N IH dYYS A0 JusSsuidolaonasd AV asw

First-hand knowledge.

ABAP’ Development
for SAP HANA

Understand how SAP HANA changes ABAP programming
Access the database with ABAP Database Connectivity,
sQLscript, and ABAP-managed database procedures

Model data using calculation views and CD5 views

Machd I\.-?ohsin ﬂ:hmed g Rheinwerk
sumit Dipak Naik Publishing

® Rheinwerk

Publishing

Browse the Book

ABAP-managed database procedures can be leveraged to optimize
nonnative, ABAP-based applications such as programs, forms, and
interfaces by leveraging the code pushdown features supported by SAP
HANA database. In this chapter you will learn to define and implement
AMDP methods.

“ABAP-Managed Database Procedures”

Contents

@ Index

9 The Authors

Mohd Mohsin Ahmed, Sumit Dipak Naik
ABAP Development for SAP HANA

643 Pages, 2021, $89.95
ISBN 978-1-4932-1877-6

-E Www.sap-press.com/4954

https://www.sap-press.com/abap-development-for-sap-hana_4954/#utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse%20the%20Book&utm_content=1877

Chapter 6
ABAP-Managed Database Procedures

ABAP-managed database procedures can be leveraged to optimize non-
native, ABAP-based applications such as programs, forms, and interfaces
by leveraging the code pushdown features supported by SAP HANA
database. In this chapter you will learn to define and implement AMDP
methods.

In Chapter 2, we briefly introduced you to the code pushdown paradigm, which helps
developers optimize business applications on the SAP HANA database. This chapter
will include an emphasis on ABAP-managed database procedures (AMDPs), one of the
recommended approaches to achieve code pushdown functionalities.

In this chapter, we'll start by covering essential aspects like the motivation behind
introducing AMDPs, including how they are created and consumed in business appli-
cations in Section 6.1. We’ll then show you how to create AMDP classes in Section 6.2
and also explore the concepts behind enhancements using AMDPs in Section 6.3. Next,
we’ll turn to exception handing in Section 6.4 and explore different debugging tech-
niques to analyze your procedures in Section 6.5. We'll conclude this chapter on AMDPs
tools in Section 6.6.

6.1 Introduction

Let’s briefly recap some information you learned earlier in this book about code push-
down. In the classic style of coding, as shown in Figure 6.1, developers used to design
applications by retrieving all the data at once using database array operations such as
FOR ALL ENTRIES, JOIN, or ABAP Dictionary views. This approach reduced loads on data-
base servers by limiting data transfer requests between the application and the data-
base server.

Subsequent data processing operations are performed on the application server’s
internal table to achieve the desired results. However, this approach’s drawback was
the formation of complex SQL queries to retrieve data. Performance issues arose
because unnecessary data was retrieved, filtered, and processed in the application
layer.

6 ABAP-Managed Database Procedures

Classical Database New Approach

| Presentation Layer | | Presentation Layer |

Data-to-Code f * T *

Data Operations
(Calculations, | Application Layer | | Application Layer |

Aggregations)

Code-to-Data
Data retrieval f * Data requested f + Data retrieval

Data Operations

| Database Layer | | Database Layer | (Calculations,
Aggregations)

Oracle or any database SAP HANA database

Figure 6.1 New Programming Approach

This fundamental change to the ABAP programming model in favor of pushing code
and data processing to the database is called the code-to-data paradigm, shown in
Figure 6.1, instead of the classic data-to-code approach.

In SAP HANA, several code-to-data techniques are available for implementing data-
intensive calculations in the database layer. SAP HANA performs data-intensive calcu-
lations in the database layer using SAP HANA views or procedures. These artifacts are
later utilized in ABAP applications using several code-to-data techniques. Whether or
not you should use these techniques depends on the SAP NetWeaver Application
Server for ABAP (AS ABAP) release used in your landscape.

As shown in Figure 6.2, if you are using SAP NetWeaver AS ABAP 7.4 SPO2 or lower, SAP
HANA repository objects, such as SAP HANA views or procedures, are directly accessed
in ABAP applications using native SQL. With SAP NetWeaver AS ABAP 7.4 SPO2 or
higher, these objects are accessed in ABAP applications using ABAP proxy objects such
as external views or database procedure proxies to overcome the limitations of using
native SQL.

The techniques used before SAP NetWeaver AS ABAP 7.4 SPO5 are known as bottom-up
approaches because SAP HANA views or procedures are created in the database layer.
The views are created using a database user in the Modeler perspective and later con-
sumed in the ABAP layer using Native SQL or proxy objects. Although these techniques
offer the benefit of performing the data processing in the database layer, one limitation
of using a bottom-up approach is its complex lifecycle management requirements. For
example, handling SAP HANA repository objects must occur separately through deliv-
ery units and ABAP proxy objects by using the SAP HANA transport containers to
import objects to other systems. Additionally, developers must ensure proper synchro-
nization of all SAP HANA artifacts in all the environments whenever any procedure or

160

6.1 Introduction

view changed. These shortcomings were later handled with the release of SAP Net-
Weaver AS ABAP 7.4 SPO5 by introducing progressive code pushdown techniques like
ABAP-managed database procedures (AMDPs) and core data services (CDS). These tech-
niques are referred to as top-down approaches because the entire lifecycle manage-
ment is conducted by the ABAP layer. SAP HANA artifacts such as views and procedures
are automatically created in the database.

Bottom-up approach Top-down approach
Lifecycle management in Lifecycle Management in
SAP HANA and ABAP stack ABAP stack only
< 7.45P02 > 7.4 SP02 m— > 7.4 SP05 \4
% SAP HANA ABAP
2 Native SQL Proxy objects transport AMDP CDS transport
2 container (CTS)
A A A
Created on first
method call
[[[
= : : : Created
P4
g | | SAPHANA SAP HANA Database SAP HANA automatically
o views views procedures views when CDS is
< procedures procedures activated

Figure 6.2 Code-to-Data Approach

For example, when an AMDP class and method are defined, a procedure is created in
the database before an AMDP method is called for the first time in the calling program
and updated on the subsequent calls if it has been changed. In contrast, in the case of a
CDS view, the SAP HANA view is created when the CDS view is activated.

6.1.1 ABAP-Managed Database Procedure Framework

AMDPs are a recommended technique for achieving code pushdown functionality if
your underlying database is SAP HANA. The framework uses a top-down approach to
create and manage database procedures in the ABAP environment. The AMDP frame-
work guarantees that the complete lifecycle of the AMDP procedure—from creating,
changing, activating, and transporting the procedure—occurs in the application layer
by the ABAP runtime environment.

As a developer, you'll write procedures in an AMDP method implementation of an
AMDRP class. In contrast to the traditional ABAP method, an AMDP method is a unique
method and implements database-specific programming languages, such as SQLScript,
native SQL, and L (used internally by SAP). The keyword LANGUAGE specifies the database-
specific language for implementing the procedure.

161

6 ABAP-Managed Database Procedures 6.1 Introduction

As shown in Listing 6.1, the usage of the keyword BY DATABASE PROCEDURE in the imple- ® Currently, the AMDP framework only supports database procedures for SAP HANA
mentation section of the AMDP method helps differentiates whether the method uses databases. However, SAP has designed the framework to support stored procedures
ABAP or any other language to implement the procedure. for other databases.
AVDP Class Definition ® You can only create or edit an AMDP using the Eclipse-based ABAP Development
CLASS zcl amdp example DEFINITION Tools (ADT). Thus, the classic SAP GUI-based class builder (Transaction SE24) is not
PUBLIC suitable for managing an AMDP class and its methods, as only the display function
FINAL is supported in Transaction SE24.
CREATE PUBLIC. m Developers classified as standard ABAP users with appropriate authorizations can
manage database procedures using an AMDP class, and Transaction SICK can detect
PUBLIC SECTION. missing permissions.
AMDP Marker Interface
INTERFACES if amdp marker hdb. Benefits of Using AMDPs
Let’s discuss a few benefits of using AMDPs:
AMDP Method m A standard ABAP user can manage an AMDP, unlike in bottom-up techniques like
CLASS-METHODS amdp_method SAP HANA views and procedures, where both ABAP and SAP HANA database users
Importing parameter defined using Dictionary type are required.

IMPORTING VALUE(im input) TYPE matnr
Importing parameter defined using ABAP type

EXPORTING VALUE(ex output) TYPE i
Importing parameter defined using TABLE type

CHANGING VALUE(ch param) TYPE ttyp d.

® The AMDP framework is responsible for communicating with the database and
automatically creating the database procedures as SAP HANA repository catalog
objects.

® The entire lifecycle management to synchronize, create, change, activate, and
transport procedures is performed in the ABAP layer.

PROTECTED SECTION.
PRIVATE SECTION.
ENDCLASS.

AMDP Class Implementation
CLASS zcl amdp example IMPLEMENTATION.

AMDP Method Implementation
METHOD amdp_method BY DATABASE PROCEDURE
FOR HDB
LANGUAGE SQLSCRIPT.

--Implement SQLScript Code (Database specific code)

ENDMETHOD.
ENDCLASS.

Listing 6.1 AMDP Framework Definition

The ABAP perspective within ADT serves as a development environment for writing
and managing your SQL scripts.

The framework supports full integration of SQLScript syntax check and debugging
into the ABAP environment.

Even though an AMDP might be implemented using a database-specific language,
such as native SQL or SQLScript, the ABAP environment still evaluates source code
for any syntax errors.

Procedures are automatically created in the SAP HANA database by the ABAP run-
time environment before the first AMDP method call.

You can extend an AMDP using Business Add-Ins (BAdls) if it has an extension pro-
visioned by the software provider.

An AMDP is not a replacement for database procedure proxies, which are still con-
sidered in sidecar scenarios with secondary database connections to access SQL-
Script procedures in a different SAP HANA database.

In general, you should consider the following points before creating or consuming an 6.1.2 Development Environment for AMDP

AMDP:
Using ABAP Development Tools (ADT) is mandatory for creating and changing AMDPs,

as the classic SAP GUI-based Transaction SE24 only supports the display function. ADT

162 163

6 ABAP-Managed Database Procedures

also delivers additional features for developers to work effectively with AMDPs and
improve developer productivity and efficiency.

Some features delivered by ADT for managing ADMPs include the following:

® Code completion functionality for ABAP, accessed by pressing +
®m SQLScript syntax check available in the ABAP environment

® Highlighting of syntax errors in SQLScript

® Analysis of AMDP methods via the debugging functionality

®m Highlighted usage of embedded language to distinguish between database-specific
language and ABAP code

Let’s take a look at some of the features supported by ADT next.

As shown in Figure 6.3, the SAP GUI-based class builder (Transaction SE24) does not
allow you to edit an AMDP class and only supports display function; thus, ADT is the
preferred development environment for AMDPs.

Class Builder: Display Class ZCL_AMDP_DEMO_01

L @y pA L - - =
2> Um0 ek oS Y =
Class/Interface ZCL_RMDF_DEMO_01 Implemented / Active

Properties Interfaces Friends Attributes Methods Events Types

B rarameters Exceptions | =] Sourcecode |RE3|ES|e2 = |
Method Level Visibility M... Description
r =
EEI_FLIGI’H_DAIA JST.'.ET.’.iC Method Public
L

@ Chss/Interf. ZCL_AMDP_DEMO_01 contains stored procedures, cannot be changed in SAP GUI

Figure 6.3 SAP GUI-Based Class Builder (Transaction SE24)

In ADT, the appearance of the form-based editor can be changed by the developer to
highlight syntax errors and to differentiate between the embedded (database-specific)
language and the ABAP language. To enable syntax highlighting, navigate to Win-
dows - Preferences, as shown in Figure 6.4.

Window Help

Mew Window

Editor ¥
Appearance >
Show View >
Perspective >
Mavigation >
Preferences

Figure 6.4 Preferences for the Form-Based Editor

164

6.1 Introduction

Select General - Appearance - Colors and Fonts « ABAP, as shown in Figure 6.5. Then,

select Embedded language under Syntax Coloring and click Edit... to modify the color

according to your preferences.

W& Preferences O *
[iype filter text | | colors and Fonts CRAR S
RaCerneial Colors and Fonts (font, size, type, T = any character, * = any string) :
v Appearance -
Colors and Fonts | type filter text |
Label Decorations v (g4 ABAP 2 Edit...
Compare/Patch (g4 Communication Lag
Content Types [’u@' Profiler Use Systemn Font
Editors [y Search
Globalization v [z Syntax Coloring Rleset
Keys B Comment .
Link Handlers O Embedded Language (background color) Edit Default...
Metwork Connection:
. L] = Go to Default
Maotifications W ldentifier
Perspectives B Keyword
Quick Search W Literal Expand All
Search O Method, Form and Module bodies (background color)
Security E Murnber Literal
Service Policies [0 Unchangeable Source Code (background color) v
Startup and Shutdow Descrinti
R escription:
Tracing
LIl Becnnnsivensss M. | Color used to highlight error tokens in ABAP editor]

Figure 6.5 Modifying Colors and Fonts of the Form-Based Editor

In ADT, SQLScript syntax error is fully supported and integrated into ABAP. This can be

seen by toggling the cursor on the error marker on the right-hand side of the form-

based editor. The detailed SQLScript syntax errors can be seen by toggling the cursor on

the error, as shown in Figure 6.6.

215 CLASS zcl amdp demo_01 IMPLEMENTATION.
METHOD get_flight_ data BY DATRBASE PROCEDURE
FOR HDB
LENGUAGE SQLSCRIPT
OPTIONS RERD-ONLY
USING sflight sbook.
e flight = SELECT a.CARRID,
a.CONNID,
b_BOOEID FRM SFLICHT RS B
INNER JOIN SEOOKE RS B
CoH a.carrid = b.carrid

44 ENDMETHOD .

AND a.comnnid = b.connid;

|SQLSCRIPT: sql syntax error: incorrect syntax near "SFLIGHT"

Figure 6.6 SQLScript Syntax Errors

In ADT, you can also highlight the SQLScript syntax errors at the point where they

occur. As shown in Figure 6.7, the syntax error statement SFLICHT is emphasized in

amber color. Additionally the detailed syntax error description can also be seen on the

right-hand side of the source code editor.

165

6 ABAP-Managed Database Procedures

352 CLASS_zcl_amdp_demo_B1 IMPLEMENTATION.
00 get_flight_data BY DATABASE PROCEDURE
FOR HDB

LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
USING sflight shook.

-- Data selection from data sources using SQLscript

E_FLIGHT = SELECT a.carrid,
a.connid,
sum{loccuram) AS bockamt,
b.loccurkey
FRM 37 c0h AS a INNER JOIN

shook AS b

ON a.carrid = b.carrid
AND a.connid = b.connid
WHERE a.mandt = :iv_client
GROUP BY A.carrid, a.connid, b.loccurkey;

-- Filter based on the Selection screen criteria
E_FLIGHT = APPLY_FILTER(:E_FLIGHT, :iv_filters);|

55 ENDCLASS.

Figure 6.7 Emphasizing SQLScript Errors and Differentiating between ABAP and Database
Specific Code

In the AMDP method, you can also set the background color of the embedded language
to differentiate between ABAP and database specific code such as SQLScript. Set the
color using the same process we discussed earlier in Figure 6.4: navigate to Windows -
Preferences - General - Appearance « Colors and Fonts «- ABAP - Embedded language.
Figure 6.7 you can see that the background color for database-specific syntax is empha-
sized in gray color.

6.2 Creating AMDP Classes

A global class must be defined in the class library using ADT to create an AMDP proce-
dure. A class is categorized as an AMDP class if its definition contains one or more tag
interfaces. The tag interfaces are prefixed with IF_AMDP_MARKER and end in a suffix indi-
cating database system for which the procedure is implemented.

In the following sections, we will understand several prerequisites that you should con-
sider while defining and implementing an AMDP method. You will also learn to con-
sume AMDP and check if current database (or a database specified using a database
connection) supports the AMDP features in the ABAP applications.

Example

The marker interface IF_AMDP MARKER HDB is relevant for SAP HANA database, where
HDB indicates that the procedure is intended for an SAP HANA database.

6.2.1 Prerequisites

An AMDP class can be comprised of one or more traditional and AMDP methods. It can
also contain AMDPs for each database system specified by a tag interface. The source

166

6.2 Creating AMDP Classes

code shown in Listing 6.2 illustrates a simple AMDP definition implementing all the
required prerequisites. These prerequisites are as follows:

® An AMDP class definition should contain a marker interface IF_AMDP_MARKER HDB, as
it implements an AMDP method for the SAP HANA database.

® In the class definition, the AMDP method parameter types should be a dictionary,
ABAP (for example, integer or character), or table types. For parameters with table
types, the line types should contain elementary components because nested tables
are not supported.

® An AMDP method can only contain importing, exporting, and changing parameters.
An AMDP method cannot have return parameters.

® Similar to remote function call (RFC) parameters, all method parameters should be
defined as pass by value. Pass by reference in the method definition is not permitted.

® An AMDP method can be defined in the PUBLIC SECTION, PRIVATE SECTION, or PROTECTED
SECTION of the class. However, if the AMDP methods of other classes do not call the
method, you must declare the method as PRIVATE.

CLASS zcl amdp demo 01 DEFINITION
PUBLIC
FINAL
CREATE PUBLIC.
PUBLIC SECTION.

AMDP Marker Interface
INTERFACES if amdp marker hdb.

Type Declaration
TYPES: BEGIN OF d flight,
carrid TYPE s carr id,
connid TYPE s _conn_id,
bookamt TYPE s f cur pr,
loccurkey TYPE s currcode,
END OF d_flight.
TYPES: tt flight TYPE STANDARD TABLE OF d flight.

AMDP Method Definition
CLASS-METHODS get flight data
IMPORTING
VALUE (iv_filters) TYPE string
VALUE(iv_client) TYPE sy-mandt
EXPORTING
VALUE(e flight) TYPE tt flight

167

6 ABAP-Managed Database Procedures

CHANGING
VALUE(c_return) TYPE i

RAISING cx_amdp no_connection
cx_amdp_execution error.
PROTECTED SECTION.
PRIVATE SECTION.
ENDCLASS.

Listing 6.2 AMDP Class Definition

6.2.2 Implementing AMDP Methods

An AMDP method is a unique method that optimizes ABAP applications by imple-
menting code pushdown from the application server layer to the database layer. This
method is wrapped in a global class and can be defined as either a static method or
instance method. Even though you can define an AMDP method as an instance
method, it will always be executed as a static method call.

Two types of AMDP methods exist:

® An AMDP procedure without a return code is defined by a method using the addi-
tion BY DATABASE PROCEDURE.

® An AMDP function with a return code is defined by a method using the addition BY
DATABASE FUNCTION.

Any regular method within an AMDP class can be transformed into an AMDP method
by using either the BY DATABASE PROCEDURE or BY DATABASE FUNCTION addition at the start of
the method statement in the method implementation part, followed by the database
system for which the procedure is implemented, the language in which the business
logic is written, and the mandatory ABAP objects (which may include transparent
tables, views, and other AMDPs that are used as data sources).

Additionally, you can mark an AMDP method as READ ONLY using the addition OPTIONS,

which is optional.

The body of an AMDP method, shown in Listing 6.3 uses database-specific language
such as SQLScript or native SQL. The source code shown in Listing 6.3 illustrates an
AMDRP class and method with database-specific logic using SQLScript to summarize
sales by airline and flight code. The procedure also filters records based on the selection
screen using the FILTER keyword. To implement business logic, you can use the full
SQLScript reference, except for calculation engine (CE) functions such as the following:
® CE_LEFT OUTER JOIN

®m CE COLUMN_TABLE

= CE UNION ALL

168

6.2 Creating AMDP Classes

CLASS zcl amdp demo 01 IMPLEMENTATION.
METHOD get flight data BY DATABASE PROCEDURE
FOR HDB
LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
USING sflight sbook.

Data selection from data sources using SQLScript
E FLICHT = SELECT a.carrid,
a.connid,
sum(loccuram) AS bookamt,
b.loccurkey
FROM sflight AS a INNER JOIN
sbook AS b
ON a.carrid = b.carrid
AND a.connid = b.connid
WHERE a.mandt = :iv_client
GROUP BY A.carrid, a.connid, b.loccurkey;

Filter based on the selection screen criteria
E_FLIGHT = APPLY_FILTER(:E_FLIGHT, :iv_filters);

ENDMETHOD.
ENDCLASS.

Listing 6.3 AMDP Method Implementation Example

Listing 6.3 contains the following elements:

® A global AMDP class implementation contains the AMDP method implementation.
In our example, our AMDP method will summarize total flight sales by airline and
flight code.

® The method GET FLIGHT DATAisimplemented as an AMDP method since the method
is defined with the addition BY DATABASE PROCEDURE.

m What follows is the database addition HDB to implement the procedure for the SAP
HANA database. The AMDP framework only supports SAP HANA database; however,
the framework is designed to work with other databases.

m Further, the database-specific language to be used is specified. In this case, SQLScript
will be used in the AMDP method to implement the business logic.

m All database objects, such as dictionary tables, views, and other AMDP methods used
as data sources within the method body, must be declared explicitly with the key-
word USING. These objects can be accessed directly, that is, without the need to prefix
these objects with SAP<SID> (Schema). However, for nested AMDP calls, that is, for

169

6 ABAP-Managed Database Procedures

AMDP methods called inside an AMDP body, you should specify objects by their full
names, that is, with the class they belong to and the method name in uppercase and
closed in double quotation marks.

® You must ensure that any objects that are not part of SAP<SID> schema are available
at runtime since these objects are not managed and therefore are not included in the
USING clause.

® Finally, the SQLScript language is used within the AMDP body to write the business
logic that is executed in the database layer.

® The procedure results are filtered using the SQLScript function APPLY FILTER based
on the selection criteria provided as an importing parameter to the AMDP method.

® The procedure written in the AMDP body is highlighted in gray to differentiate
between ABAP-specific language and database-specific language. Refer to Figure 6.4
to see how to set the color for the editor’s background.

You should consider the following restrictions when implementing an AMDP method:

® Data definition language (DDL) such as Create, Alter, or Delete are not allowed to
create, change, or delete any database objects.

® You cannot access local temporary data objects, such as internal tables, or variables
defined in the class definition in the method implementation.

® Statements like database commits and rollbacks are not allowed in the method
body. Also, to avoid data inconsistencies between procedures, you should handle
logical units of work separately in the ABAP program.

® You cannot extend AMDP methods using implicit enhancement options, as these
methods are directly executed on the database, and implicit options are not avail-
able within an AMDP method.

®m While using data manipulation language (DML), such as INSERT, UPDATE, MODIFY,
DELETE, etc., write access to buffered tables is not allowed.

6.2.3 Calling AMDP Methods in Applications

An AMDP method is called in an ABAP application similar to any other regular method,
using an Eclipse-based form editor in ADT or through SAP GUI-based transactions.
These methods are always executed as static method calls, even if defined as instance
methods.

You can call an AMDP method in an ABAP application in several ways. In the Eclipse-
based ABAP perspective (see Figure 6.8), you can use the code completion template by
pressing + to call an AMDP method. In SAP GUI-based editors (see Figure
6.9), you can use ABAP-based patterns by pressing + (Fe).

170

6.2 Creating AMDP Classes

© zcl_adt ~ G zcl_amdp_demo_01
o zel_amdp_call_eds_1 0 if_amdp_marker_hdb
c] zcl_amdp_cust_classification ¢ get_flight_data
ng:\jr;dp,de;\o,m L d_ﬂigh.t .
[C] zd_ar;dp_ax:mple ﬁm‘:‘ type s‘can‘lé

) : connid type s_conn_id
© zcl_amdp_sflight_details bookamt type s_f_cur_pr
© x| ci category_obsolete loccurkey type s_currcode
] zcl_ci_test_obsolete_syntax €& tt_flight type standard table of zcl_amdp_demo_01=>d _flight
@ zcl_demo_amd p_1 . Y| | Documentation

Press Shift-Enter to oniyinsertoame] | 1 AMDP Class to fetch flight detals

Figure 6.8 Consuming AMDP Method in ABAP (Eclipse)

CRLL METHOD zcl_amdp demo Ol=>get flight data

EXPORTING & 00 Statement Pattern X
iv filters
— A

'® Call Method

iv client

- - _ Instance
comwEING Class/Interface ZCL_EMDP_DEMO_01
R Method GET_FLIGHT_DATA

Create Object
Instance
Class

Figure 6.9 Consuming AMDP Method in ABAP (SAP GUI)

However, to consume an AMDP, the SAP NetWeaver AS ABAP’s central database should
be managed by the database system for which the AMDP method is implemented. If
not the case, then the procedure call results in a runtime error.

As shown in Figure 6.10, before the first method call, the ABAP runtime environment
creates the procedure implemented in the AMDP method in the database system or
updates any existing database procedure if the AMDP has changed, as shown in Figure
6.11. Once the method is called, the execution is performed in the database system.
Parameters of the interface are passed from the native SQL interface to the database
system or are applied by the database system.

AFDP Method Call
TRY.
zcl_amdp_demo_@1=>get_flight_data(
EXPORTING
iv_filters = 1lv_where_clause
iv_client = sy-mandt
IMPORTING
e_flight = gt _flight
CHANGING
c_return = gv_return).
or Handling
CATCH cx_amdp_no_connection INTO DATA(lref_no_connection).
DATA(1lv_error) = lref_no_connection->get_text().
CATCH cx_amdp_execution_error INTO DATA(lref_amdp_execution_error).
lv_error = lref_amdp_execution_error->get_text().
ENDTRY

Figure 6.10 AMDP Method Called in Application

m

6 ABAP-Managed Database Procedures

[TG HST@HST (SUMITN] SZHTED
w = Catalog
= Public Synonyms
w =2 SAPABAP2
= Column Views
= EPM Models
= EPM Query Sources
= Functions
= Indexes
w = Procedures - Filter: *ZCL_AMDP_DEMO_01=>GET_FLIGHT_DATA*
=+ Table Types - Filter : *ZCL_AMDP_DEMO_01=> GET_FLIGHT_DATA®
£ ZCL_AMDP_DEMO_01=>GET_FLIGHT_DATA
8 ZCL_AMDP_DEMO_01=>GET_FLIGHT_DATAZsth222020041120073C
£ ZCL_AMDP_DEMO_D1=>GET_FLIGHT_DATA=stbt=20200411200730

Figure 6.11 AMDP Procedure Created on the Database

Once a database procedure managed using AMDP has been created (ZCL_AMDP_DEMO 01
=>GET_FLIGHT DATA) on the database schema, SAPABAP2, as show in Figure 6.11, this proce-
dure can be called from other database procedures using the database syntax, provided
that the database permits this access, including AMDP procedures (or database proce-
dures) that are not managed by AMDP. If an AMDP procedure calls another procedure,
this procedure must be specified in the calling method with the addition USING.

In general, we recommend that AMDP procedure implementations that are not called
from AMDP methods of other classes be created as private methods of an AMDP class
and that they be called in regular ABAP methods.

Note

In database systems that do not support AMDP, a traditional method can be created
using an alternative implementation in Open SQL or native SQL.

As shown in Listing 6.4, an ABAP application can call an AMDP procedure to display
flight booking information based on a user’s selection. The example also illustrates the
use of SELECT-OPTIONS to filter data records.

REPORT zcl amdp demo call 01.

" Data declaration
DATA: gwa sflight TYPE sflight.

" Select Options
SELECT-OPTIONS: s carrid FOR gwa sflight-carrid,
s _connid FOR gwa sflight-connid.

" Types Declaration

TYPES: BEGIN OF d flight,
carrid TYPE s carr id,
connid TYPE s _conn_id,

172

6.2 Creating AMDP Classes

bookamt TYPE s f cur pr,
loccurkey TYPE s _currcode,
END OF d flight.

" Internal table
DATA: gt flight TYPE STANDARD TABLE OF d flight.

" Variable
DATA: gv_return TYPE 1.
" Build dynamic where clause, and pass it to the AMDP method
TRY.
DATA(1lv_where clause) = cl shdb seltab=>combine seltabs
(it _named seltabs = VALUE #(
(name = 'CARRID' dref = REF #(s_carrid[]))
(name = 'CONNID' dref = REF #(s_connid[])))).
CATCH cx_shdb_exception INTO DATA(lref shdb_exception).
DATA(1v_meesage) = lref shdb exception->get text().
ENDTRY.

" AMDP Method Call

TRY.
zcl amdp_demo 01=>get flight data(
EXPORTING
iv_filters = 1v where clause
iv_client = sy-mandt
IMPORTING
e flight = gt flight
CHANGING

c_return = gv_return).
Error Handling
CATCH cx_amdp_no_connection INTO DATA(lref no connection).
DATA(1lv_error) = lref no_connection->get text().
CATCH cx_amdp_execution error INTO DATA(lref amdp execution error).
lv_error = lref amdp execution error->get text().
ENDTRY.

" Display results
IF 1v_error IS INITIAL.
cl demo output=>display data(

EXPORTING
value = gt flight
name = 'Flight Booking information').

173

6 ABAP-Managed Database Procedures

6.2 Creating AMDP Classes

Error Handling
ELSE.

WRITE: lv_error.
ENDIF.

Listing 6.4 AMDP Method Call in ABAP Application

6.2.4 Using Multiple Selection Criteria

In ABAP reports, defining a selection screen is essential to empowering business users
so they can filter data based on the desired elements. Selection criteria ensure that
applications can process data faster by filtering out unwanted data in the database
layer. But, to filter the data, you must define selection criteria using parameters,
SELECT-OPTIONS, or a combination of both.

The purpose of parameters is to filter the records based on a single value, whereas with
SELECT-OPTIONS, you can define complex selection criteria to filter out records. Develop-
ers can then use these selection screen elements directly in a WHERE clause of an Open
SQL statement to filter the data. These selection criteria are then converted into the
SQL WHERE conditions by the ABAP application server.

However, suppose you want to use these selection screen elements in an AMDP proce-
dure. In this case, you can use parameters directly in the AMDP method, but this
approach is not valid with SELECT-OPTIONS.

Because you cannot pass SELECT-OPTIONS directly to an AMDP method, this limitation
of using an AMDP must be kept in mind. To pass SELECT-OPTIONS to an AMDP method,
you must first transform the selection criteria into a filter string and then pass the
string as an IMPORTING parameter to the AMDP method. To convert the SELECT-OPTIONS
(selection tables or range tables) into a dynamic SQL WHERE clause, you can use the static
method COMBINE SELTABS() of the new class CL SHDB SELTAB.

This generated condition can then be used in SQLScript to filter the data source using
the SQLScript function APPLY FILTER in the AMDP method implementation. This func-
tion can be applied to database tables, views, and SAP HANA views, however this func-
tion cannot be used with analytical or table variables.

The APPLY FILTER function expects two parameters. The first parameter is the data
source to which you want to apply the filter, and the second parameter is the generated
WHERE clause, which is passed as a string argument.

The CL_SHDB SELTAB class is not available with SAP NetWeaver AS ABAP 7.4 and should

be imported by following the steps described in SAP Note 2124672. SAP NetWeaver AS
ABAP 7.4 SPO8 or higher is required to apply this SAP Note.

Note
The class CL_LIB SELTAB and its methods are obsolete.

174

An ABAP report can consume an AMDP method, as shown in Listing 6.5, filtering data
based on the user selection via parameters or based on SELECT-OPTIONS to display book-
ings for all airline codes by a specific date and customer category.

REPORT zamdp sflight details.

* Data declaration
DATA: gwa_sflight TYPE sflight.

* Selection screen
PARAMETERS: p date TYPE s date.

SELECT-OPTIONS: s carrid FOR gwa sflight-carrid,
s_connid FOR gwa_sflight-connid.

* Build dynamic where clause
TRY.
DATA(1v_where clause) = cl shdb_seltab=>combine seltabs(
it named seltabs = VALUE #(
(name = 'CARRID' dref = REF #(s _carrid[]))
(name = 'CONNID' dref = REF #(s _connid[])))
iv_client field = "MANDT').
CATCH cx_shdb_exception INTO DATA(lref shdb exception).
DATA(1lv_meesage) = lref shdb exception->get text().
ENDTRY.

* AMDP Method call to summarize booking amount by flight, airline code, date,
and customer type
zcl amdp sflight details=>get data(

EXPORTING

iv_client = sy-mandt

iv_date = p date

iv_filters = lv_where clause
IMPORTING

et results = DATA(gt results)).

* Display results
cl demo_output=>display data(

EXPORTING
value = gt results
name = 'Flight Booking information').

Listing 6.5 ABAP Report: Handling SELECT-OPTIONS

175

6 ABAP-Managed Database Procedures

6.2 Creating AMDP Classes

The AMDP method shown in Listing 6.6 is filtering the data based on parameters and
SELECT-OPTIONS passed from the application program shown earlier in Listing 6.5 using
the SQLScript function APPLY FILTER.

CLASS zcl amdp sflight details DEFINITION
PUBLIC
FINAL
CREATE PUBLIC.

PUBLIC SECTION.
* AMDP Marker Interface
INTERFACES: if amdp marker hdb.
* Data declaration
TYPES: BEGIN OF d_sflight,
carrid TYPE s carr id,
connid TYPE s conn id,
fldate TYPE s date,
type TYPE string,
total TYPE s 1 cur pr,
END OF d sflight,

tty sflight TYPE STANDARD TABLE OF d sflight.
* AMDP Method
CLASS-METHODS get data
IMPORTING
VALUE(iv client) TYPE sy-mandt
VALUE(iv date) TYPE s date
VALUE(iv filters) TYPE string
EXPORTING
VALUE(et results) TYPE tty sflight.
PROTECTED SECTION.
PRIVATE SECTION.
ENDCLASS.

CLASS zcl amdp sflight details IMPLEMENTATION.
METHOD get data BY DATABASE PROCEDURE
FOR HDB
LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
USING sflight sbook.

ET RESULTS = SELECT a.carrid, a.connid, b.fldate,

CASE b.custtype
WHEN 'B' then 'Business Customer'

176

WHEN 'P' then 'Private Customer’
ELSE 'Others'
END AS "TYPE",
SUM(b.loccuram) AS TOTAL
from sflight as a INNER JOIN
sbook as b on a.carrid = b.carrid
and a.connid = b.connid
WHERE a.mandt = :iv _client --Parameters
AND b.fldate = :iv date --Parameters
GROUP BY a.carrid, a.connid, b.fldate, b.custtype ;

* Filter based on Selection screen (Select options)
ET RESULTS = APPLY FILTER(:ET RESULTS, :iv filters);
ENDMETHOD.
ENDCLASS.

Listing 6.6 AMDP: Filtering Using SELECT-OPTIONS and Parameters

6.2.5 Feature Support Check Using Global Classes

We recommend checking whether the current database or a database specified using a
database connection supports AMDP features and if it can be used at runtime in the
ABAP applications.

The method USE FEATURE of the global class CL_ABAP_DBFEATURES can be used to check
support for the database-specific feature. Several constants are provided to check data-
base-specific features and can be passed to the USE_FEATURE method in an internal table.
The method returns the value of ABAP_TRUE if the feature is supported by the database,
whereas unsupported values raise an exception from the class CX_ABAP_INVALID PARAM
VALUE and can be handled within the application program to avoid runtime errors. The
database-specific features listed in Table 6.1 can be validated using the global class CL
ABAP_DBFEATURES.

External views EXTERNAL _VIEWS 2
Maximum number of key fields > 16 (120) TABLE KEYCNT MAX1 3
Maximum width of key fields > 900 bytes TABLE KEYLEN MAX1 4
(up to 2000)

Maximum width of table or view > 4030 bytes ~ TABLE LEN MAX1 5

(up to 16293)

AMDP table functions AMDP_TABLE_FUNCTION 6

Table 6.1 Database-Specific Features

177

6 ABAP-Managed Database Procedures

AMDP methods are supported CALL_AMDP_METHOD 8
CALL DATABASE PROCEDURE is supported CALL_DATABASE PROCEDURE 7
Internal table as the source in the FROM clause ~ ITABS IN FROM CLAUSE 9

(from release 7.52)

Limit/offset in subselect or common table LIMIT IN SUBSELECT OR CTE 10
expressions (CTEs)

CTE used in a correlated subquery CTE_IN CORRELATED SUBQUERIES 11
MODIFY FROM SELECT MODIFY FROM SELECT 12
Hierarchies HIERARCHIES 13
GROUPING SETS GROUPING SETS 14

Table 6.1 Database-Specific Features (Cont.)

The AMDP-specific constants CALL_AMDP_METHOD and AMDP_TABLE FUNCTION can be passed
to the importing parameters of the method USE_FEATURES to validate if the underlying
database supports the AMDP procedure, as shown in Listing 6.7.

TRY.
DATA(1v_supported) = cl abap dbfeatures=>use_
features(EXPORTING requested features =
VALUE #((cl abap_dbfeatures=>call amdp method)
(cl abap dbfeatures=>amdp table function))).
CATCH cx_abap invalid param value INTO DATA(lref invalid value).
DATA(lv_message) = lref invalid value->get text().
ENDTRY.
IF 1v supported IS NOT INITIAL."ABAP TRUE
WRITE: 'Database specific feature', cl abap dbfeatures=>call amdp_
method, 'is supported'.
ELSE.
WRITE 1lv_message.
ENDIF.

Listing 6.7 Database Specific Feature Check

You can also use the standard program DEMO DBFEATURES to validate if the current data-
base supports any database features before using them.

To validate database-specific features, follow these steps:

1. Execute the standard SAP program DEMO DBFEATURES using Transaction SE38 (see
Figure 6.12).

178

6.2 Creating AMDP Classes

ABAP Editor: Initial Screen
st S (B B W W [0 & (@ pebugging (& With Variant

Program DEMO_DBFEATURES

Figure 6.12 Execute DEMO_DBFEATURES in Transaction SE38

2. You can choose the database features to validate for the SAP HANA database version
(see Figure 6.13). Click on Enter to view the results.

Select the DB features to be checked

EMDE_TABLE FUNCTION
CALL AMDP_METHOD
CALL_DATABASE PROCEDURE
CTE_IN_CORRELATED SUBQUERIES
EXTERNAL VIEWS

GROUPING_SETS

HIERARCHIES

INDICATORS

ITABS_IN_FROM CLAUSE

LIMIT_IN SUBSELECT_OR CIE
MODIFY_FROM SELECT
MULTI_IN_LIST
TABLE_KEYCNT MAX1

TABLE KEYLEN MAX1

TABLE_LEN MAX1

WINDOWING

L NI ENEAREEERE

Enter

Figure 6.13 Select Database Features for AMBP Supportability Check

3. The report displays the list of supported and unsupported features for the underly-
ing database (see Figure 6.14).

211 selected features are supported by the current EDB wersion

SUPPORTED

AMDP_TABLE FUNCTION
CALL_ZMDP_METHOD
CALL_DATABASE PROCEDURE
CTE_IN CORRELATED SUBQUERIES
EXTERNAL VIEWS
GROUBING_SETS

HIERARCHIES

INDICATORS

ITABS_IN_FRCM CLAUSE
LIMIT_IN_SUBSELECT OR_CTE
MODIFY_FROM SELECT
MULTI_IN_LIST
TABLE_KEYCNT MAX1
TABLE_KEYLEN MAEX1
TABLE_LEN_MAEX1

WINDOWING

UNSUPPORTED

Figure 6.14 Resulting List of Supported and Unsupported AMDP Features

179

6 ABAP-Managed Database Procedures

6.3 Enhancements

6.3 Enhancements

Similar to classic ABAP extensions, where several enhancement techniques like user
exits, customer exits, business transaction events (BTE), and business add-ins (BAdI),
enhancement frameworks are available to perform modification-free extensions to
SAP applications. These enhancements frameworks include implicit and explicit
enhancements or are BAdI-managed using enhancements spots.

In the following sections, you'll learn how to define, implement, and invoke AMDP
BAdI calls within other AMDP methods to extend standard business functionality.

6.3.1 AMDP BAdI Overview

You can also extend an AMDP procedure if the software or extension provides for this
extensibility. As described in Table 6.2, AMDP BAdIs were introduced with SAP Net-
Weaver AS ABAP 7.4 SPOS8 to allow for modification-free extensions. As shown in Figure
6.15, you could then consume these extensions to add or modify a business require-
ment in the procedure.

Software or Extension Provider Customer or Partner Extension Consumer

m Responsible for creating an enhancement ® Responsible for providing an implementa-
spot in Transaction SE20 tion class for the AMDP BAdI

m Responsible for creating a BAd| definition =
categorized as an AMDP BAdI, defines the
BAdI interface, and implements the fall-
back class

m Responsible for integrating the enhance-
ment spot with the application

Table 6.2 Modification-Free Extensions

Responsible for creating an active BAdI
implementation with SQLScript code to
extend or add a business requirement

Default fallback

AMDP to

/ implementation \

Customer

Calls the AMDP BAdI found
provided by the

enhance Executed when there implementation
is no active customer
implementation

BUSINEsS [ogIc is
added inside BAdI

software provider

Figure 6.15 AMDP BAdI Framework

180

implementation
class

In addition to implementing the methods of a normal BAdI as AMDP methods and
making these methods callable using CALL BADI, you can also create a special AMDP
BAdL

An AMDP BAdI is created in Transaction SE20 and is later called within an AMDP imple-
mentation, similar to other AMDPs. An AMDP BAdI is a BAdI that is categorized accord-
ingly in the BAdI Builder and meets the following prerequisites, which are shown in
Figure 6.16:

1. SAP has provided an Enhancement Spot (ES PPH READ BADI, in our example) and a
BAdI Definition (PPH_AMDP_READ MRP_BADI, in our example).

2. An AMDP BAdI does not currently have any filters, as they are not supported, indi-
cated by the unchecked Limited filter use box in the Usability section.

3. In its definition, the BAdI is categorized as an AMDP BAdI, as you can see in the
Usability section.

4. The software provider has provided the mandatory Fallback Class. In this example,
the fallback class is CL_PPH AMDP_READ MRP_BADI. Only an AMDP class can be provided
as a fallback class or implementation class.

L al
Enhancement Spot LES_PPH_READ_E!AJI J,.\Ct-,\,e
Attributes Enhancem. Implementations Technical Details Enh. Spot Element Definitions
I|[m]1 22 BAdI Definition PPH_RMDP_READ MRF BADI El (B Tec..| [

BAdI Definitions Description Description AMDP BAdI for reading MRP Ive data

» ‘E PPH_AMDP_READ_B AMDP BAAI for readin Interface IF PPH RMDP READ MRP BADI

hd ‘E PPH_AMDP_READ_MAMDP BAdI for readin Usabilicy

« [Interface

+ @ Implementations

Instance Creation Mode

ol Call falback if
Falback Class CL PPH AMDP READ MEP BADI &8

Figure 6.16 AMDP BAdI Prerequisites

5. Additionally, every BAdI method of an AMDP BAdI must be an AMDP method and
must be implemented for the same database platform (only SAP HANA currently
supported). This is shown in Figure 6.17 where the addition FOR DATABASE PROCEDURE
FOR HDB is used to specify the database platform in the AMDP method IF PPH AMDP_
READ MRP_BAID~MDPSX CHANGE. The addition HDB indicates this procedure is only rele-
vant for the SAP HANA database.

181

6 ABAP-Managed Database Procedures

Class Builder Class CL_PPH_AMDP_READ_MRP_BADI Display
- Um0 & F % S X] @ @& pattem

Ty. Parameter Typing Description
¢ walue(IV_MANDT) TYPE SYMANDT Client ID
»2» walue(CT_MDPS) TYPE IF_PPH_READ_FIN_MRP=>TT_MDPS_SOH

)

Method IF_PPH_AMDP READ MRP BADI-MDPSX_CHANGE active

E METHOD if pph amdp read mrp badi-mdpsx change
BY DATABASE PROCEDURE FCR HDB LANGUAGE SQLSCRIPT
CPTICNS READ-ONLY.

®

N W W b

ENDMETHOD . |

Figure 6.17 BAdI Method Declared as AMDP Method

Let’s consider an example of an AMDP BAdI. Let’s say we want an AMDP class that
determines a customer’s category based on the customer type, which requires an
extension to achieve a customer-specific business requirement. The class’s AMDP
method will be consumed in an ABAP application to display the customer’s category
classification by following these steps:

1. The AMDP class definition ZCL_AMDP_CUST CLASSIFICATION, as shown in Figure 6.18,
determines the customer category based on the customer type. The business logic is
encapsulated in the AMDP BAdI definition in the AMDP method ZIF RECLASSIFY
CUSTOMERS~RECLASSIFY of the fallback class and is called in the EXECUTE method imple-
mentation of the AMDP class ZCL_AMDP_CUST _CLASSIFICATION.

1= CLASS zel _amdp_cust classification DEFINITICN
2 PUBLIC

3 FINAL

4 CREATE PUBLIC .

5 PUBLIC SECTION.

6 * Marker Interface

7 INTERFACES if_amdp_marker_hdb.

8

* Type definition
9 TYPES: BEGIN OF d_results,
1@ carrid TYPE s_carr_id,
11 connid TYPE s_conn_id,
12 custtype TYPE s_custtype,
13 category TYPE string,
14 END OF d_results,
15 * Table type
16 tt_results TYPE STANDARD TABLE OF d_results WITH EMPTY KEY.
17 * AMDP Methed
18 METHODS: execute
19 IMPORTING
28 VALUE(iv_client) TYPE sy-mandt
21 EXPORTING
22 VALUE(et_results) TYPE tt_results.

23 PROTECTED SECTION.
24 PRIVATE SECTION.
25 ENDCLASS.

Figure 6.18 AMDP Class Definition

2. In the AMDP method implementation EXECUTE, the AMDP BAdI method RECLASSIFY
is called to determine the customer category, as shown in Figure 6.19. The method

182

6.3 Enhancements

executes the default fallback class ZCL_RECLASSIFY CUSTOMER DEF, if no active imple-
mentation exists for the AMDP BAdI.

272 CLASS zcl_amdp_cust classification IMPLEMENTATION.

28= METHOD execute BY DATABASE PROCEDURE

29 FOR HDB

38 LANGUAGE SQLSCRIPT

31 OPTIONS READ-ONLY

32 * BAdI usage

33 USING zbadi_reclassify_customers=:reclassify.
34

35 == BAdT call

36 CALL "ZBADI_RECLASSIFY_ CUSTOMERS=>RECLASSIFY" (:IV_CLIENT, :ET_RESULTS };
37

38 EMDMETHOD.

39 ENDCLASS.

4

Figure 6.19 AMDP Method Implementation

3. The AMDP method EXECUTE is consumed in an ABAP application, as shown in Figure
6.20, to display the custom category classification (see Figure 6.21) before extending
the AMDP BAdI definition.

1 REPORT zamdp_cust_classification.

2

3 DATA(gref_cust) = NEW zcl amdp_cust classification().
4

5 gref_cust-rexecute(

3 EXPORTING

7 iv_client = sy-mandt

3 IMPORTING

9 et_results = DATA(gt_results)).

1@

11 cl_demo_output=>display data(

12 EXPORTING

13 value = gt results

14 name = ‘'Customer Category Classification').
15

Figure 6.20 AMDP Method Consumed in an ABAP Application

Customer Category Classification ~
CARRID CONNID CUSTTYPE CATEGORY

AA 0017 B Business Customer 123456789012345678901234567890123456789012345678901234567890123456789012345
AA 0017 B Business Customer 123456789012345678901234567890123456789012345678901234567890123456789012345
AA 0017 B Business Customer 123456789012345678901234567890123456789012345678901234567890123456789012345
AA o017 P General Customer

AA 0017 P General Customer

AA 0017 B Business Customer 123456769012345678901234567890123456789012345678901234567890123456789012345
AA 0017 P General Customer

AA 0017 P General Customer

AA 0017 B Business Customer 123456789012345678901234567890123456789012345678901234567890123456789012345
AA 0017 P General Customer

AA 007 P General Customer

AA 0017 B Business Customer 123456789012345678901234567890123456789012345678901234567890123456789012345
AA o017 P General Customer

AA 0017 P General Customer

AA 0017 P General Customer

AA o017 P General Customer

AA 0017 P General Customer

AA 007 P General Customer

AA 0017 P General Customer

AA 0017 P General Customer

Figure 6.21 ABAP Application Output

183

6 ABAP-Managed Database Procedures

To extend the ADMP method shown in Figure 6.20, the software provider needs to pro-
vision an AMDP BAdL. In this case, BAdI definition ZBADI RECLASSIFY CUSTOMERS is avail-
able and encapsulated in the enhancement spot ZES RECLASSIFY CUSTOMER. You can
view the AMDP BAdI definition in Transaction SE18. Let’s look at the definition more
deeply, especially the following aspects:

1. An AMDP BAdI definition ZBADI RECLASSIFY CUSTOMERS is provided by SAP to extend
the procedure and is encapsulated in the Enhancement Spot ZES RECLASSIFY CUS-
TOMER, as shown in Figure 6.22.

Enhancement Spot ZES_RECLASSIFY_CUSTOMER Active
rbutes nhancem. Implementations echnical Detai nh. Spot Element Definitions
Attribut Enhi Impl tati Technical Details Enh. Spot El t Definit
7 ; = | - ~
2 n ZBADI_RECLASSIFY CUSTOMERS = [=
E:]I:ll | |:|[BAdI Definition] & D] Tec ||I_| o
[i&] BAdI Definitions Description Redassify Customer
v © ZBADI RECLASSIFY|R Interface ZIF_RECLASSIFY CUSTOMERS
« [Interface Usability

* @ Implementations ‘

Multiple Use

G
Limited fite
»f| AMDP BAdI

be implemented internally at SAP

filter use

Instance Creation Mode

R call fa ck if no implementation is executed

Fallback Class ZCL RECLASSIFY CUSTOMER DEF |:|

Implementation Example Classes

L

Figure 6.22 AMDP BAdI Definition

2. If no active implementation exists for the AMDP BAdI under Implementations sec-
tion, the default implementation of the fallback class ZCL_RECLASSIFY CUSTOMER DEF
will be executed, as shown in Figure 6.23.

Class/Interface ZCL _RECLASSIFY CUSTOMER DEF Implemented / Active
| Properties | Interfaces | Friends | Attributes [RAENLLE Events | Types | Alases |

& sourcecode [|& [l K] &)] E1] e

Method Level Visibility M... Description
r 1
LZIF_RECLASSIFY_CUSIOHE‘.RS ~RECLASS IFYJIn& tance Method Public

| . Parameters || Exceptions

)
=

Figure 6.23 AMDP BAdI Method

184

6.3 Enhancements

3. Our AMDP BAdI method ZIF RECLASSIFY CUSTOMERS~RECLASSIFY will encapsulate the
business logic written in SQLScript language, as shown in Figure 6.24, to classify and
determine the customer category.

Class Builder Class ZCL_RECLASSIFY_CUSTOMER_DEF Display
L 2 N M0 & S E [l @& @ pPattem Pretty Printer

Ty. Parameter Typing Description
*O0 value(IV_CLIENT) TYPE SY-MANDT
O+ value(ET_RESULTS) TYPE TT_RESULTS

Method ZIF_RECLASSIFY CUSTOMERS~RECLASSIFY active
1 | METHOD zif reclassify customers-reclassify BY DATRBASE PROCEDURE
2 FCR HDB LANGUAGE SQLSCRIPT OPTICNS READ-ONLY USING sbook.
3
4 et_results = select carrid,
2 connid,
& CUusttype,
-

CASE custtype
WHEN 'B' then 'Business Customer'

] WHEN 'P' then 'Private Customer'
10 ELSE 'Others'

11 END AS "CATEGORY™

12 FRCM skook

13 where mandt = :iv_client

14 order by carrid, connid;

15 ENDMETHOD.

Figure 6.24 AMDP BAdI Method with SQLScript Logic

6.3.2 AMDP BAdI Implementation

To extend an AMDP method ZIF RECLASSIFY CUSTOMERS™~RECLASSIFY shown in Figure
6.24, open the BAdI definition in Transaction SE18 and follow these steps to implement
the BAdI definition:

1. After opening the BAdI definition in Transaction SE18, right-click on the BAdI defini-
tion name ZBADI RECLASSIFY CUSTOMERS and select on Create BAdI Implementation,
as shown in Figure 6.25.

Enhancement Spot ZES_RECLASSIFY_CUSTOMER Display

. o -
> & i e/ -1 H a2
Enhancement Spot ZES RECLASSIFY CUSTOMER Active
Aftributes Enhancem. Implementations Technical Detall Enh. Spot Element Definitions
b h | hnical Is h I fi
-~
N EIEIER M E BAdI Definition ZBADI RECLRSSIFY_CUSTOMERS B |E tec.| @
[i=] BAdI Definitions Description Description Reclassify Customer
v = [ZBADI_RECLACCTEVIDArherifs Furtam: Tntarfacs P e NP R B
« [E Interface Delete BAdI

* @ Implemant; Create BAdI Implementation
A2l lemented internally at SAP

e

| Instance Creation Mode

Figure 6.25 Create BAdI Implementation

185

6 ABAP-Managed Database Procedures

2. Create the enhancement implementation by providing a name and a short text and
then clicking on OK, as shown in Figure 6.26.

Enhancement Implementation ZBADI_RECLASSIFY_CUSTOMERS_IMP
Short Text Implementation to redetermine customers
Composite Enhancement Implementation E IE

Figure 6.26 Create Enhancement Implementation

3. Now, create a BAdI implementation by providing the BAdI implementation a name
and specifying the class to extend the AMDP method, as shown in Figure 6.27. Then,
click on OK.

= TRM(1)/200 Create BAdI Implementation

BAdI Implermentation ZBADI_RECLASSIFY CUSTOMERS IMP
Description Implementation to redertime category
Implementing Class {ZCL_RECLASSIFY CUSTOMER_IMP

0]

Figure 6.27 Name and Describe BAdI Implementation and Specify Implementing Class

4. Click on Save or use the shortcut (Ctrl + S) to save the BAdI implementation.

5. Click on the Implementing Class (see Figure 6.28) to extend the AMDP method
RECLASSIFY and incorporate the customer requirement using database-specific lan-
guage (SQLScript). The customer category will be determined in this step, with
"Privilege Customer' for customer type B and 'General Customer' for customer type
P, as shown in Figure 6.29.

6. Click on Save and Activate to activate the implementation. The active implementa-
tion is shown in Figure 6.30.

Enhancement Implementation ZBADI_RECLASSIFY CUSTOMERS IMP Inactive
| Properties | History | Technical Details
\ |:||:| Implementing Class
[%] BAdI Implementations Des... Interface ZIF RECLASSIFY CUSTOMERS
~ L ZBADI RECLASSIFY_ClImpleme Implementing Class ZCL_RECLASSIFY CUSTOMER IMP
* [El Implemnenting Class Method Short Description
. ZIF_RECLASSIFY_CUSTOMERS~RECLASSIFY

Figure 6.28 Select the Implementing Class to Extend the AMDP Method

186

6.3 Enhancements

class ZCL_RECLASSIFY CUSTOMER IMP definition
public
final
create public .

public section.

interfaces IF ARMDP MAREER HDB .
interfaces IF BADI INTERFACE .
interfaces IZIF RECLASSIFY CUSTOMERS .

protected section.

private section.

ENDCLASS .

CLASS ZCL RECLASSIFY_ CUSTOMER TIMP IMPLEMENTATION.

method ZIF RECLASSTFY CUSTOMERS~RECLASSIFY BY DATRBASE PROCEDURE
FOR HDB LANGUAGE SQOLSCRIPT OPTIONS RERD-ONLY USING shook.

et_results = select carrid,

connid,
custtype,
CRSE custtype
WHEN 'B' then 'Privilege Customer’
WHEN 'P" then 'General Customer’
ELSE 'Others"
END AS “"CATEGORY™

FROM sbook

where mandt = :iv_eclient

order by carrid, connid;

endmethod .
ENDCLASS.

Figure 6.29 Extend AMDP Method

Enhancement Spot ZES_RECLASSIFY CUSTOMER Active

Technical Detalls | Enh. Spot Element Definttions |
[E[=]HIE Y] =]

Enhancement implementations exist for this enhancement spot

Enhancement Implementation Version
ZBADI_RECLASSIFY_CUSTOMERS_IMP A

Figure 6.30 Active Enhancement Implementation

7. After implementing the BAdI definition, the business requirement is extended in
the implementing class, to redetermine the business category as 'Privilege Cus-
tomer' or 'General Customer' based on the customer type, as shown in Figure 6.31.

8. Execute the application that calls the AMDP BAdI (see Figure 6.32) to display the
customer classification data, as shown in Figure 6.33. The application program
reclassifies the customer category to 'Privilege Customer' or 'General Customer' cat-
egory using BAdI extensions.

187

6 ABAP-Managed Database Procedures

6.3 Enhancements

Method

Class Builder Class ZCL_RECLASSIFY_CUSTOMER_IMP Display

Bl S NN MmO o T g] @& @& Patemn Pretty Printer
Ty. Parameter Typing Description
»O value{ IV_CLIENT) TYPE 5Y-MANDT
O value(ET_RESULTS) TYPE TT_RESULTS
ZIF_RECLASSIFY_ CUSTOMERS~RECLASSIFY active

Sl emotn b M

method ZIF RECLASSIFY CUSTOMERS~RECLASSIFY BY DATABASE PROCEDURE

FOR HDB LANGUAGE SQLSCRIPT OPTIONS READ-ONLY USING sbook.

et _results = select carrid,
connid,
CusSttype,
CASE custtype
WHEN 'B' then '
WHEN 'P' then '
ELSE 'Others'

END AS "CATEGORY"™
FRCM sbook
where mandt = :iv_client

order by carrid, connid;
endmetnod.|

Figure 6.31 Implementing Class to Reclassify the Customer Category

value
name

DATR (gref_cust) = New zcl_ amdp cust_classification{ .

gref_ cust-rexecute |
EXPORTING
iv_client = sy-mandt
IMPORTING
et_results = DATRE({gt_results)).

cl_demo_ocutput=-display datal
EXPORTING

= gt_results
= '"Customer Clkssificaticn').

Figure 6.32 Create BAdI Implementation

0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017
0017

ZEZ2EZRTEZREERE2EEZ

ICustomer Category Classification
CARRID CONNID CUSTTYPE CATEGORY

B Privilage Customer
Privilege Customer
Privilege Customer
General Customer
General Customer
Privilege Customer
General Customer
General Customer
Privilege Customer
General Customer
General Customer
Privilege Customer
General Customer
General Customer
General Customer
General Customer
General Customer
General Customer
General Customer

e == M = B = = i = == = iy = i = iy = iy = o + iy = iy = i w« =}

Figure 6.33 Resulting Customer Category Classification

188

9. If the implementation as shown in Figure 6.30 is deactivated or no active customer
implementation exists for the BAdI definition. Then the application program calls
the default fallback implementation as shown in Figure 6.34. This implementation

categorizes customers as either 'Business Customer' or 'Private Customer' based on

customer type, as shown in Figure 6.34.

active

Method ZIF RECLASSIFY CUSTOMERS~RECLASSIFY
1 METHCOD zif reclassify customers-reclassify
2 FCR HDB LANGUAGE
4 et_results = select carrid,
2 connid,
& custtype,
7 CASE custtype
g8 WHEN 'B' then '
g WHEN 'P' then '
10 ELSE 'Others'
11 END RS "CATEGORY"
1z FROM skook
13 where mandt = :iv_client
14 order by carrid, connid;
15 ENDMETHCD.

BY DATABASE PROCEDURE
SQLSCRIPT OPTICNS READ-ONLY USING sbook.

Figure 6.34 Default Fallback Implementation (No Active Customer Implementation)

6.3.3 AMDP BAdI Definition

In general, a software provider will anticipate extension points for extending AMDP
procedures. SAP also allows you to create AMDP BAdIs for enhancement spots for your
applications using the Eclipse-based editor in ADT or through the Enhancement
Builder (Transaction SE20). The BAdI definition should be categorized as an AMDP BAdI
and should conform to the prerequisites shown earlier in Figure 6.16 and Figure 6.17.

Let’s walk through the steps for creating a BAdI definition to classify a customer into a
category based on the customer type. Follow these steps:

1. First, we'll create an enhancement spot by right-clicking on the package name and
selecting New - Other ABAP Repository Object, as shown in Figure 6.35.

i Local Object:
W @ Favorite Pack
B ZAMDP (2

8 ZCDS (93)

B Z5N_DEM

3 ZTPEG (1€

B, System Libra

@

=
=

B
b 4
W

New > (& ABAP Class

Derive Mew Tree... ﬁ ABAP Interface

Open H¢ ABAP Package

Open in Project Ctlsaltsp » 1 Other ABAP Repository Object

Open ABAP Development Object...
Show in ABAP Repository Tree
Open With

Copy
Delete

Remove from Favorite Packages

Ctrl+C
Delete

Figure 6.35 Select Other ABAP Repository Object

189

6 ABAP-Managed Database Procedures

2. Choose the object type Enhancement Spot and click on Next to create the enhance-

ment spot, as shown in Figure 6.36.

J& New ABAP Repository Object

O *
ABAP Repository Object —
Create an ABAP repository object |
= -l
Project: | TRM_200_naiks_en | Browse

type filter text

5 = Core Data Services A

» = Dictionary

w (= Enhancements
& ABAP Enhancement Implementation
| Composite Enhancement Implementation
| Composite Enhancement Spot
W Enhancement Spot

» [= Enterprise Services

@ < Back Finish Cancel

Figure 6.36 Create an Enhancement Spot using ADT in SAP HANA Studio

3. To create the enhancement spot, maintain the Object Name field and click on Next,

as shown in Figure 6.37.

J& New Enhancement Spot

Enhancement Spot

Create Enhancement Spot

Object Mame: | ZES_RECLASSIFY_CUSTOMER)

@ < Back Mext = Cancel

Figure 6.37 Specify Object Name for the Enhancement Spot using ADT in SAP HANA Studio

190

6.3 Enhancements

4. Alternatively, you can also use Transaction SE20 to create the BAdI definition (see
Figure 6.38).

Enhancements: Initial Screen

B AN & TWhHh A

"B

Enhancements

* Enhancement Spot

. =]
Composite Enhancement Spot

BAdI Name (Definition)

Enhancement Implementation

Composite enhancement implementation

Figure 6.38 Create an Enhancement Spot using Transaction SE20

5. Next, specify a name for the enhancement spot and maintain the Short Text and

Technology fields, as shown in Figure 6.39. To create the enhancement spot, click on
OK.

[® Create Enhancement Spot

Enhancement Spot

ZES RECLASSIFY CUSTOMER
Short Text

.| Reclassify Customer

BADI_DEF BAdI Definition v
Compaosite Enhancement Spot

Technology

Figure 6.39 Specify Name and Short Text for the Enhancement Spot Using Transaction SE20

6. Under the Enh. Spot Element Definitions tab, as shown in Figure 6.40, click on Create
BAdI to create the definition.

Enhancement Spot ZES_CLASSIFY_CUSTOMER Change

« > UG &/ : &

” |
Enhancement Spot ZES_CLASSIFY CUSTOMER

Inactive
| Attrbutes | Enhancem. Implementations | Technical Details = T ==l i yiaa o
.

C(a)i (=2)i [Jfaa»

itinns D
Create BAdI ‘

Figure 6.40 Create a BAdI Definition

191

6 ABAP-Managed Database Procedures

7. Provide the BAdI a name and a short description and click on OK to create the defini-
tion, as shown in Figure 6.41.

Enhancement Spot

Enhancement Spot ZES_RECLASSIFY_CUSTOMER Change
% 2 U m &t/ LS

w

B G

ZES_RECLASSIFY CUSTOMER

| Attributes | Enhancem. Implementations | Technical Details =gl M=l A= T e

Inactive

[BAdI Definitions

Name
Short Description

][2>

[

[& TRM(1)/200 Create BAdI Definition

ZBADI_RECLASSIFY CUSTOMERS

‘Reclassify Customer]

0]

Figure 6.41 Specify BAdl Name and Short Description

8. Under the Usability section, categorize the BAdI definition as an AMDP BAdI by
selecting the AMDP BAdI checkbox, as shown in Figure 6.42. You cannot classify the
BAdI as filter dependent as the AMDP BAdI does not support filter functionality.

Enhancement Spot

Enhancement Spot ZES_CLASSIFY_CUSTOMER Change
- S Um i L1

B [

ZES CLASSIFY CUSTOMER

| Attrbutes | Enhancem. Implementations | Technical Details =g Bl a =l A i =

Inactive

Q@] =]]

[BAdI Definitions

¥ T [ZBADI_CLASSIFY_Cl
= [Interface
= @ Implementations

3

C

BAdI Definition
Description
Usability

ZBLDI_CLASSIFY CUSTOMERS
Classify Customers

[Tec...

+ Multiple Use

Can only be implemented internally at SAP
Limited filter use
~ AMDP BAdI

Instance Creation Mode

Creating instantiation
Reusing Instantiation
Context-Specific Instantiation

Call fallback if no implementation is executed
Fallback Class

Implementation Example Classes

7]

Figure 6.42 Categorize BAdI Definition as AMDP BAdI

192

6.3 Enhancements

9. Click on the Interface node under BAdI Definitions and specify the BAdI interface
name ZIF RECLASSIFY CUSTOMERS and then click on Yes to create the BAdI interface,

as shown in Figure 6.43.

Enhancement Spot ZES_RECLASSIFY_CUSTOMER Change
> S UG ES -1 iSH

L
Enhancement Spot ZE5_RECLASSIFY_CUSTOMER

| Attributes | Enhancem. Implementations | Technical Details [y = E A T

Inactive

I | E » Interface

Classfinterface does not exist. Do you want to
e create the object?

E BAdI Definitions BAdI Definition ZBADI_RECLASSIFY CUSTOMERS

w E ZBADI_RECLASSIFY R Interface ZIF RECLASSIFY CUSTOMERS
= I+ Interface
. o Implementations [= TRM(1)/200 Class/Interface ZIF_RECLASSIFY_CUSTOMERS

: Yes] No " € Cancel

Figure 6.43 Create a BAd!I Interface

10. Click on the interface name ZIF RECLASAIFY CUSTOMERS to define the AMDP method

RECLASSIFY in the BAdI interface, as shown in Figure 6.44.

Interface

Class Builder: Display Interface ZIF_RECLASSIFY_CUSTOMERS
- SWU MO &2 LT H|

ZIF BECLASSIFY CUSTOMERS Implemented / Active

| Properties | Interfaces | Attrbutes [RUEGGLE Events | Types | A

Mathod M... Description
RECLASSI

=

»
=
b

M rarameters || Xy Excepti0ﬂ5| " || " "

Level
Instance Method

Figure 6.44 Define AMDP Method in BAdI Interface

11. In the BAdI interface, as shown in Figure 6.45, include the AMDP marker interface

IF_AMDP_MARKER HDB for the database for which the procedure is to be created, In our

case, this is specific to the SAP HANA database.

193

6 ABAP-Managed Database Procedures

» O ZIF_RECLASSIFY_CUSTOMERS »
1= INTERFACE zif reclassify customers
2 PFUBLIC .
3
4 INTERFACES if badi_ interface .
5 INTERFACES if amdp marker hdb.
€
7 TYPES: BEGIN OF d_results,
8 carrid TYPE s_carr_id,
=) connid TYPE s_conn_id,
10 custtype TYPE s_custtype,
p il category TYPE string,
12 END OF d_results,
12
14 tt_results TYPE STRNDRRD TRBLE OF d_results.
15
16 METHODS: reclassify
17 IMPORTING
18 VALUE {iv_client) TYPE sy-mandt
is EXPORTING
20 VALUE (et_results) TYFE tt_results.
21 ENDINTERFLCE.

Figure 6.45 AMDP Method Definition

12. Finally, click on the fallback class ZCL_RECLASSIFY CUSTOMER DEF. Click Yes to create
the fallback class, as shown in Figure 6.46. Then, encapsulate the business logic in
the AMDP method ZIF RECLASSIFY CUSTOMERS~RECLASSIFY, as shown in Figure 6.47.
If no active implementation is created for the BAdI definition, then the runtime
environment calls the active implementation in the fallback class when the AMDP
BAdI is called.

Enhancement Spot ZES_RECLASSIFY_CUSTOMER Change

- A »
> S U n L/ : [7] 22
Enhancernent Spot ZES RECLASSIFY_ CUSTOMER Inactive

| Attributes [Enhancem. Implementations | Technical Detais
-
[T []1[3 .| » | BAdI Defintion ZBADI_RECLASSIFY CUSTOMERS Tec...

[l BAdI Definitions Description Reclassify Customer
e ﬁ ZBADI RECLASSIFY |R Interface ZIF RECLASSIFY CUSTOMERS
« [Interface Usability

* @ Implementations| Mukinle Use
Can only be implemented internally at SAP

Limited fifter use
& AMDP BAdI [& TRM(1)/200 Class/Interface ZCL_RECLASSIFY_CUSTOMER_DEF

Class/interface does not exist. Do you want to

Instance Creation Mode 9 create the object?

®) Creating inst

Reusing Insf

Context-Specific Insta E Yes 1| No || € Cancel

W Call falback if no implementation is executed
Fallback Class ZCL_RECLASSIFY CUSTOMER DEF

Implementation Example Classes

Figure 6.46 Create a Fallback Class

194

6.3 Enhancements

Class Builder Class ZCL_RECLASSIFY_CUSTOMER_DEF Display
L G N RO & 5 & §& ratemn Pretty Printer

Ty. Parameter Typing Description
»0 value{ IV_CLIENT) TYPE SY-MANDT
0+ value[ET_RESULTS) TYPE TT_RESULTS

Method ZIF_RECLASSIFY CUSTOMERS~RECLASSIFY active
1 METHCOD zif reclassify customers-~reclassify BY DATABASE PROCEDURE
2 FOR HDB LANGUAGE SQLSCRIPT OPTICNS READ-CNLY USING sbook.
3
k] et_results = select carrid,
5 connid,
6 custtype,
7 CASE custtvpe
8 WHEN 'B' then 'Business Customer'
£} WHEN 'P' then 'Private Customer'
10 ELSE 'Others'
11 END AS "CATEGORY"
12 FROM sbook
13 where mandt = :iv_client
14 order by carrid, connid;
15 ENDMETEHOD. |

Figure 6.47 Encapsulate Business Logic in AMDP Method

Listing 6.8 illustrates an AMDP interface ZIF RECLASSIFY CUSTOMERS definition where an
AMDP Method RECLASSIFY has been defined, the AMDP method RECLASSIFY is imple-
mented in the fallback class ZCL_RECLASSIFY CUSTOMER DEF to encapsulate the business
logic written in database specific SQL language to reclassify customers.

*AMDP Interface Definition
INTERFACE zif reclassify customers
PUBLIC .
INTERFACES if badi interface .
INTERFACES if amdp marker hdb.

TYPES: BEGIN OF d_results,
carrid TYPE s carr id,
connid TYPE s conn id,
custtype TYPE s custtype,
category TYPE string,
END OF d results,

tt results TYPE STANDARD TABLE OF d _results WITH EMPTY KEY.

METHODS: reclassify

IMPORTING
VALUE(iv client) TYPE sy-mandt
EXPORTING
VALUE(et results) TYPE tt results.
ENDINTERFACE.

*AMDP Method Implementation in the fallback Class ZCL RECLASSIFY CUSTOMER DEF
METHOD zif reclassify customers~reclassify BY DATABASE PROCEDURE

195

6 ABAP-Managed Database Procedures

FOR HDB LANGUAGE SQLSCRIPT OPTIONS READ-ONLY
USING sbook.

et results = select carrid,

connid,
custtype,
CASE custtype
WHEN 'B' then 'Business Customer'
WHEN 'P' then 'Private Customer'
ELSE 'Others'
END AS "CATEGORY"

FROM sbook

where mandt = :iv_client

order by carrid, connid;

ENDMETHOD.

Listing 6.8 BADI Interface and AMDP Method Implementation

6.3.4 AMDP BAdI Calls

Software or extension providers usually call the AMDP method of an AMDP BAdI inter-
face in another AMDP method or an application program to support modification-free
extensions to AMDPs. The AMDP framework then generates a database procedure for
each AMDP BAdI. An AMDP BAdI's name consists of the BAdI name and the interface
method with the => separator.

If you want to call an AMDP BAdI in an AMDP method, its usage must be first defined
in the AMDP method implementation with the USING clause. Inside the AMDP method
body, the BAdI call is invoked by specifying the BAdI definition and method name in
uppercase and with the => separator. The BAdI call is enclosed in double quotation
marks, and furthermore, importing, exporting, and changing parameters are passed to
the interface method. To define the usage of an AMDP BAd], follow these steps:

1. In the AMDP method implementation, the usage of the BAdI definition is specified
in the USING clause, as shown in Figure 6.48.

27= CLASS zcl _amdp_cust_classification IMPLEMENTATION.

28= METHOD execute BY DATABASE PROCEDURE

29 FOR HDB

38 LANGUAGE SQLSCRIPT

31 OPTIONS READ-ONLY

32 * BAdI usage

33 USING zbadi_reclassify customers=:reclassify.
34

35 F= BAdL call

36 CALL "ZBADI_RECLASSIFY CUSTOMERS=>RECLASSIFY™ (:IV_CLIENT, :ET_RESULTS);
24

38 ENDMETHOD.

39 ENDCLASS.

Figure 6.48 BAdI Definition Usage in an AMDP Method

196

6.3 Enhancements

2. The BAdI call is invoked by specifying both the BAdI definition and the method
name in uppercase and with the => separator. As shown in Figure 6.49, the BAdI call
is enclosed in double quotation marks, and furthermore, importing, exporting, and
changing parameters are passed to the interface method.

CLASS zel_amdp cust_classification IMPLEMENTATION.
METHOD execute
BY DATABASE PROCEDURE FOR HDB LANGUAGE SQLSCRIPT OPTIONS READ-ONLY

USING zbadi reclassify customers=r-reclassify.
— I I I

F— BAdI call
CALL "ZEADI-RECLASSIFY-CUSTOHERS=}RECLASSI Y (:IV-CLISNT, :?.I-RESULTS);
B
ENDMETHOD .
ENDCLASS.

Figure 6.49 BAdI Call in an AMDP Method

3. Finally, as shown in Figure 6.50, the AMDP BAdI call is invoked in an ABAP applica-
tion to derive the customer category classification.

DATR: gref_f£flights_check TYPE REF TO zbadi_reclassify customers,
gt_results TYPE zif_ reclassify_customers=>tt_results.

* AMDP BRd le

GET BADI gref flights_check .

¥ IMDP BRAI Call
CALL BADI gref_flights_check->reclassify
EXPORTING
iwv_client = sy-mandt
IMPORTING

et_results = gt_results.

cl demo output=>display datal
EXPORTING
walue = gt_results
name = 'Customer Category Classification').

Figure 6.50 AMDP BAdI Call Invoked in ABAP Application

The source code shown in Listing 6.9 illustrates a BAdAIl AMDP method call in another
AMDP method.

CLASS zcl amdp cust classification DEFINITION
PUBLIC
FINAL
CREATE PUBLIC.
PUBLIC SECTION.
* Marker Interface
INTERFACES if amdp marker hdb.

* Type Definition

TYPES: BEGIN OF d results,
carrid TYPE s carr id,

197

6 ABAP-Managed Database Procedures

connid TYPE s conn_id,
custtype TYPE s custtype,
category TYPE string,
END OF d results,
* Table Type
tt results TYPE STANDARD TABLE OF d results WITH EMPTY KEY.
* AMDP Method
METHODS: execute
IMPORTING
VALUE(iv_client) TYPE sy-mandt
EXPORTING
VALUE(et results) TYPE tt results.
PROTECTED SECTION.
PRIVATE SECTION.
ENDCLASS.

CLASS zcl amdp cust classification IMPLEMENTATION.
METHOD execute BY DATABASE PROCEDURE
FOR HDB
LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
* Specify BAdI Usage before Call
USING zbadi reclassify customers=>reclassify.
-- BAdI Call
CALL "ZBADI RECLASSIFY CUSTOMERS=>RECLASSIFY"
(:IV_CLIENT, :ET RESULTS);
ENDMETHOD.

Listing 6.9 BAdI Method Call in an AMDP Method

As shown in Listing 6.10, an AMDP BAdI method call in any application is similar to a
kernel BAdI call using a CALL BAdI or GET BAdI statement.

REPORT zamdp cust classification.

DATA: gref flights check TYPE REF TO zbadi reclassify customers,
gt results TYPE zif reclassify customers=>tt results.

* AMDP BAdI Handle
GET BADI gref flights check.

* AMDP BAdI Call
CALL BADI gref flights check->reclassify
EXPORTING
iv_client = sy-mandt

198

6.4 Exception Handling

IMPORTING
et results = gt results.

cl demo_output=>display data(

EXPORTING
value = gt results
name = 'Customer Category Classification').

Listing 6.10 BAdI Method Call in an Application Program

6.4 Exception Handling

Like any other traditional method call, an AMDP method call may produce ABAP run-
time errors. Even though these calls are executed directly in the SAP HANA database,
runtime errors can be traced and analyzed in Transaction ST22. This transaction pro-
vides additional AMDP-relevant information in the Database Procedure (AMDP) Infor-
mation area under ABAP Developer View.

These errors can occur for several reasons, such as a version mismatch with the stored
procedure, while creating or executing the method. Other reasons include missing
authorizations or database connectivity errors.

Exceptions are raised when any such error occurs either by the runtime environment
or by the method definition’s RAISE exception statement. Therefore, exceptions should
be handled in the calling program to avoid runtime errors during program execution.

Figure 6.51 shows the exception classes that can be handled within an AMDP method to
avoid runtime errors.

CX_ROOT

CX_DYNAMIC_CHECK

CX_AMDP_VERSION_ERROR | | CX_AMDP_CREATION_ERROR | | CX_AMDP_EXECUTION_ERROR | | CX_AMDP_CONNECTION_ERROR

CX_AMDP_VERSION_MISMATCH CX_AMDP_DBPROC_CREATE_FAILED | | CX_AMDP_EXECUTION_FAILED CX_AMDP_NO_CONNECTION
CX_AMDP_NATIVE_DBCALL_FAILED CX_AMDP_IMPORT_TABLE_ERROR CX_AMDP_NO_CONNECTION_FOR_CALL
CX_AMDP_WRONG_DBSYS CX_AMDP_RESULT_TABLE_ERROR CX_AMDP_WRONG_CONNECTION

Figure 6.51 AMDP Exception Classes

The methods are prefixed with CX_AMDP, indicating these classes are exception classes
for handling errors during AMDP calls. These exception classes belong to the CX_DYNAM-
IC CHECK category and must be declared explicitly using the RAISING addition in the
definition of an AMDP method and handled when called in the application program.

199

Contents

Acknowledgments 17
1 SAP HANA Overview 19
11 Features 19
111 Main Memory and CPU Innovations 21
11.2 Storage Innovations 22
113 Data Compression 23
114 Data Partitioning 25
1.2 Architecture 27
1.3 Platform Capabilities 29
14 UseCases 30
141 Side-by-Side Scenario 30
1.4.2 Fully Integrated Scenarios 32
143 New Applications 32
1.5 Summary 33
2 Code-to-Data Paradigm 35
2.1 What s the Code-to-Data Paradigm? 35
2.2 Bottom-Up Approach 38
221 Using Native SQL 39
2.2.2 Using Proxy Objects 40
2.3 Top-Down Approach 41
231 Using Transparent Optimization 42
2.3.2 Using ABAP SQL 43
2.3.3 Using ABAP-Managed Database Procedures 45
2.3.4 Using Core Data Services 45
2.4 Performance Benefits of Code-to-Data Techniques 46
2.5 Summary 49

Contents

3 Development Environments 51
3.1 Evolution of Programming Languages and Development Tools 51
3.2 SAP HANA Studio 54
3.21 Compatibility Checks 56
3.22 Download 60
3.2.3 INSEAATION oo 64
3.24 Basic Navigation and Actions 67
3.25 ABAP Perspective 72
3.2.6 Modeler Perspective 75
3.2.7 Administration Perspective 83
3.3 SAP HANA Client 87
3.4 ABAP Development Tools 88
341 Overview 88
342 |Installation 90
3.5 SAP Business Technology Platform, ABAP Environment ... 99
3.6 SUMMANYoooooriceeeceeeccenesereeeeeeenens 101
4 Native SQL 103
4.1 Executing Native SQL Statements 104
411 Literals and Host Variables 105
4.1.2 Statement for Cursor Processing 105
413 Database Procedure Calls 106
414 Statements for Establishing Database Connectionsc.ccccnncceuenna. 107
415 Data Type Compatibility 108
4.2 ABAP Database Connectivity 109
421 Queryingthe Database 110
422 DDLand DML Operations 115
4.2.3 Secondary Connections 118
4.2.4 Precautions While Using ABAP Database Connectivity ... 120
4.3 SUMMALY ...oooooorrccceeeceereecereeeseees 121

Contents

5 SQLScript Programming 123
5.1 WhatIs SQLScript? 123
5.1.1 SQL versus SQLScript 124

51.2 Types of SQLScript Statements 125

5.1.3 Prerequisites . . 125

5.2 SQL Query Template .. 128
521 Creatinga Schema 128

5.2.2 Creating Tables 129

5.3 Stored Procedures . 131
53.1 Creating Proceduresecennecnnne. 131

5.3.2 Deleting Procedures 133

5.4 User-Defined Functions 133
54.1 Joinsand GROUP BY Clauses 135

5.4.2 Subqueries 137

5.5 CONSTIUCES ... 139
55.1 Local Scalar Variables 139

5.5.2 Local Table Variables 139

5.5.3 Conditional Statements 140

5.54 FOR Loops and WHILE Loops . 141

5.5.5 Operators 141

5.5.6 Emptiness Check for Tables and Table Variables 143

5.5.7 Getting the Number of Records for Tables and Table Variables 144

5.6 CQUISOIS 144
5.6.1 Example Cursor 145

5.6.2 Looping over Cursors 146

5.7 Transactional Statements 147
5.8 DynamicSQL .. 148
5.9 Exception Handing 149
59.1 Continue after Handling 149

5.9.2 Block Parallel Execution 150

5.10 Arrays 150
5.10.1 Creatingan Array 150

5.10.2 Accessingthe Array 151

5.10.3 Concatenating Arraysneencennee 151

5.10.4 Converting a Table into an Array 151

5.10.5 Unpackingan Array into a Table 152

9

Contents

Contents

5.10.6 Deleting or Trimming an Array . 152
5.10.7 Cardinality in Arrays 153
5.11 SQLl Injection Prevention Functions 153
5.12 Explicit Parallel Execution 154
5.13 System Variables ... 155
5.14 Debugging SQLScript 156
5.15 SUMMAIY ..o 158
6 ABAP-Managed Database Procedures 159
6.1 Introduction 159
6.1.1 ABAP-Managed Database Procedure Framework l6l
6.1.2 Development Environment for AMDP 163
6.2 Creating AMDP Classesomceemmmenreemmisenssesieseesssssessneeeseses 166
6.2.1 PrereqUISIteS ..ccercrreeeeceeeieeiensieneeneeniessessassessenssesssssane 166
6.2.2 Implementing AMDP Methods 168
6.2.3 Calling AMDP Methods in Applications 170
6.2.4 Using Multiple Selection Criteria 174
6.2.5 Feature Support Check Using Global Classescoemerneerneceeeecnnne 177
6.3 Enhancements 180
6.3.1 AMDP BAdI Overview 180
6.3.2 AMDP BAdI Implementation 185
6.3.3 AMDP BAdI Definition 189
6.3.4 AMDP BAdI Calls ... 196
6.4 Exception Handling 199
6.5 Debugging 202
6.51 AMDP Debugging before SAP NetWeaver AS ABAP 7.5cccccvevvneennen. 203
6.5.2 AMDP Debugging with SAP NetWeaver AS ABAP 7.5cccccovvvccvuonnnccens 208
6.5.3 AMDP Dump Analysis Using Transaction ST22 .. 209
6.6 Tools 214
6.6.1 AMDP Dependencies for ABAP and SAP HANA 214
6.6.2 AMDP Precondition Checks 215
6.6.3 AMDP Consistency Check for AMDP Table FUNctionscvecneeenen. 216
6.6.4 Delete Obsolete AMDPs ... 218
6.7 Summary 218

10

7 Modeling 219
7.1 WhatIs Modeling for SAP HANA? 219
7.1.1 Measures and Attributes 220

7.1.2 Dimensions 220

7.1.3 FactTables 221

7.1.4 Star Schemas. 222

7.1.5 Hierarchies 223

7.1.6 Semantics 224

T LT JOUNS et sasse e sa st e nen 224

7.2 Information Views 229
7.21 Features 230

7.2.2 Information View Types 231

7.3 CalcUlation VIEWSciiincrreiisneecrenienecesesiesessssssanesssssssnessesssssnessssssssnessens 232
7.3.1 Creating Dimension Calculation VIEWScceenecrnecennecrneceiesennne 233

7.3.2 Creating Calculated Attributes .. 235

7.3.3 Time Dimension-Based Calculated Views 237

7.3.4 Base Tables Aliases 238

7.3.5 Hidden Columns 240

7.3.6 Llabels and Hidden Attributes 241

7.3.7 Using Measures in Calculation Views 241

7.4 Modeling Functions 243
7.41 Usinga Hierarchy ... 243

7.42 Restricted Columns 250

7.43 Calculated Columns . 252

7.44 Filtering Data 256

7.4.5 Using Variables and Input Parameters 258

7.4.6 Currency Conversion 263

7.4.7 Decision Tables 265

7.5 sSaQLin Information Models 270
7.5.1 Querya Modeled Hierarchy Using SQLScript 271

7.5.2 Creating and Using Functions in Information Viewsccovecneeennn. 271

7.5.3 Procedures in Calculation Views 272

7.6 Virtual Data Models .. 275
7.6.1 SAPHANA Live 275

7.6.2 SAPS/4HANA Embedded Analytics and Core Data Services Views 280

7.7 Optimizing Data Models .. 284
7.7.1 Tools to Check Model Performance 284

7.7.2 Good Modeling Practices 286

7.8 SUMMALYoocooiceeecerecereseseeeeesenens 290
n

Contents

8 Core Data Services 291
8.1 The Evolution of Core Data Services 291
8.2 Introduction 295
821 Domain-Specific Languages 295
8.2.2 Availability and Features ... 296
8.2.3 Integration with ABAP 297
8.3 Defining CDS Views 298
83.1 Using Templates 300
8.3.2 Structure Definition 304
8.3.3 Creating CDS Views in ADT 307
8.3.4 Syntaxand Naming Guidelines 310
8.4 Built-In Functions and Expressions 312
8.41 Numeric Built-In Functions 312
8.4.2 String Functions 315
8.4.3 COALESCE FUNCioNccoorierecreinerceerecceiieenees 321
8.4.4 Conversion Functions 323
8.45 Dateand Time Functions 334
8.5 Annotations ... 349
851 Scope of Annotations 349
8.5.2 Types of Annotations 351
8.6 Associations 351
8.6.1 Defining Associations 352
8.6.2 CArdINANILY oottt eree et 354
8.6.3 Types Of ASSOCIATIONS ...oucueureimececeiececeeceieceie e ssse s sesesesens 355
8.7 Consuming CDS Views .. 358
8.7.1 Using ABAPSQL 359
8.7.2 Using SAP List Viewer with Integrated Data Accessoccecrcnecenerennn. 360
8.8 ENNANCEMENLS ...t seesieee e ssssesesssssessessssssesseesssssenn 364
8.8.1 CDS View Extensions 367
8.8.2 Limiting CDS View Extensibility 368
8.8.3 Finding CDS Extensions to Enhance CDS View Definitionsc...... 369
8.9 Authorization Concept 370
8.9.1 Data Control LANGUAZE OVEIVIEWc.eereemeeeeriirecrimenieeerieesiseeseseesesssesens 371
8.9.2 Data Control Language Syntax and Access Conditionscccccconerueen. 372
8.9.3 Data Control Language Source Definition 379
8.9.4 Data Control Language Source ANNotationscconeceneeennn. 384
8.10 CDS Table FUNCLIONSccoocccvoioccreincccriinncceeiieseesseseesesssesnesssssessessssssesssssssseens 386
8.10.1 AMDP Functions 387

12

Contents

8.10.2 Introduction to CDS Table Functions 389

8.10.3 Defining CDS Table Functions 391

8. 11 SUMMANYooiicccrrecrreceieereecsinennes 399
9 Open SQL and ABAP SQL 401
9.1 WhatlsOpensSQL? ... 401
9.2 Features of Open SQL 403
9.3 ABAPSQL 410
9.3.1 Code Pushdown in ABAP SQL 412

9.3.2 JOINS oo 423

9.4 Open SQL versus ABAP SQL Statements ... 430
9.41 Major Syntax Changes in the SELECT Query 430

9.42 Arithmetic Operations and String Operationscorncecnnccenns 431

9.4.3 Joins and Unions 431

9.5 ABAP SQL versus CDS Views and AMDPs 432
9.51 CDSVieWS ..oovcrorvecreerrccerinenens 433

9.5.2 ABAP-Managed Database Procedures 433

9.6 Summary 434
10 Business Object Processing Framework 435
10.1 Introduction to Business Object Processing Frameworkcccocvonnveneene. 435
10.2 Elements of BOPFmmisssecesmsssssssssssssssssssesssmssssssssssssssssssnnnsssss 438
10.2.1 Nodes ... 439

10.2.2 Attributes 441

10.2.3 Alternate Keys 442

10.2.4 Actions 442

10.2.5 Determinationseeceereresesesseesensesssessans 445

10.2.6 Associations ..., 447

10.2.7 Validations 448

10.2.8 Queries 448

10.3 BOPF AP ... eses s eess s 449
10.3.1 BOPF Interface Objectsccc...... 449

10.3.2 Business Object Key 451

10.3.3 BOPF Constants Interface 451

13

Contents

10.4 CRUD Operations Using the BOPF API .. 453
10.4.1 Creating Business Object Instances 453
10.4.2 Searching for Business Object Instances 456
10.4.3 Updating and Deleting Business Object Instancesccccconceecnncreens 457
10.5 Advanced BOPF API Features 458
10.5.1 Consistency Checks 458
10.5.2 Trigering ACLIONSvvvvucererierireeireciereereeniesssessseseeenasessassane 459
10.5.3 Action Validationsrcrreenecseisseceessseseisnesees 460
10.5.4 Transaction Management 461
10.6 Enhancement Techniques 462
10.6.1 Enhancement Workbench 463
10.6.2 Enhancing the Business Object Data Modelc......... 464
10.7 Summary 469
11 Performance and Optimization 471
11.1 Runtime Statistics Records 472
11.2 Runtime and Statistical Analysis .. 475
11.2.1 Transaction SAT ... 476
11.2.2 ABAP Profiling Perspectivencnecunne. 484
11.2.3 SQL Performance Trace 496
11.2.4 Single Transaction Analysis (Transaction ST12) 498
11.2.5 Explain Plan .. 499
11.2.6 SAP HANA Plan Visualizer 505
11.3 ABAP Code Analysis 509
11.3.1 SAP Global Check Variants 509
11.3.2 Usingthe ABAP Test Cockpit 510
11.3.3 ABAP Test Cockpit Administration ..., 516
11.4 System-Wide Analysis 521
1141 Database Administrator Cockpit 522
11.4.2 SQL Monitor 524
11.5 saL Performance Optimization ... 526
11.5.1 Guided Performance ANAlYSisccercrneceineerneceieeeeseeeineees 527
11.5.2 SQL Performance Tuning Worklist 528
11.5.3 Recommended Static Checks 532
11.6 SUMMALNYooooocerecceecenesereeeseenenens 533
14

Contents
12 SAP Business Technology Platform,

ABAP Environment 535
12.1 Introduction to Application Development in the Cloud with SAP 535
12.2 ABAP Environment in the Cloud 540
12.2.1 Architecture. 541
12.2.2 Creating an ABAP Trial Instance 542

12.2.3 Connecting SAP HANA Studio to SAP BTP, Cloud Foundry
ENVIFONMENT <o ass e 546
12.2.4 ABAP Restrictions in the Cloud 549
12.2.5 Migrating ABAP Applications to the Cloud 552
12.3 Creating ABAP Repository Objects in the Cloud .. 555
12.3.1 Creating ABAP Packages in the Cloud ... 556
12.3.2 Creating ABAP Database Tables in the Cloud 560
12.3.3 Creating ABAP Classes in the Cloud 564
12.3.4 Creating ABAP CDS Views in the Cloud 569
2.4 SUMMACY ..ot 572
Appendices 575
A Programming Guidelines .. 577
B Code Migration .. 589
C The Authors 637
TNAEX et cesss s 639

15

Index

A

ABAP 36
classes (cloud) 564
cloud restrictions
core data services view

database table (cloud)
database tables
migrating applications ... 552
profile configuration ... 486
profiler trace 487
profiling perspective ccconuneces 484
readiness 601
repository objects 555
runtime measurements ... 485
SQL statements 430
trace request 489
trial 542
ABAP annotations 351
ABAP code analysis 509
ABAP database connectivity ... 103,109, 579
API classes 110
example 114
precautions 120

secondary database
ABAP database connectivity class ...

ABAP development 123
ABAP Development Tools ... 40, 55, 88, 163, 514
install Eclipse components. ... 94
install package 96
links 96
platform supportability ... 91
readiness checks 92
software supportability ... 91
ABAP Dictionary 309, 578
core data Service VIeWseoneceeonnes 427
limitations 293
ABAP dictionary 116
ABAP Open SQL
advantages
joins
multiple joins
runtime
ABAP package
ABAP perspective

ABAP profiler, debugger
ABAP runtime analysis

ABAP SQL 43,401
joins 431
unions 431

ABAP Test Cockpit 44,55, 509, 510,514, 589
administrationeeeeeeenn, 516,517
checks 512
cloud readiness 553
local check 617
remote check run 611
static check 532
statistics 511

ABAP trace 491

ABAP trace parameters ... 491

ABAP-managed database procedure 587
dump analysis 209
execution failure 210

ABAP-managed database procedures ... 37,45,
159,433

benefits 163
best practices 213
business add-in calleeoeeeceeeeereennane 196
business add-in definition ... 184,189

business add-in framework 180
business add-in implementation 185
business add-in methodccccccouuuu. 184
business add-in prerequisites 181
business add-ins 180
call methods 170
class definitiononccecnnecernenn. 168,182
consistency check 216
create business add-in

implementation 187
create classes 166
database-specific features 177
debug 202
debug process 205
debug users 203

debugging with SAP NetWeaver AS
ABAP75

delete obsolete AMDP

dependencies

development environment ... 163
enhancements 180
exception classes 199
exception handling ... 199, 200
extend methodeeeceeeeeeereenan. 184, 186
fallback class 195
form-based editor 164

639

Index

ABAP-managed database procedures (Cont.)

framework 161
Jramework definition ... 162
global classes 177
method definition 194
method implmentation ... 183
methods 168, 169
precondition CheCRSommeeeeeonneeeee. 215
prerequisites 166
tools 214
Action validations 460
Ad-hoc associations 355
Advanced Open SQL
code pushdown 412
comma-separated field liSts ... 412
compute columns 416
escaping host variables ... 412
sample code 415
SQL expressions 418
Alternate keys 442
Analytic privileges 273
Analytic views 255
Architecture 27
index server 28
Array 150
access 151
cardinality 153
concatenating 151
create 150
delete 152
unpack 152
Array trim 152
Associations 447
cardinality 354
define 352
B
Block parallel executionrercennens 150
BOPF
API 449
consumer layer 437
elements 438
enhancement techniques ... 462
interface objects 449
nodes 439
persistence layer 438
runtime layer 438
transaction layer 437
trigger actions 459
BOPF — Business Object Processing
Framework
640

Index

Business object 436
enhancement 464
Business object iNStance ... 453
delete 457
update 457
Business object key 451
Business Object Processing
Framework 435-437
Business rules 435
Business transaction events ... 180
C
Calculated column 252
aggregation 254
persistency 254
Calculation view 232
attributes 241
base table alias 238
calculated attribUteoereonnecnnrrenneons 235
cube calculation VIiewoecnmernreenns 233
default view 233
dimension view 233
hidden column 240
labels 241
measures 241
parameters 258
procedures 272
time dimension-based calculation
view 237
Central check system 609
Check results 520
Check run 519
frequency 519
Cloud Foundry 548
Coalesce 321

Code Inspector
static check
Code migration
Code pushdown matrix
Code pushdown techniques ...
Code-to-data
performance benefits .
Code-to-data paradigm
bottom-up approach
top-down approach
Column pruning

Component annotations ... 351
Conditional statementsccrecerenees 140
Consistency check 458
Consistency validation ... 466
Constants interface 451

Construct 139
Conversion funCtionseeeenneees 323
Core data services 37,45,161, 291, 433
ABAP integration 297
ABAP SQL 359
annotation types 349
annotations 349
association types 355
associations 351
authorizations 370
built-in functions 312
consume views 358
create views 307
define 298
define table functions ... 391
enhancements 364
expressions 312
limit view extensibility ... 368
naming guidelines 310
structure definition ... 304
syntax 310
table function definition ... 390
table functions 387
view entity 307
view extensions 367
CPU innovations 21
Create, read, update, and deleteccccoueccee 453
CRUD 453
save operation 456
CRUD — Create, read, update, and delete
Currency CONVersion ... 263,323
SAP HANA 264
Cursor 144
example 145
loop 146
Cursor technique 105
Custom code
analysis

evaluation
functional modifications ...
remote check
SAP S/4HANA 1eadinessceeeceeerenns
SQL performance optimization .. .
Custom code adaptioncnnennnn.
Custom code mMigration ...
Custom query

D
Data and time functionsccceeervenerernnene 334
Data compression 23

Data control language .. 125,296,371, 401, 577

access conditions 372
annotation values 385
create new source 380
source annotation 384
source definition 379
syntax 372
Data definition language 103,125,295,
296,401, 577
statement 115
Data definition, createveeeennnnee 299
Data engine functions 28
Data manipulation language 103,125,
401,577
Data mart 31
Data model
attribute 220
dimension 220
fact table 221
hierarchy 223
measure 220
optimizing 284
semantics 224
star schema 222
Data modeling 219
best practices 286
Data modification language
statement 116
Data partitioning 25
Data types 108
Database administrator cockpitcccc...... 522
Database procedure 106
Database schema 128
Data-to-code approach ... 160
Date functions 335
Debug query mode 285
Decimal shift 329
Decision table 265
create 266
name 267
sample 266
SQLScript 270
Design-time object 231
Determinations 445, 465
Development environments ... 51
Development tools 51
Direct Extractor CONNectcccceveeeeverenees 82
Domain 257
Domain fix values 258
Domain-specific languages ... 295

641

Index

E L
Embedded analytics 280 Lightweight Directory Access Protocol ... 88
Emptiness check 143 Literals 105
Enhanced SQL expressions 420 Local scalar variable 139
Enhancement workbench 463 Local table variable 139
Exception handing 149
Explain plan 499 M
Exposed associations 357
Extract, load, and transformccccocoeevreenneece 81 Measurement restrictionc..... 477,480
Microsoft Excel 75
F Modeling functions 243
Filtering data 256 N
G Name server 29
Native SQL
GitHub 87 data type compatibilityomececonne 108
Guided performance analysis ... 527 executing statementseeconeeeerene. 104
interface 104
H secondary connections ... 118
Node actions 442
Hierarchy 243 Node attribute 441
level 243
level hierarchy creation ... 244 0O
node styles 245
parent-child 243 Open Database Connectivity ... 87
parent-child creation ... 246 OpenSQL
time-based 249 arithmetic operations ...
Host variables 105 best practices

database guidelines ...
enhanced
features
joins
limitations
string operations

Information models with SQL 270
Information views 229
functions 271
types 231
Infrastructure-as-a-Service ... 536
In-memory database 20
Internet of Things 540
J
Java Database CONNECtiVitycomcerrnecrenns 87
Joins 224
inner join 224
left outer join 225
referential join 227
right outer join 226
star join 228
temporal join 228
text join 227
642

usage
P

Parallel execution 154
Parameters 258
Partitioning 289
Perforce 87

Performance analysis mode ...

Performance optimization ... 472,580
Persistence layer 28
Persistent node 441
Plan analysis 506
Platform-as-a-service 536
Preprocessor server 29

Index
Procedure SAP Business Warehouse ... 82
call 132 SAP BusinessObjects Business Intelligence .. 75
create 131 SAP BusinessObjects Web Intelligence 219
delete 133 SAP BW powered by SAP BW/4HANA ... 32
language 132 SAP BW powered by SAP HANA ... 32
parameters 131 SAP BW/4HANA 277
Procedure alter 133 SAP Cash Management ... 33
Procedure call 274 SAP Cloud Platformoeeeeeeeeeeeereeeeenne 537,594
Procedure schema 132 SAP Concur 536
Programming guidelines ... 577 SAP Crystal REPOItScccoomveervenvecrreereccrnenne 219, 280
Proxy objects 40 SAP Customer EXperience ... 536
Pseudo comments 632 SAP Data Services 82
Python 87 SAPFieldglass 536
SAP global check variants ... 509
Q SAP HANA 19,51, 589
code migration 592
Queries 448 compression 25
Query language 295, 296 features 19
Query unfolding 287 repository 28
services 30
R storage 22
SAP HANA accelerators cccceeens 31
Readiness check 2.0 607 SAP HANA Application Function Library 75
Restricted columns 250 SAP HANA client 87
Root node 455 compatibility 87
Row-based storage 23 SAP HANA Cloud 33
RUDN Series parameters ... 518 SAP HANA cockpit 86
Runtime analysis ... 475,479, 481 SAP HANA cockpit 2.0 86
overview 483 SAP HANA extended application services ... 29
variant 480 platform 51
Runtime object 231 SAP HANA Live 275,277
Runtime statistics 1ecords ... 472 customization 280
deployment 276
S private views 279
query views 278
SAP Adaptive Server Enterpriseo.... 81 reuse views 279
SAP Ariba 33,536 value help views 279
SAP BuSiness EXplOTETcomemmeereeceessisinns 219 SAP HANA Live BIOWSET oooooocevernrerssssnnennen 279
SAP Business One, version for SAP HANA ... 32 SAP HANA Live Rapid Development 280
SAP Business Suite powered by SAP HANA Live virtual data model 277
SAP HANA 32 SAP HANA plan visualizer ... 505, 506
SAP Business Suite powered by analysis 508
SAP S/4HANA 32 execute 507
SAP Business Technology Platform ... 535,537 SAP HANA platform editioncnen 62
ABAP environment 541 SAP HANA Predictive Analytics Library 28
architecture 541 SAP HANA Studiocoocceevmmeeceeernecereenne 54,219, 546
Cloud Foundry environment 547 ABAP perspective 623
cockpit 540 ABAP project 75
trial 538 actions 67
SAP Business Technology Platform, administration console eeeeeeeee. 83
ABAP environment 99 catalog 77
setup 100 check database version ... 57

643

Index

SAP HANA Studio (Cont.)
compatibility 56
compatibility issues 59
content 79
custom perspective 69
download 60
enhancement spot 190
installation 64
modeler perspective 75
navigation 67
perspective 67
perspectives 55
provisioning 81
security 80
views 71
SAP HANA Business Function Library 28
SAP Landscape Transformation
Replication Server 82
SAP List Viewer 360
SAP Lumira 219
SAP NetWeaver 88
SAP NetWeaver Application Server
for ABAP 37,401
SAP Note 1935918 595
SAP Note 2339297 473
SAP Note 2375176 58
SAP Note 2436955 498
SAP Precision Marketingcccccnecceonneces 33
SAP product evolution 53
SAP S/4AHANA
code migration 591

readiness check
SAP S/4AHANA Embedded Analytics ...
SAP Smart Meter Analytics
SAP Software Download Center ...
SAP SuccessFactors
SAP Lumira
Scalar function
Scheduled check run
Selection criteria e
Service manager interface ...
Session-dependent function
Single transaction analysis
Software-as-a-service

SourceForge

Special type conversion function 331

SQL 124
dynamic 148
performance optimization ... 526
view definition 307

SQL console 505

SQL injection prevention function 153

644

SQL modeler 286
SQL monitor 524
SQL performance trace ... 496
SQL performance tuning worklist 529
execution 530
SQL performance tuning worklist 528
SQL query
execution 111
template 128
SQL security mode 132
SQL statement, methodscccvvveevennnnene 117
SQL trace 500
SQLScript 28,123
debug 156
loop 141
operators 141
syntax error 165
system variables 155
table 129
Statistical records 474
analysis 475
Statistical server 29
Stored procedure 131
String functions 315
Structured Query Language (SQL)ccccvvvuueeen. 103
Subquery 137
System-wide analysis 521
T
Table
array conversion 151
buffering 585
field 129
inserting data 130
select query 130
type 130
TCUR schema 264
Templates 300
Time function 338
Time zone functions 343
Timestamp functions 339
Transaction
ATC 517
DB59 523
DBACOCKPIT ... 78,107,119, 523
DBCO 107,119
LCIO 523
SAT 476
SEI1 291
SE38 89
SE80 53,511

Index
Transaction (Cont.) User-defined function (Cont.)
SICK 216 join 135
STO4 500 scalar 134
STO5 497,500 table 134
ST22 199, 212
STAD 473 VvV
SWLT 528
SYCM 600 Validations 448
Transaction manager 461 Variables 258
interface 450 Variant configuration
Transactional statementccconeceees 147 duration 478
Transient node 441 program parts 479
Transparent optimization ... 42 statements 479
Virtual data model 275
U
W
Unit conversion 326
User-defined functionceriiinnnn, 133 Web Dynpro 55
alter function 134 WHERE clause 256
drop function 135 Whitelisted objects 602

645

First-hand knowledge.

® Rheinwerk

Publishing

ABAP’ Development
for SAP HANA

Understand how SAP HANA changes A programming
Access the database with ABAP
sQLscript, and AEAP-managed databas

Model data using calculation views and CDS views

NN IH dVS 403 jJusuudoasnadA . Avaw

Mohd Mohsin Ahmed & Rheinwer k
sumit Dipak Naik Publishing

Mohd Mohsin Ahmed, Sumit Dipak Naik
ABAP Development for SAP HANA

643 Pages, 2021, $89.95
ISBN 978-1-4932-1877-6

-E WWwWWw.sap-press.com/4954

Mohd Mohsin Ahmed is an SAP HANA certified professio-

nal with more than 14 years of experience as an SAP technical
consultant. He currently specializes in implementing SAP S/4HA-
NA solutions with a variety of methodologies, across various in-
dustry sectors, including manufacturing, retail, food and beverage,
life science, energy and utilities, public sector, and IT. He holds a degree in has
a degree in computer science engineering from Jawaharlal Nehru Technologi-
cal University in Hyderabad, India.

Sumit Dipak Naik is an experienced ABAP and SAP HANA
certified professional. He has more than 16 years of technical
consulting, solutioning, and management experience. His focus
isin implementing SAP ERP and SAP S/4HANA solutions, across
various industry sectors, including telecommunications, food and
beverages, manufacturing, retail, life sciences, energy and utilities, public sec-
tor, and IT. He has extensive experience with different implementation metho-
dologies, approaches, and accelerators.

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usa-
ge and exploitation rights are reserved by the author and the publisher.

https://www.sap-press.com/abap-development-for-sap-hana_4954/#utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse%20the%20Book&utm_content=1877

