A novel neural beta tubulin from the antarctic fish Notothenia coriiceps neglecta

H. WILLIAM DETRICH, III, and SANDRA K. PARKER, Department of Biology, Northeastern University, Boston, Massachusetts 02115

rom the standpoint of cold adaptation, the ectothermic fishes of antarctic coastal waters, which now experience body temperatures as low as the freezing point of sea water (-1.86°C), present biochemists with ideal experimental systems. Subjected to an increasingly severe thermal environment as the southern ocean began cooling approximately 40 million years ago, antarctic fishes diverged from temperate fishes (DeWitt 1971) and evolved cellular and biochemical adaptations that maintain metabolic efficiency and preserve macromolecular structure at their now chronically low body temperatures (-1.86 to +2°C). Recent work from my laboratory has been focused on the molecular adaptations that enable the cytoplasmic microtubules of antarctic fishes to assemble from their component proteins, tubulin alpha-beta dimers and microtubule-associated proteins (MAPs), in such an extreme thermal regime (Detrich and Overton 1986; Detrich, Prasad, and Ludueña 1987; Detrich, Johnson, and Marchese-Ragona 1989; Detrich et al. 1990, 1992; Skoufias, Wilson, and Detrich 1992). Together, these studies indicate that the major locus of functional adaptation is the tubulin dimer, not the MAPs. To understand the nature of these adaptations, we have initiated efforts to determine the primary sequences (that is, the order of amino acid subunits) of the alpha and beta tubulins of antarctic fishes by molecular-biological methods. In this report, we describe the sequence of a neural beta tubulin from the antarctic rockcod, Notothenia coriiceps neglecta (Detrich and Parker 1993).

Microtubules are a major component of the eukaryotic cytoskeleton, and they play critical roles in many cellular processes, including mitosis, intracellular transport, and the determination of cell shape. In vertebrates, the alpha- and beta-tubulin subunits of microtubules are encoded by 12–14 genes (6–7 alpha and 6–7 beta), each of which yields a distinct polypeptide, or "isotype" (Sullivan 1988). Because brain tissues express multiple alpha- and beta-tubulin isotypes (Sullivan 1988), we have focused our adaptational analysis on the neural tubulins of *N. coriiceps neglecta*. We hypothesize that the cold-adapted properties of these tubulins result, at least in part, from primary sequence changes located in the interdimer contact domains of the alpha and/or beta subunits.

To facilitate determination of the primary sequences of tubulins, we purified messenger ribonucleic acid (mRNA) from brain tissues of *N. coriiceps neglecta* and generated a complementary deoxyribonucleic acid (cDNA) library in the bacteriophage lambda gt10 (Detrich and Parker 1993). From this library, we isolated a 1.8-kilobase neural beta-tubulin cDNA, Ncn*beta1*. This cDNA contains an open reading frame of 446 codons, 67 nucleotides of 5' untranslated sequence, and 425 nucleotides of 3' untranslated sequence beyond the

stop codonTAG (figure 1). The tubulin encoded by Ncnbeta1 (figure 1) is almost equally related to neural beta chains of classes II (95.0–95.7 percent sequence homology) and IV (95.1–96.2 percent homology). However, joint consideration of protein and nucleotide (not shown) sequence homologies suggests that the Ncnbeta1 polypeptide is most parsimoniously assigned to the beta-II isotypic class.

The carboxyl terminus of the Ncn*beta1* polypeptide (residues 431–446) is noteworthy because it has diverged substantially from those of other vertebrate neural beta isotypes (figure 2). In higher vertebrates, the carboxy-terminal region largely defines the highly conserved beta-chain isotypic classes (Sullivan 1988). Thus, strong conservation of beta-chain isotypes across higher vertebrate taxa, which is characteristic of mammals and birds, may not extend to the more distantly related fishes.

To identify potentially adaptive residue changes in Ncn*beta1*, we have compared its primary sequence with those of other vertebrate beta tubulins (Detrich and Parker 1993). As shown in the table, the Ncnbeta1 polypeptide contains several unique amino acid substitutions and an unusual carboxyterminal residue insertion. Three conservative replacements (isoleucine for methionine at position 267, glycine for serine at 278, and serine for alanine or glycine at 283) are clustered near a region of beta tubulin that is thought to form contacts between tubulin dimers (Arévalo et al. 1990) in the microtubule. Furthermore, replacement of tyrosine by phenylalanine at position 200 is unusual in vertebrate beta chains, where it occurs only in the erythroid-specific class VI. Substitution of alanine for a bulky aliphatic amino acid (valine or isoleucine) at position 333 is unique and nonconservative, and the tyrosine inserted at position 442 is novel. We conclude that the Ncnbeta1 chain is a class-II beta isotype that contains several sequence changes that are likely to contribute to its unique functional properties at low temperature. Currently, we are pursuing cDNAs for all neural alpha and beta tubulins so that we may catalog the repertoire of primary sequence alterations of potential adaptive importance.

Experiments performed at Palmer Station during the 1992–1993 field season addressed four other project objectives. As part of our effort to characterize the functional properties of antarctic fish tubulin isotypes, Laura Camardella purified tubulins from nucleated erythrocytes of two nototheniids (*N. coriiceps neglecta* and *Gobionotothen gibberifrons*) and examined their assembly reactions *in vitro*. Anthony Frankfurter analyzed the brain, egg, erythrocyte, and sperm tubulins of antarctic fishes for carboxy-terminal posttranslational modifications that may influence microtubule assembly and stability *in vivo*. Stephen King purified and

-67 CTGCTTCGTTCGCAGCTGAATCACTGCAGTCCAACAACTTAGCCTTTTTCGGTCTTTGTTCACCAAA

-	ATG A														CAA														GGC	
1	Met A	Arg	Glu	Ile	Val	His	Leu	GIN	ALA	GTÀ	GIN	Суз	GIY	Asn	Gln	11e	GΙΫ	Sel	гда	Pne	Trp	GIU	val	116	Ser	Asp	GIU	HIS	Gly	TTe
91 31	GAC C														GAT Asp														TAT Tyr	
	-							_			-									-	-					-		-	-	
181 61	CCC C Pro P														TCA Ser														AAC Asn	
271	GTC 1	יתייי	ccc	CAG	AGC	GGA	CCT	CGT	אממ	AAC	TGG	GCT	222	GGT	CAC	TAC	ACT	GAG	GGA	GCC	GAG	CTG	GTG	GAC	TCA	GTC	CTG	GAT	GTG	GTG
91	Val H														His														Val	100 C
361	AGG	AAG	GAG	GCG	GAG	GGA	TGC	GAC	TGC	CTG	CAG	GGC	TTC	CAG	CTC	ACA	CAC	TCC	CTG	GGT	GGA	GGG	ACT	GGC	TCG	GGC	ATG	GGC	ACG	CTG
121	Arg I	Lys	Glu	Ala	Glu	Gly	Суз	Asp	Cys	Leu	Gln	Gly	Phe	Gln	Leu	Thr	His	Ser	Leu	Gly	Gly	Gly	Thr	Gly	Ser	Gly	Met	Gly	Thr	Leu
451	CTC #														AAC														GTG	
151	Leu 1	[le	Ser	Lys	Ile	Arg	Glu	Glu	Tyr	Pro	Asp	Arg	Ile	Met	Asn	Thr	Phe	Ser	Val	Val	Pro	Ser	Pro	гла	Val	Ser	Asp	Thr	Val	Val
541	GAG (Glu H														AAC Asn														GAC Asp	
181			-														-				-		•					-	-	
631 211	TGT T Cys H														CTC Leu														TGT Cys	
721	CGC 1					_					ACC	222	CTG	GCC	GTC	AAC	ATG	GTG	CCC	ጥጥር	CCC	ACA	ርፕር	CAC	TTC	TTC	ልጥጥ	CCG	GGC	ጥጥጥ
241	Arg I														Val														Gly	
811	GCC (CCG	CTG	ACC	AGT	CGT	GGC	GGC	CAG	CAG	TAC	AGG	TCG	TTG	ACT	GTT	ССТ	GAG	CTC	ACC	CAG	CAG	ATG	TTC	GAC	TCC	AAG	AAC	ATG	ATG
271	Ala H	Pro	Leu	Thr	Ser	Arg	Gly	Gly	Gln	Gln	Tyr	Arg	Ser	Leu	Thr	Val	Pro	Glu	Leu	Thr	Gln	Gln	Met	Phe	Asp	Ser	Lys	Asn	Met	Met
901	GCA														GCC														CAG	
301	Alai	Ala	Cys	Asp	Pro	Arg	His	Gly	Arg	Tyr	Leu	Thr	Val	Ala	Ala	Ile	Phe	Arg	Gly	Arg	Met	Ser	Met	Lys	Glu	Val	Asp	Glu	Gln	Met
991	TTG I Leu I														ATC Ile														CGT Arg	
331						-														-					-				-	-
1081 361	CTC I														CAG Gln														TTC Phe	
1171	CGC	-							-		GAG	GGC	ATC	GAT	GAG	ATC	GAG	ጥጥር	202	GNG	GCT	CAG	ACC	220	ATC.	AAC	CAC	CTG	GTG	ጥር ሞ
391	Arg 1														Glu														Val	
1261	GAG	TAC	CAG	CAG	TAC	CAG	GAC	GCC	ACT	GCT	GAG	GAG	GAG	GGC	GAG	TTT	GAA	GAG	GAG	GGC	GAA	TAT	GAA	GAT	GGA	GCC		TAG	ATG	CCCA
421	Glu	Tyr	Gln	Gln	Tyr	Gln	Asp	Ala	Thr	Ala	Glu	Glu	Glu	Gly	Glu	Phe	Glu	Glu	Glu	Gly	Glu	Tyr	Glu	Asp	Gly	Ala		Amb		

Figure 1.Nucleotide sequence of the Ncnbeta1 cDNA and deduced primary sequence of the encoded beta tubulin. Eight amino acid residues that differentiate Ncnbeta1 from other vertebrate neural tubulins (classes I–IV) are shown in outline font. Nucleotide positions and amino acid residues (three-letter code) are numbered on the left. Amb indicates the amber translation termination codon, and the probable polyadenylation signal is underlined. The nucleotide sequence of the Ncnbeta1 cDNA (GenBank accession number L08013) was established by use of the dideoxynucleotide chain-termination procedure (Sanger, Nicklen, and Coulson 1977) as described elsewhere (Detrich and Parker 1993). [Reprinted from Detrich and Parker (1993) with permission. Copyright 1993 Wiley-Liss, Inc.]

Class	Organism	Tubulin	431																			6	% Identity
I	mouse	Μβ5	E	E	E	E	D	F	G	E	E	A	E	*	E	*	E	A					56
	chicken	cβ7	E	E	E	E	D	F	G	E	E	A	E	*	B	*	E	A					56
II	mouse	Μβ2	D	E	Q	G	E	F	E	в	E	R	G	*	B	D	E	A					62
	chicken	cβ1/2	D	B	Q	G	E	F	E	E	E	G	E	*	B	D	E	A					75
	N. coriiceps	Nen _{β1}	E	E	E	G	E	F	E	E	Ð	G	E	Y	E	D	G	A					
IVb	mouse	M β3	E	E	E	G	E	F	E	E	E	A	E	*	B	R	v	A					75
	chicken	εβ3	E	E	E	G	E	F	E	E	E	A	E	*	E	E	A	E					69
IVa	mouse	Μβ4	E	E	*	G	E	F	E	E	E	A	E	*	E	E	v	λ					69
ш	chicken	сβ4	E	E	E	G	E	M	Y	Ľ	D	D	E	E	E	s	E	Q	G	A	ĸ		58

Figure 2.The unique carboxyl terminus of Ncn*beta1* tubulin. Presented for comparison with the Ncn*beta1* peptide are the isotype-defining sequences (beginning at position 431) of neural beta chains (classes I–IV) from higher vertebrates. Asterisks indicate single amino acid gaps introduced to establish maximal sequence homology. For each pairwise comparison with the Ncn*beta1* carboxyl terminus, sequence homology was calculated as percentage residue identity with respect to the longer sequence. The Ncn*beta1*/class-III alignment is shown in suboptimal register, but its homology value (11 matches/19 residues × 100 percent = 58 percent) is calculated for the optimal alignment (single amino acid gaps positioned after Ncn*beta1* residues 435 and 437). Beta-isotypic sequences for mouse and chicken are from Wang et al. (1986) and from Monteiro and Cleveland (1988), respectively. [Reprinted from Detrich and Parker (1993) with permission. Copyright 1993 Wiley-Liss, Inc.]

Comparative analysis of the Ncnbetal primary sequence^a

1	Acres 1	a fat and the second	and the second second			and the second second									
			Neural beta-tubulin isotypes												
	Position	Ncnbeta1	II	IVa/b	I	III									
	18 126 200 267	Ser Gly Phe Ile	Ala Ser Tyr Met	Ala Ser Tyr Met	Ala Ser Tyr Met	Ala Asn Tyr Met									
	278 283 333 442	Gly Ser Ala Tyr	Ser Ala Val	Ser Ala/Gly Val —	Ser Ala Val	Ser Ala Ile									

^aThe table includes those sequence positions that uniquely differentiate the Ncnbeta1 polypeptide from vertebrate neural beta tubulins of isotypic classes I, II, and/or IV (the isotypes most closely related to Ncnbeta1). Classes I–IV are ordered from left to right by sequence homology (high to low) to Ncnbeta1. Because the tyrosine at position 442 in Ncnbeta1 represents a sequence insertion, vertebrate classes I–IV lack a corresponding residue (dashes). Reference vertebrate beta-tubulin sequences (GenBank database) are from chicken (classes I–IV), mouse (I, II, and IV), human (I, IV), pig (II), rat (II), and the amphibian *Xenopus laevis* (II). [Reprinted from Detrich and Parker (1993) with permission. Copyright 1993 Wiley-Liss, Inc.]

characterized inner- and outer-arm dyneins from sperm flagella of *N. coriiceps neglecta*; these specimens will support future research on cold adaptation of these important mechanochemical MAPs. Finally, graduate student Martin Billger developed methods for culturing primary explants of nototheniid and channichthyid skin cells and for immunofluorescent staining of their microtubule cytoskeletons.

To support our research, we obtained specimens of two nototheniids (*N. coriiceps neglecta* and *G. gibberifrons*), three icefishes (*Chaenocephalus aceratus, Champsocephalus gunnari*, and *Chionodraco rastrospinosus*), a bathydraconid (*Parachaenichthys charcoti*), and two bathyrajids (*Bathyraja maccaini* and *B. griseocauda*) by bottom trawling from R/V *Polar Duke* south of Low Island [Western Bransfield Strait Marine Site of Special Scientific Interest (MSSSI) Number 35] and near Brabant Island (East Dallmann Bay MSSSI Number 36). Several deep-water benthic nototheniids, bathydraconids, artedidraconids, and zoarcids were collected at 900 meters in Crystal Sound east of Lavoisier Island. Fishes were transported to Palmer Station, where they were maintained in sea water aquaria at -1 to $+1^{\circ}$ C.

Field studies were conducted at Palmer Station from mid March to late May 1993. We gratefully acknowledge Martin Billger (Göteborgs Universitet, Sweden), Laura Camardella (Consiglio Nazionale delle Ricerche, Naples, Italy), Anthony Frankfurter (University of Virginia), and Stephen M. King (Worcester Foundation for Experimental Biology) for their participation in our field research program. We also thank the captains and crews of R/V *Polar Duke* and the personnel of Antarctic Support Associates for the excellent support that they provided to our project. This research was supported by National Science Foundation grant OPP 91-20311.

References

- Arévalo, M.A., J.M. Nieto, D. Andreu, and J.M. Andreu. 1990. Tubulin assembly probed with antibodies to synthetic peptides. *Journal of Molecular Biology*, 214(1), 105–120.
- Detrich, H.W., III, T.J. Fitzgerald, J.H. Dinsmore, and S.P. Marchese-Ragona. 1992. Brain and egg tubulins from antarctic fishes are functionally and structurally distinct. *Journal of Biological Chemistry*, 267(26), 18766–18775.
- Detrich, H.W., III, K.A. Johnson, and S.P. Marchese-Ragona. 1989. Polymerization of antarctic fish tubulins at low temperatures: Energetic aspects. *Biochemistry*, 28(26), 10085–10093.
- Detrich, H.W., III, B.W. Neighbors, R.D. Sloboda, and R.C. Williams, Jr. 1990. Microtubule-associated proteins from antarctic fishes. *Cell Motility and the Cytoskeleton*, 17(3), 174–186.
- Detrich, H.W., III, and S.A. Overton. 1986. Heterogeneity and structure of brain tubulins from cold-adapted antarctic fishes: Comparison to brain tubulins from a temperate fish and a mammal. *Journal of Biological Chemistry*, 261(23), 10922–10930.
- Detrich, H.W., III, and S.K. Parker. 1993. Divergent neural beta tubulin from the antarctic fish *Notothenia coriiceps neglecta*: Potential sequence contributions to cold adaptation of microtubule assembly. *Cell Motility and the Cytoskeleton*, 24(3), 156–166.
- Detrich, H.W., III, V. Prasad, and R.F. Ludueña. 1987. Cold-stable microtubules from antarctic fishes contain unique alpha tubulins. *Journal of Biological Chemistry*, 262(17), 8360–8366.
- DeWitt, H.H. 1971. Coastal and deep-water benthic fishes of the antarctic. In V.C. Bushnell (Ed.), *Antarctic map folio series, folio 15.* New York: American Geographical Society.
- Monteiro, M.J., and D.W. Cleveland. 1988. Sequence of chicken cbeta7 tubulin: Analysis of a complete set of vertebrate beta-tubulin isotypes. *Journal of Molecular Biology*, 199(3), 439–446.
- Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463–5467.
- Skoufias, D.A., L. Wilson, and H.W. Detrich, III. 1992. Colchicinebinding sites of brain tubulins from an antarctic fish and from a mammal are functionally similar, but not identical: Implications for microtubule assembly at low temperature. *Cell Motility and the Cytoskeleton*, 21(4), 272–280.
- Sullivan, K.F. 1988. Structure and utilization of tubulin isotypes. Annual Review of Cell Biology, 4, 687–716.
- Wang, D., A. Villasante, S.A. Lewis, and N.J. Cowan. 1986. The mammalian beta-tubulin repertoire: Hematopoietic expression of a novel, heterologous beta-tubulin isotype. *Journal of Cell Biology*, 103(5), 1903–1910.