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Chapter 2 

SAP S/4HANA Extensibility

This chapter explains the various forms and modes through which SAP 

S/4HANA can be extended. This chapter, in particular, includes in-app 

extensibility (i.e., all extensions made with key user tools inside of the 

SAP S/4HANA core) as well as side-by-side extensibility (i.e., all exten-

sions on SAP Cloud Platform). We’ll provide an overview of extension 

capabilities and their corresponding integration points and outline 

patterns for extensibility and their characteristics. Although the book 

touches on in-app extensibility, our primary focus is on side-by-side 

extensibility.

After introducing the general design principles and rationales of the SAP S/4HANA

architecture, this chapter explains SAP S/4HANA’s extensibility options and their

business implications in more detail.

The majority of customers using one of SAP’s ERP solutions have significantly

adjusted and extended the standard software provided by SAP to implement busi-

ness processes that are specific to their organizations. Extensions range from simple

reports or modifications of a few lines to SAP’s ABAP source code to newly developed

applications for an industry-specific adaptation of a standard process. Furthermore,

many partners have provided significant industry-specific or line of business (LOB)-

specific enhancements, usually in the form of large ABAP add-ons.

This chapter explains SAP S/4HANA’s new extensibility strategy and how it differs

from the traditional approaches. While the following chapters of this book dive into

specific details of extensibility, the goal of this chapter is to provide an overview of

extensibility options and capabilities. 

The extensibility strategy is based on two pillars: in-app extensibility and side-by-

side extensibility. As the name implies, in-app extensions are implemented using

key user tools directly inside the SAP S/4HANA system, while side-by-side extensions

leverage the SAP Cloud Platform as extension platform. For both approaches, we’ll

give examples as well as typical use cases that use both options in combination.
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2.1    Separation of Concerns

In this section, we’ll introduce how the new extensibility strategy differs from the

well-known traditional approaches that were possible in the traditional architecture

of the past. Faster innovation cycles demand a different approach that gives appro-

priate freedom both to SAP and to extension developers.

2.1.1    “The Good Old Days”

For decades, the SAP NetWeaver Application Server (AS) for SAP ERP was used to

develop and run extensions, from simple enhancements like adding some validation

logic on a business object to huge add-ons. Several circumstances led to the percep-

tion that developing extensions was simple. Let’s explore these in the next sections.

Integration

SAP’s ERP modules were deeply integrated because they ran on the same application

servers and shared the same database instance. Custom applications and extensions

could use this tight integration in the same way as SAP did, which made upgrades

more difficult.

Access to Source Code

The ABAP source code and the data dictionary (that is, the metadata) of the database

was fully available to customers and accessible for extension development. Many

customer extensions copied major parts from existing SAP modules or reused code

from the modules so that customers could easily replace parts in their own imple-

mentations, which again made lifecycle management more difficult.

Infrastructure

Customers often deployed extensions into the existing infrastructure so that the

extension code ran on the same infrastructure as the SAP modules. By doing so, pur-

chasing hardware, installing servers, and managing users as well as other administra-

tive tasks were avoided. 

Change Management

SAP’s change and transport management was for many years an unmatched advan-

tage of the SAP NetWeaver AS. SAP has shaped many industry best practices with its
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way of handling multiple software versions and the infrastructure of transporting

changes from development to quality and production systems. 

ABAP

ABAP is SAP’s programming language, which was designed exclusively for business

application development and features all the capabilities generally expected from a

fourth-generation language. SAP has added many frameworks, libraries, and tools,

such as the internal table concept or business partner APIs so that application and

extension development was efficient. Consequently, SAP also made ABAP available

to customers and partners for extension development.

Reliability

The SAP NetWeaver AS introduced the client-server approach to enterprise software,

which is stable and reliable. By simply adding more application servers, SAP Net-

Weaver AS can scale from the smallest installations to the demands of the largest

enterprises in the world.

2.1.2    Principle of Least Knowledge

In SAP S/4HANA on-premise, all capabilities mentioned in the previous section are

still available and valid, although SAP imposes a more strict separation of internal

and external APIs (public model) as explained in Chapter 1. Customers are strongly

advised to build on the public model only and to avoid using or removing any other

software artifact so that future upgrades can be executed smoothly.

In contrast, SAP S/4HANA Cloud exposes the public model only. The basic approach

taken by SAP can be expressed with the principle of least knowledge, also known as

the law of Demeter, introduced by Ian Holland in 1987. This principle postulates that

any consuming component may not know the internal details of another provider

component, but only uses its exposed functionality. Based on this principle, SAP can

regularly update SAP S/4HANA Cloud without any adaptation needed on the part of

customers and partners, enabling a faster innovation cycle. Consequently, long and

error-prone upgrade procedures are significantly reduced, which increases custom-

ers’ ability to benefit from new innovations faster. Furthermore, even for SAP, the

violation of this principle reduced the ability to optimize the internals of the mod-

ules. Thus, code and objects created by SAP, by customers, and by partners code must

be clearly and logically separated. That is, customers can no longer modify objects

delivered by SAP in SAP S/4HANA Cloud.
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While all traditional modification techniques are still possible in the on-premise ver-

sion of SAP S/4HANA, to support the migration to SAP S/4HANA, we strongly recom-

mend that customers not use these capabilities anymore. Technically, the separation

of concerns by using decoupled extensions is one of the most important aspects of

SAP S/4HANA and one of its major differences with SAP ERP and SAP Business Suite.

However, we’ll need to determine the technologies, tools, and methods to use in con-

junction with SAP S/4HANA if the traditional approaches are either no longer sup-

ported or are at least discouraged. In general, SAP S/4HANA provides two main types

of extensions, which implement the separation of concerns:

� In-app extensions

� Side-by-side extensions

In-app and side-by-side extensions can be used individually but also in a seamlessly

integrated way. As discussed earlier, in SAP S/4HANA Cloud, these options are the

only ones available today. In contrast, in SAP S/4HANA on-premise, customers may

also use traditional extension approaches, for example, using ABAP development

tools such as ABAP in Eclipse and the ABAP Workbench (Transaction SE80). However,

the traditional approach is no longer recommended for new developments and,

therefore, is not covered in this book at all.

2.2    In-App Extensions

All in-app extensions are technically implemented inside the core of SAP S/4HANA,

that is, on the same servers as SAP S/4HANA. As a result, no remote communication

between the extension and the extended app is required. Many processes in SAP

S/4HANA support extensions with key user tools integrated into the SAP Fiori user

interface for SAP S/4HANA. As such, in-app extensions enable business experts with-

out deep technical knowledge, typically referred to as key users, to implement key

types of customer extensions, such as creating custom business objects and adding

custom fields to business objects.

Note that the in-app extension concept is essential for SAP S/4HANA Cloud. How-

ever, this concept is also invaluable for traditional, on-premise deployments in order

to align with the separation of concerns philosophy. With the inevitable move to the

cloud, we recommend thinking of extensions from a cloud-first perspective even

when applications are still running on-premise. In other words, in-app extensibility

features should also be considered in SAP S/4HANA on-premise.
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Definition: Key User

A key user in SAP S/4HANA is a member of a functional team that adopts the soft-

ware to the needs of his or her business department—being either a direct employee

or an external person, such as a consultant. As this person typically has some level of

technical knowledge but no in-depth knowledge like a developer, all extension steps

need to be covered by tools that hide complexity and technical detail. The old, strict

separation of requestors stating requirements and developers implementing those

requirements is no longer the preferred model for many SAP customers. Especially in

software-as-a-service (SaaS) applications, for simple cases, customers expect to cre-

ate custom forms, reports, fields, and even small pieces of business logic with appro-

priate tools that hide the technical complexity involved in connectivity, deployment,

or lifecycle management.

This set of tools applies consistently across all applications in SAP S/4HANA; in other

words, there is exactly one way to add custom logic to a business object or to extend

a business object’s data model with a field. This unification was achieved through SAP

S/4HANA’s overall streamlined architecture. The layers of a modern SAP Fiori appli-

cation in SAP S/4HANA are shown in Figure 2.1.

Figure 2.1  Anatomy of an SAP Fiori Application
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An application consists of five layers. At the bottom, the database model contains

database tables, which are used by an application layer. In the application layer, the

core data service (CDS) model contains views for efficient consumption and analyti-

cal requests. In addition, this layer may contain ABAP source code, organized in

business objects, for example, to implement validation logic. On the third layer

from the bottom, the functionality of the business objects is exposed in the form of

RESTful Open Data Protocol (OData) services, which can be considered the commu-

nication layer. At the top are the responsive SAP Fiori user interface and the SAP

Fiori launchpad.

Open Data Protocol

OData was originally developed by Microsoft but today falls under the leadership of

the OASIS organization. OData is an open protocol that standardizes the creation and

use of RESTful HTTP communication APIs. OData client and server libraries are avail-

able for all major programming languages.

Figure 2.2  In-App Extensibility Points

Application
(ABAP | CDS)

Database Table

User Interface
(SAP Fiori)

In-App Extensibility

UI Adaptation

Business Logic

Fiori Launchpad

Application
(ABAP | CDS)

Database Table

OData Service

Custom User
Interface (SAP Fiori)

Custom UI

SAP

Front end

Back end: ABAP Server

OData Service OData

Analytics / Forms

C
u

st
o

m
 F

ie
ld

s

C
u

st
o

m
 B

u
si

n
es

s 
O

b
je

ct
s

61

2.2 In-App Extensions

2

On any layer, customers may apply in-app extensions. The diagram shown in Figure

2.2 provides an overview of the most important in-app extension points. We’ll go

through each extension point following the outlined numbering schema. Note that

all the concepts we’ll mention next will be described in more detail in Chapter 18 of

this book.

1 User Interface Adaptation

Key users may change the layout of tables and forms directly in the running user

interface. A special graphical user interface adaptation mode provides the mecha-

nisms to hide fields in existing forms, tables, or filters; to rename labels; to add

fields to the user interface from the field repository; and to move fields or entire

blocks to other sections of the screen.

2 Custom Fields

In the Custom Fields and Logic SAP Fiori application, you can add and edit custom

fields to extend SAP database tables, CDS views, and OData APIs. Moreover, this

extension application helps to define how custom fields are used in user inter-

faces, reports, or forms. Furthermore, you can use custom fields along with pre-

defined business scenarios so that all involved business objects are extended and

values are passed along automatically. 

3 Custom CDS Views, Analytics, Forms

The SAP S/4HANA data model, with its public views based on CDS, might not

always provide the best technical option to fetch data. When related data needs

to be pulled out of various views, pushing the join and aggregation operators

into the SAP HANA database by creating a custom view might be more conve-

nient or efficient.

The Custom CDS View application provides an overview of all CDS views in the

public model as well as custom CDS views. This app enables customers to create

new views based on an existing view model supporting features like associations,

joins, transformations, field relabeling, selections, etc. With OData APIs on top of

these views, customers may, in addition, expose the data for consumption outside

the SAP S/4HANA core. Furthermore, the custom views might be used as data

sources to define analytical queries. Those queries are used in embedded analytic

user interfaces integrated into SAP S/4HANA applications. Another use case for

custom views is to build forms with the Forms Designer application. Forms can

consume data from custom OData services and use the data, for example, in cus-

tom email templates.
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4 Business Logic

Many SAP S/4HANA applications have enhancement spots (also called Business

Add-Ins [BAdIs]). With the ABAP web editor (Figure 2.3), customers may create cus-

tom logic for the BAdIs. Typically, customers implement additional checks, set

default values, or create mappings in combination with custom fields. The avail-

able features of the ABAP language in the web editor are limited compared to the

capabilities in the SAP NetWeaver AS to ensure no negative impact on the robust-

ness of the system as well as to comply with high security and data consistency

standards. For example, you cannot perform database updates or generate source

code dynamically from the web editor.

Figure 2.3  Custom Fields and Logic SAP Fiori Application

5 Custom Business Objects

Besides custom views, you can create completely new business objects using the

Custom Business Objects application. This application helps define the business

object structure in the form of business object nodes, which automatically create

the required database tables (Figure 2.4). A built-in web editor supports with writ-

ing the corresponding code. Again, for writing customer business objects, you can

only use whitelisted APIs.
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Changing existing SAP business objects is not supported. However, the creation of

custom business objects can be supported by reusing custom CDS views, OData

APIs, and custom user interfaces so that a fully-fledged, self-contained extension

to SAP S/4HANA can be created. 

Figure 2.4  Creation of a Node in a Custom Business Object

6 Custom User Interfaces

You can use the SAP Web IDE to create your own SAP Fiori user interfaces either

from scratch or based on templates. The SAP Fiori user interfaces consume SAP

S/4HANA’s RESTful OData interfaces. After creation and successful testing, you

can deploy these user interfaces into SAP S/4HANA’s user interface repository and

integrate them into the customer’s SAP Fiori launchpad as new tiles using the Cus-

tom Tiles and Custom Catalog Extensions application.

In SAP S/4HANA Cloud, the transport of adaptations from the test system to the pro-

duction system is also performed by the key user with another SAP Fiori application.

These tools can be used without interaction with the service provider and outside the

service provider’s maintenance window. The extensibility transport tools are avail-

able as part of the Manage Software Collection application.

Thus concludes our overview of in-app extensibility as one major form of SAP

S/4HANA extensibility. More details on in-app extensibility and its intersection with

side-by-side extensibility can be found in Chapter 20 of this book. Furthermore, we

can recommend some additional literature on this topic in the box below. 
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Further Information on In-App Extensions

Online Help on Extensibility: http://tiny.cc/sap-help-in-app

SAP S/4HANA Extensibility Tutorial: http://tiny.cc/in-app-tutorial

SAP S/4HANA Extensibility: Use Case Overview: http://tiny.cc/in-app-overview

Now, we’ll switch perspectives to building side-by-side extensions with SAP Cloud

Platform and discuss the implications of the side-by-side approach.

2.3    Side-by-Side Extensions

Scenarios exist where in-app extensions are not sufficient, which we’ll explain in Sec-

tion 2.4. In such cases, customers and partners may use side-by-side extensions as an

alternative approach. The name stems from the fact that, in contrast to in-app exten-

sions, side-by-side extensions are only implemented using the SAP Cloud Platform.

2.3.1    Overview of the SAP Cloud Platform

The SAP Cloud Platform is a platform-as-a-service (PaaS) offering for creating applica-

tions or extensions in a secure cloud-based computing environment managed by

SAP. It is the default choice for building side-by-side extensions to SAP S/4HANA

Cloud or on-premise. The platform also serves extension cases for other SAP prod-

ucts, be it other on-premise applications or the modern LOB-specific SaaS solutions

such as SAP SuccessFactors (Figure 2.5). With SAP Cloud Platform, SAP offers a prod-

uct as well as a methodology to develop technically decoupled extensions and cloud

applications to meet challenging requirements in terms of cloud qualities such as

availability and scalability, which we’ll explain in Chapter 3.

SAP Cloud Platform provides a broad range of managed services as well as open source

technologies that can be used to build new solutions. Business services include a cur-

rency service, a translation hub, and business logging. Furthermore, SAP Cloud Plat-

form contains a broad range of technical services such as SAP Cloud Platform

Integration, SAP Leonardo Internet of Things (IoT), or SAP Leonardo Machine Learn-

ing to name just a few. Finally, SAP Cloud Platform also provides storage services

such as SAP HANA and open-source technologies like Redis or PostgreSQL. The entire

list is continuously extended with new services on all levels of the platform. 
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Figure 2.5  High-Level Overview of SAP Cloud Platform as the Extension Platform

In addition, SAP provides several programming environments and runtimes. First,

the SAP Cloud Platform Neo environment is an SAP-proprietary environment for Java

and HTML5 applications. Second, various runtimes are available as part of the Cloud

Foundry environment on the SAP Cloud Platform, such as Java, Node.js, Python, and

basically any other runtime supported by Cloud Foundry. Cloud Foundry is an open

source industry standard to provide a PaaS standard that can run on multiple clouds.

Cloud Foundry helps automate, scale, and manage cloud applications throughout the

application lifecycle. SAP supports the Cloud Foundry Foundation as a Platinum

member with code contributions and helps advance the evolution of open cloud

computing technologies along with other companies such as Cisco, Dell, IBM, Pivotal,

Suse, Google, and Microsoft. Complementing the existing capabilities of Cloud

Foundry, SAP offers tools for developing applications such as the SAP Web IDE, the

SAP API Business Hub, and an operations cockpit as well as several services for appli-

cation management and monitoring. Figure 2.6 presents a high-level overview of the

capabilities that are part of the SAP Cloud Platform. You may check out the overview

of capabilities on the SAP Cloud Platform web page (http://tiny.cc/scp-services) for a

more recent picture since the portfolio continuously expands.

Multicloud IaaS

SAP Fiori

SAP Analytics Cloud

Marketplace

Business Services

SAP S/4HANA

Integration Analytics IoT Big Data Machine LearningUX Blockchain Security

SAP HANA
SAP Data Hub

SAP HANA

SAP Microsoft Azure Amazon Web Services

API Business Hub

SAP CoPilot

Files  Objects
Hadoop  SAP Vora

SAP Cloud Platform

Customer-Specific
and 

Third Party Applications

Google Cloud Platform

SAP Cloud 
Platform
Integration

SAP Cloud
Applications

Open Source
Storages



2 SAP S/4HANA Extensibility

66

Figure 2.6  High-Level Overview of SAP Cloud Platform Capabilities

Thanks to SAP’s multicloud strategy, you can use SAP Cloud Platform on multiple infra-

structures, such as SAP’s own data centers, Amazon Web Services, Microsoft Azure, and

Google Cloud Platform. Customers can use SAP Cloud Platform in combination with

other cloud services or co-located to existing cloud infrastructure and services.

2.3.2    Connectivity between SAP Cloud Platform and SAP S/4HANA

Connectivity between SAP Cloud Platform and SAP S/4HANA Cloud uses HTTPS com-
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connection with the connectivity service on SAP Cloud Platform. Once the connec-

tion is established, the Cloud Connector accepts calls from SAP Cloud Platform and

routes them through to the correct endpoint of one of the on-premise systems, as

shown in Figure 2.7.
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Figure 2.7  The Cloud Connector in a Hybrid Scenario

We’ll go into more detail on how to set up the connection between SAP S/4HANA and
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services from SAP S/4HANA (Figure 2.8). This functionality might be especially help-

ful for you to copy existing SAP standard user interfaces as a starting point.

Figure 2.8  SAP Fiori User Interface as a Side-by-Side Extension

However, you can combine in-app extensions with side-by-side extensions by creating
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Cloud Foundry environment on the SAP Cloud Platform allows you to write applica-

tions in almost any programming language, SAP is primarily investing in Java, JavaS-

cript, and ABAP. For example, SAP provides libraries to create OData services or to use

the SAP S/4HANA public data model inside Java and JavaScript backend services. A

good part of these libraries and options, such as the SAP S/4HANA Cloud SDK, are

covered in this book. 

Figure 2.9  Side-by-Side Extension App on SAP Cloud Platform
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service by a RESTful call from the in-app extension to the SAP Cloud Platform service,

as shown in Figure 2.10. 

Figure 2.10  Side-by-Side Extension Service on SAP Cloud Platform
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replication mechanisms with SAP S/4HANA Cloud, a fully managed SAP service

exists. At the time of this writing, the service is in restricted mode, accessible only

to pilot customers.

Figure 2.11  Data Mart on SAP Cloud Platform as a Side-by-Side Extension

For SAP S/4HANA on-premise and other SAP solutions, customers can perform the rep-

lication with help of the Cloud Connector and, optionally, also SAP Landscape Transfor-

mation Replication Server. Further, you can copy data from various other sources into

the analytical application using RESTful services so that customers can join data across

business applications and processes as part of the analytical application.

Further Information on Data Replication to SAP Cloud Platform

Replicate ABAP CDS Views from SAP S/4HANA Cloud to SAP Cloud Platform: http://

tiny.cc/data-replication

Replicating Back-End Data to the Cloud: https://sap.github.io/cloud-s4ext/week-4/unit-3/
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This concludes our review of the general patterns possible using the side-by-side

extension approach. In the next section, we’ll discuss typical extension use cases

based on the presented patterns and principles.

2.4    Extension Use Cases

With the side-by-side and in-app extensibility features explained in the previous sec-

tions, you can build additions to SAP S/4HANA that significantly increase the reach

and the scope of the system. SAP S/4HANA can be connected in processes that engage

internet users, such as in an online store, on mobile devices, or via experimental user

interface technologies. Furthermore, you may extend existing processes but also

invent completely new processes while easily combining SAP S/4HANA data with

data from other systems. As a result, we’ve observed several typical extension arche-

types that our customers or partners are implementing, as follows: 

� Proxy applications

� Convenience applications

� Substitute applications

� Preprocessing applications

� Postprocessing applications

� Analytical applications

Note that this list does not claim to be exhaustive and you can combine several of these

archetypes within one process or even within one application. The presented arche-

types are typically driven from a side-by-side extension perspective. However, in most

real-life scenarios, they are complemented and supported by in-app extensions. 

Let’s discuss these archetypes individually next.

2.4.1    Proxy Applications

Proxy applications are highly connected applications that shield the SAP S/4HANA sys-

tem from internet traffic. In other words, these applications “buffer” data and commu-

nicate with the SAP S/4HANA in batch mode for more efficient data exchange. These

applications often work with identities only known in the proxy application but not in

SAP S/4HANA, for example, the end consumers of a retail enterprise who may not re-

quire an SAP S/4HANA backend user. Typical proxy applications include online stores,

registration web sites, or any other publicly available web sites. A proxy application
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on a mobile phone could also be used by customers to learn about promotions and

products. These applications typically have high requirements with respect to avail-

ability and scalability to cater for traffic bursts at peak times.

2.4.2    Convenience Applications

Convenience applications aim at simplifying the user experience and, thus, often do

not add many new features but instead make using existing features significantly

easier. You can, for example, build a convenience application for a mobile device to

support field engineers. In a convenience application, fields can be defaulted to the

most commonly used values or can be hidden altogether because reasonable values

can be provided automatically.

2.4.3    Substitute Applications

Substitute applications replace a specific process or process step in SAP S/4HANA.

The reasons to use a substitute application might be to provide a functionality miss-

ing in SAP S/4HANA or existing processes that shouldn’t be changed when deploying

SAP S/4HANA. Substitute applications typically execute service calls on SAP S/4HANA

in the background while end users can work in a completely different user interface

with capabilities that are not part of SAP S/4HANA’s scope. 

For example, let’s consider time recording in the service industry. Typically, external

tools are used for project management and scheduling, such as Atlassian Jira. Jira

ticket numbers and other fields can be added to the SAP S/4HANA data model using

an in-app field extension for simplified end-to-end reporting of SAP S/4HANA. Then,

the substitute application on SAP Cloud Platform may join the information from SAP

S/4HANA (i.e., costs from a cost center) with information from Atlassian Jira (i.e., proj-

ect times, statuses, and schedules).

2.4.4    Preprocessing Applications

Preprocessing applications are often used to collect data before a process is started in

SAP S/4HANA. In preprocessing applications, data is collected until a certain status or

state is achieved. Then, a process in SAP S/4HANA is started using the collected data.

An example might be an app to create and maintain new products as a side-by-side

extension of SAP S/4HANA. Once details about the new product have been approved,

the product is promoted to and stored in SAP S/4HANA. Subsequently, SAP S/4HANA

processes are triggered such as pricing or production-related activities.
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2.4.5    Postprocessing Applications

Postprocessing applications receive events from SAP S/4HANA when certain pro-

cesses or process steps are completed. Based on these events, additional activities are

performed in a side-by-side extension of SAP S/4HANA. An example could be an

application that updates a customer record. If the customer relationship ends, data

may have to be deleted from corresponding applications or data stores hosted on the

SAP Cloud Platform. 

2.4.6    Analytical Applications

Analytical applications connect data from multiple sources into one analytical data-

base so that analytical queries can be answered quickly and interactively. Ad hoc

reporting is also available. For this purpose, data from SAP S/4HANA and other sys-

tems might be replicated into a SAP HANA database on SAP Cloud Platform. Then,

analytical applications can leverage all the capabilities provided by SAP HANA, such

as columnar storage, in-memory execution, and rich view building as well as the ana-

lytical user interface controls of SAPUI5. 

2.5    Nonfunctional Requirements of Extension Applications

So far, we’ve presented extension archetypes and described common use cases for

extensions from a functional perspective. Functional requirements specify the

behavior of the system, that is, what it is supposed to do. However, other, nonfunc-

tional requirements also exist that relate to the underlying qualities of the system

such as performance, costs, availability, or resilience.

By definition, in-app extensions inherit their nonfunctional properties from SAP

S/4HANA. In contrast, for side-by-side extensions, customers and partners are mainly

responsible for ensuring certain qualities such as scalability and availability. To

achieve these qualities, customers are supported by appropriate SAP Cloud Platform

services, software development kits (SDKs), and best practices, many of which we’ll

explain in this book. However, not all qualities are equally important for all exten-

sions. Some business cases may also not justify the efforts to build highly scalable

and available extensions. Therefore, you’ll need to understand the design trade-offs,

when to invest, and how to achieve a high degree of quality.

Generally, we recommend identifying extensions that are mission critical; any failure

in this extension would have a severe impact on business operations. For example,
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customers often consider employee self-service applications less critical than appli-

cations involved in core business processes. In certain situations, such as a leave

request, an employee may accept poor user interface performance and simply retry

at a later point in time. On the other hand, an application intended to be used by the

customers of the business such as an online shop or a customer-facing mobile appli-

cation can have severe impact on the business success when customers cannot place

orders (revenue loss) and instead select competitive products. This distinction

between mission-critical and non-mission critical capabilities can help you find the

right trade-offs.

Mission critical applications are business processes that involve customers, partners,

suppliers, etc., for example, an internal application the sales force needs for daily

operations. Mission critical applications may also target different users or interact

with systems that are not under the control of the organization. Often, non-mission

critical applications accept a much lower level of certain nonfunctional requirements

for the sake of lower development or operations costs. In mission critical applica-

tions, certain nonfunctional requirements such as availability cannot be sacrificed,

and higher development and operational costs might be acceptable.

Typical properties of internal applications include the following:

� Known user (e.g. SAP S/4HANA user), single-sign on 

� Predictable scalability (e.g. based on number of users)

� SAP Fiori UI with moderate usability requirements

� Downtimes and times of limited availability are considered acceptable

Typical properties of external applications include the following:

� Known user and internet user (not a user in one of the organization’s systems) 

� Unknown scalability needs or high peaks (e.g. due to seasonal events), load impact

on internal systems unclear

� SAP Fiori and freestyle UIs (e.g. created by an agency)

� Downtimes unacceptable (24/7) with continuously high performance

Based on these considerations and to best serve business needs, we recommend

building external applications as side-by-side extensions to cope with the additional

nonfunctional challenges introduced by cloud software. For internal applications, a

careful trade-off analysis should be conducted to identify whether the functionality

might be provided by either a pure in-app extension or by a side-by-side extension.
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The criteria above may guide you in finding the appropriate trade-offs for your appli-

cation scenario. 

We’ll further explore the qualities of cloud-native application development, the pre-

dominant development style for side-by-side extensions, in the next chapter. 

2.6    Summary

In this chapter you learned about the various options you have for extending SAP

S/4HANA. In the next chapter we’ll dive into the specifics of side-by-side extensibility

and cloud-native application development. You'll learn how the principles of cloud-

native development, such as DevOps, microservices, continuous delivery, and con-

tainerization, can help you craft highly scalable, resilient, and consistently available

applications on the SAP Cloud Platform.
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Chapter 5 

Application Security

This chapter outlines how to secure our example application, which 

consists of several microservices in a multitenant fashion. This chapter 

involves an overview of the architecture and the interaction among 

the corresponding components such as the application router 

(AppRouter) and the Identity Provider (IdP), as well as other relevant 

microservices. In addition to how to configure authentication and 

authorization between services and users, we’ll cover essential security 

fundamentals and web security topics such as cross-site request 

forgery (CSRF) and clickjacking.

In this chapter, we’ll introduce you to all concepts that you need to understand to

secure your application in the Cloud Foundry environment on the SAP Cloud Plat-

form. Before we dive more deeply into implementation details, in this chapter,

we’ll provide a comprehensive overview of the architectural components (e.g., the

AppRouter, Extended Services for User Account and Authentication [XSUAA]) and

patterns (e.g., OAuth) you’ll need to understand for the full conceptual picture. Based

on this overview, we walk through step-by-step how to protect our Business Partner

Address Manager application so that only authenticated and authorized users can

use the application. Additionally, we’ll introduce some common web application

threats, such as cross-site request forgery and clickjacking, and discuss how SAP tech-

nologies can help you to reduce your application’s vulnerability to these threats.

5.1    Security on SAP Cloud Platform

Figure 5.1 presents the general architectural setup of security configuration in the

Cloud Foundry environment on the SAP Cloud Platform. So far in this book, we

learned about the single Java-based microservice that comprised our application,

which consists of a few backend APIs and the UI (a micromonolith if you will).

However, instead of accessing this service directly, we’ll now use the AppRouter,

which serves three main purposes. 
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Figure 5.1  High-Level Authentication Setup with AppRouter and Extended Services for User 

Account and Authentication (XSUAA)
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ticular, since the backend microservices should not be directly accessible by the

client.

Second, the AppRouter can serve static content such as web pages, SAPUI5, or any

other client-side code. We’ll postpone discussion about static content until Chapter 14.

Third, the AppRouter is an important component for managing the authentication

flows for our entire application and is, in addition, capable of strengthening our

application against common web application threats. We’ll focus on these features

throughout this chapter.

For the purposes of authentication (who the user is) and authorization (what the user
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Users

Microservice

XSUAA

Microservice

SAP S/4HANA
SDK

Microservice

App Router

Identity Zone

Configuration

<<SAML>>

<<JWT>><<http>>

R R

R

R

Address Service

SAP Java BuildpackNodeJS Buildpack

SAP Cloud Platform, Cloud Foundry Environment

Identity
Provider
(e.g., SCI)

157

5.1 Security on SAP Cloud Platform

5

Foundry environment. The XSUAA is a specific service provided by SAP to deal with

authentication and authorization for business applications instead of using the

standard user account and authentication service available in the Cloud Foundry

environment. By default, the XSUAA uses the SAP ID service as user provider man-

aging all users of the SAP Cloud ecosystem such as public users (P-users) or support

user (S-users). Customers may replace the default configuration with any other Secu-

rity Assertion Markup Language (SAML) 2.0-compliant Identity Provider (IdP) like the

SAP Cloud Platform Identity Authentication service.

The full runtime flow of all involved components for authentication is shown in Fig-

ure 5.2. If you’re not comfortable with OAuth yet, we recommend studying the RFC at

https://tools.ietf.org/html/rfc6749.

Figure 5.2  Runtime Flow for Authentication in SAP Cloud Platform
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acting as an OAuth client, will respond with a URL redirect to the XSUAA service,

which serves as the OAuth authorization server. In Step 3, the XSUAA now responds

with a login page asking the user for a valid user name and password. If the login

information is correct, the XSUAA responds with a redirect back to the AppRouter

including a temporary authorization code in Step 4. In the fifth step 5, the

AppRouter exchanges the authorization code against an access token, represented as

a JSON Web Token (JWT). The JWT contains all the information about the user: the for-

mal user name, the tenant the user belongs to, any granted authorizations as OAuth

scopes, etc. The JWT is also digitally signed so that every involved party can check its

validity and integrity. The AppRouter stores the received JWT in the user’s session

for future use. For more information on the JWT standard, refer to the official RFC at

https://tools.ietf.org/html/rfc7519. In the sixth and final step 6, the AppRouter will

forward the original request with the granted JWT to our backend resource which,

after also validating the validity of the JWT, will return the correct response payload

to the user. Note that this entire flow needs to be repeated only when the session of

the user inside the AppRouter expires or the user has issued an explicit logout.

As mentioned earlier, the JWT contains a signature that must be verifiable by every

microservice constituting our application. Therefore, every service must maintain a

service binding to the XSUAA service, which provides this information at runtime for

verification purposes and to fulfill the OAuth flow (Figure 5.3). 

Figure 5.3  Runtime Binding between Microservices and XSUAA
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Technically, every microservice needs aa binding to the specific XSUAA instance that

writes this information into the VCAP_SERVICES environment variable, which the

microservices can use to check the JWT’s validity. With these basics in mind, let’s cre-

ate the setup shown in Figure 5.1 in the following sections.

5.2    Configuring Authentication

In the following section, we’ll show you how to secure our Business Partner Address

Manager application so that only authenticated users can access it.

5.2.1    Setting Up the Application Router

As a first step, we’ll need to get and set up the AppRouter as explained in the previous

section. The AppRouter is a Node.js component distributed via the publically avail-

able SAP NPM registry.

To download and install the AppRouter, follow these steps:

1. Go to your favorite <destLocation>, which represents your preferred development

directory.

cd <destLocation>
mkdir approuter
cd approuter

2. Place the package.json shown in Listing 5.1 in the newly created approuter direc-

tory. Please note that we’re using version 4.0.1, which is the most recent version at

the time of this writing. You may update the AppRouter’s version in this file to the

latest version.

{
"name": "approuter",
"dependencies": {
"@sap/approuter": "4.0.1"

},
"scripts": {
"start": "node node_modules/@sap/approuter/approuter.js"

}
}

Listing 5.1  The package.json for the Application Router
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3. Install AppRouter dependencies using the following commands:

npm config set @sap:registry https://npm.sap.com
npm install

4. If successful, you should find a node_modules folder in the same location as the

package.json.

Install via Service Marketplace

Alternatively, you may download the AppRouter from the SAP Service Marketplace at

http://tiny.cc/xsjavascript and pick the latest XS JavaScript package, which includes

the AppRouter among other dependencies. However, at the time of this writing, only

an older version was available. We don’t recommend this option.

Now, we need to provide some design-time configuration to the AppRouter. The

main configuration file is called xs-app.json (Listing 5.2), which we create and place

under <destLocation>/approuter. 

{
"welcomeFile": "index.html",
"routes": [{
"source": "^/api/(.*)",
"target": "/api/$1",
"destination": "app-destination"

},{
"source": "^/address-manager/(.*)",
"target": "/address-manager/$1",
"destination": "app-destination"
}]

}

Listing 5.2  The AppRouter’s Design Time Descriptor xs-app.json

So far, this file contains two routes to our backend microservice: one for our backend

APIs and a second for static frontend content. During runtime, a route is identified

through a matching pattern provided under the source path matched against the rel-

ative URL requested by the client. Then, the relative URL for the backend service is cal-

culated based on the expression under target and combined with the base URL read

from the destination variable, which is provided as an environment variable. In this
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way, we can flexibly change destinations later at runtime when our deployment

model changes but leave all design-time parameters constant. 

The Application Router’s Design-Time Descriptor: xs-app.json

The xs-app.json file can be used to configure many more aspects at design-time of

the AppRouter like authentication types, cache control, compression threshold for

outgoing traffic (by default, 1 KB), client-initiated logout, custom settings for CSRF

protection, and much more. We’ll use some of these settings throughout this book.

However, we recommend studying the up-to-date specifications and more detailed

settings at http://tiny.cc/approuterconfig.

To correctly deploy our AppRouter, we’ll create an additional manifest.yml file inside

<destLocation> as the next step with the example content shown in Listing 5.3.

---
applications:
- name: approuter
routes:
- route: approuter- ↩

<subdomain>.cfapps.eu10.hana.ondemand.com
path: approuter
memory: 128M
env:
TENANT_HOST_PATTERN: 'approuter- ↩

(.*).cfapps.eu10.hana.ondemand.com'
destinations: '[{"name":"app-destination", "url": ↩

"https://address-manager-unsparse-subutopian ↩

.cfapps.eu10.hana.ondemand.com", ↩

"forwardAuthToken": true}]'
services:
- my-xsuaa

Listing 5.3  Providing a Deployment Descriptor for the AppRouter

Note

Replace the route parameter with your subaccount’s subdomain as well as the URL

parameter of the destinations variable with the correct base URL of our previously

deployed Business Partner Address Manager microservice. For example, if you
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created a trial account on SAP Cloud Platform previously with a P-user, the route of

the AppRouter will look like approuter-p1942765239trial, and the URL to the micros-

ervice might be address-manager-unsparse-subutopian based on the random route

generated in Chapter 4.

As we discussed in Chapter 4, we’ll use the standard Cloud Foundry manifest.yml file

to instruct the AppRouter to describe basic metadata for deployment as we did

already for the Java-based backend microservice. Additionally, we’ll utilize two

important user-provided environment variables, which are understood by the

AppRouter.

First, the destinations variable will declare the base URL of our app-destination des-

tination that we referenced earlier in the xs-app.json. You must provide an absolute

URI including the protocol (https://), without any relative information as that infor-

mation will be used to identify routes as specified in xs-app.json. We’ll also specify

that any JWT from the AppRouter shall be forwarded to this destination.

Second, the TENANT_HOST_PATTERN variable will define how tenants should be identi-

fied in our application’s URL. Upon request, the AppRouter will match the incoming

base URL against the provided regular expression and will consider the first matching

group of the expression as the tenant. Then the AppRouter will use the matched string

to identify the corresponding XSUAA tenant. If you need a different URL scheme for

your tenants, you’ll need to change this pattern accordingly. As we assume to build

multitenant applications throughout this book, this parameter is required but can be

omitted if implementing a single-tenant application only. 

The AppRouter’s Runtime Configuration

Besides destinations and tenant host patterns, the AppRouter understands many dif-

ferent parameters that can be changed during runtime, without redeploying the

entire AppRouter, which is consistent with the twelve-factor application principles

outlined in Chapter 3. Recognized parameters include cross-origin policies, session

timeouts, compression thresholds, JWT refresh times, etc. You can find a full list of

these parameters at http://tiny.cc/approuterparams. Besides declaring these varia-

bles in manifest.yml, please note that you can always use cf set-env <appName>
<variableName> <variableValue> to set them.

Finally, in manifest.yml, we introduced a binding to a service instance, called my-

xsuaa in our example. Our XSUAA service instance will be bound to the AppRouter so
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that JWTs issued by the XSUAA can be verified and, therefore, trusted by the

AppRouter. Technically, this binding will issue a VCAP_SERVICES entry for the App-

Router, which holds all required information such as the client secret or the public

key, to verify all security-related artifacts, as shown in Listing 5.4.

{
"VCAP_SERVICES": {
"xsuaa": [{
"binding_name": null,
"credentials": {
"clientid": "<clientid>",
"clientsecret": "<clientsecret>",
"identityzone": "<subdomain>",
"identityzoneid": "<subaccountId>",
...
"verificationkey": "-----BEGIN PUBLIC KEY----- ...",
"xsappname": "<xsappname>"
...

Listing 5.4  XSUAA Binding Information

However, before we can deploy the AppRouter, we’ll need to instantiate our my-xsuaa

service instance as described in the next section.

5.2.2    Extended Services for User Account Authentication (XSUAA)

With the AppRouter, we’ve already set up the largest part required for authentication.

Besides acting as an OAuth client, the AppRouter is required for many other aspects

in SAP Cloud Platform and, thus, is an important prerequisite. Eventually, authenti-

cation and authorization will be performed by the XSUAA. Therefore, we’ll need a ser-

vice instance to the XSUAA service, which is then bound to our AppRouter.

To create a service instance, we’ll require the xs-security.json descriptor file, which

we’ll put into our initially chosen <destLocation> for the AppRouter:

{
"xsappname": "address-manager-<subdomain>",
"tenant-mode": "shared"

}
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Like with the AppRouter, this file provides important design-time information such

as roles, authorizations, etc., to the service instance we are about to create. For

authentication purposes, the file looks simple as we are basically telling the XSUAA to

create an instance with a unique identifier. As a best practice, we’ll again use the

application’s name and subaccount’s domain, but you can use any other arbitrary

identifier not yet taken. Furthermore, we’ll use the XSUAA in multitenant mode

(tenant-mode: shared). We’ll enhance this file in Section 5.3, when we introduce autho-

rization concepts.

The Application Security Descriptor: xs-security.json

The xs-security.json descriptor is an important design-time artifact to provide authori-

zation scopes, role templates, and other attributes of the application itself as well as

foreign applications. For full specifications, refer to http://tiny.cc/securitydescriptor.

We’ll then create a service instance called my-xsuaa of the XSUAA service by issuing

the following command and using the xs-security.json file as a configuration input:

cf create-service xsuaa application my-xsuaa -c xs-security.json

By creating this instance, we are now explicitly declaring our XSUAA tenant as a plat-

form-as-a-service (PaaS) tenant, that is, as a tenant whose security configuration can

be shared with software-as-a-service (SaaS) tenants of consumers subscribing to our

application later (see also Chapter 3 and Chapter 7). Thus, the consumers of our mul-

titenant application can see, configure, and assign scopes and roles to their tenant-

specific users (Section 5.3.2).

5.2.3    A First Test

If you successfully went through the previous two sections, you should have in your

file or version control system a structure that looks like the following: 

.
├── approuter
│ ├── node_modules
│ ├── package.json
│ └── xs-app.json
├── manifest.yml
└── xs-security.json
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Note that you may have different content in the approuter folder depending on your

individual setup. Ensure that xs-app.json, package.json, manifest.yml, and the node_

modules directory with correct contents are present at least. If your structure is suffi-

cient, you’re ready for the first test. Deploy the AppRouter using the following com-

mands:

cd <destLocation>
cf api https://api.cf.eu10.hana.ondemand.com
cf login
cf push

Now, you should be able to locate the AppRouter from within your browser using the

host name of your deployment as well as the subaccount’s subdomain following the

pattern as specified earlier. For example, using our example user P1942765239, the

final URL would be https://approuter-p1942765239trial.cfapps.eu10.hana.ondemand.com

/address-manager/. This address should present a page similar to Figure 5.4 where

you’ll use your email address and password to log in.

Figure 5.4  Login Screen of Our Application Based on Application Router and XSUAA

After logging in, you should also see our Business Partner Address Manager applica-

tion, as shown in Figure 5.5, now being served via the AppRouter as you can see from

the URL.
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Figure 5.5  Business Partner Address Manager Application Delivered over Application Router 

after Authentication

Did You Know? Running the Application Router Locally

Sometimes it might be helpful to run the AppRouter locally for testing or debugging

purposes, in particular, when you want to experiment with different settings and do

not want to deploy the AppRouter to SAP Cloud Platform all the time. To run the

AppRouter locally, place two required files called default-env.json (which contains

the required environment variables) and default-services.json (which contains the

XSUAA service binding information) next to xs-app.json. Check out the GitHub repos-

itory for this book for a concrete example. You may run the AppRouter locally using

npm start.

5.2.4    Protecting Our Backend Microservice

Although authentication works with the AppRouter, our Java-based backend micros-

ervice is still fully visible in the web and not protected. We’ll therefore need to protect

our backend microservice as well so that it only accepts requests with valid and

trusted JWTs. Two simple steps are all that’s required.

First, we’ll need to modify our Java backend’s web.xml and introduce the lines of code

shown in Listing 5.5.
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<login-config>
<auth-method>XSUAA</auth-method>

</login-config>
<security-constraint>
<web-resource-collection>
<web-resource-name>Read business partners ↩

</web-resource-name>
<url-pattern>/api/business-partners</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>ViewAddresses</role-name>
</auth-constraint>

</security-constraint>
<security-role>

<role-name>ViewAddresses</role-name>
</security-role>

Listing 5.5  Declarative Security Configuration for Backend Microservices

This code essentially leverages the SAP Java buildpack to validate incoming requests

and only accept requests with a valid JWT for users who possess the ViewAddresses

role (which we’ll introduce in the next section).

Second, we’ll also need to bind our Java backend service to our previously created

XSUAA instance my-xsuaa. Therefore, we’ll slightly modify the manifest.yml defini-

tion of our Java backend and introduce the my-xsuaa service instance to the services

section:

services:
- my-xsuaa

Now, we’re ready to rebuild and redeploy our backend microservice with the com-

mands:

mvn clean install
cf push

As a result of this change, accessing the backend service directly will reject any

requests and show a 401 HTTP status (Unauthorized) because we are not providing

any valid JWT (Figure 5.6).
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Figure 5.6  Java Microservice Rejecting Unauthenticated Traffic

When using the AppRouter as the entry point, the backend service will now respond

with a 403 HTTP status (Forbidden) as authentication has worked, but now, the user

lacks the ViewAddresses authorization required to protect the endpoints accordingly

(Figure 5.7). Giving the user access to the roles will be the topic of the next section.

Figure 5.7  Backend Requests Authenticated over the AppRouter but Forbidden Due to 

Missing Authorizations
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Did You Know? Providing Logout Functionality

While experimenting with different authentication and authorization options, you

may require logging out every now and then to explicitly invalidate established ses-

sion information on the server- and client-sides. This forced logout can be an import-

ant capability for your productive application later on.

Fortunately, the AppRouter also provides a mechanism for client-initiated logout

that provides a central logout facility in our distributed system. By adding the snip-

pet in Listing 5.6 to xs-app.json, we can tell the AppRouter under which relative URL

we want to expose the logout (for example, /logout):

"routes": [{<route_definitions>}],
"logout" : {
"logoutEndpoint": "/logout",
"logoutPage": "/logout.html"

}

Listing 5.6  Adding Logout Functionality to AppRouter

Troubleshooting JSON Web Tokens

In some cases, you might need to investigate the content of the JWT to identify any

potential issues. The JWT is passed using an HTTP header with key Authentication,

and the value always starts with Bearer: followed by a Base64-encoded string. You

can, for example, create an arbitrary servlet for debugging purposes and log the

header to the console. Afterwards, you may use a page like https://jwt.io to decode

the token. However, never do this with any productive tokens and use local solutions

instead, such as the publically available jwt-cli tool.

5.3    Configuring Authorization Using OAuth2

Now that we’ve secured our application against unauthenticated traffic, let’s now

turn to how to check concrete business authorizations as part of the application

semantics.

5.3.1    Overview

In the previous section, we provided the setup required to authenticate our users

end-to-end using the AppRouter and our previously built Business Partner Address



5 Application Security

170

Manager application. However, we haven’t yet considered any business authoriza-

tions, the more fine-grained controls over our exposed business capabilities. For

example, let’s say we only want to allow certain users read rights on business partner

addresses while other users might be allowed to also write new addresses. For this dis-

tinction, we’ll require authorization definitions at design-time and corresponding

runtime checks, which we’ll introduce in this section. Figure 5.8 provides a high-level

overview on how authorization concepts are modelled and handled in the Cloud

Foundry environment on SAP Cloud Platform. 

Figure 5.8  Relationships of Authorization Concepts on SAP Cloud Platform

We, as the developers or architects of our business application, can define role tem-

plates, which may contain multiple (OAuth) scopes. OAuth scopes refer to specific

authorizations such as DISPLAY or WRITE permissions, which are checked by the

microservice. We’ll provide our scope and role template design using the xs-secu-

rity.json descriptor (Section 5.2.2) when creating the XSUAA service instance.

The consumer of our application (for example, an administrator in a client company)

can then instantiate the provided role templates into concrete roles in his subscriber

accounts (for example, giving them customer-specific names) and may aggregate

multiple roles (for example, from different providers) into role collections that can

finally be assigned to individual users or groups of users. In this way, we can achieve,

on one hand, fine, granular authorization control for microservices and, on the other

hand, compose authorization in a flexible way with more coarse role collections. The

idea behind this process is that, for example, a “Business Partner Manager” role col-

lection may span multiple applications while its underlying microservices all have
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individual scopes. The role collections can resolve all associated roles and return a

union of all associated scopes as part of the JWT issued by the XSUAA.

5.3.2    Defining Scopes and Role Templates

For our Business Partner Address Manager application, let’s say we want to define

two role templates: the BusinessPartnerViewer, which is only allowed to view existing

addresses (scope: ViewAddresses), and a BusinessPartnerManager template, which is

also allowed to write new addresses to the system (scope: ViewAddresses and WriteAd-

dresses). To define these role templates, we’ll enhance our existing xs-security.json

descriptor as shown in Listing 5.7.

{
"xsappname": "address-manager-<uniqueId>",
"tenant-mode": "shared",
"scopes": [{
"name": "$XSAPPNAME.ViewAddresses",
"description": "Scope to view business addresses"

},{
"name": "$XSAPPNAME.WriteAddresses",
"description": "Scope to write business addresses"

}],
"role-templates": [{
"name": "BusinessPartnerViewer",
"description": "Role to view business addresses",
"scope-references" : [
"$XSAPPNAME.ViewAddresses"

]
},{
"name": "BusinessPartnerManager",
"description": "Role to manage all business addresses",
"scope-references" : [
"$XSAPPNAME.ViewAddresses",
"$XSAPPNAME.WriteAddresses"

]
}

]
}

Listing 5.7  Enhancing the Application Security Descriptor with Scopes and Role Templates
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Note that all scopes must be prefixed with “$XSAPPNAME,” which will be replaced

during runtime with the actual name of the application. 

Finally, we’ll need to update our existing XSUAA service instance my-xsuaa and make

it aware of our design changes using the following command:

cf update-service my-xsuaa -c xs-security.json

5.3.3    Protecting Our Application

Now that we’ve introduced scopes and role templates to the XSUAA service instance,

we’ll need to protect our application accordingly. Basically, two places exist where you

can check authorizations: inside the AppRouter and in the backend microservices.

Checking Scopes inside the AppRouter

First, let’s check OAuth scopes inside the AppRouter and protect certain routes with

scopes. For example, we could check on our /api route that we only allow users with

the ViewAddresses scope to pass; otherwise, the AppRouter should reject the request.

However, we won’t pursue this option in our example further because these checks

are declarative in nature on routes only and might be used as a second line of

defense. Therefore, we’ll omit this option in the remaining chapter for the sake of

simplicity.

"routes": [{
"source": "^/api/(.*)",
"scopes": ["$XSAPPNAME.ViewAddresses"]

}

Checking Scopes Declaratively in Backend Microservices

Checks can also be performed in the backend microservices where the actual busi-

ness logic resides. We always recommended introducing authorization checks in

your backend microservices so that the check is closely related to your business

logic and semantics. In some cases, you might even need to check authorizations

programmatically inside the business logic, which can be only done inside the micro-

service itself. To check scopes in our Java-based microservice, we can either use the

declarative or programmatic approach.

The declarative approach works either by using the web.xml as before or by using

annotations directly in the servlet (Servlet specification 3.0 or later). For servlets, we

can rely on the SAP-provided buildpack for Java and let it work out of the box.
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With the web.xml approach inside the /application/webapp/WEB-INF/ folder, you

can protect resources declaratively outside your code. For example, in the last sec-

tion, we showed you how to protect the URL pattern under /api/business-partners

with the ViewAddresses role, which corresponds exactly to the scope we just defined.

In this process, you can add different URL patterns with different authorization con-

straints to protect your endpoints accordingly, as shown in Listing 5.8. (Please refer to

the official Servlet 3.0+ specification for more details.)

<security-constraint>
<web-resource-collection>
<web-resource-name>Read business partners ↩

</web-resource-name>
<url-pattern>/api/business-partners</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>ViewAddresses</role-name>
</auth-constraint>

</security-constraint>

<security-role>
<role-name>ViewAddresses</role-name>

</security-role>

Listing 5.8  Protecting Java Microservices Declaratively

Alternatively, with the annotation-based approach, you can directly annotate the

relevant servlet using the @ServletSecurity annotation, for example, inside the

BusinessPartnerServlet class:

@WebServlet("/api/business-partners")
@ServletSecurity(@HttpConstraint(rolesAllowed = ↩

{"ViewAddresses"}))
public class BusinessPartnerServlet extends HttpServlet

However, this code is just a different syntactical way of expressing the same seman-

tics. If you prefer annotations, you can safely remove the protection from web.xml.

No matter which approach you use, you’ll need to rebuild and push the application

using the command:

mvn clean install
cf push
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Checking Scopes Programmatically in Our Backend Microservices

Authorizations can be also checked programmatically in your backend microservices

by leveraging the XS2 security libraries, which are currently distributed by SAP

through the SAP Service Marketplace.

Note

At the time of this writing, a Maven Central delivery is not available. Please check if

the artifacts are available when you read this chapter; if so, you can skip the instruc-

tions in the next paragraph. 

To get the latest version of the XS2 security libraries, you’ll need to download them

from http://tiny.cc/xs2seclibs and pick the latest version. At the time of this writing,

the latest version is XS_JAVA_1-70001362 (19.03.2018). Please note that you’ll require

a support user to access the SAP Service Marketplace (see the preface for information

on getting one). Once you’ve downloaded the library, unzip the downloaded package

to a temporary directory <tempDir>. Afterwards, install the libraries to your local

Maven repository as follows:

cd <tempDir>
mvn clean install

After you’ve installed the XS2 security libraries, you’ll need to reference them as

dependencies from <projectDir>/application/pom.xml, as shown in Listing 5.9. Note

that the depicted dependency versions may be outdated in the code and should be

replaced with the latest available versions.

<!-- replace with latest available versions -->
<dependency>

<groupId>com.sap.xs2.security</groupId>
<artifactId>security-commons</artifactId>
<version>0.27.2</version>

</dependency>
<dependency>

<groupId>com.sap.xs2.security</groupId>
<artifactId>java-container-security</artifactId>
<version>0.27.2</version>

</dependency>
<dependency>

<groupId>com.sap.xs2.security</groupId>
<artifactId>java-container-security-api</artifactId>
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<version>0.27.2</version>
</dependency>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>
<version>4.3.0.RELEASE</version>

</dependency>
<dependency>

<groupId>org.springframework.security</groupId>
<artifactId>spring-security-jwt</artifactId>
<version>1.0.9.RELEASE</version>

</dependency>
<dependency>

<groupId>org.springframework.security.oauth</groupId>
<artifactId>spring-security-oauth2</artifactId>
<version>2.3.2.RELEASE</version>

</dependency>
<dependency>

<groupId>com.sap.security.nw.sso.linuxx86_64.opt</groupId>
<artifactId>sapjwt.linuxx86_64</artifactId>
<version>1.0.19</version>

</dependency>

Listing 5.9  Additional Dependencies for Programmatic Security Checks

Next, the scopes can be checked programmatically using the SAP S/4HANA Cloud

SDK shown in Listing 5.10. Thanks to the abstractions of the SDK, the same code can

be reused in both the Cloud Foundry and the Neo environment.

try {
final Scope scope = new Scope("ViewAddresses");
if(!UserAccessor.getCurrentUser().hasAuthorization(scope)) {
response.setStatus(HttpStatus.SC_FORBIDDEN);
response.getWriter().write("Forbidden");
return;

}
} catch(UserNotAuthenticatedException | UserAccessException e) {
e.printStackTrace();

}

Listing 5.10  Checking Authorizations Programmatically
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Finally, we’ll need to rebuild and push our application to SAP Cloud Platform using

the command:

mvn clean install
cf push

Did You Know? XS2 Libraries Enable the Spring Security Framework

The downloaded security libraries aren’t just helpful for programmatic authorization

checks, they also enable you to secure your microservices with Spring security as an

alternative to the standard servlet security approach we’ve presented so far. More-

over, the XS2 libraries allow you to use any buildpack from the community instead of

the SAP buildpack for Java. To enable Spring security, the archetype generated with

the SAP S/4HANA Cloud SDK contains a spring-security.xml file in the WEB-INF/

folder of your application, which you can enable by adding the ContextLoaderLis-
tener and DelegatingFilterProxy to your web.xml. The entire approach is described

in more detail in a blog post at http://tiny.cc/sapsecurityblog.

Securing Applications in the Neo Environment on SAP Cloud Platform

All methods for protecting applications with the declarative servlet security approach

as well as the programmatic approach can be equally used in the Neo environment

of SAP Cloud Platform. The only difference is that, for Neo applications, the login con-

figuration must be changed from XSUAA to FORM:

<login-config>
<auth-method>FORM</auth-method>

</login-config>

Furthermore, you won’t need to add any additional XS2 security libraries to your proj-

ect.

5.3.4    Assigning Users to Application Roles

Now that we have a new XSUAA configuration in place and have protected our back-

end microservices, we’ll need to assign the corresponding roles to our users. We can

assign roles using the SAP Cloud Platform cockpit, for example, using https://

account.hanatrial.ondemand.com/cockpit.

In the first step, open the Role Collections tab under the Security ribbon of your Cloud

Foundry subaccount as shown in Figure 5.9.
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Figure 5.9  The Empty Role Collections Menu to Define A New Collection

Then, we’ll create a new role collection to which you can give an arbitrary name. In

our example, we call our role collection “Business Partner Manager” and click Save, as

shown in Figure 5.10.

Figure 5.10  Defining the Business Partner Manager Role Collection

Third, select the newly created Business Partner Manager role collection and select

Add Role. From the menu, select your application presented as the application iden-

tifier xsappname from your xs-security.json and the corresponding role template we

defined earlier (Figure 5.11).
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Figure 5.11  Add Role Template to Role Collection

In the next step, we’ll need to assign our user to the newly created Business Partner

Manager role collection to grant the ViewAddresses and WriteAddresses scopes. There-

fore, we’ll select the Trust Configuration from the Security menu and select the SAP ID

Service from the list as shown in Figure 5.12.

Figure 5.12  Trust Configuration in SAP Cloud Platform with the SAP ID Service as Default 

Identity Provider
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In the opening dialog, enter your email into the user field and click Show Assign-

ments (Figure 5.13).

Figure 5.13  Selecting User Role Assignments

Then, click Add Assignment and choose the Business Partner Manager role collection

from the menu to assign it to your user (Figure 5.14).

Figure 5.14  Assigning Role Collection “Business Partner Manager” to a User
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Based on this role collection assignment, we can now use the application as before

using our authenticated and authorized user while other users will no longer have

access. 

As noted earlier, you may need to call the AppRouter’s logout functionality once to

invalidate any existing sessions and retrieve a new JWT with the updated scope infor-

mation.

5.4    Protecting against Common Web Application Threats

Besides protecting our application with authentication and authorization, the

AppRouter, as well as the SAP S/4HANA Cloud SDK, provides additional capabilities

to protect your application against standard attack vectors in web or cloud applica-

tions. We’ll touch on some of these potential attacks in this final section. Note that

enabling the features we describe do not mean your application is secure. Additional

attack vectors are possible and require mitigation when building your application.

For example, typical vulnerabilities such as SQL, Lightweight Directory Access Proto-

col (LDAP), or other path injections; cross-site scripting attacks; or the use of vulner-

able third-party dependencies in your application code must be checked by different

tools or methods. These additional aspects are beyond the scope of this book. We re-

commend that you consult the Open Web Application Security Project (OWASP) for

more information on this topic (https://owasp.org).

5.4.1    Cross-Site Request Forgery

In simple terms, cross-site request forgery (CSRF) or, more specifically, session riding

is an attack where an attacker convinces a user to follow a link that does something

that the user did not intend to do (for example, deleting all records from a database if

the user is the application’s administrator). As a prerequisite to this attack, the user

must be logged into the application, which can easily happen when session timeouts

are unreasonably long, when login information has been stored by the user inside

the browser for convenience, or login information is stored by the application for a

long period of time in persistent cookies.

To prevent this attack, the client- and server-side code must share a secret unknown

to an attacker. This secret is called the CSRF token.

Fortunately, in the Cloud Foundry environment of SAP Cloud Platform, the App-

Router enables CSRF protection for any HTTP method except GET and HEAD on routes
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that require authentication, that is, where the authenticationType attribute has not

been set to none. If a route is CSRF-protected but the client-side application does not

send a valid CSRF token as part of the x-csrf-token header, the AppRouter will reject

the request with a 403 HTTP error code. To retrieve a valid CSRF token, the client-side

code must first send a request with the HTTP header key-value x-csrf-token: fetch.

If you need to change this default behavior, you may use the authenticationType or

csrfProtection attributes on routes in your xs-app.json, as shown in Listing 5.11. 

"routes": [{
"source": "^/api/(.*)",
...
"csrfProtection": false,
"authenticationType": "none"

}

Listing 5.11  Changing CSRF Protection in the AppRouter

Additionally, every microservice created using archetypes of the S/4HANA Cloud

SDK also contain a CSRF protection filter defined in the web.xml file, as shown in List-

ing 5.12.

<filter>
<filter-name>RestCsrfPreventionFilter</filter-name>
<filter-class>

org.apache.catalina.filters.RestCsrfPreventionFilter
</filter-class>

</filter>
<filter-mapping>
<filter-name>RestCsrfPreventionFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Listing 5.12  CSRF Protection in Java Services

If you are using the AppRouter and have protected your backend microservice as

described in this chapter, you can safely remove this protection. However, if you’re

exposing your service directly without the AppRouter (e.g., in the Neo environment),

you should keep this protection in place to protect your application from being vul-

nerable to this attack.
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5.4.2    Clickjacking

Clickjacking refers to an attack vector where the attacker embeds the vulnerable

application, for example, using an HTML iframe, and overrides the visible intended

actions with unintended actions. For instance, the user may intentionally click the

playback button in a video application but instead unintentionally triggers a purchase

in some retail application.

To prevent this attack, recent browsers can be instructed to block remote content

embedded with iframes using the X-FRAME-OPTIONS HTTP header.

If you’re using the AppRouter, the default setting of X-FRAME-OPTIONS is SAMEORIGIN,

that is, the browser allows iframes only if the framed content originates from the

same domain as the embedding application. You can either turn off this behavior by

setting the AppRouter’s environment variable SEND_XFRAMEOPTIONS to false, or you

can override the value by specifying the httpHeaders environment variable (for

example, setting it to DENY to completely forbid the use of iframes).

In backend microservices generated using the SAP S/4HANA Cloud SDK, the lines

from web.xml, shown in Listing 5.13, introduce the same behavior.

<filter>
<filter-name>HttpSecurityHeadersFilter</filter-name>
<filter-class>
com.sap.cloud.sdk.cloudplatform.security.servlet ↩

.HttpSecurityHeadersFilter
</filter-class>

</filter>
<filter-mapping>
<filter-name>HttpSecurityHeadersFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Listing 5.13  HTTP Security Headers in Java Services

You can remove these lines if your microservices are not directly accessible, for

example, using the AppRouter. However, when your service is directly accessible, for

example, when exposing Java-based services directly in the Neo environment of SAP

Cloud Platform, you should keep this filtering setting in place.

In addition, you may use the Content Security Policy (CSP) header, which is currently

recommended by the W3C (https://www.w3.org/TR/CSP2/) and supported by all mod-

ern browsers. We won’t discuss this header further in this book, but recommend that
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you look into it yourself and use the standard HTTP header settings introduced in

this chapter, since such policies are specific to each application.

5.4.3    Securing Session Cookies

In all SAP Cloud Platform environments, session IDs stored in cookies are used on the

client to continuously identify a user across several stateless server interactions with-

out requiring re-logins. Thus, these cookies are a primary target for attackers because

they grant access to applications using the identities of compromised users. There-

fore, sessions and their cookies must be protected in productive environments.

Fortunately, in the Cloud Foundry environment of SAP Cloud Platform, the App-

Router uses secure attributes by default when instructing browsers to store session

cookies by specifying the httpOnly and secure options in the Set-Cookie response

header, as shown in Figure 5.15. This process happens in the redirection phase (Step 5

in Figure 5.2).

Figure 5.15  Example Set-Cookie Instruction Returned from AppRouter after Successful Login

The secure option instructs the browser to only send the session cookie over en-

crypted connections (that is, HTTPS). The httpOnly options instructs the browser that

the cookie can be only accessed on real HTTP requests, for example, any JavaScript

access is forbidden.

For testing purposes without encrypted connections, you might need to turn off this

option by setting the AppRouter’s environment variable SECURE_SESSION_COOKIE to

false.

If you are using the Neo environment on the SAP Cloud Platform, no default security

option exists. Thus, we recommend that you add the code shown in Listing 5.14 to

your application’s web.xml file.

<session-config>
<cookie-config>
<secure>true</secure>
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<http-only>true</http-only>
</cookie-config>

</session-config>

Listing 5.14  Securing Session Cookies on SAP Cloud Platform Neo

5.4.4    Secure HTTP Headers

Finally, the backend microservices generated with the SAP S/4HANA Cloud SDK in-

clude HttpSecurityHeadersFilter in web.xml, which sets default headers for security.

Besides the X-FRAME-OPTIONS headers we mentioned earlier in Section 5.4.2, Http-

SecurityHeadersFilter also enforces the Strict-Transport-Security header, which

instructs the browser to only allow cloud application access via the HTTPS protocol.

In other words, no unencrypted HTTP traffic without TLS is allowed.

5.5    Summary

This concludes our chapter on how to protect a microservice-based application on

SAP Cloud Platform. Based on these lessons, we’ll turn, in the next chapter, to how to

safely integrate our example application with SAP S/4HANA.
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