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Chapter3
ABAP Programing Model for SAP Fiori

This chapter introduces the ABAP programing model for SAP Fiori,
which has been available since SAP S/4HANA 1610, SPS 03, or SAP
NetWeaver Application Server for ABAP 7.52, SP 02. It’s the standard
development model for new SAP S/4HANA applications and reflects
the SAP S/4HANA core architecture described in Chapter 1.

In general, the model supports the development of SAP HANA optimized OData ser-
vices for SAP Fiori applications based on Core Data Services (CDS) views and covers
analytical, transactional, and search application scenarios. Two main scenarios can
be distinguished when developing applications using the programing model: read-
only applications and transactional applications. Read-only applications only require
an underlying CDS data model and application-specific analytics or search annota-
tions. The CDS data model and its annotations are then exposed as an OData service
using the Service Adaptation Description Language (SADL) technology.

Transactional applications, in addition to read-only applications, require the genera-
tion of a Business Object Processing Framework (BOPF) business object for handling
create, update, and delete operations as well as additional business logic imple-
mented via BOPF actions, validations, and determinations. In the following, we’ll go
through the different technologies associated with the ABAP programing model.

3.1 Core Data Services

Core Data Services (CDS) are the foundation of all SAP S/4HANA application types.
They are deployed on top of legacy or new SAP ERP tables and enable the develop-
ment of semantically rich data models that foster code pushdown to the SAP HANA
database. They are developed on the ABAP stack and therefore use the standard life-
cycle management of ABAP development objects; for instance, they are transported
between systems using the standard ABAP Change and Transport System (CTS).
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On activation of a CDS view, two artifacts are generated: a corresponding Data Dictio-
nary (DDIC) view in the ABAP Dictionary (@AbapCatalog.sqlViewName) and a SAP HANA
view on the database. Only the CDS view definition is transported and has the object
repository entry R3TRDDLS <CDS_DEFINITION VIEW NAME>.

To cover different application scenarios, CDS views, which are defined using the data
definition language (DDL) of CDS, can be enhanced using different types of annota-
tions.

®  Analytical annotations
To use a CDS view as a data cube or query within analytical application scenarios
via the Analytical Engine, it must be annotated using @Analytics annotations.

®m Ul annotations
CDS views can be annotated with user interface (UI) annotations (@UI) to define
where certain entities, fields, and data will be placed within a SAP Fiori elements
template application, which reduces the required JavaScript SAPUI5 frontend code
drastically. Ul annotations can be moved to a metadata extension file with object
repository type R3TR DDLX in order not to clutter the core CDS view with loads of UI
annotations.

® Search annotations
CDS views can be configured for search scenarios using @Search annotations, for
instance, as an Enterprise Search (ESH) model for the SAP Fiori launchpad search
or for SAP Fiori in-app search by defining the SAP HANA text search scope and
fuzziness.

® Transactional annotations
To enable transactional processing capabilities (create, write, delete) in addition to
analytical or search capabilities, a BOPF object can be generated for a CDS entity by
providing transactional @bjectModel annotations.

Figure 3.1 shows an overview of the ABAP programming model development flow
and involved artifacts. As you can see, CDS is in the center of the development flow
and, for instance, the basis of the OData service, which is, in turn, consumed by the
SAP Fiori app or the BOPF business object for transactional processing.
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Figure 3.1 Overview of the ABAP Programming Model Development Flow and Its Artifacts

3.2 SAP Gateway

SAP Gateway plays a crucial role in providing an easy-to-use non-ABAP-based access
to business data stored in backend SAP NetWeaver systems. Access to business data
is granted via REST-based OData services using HTTP as the underlying data transfer
protocol.

As of SAP NetWeaver version 7.40, the software component SAP_GWFND is installed as
part of the SAP NetWeaver standard and includes the full scope of functionality
required for hub and backend enablement. In general, from an architectural perspec-
tive, there are two deployment approaches: embedded deployment or hub deploy-
ment. The hub deployment can be further split up into development on the hub or
development in the backend system. The usual setup for an SAP S/4HANA on-prem-
ise system is shown in Figure 3.2. Usually, development takes place in the ABAP back-
end system, and a hub system will be introduced to handle the additional load of
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client OData requests to the SAP Gateway component. This setup requires an addi-
tional SAP NetWeaver system functioning as the SAP Gateway hub system or fron-
tend server and a trusted remote function call (RFC) connection between the hub and
backend system to forward requests from the frontend to the backend system, which
contains the business logic and the data. The RFC-enabled function module passing
data from the frontend to the backend is /TWBEP/FM_MGW HANDLE REQUEST.

SAPUIS5/SAP Fiori Elements

Browser
OData/
HTTPs R
v
SAP Gateway Activated OData Service
(Hub deployment)

RFCd)R
v
|

OData Runtime _
(Model and Data ABAP Application
Provider) Server

Qo8

Service Adaptation Definition
Language (SADL)

(:) R

v

O 5 Business Object Processing
Framework (BOPF)

Core Data Services (CDS) Views

T

< Database Tables >

SAP HANA Database

Figure 3.2 High-Level Overview of a Typical SAP S/4HANA System
Setup with SAP Gateway Provided as a Separate Hub System
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The SAP Fiori app running in the browser sends OData HTTP GET, POST, DELETE, or PUT
requests to the SAP Gateway system, which exposes all registered and activated
OData services. The SAP Gateway passes the incoming OData requests to the backend
via a trusted RFC connection. The OData runtime in the backend then delegates the
actual data selection to the SADL framework layer. If the request is a read-only GET
request, SADL will delegate the request to its query engine, which will generate an
SQL SELECT statement to select the requested OData entity’s data from the database
tables via its corresponding CDS view. In case of a write access, for instance, POST for
create or PUT for update, the request will be delegated to the transactional BOPF run-
time, which will handle the database updates according to the provided transactional
annotations specified in the CDS view.

3.3 OData

OData is a REST-based data protocol used for transferring business data as well as
metadata between the ABAP backend system and client applications via the SAP
Gateway hub system. In SAP S/4HANA, client applications of OData services usually
are SAP Fiori SAPUIS5 applications running in the local browsers of end-user devices
such as desktop PCs or tablets. Together with the SAP Gateway, OData provides access
to the SAP backend business data in an easy-to-understand and well-defined way
using HTTP as its data transfer protocol.

3.3.1 Overview

An OData service organizes data in the form of entities that have a set of properties
interconnected via associations. These elements resemble the elements of CDS data
models, so CDS data models are the perfect candidates for exposure as OData ser-
vices.

The structure of an OData service can be explored by looking at its service document
and its service metadata document. The service document contains a list of entities
or resources that can be accessed using this service and can be requested via /sap/
opu/odata/sap/<OData_service name>/. Additionally, you can see whether the service
allows creating, changing, or deleting entities by looking at the sap:creatable,
sap:updatable, and sap:deletable attributes of the <app:collection> tag, which also
contains a relative reference to the entity set via its href attribute (see Figure 3.3).
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<app:workspace>
<atom:title type="text">Data</atom:title>

</app:workspace>
<atom:link
href="htip
<atom:link
href="httip

</app:service>

t.wdf.zap.corp:44300/=ap/ocpu/odatas/sap/Z_PurchasingDocumentDDL CDS/"
org/ 7/app™ xmlns:atom="http://www.w3.o0rg/2005/Atom"
.com/ado/2007/08/dataservices/metadatca”

<app:collection sap:creatable="false" sap:updatable="false" =ap:deletable="false" sap:content-
wvergion="1" href = chazinglDocumentDDL">
<atom:title type="text">Z PurchasingDocumentDDL</atom:title>

<sap:member-title>Purchase Document</sap:member-title>
</app:collection>
<app:collection sap:creatable="false" sap:updatable="falsze" =zap:deletable="false" sap:content-
version="1" href="Z PurchasingDocumentItemDDL">

<atom:title type="text">Z_PurchasingDocumentItemDDL</atom:titlex

<sap:member-title>Purchase Document Item</sap:member-title>

</app:collection>

—noalgn
/ldeiuyt.wdf. sap.corp: 44300/ sap/opu/odata/sap/Z_PurchasingDocumentDDL_CDS/"

"latest-versicn"
'sld:iuyt.wdf.Eap.co:p::é3DG}sﬂpfopufcdﬂtafzﬂpfZ_Purciﬂsing:a:amen:D:L_;D:;‘

Figure 3.3 Service Document of a Simple Purchase Document and Purchase Document Item
OData Service

The service metadata document is a lot more detailed than the service document and
shows all metadata of the service. It can be requested using the $metadata option:
/sap/opu/odata/sap/<OData_service name>/$metadata. It displays all entities of the
service, including their properties and associations.

OData uses the REST HTTP commands POST, GET, PUT, and DELETE for creating, reading,
updating, and deleting (CRUD) entities. Additionally, OData defines a simple but
powerful query language for restricting the result set provided by the SAP Gateway.
Table 3.1lists the most common OData query options.

Filtering $filter, e.g., $filter = PurchaseDocument eq
‘0005

Projecting or selecting properties $select, e.g., $select = PurchaseDocument, Pur-
chasingOrganization,..

Sorting $orderby, e.g., $orderby = CreationDate desc

Client-side paging $top and $skip, e.g.,, $top = 10&4$skip = 0

Table 3.1 Most Important OData Query Options
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Counting $count

Formatting $format, e.g.,, $format = JSON

Table 3.1 Most Important OData Query Options (Cont.)

3.3.2 OData Service Creation

As you already know, you can directly select data from a CDS view using Open SQL in
ABAP, as you would select data from a conventional database table. However, SAP
Fiori apps require the exposure of data as an OData service using HTTP as the data
transfer protocol.

Currently, a CDS data model can be exposed as an OData service in three different
ways: Auto-Exposure, Reference Data Source (RDS), or Mapped Data Source (MDS).

Auto-Exposure
The simplest, but also the most restricted, way of exposing a CDS model as an OData

service is by using the @Data.publish:true header annotation (Listing 3.1).

@AbapCatalog.sqlViewName: “SQL VIEW NAME’

@0Data.publish: true
define view CDS VIEW NAME as select from ..

Listing 3.1 @OData.publish:true Header Annotation to Expose a Simple Coherent CDS Data
Model as an OData Service

When activating the view in the ABAP development tools in Eclipse, several artifacts
will be generated in the system (Figure 3.4):

®m The actual SAP Gateway Business Suite Enablement - Service object named <CDS_
VIEW NAME> CDS (object type: R3TR IWSV)

= An SAP Gateway model named <CDS_VIEW NAME> MDL (object type: R3TR IWMO)
= Anannotation model named <CDS_VIEW NAME> CDS VAN (object type: R3TR IWVB)

By default, the generated OData service won't be activated. This must be done manu-
ally by accessing Transaction /IWFND/MAINT SERVICE on the SAP Gateway hub sys-
tem.
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SAP NetWeaver
SAP Gateway Service Catalog
RFC
ABAP Development Tools
CDS Data Definition Editor AS ABAP CDS OData Activate
Runtime service
I
) i —
@O0data.publish: true Edit/save R | )
define view ... g CDS Data | Serwce
Definition \ »| Artifacts
Activate

Figure 3.4 Components and Activities Involved When Exposing a CDS Data Model as an
OData Service Using the Auto-Exposure Method

The Auto-Exposure OData service creation method can only be used for simple
coherent CDS models that consist of a root node and first-level-associated views. It’s
not possible to add additional non-first-level-associated or unrelated CDS views as
OData entities to the service; for instance, if you have a coherent model of a purchase
document root view that has an association to a purchase document item child view,
and the item view in turn has an association to a material view, the material entity
can’t be part of the service because it’s not a first-level association of the root node
(Figure 3.5). If this is required, one of the other approaches must be used.

Scope of <CDS_VIEW_NAME>_CDS OData service

—| @0Odata.pu blish:tru%
Purchase Association
Document
Association
Purchase
Document Item
Material

Figure 3.5 Scope of the OData Auto-Exposure Service Creation
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Referenced Data Source

For complex CDS view models that need to be exposed as OData entities within a
common OData service, the Reference Data Source (RDS) approach is the right choice.
A CDS model can be considered as complex in this case when it has several levels of
associations or unrelated root views. The RDS approach, however, requires the cre-
ation of an SAP Gateway Service Builder project. This can be done by carrying out the
following steps:

1. Open Transaction SEGW.
2. Choose the Create Project button in the toolbar (Figure 3.6).

F% (ER9) SEGW 52

Menu 4 O e (( 6

SAP Gateway Service Builder

i | |
Create Project

Figure 3.6 Creating a New SAP Gateway Service Builder Project

3. In the Create Project dialog that appears (Figure 3.7), provide a description and
name for the SAP Gateway project that will become a transportable ABAP reposi-
tory entry (R3TR IWPR Z PURCHASING DEMO). In this entry, IWPR stands for Gateway
Business Enablement — Service Builder Project. Choose Continue.

[= Create Project

Project Z_PURCHASING_DEMO

Description EF‘urchasing Derma Projectl
Attributes
Project Type 1 Service with SAP Annotations v
Generation Strategy 1 Standard v

Ohiject Directory Entry

Package $THMP
Person Responsible HALSSTE

® | Local Object | €3

Figure 3.7 SAP Gateway Service Builder: Create Project Dialog
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After the project has been created, you can start creating the actual OData service.
First, you must create a data model. For the RDS scenario, we'll create a data model by
referencing a CDS model. Therefore, choose Reference « Data Source from the context
menu of the Data Model folder (Figure 3.8).

%) [ERY) SEGW 52

Menu 4 O V((EI@

AP Gateway Service Builder
1w |5 ]1[22 ][]

-

=. Z_PURCHASING_DEMO

w Dt A==l
P Display

Change
E
Ser

Ruri

Create »

3

3y Sar Redefine »
3

3

Irnport

Include
[ Data Source I

Reference

Paste

Dietails

Figure 3.8 Creating a Data Model by Referencing a CDS Data Source

This will trigger the Reference Data Source Wizard (Figure 3.9). You must enter a CDS
view you want to expose as an OData entity within your OData service, usually the
root view or one of the root views of your CDS model.

= vwizard Step 1 of 2; Reference Data Source Wizard

CDS-Entity {Z_PURCHASINGDOCUMENTOOL

Figure 3.9 Entering the CDS Root View of the Referenced CDS Model
In the next step of the wizard (Figure 3.10), you can select the associated views of the

previously selected CDS view and make them part of your OData service model defi-
nition.
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= vvizard Step 2 of 2; Reference Data Source Wizard

CDS-Entity Exposures
v 7 PURCHASINGDOCUMENTODOL
3 _PURCHASTMGDOCUMENTITEMDCL
=m0 7 PURCHASINGDOCUMENTITEMODL

Selected  Value Help  Analytical
~
[ v ]

i

Figure 3.10 Selecting Associations of the CDS Root View

When you finish the wizard, you'll see a new folder called Data Source References
Folder. If you open its subfolder, Exposures via SADL and select the CDS-Entity Expo-
sures node, you'll see the previously selected CDS entities that will be exposed as

OData entities (Figure 3.11).

%) [ER9] SEGW 52

Menu 4 O V((H@

SAP Gateway Service Builder
0l B

CDS-Entity Exposures

Y 0%

') Internal Mames ||[EL Select all Associations || ) Search Mode

Selected  Walue Help

=. I_PFURCHASING DEMO v 7_PurchasingDocurmentDOL bvi
vy Data Model v & _PurchasingDocumentIternDOL W
- Entity Types = w1 7_purchasingDocurnentIternDOL ~
Associations
Entity Sets

V Data Source References
e Exposures via SADL
viE

> Entity Types
> [0 Associations
> Entity Sets
> [0 Associgtion Sets

Service Implementation

Runtime Artifacts

> Service Maintenance

Figure 3.11 The Exposed CDS Entities of the Service Builder Project

You can also add any additional CDS entities using the Add CDS-Entity button, which
makes the RDS scenario a lot more flexible than Auto-Exposure. Finally, the OData
service can be generated using the Generate Runtime Objects toolbar button, which
will generate the runtime artifacts of the service and register them in the backend
system.

The first time the service is generated, the Model And Service Definition dialog will
appear so you can edit the default names of the objects to be created (Figure 3.12). As
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you can see, the RDS scenario will also generate a model provider class (MPC) and a
data provider class (DPC), including the respective extension subclasses with the suf-
fixes MPC_EXT and DPC_EXT. The MPC provides the runtime representation of our refer-
enced CDS data model in the form of the service metadata document. The DPC
provides the actual entity data by delegating the incoming requests to the generic
SADL engine, which will transparently select data from CDS views and map them to
OData entities.

[ Model and Service Definition

Model Provider Class

Class Mame ZCL_Z_PURCHASING_DEMO_MPC_EXT
Base Class Name ZCL_Z_PURCHASING DEMO_MPC

Data Provider Class

+ Generate Classes

Class Mame
Base Class Name

Service Registration

ZCL_Z_PURCHASING DEMO_DFC_EXT
ZCL_Z_PURCHASING DEMO_DPC

Technical Model Name
Model Wersion

Technical Service Name

{Z_PURCHASING DEMO_MDL|

1
Z_PURCHASING_DEMO_SRV

3.3 OData

ABAP SQL view name of the CDS view as a DDIC structure. You can do this by choos-
ing Import « DDIC Structure from the context menu of the Data Model folder (Figure
3.13). Then, under the Service Implementation folder, select the entity, and choose
Map to Data Source.

%) [ERY) SEGW 52
Maru O v K EI e
SAP Gateway Service Builder

v |5 ||| || ]

Messages

= B Delete
= B GetEntity (Re
= B GetEntitySet
= B Update

=, I_PURCHASING DEMO ~ /. Runtime objects for project '3
v Data Model ~ 4 Model binding

 y Entity Types > Potential loss of data; &

> w0 ZPURCHDOCOOL « [l Model Provider Base Class |
Associations « [l Model Provider Extension

> Entity Sets « [l Data Provider Base Class 2

3 Service Implermentation « [l Data Provider Implementat
v mr FPURCHDOCDDL =+ ~ Mo mroyider base class 7

* B Create Displaty & Z_PURCHASING DI

Change
Map to Data Source

Dietails

Z_PURCHASING_DE

> [0 Runtime Artifacts
> Service Maintenance

Service Version 1

Figure 3.12 Model and Service Definition Dialog

With the RDS scenario, you have a lot of flexibility over the service creation process
and implementation. You can even extend the MPC_EXT class to provide additional
annotations or implement additional logic in the DPC EXT class. However, adding
non-CDS entities to the service isn’'t recommended.

Mapped Data Source

The Mapped Data Source (MDS) scenario is only used if one of the previous scenarios
isn’t applicable, for instance, if the service will contain non-CDS OData entities. Creat-
ing an OData service using the MDS scenario requires more manual work than the
RDS and Auto-Exposure approaches. As with the RDS approach, you must first create
a SAP Gateway Service Builder project using Transaction SEGW. Then, you must
define a data model either manually or, in the case of CDS views, by importing the
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Figure 3.13 Mapping the OData Entity to a Data Source

Select a CDS view to which you want to map the OData entity (Figure 3.14). This map-
ping will enable model-based data selection via the SADL engine, and you don’t have
to code the OData entity CRUD methods manually.

[E Map to Da

Target System

s Local
Remote
RFC Destination

Data Source Attributes

Type 4 Business Entity v
Marne ECDS ~Z_F‘urchasingDDcumentDDLI

90

Figure 3.14 Mapping an OData Entity to a CDS Business Entity
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Finally, you must manually map the fields of the OData entity to the fields of the CDS
entity by dragging fields from the SADL Model pane on the right side of the screen to
the mapping table in the middle (Figure 3.15).

Service Builder
AU EA0KS izl 25 ||| % Generate Mapping | Drag and Drop to Properties and Navigation Properties

Properties | @ Assogiations | G Actions| L

= £_PURCHASING DEND A ENIEEIN

>

Data Model Map SA0L Model Elements to Properties

Ertity Types [ Property ABAP Field N Key Element KeyName  SADL Model Description Consumable
» =1 ZRURCHDOCDDL Purchasingdocu, PURCHASING .| v PURCHASINGDOCUMENT = Z_PURCHASINGDOCUMENTDDL Purchase Document
Associations Purchasingorga, PURCHASING « [l PLRCHASINGDOCUMENT Purchasing Document NUmber N
Entity Sets Creationdate  CREATIOND, M PURCHASINGORGANIZATION Purchasing Organization v
Service Irmplementation Createdbyuser  CREATEDBY « [l CREATIONDATE Date an Which Record Was Created o
 m ZPURCHDOCDDL Set « Il CREATEDEYUSER Mame of Person Wha Created Object N
> .7 Primary Key 2
* i Mappiny o
. g Crgﬂieg > 3% _PURCHASINGDOCUMENTITEMDDL o
- & Delete

* B GetEntity (Read)
= B GetEntitySat (Query)
* 2 uUpdate

Figure 3.15 Mapping Fields of the CDS Entity to Fields of the OData Entity

In addition to the mapped data source entities, you can also manually create entities
and implement their CRUD methods in the DPC_EXT class generated on the first gen-
eration of the service. As you can see, the MDS approach requires a bit more manual
work than the previous options but provides you with full flexibility over the service
creation. It supports generic data access to SADL CDS models as well as the manual
ABAP-based implementation of OData entities.

Activating a Service on the SAP Gateway Hub System

One step we omitted for all three scenarios was the activation of the service in the
Service Catalog of the SAP Gateway hub system, which we’ll show now. Transaction
/IWEND/MAINT SERVICE is used to maintain all registered services, as well as to reg-
ister and activate new services. It's the central entry point for dealing with OData ser-
vices. To add a new service, you must click the Add Service button (Figure 3.16 @). This
will lead you to another application for adding not yet registered backend services to
the Service Catalog of the SAP Gateway system @. To find a certain service in a back-
end system, you must provide the system alias of the backend system in which the
service has been created as well as the technical service name; for instance, in the
Auto-Exposure case, this is <CDS_VIEW _NAME> (DS. Finally, you can add the service to
the Service Catalog by selecting the corresponding line and clicking the Add Selected
Services button ©.
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Activate and Maintain Services

&= H [|B .||=2 .|| Fiter || |5 add Service i Delete Service ||BES Service Details || Load Metadata

Service Catalog s
P

Add Selected Services /

&0 Get Services

Filter

Systemn Alias Co-Deployed
Technical Service Name Wersion

External Service Mame External Mapping 1D

Fl == H Y .|E L EE) B add Selected Services?
Select Backend Services

Type Technical Service Mame “ Wer . Service Description External Service Mame

Figure 3.16 Adding a New OData Service to the Service Catalog

3.4 Service Adaptation Description Language

One of the core technologies enabling the ABAP programing model for SAP Fiori is
the Service Adaptation Description Language (SADL). It provides two main function-
alities in this context:

m At design time, SADL supports the model-based creation of an OData service based
on a CDS data model.

® At runtime, the OData runtime delegates incoming requests for OData entities to
the SADL adapter, which dynamically generates SQL SELECT statements to select
the business data via CDS views or further delegates the requests to the transac-
tional BOPF runtime if write access is required.

With this, SADL supports two of the three phases required for developing an OData
service:

® Data model definition (supported by SADL)
m Service implementation (supported by SADL)

B Service maintenance
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3'4'1 Data MOdeI Deflnltlon Phase - <EntityType sap:content-version="1" sap:label="Purchasing Document" Hame{'Z_PurchasingDucumentDDLType“;I
- <Keyx

The aim of this OData service development phase is to provide potential clients of the g PErRET Hame= PurchasingDocument'/>

. . . . . ) . . <Property sap:label="Purchasing document” Name="PurchasingDocument" sap:quickinfo="Purchasing Document Number" sap:display-
service with information about the service’s shape, for instance, the structure of its format="UpperCase" MaxLength="10" Nullable="false" Type="Edm.String"/>

.. . . . . .. . . <Property sap:label="Purch. Organization" Name="PurchasingOrganization" sap:quickinfo="Purchasing Organization" sap:display-
entities, their relationships, and the supported operations. This information is pro- format="Uppercase” MaxLength="4" Type="Edm.String"/> } ) ‘ -
<Property sap:label="Created On" Name="CreationDate" sap:quickinfo="Date on Which Record Was Created" sap:display-format="Date"
i 1 i i 1 Type="Edm.DateTime" Precision="0"/>

Vlded m the form Of a service meta’data dOCument mn EXtenSIble Markup Language <Property sap:label="Created By" Name="CreatedByUser" sap:quickinfo="Name of Person Who Created Object" sap:display-

S . o format="UpperCase" MaxLength="12" Type="Edm.String"/>
(XML)- In the data model definition phaSE, SADL creates a mapping of CDS entities to <NavigationProperty Name="to_PurchasingDocumentItemDDL" ToRole="ToRole_assoc_3EDEE251A83223DE4BCAG15BAG22E7D2"
. . FromRole="FromRele_assoc_3EDEE251A83223DE4BCA615BA622E7D2"
an OData Entity Data Model (EDM) and populates the MPC of the OData implementa- Relationship="Z_PURCHASINGDOCUMENTDDL_CDS.assoc_3EDEE251A83223DE4BCA615BA622E7D2"/>
</EntityType>
tion Wlth information del’ived from the CDS mOdel structure. Add]t]onally, CDS View - ’Emt\th\,pe sap:content-version="1" sap:label="Purchase Document Ttem" Harr‘ei 'Z_PurchasingDocumentItemDDLType" >|
- <Key>

«<PropertyRef Mame="PurchasingDocument"/>
<PropertyRef Mame="PurchasPurchasingDocumentItem"/>

field data types are mapped to EDM primitive data types; for instance, the ABAP dic-

. . . . . . </Key>
tlonary bullt-ln type DATS 18 maPPEd tO the EDM . DateTlme data type Moreover, lf tranS' <Property sap:label="Purchasing document" Name="PurchasingDocument" sap:quickinfo="Purchasing Document Number" sap:display-
. . . .. . . . format="UpperCase" MaxLength="10" Nullable="false" Type="Edm.String"/>
aCthnal prOCESSlng 1S enabled fOr CDS entities via the creation Of a BOPF buslness <Property sap:label="Ttem" Name="PurchasPurchasingDocumentItem" sap:quickinfo="Item Number of Purchasing Document"
. . . . . . . sap:display-format="NonNegative" MaxLength="5" Nullable="false" Type="Edm.String"/>
object, BOPF actions will appear as OData function imports in the service metadata </EntiTypes

- [Association sap:content-version="1" Name="assoc_ 3EDEE251A93223DE4E\CAEIEBA622E7D2 >
3 3 3 <End T "Z_PURCHASINGDOCUMENTDDL_CDS.Z_PurchasingDocumentDDLType"
document Table 32 prOVIdes an overview Of the mapplngs from CDS Concepts to RG\;E'FI' mRole_assoc_ 3EDEE251A83223DE4BCA61.SBA6292E7D2 Mu\t\pl\clt\;p "1
<End Typ Z_PURCHASINGDOCUMENTDDL_CDS.Z_PurchasingDocumentItemDDLType"
OData Concepts performed by SADL. Role="ToRole_assoc_3EDEE251A83223DE4BCAG15BA622E7D2" Multiplicity ="#"/=
-/ Association >
- <EntityContainer Name="Z_PURCHASINGDOCUMENTDDL_CDS_Entities” sap:supported-formats="atom json xlsx"
CDS OData m:IsDefaultEntityContainer="true">
<EpfitvSat aap:content-varsion="1" Name="Z_PurchasingDocumentDDL] 53 deletable— false" sap:
sap:creatable="false" ntlt\,Tvpe* "Z_PURCHASINGDOCUMENTDDL _
. a < Egnyoe e ot Uersion="1" Name="Z, F'urchaslngDu(u|nentltemDDL sap:deletable="
CDS view (DDL) EDM entlty sap;creatable="false’ [ntityType="Z_PURCHASINGDOCUMENTDDL_CDS.Z_P Yoe s
- <AsSOCiationSet sap:content-version="1" Name="assoc_ 3EDEE251A83223DE4BCA615BA622E7D2" sap: delﬂtab\e— false
sap:updatable="false" sap:creatable="false"
CDS associations EDM association Association="7_PURCHASINGDOCUMENTDDL_CDS.assoc_3EDEE251A83223DE4BCA615BA622E7D2">
<End Role="FromRole_assoc_2EDEE251A83223DE4BCA615BA622E7D2" EntitySet="Z_PurchasingDocumentDDL"/>
<End Role="ToRole_assoc_3EDEE251A83223DE4BCA615BA622E7D2" EntitySet="Z_PurchasingDocumentItemDDL"/>

CDS view field data type EDM primitive data type </AssociationSet>

</EntityContainer>

BOPF actions Function import Figure 3.17 XML Service Metadata Document of the Simple CDS Scenario from Chapter 1

Exposed as an OData Service
Table 3.2 Mappings between CDS Data Model Concepts and OData EDM Concepts

Figure 3.17 shows how the service metadata document will look for the simple sce- 3.4.2 Service Implementation Phase

nario introduced in Chapter 1. As you remember, the purchase document CDS view In the previous data model definition phase, SADL maps the CDS data model to an
(Z_PurchasingDocumentDDL) had an association to the purchase document items view OData EDM and creates a static service definition. At runtime, SADL also takes care of
(Z_PurchasingDocumentItemDDL). Both views now appear as OData entity types in the processing the OData requests performed by clients. The OData runtime delegates
OData service’s metadata document, including the information about the associa- OData requests to the generic SADL query engine, which generates SQL SELECTS on
tion between the two entities and their cardinalities. Which operations an entity sup- CDS views based on the request parameters ($select, $top, $filter, etc) and the
ports is indicated by the sap:creatable, sap:updatable, and sap:deletable attributes requested OData entity.

of the EntitySet element. In the following example, you can see that the service An incoming OData request for the standard purchase order basic view entity might
doesn’t support any write access at all, as we haven’t enabled the transactional run- look like Listing 3.2.
time for our CDS model by generating a BOPF business object. Thus, the service only

supports read access via HTTP GET entity requests. As already mentioned, the meta- GET I_PurchaseOrdertntity?$select=

PurchaseOrder, PurchaseOrderType, PurchasingOrganization,PurchasingGroup,Purchas

data file of an OData service can be requested using the $metadata path, /sap/opu/
eOrderDated$top=108$orderby=PurchaseOrderDate asc&$filter=

odata/sap/<OData_service name>/$metadata.
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( PurchaseOrderDate ge datetime'2018-01-
01T00:00:00"' and PurchaseOrderDate le datetime'2018-12-31T00:00:00")

Listing 3.2 OData GET Request for the |_PurchaseOrderEntity OData Entity

The SADL framework will then transparently transform this request into an SQL
SELECT statement on the I PurchaseOrder CDS view (Listing 3.3).

SELECT
PurchaseOrder,
PurchaseOrderType,
PurchasingOrganization,
PurchasingGroup,
PurchaseOrderDate
FROM
I PurchaseOrder
WHERE
PurchaseOrderDate GE '20180601'
AND PurchaseOrderDate LE '20180601°
ORDERBY
PurchaseOrderDate ASCENDING
UP TO 10 ROWS

Listing 3.3 Generated SQL SELECT for the OData GET Request

When you compare the OData request and the generated SQL statement, you can see
that OData queries can easily be pushed down to a relational database as OData
already resembles SQL, and all OData parameters can be mapped to a certain part of
the SQL SELECT statement. This property makes OData the perfect candidate for
exposing business entities over HTTP because easy transformation of HTTP requests
to SQL SELECT statements promotes the Code-to-Data paradigm of SAP HANA and
prevents unnecessary data processing on the ABAP server. Table 3.3 shows the map-
pings between OData parameters and SQL query parts.

$select SELECT

$top UP TO n ROWS

Table 3.3 Mapping between OData Parameters and Corresponding Parts of an SQL SELECT
Statement
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$orderby ORDERBY

$filter WHERE

Table 3.3 Mapping between OData Parameters and Corresponding Parts of an SQL SELECT
Statement (Cont.)

3.5 Business Object Processing Framework

The Business Object Processing Framework (BOPF) is an ABAP framework that consti-
tutes the transactional runtime of an application in the ABAP Programming Model
for SAP Fiori. As soon as an application requires write actions such as CUD, a BOPF
business object must be generated from the CDS data model, which will take over the
transactional part of the app. Currently, four transactional scenarios are supported,
as discussed in the following subsections.

3.5.1 Read-Only Application with Quick Actions

In this case, you don’t want to enable full create, write, and delete access but only
enable a quick action, for instance, for changing the status of the business object. A
BOPF business object for this scenario can be generated by annotating the root view
of the CDS model with annotations on the header level as shown in Listing 3.4.

@0bjectModel: {
transactionalProcessingEnabled: true,
compositionRoot: true,
writeActivePersistence: '<SQL View>',
createEnabled:  false,
updateEnabled:  false,
deleteEnabled:  false

}

Listing 3.4 Required Annotations for Generating a BOPF Business Object to Implement
Quick Actions

(Re)activation of the view will lead to the generation of a BOPF business object, and
Quick Actions can be implemented in ABAP for the respective BOPF node. We also

13
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must provide an active persistence using the writeActivePersistence annotation.
However, in this case, because we don’t allow standard (CUD) access, it will only be
used for field mappings between CDS and BOPF.

Note

When exposing a CDS view as an OData service using Auto-Exposure or the RDS sce-
nario, SADL takes the createEnabled, updateEnabled, and deleteEnabled CDS anno-
tations into account and maps them to OData entity set attributes. For instance, if
the CDS view doesn’t enable write access or doesn’t have a linked BOPF business
object at all, the respective OData entity set will have the attributes sap:creatable=
”false”, sap:updatable="false”, and sap:deletable="false”.

3.5.2 New Application without Draft

If we also want to enable standard generic CUD access for our application, we must
set the createEnabled, updateEnabled, and deleteEnabled annotations to true (Listing
3.5). Furthermore, we must provide the database table in which the data must be per-
sisted in using the writeActivePersistence annotation.

@0bjectModel: {
transactionalProcessingEnabled: true,

compositionRoot: true,
writeActivePersistence: '<ActivePersistenceName>',
createEnabled: true,
updateEnabled: true,
deleteEnabled: true

}

Listing 3.5 Required Annotations for Full CUD BOPF Support

In this case, BOPF will generically handle CUD operations. If we want to enhance the
standard generic transaction logic, we can provide BOPF actions, validations, or
determinations for the respective node of the BOPF business object. However, if we
want to reuse existing legacy ABAP CUD implementations containing complex busi-
ness logic, the next scenario is better suited.

N4
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3.5.3 Draft-Enabled Application

In this scenario, data isn’'t immediately written to the standard active database tables
but is stored in a draft table. This scenario is very well suited for legacy applications
that already consist of database tables and ABAP CUD code, including complex busi-
ness logic. We can enable the old database tables for SAP HANA optimized read access
by providing CDS views on top of the legacy database tables and still reuse the legacy
ABAP code when activating a draft. Activating in this context means transferring the
data from the intermediary draft table to the actual table. To do this, the BOPF busi-
ness object root node will provide an adapter (/bobf/if frw draft~copy draft to
active entity)that must be implemented by the developer and maps the draft repre-
sentation of the data to the legacy signature of the ABAP code to write the data into
the legacy database tables. The required annotations for generating the draft infra-
structure are shown in Listing 3.6.

@0bjectModel: {

transactionalProcessingEnabled: true,
compositionRoot: true,
draftEnabled: true;
writeDraftPersistence: '<DraftPersistenceName>',
createknabled:  true,

updateEnabled:  true,

deleteEnabled:  true

}

Listing 3.6 Required Annotations for Generating the BOPF Draft Infrastructure for a Legacy
Application with an Existing Persistence

3.5.4 New Application with Draft

In this scenario, we provide new tables for draft and active entities (Listing 3.7). As in
the previous scenario, data will be stored in intermediary draft tables and only writ-
ten to the active persistence on explicit activation of the entity. However, in this sce-
nario, BOPF will completely take over the transactional processing. We can only
enhance the data processing by adding BOPF actions, validations, or determinations
to the respective nodes of the BOPF object. This scenario is only suited for new appli-
cations. Iflegacy tables and ABAP CUD code will be reused, this scenario isn’t the right
choice.
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@0bjectModel: {

transactionalProcessingEnabled: true,
compositionRoot: true,
draftEnabled: true;
writeDraftPersistence: '<DraftPersistenceName>',
writeActivePersistence: '<ActivePersistenceName>'
createEnabled:  true,

updateEnabled:  true,

deleteEnabled:  true

}

Listing 3.7 Required Annotations for Generating the BOPF Draft Infrastructure for a New
Application

3.6 SAP Fiori

The open access to backend business data via OData and SAP Gateway enables the use
of modern non-ABAP UI technologies for displaying and interacting with business
data. The Ul of applications developed using the ABAP programming model for SAP
Fiori is therefore completely based on the SAPUI5 framework, which implements the
SAP Fiori design. The Ul part of applications is usually implemented using the cloud-
based SAP Web IDE and is either based on SAP Fiori elements applications or freestyle
applications. SAP Fiori elements applications, for instance, the list report and object
page templates or floorplans, adapt their layouts based on the OData service’s meta-
data and UI annotations defined in CDS views or their respective metadata exten-
sions. Therefore, SAP Fiori elements templates significantly reduce the necessary
frontend SAPUI5 JavaScript code to a minimum and increase developer productivity
significantly by still providing flexibility using predefined extension points in the
frontend.

Additionally, transparent to the developer, the SAP Fiori elements applications
implement the necessary CRUD request handling for read-only, draft-enabled, and
non-draft-enabled applications, depending on which BOPF scenario has been anno-
tated, generated, and implemented in the backend. Freestyle applications, in contrast
to SAP Fiori elements, provide the frontend developer with full flexibility over the UI
design and logic but require a lot of effort in the development phase. The UI layout
and its controls must be declared manually by the developer, and the necessary
SAPUIS JavaScript logic must be implemented. Therefore, it’s not recommended to
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use complex draft-enabled BOPF scenarios with freestyle applications because the
orchestration of the necessary requests might become too complicated. Moreover,
another risk when developing freestyle applications is the violation of SAP Fiori
design guidelines. Consequently, only use freestyle applications when the required
Ul design isn’t realizable using one of the SAP Fiori elements floorplans.

3.7 Summary

In this chapter, we gave you an overview of the ABAP programing model for SAP Fiori
and its associated technologies. We started with CDS, which are at the center of any
application development for SAP S/4HANA. They are the foundation for all applica-
tion types and can be configured for different application types using domain-spe-
cific Uls, analytics, search annotations, or transactional annotations. Next, we looked
at SAP Gateway and OData as the technologies enabling easy network-based access to
business data stored in SAP NetWeaver backend systems. Then we explored SADL
and how it supports providing model-based read and transactional access to CDS
entities via OData. The BOPF constitutes the transactional runtime of the ABAP pro-
gramming model for SAP Fiori and enables ABAP-based CUD operations for data
models based on CDS views. It provides several scenarios for different application
requirements, which we briefly listed and described.
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