Cloud SDK
618 Pages, 2018, $79.95
ISBN 978-1-4932-1715-1

	 www.sap-press.com/4655

First-hand knowledge.

“SAP S/4HANA Extensibility”

“Application Security”

Contents

Index

The Authors

https://www.sap-press.com/extending-sap-s4hana_4655/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse%20the%20Book&utm_content=1715

55

2

Chapter 2

SAP S/4HANA Extensibility

This chapter explains the various forms and modes through which SAP

S/4HANA can be extended. This chapter, in particular, includes in-app

extensibility (i.e., all extensions made with key user tools inside of the

SAP S/4HANA core) as well as side-by-side extensibility (i.e., all exten-

sions on SAP Cloud Platform). We’ll provide an overview of extension

capabilities and their corresponding integration points and outline

patterns for extensibility and their characteristics. Although the book

touches on in-app extensibility, our primary focus is on side-by-side

extensibility.

After introducing the general design principles and rationales of the SAP S/4HANA

architecture, this chapter explains SAP S/4HANA’s extensibility options and their

business implications in more detail.

The majority of customers using one of SAP’s ERP solutions have significantly

adjusted and extended the standard software provided by SAP to implement busi-

ness processes that are specific to their organizations. Extensions range from simple

reports or modifications of a few lines to SAP’s ABAP source code to newly developed

applications for an industry-specific adaptation of a standard process. Furthermore,

many partners have provided significant industry-specific or line of business (LOB)-

specific enhancements, usually in the form of large ABAP add-ons.

This chapter explains SAP S/4HANA’s new extensibility strategy and how it differs

from the traditional approaches. While the following chapters of this book dive into

specific details of extensibility, the goal of this chapter is to provide an overview of

extensibility options and capabilities.

The extensibility strategy is based on two pillars: in-app extensibility and side-by-

side extensibility. As the name implies, in-app extensions are implemented using

key user tools directly inside the SAP S/4HANA system, while side-by-side extensions

leverage the SAP Cloud Platform as extension platform. For both approaches, we’ll

give examples as well as typical use cases that use both options in combination.

2 SAP S/4HANA Extensibility

56

2.1 Separation of Concerns

In this section, we’ll introduce how the new extensibility strategy differs from the

well-known traditional approaches that were possible in the traditional architecture

of the past. Faster innovation cycles demand a different approach that gives appro-

priate freedom both to SAP and to extension developers.

2.1.1 “The Good Old Days”

For decades, the SAP NetWeaver Application Server (AS) for SAP ERP was used to

develop and run extensions, from simple enhancements like adding some validation

logic on a business object to huge add-ons. Several circumstances led to the percep-

tion that developing extensions was simple. Let’s explore these in the next sections.

Integration

SAP’s ERP modules were deeply integrated because they ran on the same application

servers and shared the same database instance. Custom applications and extensions

could use this tight integration in the same way as SAP did, which made upgrades

more difficult.

Access to Source Code

The ABAP source code and the data dictionary (that is, the metadata) of the database

was fully available to customers and accessible for extension development. Many

customer extensions copied major parts from existing SAP modules or reused code

from the modules so that customers could easily replace parts in their own imple-

mentations, which again made lifecycle management more difficult.

Infrastructure

Customers often deployed extensions into the existing infrastructure so that the

extension code ran on the same infrastructure as the SAP modules. By doing so, pur-

chasing hardware, installing servers, and managing users as well as other administra-

tive tasks were avoided.

Change Management

SAP’s change and transport management was for many years an unmatched advan-

tage of the SAP NetWeaver AS. SAP has shaped many industry best practices with its

57

2.1 Separation of Concerns

2

way of handling multiple software versions and the infrastructure of transporting

changes from development to quality and production systems.

ABAP

ABAP is SAP’s programming language, which was designed exclusively for business

application development and features all the capabilities generally expected from a

fourth-generation language. SAP has added many frameworks, libraries, and tools,

such as the internal table concept or business partner APIs so that application and

extension development was efficient. Consequently, SAP also made ABAP available

to customers and partners for extension development.

Reliability

The SAP NetWeaver AS introduced the client-server approach to enterprise software,

which is stable and reliable. By simply adding more application servers, SAP Net-

Weaver AS can scale from the smallest installations to the demands of the largest

enterprises in the world.

2.1.2 Principle of Least Knowledge

In SAP S/4HANA on-premise, all capabilities mentioned in the previous section are

still available and valid, although SAP imposes a more strict separation of internal

and external APIs (public model) as explained in Chapter 1. Customers are strongly

advised to build on the public model only and to avoid using or removing any other

software artifact so that future upgrades can be executed smoothly.

In contrast, SAP S/4HANA Cloud exposes the public model only. The basic approach

taken by SAP can be expressed with the principle of least knowledge, also known as

the law of Demeter, introduced by Ian Holland in 1987. This principle postulates that

any consuming component may not know the internal details of another provider

component, but only uses its exposed functionality. Based on this principle, SAP can

regularly update SAP S/4HANA Cloud without any adaptation needed on the part of

customers and partners, enabling a faster innovation cycle. Consequently, long and

error-prone upgrade procedures are significantly reduced, which increases custom-

ers’ ability to benefit from new innovations faster. Furthermore, even for SAP, the

violation of this principle reduced the ability to optimize the internals of the mod-

ules. Thus, code and objects created by SAP, by customers, and by partners code must

be clearly and logically separated. That is, customers can no longer modify objects

delivered by SAP in SAP S/4HANA Cloud.

2 SAP S/4HANA Extensibility

58

While all traditional modification techniques are still possible in the on-premise ver-

sion of SAP S/4HANA, to support the migration to SAP S/4HANA, we strongly recom-

mend that customers not use these capabilities anymore. Technically, the separation

of concerns by using decoupled extensions is one of the most important aspects of

SAP S/4HANA and one of its major differences with SAP ERP and SAP Business Suite.

However, we’ll need to determine the technologies, tools, and methods to use in con-

junction with SAP S/4HANA if the traditional approaches are either no longer sup-

ported or are at least discouraged. In general, SAP S/4HANA provides two main types

of extensions, which implement the separation of concerns:

� In-app extensions

� Side-by-side extensions

In-app and side-by-side extensions can be used individually but also in a seamlessly

integrated way. As discussed earlier, in SAP S/4HANA Cloud, these options are the

only ones available today. In contrast, in SAP S/4HANA on-premise, customers may

also use traditional extension approaches, for example, using ABAP development

tools such as ABAP in Eclipse and the ABAP Workbench (Transaction SE80). However,

the traditional approach is no longer recommended for new developments and,

therefore, is not covered in this book at all.

2.2 In-App Extensions

All in-app extensions are technically implemented inside the core of SAP S/4HANA,

that is, on the same servers as SAP S/4HANA. As a result, no remote communication

between the extension and the extended app is required. Many processes in SAP

S/4HANA support extensions with key user tools integrated into the SAP Fiori user

interface for SAP S/4HANA. As such, in-app extensions enable business experts with-

out deep technical knowledge, typically referred to as key users, to implement key

types of customer extensions, such as creating custom business objects and adding

custom fields to business objects.

Note that the in-app extension concept is essential for SAP S/4HANA Cloud. How-

ever, this concept is also invaluable for traditional, on-premise deployments in order

to align with the separation of concerns philosophy. With the inevitable move to the

cloud, we recommend thinking of extensions from a cloud-first perspective even

when applications are still running on-premise. In other words, in-app extensibility

features should also be considered in SAP S/4HANA on-premise.

59

2.2 In-App Extensions

2
Definition: Key User

A key user in SAP S/4HANA is a member of a functional team that adopts the soft-

ware to the needs of his or her business department—being either a direct employee

or an external person, such as a consultant. As this person typically has some level of

technical knowledge but no in-depth knowledge like a developer, all extension steps

need to be covered by tools that hide complexity and technical detail. The old, strict

separation of requestors stating requirements and developers implementing those

requirements is no longer the preferred model for many SAP customers. Especially in

software-as-a-service (SaaS) applications, for simple cases, customers expect to cre-

ate custom forms, reports, fields, and even small pieces of business logic with appro-

priate tools that hide the technical complexity involved in connectivity, deployment,

or lifecycle management.

This set of tools applies consistently across all applications in SAP S/4HANA; in other

words, there is exactly one way to add custom logic to a business object or to extend

a business object’s data model with a field. This unification was achieved through SAP

S/4HANA’s overall streamlined architecture. The layers of a modern SAP Fiori appli-

cation in SAP S/4HANA are shown in Figure 2.1.

Figure 2.1 Anatomy of an SAP Fiori Application

Database Table

User Interface
(SAP Fiori)

Front end

Back end: ABAP Server

SAP Fiori Launchpad

Application
(ABAP | CDS)

OData Service

2 SAP S/4HANA Extensibility

60

An application consists of five layers. At the bottom, the database model contains

database tables, which are used by an application layer. In the application layer, the

core data service (CDS) model contains views for efficient consumption and analyti-

cal requests. In addition, this layer may contain ABAP source code, organized in

business objects, for example, to implement validation logic. On the third layer

from the bottom, the functionality of the business objects is exposed in the form of

RESTful Open Data Protocol (OData) services, which can be considered the commu-

nication layer. At the top are the responsive SAP Fiori user interface and the SAP

Fiori launchpad.

Open Data Protocol

OData was originally developed by Microsoft but today falls under the leadership of

the OASIS organization. OData is an open protocol that standardizes the creation and

use of RESTful HTTP communication APIs. OData client and server libraries are avail-

able for all major programming languages.

Figure 2.2 In-App Extensibility Points

Application
(ABAP | CDS)

Database Table

User Interface
(SAP Fiori)

In-App Extensibility

UI Adaptation

Business Logic

Fiori Launchpad

Application
(ABAP | CDS)

Database Table

OData Service

Custom User
Interface (SAP Fiori)

Custom UI

SAP

Front end

Back end: ABAP Server

OData Service OData

Analytics / Forms

C
u

st
o

m
 F

ie
ld

s

C
u

st
o

m
 B

u
si

n
es

s
O

b
je

ct
s

61

2.2 In-App Extensions

2

On any layer, customers may apply in-app extensions. The diagram shown in Figure

2.2 provides an overview of the most important in-app extension points. We’ll go

through each extension point following the outlined numbering schema. Note that

all the concepts we’ll mention next will be described in more detail in Chapter 18 of

this book.

1 User Interface Adaptation

Key users may change the layout of tables and forms directly in the running user

interface. A special graphical user interface adaptation mode provides the mecha-

nisms to hide fields in existing forms, tables, or filters; to rename labels; to add

fields to the user interface from the field repository; and to move fields or entire

blocks to other sections of the screen.

2 Custom Fields

In the Custom Fields and Logic SAP Fiori application, you can add and edit custom

fields to extend SAP database tables, CDS views, and OData APIs. Moreover, this

extension application helps to define how custom fields are used in user inter-

faces, reports, or forms. Furthermore, you can use custom fields along with pre-

defined business scenarios so that all involved business objects are extended and

values are passed along automatically.

3 Custom CDS Views, Analytics, Forms

The SAP S/4HANA data model, with its public views based on CDS, might not

always provide the best technical option to fetch data. When related data needs

to be pulled out of various views, pushing the join and aggregation operators

into the SAP HANA database by creating a custom view might be more conve-

nient or efficient.

The Custom CDS View application provides an overview of all CDS views in the

public model as well as custom CDS views. This app enables customers to create

new views based on an existing view model supporting features like associations,

joins, transformations, field relabeling, selections, etc. With OData APIs on top of

these views, customers may, in addition, expose the data for consumption outside

the SAP S/4HANA core. Furthermore, the custom views might be used as data

sources to define analytical queries. Those queries are used in embedded analytic

user interfaces integrated into SAP S/4HANA applications. Another use case for

custom views is to build forms with the Forms Designer application. Forms can

consume data from custom OData services and use the data, for example, in cus-

tom email templates.

2 SAP S/4HANA Extensibility

62

4 Business Logic

Many SAP S/4HANA applications have enhancement spots (also called Business

Add-Ins [BAdIs]). With the ABAP web editor (Figure 2.3), customers may create cus-

tom logic for the BAdIs. Typically, customers implement additional checks, set

default values, or create mappings in combination with custom fields. The avail-

able features of the ABAP language in the web editor are limited compared to the

capabilities in the SAP NetWeaver AS to ensure no negative impact on the robust-

ness of the system as well as to comply with high security and data consistency

standards. For example, you cannot perform database updates or generate source

code dynamically from the web editor.

Figure 2.3 Custom Fields and Logic SAP Fiori Application

5 Custom Business Objects

Besides custom views, you can create completely new business objects using the

Custom Business Objects application. This application helps define the business

object structure in the form of business object nodes, which automatically create

the required database tables (Figure 2.4). A built-in web editor supports with writ-

ing the corresponding code. Again, for writing customer business objects, you can

only use whitelisted APIs.

63

2.2 In-App Extensions

2

Changing existing SAP business objects is not supported. However, the creation of

custom business objects can be supported by reusing custom CDS views, OData

APIs, and custom user interfaces so that a fully-fledged, self-contained extension

to SAP S/4HANA can be created.

Figure 2.4 Creation of a Node in a Custom Business Object

6 Custom User Interfaces

You can use the SAP Web IDE to create your own SAP Fiori user interfaces either

from scratch or based on templates. The SAP Fiori user interfaces consume SAP

S/4HANA’s RESTful OData interfaces. After creation and successful testing, you

can deploy these user interfaces into SAP S/4HANA’s user interface repository and

integrate them into the customer’s SAP Fiori launchpad as new tiles using the Cus-

tom Tiles and Custom Catalog Extensions application.

In SAP S/4HANA Cloud, the transport of adaptations from the test system to the pro-

duction system is also performed by the key user with another SAP Fiori application.

These tools can be used without interaction with the service provider and outside the

service provider’s maintenance window. The extensibility transport tools are avail-

able as part of the Manage Software Collection application.

Thus concludes our overview of in-app extensibility as one major form of SAP

S/4HANA extensibility. More details on in-app extensibility and its intersection with

side-by-side extensibility can be found in Chapter 20 of this book. Furthermore, we

can recommend some additional literature on this topic in the box below.

2 SAP S/4HANA Extensibility

64

Further Information on In-App Extensions

Online Help on Extensibility: http://tiny.cc/sap-help-in-app

SAP S/4HANA Extensibility Tutorial: http://tiny.cc/in-app-tutorial

SAP S/4HANA Extensibility: Use Case Overview: http://tiny.cc/in-app-overview

Now, we’ll switch perspectives to building side-by-side extensions with SAP Cloud

Platform and discuss the implications of the side-by-side approach.

2.3 Side-by-Side Extensions

Scenarios exist where in-app extensions are not sufficient, which we’ll explain in Sec-

tion 2.4. In such cases, customers and partners may use side-by-side extensions as an

alternative approach. The name stems from the fact that, in contrast to in-app exten-

sions, side-by-side extensions are only implemented using the SAP Cloud Platform.

2.3.1 Overview of the SAP Cloud Platform

The SAP Cloud Platform is a platform-as-a-service (PaaS) offering for creating applica-

tions or extensions in a secure cloud-based computing environment managed by

SAP. It is the default choice for building side-by-side extensions to SAP S/4HANA

Cloud or on-premise. The platform also serves extension cases for other SAP prod-

ucts, be it other on-premise applications or the modern LOB-specific SaaS solutions

such as SAP SuccessFactors (Figure 2.5). With SAP Cloud Platform, SAP offers a prod-

uct as well as a methodology to develop technically decoupled extensions and cloud

applications to meet challenging requirements in terms of cloud qualities such as

availability and scalability, which we’ll explain in Chapter 3.

SAP Cloud Platform provides a broad range of managed services as well as open source

technologies that can be used to build new solutions. Business services include a cur-

rency service, a translation hub, and business logging. Furthermore, SAP Cloud Plat-

form contains a broad range of technical services such as SAP Cloud Platform

Integration, SAP Leonardo Internet of Things (IoT), or SAP Leonardo Machine Learn-

ing to name just a few. Finally, SAP Cloud Platform also provides storage services

such as SAP HANA and open-source technologies like Redis or PostgreSQL. The entire

list is continuously extended with new services on all levels of the platform.

65

2.3 Side-by-Side Extensions

2

Figure 2.5 High-Level Overview of SAP Cloud Platform as the Extension Platform

In addition, SAP provides several programming environments and runtimes. First,

the SAP Cloud Platform Neo environment is an SAP-proprietary environment for Java

and HTML5 applications. Second, various runtimes are available as part of the Cloud

Foundry environment on the SAP Cloud Platform, such as Java, Node.js, Python, and

basically any other runtime supported by Cloud Foundry. Cloud Foundry is an open

source industry standard to provide a PaaS standard that can run on multiple clouds.

Cloud Foundry helps automate, scale, and manage cloud applications throughout the

application lifecycle. SAP supports the Cloud Foundry Foundation as a Platinum

member with code contributions and helps advance the evolution of open cloud

computing technologies along with other companies such as Cisco, Dell, IBM, Pivotal,

Suse, Google, and Microsoft. Complementing the existing capabilities of Cloud

Foundry, SAP offers tools for developing applications such as the SAP Web IDE, the

SAP API Business Hub, and an operations cockpit as well as several services for appli-

cation management and monitoring. Figure 2.6 presents a high-level overview of the

capabilities that are part of the SAP Cloud Platform. You may check out the overview

of capabilities on the SAP Cloud Platform web page (http://tiny.cc/scp-services) for a

more recent picture since the portfolio continuously expands.

Multicloud IaaS

SAP Fiori

SAP Analytics Cloud

Marketplace

Business Services

SAP S/4HANA

Integration Analytics IoT Big Data Machine LearningUX Blockchain Security

SAP HANA
SAP Data Hub

SAP HANA

SAP Microsoft Azure Amazon Web Services

API Business Hub

SAP CoPilot

Files Objects
Hadoop SAP Vora

SAP Cloud Platform

Customer-Specific
and

Third Party Applications

Google Cloud Platform

SAP Cloud
Platform
Integration

SAP Cloud
Applications

Open Source
Storages

2 SAP S/4HANA Extensibility

66

Figure 2.6 High-Level Overview of SAP Cloud Platform Capabilities

Thanks to SAP’s multicloud strategy, you can use SAP Cloud Platform on multiple infra-

structures, such as SAP’s own data centers, Amazon Web Services, Microsoft Azure, and

Google Cloud Platform. Customers can use SAP Cloud Platform in combination with

other cloud services or co-located to existing cloud infrastructure and services.

2.3.2 Connectivity between SAP Cloud Platform and SAP S/4HANA

Connectivity between SAP Cloud Platform and SAP S/4HANA Cloud uses HTTPS com-

munication, mostly via OData APIs. SAP S/4HANA Cloud exposes public APIs that can

be directly called from applications on SAP Cloud Platform, and vice versa. Connec-

tivity between SAP Cloud Platform and SAP S/4HANA on-premise is often more com-

plex because you may not want to expose your internal networks for direct internet

access. For this purpose, SAP offers the Cloud Connector to establish a secure tunnel

for the communication. The tunnel can support ODBC, RFC, and HTTPS communica-

tion protocols so that you can, for example, invoke classic BAPIs, perform data repli-

cation from the database, or call OData APIs. The Cloud Connector is a small server

installed inside the customer’s landscape and acts as a reverse proxy to establish a

connection with the connectivity service on SAP Cloud Platform. Once the connec-

tion is established, the Cloud Connector accepts calls from SAP Cloud Platform and

routes them through to the correct endpoint of one of the on-premise systems, as

shown in Figure 2.7.

SAP S/4HANA

SAP
Business Suite

SAP Business
Warehouse

SaaS

SAP S/4HANA

SAP
SuccessFactors

SAP Hybris Cloud
for Customer

Concur

SAP Fieldglass

SAP Business
ByDesign

(Big) Data Services:

Data Quality

Mobile

UX

SAP
HANA 2

Commerce

Integration

PostgreSQL

Collaboration

Localization/
Tax

Analytics

Redis

MongoDB

Security

IoT

Machine
Learning

…

Development Operations

Cockpit Marketplace

Commerce

Dev / Ops

Development

Lifecycle
Management

Profiling

Monitoring

Debugging

HTML5
XSJS/XSA

Java
Node.js
Python

Community
buildpacks

SAP Cloud Platform

SAP Ariba

On-Premise /
Managed Cloud

SAP Amazon Web Services Microsoft Azure Google Cloud Platform

SAP Web IDE /
SAP API Business Hub

Cloud Foundry

SAP Cloud Platform

Programming
models

SAP ASE

Virtual
Machines

Data and
Storage
Services

Platform
Services

Business
Services

SAP Vora
Altiscale/Hadoop

Performance
Statistics

67

2.3 Side-by-Side Extensions

2

Figure 2.7 The Cloud Connector in a Hybrid Scenario

We’ll go into more detail on how to set up the connection between SAP S/4HANA and

the SAP Cloud Platform in Chapter 6. We’ll also include detailed instructions on the

differences between SAP S/4HANA Cloud and SAP S/4HANA on-premise as well as

discuss some security concerns with delegating business users between the two

stacks.

2.3.3 Side-by-Side Extension Scenarios

Side-by-side extensions are by design technically decoupled from the SAP S/4HANA

standard. Consequently, an extension on the SAP Cloud Platform can be scaled and

delivered independently from SAP S/4HANA. The extension may even provide its

business function in case SAP S/4HANA or the connection to it has limited avail-

ability or other technical issues. Highly agile teams may use side-by-side exten-

sions to update and improve parts of the system without close alignment with SAP

S/4HANA teams and release plans. The following patterns cover the most import-

ant extension points next to the ones already introduced for in-app extensions.

The patterns themselves consider typical, disjointed usage scenarios and, thus, do

not reflect every possible combination that might be possible across patterns. Thus,

you’ll have to pick and combine various patterns depending on your use case and

requirements.

Custom User Interfaces

The SAP Web IDE provides the tools for customers to create web-based user inter-

faces. The SAP Web IDE puts special focus on SAP Fiori and SAPUI5 with many tem-

plates for commonly used patterns such as the master-detail page layout. The user

interfaces can then be deployed to an SAP Cloud Platform account for testing pur-

poses or for productive use. The user interfaces may use existing whitelisted OData

SAP
Cloud Connector

ODBC, HTTPS, RFC HTTPS

Secure Tunnel

Firewall

InternetCustomer’s Corporate Network

Application User
frontend

SAP
Cloud Platform

SAP
backend

On-Premise
database

Cloud
database

2 SAP S/4HANA Extensibility

68

services from SAP S/4HANA (Figure 2.8). This functionality might be especially help-

ful for you to copy existing SAP standard user interfaces as a starting point.

Figure 2.8 SAP Fiori User Interface as a Side-by-Side Extension

However, you can combine in-app extensions with side-by-side extensions by creating

new OData services inside the core of SAP S/4HANA that can be consumed from SAP

Cloud Platform. As explained earlier, such OData APIs may either serve additional

data, for example, from a custom business object, or can combine data from several

existing views so that roundtrips between the user interface and the backend are

reduced (Section 2.2).

Custom Applications

As shown in Figure 2.9, you can also create completely new applications spanning

across user interfaces, application logic, and the storage layer. For partner applica-

tions, this structure is expected to be the dominant extension pattern. On all layers,

the SAP Cloud Platform provides numerous technologies and tools so that customers

or partners may choose the best ones to fulfill their requirements. Although the

SAP Fiori LaunchpadSAP Fiori Launchpad

User Interface
(SAP Fiori)

Database Table

Application
(ABAP | CDS)

ODataOData Service

SAP In-App Extensibility Side-by-Side Extensibility

Custom User
Interface (SAP Fiori)

69

2.3 Side-by-Side Extensions

2

Cloud Foundry environment on the SAP Cloud Platform allows you to write applica-

tions in almost any programming language, SAP is primarily investing in Java, JavaS-

cript, and ABAP. For example, SAP provides libraries to create OData services or to use

the SAP S/4HANA public data model inside Java and JavaScript backend services. A

good part of these libraries and options, such as the SAP S/4HANA Cloud SDK, are

covered in this book.

Figure 2.9 Side-by-Side Extension App on SAP Cloud Platform

Again, the extension application may integrate with SAP S/4HANA Cloud through

existing public APIs or by additional APIs created with in-app extensions. In addition,

SAP S/4HANA on-premise exposes APIs in the form of BAPIs using the RFC protocol

or the HTTP-based SOAP protocol.

Side-by-Side Service and Events

Sometimes, an in-app extension, in the form of a code extension or a custom busi-

ness object, may require capabilities not provided by SAP S/4HANA. For this purpose,

customers may implement a service on the SAP Cloud Platform and invoke the

Custom User

SAP Fiori LaunchpadSAP Fiori Launchpad

User Interface
(SAP Fiori)

Database Table

Application
(ABAP | CDS)

ODataOData Service

SAP

OData Service

Application
(Java | JS | CDS)

Database Table

Interface (SAP Fiori)

In-App Extensibility Side-by-Side Extensibility

2 SAP S/4HANA Extensibility

70

service by a RESTful call from the in-app extension to the SAP Cloud Platform service,

as shown in Figure 2.10.

Figure 2.10 Side-by-Side Extension Service on SAP Cloud Platform

Besides RESTful service calls, you can also emit events in SAP S/4HANA that can be

consumed on the SAP Cloud Platform. Events contain messages with data similar like

in a service call. The main difference, however, is the asynchronous nature of an

event. The process continues after emitting the event without waiting for a response.

The eventing capabilities between SAP S/4HANA and the SAP Cloud Platform will be

explained more detail in Chapter 16.

Data Mart Extension

Analytical applications implementing data mart-like scenarios, may need to bring

data together in one database so that the response to an analytical query is fast

(Figure 2.11). With SAP HANA being the database on both sides, you can replicate

data from the SAP S/4HANA system into the database of the analytical application

on the SAP Cloud Platform. The basis for the replication is the public model so

that, after replication, the same views can be used in selects and joins. To use the

SAP Fiori Launchpad

User Interface
(SAP Fiori)

Database Table

Application
(ABAP | CDS)

OData Service

SAP

Service API

Service
(Java | JS | CDS)

Database Table

Side-by-Side ExtensibilityIn-App Extensibility

71

2.3 Side-by-Side Extensions

2

replication mechanisms with SAP S/4HANA Cloud, a fully managed SAP service

exists. At the time of this writing, the service is in restricted mode, accessible only

to pilot customers.

Figure 2.11 Data Mart on SAP Cloud Platform as a Side-by-Side Extension

For SAP S/4HANA on-premise and other SAP solutions, customers can perform the rep-

lication with help of the Cloud Connector and, optionally, also SAP Landscape Transfor-

mation Replication Server. Further, you can copy data from various other sources into

the analytical application using RESTful services so that customers can join data across

business applications and processes as part of the analytical application.

Further Information on Data Replication to SAP Cloud Platform

Replicate ABAP CDS Views from SAP S/4HANA Cloud to SAP Cloud Platform: http://

tiny.cc/data-replication

Replicating Back-End Data to the Cloud: https://sap.github.io/cloud-s4ext/week-4/unit-3/

SAP Fiori Launchpad

User Interface
(SAP Fiori)

Database Table

Application
(ABAP | CDS)

SAP

OData Service

Custom User
Interface (SAP Fiori)

SAP Fiori Launchpad

OData Service

Application
(Java | JS | CDS)

Database Table

Side-by-Side Extensibility

2 SAP S/4HANA Extensibility

72

This concludes our review of the general patterns possible using the side-by-side

extension approach. In the next section, we’ll discuss typical extension use cases

based on the presented patterns and principles.

2.4 Extension Use Cases

With the side-by-side and in-app extensibility features explained in the previous sec-

tions, you can build additions to SAP S/4HANA that significantly increase the reach

and the scope of the system. SAP S/4HANA can be connected in processes that engage

internet users, such as in an online store, on mobile devices, or via experimental user

interface technologies. Furthermore, you may extend existing processes but also

invent completely new processes while easily combining SAP S/4HANA data with

data from other systems. As a result, we’ve observed several typical extension arche-

types that our customers or partners are implementing, as follows:

� Proxy applications

� Convenience applications

� Substitute applications

� Preprocessing applications

� Postprocessing applications

� Analytical applications

Note that this list does not claim to be exhaustive and you can combine several of these

archetypes within one process or even within one application. The presented arche-

types are typically driven from a side-by-side extension perspective. However, in most

real-life scenarios, they are complemented and supported by in-app extensions.

Let’s discuss these archetypes individually next.

2.4.1 Proxy Applications

Proxy applications are highly connected applications that shield the SAP S/4HANA sys-

tem from internet traffic. In other words, these applications “buffer” data and commu-

nicate with the SAP S/4HANA in batch mode for more efficient data exchange. These

applications often work with identities only known in the proxy application but not in

SAP S/4HANA, for example, the end consumers of a retail enterprise who may not re-

quire an SAP S/4HANA backend user. Typical proxy applications include online stores,

registration web sites, or any other publicly available web sites. A proxy application

73

2.4 Extension Use Cases

2

on a mobile phone could also be used by customers to learn about promotions and

products. These applications typically have high requirements with respect to avail-

ability and scalability to cater for traffic bursts at peak times.

2.4.2 Convenience Applications

Convenience applications aim at simplifying the user experience and, thus, often do

not add many new features but instead make using existing features significantly

easier. You can, for example, build a convenience application for a mobile device to

support field engineers. In a convenience application, fields can be defaulted to the

most commonly used values or can be hidden altogether because reasonable values

can be provided automatically.

2.4.3 Substitute Applications

Substitute applications replace a specific process or process step in SAP S/4HANA.

The reasons to use a substitute application might be to provide a functionality miss-

ing in SAP S/4HANA or existing processes that shouldn’t be changed when deploying

SAP S/4HANA. Substitute applications typically execute service calls on SAP S/4HANA

in the background while end users can work in a completely different user interface

with capabilities that are not part of SAP S/4HANA’s scope.

For example, let’s consider time recording in the service industry. Typically, external

tools are used for project management and scheduling, such as Atlassian Jira. Jira

ticket numbers and other fields can be added to the SAP S/4HANA data model using

an in-app field extension for simplified end-to-end reporting of SAP S/4HANA. Then,

the substitute application on SAP Cloud Platform may join the information from SAP

S/4HANA (i.e., costs from a cost center) with information from Atlassian Jira (i.e., proj-

ect times, statuses, and schedules).

2.4.4 Preprocessing Applications

Preprocessing applications are often used to collect data before a process is started in

SAP S/4HANA. In preprocessing applications, data is collected until a certain status or

state is achieved. Then, a process in SAP S/4HANA is started using the collected data.

An example might be an app to create and maintain new products as a side-by-side

extension of SAP S/4HANA. Once details about the new product have been approved,

the product is promoted to and stored in SAP S/4HANA. Subsequently, SAP S/4HANA

processes are triggered such as pricing or production-related activities.

2 SAP S/4HANA Extensibility

74

2.4.5 Postprocessing Applications

Postprocessing applications receive events from SAP S/4HANA when certain pro-

cesses or process steps are completed. Based on these events, additional activities are

performed in a side-by-side extension of SAP S/4HANA. An example could be an

application that updates a customer record. If the customer relationship ends, data

may have to be deleted from corresponding applications or data stores hosted on the

SAP Cloud Platform.

2.4.6 Analytical Applications

Analytical applications connect data from multiple sources into one analytical data-

base so that analytical queries can be answered quickly and interactively. Ad hoc

reporting is also available. For this purpose, data from SAP S/4HANA and other sys-

tems might be replicated into a SAP HANA database on SAP Cloud Platform. Then,

analytical applications can leverage all the capabilities provided by SAP HANA, such

as columnar storage, in-memory execution, and rich view building as well as the ana-

lytical user interface controls of SAPUI5.

2.5 Nonfunctional Requirements of Extension Applications

So far, we’ve presented extension archetypes and described common use cases for

extensions from a functional perspective. Functional requirements specify the

behavior of the system, that is, what it is supposed to do. However, other, nonfunc-

tional requirements also exist that relate to the underlying qualities of the system

such as performance, costs, availability, or resilience.

By definition, in-app extensions inherit their nonfunctional properties from SAP

S/4HANA. In contrast, for side-by-side extensions, customers and partners are mainly

responsible for ensuring certain qualities such as scalability and availability. To

achieve these qualities, customers are supported by appropriate SAP Cloud Platform

services, software development kits (SDKs), and best practices, many of which we’ll

explain in this book. However, not all qualities are equally important for all exten-

sions. Some business cases may also not justify the efforts to build highly scalable

and available extensions. Therefore, you’ll need to understand the design trade-offs,

when to invest, and how to achieve a high degree of quality.

Generally, we recommend identifying extensions that are mission critical; any failure

in this extension would have a severe impact on business operations. For example,

75

2.5 Nonfunctional Requirements of Extension Applications

2

customers often consider employee self-service applications less critical than appli-

cations involved in core business processes. In certain situations, such as a leave

request, an employee may accept poor user interface performance and simply retry

at a later point in time. On the other hand, an application intended to be used by the

customers of the business such as an online shop or a customer-facing mobile appli-

cation can have severe impact on the business success when customers cannot place

orders (revenue loss) and instead select competitive products. This distinction

between mission-critical and non-mission critical capabilities can help you find the

right trade-offs.

Mission critical applications are business processes that involve customers, partners,

suppliers, etc., for example, an internal application the sales force needs for daily

operations. Mission critical applications may also target different users or interact

with systems that are not under the control of the organization. Often, non-mission

critical applications accept a much lower level of certain nonfunctional requirements

for the sake of lower development or operations costs. In mission critical applica-

tions, certain nonfunctional requirements such as availability cannot be sacrificed,

and higher development and operational costs might be acceptable.

Typical properties of internal applications include the following:

� Known user (e.g. SAP S/4HANA user), single-sign on

� Predictable scalability (e.g. based on number of users)

� SAP Fiori UI with moderate usability requirements

� Downtimes and times of limited availability are considered acceptable

Typical properties of external applications include the following:

� Known user and internet user (not a user in one of the organization’s systems)

� Unknown scalability needs or high peaks (e.g. due to seasonal events), load impact

on internal systems unclear

� SAP Fiori and freestyle UIs (e.g. created by an agency)

� Downtimes unacceptable (24/7) with continuously high performance

Based on these considerations and to best serve business needs, we recommend

building external applications as side-by-side extensions to cope with the additional

nonfunctional challenges introduced by cloud software. For internal applications, a

careful trade-off analysis should be conducted to identify whether the functionality

might be provided by either a pure in-app extension or by a side-by-side extension.

2 SAP S/4HANA Extensibility

76

The criteria above may guide you in finding the appropriate trade-offs for your appli-

cation scenario.

We’ll further explore the qualities of cloud-native application development, the pre-

dominant development style for side-by-side extensions, in the next chapter.

2.6 Summary

In this chapter you learned about the various options you have for extending SAP

S/4HANA. In the next chapter we’ll dive into the specifics of side-by-side extensibility

and cloud-native application development. You'll learn how the principles of cloud-

native development, such as DevOps, microservices, continuous delivery, and con-

tainerization, can help you craft highly scalable, resilient, and consistently available

applications on the SAP Cloud Platform.

155

5

Chapter 5

Application Security

This chapter outlines how to secure our example application, which

consists of several microservices in a multitenant fashion. This chapter

involves an overview of the architecture and the interaction among

the corresponding components such as the application router

(AppRouter) and the Identity Provider (IdP), as well as other relevant

microservices. In addition to how to configure authentication and

authorization between services and users, we’ll cover essential security

fundamentals and web security topics such as cross-site request

forgery (CSRF) and clickjacking.

In this chapter, we’ll introduce you to all concepts that you need to understand to

secure your application in the Cloud Foundry environment on the SAP Cloud Plat-

form. Before we dive more deeply into implementation details, in this chapter,

we’ll provide a comprehensive overview of the architectural components (e.g., the

AppRouter, Extended Services for User Account and Authentication [XSUAA]) and

patterns (e.g., OAuth) you’ll need to understand for the full conceptual picture. Based

on this overview, we walk through step-by-step how to protect our Business Partner

Address Manager application so that only authenticated and authorized users can

use the application. Additionally, we’ll introduce some common web application

threats, such as cross-site request forgery and clickjacking, and discuss how SAP tech-

nologies can help you to reduce your application’s vulnerability to these threats.

5.1 Security on SAP Cloud Platform

Figure 5.1 presents the general architectural setup of security configuration in the

Cloud Foundry environment on the SAP Cloud Platform. So far in this book, we

learned about the single Java-based microservice that comprised our application,

which consists of a few backend APIs and the UI (a micromonolith if you will).

However, instead of accessing this service directly, we’ll now use the AppRouter,

which serves three main purposes.

5 Application Security

156

Figure 5.1 High-Level Authentication Setup with AppRouter and Extended Services for User

Account and Authentication (XSUAA)

First, the AppRouter is the central entry point for our application into the world of

real microservices. We can dissect our application into multiple microservices while

hiding the resulting complexity from our end users. As such, the AppRouter dis-

patches requests to our backend microservices, thus acting as a reverse proxy, in par-

ticular, since the backend microservices should not be directly accessible by the

client.

Second, the AppRouter can serve static content such as web pages, SAPUI5, or any

other client-side code. We’ll postpone discussion about static content until Chapter 14.

Third, the AppRouter is an important component for managing the authentication

flows for our entire application and is, in addition, capable of strengthening our

application against common web application threats. We’ll focus on these features

throughout this chapter.

For the purposes of authentication (who the user is) and authorization (what the user

is allowed to do), the AppRouter takes all incoming, unauthenticated request and ini-

tiates an OAuth2 flow (authorization code grant) with the Extended Services for User

Account and Authentication (XSUAA) service of the SAP Cloud Platform in the Cloud

Users

Microservice

XSUAA

Microservice

SAP S/4HANA
SDK

Microservice

App Router

Identity Zone

Configuration

<<SAML>>

<<JWT>><<http>>

R R

R

R

Address Service

SAP Java BuildpackNodeJS Buildpack

SAP Cloud Platform, Cloud Foundry Environment

Identity
Provider
(e.g., SCI)

157

5.1 Security on SAP Cloud Platform

5

Foundry environment. The XSUAA is a specific service provided by SAP to deal with

authentication and authorization for business applications instead of using the

standard user account and authentication service available in the Cloud Foundry

environment. By default, the XSUAA uses the SAP ID service as user provider man-

aging all users of the SAP Cloud ecosystem such as public users (P-users) or support

user (S-users). Customers may replace the default configuration with any other Secu-

rity Assertion Markup Language (SAML) 2.0-compliant Identity Provider (IdP) like the

SAP Cloud Platform Identity Authentication service.

The full runtime flow of all involved components for authentication is shown in Fig-

ure 5.2. If you’re not comfortable with OAuth yet, we recommend studying the RFC at

https://tools.ietf.org/html/rfc6749.

Figure 5.2 Runtime Flow for Authentication in SAP Cloud Platform

In the first step of the runtime flow 1, a nonauthenticated user may request a certain

backend resource from one of our microservices using the AppRouter as the single

entry point. Since the user is not authenticated, in the second step 2, the AppRouter,

User
AppRouter

(OAuth2 Client)
XSUAA Backend-Microservice

(OAuth2 AuthorizationServer) (OAuth2 ResourceServer)

myapprouter-tenant123.eu10.hana.
ondemand.com/resource

Browser redirection

tenant123.authentication.eu10.hana.
ondemand.com/oauth/authorize
?response_type=code&client_id=…

Present login page

Provide user name and password

Redirect with temporary authorization code
Validate user and password

myapprouter-tenant123.eu10.
hana.ondemand.com/login/callback
?code=authorization_code

Redirect to/resource and set
cookie with session ID

Request Json Web Token
(JWT) using authorization
code

Grant JWT and refresh token

Actual response Actual response

mybackend.eu10.hana.
ondemand.com/resource
with JWT in header

myapprouter-tenant123.eu10.
hana.ondemand.com/resource

Validate authorization_code

Validate
JWT

5 Application Security

158

acting as an OAuth client, will respond with a URL redirect to the XSUAA service,

which serves as the OAuth authorization server. In Step 3, the XSUAA now responds

with a login page asking the user for a valid user name and password. If the login

information is correct, the XSUAA responds with a redirect back to the AppRouter

including a temporary authorization code in Step 4. In the fifth step 5, the

AppRouter exchanges the authorization code against an access token, represented as

a JSON Web Token (JWT). The JWT contains all the information about the user: the for-

mal user name, the tenant the user belongs to, any granted authorizations as OAuth

scopes, etc. The JWT is also digitally signed so that every involved party can check its

validity and integrity. The AppRouter stores the received JWT in the user’s session

for future use. For more information on the JWT standard, refer to the official RFC at

https://tools.ietf.org/html/rfc7519. In the sixth and final step 6, the AppRouter will

forward the original request with the granted JWT to our backend resource which,

after also validating the validity of the JWT, will return the correct response payload

to the user. Note that this entire flow needs to be repeated only when the session of

the user inside the AppRouter expires or the user has issued an explicit logout.

As mentioned earlier, the JWT contains a signature that must be verifiable by every

microservice constituting our application. Therefore, every service must maintain a

service binding to the XSUAA service, which provides this information at runtime for

verification purposes and to fulfill the OAuth flow (Figure 5.3).

Figure 5.3 Runtime Binding between Microservices and XSUAA

Microservice

S/4 SDK

Microservice

App Router
Address Service

SAP Java BuildpackNodeJS Buildpack

my-xsuaa

my-xsuaa

Microservice

XSUAA

SAP Cloud Platform, Cloud Foundry Environment

159

5.2 Configuring Authentication

5

Technically, every microservice needs aa binding to the specific XSUAA instance that

writes this information into the VCAP_SERVICES environment variable, which the

microservices can use to check the JWT’s validity. With these basics in mind, let’s cre-

ate the setup shown in Figure 5.1 in the following sections.

5.2 Configuring Authentication

In the following section, we’ll show you how to secure our Business Partner Address

Manager application so that only authenticated users can access it.

5.2.1 Setting Up the Application Router

As a first step, we’ll need to get and set up the AppRouter as explained in the previous

section. The AppRouter is a Node.js component distributed via the publically avail-

able SAP NPM registry.

To download and install the AppRouter, follow these steps:

1. Go to your favorite <destLocation>, which represents your preferred development

directory.

cd <destLocation>
mkdir approuter
cd approuter

2. Place the package.json shown in Listing 5.1 in the newly created approuter direc-

tory. Please note that we’re using version 4.0.1, which is the most recent version at

the time of this writing. You may update the AppRouter’s version in this file to the

latest version.

{
"name": "approuter",
"dependencies": {
"@sap/approuter": "4.0.1"

},
"scripts": {
"start": "node node_modules/@sap/approuter/approuter.js"

}
}

Listing 5.1 The package.json for the Application Router

5 Application Security

160

3. Install AppRouter dependencies using the following commands:

npm config set @sap:registry https://npm.sap.com
npm install

4. If successful, you should find a node_modules folder in the same location as the

package.json.

Install via Service Marketplace

Alternatively, you may download the AppRouter from the SAP Service Marketplace at

http://tiny.cc/xsjavascript and pick the latest XS JavaScript package, which includes

the AppRouter among other dependencies. However, at the time of this writing, only

an older version was available. We don’t recommend this option.

Now, we need to provide some design-time configuration to the AppRouter. The

main configuration file is called xs-app.json (Listing 5.2), which we create and place

under <destLocation>/approuter.

{
"welcomeFile": "index.html",
"routes": [{
"source": "^/api/(.*)",
"target": "/api/$1",
"destination": "app-destination"

},{
"source": "^/address-manager/(.*)",
"target": "/address-manager/$1",
"destination": "app-destination"
}]

}

Listing 5.2 The AppRouter’s Design Time Descriptor xs-app.json

So far, this file contains two routes to our backend microservice: one for our backend

APIs and a second for static frontend content. During runtime, a route is identified

through a matching pattern provided under the source path matched against the rel-

ative URL requested by the client. Then, the relative URL for the backend service is cal-

culated based on the expression under target and combined with the base URL read

from the destination variable, which is provided as an environment variable. In this

161

5.2 Configuring Authentication

5

way, we can flexibly change destinations later at runtime when our deployment

model changes but leave all design-time parameters constant.

The Application Router’s Design-Time Descriptor: xs-app.json

The xs-app.json file can be used to configure many more aspects at design-time of

the AppRouter like authentication types, cache control, compression threshold for

outgoing traffic (by default, 1 KB), client-initiated logout, custom settings for CSRF

protection, and much more. We’ll use some of these settings throughout this book.

However, we recommend studying the up-to-date specifications and more detailed

settings at http://tiny.cc/approuterconfig.

To correctly deploy our AppRouter, we’ll create an additional manifest.yml file inside

<destLocation> as the next step with the example content shown in Listing 5.3.

applications:
- name: approuter
routes:
- route: approuter- ↩

<subdomain>.cfapps.eu10.hana.ondemand.com
path: approuter
memory: 128M
env:
TENANT_HOST_PATTERN: 'approuter- ↩

(.*).cfapps.eu10.hana.ondemand.com'
destinations: '[{"name":"app-destination", "url": ↩

"https://address-manager-unsparse-subutopian ↩

.cfapps.eu10.hana.ondemand.com", ↩

"forwardAuthToken": true}]'
services:
- my-xsuaa

Listing 5.3 Providing a Deployment Descriptor for the AppRouter

Note

Replace the route parameter with your subaccount’s subdomain as well as the URL

parameter of the destinations variable with the correct base URL of our previously

deployed Business Partner Address Manager microservice. For example, if you

5 Application Security

162

created a trial account on SAP Cloud Platform previously with a P-user, the route of

the AppRouter will look like approuter-p1942765239trial, and the URL to the micros-

ervice might be address-manager-unsparse-subutopian based on the random route

generated in Chapter 4.

As we discussed in Chapter 4, we’ll use the standard Cloud Foundry manifest.yml file

to instruct the AppRouter to describe basic metadata for deployment as we did

already for the Java-based backend microservice. Additionally, we’ll utilize two

important user-provided environment variables, which are understood by the

AppRouter.

First, the destinations variable will declare the base URL of our app-destination des-

tination that we referenced earlier in the xs-app.json. You must provide an absolute

URI including the protocol (https://), without any relative information as that infor-

mation will be used to identify routes as specified in xs-app.json. We’ll also specify

that any JWT from the AppRouter shall be forwarded to this destination.

Second, the TENANT_HOST_PATTERN variable will define how tenants should be identi-

fied in our application’s URL. Upon request, the AppRouter will match the incoming

base URL against the provided regular expression and will consider the first matching

group of the expression as the tenant. Then the AppRouter will use the matched string

to identify the corresponding XSUAA tenant. If you need a different URL scheme for

your tenants, you’ll need to change this pattern accordingly. As we assume to build

multitenant applications throughout this book, this parameter is required but can be

omitted if implementing a single-tenant application only.

The AppRouter’s Runtime Configuration

Besides destinations and tenant host patterns, the AppRouter understands many dif-

ferent parameters that can be changed during runtime, without redeploying the

entire AppRouter, which is consistent with the twelve-factor application principles

outlined in Chapter 3. Recognized parameters include cross-origin policies, session

timeouts, compression thresholds, JWT refresh times, etc. You can find a full list of

these parameters at http://tiny.cc/approuterparams. Besides declaring these varia-

bles in manifest.yml, please note that you can always use cf set-env <appName>
<variableName> <variableValue> to set them.

Finally, in manifest.yml, we introduced a binding to a service instance, called my-

xsuaa in our example. Our XSUAA service instance will be bound to the AppRouter so

163

5.2 Configuring Authentication

5

that JWTs issued by the XSUAA can be verified and, therefore, trusted by the

AppRouter. Technically, this binding will issue a VCAP_SERVICES entry for the App-

Router, which holds all required information such as the client secret or the public

key, to verify all security-related artifacts, as shown in Listing 5.4.

{
"VCAP_SERVICES": {
"xsuaa": [{
"binding_name": null,
"credentials": {
"clientid": "<clientid>",
"clientsecret": "<clientsecret>",
"identityzone": "<subdomain>",
"identityzoneid": "<subaccountId>",
...
"verificationkey": "-----BEGIN PUBLIC KEY----- ...",
"xsappname": "<xsappname>"
...

Listing 5.4 XSUAA Binding Information

However, before we can deploy the AppRouter, we’ll need to instantiate our my-xsuaa

service instance as described in the next section.

5.2.2 Extended Services for User Account Authentication (XSUAA)

With the AppRouter, we’ve already set up the largest part required for authentication.

Besides acting as an OAuth client, the AppRouter is required for many other aspects

in SAP Cloud Platform and, thus, is an important prerequisite. Eventually, authenti-

cation and authorization will be performed by the XSUAA. Therefore, we’ll need a ser-

vice instance to the XSUAA service, which is then bound to our AppRouter.

To create a service instance, we’ll require the xs-security.json descriptor file, which

we’ll put into our initially chosen <destLocation> for the AppRouter:

{
"xsappname": "address-manager-<subdomain>",
"tenant-mode": "shared"

}

5 Application Security

164

Like with the AppRouter, this file provides important design-time information such

as roles, authorizations, etc., to the service instance we are about to create. For

authentication purposes, the file looks simple as we are basically telling the XSUAA to

create an instance with a unique identifier. As a best practice, we’ll again use the

application’s name and subaccount’s domain, but you can use any other arbitrary

identifier not yet taken. Furthermore, we’ll use the XSUAA in multitenant mode

(tenant-mode: shared). We’ll enhance this file in Section 5.3, when we introduce autho-

rization concepts.

The Application Security Descriptor: xs-security.json

The xs-security.json descriptor is an important design-time artifact to provide authori-

zation scopes, role templates, and other attributes of the application itself as well as

foreign applications. For full specifications, refer to http://tiny.cc/securitydescriptor.

We’ll then create a service instance called my-xsuaa of the XSUAA service by issuing

the following command and using the xs-security.json file as a configuration input:

cf create-service xsuaa application my-xsuaa -c xs-security.json

By creating this instance, we are now explicitly declaring our XSUAA tenant as a plat-

form-as-a-service (PaaS) tenant, that is, as a tenant whose security configuration can

be shared with software-as-a-service (SaaS) tenants of consumers subscribing to our

application later (see also Chapter 3 and Chapter 7). Thus, the consumers of our mul-

titenant application can see, configure, and assign scopes and roles to their tenant-

specific users (Section 5.3.2).

5.2.3 A First Test

If you successfully went through the previous two sections, you should have in your

file or version control system a structure that looks like the following:

.
├── approuter
│ ├── node_modules
│ ├── package.json
│ └── xs-app.json
├── manifest.yml
└── xs-security.json

165

5.2 Configuring Authentication

5

Note that you may have different content in the approuter folder depending on your

individual setup. Ensure that xs-app.json, package.json, manifest.yml, and the node_

modules directory with correct contents are present at least. If your structure is suffi-

cient, you’re ready for the first test. Deploy the AppRouter using the following com-

mands:

cd <destLocation>
cf api https://api.cf.eu10.hana.ondemand.com
cf login
cf push

Now, you should be able to locate the AppRouter from within your browser using the

host name of your deployment as well as the subaccount’s subdomain following the

pattern as specified earlier. For example, using our example user P1942765239, the

final URL would be https://approuter-p1942765239trial.cfapps.eu10.hana.ondemand.com

/address-manager/. This address should present a page similar to Figure 5.4 where

you’ll use your email address and password to log in.

Figure 5.4 Login Screen of Our Application Based on Application Router and XSUAA

After logging in, you should also see our Business Partner Address Manager applica-

tion, as shown in Figure 5.5, now being served via the AppRouter as you can see from

the URL.

5 Application Security

166

Figure 5.5 Business Partner Address Manager Application Delivered over Application Router

after Authentication

Did You Know? Running the Application Router Locally

Sometimes it might be helpful to run the AppRouter locally for testing or debugging

purposes, in particular, when you want to experiment with different settings and do

not want to deploy the AppRouter to SAP Cloud Platform all the time. To run the

AppRouter locally, place two required files called default-env.json (which contains

the required environment variables) and default-services.json (which contains the

XSUAA service binding information) next to xs-app.json. Check out the GitHub repos-

itory for this book for a concrete example. You may run the AppRouter locally using

npm start.

5.2.4 Protecting Our Backend Microservice

Although authentication works with the AppRouter, our Java-based backend micros-

ervice is still fully visible in the web and not protected. We’ll therefore need to protect

our backend microservice as well so that it only accepts requests with valid and

trusted JWTs. Two simple steps are all that’s required.

First, we’ll need to modify our Java backend’s web.xml and introduce the lines of code

shown in Listing 5.5.

167

5.2 Configuring Authentication

5

<login-config>
<auth-method>XSUAA</auth-method>

</login-config>
<security-constraint>
<web-resource-collection>
<web-resource-name>Read business partners ↩

</web-resource-name>
<url-pattern>/api/business-partners</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>ViewAddresses</role-name>
</auth-constraint>

</security-constraint>
<security-role>

<role-name>ViewAddresses</role-name>
</security-role>

Listing 5.5 Declarative Security Configuration for Backend Microservices

This code essentially leverages the SAP Java buildpack to validate incoming requests

and only accept requests with a valid JWT for users who possess the ViewAddresses

role (which we’ll introduce in the next section).

Second, we’ll also need to bind our Java backend service to our previously created

XSUAA instance my-xsuaa. Therefore, we’ll slightly modify the manifest.yml defini-

tion of our Java backend and introduce the my-xsuaa service instance to the services

section:

services:
- my-xsuaa

Now, we’re ready to rebuild and redeploy our backend microservice with the com-

mands:

mvn clean install
cf push

As a result of this change, accessing the backend service directly will reject any

requests and show a 401 HTTP status (Unauthorized) because we are not providing

any valid JWT (Figure 5.6).

5 Application Security

168

Figure 5.6 Java Microservice Rejecting Unauthenticated Traffic

When using the AppRouter as the entry point, the backend service will now respond

with a 403 HTTP status (Forbidden) as authentication has worked, but now, the user

lacks the ViewAddresses authorization required to protect the endpoints accordingly

(Figure 5.7). Giving the user access to the roles will be the topic of the next section.

Figure 5.7 Backend Requests Authenticated over the AppRouter but Forbidden Due to

Missing Authorizations

169

5.3 Configuring Authorization Using OAuth2

5

Did You Know? Providing Logout Functionality

While experimenting with different authentication and authorization options, you

may require logging out every now and then to explicitly invalidate established ses-

sion information on the server- and client-sides. This forced logout can be an import-

ant capability for your productive application later on.

Fortunately, the AppRouter also provides a mechanism for client-initiated logout

that provides a central logout facility in our distributed system. By adding the snip-

pet in Listing 5.6 to xs-app.json, we can tell the AppRouter under which relative URL

we want to expose the logout (for example, /logout):

"routes": [{<route_definitions>}],
"logout" : {
"logoutEndpoint": "/logout",
"logoutPage": "/logout.html"

}

Listing 5.6 Adding Logout Functionality to AppRouter

Troubleshooting JSON Web Tokens

In some cases, you might need to investigate the content of the JWT to identify any

potential issues. The JWT is passed using an HTTP header with key Authentication,

and the value always starts with Bearer: followed by a Base64-encoded string. You

can, for example, create an arbitrary servlet for debugging purposes and log the

header to the console. Afterwards, you may use a page like https://jwt.io to decode

the token. However, never do this with any productive tokens and use local solutions

instead, such as the publically available jwt-cli tool.

5.3 Configuring Authorization Using OAuth2

Now that we’ve secured our application against unauthenticated traffic, let’s now

turn to how to check concrete business authorizations as part of the application

semantics.

5.3.1 Overview

In the previous section, we provided the setup required to authenticate our users

end-to-end using the AppRouter and our previously built Business Partner Address

5 Application Security

170

Manager application. However, we haven’t yet considered any business authoriza-

tions, the more fine-grained controls over our exposed business capabilities. For

example, let’s say we only want to allow certain users read rights on business partner

addresses while other users might be allowed to also write new addresses. For this dis-

tinction, we’ll require authorization definitions at design-time and corresponding

runtime checks, which we’ll introduce in this section. Figure 5.8 provides a high-level

overview on how authorization concepts are modelled and handled in the Cloud

Foundry environment on SAP Cloud Platform.

Figure 5.8 Relationships of Authorization Concepts on SAP Cloud Platform

We, as the developers or architects of our business application, can define role tem-

plates, which may contain multiple (OAuth) scopes. OAuth scopes refer to specific

authorizations such as DISPLAY or WRITE permissions, which are checked by the

microservice. We’ll provide our scope and role template design using the xs-secu-

rity.json descriptor (Section 5.2.2) when creating the XSUAA service instance.

The consumer of our application (for example, an administrator in a client company)

can then instantiate the provided role templates into concrete roles in his subscriber

accounts (for example, giving them customer-specific names) and may aggregate

multiple roles (for example, from different providers) into role collections that can

finally be assigned to individual users or groups of users. In this way, we can achieve,

on one hand, fine, granular authorization control for microservices and, on the other

hand, compose authorization in a flexible way with more coarse role collections. The

idea behind this process is that, for example, a “Business Partner Manager” role col-

lection may span multiple applications while its underlying microservices all have

User Groups

User

Role

Scope

1

1

1

0..*

0..*

1

1

0..*1 1

1..*

0..*

Extended Services for UAA (XSUAA)Customer’s SAML IdP

Role Collection

Role Template

Business Application Attribute

171

5.3 Configuring Authorization Using OAuth2

5

individual scopes. The role collections can resolve all associated roles and return a

union of all associated scopes as part of the JWT issued by the XSUAA.

5.3.2 Defining Scopes and Role Templates

For our Business Partner Address Manager application, let’s say we want to define

two role templates: the BusinessPartnerViewer, which is only allowed to view existing

addresses (scope: ViewAddresses), and a BusinessPartnerManager template, which is

also allowed to write new addresses to the system (scope: ViewAddresses and WriteAd-

dresses). To define these role templates, we’ll enhance our existing xs-security.json

descriptor as shown in Listing 5.7.

{
"xsappname": "address-manager-<uniqueId>",
"tenant-mode": "shared",
"scopes": [{
"name": "$XSAPPNAME.ViewAddresses",
"description": "Scope to view business addresses"

},{
"name": "$XSAPPNAME.WriteAddresses",
"description": "Scope to write business addresses"

}],
"role-templates": [{
"name": "BusinessPartnerViewer",
"description": "Role to view business addresses",
"scope-references" : [
"$XSAPPNAME.ViewAddresses"

]
},{
"name": "BusinessPartnerManager",
"description": "Role to manage all business addresses",
"scope-references" : [
"$XSAPPNAME.ViewAddresses",
"$XSAPPNAME.WriteAddresses"

]
}

]
}

Listing 5.7 Enhancing the Application Security Descriptor with Scopes and Role Templates

5 Application Security

172

Note that all scopes must be prefixed with “$XSAPPNAME,” which will be replaced

during runtime with the actual name of the application.

Finally, we’ll need to update our existing XSUAA service instance my-xsuaa and make

it aware of our design changes using the following command:

cf update-service my-xsuaa -c xs-security.json

5.3.3 Protecting Our Application

Now that we’ve introduced scopes and role templates to the XSUAA service instance,

we’ll need to protect our application accordingly. Basically, two places exist where you

can check authorizations: inside the AppRouter and in the backend microservices.

Checking Scopes inside the AppRouter

First, let’s check OAuth scopes inside the AppRouter and protect certain routes with

scopes. For example, we could check on our /api route that we only allow users with

the ViewAddresses scope to pass; otherwise, the AppRouter should reject the request.

However, we won’t pursue this option in our example further because these checks

are declarative in nature on routes only and might be used as a second line of

defense. Therefore, we’ll omit this option in the remaining chapter for the sake of

simplicity.

"routes": [{
"source": "^/api/(.*)",
"scopes": ["$XSAPPNAME.ViewAddresses"]

}

Checking Scopes Declaratively in Backend Microservices

Checks can also be performed in the backend microservices where the actual busi-

ness logic resides. We always recommended introducing authorization checks in

your backend microservices so that the check is closely related to your business

logic and semantics. In some cases, you might even need to check authorizations

programmatically inside the business logic, which can be only done inside the micro-

service itself. To check scopes in our Java-based microservice, we can either use the

declarative or programmatic approach.

The declarative approach works either by using the web.xml as before or by using

annotations directly in the servlet (Servlet specification 3.0 or later). For servlets, we

can rely on the SAP-provided buildpack for Java and let it work out of the box.

173

5.3 Configuring Authorization Using OAuth2

5

With the web.xml approach inside the /application/webapp/WEB-INF/ folder, you

can protect resources declaratively outside your code. For example, in the last sec-

tion, we showed you how to protect the URL pattern under /api/business-partners

with the ViewAddresses role, which corresponds exactly to the scope we just defined.

In this process, you can add different URL patterns with different authorization con-

straints to protect your endpoints accordingly, as shown in Listing 5.8. (Please refer to

the official Servlet 3.0+ specification for more details.)

<security-constraint>
<web-resource-collection>
<web-resource-name>Read business partners ↩

</web-resource-name>
<url-pattern>/api/business-partners</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>ViewAddresses</role-name>
</auth-constraint>

</security-constraint>

<security-role>
<role-name>ViewAddresses</role-name>

</security-role>

Listing 5.8 Protecting Java Microservices Declaratively

Alternatively, with the annotation-based approach, you can directly annotate the

relevant servlet using the @ServletSecurity annotation, for example, inside the

BusinessPartnerServlet class:

@WebServlet("/api/business-partners")
@ServletSecurity(@HttpConstraint(rolesAllowed = ↩

{"ViewAddresses"}))
public class BusinessPartnerServlet extends HttpServlet

However, this code is just a different syntactical way of expressing the same seman-

tics. If you prefer annotations, you can safely remove the protection from web.xml.

No matter which approach you use, you’ll need to rebuild and push the application

using the command:

mvn clean install
cf push

5 Application Security

174

Checking Scopes Programmatically in Our Backend Microservices

Authorizations can be also checked programmatically in your backend microservices

by leveraging the XS2 security libraries, which are currently distributed by SAP

through the SAP Service Marketplace.

Note

At the time of this writing, a Maven Central delivery is not available. Please check if

the artifacts are available when you read this chapter; if so, you can skip the instruc-

tions in the next paragraph.

To get the latest version of the XS2 security libraries, you’ll need to download them

from http://tiny.cc/xs2seclibs and pick the latest version. At the time of this writing,

the latest version is XS_JAVA_1-70001362 (19.03.2018). Please note that you’ll require

a support user to access the SAP Service Marketplace (see the preface for information

on getting one). Once you’ve downloaded the library, unzip the downloaded package

to a temporary directory <tempDir>. Afterwards, install the libraries to your local

Maven repository as follows:

cd <tempDir>
mvn clean install

After you’ve installed the XS2 security libraries, you’ll need to reference them as

dependencies from <projectDir>/application/pom.xml, as shown in Listing 5.9. Note

that the depicted dependency versions may be outdated in the code and should be

replaced with the latest available versions.

<!-- replace with latest available versions -->
<dependency>

<groupId>com.sap.xs2.security</groupId>
<artifactId>security-commons</artifactId>
<version>0.27.2</version>

</dependency>
<dependency>

<groupId>com.sap.xs2.security</groupId>
<artifactId>java-container-security</artifactId>
<version>0.27.2</version>

</dependency>
<dependency>

<groupId>com.sap.xs2.security</groupId>
<artifactId>java-container-security-api</artifactId>

175

5.3 Configuring Authorization Using OAuth2

5

<version>0.27.2</version>
</dependency>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>
<version>4.3.0.RELEASE</version>

</dependency>
<dependency>

<groupId>org.springframework.security</groupId>
<artifactId>spring-security-jwt</artifactId>
<version>1.0.9.RELEASE</version>

</dependency>
<dependency>

<groupId>org.springframework.security.oauth</groupId>
<artifactId>spring-security-oauth2</artifactId>
<version>2.3.2.RELEASE</version>

</dependency>
<dependency>

<groupId>com.sap.security.nw.sso.linuxx86_64.opt</groupId>
<artifactId>sapjwt.linuxx86_64</artifactId>
<version>1.0.19</version>

</dependency>

Listing 5.9 Additional Dependencies for Programmatic Security Checks

Next, the scopes can be checked programmatically using the SAP S/4HANA Cloud

SDK shown in Listing 5.10. Thanks to the abstractions of the SDK, the same code can

be reused in both the Cloud Foundry and the Neo environment.

try {
final Scope scope = new Scope("ViewAddresses");
if(!UserAccessor.getCurrentUser().hasAuthorization(scope)) {
response.setStatus(HttpStatus.SC_FORBIDDEN);
response.getWriter().write("Forbidden");
return;

}
} catch(UserNotAuthenticatedException | UserAccessException e) {
e.printStackTrace();

}

Listing 5.10 Checking Authorizations Programmatically

5 Application Security

176

Finally, we’ll need to rebuild and push our application to SAP Cloud Platform using

the command:

mvn clean install
cf push

Did You Know? XS2 Libraries Enable the Spring Security Framework

The downloaded security libraries aren’t just helpful for programmatic authorization

checks, they also enable you to secure your microservices with Spring security as an

alternative to the standard servlet security approach we’ve presented so far. More-

over, the XS2 libraries allow you to use any buildpack from the community instead of

the SAP buildpack for Java. To enable Spring security, the archetype generated with

the SAP S/4HANA Cloud SDK contains a spring-security.xml file in the WEB-INF/

folder of your application, which you can enable by adding the ContextLoaderLis-
tener and DelegatingFilterProxy to your web.xml. The entire approach is described

in more detail in a blog post at http://tiny.cc/sapsecurityblog.

Securing Applications in the Neo Environment on SAP Cloud Platform

All methods for protecting applications with the declarative servlet security approach

as well as the programmatic approach can be equally used in the Neo environment

of SAP Cloud Platform. The only difference is that, for Neo applications, the login con-

figuration must be changed from XSUAA to FORM:

<login-config>
<auth-method>FORM</auth-method>

</login-config>

Furthermore, you won’t need to add any additional XS2 security libraries to your proj-

ect.

5.3.4 Assigning Users to Application Roles

Now that we have a new XSUAA configuration in place and have protected our back-

end microservices, we’ll need to assign the corresponding roles to our users. We can

assign roles using the SAP Cloud Platform cockpit, for example, using https://

account.hanatrial.ondemand.com/cockpit.

In the first step, open the Role Collections tab under the Security ribbon of your Cloud

Foundry subaccount as shown in Figure 5.9.

177

5.3 Configuring Authorization Using OAuth2

5

Figure 5.9 The Empty Role Collections Menu to Define A New Collection

Then, we’ll create a new role collection to which you can give an arbitrary name. In

our example, we call our role collection “Business Partner Manager” and click Save, as

shown in Figure 5.10.

Figure 5.10 Defining the Business Partner Manager Role Collection

Third, select the newly created Business Partner Manager role collection and select

Add Role. From the menu, select your application presented as the application iden-

tifier xsappname from your xs-security.json and the corresponding role template we

defined earlier (Figure 5.11).

5 Application Security

178

Figure 5.11 Add Role Template to Role Collection

In the next step, we’ll need to assign our user to the newly created Business Partner

Manager role collection to grant the ViewAddresses and WriteAddresses scopes. There-

fore, we’ll select the Trust Configuration from the Security menu and select the SAP ID

Service from the list as shown in Figure 5.12.

Figure 5.12 Trust Configuration in SAP Cloud Platform with the SAP ID Service as Default

Identity Provider

179

5.3 Configuring Authorization Using OAuth2

5

In the opening dialog, enter your email into the user field and click Show Assign-

ments (Figure 5.13).

Figure 5.13 Selecting User Role Assignments

Then, click Add Assignment and choose the Business Partner Manager role collection

from the menu to assign it to your user (Figure 5.14).

Figure 5.14 Assigning Role Collection “Business Partner Manager” to a User

5 Application Security

180

Based on this role collection assignment, we can now use the application as before

using our authenticated and authorized user while other users will no longer have

access.

As noted earlier, you may need to call the AppRouter’s logout functionality once to

invalidate any existing sessions and retrieve a new JWT with the updated scope infor-

mation.

5.4 Protecting against Common Web Application Threats

Besides protecting our application with authentication and authorization, the

AppRouter, as well as the SAP S/4HANA Cloud SDK, provides additional capabilities

to protect your application against standard attack vectors in web or cloud applica-

tions. We’ll touch on some of these potential attacks in this final section. Note that

enabling the features we describe do not mean your application is secure. Additional

attack vectors are possible and require mitigation when building your application.

For example, typical vulnerabilities such as SQL, Lightweight Directory Access Proto-

col (LDAP), or other path injections; cross-site scripting attacks; or the use of vulner-

able third-party dependencies in your application code must be checked by different

tools or methods. These additional aspects are beyond the scope of this book. We re-

commend that you consult the Open Web Application Security Project (OWASP) for

more information on this topic (https://owasp.org).

5.4.1 Cross-Site Request Forgery

In simple terms, cross-site request forgery (CSRF) or, more specifically, session riding

is an attack where an attacker convinces a user to follow a link that does something

that the user did not intend to do (for example, deleting all records from a database if

the user is the application’s administrator). As a prerequisite to this attack, the user

must be logged into the application, which can easily happen when session timeouts

are unreasonably long, when login information has been stored by the user inside

the browser for convenience, or login information is stored by the application for a

long period of time in persistent cookies.

To prevent this attack, the client- and server-side code must share a secret unknown

to an attacker. This secret is called the CSRF token.

Fortunately, in the Cloud Foundry environment of SAP Cloud Platform, the App-

Router enables CSRF protection for any HTTP method except GET and HEAD on routes

181

5.4 Protecting against Common Web Application Threats

5

that require authentication, that is, where the authenticationType attribute has not

been set to none. If a route is CSRF-protected but the client-side application does not

send a valid CSRF token as part of the x-csrf-token header, the AppRouter will reject

the request with a 403 HTTP error code. To retrieve a valid CSRF token, the client-side

code must first send a request with the HTTP header key-value x-csrf-token: fetch.

If you need to change this default behavior, you may use the authenticationType or

csrfProtection attributes on routes in your xs-app.json, as shown in Listing 5.11.

"routes": [{
"source": "^/api/(.*)",
...
"csrfProtection": false,
"authenticationType": "none"

}

Listing 5.11 Changing CSRF Protection in the AppRouter

Additionally, every microservice created using archetypes of the S/4HANA Cloud

SDK also contain a CSRF protection filter defined in the web.xml file, as shown in List-

ing 5.12.

<filter>
<filter-name>RestCsrfPreventionFilter</filter-name>
<filter-class>

org.apache.catalina.filters.RestCsrfPreventionFilter
</filter-class>

</filter>
<filter-mapping>
<filter-name>RestCsrfPreventionFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Listing 5.12 CSRF Protection in Java Services

If you are using the AppRouter and have protected your backend microservice as

described in this chapter, you can safely remove this protection. However, if you’re

exposing your service directly without the AppRouter (e.g., in the Neo environment),

you should keep this protection in place to protect your application from being vul-

nerable to this attack.

5 Application Security

182

5.4.2 Clickjacking

Clickjacking refers to an attack vector where the attacker embeds the vulnerable

application, for example, using an HTML iframe, and overrides the visible intended

actions with unintended actions. For instance, the user may intentionally click the

playback button in a video application but instead unintentionally triggers a purchase

in some retail application.

To prevent this attack, recent browsers can be instructed to block remote content

embedded with iframes using the X-FRAME-OPTIONS HTTP header.

If you’re using the AppRouter, the default setting of X-FRAME-OPTIONS is SAMEORIGIN,

that is, the browser allows iframes only if the framed content originates from the

same domain as the embedding application. You can either turn off this behavior by

setting the AppRouter’s environment variable SEND_XFRAMEOPTIONS to false, or you

can override the value by specifying the httpHeaders environment variable (for

example, setting it to DENY to completely forbid the use of iframes).

In backend microservices generated using the SAP S/4HANA Cloud SDK, the lines

from web.xml, shown in Listing 5.13, introduce the same behavior.

<filter>
<filter-name>HttpSecurityHeadersFilter</filter-name>
<filter-class>
com.sap.cloud.sdk.cloudplatform.security.servlet ↩

.HttpSecurityHeadersFilter
</filter-class>

</filter>
<filter-mapping>
<filter-name>HttpSecurityHeadersFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Listing 5.13 HTTP Security Headers in Java Services

You can remove these lines if your microservices are not directly accessible, for

example, using the AppRouter. However, when your service is directly accessible, for

example, when exposing Java-based services directly in the Neo environment of SAP

Cloud Platform, you should keep this filtering setting in place.

In addition, you may use the Content Security Policy (CSP) header, which is currently

recommended by the W3C (https://www.w3.org/TR/CSP2/) and supported by all mod-

ern browsers. We won’t discuss this header further in this book, but recommend that

183

5.4 Protecting against Common Web Application Threats

5

you look into it yourself and use the standard HTTP header settings introduced in

this chapter, since such policies are specific to each application.

5.4.3 Securing Session Cookies

In all SAP Cloud Platform environments, session IDs stored in cookies are used on the

client to continuously identify a user across several stateless server interactions with-

out requiring re-logins. Thus, these cookies are a primary target for attackers because

they grant access to applications using the identities of compromised users. There-

fore, sessions and their cookies must be protected in productive environments.

Fortunately, in the Cloud Foundry environment of SAP Cloud Platform, the App-

Router uses secure attributes by default when instructing browsers to store session

cookies by specifying the httpOnly and secure options in the Set-Cookie response

header, as shown in Figure 5.15. This process happens in the redirection phase (Step 5

in Figure 5.2).

Figure 5.15 Example Set-Cookie Instruction Returned from AppRouter after Successful Login

The secure option instructs the browser to only send the session cookie over en-

crypted connections (that is, HTTPS). The httpOnly options instructs the browser that

the cookie can be only accessed on real HTTP requests, for example, any JavaScript

access is forbidden.

For testing purposes without encrypted connections, you might need to turn off this

option by setting the AppRouter’s environment variable SECURE_SESSION_COOKIE to

false.

If you are using the Neo environment on the SAP Cloud Platform, no default security

option exists. Thus, we recommend that you add the code shown in Listing 5.14 to

your application’s web.xml file.

<session-config>
<cookie-config>
<secure>true</secure>

5 Application Security

184

<http-only>true</http-only>
</cookie-config>

</session-config>

Listing 5.14 Securing Session Cookies on SAP Cloud Platform Neo

5.4.4 Secure HTTP Headers

Finally, the backend microservices generated with the SAP S/4HANA Cloud SDK in-

clude HttpSecurityHeadersFilter in web.xml, which sets default headers for security.

Besides the X-FRAME-OPTIONS headers we mentioned earlier in Section 5.4.2, Http-

SecurityHeadersFilter also enforces the Strict-Transport-Security header, which

instructs the browser to only allow cloud application access via the HTTPS protocol.

In other words, no unencrypted HTTP traffic without TLS is allowed.

5.5 Summary

This concludes our chapter on how to protect a microservice-based application on

SAP Cloud Platform. Based on these lessons, we’ll turn, in the next chapter, to how to

safely integrate our example application with SAP S/4HANA.

7

Contents

Foreword .. 21

Preface ... 25

PART I The Intelligent ERP

1 SAP S/4HANA: The Intelligent ERP 43

1.1 Digital Transformation ... 43

1.2 SAP S/4HANA Evolution ... 44

1.3 SAP S/4HANA Design Principles .. 46

1.3.1 Simplification ... 46

1.3.2 SAP HANA .. 47

1.3.3 Compatibility ... 47

1.3.4 Single Codeline .. 47

1.3.5 Cloud-First ... 48

1.3.6 SAP Fiori ... 49

1.3.7 Flexible Deployment .. 49

1.3.8 Integration .. 50

1.3.9 Public Model ... 50

1.3.10 Intelligence ... 51

1.3.11 Decoupled Extensions ... 53

1.4 Summary ... 54

2 SAP S/4HANA Extensibility 55

2.1 Separation of Concerns ... 56

2.1.1 “The Good Old Days” ... 56

2.1.2 Principle of Least Knowledge .. 57

2.2 In-App Extensions .. 58

Contents

8

2.3 Side-by-Side Extensions ... 64

2.3.1 Overview of the SAP Cloud Platform ... 64

2.3.2 Connectivity between SAP Cloud Platform and SAP S/4HANA 66

2.3.3 Side-by-Side Extension Scenarios ... 67

2.4 Extension Use Cases ... 72

2.4.1 Proxy Applications ... 72

2.4.2 Convenience Applications ... 73

2.4.3 Substitute Applications ... 73

2.4.4 Preprocessing Applications ... 73

2.4.5 Postprocessing Applications .. 74

2.4.6 Analytical Applications .. 74

2.5 Nonfunctional Requirements of Extension Applications 74

2.6 Summary ... 76

PART II Building Side-by-Side Extensions

3 Side-by-Side Extensibility 79

3.1 Cloud-Native Development .. 79

3.1.1 Motivation .. 79

3.1.2 Benefits of Cloud-Native Applications .. 80

3.1.3 Enabling Cloud-Native Applications .. 83

3.1.4 Cloud-Native Architecture: The Twelve-Factor Application 89

3.1.5 Conclusion .. 93

3.2 SAP Cloud Platform .. 93

3.2.1 Development Environments .. 94

3.2.2 Overview of Terminology, Concepts, and Services 95

3.3 The SAP Cloud Platform SDK for Service Development and the

SAP S/4HANA Cloud SDK ... 97

3.4 Business Partner Address Manager Application ... 102

3.5 Summary ... 106

9

Contents

4 Building the Application 109

4.1 A First “Hello World!” Microservice .. 110

4.1.1 Prerequisites ... 110

4.1.2 Generating the Project ... 111

4.1.3 Building and Running the Project Locally ... 113

4.1.4 Structure of the Application Code .. 115

4.2 Reading Business Partners .. 117

4.2.1 Retrieving the List of Business Partners .. 118

4.2.2 Running Locally ... 120

4.2.3 The SAP S/4HANA Virtual Data Model in Java .. 123

4.2.4 Retrieving a Specific Business Partner ... 125

4.3 Integrating the Frontend ... 129

4.4 Deploying the Application to Cloud Foundry .. 130

4.5 Writing Business Partner Addresses to SAP S/4HANA 133

4.5.1 Creating Addresses .. 134

4.5.2 Deleting Addresses .. 138

4.5.3 Updating Addresses ... 139

4.6 Engineering with Cloud Qualities .. 140

4.6.1 Designing for Stability .. 141

4.6.2 Implementing Resilience ... 144

4.6.3 Advanced Commands ... 150

4.6.4 Caching .. 151

4.7 Summary ... 153

5 Application Security 155

5.1 Security on SAP Cloud Platform .. 155

5.2 Configuring Authentication .. 159

5.2.1 Setting Up the Application Router .. 159

5.2.2 Extended Services for User Account Authentication (XSUAA) 163

5.2.3 A First Test ... 164

5.2.4 Protecting Our Backend Microservice .. 166

Contents

10

5.3 Configuring Authorization Using OAuth2 ... 169

5.3.1 Overview ... 169

5.3.2 Defining Scopes and Role Templates .. 171

5.3.3 Protecting Our Application ... 172

5.3.4 Assigning Users to Application Roles .. 176

5.4 Protecting against Common Web Application Threats 180

5.4.1 Cross-Site Request Forgery ... 180

5.4.2 Clickjacking .. 182

5.4.3 Securing Session Cookies .. 183

5.4.4 Secure HTTP Headers .. 184

5.5 Summary ... 184

6 Integrating with SAP S/4HANA 185

6.1 Introduction ... 185

6.2 Technical Users, Business Users, and Principal Propagation 186

6.2.1 Technical Users and Business Users .. 186

6.2.2 Authenticating as Business User via Principal Propagation 188

6.3 Using and Configuring Destination Service on SAP Cloud Platform Cloud

Foundry .. 189

6.3.1 Purpose of the Destination Service .. 189

6.3.2 Create and Subscribe to Destination Service ... 190

6.3.3 Conduct Destination Configuration .. 191

6.4 Integration with SAP S/4HANA Cloud ... 192

6.4.1 Security Assertion Markup Language ... 193

6.4.2 OAuth 2.0 Authorization Framework .. 194

6.4.3 OAuth 2.0 SAML Bearer Assertion Flow Configuration 194

6.4.4 OAuth 2.0 SAML Bearer Assertion Flow—Runtime 208

6.4.5 Basic Authentication ... 210

6.5 Integration with SAP S/4HANA On-Premise .. 211

6.5.1 Architecture and Involved Components .. 211

6.5.2 Example Flow .. 212

6.5.3 Integration Setup Independent from Authentication Method 214

11

Contents

6.5.4 Integration Setup Leveraging Technical Users ... 217

6.5.5 Integration Setup Leveraging Business Users ... 223

6.6 Summary ... 230

7 Multitenancy 231

7.1 Motivations for Multitenancy ... 231

7.2 Multitenancy on SAP Cloud Platform ... 232

7.2.1 Tenant Onboarding and Offboarding .. 232

7.2.2 Tenant Identification .. 234

7.2.3 Applications versus Services ... 234

7.2.4 Data Separation .. 236

7.3 Multitenancy Aspects in the Existing Application .. 238

7.4 Adding Multitenant Persistence to the Application .. 240

7.4.1 Introducing Addresses Workflow with Local Persistence 240

7.4.2 Configure Data Source .. 246

7.4.3 Configure Hibernate to Handle Tenant-Aware Queries 249

7.4.4 Tenant Onboarding and Offboarding .. 253

7.4.5 Implementing the Local Address Workflow .. 256

7.4.6 Configuring Service Bindings ... 257

7.5 Summary ... 258

8 REST APIs 259

8.1 Designing RESTful APIs .. 264

8.2 Building RESTful APIs ... 275

8.3 Provisioning OData Services with the SAP Cloud Platform SDK for

Service Development ... 282

8.3.1 Introduction to Technical Components .. 283

8.3.2 Setup and Installation ... 284

8.3.3 Metadata ... 285

Contents

12

8.3.4 Runtime Logic .. 286

8.3.5 Building and Deploying .. 290

8.4 Summary ... 290

9 Automated Testing 291

9.1 Concepts of Testing .. 292

9.1.1 Unit Tests .. 293

9.1.2 Integration Tests .. 295

9.2 Building Unit Tests ... 297

9.2.1 JUnit .. 297

9.2.2 Mocking ... 298

9.2.3 Design Rules .. 299

9.2.4 Putting It All Together .. 301

9.3 Building Integration Tests ... 304

9.4 Testing Complex Applications ... 308

9.5 Summary ... 309

PART III Delivering and Operating Side-by-Side Extensions

10 DevOps and Continuous Delivery 313

10.1 The Importance of DevOps ... 313

10.2 Introducing the Principles of DevOps .. 314

10.2.1 The Principle of Flow ... 314

10.2.2 The Principle of Feedback .. 317

10.2.3 The Principle of Continuous Learning and Experimentation 318

10.3 Introducing Continuous Delivery ... 319

10.3.1 Introducing Continuous Delivery Pipelines ... 319

10.3.2 Enabling DevOps Principles via Continuous Delivery 321

13

Contents

10.4 How to Monitor Applications ... 323

10.4.1 The Importance of Logging ... 323

10.4.2 The Importance of Metrics .. 325

10.4.3 Telemetry Consolidation .. 326

10.5 Case Study: Working Model of a DevOps Team .. 327

10.6 Summary ... 331

11 Implementing Continuous Delivery 333

11.1 The SAP S/4HANA Cloud SDK CX-Server ... 333

11.2 Setting Up and Configuring a Continuous Delivery Server 338

11.2.1 Installing Jenkins .. 339

11.2.2 Credentials Management .. 342

11.2.3 Setting Up Source Code Management .. 343

11.2.4 Configuring Webhook to Jenkins .. 344

11.2.5 Multibranch Pipelines ... 345

11.2.6 Securing Jenkins .. 346

11.3 Zero-Downtime Shipments to the Cloud .. 347

11.3.1 Blue-Green Deployment .. 347

11.3.2 Zero-Downtime Deployment to SAP Cloud Platform,

Cloud Foundry ... 349

11.3.3 Zero-Downtime Deployment to the Neo Environment on the SAP

Cloud Platform .. 351

11.4 Feature Toggles: Decoupling Deployment and Release 352

11.4.1 Operation Toggles .. 353

11.4.2 Experiment Toggles ... 353

11.4.3 Permission Toggles .. 354

11.4.4 Release Toggles ... 354

11.4.5 Decoupling Deployment and Release .. 354

11.5 Summary ... 357

Contents

14

12 Quality Assurance 359

12.1 What Is Software Quality and How to Achieve It? .. 359

12.2 Static Code Checks .. 361

12.2.1 FindBugs .. 361

12.2.2 PMD .. 363

12.2.3 Node Security Platform .. 366

12.2.4 CheckMarx ... 367

12.2.5 WhiteSource .. 367

12.3 Automated Testing .. 367

12.3.1 Backend Unit Tests and Integration Tests ... 368

12.3.2 Code Coverage .. 369

12.3.3 End-to-End Tests .. 371

12.3.4 Performance Tests ... 374

12.4 SAP Cloud Quality Checks ... 377

12.4.1 Hystrix Checks ... 378

12.4.2 Stable ERP API Checks ... 379

12.5 Scaling Quality Assurance with Distributed Builds ... 379

12.5.1 Scaling the Build Pipeline .. 380

12.5.2 Distributed Builds with the CX-Server .. 380

12.6 Summary ... 384

13 Cloud Operations 385

13.1 Logging and Tracing ... 385

13.2 Application Health Monitoring ... 390

13.2.1 Health Status Endpoint .. 391

13.2.2 Application Monitoring with Dynatrace .. 392

13.3 Capacity Planning and Scaling of Cloud Infrastructures 398

13.4 Summary ... 399

15

Contents

PART IV Advanced Concepts

14 Building a Custom SAP Fiori User Interface 403

14.1 Explanation of the Frontend Application ... 404

14.1.1 Overview of the Architecture ... 404

14.1.2 Model and View of the Sample App ... 405

14.1.3 Controller of the Sample App ... 408

14.2 Provisioning the Frontend as a Microservice .. 411

14.2.1 Overview of Alternative Approaches ... 411

14.2.2 Frontend Resources as Part of the AppRouter .. 414

14.2.3 Dedicated Microservices .. 417

14.3 Considering Continuous Delivery of the Frontend ... 420

14.4 Outlook on Current Trends in Frontend Development 421

14.5 Summary ... 423

15 Integrating with Java Frameworks 425

15.1 Integrating with Java Platform, Enterprise Edition ... 426

15.1.1 SAP S/4HANA Cloud SDK Maven Archetypes for Java EE Projects 427

15.1.2 Including the SAP S/4HANA Cloud SDK in Existing Maven Projects ... 428

15.1.3 Using Dependency Injection with the VDM .. 431

15.1.4 Services Implemented with JAX-RS .. 432

15.1.5 Multitenant Persistence ... 437

15.2 Integrating with Spring Boot ... 443

15.2.1 Maven Archetype for Spring Boot Projects .. 444

15.2.2 Including the SAP S/4HANA Cloud SDK in Existing Maven-Based

Spring Projects ... 445

15.2.3 Using Dependency Injection with the VDM .. 449

15.2.4 Services Implemented as Spring Controllers .. 451

15.2.5 Multitenant Persistence ... 452

15.3 Summary ... 456

Contents

16

16 Event-Based Integration 457

16.1 Theory of Reactive Systems .. 458

16.2 Concepts of Event-Based Integration .. 461

16.3 Events in SAP S/4HANA Cloud .. 464

16.3.1 Events Raised by SAP S/4HANA Cloud Applications 465

16.3.2 Event Enablement .. 466

16.3.3 Configuration .. 469

16.4 Services for Handling Events on SAP Cloud Platform ... 474

16.5 Extending the Sample Application with Events .. 476

16.6 Summary ... 478

17 Extending SAP S/4HANA with Machine Learning
and Blockchain Technologies 479

17.1 SAP Leonardo and the Innovation Commitment of the SAP S/4HANA

Cloud SDK ... 480

17.2 Extending a Sample Application with Machine Learning 481

17.2.1 Quickly Creating a Resilient and Twelve-Factor-Compliant

Language Detection Servlet ... 484

17.2.2 Improving the Integration and Chaining Services for a

Complete Machine Learning Solution .. 489

17.3 Extending Our Sample Application with Blockchain .. 493

17.3.1 SAP Cloud Platform Blockchain-Based on Hyperledger Fabric

Technology ... 494

17.3.2 Creating Required SAP Cloud Platform Blockchain Services and

Deploying the Blacklist Chaincode Example .. 497

17.3.3 Cloud Foundry Service Authorization for SAP Cloud Platform

Blockchain .. 499

17.3.4 Interacting with the Deployed Chaincode .. 501

17.4 Summary ... 503

17

Contents

PART V In-App Extensibility

18 In-App Extensibility in SAP S/4HANA 507

18.1 Cloud Qualities of In-App Extensibility .. 508

18.2 In-App Extensibility Patterns and Key User Tools ... 509

18.2.1 UI Adaptation ... 510

18.2.2 Custom CDS Views ... 511

18.2.3 Field Extensibility ... 511

18.2.4 Business Logic Extensibility and Process Extensibility 512

18.2.5 Custom Business Objects .. 513

18.2.6 Further Tools .. 514

18.2.7 Lifecycle Aspects ... 514

18.3 Integration Aspects ... 515

18.3.1 Field Extensibility ... 515

18.3.2 Custom APIs ... 515

18.3.3 Business Logic .. 516

18.4 When to Use What .. 517

18.5 In-App Extensibility in SAP S/4HANA On-Premise Systems 518

18.6 Summary ... 519

19 Forms of In-App Extensibility 521

19.1 Setup and Authorization to Use In-App Extensibility ... 521

19.2 Extensibility Cockpit .. 524

19.3 Custom Fields .. 525

19.4 UI and Layout Adaptations .. 528

19.5 Custom Business Objects ... 531

19.6 Custom CDS Views .. 537

19.7 Exposing CDS Views and Custom Business Objects as OData Services 539

19.8 Custom Business Logic .. 541

Contents

18

19.9 Custom Business Logic for Calling Web Services .. 544

19.9.1 Communication System and Arrangement .. 545

19.9.2 External Call Implementation ... 547

19.10 Summary ... 551

20 Consuming In-App Extensions in a Side-by-Side
Extension 553

20.1 Extending the Business Partner Address Manager Application with

Custom Fields .. 554

20.1.1 Overview of Planned Use Case .. 554

20.1.2 Using the SAP S/4HANA Cloud SDK to Consume Custom Fields 556

20.1.3 Updating the API and UI of the Sample Application 559

20.1.4 Further Considerations .. 560

20.2 Extending the Virtual Data Model for Custom OData Services 561

20.2.1 When to Extend the Virtual Data Model ... 561

20.2.2 How to Extend the Virtual Data Model .. 563

20.3 Delivering Side-by-Side Extensions That Rely on In-App Extensions 566

20.4 Summary ... 567

PART VI Partner Case Study and Outlook

21 Partner Application Development Using the
SAP S/4HANA Cloud SDK (Case Study) 571

21.1 Introduction ... 571

21.1.1 About msg .. 571

21.1.2 Reinsurance Domain ... 572

21.2 The Business Scenario ... 573

21.2.1 Functional Description ... 573

21.2.2 Essential Cross-Functional Attributes ... 574

21.3 Project Setup ... 575

19

Contents

21.4 Architectural Overview ... 576

21.4.1 Architecture and Design .. 577

21.4.2 Design Decisions ... 580

21.5 Using SAP S/4HANA Cloud SDK in Partner Applications 581

21.5.1 Using the SAP S/4HANA Cloud SDK in the Overall Application

Architecture .. 581

21.5.2 Collaboration and Working Model with SAP .. 582

21.6 Benefits and Lessons Learned .. 583

21.6.1 Overall Experience of Using SAP S/4HANA Cloud SDK 583

21.6.2 Benefits of Using SAP S/4HANA Cloud SDK .. 583

21.6.3 Lessons Learned .. 586

21.7 Summary ... 587

22 Outlook 589

22.1 Outlook .. 590

22.1.1 Introducing Declarative Programming Approaches 591

22.1.2 Seamless Integration .. 593

22.1.3 UI Integration ... 595

22.1.4 User and Role Federation ... 595

22.1.5 Transparent Data Access or Business Data-as-a-Service 596

22.1.6 Workflows and Business Rules .. 597

22.2 Summary ... 598

Appendices 599

A Bibliography ... 599

B The Authors .. 605

Index .. 613

613

Index

A

ABAP ... 57

ABAP development tools 518

ABAP for key users ... 543

AddressServlet ... 133

ADT � ABAP development tools

Apache JMeter .. 374

Apache Maven � Maven

Apache TomEE plugin 110, 115

API-based integration ... 596

Application autoscaler .. 398

Application integration 185

Application metrics 390, 393

Application monitoring 323

Application roles ... 176

Application Router � AppRouter

Application scaling ... 398

Application security .. 155

AppRouter .. 155, 411, 415

design time ... 161

static content ... 156

Arquillian ... 305–306

Authentication .. 157

Authorization ... 157

Automated testing 291, 367

B

BAdI � Business Add-In

BAPIs .. 100

Basic authentication .. 210

destinations .. 222

BitBucket .. 336

Black-box .. 296

Blockchain ... 479, 493

Blue-green deployment 347

Buildpacks .. 414

Business Add-In ... 513, 541

Business partner application 102

Business rules ... 597

C

C10k problem ... 491

Cache ... 264

Cachebusting .. 420

CacheKey .. 240

CacheMonitor .. 397

Caching ... 151

CBOs � Custom business objects

CD � Continuous delivery

CDS 50, 60, 511, 537, 591, 597

CDS view

custom .. 61, 537

Certificate ... 198, 224, 226

Chaincode .. 495

Channel .. 464

CheckMarx .. 367

Classic extensibility ... 518

Clickjacking ... 182

Client-server ... 264

Cloud Connector .. 66, 211

whitelisting .. 219

Cloud Foundry .. 65, 79, 94

authorization and trust service 96

buildpacks .. 94, 133

command line interface 111, 130

connectivity service ... 97

desitnation service .. 189

destination service ... 97

organization ... 96

trial account .. 130

Cloud operations .. 385

CloudLoggerFactory .. 386

Cloud-native applications

benefits .. 80

Cloud-native architecture 89

Cloud-native development 79, 140

anti-patterns .. 143

cloud qualities ... 141

Code coverage ... 295, 369

Communication arrangement 545

Index

614

Communication artifacts

communication arrangement 199

communication scenario 199

communication system 199

communication user 200

integration scenario 199

technical user .. 200

Communication scenario 50, 471, 516, 545

Communication system 545

Communication user .. 545

Connectivity service ... 97

Containers .. 83

Content Security Policy (CSP) 182

Continuous delivery 83–84, 313, 319,

 321, 333, 335, 420

Continuous delivery pipeline 319–320, 322,

361, 363, 377

Controller .. 405

Core Data Services � CDS

Cross-Site Request Forgery � CSRF

CSRF .. 180, 409

Custom applications .. 68

Custom business logic .. 516

Custom business objects 62, 513, 531

Custom fields .. 511, 525

CX-server .. 336

D

Data separation .. 236, 244

Database ... 244

Data-driven integration 596

Datamart extension ... 70

Declarative programming 591

Dependency injection 299, 431

Deployment ... 131, 347

descriptor .. 132

Destination ... 192

Destination service ... 97

Dev/prod parity .. 338

Development framework 244

DevOps 83, 86, 313–314, 321, 385

principles ... 314

Digital transformation .. 43

Docker .. 336–338, 382

Dynamic checks .. 360

Dynatrace ... 391–393, 395

E

EasyMock .. 298

Elastic stack .. 386

End-to-end tests ... 371

Environment variable ... 121

destinations .. 121

ErpCommand ... 146

ErpQueryEndpoint 121, 190

Event-based integration 596

Events ... 70, 457, 460, 464

Experiment toggles .. 353

Extended Services for UAA � XSUAA

Extensibility cockpit .. 524

Extensions

analytical applications 74

convenience application 73

post processing applications 74

pre processing applications 73

proxy applications ... 72

substitute applications 73

F

Feature toggles ... 353

FindBugs ... 361, 363

Flyway .. 352

Freestyle programming 591

Frontend

integration .. 129

Future ... 149

G

Gatling ... 375, 377

Git .. 111

GitHub ... 336

GitLab ... 336

Gogs .. 336

Grunt .. 421

GSON .. 120

Guava ... 152

H

Hello World! .. 113

Hibernate ... 249–250, 453

615

Index

HTML iframe ... 182

HTTP

delete ... 138

patch ... 139

post .. 134

HTTP error codes .. 274

HTTPS ... 66, 183

HttpServlet .. 116

Hyperledger .. 496

Hystrix 146, 148, 240, 378, 493, 558

reactive programming 150

I

IAM ... 201

IAM artifacts

business catalog ... 200

business catalog role 201

business role ... 200

business user .. 200

IDE ... 110

Idempotent ... 272

Identity and Access Management � IAM

Identity Provider � IdP

IdP ... 194

In-app extensibility 53, 507, 521

In-app extensions .. 58, 553

Integrated Development Environment � IDE

Integration .. 593

Integration scenario ... 50

integration scenario ... 50

Integration tests 292, 295, 304

Intelligent ERP .. 52

Internet Communication Manager 228

J

Java .. 99, 110

buildpack ... 133

source code ... 114

Java Development Kit (JDK) � JDK

Java EE ... 110, 425

Java Servlet API 3.1 ... 116

JAX-RS .. 433

JCo ... 100

JDK .. 110

Jenkins .. 336, 339, 342, 381

Jenkinsfile .. 335

JMX ... 396

JSON .. 120, 135

deserializer ... 136

JSON Web Token � JWT

JUnit .. 297, 306

JWT ... 158

troubleshooting .. 169

K

Key user ... 59

Key user extensibility 518, 528

Key user tools ... 509–510

Kibana ... 389

L

Law of Demeter .. 57

Linux server .. 339

Liquibase 245, 254–255, 352

Logback ... 387

Logging .. 323, 385–386

M

Machine learning 64, 479, 481

Manifest.yml 246, 258, 418, 431, 444, 455

Maven ... 110

archetype .. 112

Maven Central .. 112

Maven Central delivery 174

Memory leaks .. 142

Message broker ... 464

Messaging ... 459, 461

Metadata exchange ... 195

Metrics .. 325

Microservices 83–84, 333, 417, 590

architecture ... 86

monolith-first ... 85

Mocking ... 294, 298

Mockito ... 298, 300, 303, 446

MockUtil ... 303

Index

616

Model .. 405

MQTT ... 467

MTA .. 590

Multibranch .. 345

pipeline .. 345

Multi-target application � MTA

Multitenancy .. 231–232

Multitenant applications 234

N

Neo ... 65, 94

security .. 176

NGINX ... 417

Node Security Platform 366

O

OAuth ... 155, 157–158

scopes ... 170

OAuth 2.0 156, 169, 193–194, 208

SAML Bearer Assertion Flow 193–194, 208

OData .. 60, 66, 282, 592

OData services .. 118, 124

custom ... 561

ODataException .. 151

Open Data Protocol � OData

Open Web Application Security Project

(OWASP) .. 180

OpenSSL ... 225

Operations toggles ... 353

P

PaaS .. 64, 93, 232

Path coverage ... 295

Performance tests .. 374

Permission toggles .. 354

Persistence ... 240–241, 243

framework .. 243

Pingdom ... 392

Pipeline .. 333, 335, 337–338

Pipeline � Continuous delivery pipeline

Platform-as-a-sevice � PaaS

PMD .. 363, 365

PostgreSQL .. 64, 247, 258

POX ... 262

Principal propagation 188, 223

Principles of DevOps .. 314

Q

Quality assurance .. 359

Queue ... 149, 475

R

RabbitMQ ... 85

Reactive programming 459

Reactive systems ... 458

Redis ... 64

Release toggles ... 354

Resilience .. 144

REST .. 259

RestAssured ... 307

RESTful ... 262–264, 275

RESTful API .. 134

updating entity ... 139

RESTful service calls ... 70

RFC .. 157

Role federation ... 596

Run .. 147

RxJava .. 491

S

S_SERVICE .. 219

SaaS ... 232

SAML .. 157, 193

SAP API Business Hub 65, 516

SAP Application Development Partner

Center .. 589

SAP Cloud Identity .. 194

SAP Cloud Platform 43, 49–50, 53–54, 64, 93,

594

Cloud Foundry environment 94

destination service ... 190

global account ... 95

integration .. 185

Neo environment .. 95

subaccount .. 95

SAP Cloud Platform Blockchain 494, 498

617

Index

SAP Cloud Platform Identity

Authentication .. 194, 196

SAP Cloud Platform SDK for service

development 97–98, 123

SAP Data Hub ... 598

SAP Enterprise Messaging service 461

SAP Fiori ... 49, 59, 403–404

SAP Fiori elements ... 591

SAP Gateway ... 216, 283

SAP HANA .. 45, 47

XSA .. 94

SAP HANA Deployment Infrastructure 244

SAP Java Connector � JCo

SAP Leonardo 53, 64, 480, 598

SAP NetWeaver Application Server 56

SAP RealSpend .. 98, 322

SAP S/4HANA ... 602, 604

business users .. 187

code line .. 47

design principles .. 46

in-app extensibility ... 521

integration ... 50, 185

key user ... 59

principles .. 46

technical users ... 187

virtual data model (VDM) 50

SAP S/4HANA API ... 117

SAP S/4HANA Cloud ... 47

SAP Web IDE .. 65, 67, 590

SAPUI5 ... 403–404

Schema separation ... 237

SDKs ... 74, 97, 101

Seamless integration ... 593

Security � Application security

Semantic Versioning .. 91

Service binding .. 257

Service instance ... 190

Service metadata ... 285

Services ... 234

Session cookies .. 183

Side-by-side extensions 53, 58, 64, 553

Simple Object Access Protocol � SOAP

Single sign-on ... 193

SOAP ... 100, 259–260

Software Development Kits � SDKs

Software quality .. 360

Software-as-a-service � SaaS

Spring .. 443

Spring Boot .. 110, 425, 443

Spring security ... 176

Stateful component ... 437

Stateless .. 264

Stateless component ... 437

Static code checks 360–361

STRUST .. 226

Swagger .. 265, 564

T

Technical user ... 212, 222

Telemetry ... 326

Tenant discriminator .. 237

Tenant identification .. 234

Tenant offboarding .. 453

Tenant onboarding 232–233, 453

Test automation .. 367

Testing .. 291

Thread exhaustion ... 142

Togglz ... 102, 356

Topics .. 462

Twelve-factor application 89

U

UI integration ... 595

Unit tests ... 292–293, 297

URL connection ... 487

User interface .. 67

HTML .. 129

User mapping

explicit .. 188

implicit ... 188

V

VCAP_SERVICES 163, 247–248, 500

VDM 100, 123–125, 451, 556, 561, 566

business partner service 138

fluent query helper .. 127

Java virtual data model 117

modifying operations 134

SAP S/4HANA Cloud SDK 118

view .. 405

Virtual data model � VDM

Index

618

W

Web Service Description Language � WSDL

web.xml ... 166, 276

webhook ... 344

Webpack ... 421

WebServlet .. 117

WhiteSource ... 367

Workflows ... 597

WSDL ... 259

X

XML ... 259, 262

XS2 libraries ... 176

XSUAA 96, 155, 158, 163, 193

tenant .. 162

Y

YAML .. 133

Z

Zero-downtime .. 347, 351

Zero-downtime deployment 349

First-hand knowledge.

Herzig, Heitkötter, Wozniak, Agarwal, and Wust

Extending SAP S/4HANA: Side-by-Side Extensions
with the SAP S/4HANA Cloud SDK
618 Pages, 2018, $79.95
ISBN 978-1-4932-1715-1

	 www.sap-press.com/4655

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usage
and exploitation rights are reserved by the author and the publisher.

Dr. Philipp Herzig heads three two-pizza teams responsible
for the SAP S/4HANA Cloud SDK and SAP RealSpend at the SAP
Innovation Center in Potsdam. Over the years he has worked as a
software engineer, architect, and product owner at SAP.

Akhil Agarwal is a development architect at the SAP Innovati-
on Center in Potsdam, specializing in SAP S/4HANA Cloud SDK
integration with the SAP S/4HANA suite. His career at SAP spans
more than sixteen years, during which he has worked on several
large-scale, global projects in development and managerial roles.

Dr. Henning Heitkötter is the product owner of the SAP S/4HA-
NA Cloud SDK at the SAP Innovation Center in Potsdam. He
strives to make the SAP S/4HANA Cloud SDK a value-adding fra-
mework for SAP S/4HANA extensibility. At SAP he has also been
responsible for cloud-based applications such as SAP Financial

Statement Insights.

Dr. Johannes Wust is the head of several agile development
teams with the SAP S/4HANA development organization, with
a goal of enabling cloud-native extensions for SAP S/4HANA
with SAP Cloud Platform. In the past, Johannes co-led the global
development organization for financial solutions at SAP.

Dr. Sander Wozniak is the chief architect and lead engineer of
the SAP S/4HANA Cloud SDK at SAP Innovation Center in Pots-
dam. He has worked as a software engineer and architect on
various projects in the areas of finance and healthcare at SAP. He
was the lead engineer of SAP RealSpend, and was responsible

for defining the architecture and implementing several of its core compo-
nents and services.

https://www.sap-press.com/extending-sap-s4hana_4655/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse%20the%20Book&utm_content=1715

