
On the Incoherencies in Web Browser Access Control Policies

Kapil Singh∗, Alexander Moshchuk†, Helen J. Wang† and Wenke Lee∗

∗Georgia Institute of Technology, Atlanta, GA

Email: {ksingh, wenke}@cc.gatech.edu
†Microsoft Research, Redmond, WA

Email: {alexmos, helenw}@microsoft.com

Abstract—Web browsers’ access control policies have evolved
piecemeal in an ad-hoc fashion with the introduction of new
browser features. This has resulted in numerous incoherencies.
In this paper, we analyze three major access control flaws in
today’s browsers: (1) principal labeling is different for different
resources, raising problems when resources interplay, (2) run-
time changes to principal identities are handled inconsistently,
and (3) browsers mismanage resources belonging to the user
principal. We show that such mishandling of principals leads
to many access control incoherencies, presenting hurdles for
web developers to construct secure web applications.

A unique contribution of this paper is to identify the com-
patibility cost of removing these unsafe browser features. To do
this, we have built WebAnalyzer, a crawler-based framework
for measuring real-world usage of browser features, and used
it to study the top 100,000 popular web sites ranked by Alexa.
Our methodology and results serve as a guideline for browser
designers to balance security and backward compatibility.

I. INTRODUCTION

Web browsers have gradually evolved from an application

that views static web pages to a rich application platform

on which mutually distrusting web site principals co-exist

and interact [1]–[3]. Along the way, the browsers’ access

control policies have also been evolving, but unfortunately

this happened in a piecemeal and ad-hoc fashion alongside

the introduction of new browser features (such as AJAX)

or resources (such as local storage). There have been no

principles or invariants that a new access control policy must

follow or maintain. Consequently, numerous incoherencies

in browsers’ access control policies exist, presenting hurdles

for web programmers to build robust web applications.

In this paper, we examine the current state of browser ac-

cess control policies, uncover and analyze the incoherencies

in these policies, and measure the cost of eliminating them

in today’s web.

An access control policy configures how a principal

accesses certain resources. This involves defining how prin-

cipals are identified, how resources are labeled with principal

IDs, and how these labels may be changed and handled at

runtime. Unfortunately, browsers often mismanage princi-

pals, resulting in access control inconsistencies. We focus on

three major sources of these problems: inconsistent principal

labeling, inappropriate handling of principal label changes,

and disregard of the user principal.

Inconsistent principal labeling. Today’s browsers do

not have the same principal definition for all browser re-

sources (which include the Document Object Model (DOM),

network, cookies, other persistent state, and display). For

example, for the DOM (memory) resource, a principal is

labeled by the origin defined in the same origin policy

(SOP) in the form of <protocol, domain, port> [4]; but

for the cookie resource, a principal is labeled by <domain,

path>. Different principal definitions for two resources are

benign as long as the two resources do not interplay with

each other. However, when they do, incoherencies arise. For

example, when cookies became accessible through DOM’s

“document” object, DOM’s access control policy, namely the

SOP, undermines some of cookie’s access control policies

(Section II-C1 gives a more detailed analysis).

Inappropriate handling of principal label changes. A

web application is allowed to change its principal’s label

at runtime through the use of the document.domain

DOM property. Nevertheless, the access control state is

often kept static and such “effective” principal IDs set by

document.domain are disregarded. This leads to access

control incoherencies.

Disregard of the user principal. In this paper, we

introduce the concept of a user principal in the browser

setting. The user principal represents the user of a browser.

Sometimes, the user principal is disregarded in existing

browsers’ access control policies. Certain resources should

belong to the user principal exclusively. They include the

user-private state such as clipboard and geolocation, user

actions like navigating back and forward in browsing history,

and a browser’s UI including the current tab. These resources

should not be accessible by web applications without user

permission; otherwise, a web site could impersonate the user

and violate user privacy. Unfortunately, today’s DOM APIs

expose some of these resources to web applications.

To systematically analyze and uncover the incoherencies

created by these three problem areas, we have devised a set

of coherency principles and constructed tests to check major

browsers (including Internet Explorer, Firefox, and Google

Chrome) for violations of these principles and to uncover

the incoherencies that ensue.

A major goal of our work is to evaluate the compatibility

cost of removing unsafe browser features that contribute to



the incoherencies. To this end, we have built WebAnalyzer, a

scalable, crawler-based browser-feature measurement frame-

work that can inspect a large number of web pages by

rendering them in instrumented browsers. WebAnalyzer cap-

tures the DOM interactions of a page by interposing between

the JavaScript engine and the DOM renderer, captures the

protocol-level behavior through an HTTP proxy, and ana-

lyzes the visual appearance of a page by extracting its page

layout.

Armed with WebAnalyzer, we have conducted measure-

ments on the prevalence of unsafe browser features over the

most popular 100,000 web sites as ranked by Alexa [5]. Our

results pinpoint some unsafe features that have little back-

ward compatibility cost and are thus possible to remove from

current browsers without breaking many sites. For example,

we find that most APIs controlling user-owned resources,

descendant navigation, and incoherencies in XMLHttpRe-

quest’s principal labeling have low compatibility costs,

whereas a substantial number of sites depend on “dangerous”

functionality provided by document.domain or transpar-

ent cross-origin overlapping frames. Overall, we believe that

by estimating the prevalence of unsafe features on the web,

our measurements can guide future browsers to make better

security vs. functionality trade-offs.

In summary, this work makes the following contributions:

• A systematic, principal-driven analysis of access con-

trol incoherencies in today’s browsers.

• Introduction of the user principal concept for the

browser setting.

• A comprehensive, extensible compatibility measure-

ment framework.

• The first large-scale measurements on the compatibility

cost of coherent access control policies.

The rest of the paper is organized as follows. Section II

presents our systematic analysis of today’s browser access

control policies and enumerates access control incoheren-

cies. Section III discusses our measurement motivation,

tools, and infrastructure. Section IV presents our measure-

ment results and gives recommendations on which unsafe

policies can be eliminated with acceptable compatibility

cost. Section V discusses limitations of our approach, Sec-

tion VI presents related work, and Section VII concludes.

II. AN ANALYSIS OF BROWSER ACCESS CONTROL

INCOHERENCIES

In this section, we present our systematic analysis of

today’s browser access control policies and enumerate their

incoherencies.

A. Methodology

For a systematic analysis, we establish the following

access control coherency principles to guide our search for

incoherencies:

1) Each shared browser resource, i.e. a resource shared

among multiple principals, should have a principal

definition (labeling of principals that share the re-

source) and have an access control policy.

2) For each non-shared browser resource that is explicitly

owned by a single principal, the resource should have

an owner principal with a specific label or be globally

accessible.

3) When two resources interplay, both resources should

have the same principal definition.

This is because when two resources have different

ways of labeling principals and when they interplay,

their respective access control policies can be in con-

flict.

4) All access control policies must consider the runtime

label of the principals, namely, the “effective” princi-

pal ID.

5) The user principal’s resources should not be accessible

by web applications.

This is because when the user principal’s resources

are accessible by web applications, the user’s privacy

may be compromised or a web application could act

on the user’s behalf without the user’s knowledge.

We look for violations of these principles and check for

incoherencies when violations take place. The pseudocode

below illustrates our manual analysis process.

0 foreach (browser resources) {

1 if exists (access control) {

2 if !considers (effective principal ID)

3 check improper principal ID changes

4 } else

5 check if lack of policy is appropriate

6 }

7

8 foreach (pairs of resources) {

9 if (they interplay &&

10 the principal/owner labeling differs)

11 check resource interplay incoherencies

12 }

For each resource, we check whether it has an access

control policy. If not, we check whether the lack of policy

is appropriate (line 5, for example, Section II-E illustrates

on how some resources that belong to the user principal

lack access control considerations). If yes, we further check

whether the access control policy considers the effective

principal ID that sites can change dynamically at render-

time. If it does not, then we check for incoherencies there

(line 3, Section II-D).

In addition, we go through all pairs of resources; if they

interplay and if they have the different principal definitions,

we check for incoherencies (line 11, Section II-C). Careful



Shared resources Principal definition

DOM objects SOP origin

cookie domain/path

localStorage SOP origin

sessionStorage SOP origin

display SOP origin and dual ownership *

Table I
SHARED BROWSER RESOURCES AND THEIR RESPECTIVE PRINCIPAL

DEFINITIONS. *DISPLAY ACCESS CONTROL IS NOT WELL-DEFINED IN TODAY’S

BROWSERS.

Non-shared resources Owner

XMLHttpRequest SOP origin

postMessage SOP origin

clipboard user*

browser history user*

geolocation user

Table II
NON-SHARED BROWSER RESOURCES AND THEIR RESPECTIVE OWNER

PRINCIPAL. *ACCESS CONTROL IS NOT WELL-DEFINED IN TODAY’S BROWSERS.

readers may wonder what happens to the interplay of more

than two resources. Coherency in this context is a transitive

property. That is, if a Resource 1 and Resource 2’s access

control policies are coherent (namely have the same princi-

pal definitions) and that of Resource 2 and Resource 3 are

coherent, then the access control policies of Resource 1 and

Resource 3 are also coherent since their principal definitions

should also be the same.

The enumeration of resources is done by manually brows-

ing through IE’s source code (more in Section II-B). Our

incoherency checks are done through test programs on major

browser versions.

Despite our effort to be comprehensive, it is possible that

we miss some browser resources or miss some interplays

among the resources. We hope our work to be a start for

a community effort on mapping out the full set of browser

access control policies.

B. Browser resources

In this section, we enumerate all types of browser re-

sources. A browser resource may be shared among (some

definition of) principals or may not be shared and is ex-

plicitly owned by some principal. Table I shows the shared

resources and their respective principal definitions. Table II

shows non-shared resources and their respective owners.

We now describe each resource, their principal or owner

definition, and its access control policy in turn.

A DOM object is a memory resource shared among

principals labeled with SOP origins, namely, <protocol,

domain, port>. The access control policy of DOM objects is

governed by SOP [4], which mandates that two documents

from different origins cannot access each other’s HTML

documents using the Document Object Model (DOM),

which is the platform- and language-neutral interface that

allows scripts to dynamically access and update the content,

structure and style of a document [6].

A cookie is a persistent state resource. The browser

ensures that a site can only set its own cookie and that

a cookie is attached only to HTTP requests to that site.

By default, the principal is labeled with the host name

and path, but without the protocol and the port num-

ber [7], [8], unlike SOP origins. For example, if the page

a.com/dir/1.html creates a cookie, then that cookie

is accessible to a.com/dir/2.html and other pages

from that dir/ directory and its subdirectories, but is not

accessible to a.com/. Furthermore, https://a.com/

and http://a.com/ share the cookie store unless a

cookie is marked with a “secure” flag. Non-HTTPS sites

can still set “secure” cookies in some implementations, but

cannot read them back [9]–[11]. A web programmer can

make cookie access less restrictive by setting a cookie’s

domain attribute to a postfix domain or the path name to

be a prefix path.

Local storage is the persistent client-side storage shared

among principals defined by SOP origins [12].

Session storage is storage for a tab [12]. Each tab has a

unique set of session storage areas, one for each SOP origin.

The sessionStorage values are not shared between tabs. The

lifetime of this storage is the same as that of the tab.

Display does not have a well-specified access control

policy in today’s browsers and standards (corresponding to

line 5 in our pseudocode). Our earlier work Gazelle [3]

specified an access control policy for display (and Gazelle

further advocated that this policy be enforced by the browser

kernel, unlike existing browsers). In Gazelle’s model, a web

site principal delegates its display area to another principal in

the form of cross-domain iframes (or objects, images). Such

an iframe (window) is co-owned by both the host page’s

principal, called landlord, and the nested page’s principal,

called tenant (both labeled with SOP origins). Principals

other than the landlord and the tenant have no access per-

missions for the window. For the top-level window, the user

principal owns it and plays the role of its landlord. Gazelle’s

policy further specifies how landlord and tenant should

access the four attributes of a window, namely the position,

dimensions, pixels, and URL location. This specification

guarantees that the tenant cannot interfere with the landlord’s

display, and that the tenant’s pixels, DOM objects, and

navigation history are private to the tenant. Gazelle’s policy

is coherent with SOP. In Table III, we summarized the access

control matrix for Gazelle, IE 8, Firefox 3.5, and Chrome 2.

The access control of the URL location attribute corresponds

to the navigation policy of a browser. Descendant navigation

policy allows navigating a descendant window regardless

of its origin; this was advocated and implemented over

several browsers [13]. Gazelle’s policy is child navigation



Landlord Tenant

Gazelle IE FF/Chrome Gazelle IE FF/Chrome

position (x,y,z) RW RW RW RW

dimensions (height, width) RW RW RW R RW R

pixels W* W* RW RW RW

URL location W W RW* RW RW RW

Table III
ACCESS CONTROL POLICY FOR A WINDOW’S LANDLORD AND TENANT (BEING A DIFFERENT PRINCIPAL FROM THE LANDLORD) ON GAZELLE, IE 8,
FIREFOX 3.5, AND CHROME. RW*: THE URL IS READABLE ONLY IF THE LANDLORD SETS IT. IF THE TENANT NAVIGATES TO ANOTHER PAGE, LANDLORD WILL NOT

SEE THE NEW URL. W*: THE LANDLORD CAN WRITE PIXELS WHEN THE TENANT IS TRANSPARENTLY OVERLAID ON THE LANDLORD.

policy. (We elaborate in Section II-C3 that the descendant

navigation policy is at conflict with DOM’s SOP.) Our tests

indicate that Firefox 3.5 and Chrome 2 currently support

the child policy, while IE 8 supports the descendant policy.

All major browsers allow any window to navigate the top-

level window, while Gazelle only allows top-level window

navigation from the top-level window’s tenant and the user.

XMLHttpRequest allows a web site principal to use scripts

to access its document origin’s remote data store by issuing

an asynchronous or synchronous HTTP request to the remote

server [14]. XMLHttpRequest2 [15] and XDomainRequest

have been recently proposed and implemented in major

browsers to allow cross-origin communications with remote

servers, where HTTP authentication data and cookies are not

sent by default. These networking capabilities are not shared

and strictly belongs to a web site principal labeled with a

SOP origin.

PostMessage is a recently proposed client-side cross-

origin communication mechanism that is now implemented

in all major browsers. This is also a web site principal’s

capability which is not shared with any other principals.

The last three resources in the non-shared resource table,

namely clipboard, browser history, and geolocation, all be-

long to the user principal, and web applications should not be

able to access them directly. However, they are all accessible

by scripts through the DOM API, causing problems that we

describe in Section II-E.

C. The interplay of the resources

From the enumeration of the resources and their respective

principal or owner definition in the above section, we derived

the following problematic pairs of resources, where the two

resources interplay and their principal or owner definitions

differ: DOM-cookie, cookie-XMLHttpRequest, and DOM-

display. We elaborate on these interplays below.

1) DOM and Cookies: DOM and cookies interplay be-

cause scripts are able to create or modify cookies by using

the document.cookie property in the DOM API.

With no protocol in cookie’s principal definition, cookies

are vulnerable to information leaks. A cookie intended for

a secure HTTPS principal can be passed over HTTP and

be exposed to network attackers. This can be prevented

Figure 1. Incoherency arises from the interplay between the access control
policies of DOM and cookies

by setting the cookie with the “secure” flag. However, a

”secure” cookie can still be set by an HTTP response

and be accessed by scripts belonging to an HTTP page as

long as their domains are the same. Additionally, different

services running on different ports of the same domain can

access each other’s cookies. Moreover, the path protection

of cookies becomes ineffective as a script from a different

path can access the cookie based on SOP.

The interplay between DOM and cookies also allows the

scripts to set the effective domain of a cookie to any suffix

of the original domain by setting the domain attribute of

the cookie. This can lead to inconsistencies in the current

browsers. Figure 1 shows a scenario in which such inconsis-

tencies lead to an undefined behavior in the browsers. In this

example, a cookie named “stockCookie” with value “buy”

is stored in the cookie store for the domain a.com. A script

injected into a compromised page belonging to x.a.com

can create another cookie with the same name but with a

different value “sell” while setting its domain attribute to

a.com.

While this leads to a compromised state in the current

browsers, different browsers deviate in their behavior cre-

ating further inconsistencies in the web applications sup-

porting multiple browsers. Firefox 3 sets this cookie with



a domain value of .a.com resulting in multiple cookies

with the same name in browser’s cookie store. The browser

attaches both cookies (genuine cookie with domain a.com

and evil cookie with domain .a.com) to any server requests

to a.com. The server only receives the cookie’s name-

value pair without any information about its corresponding

domain. This results in the server receiving two cookies with

the same name. Since server-side behavior is not defined in

case of duplicate cookies [9], it leads to inconsistent state at

a.com’s server. In case of IE 8, the original cookie value

is overwritten and only the wrong cookie value is received

by the server.

2) Cookies and XMLHttpRequest: Cookies and XML-

HttpRequest interplay because XMLHttpRequest can set

cookie values by manipulating HTTP headers through

scripts. XMLHttpRequest’s owner principal is labeled by the

SOP origin, while cookie has a different principal definition

(Section II-B).

If a server flags a cookie as “HttpOnly”, the browser

prevents any script from accessing (both reading and writing)

the cookie using the document.cookie property. This

effectively prevents cookies being leaked to unintended

parties via cross-site scripting attacks [16].

The purpose of HttpOnly cookies is that such

cookies should not be touched by client-side

scripts. However, XMLHttpRequests are created and

invoked by client-side JavaScript code, and certain

methods of the XMLHttpRequest object facilitate

access to cookies: getResponseHeader and

getAllResponseHeaders allow reading of the

“Set-cookie” header, and this header includes the value of

HttpOnly cookies. Another method, setRequestHeader,

enables modification of this header to allow writing to

HttpOnly cookies.

Some of the latest browsers have tried to resolve this issue

with varied success. IE 8 currently prevents both read and

write to cookies via “Set-cookie” header, but still allows

access via “Set-cookie2” header [17]. Firefox has also recog-

nized and fixed the issue for cookie reads: their fix prevents

XMLHttpRequest from accessing cookie headers of any

response, whether or not the HttpOnly flag was set for those

cookies [18]. This is a bold step taken by Firefox, as our

results show that a considerable number of web pages still

read cookie headers from XMLHttpRequest (Section IV).

However, we have still observed the writing issue with

HttpOnly cookies using Firefox 3.5. A script can set a cookie

with the same name as the HttpOnly cookie and can have a

different value set using the setRequestHeadermethod.

This results in a duplicate cookie being sent to the server,

thus creating an inconsistent state on the server side.

3) DOM and Display: One incoherence takes place on

URL location of a window. The descendant navigation

policy (Section II-B) is at conflict with DOM’s SOP. De-

scendant navigation policy allows a landlord to navigate

a window, a resource created by its descendant through a

DOM API, even if the landlord and the descendant are

different principals. This gives a malicious landlord more

powerful ways to manipulate a nested, legitimate sites than

just overdrawing: with overdrawing, a malicious landlord

can imitate a tenant’s content, but the landlord cannot send

messages to the tenant’s backend in the name of the tenant.

As an example attack, imagine that an attacker site nests

a legitimate trading site as its tenant. The trading site

further nests an advisory site and uses a script to interact

with the advisory window to issue trades to the trading

site backend (e.g., making a particular trade based on the

advisory’s recommendation shown in the URL fragment).

With just one line of JavaScript, the attacker could navigate

the advisory window (which is a descendant) and create

unintended trades.

Another conflict lies in the access control on the pixels

of a window. DOM objects are ultimately rendered into

the pixels on the screen. SOP demands non-interference

between the DOM objects of different origins. However,

existing browsers allow intermingling the landlord’s and

tenant’s pixels by overlaying transparent tenant iframes on

the landlord, deviating from the non-interference goal of

SOP. This enables an easy form of clickjacking attacks [19].

In contrast, Gazelle advocates cross-principal pixel isolation

in accordance with SOP (Table III, row “pixels”).

D. Effective Principal ID

Browsers allow cross-principal sharing for “related” sites

by allowing sites to change their principal ID via the

document.domain property [4]. This property can be

set to suffixes of a page’s domain to allow sharing of

pages across frames. For example, a page in one frame

from x.a.com and a page from www.a.com initially

cannot communicate with each other due to SOP restrictions.

This is one of the few methods for cross-origin frames to

communicate before the advent of postMessage [20]. How-

ever, changing document.domain violates the principle

of least privilege: once a subdomain sets its domain to its

suffix, there is no control over which other subdomains can

access it.

Furthermore, almost no existing access control policies

of today’s browsers take such “effective” principal IDs into

consideration. In the following subsections, we examine

how the disregard of effective principal IDs leads to dual

identities and incoherencies exploitable by attackers. In our

attack model, an attacker owns a subdomain (through third-

party content hosting as in iGoogle or by exploiting a site

vulnerability). As we will show in the following sections,

the attacker can leverage document.domain to penetrate

the base domain and its other subdomains.

1) Cookie: Any change of origin using

document.domain only modifies the effective principal

ID for DOM access and does not impact the domain for



Figure 2. Lack of effective principal ID consideration in cookie’s access
control policy

cookie access. Figure 2 shows an attack to exploit this

inconsistent behavior of browser policy design. In this

scenario, a page 1.html in domain x.a.com changes it

effective domain to a.com. As a result, it can access the

DOM properties of other pages belonging to a.com, but

it can no longer access the pages of its original domain

x.a.com. However, since the effective domain does not

change for cookie access, the page still maintains access

to the cookies belonging to its original domain. This

inconsistent dual identity possessed by the page acts as a

bridge to access cookies from both the original domain and

the effective domain.

In order to launch the attack, an attacker (after owning

a subdomain page) first assumes the identity of a.com

and subsequently injects a script into the page 1.html.

This injected script can now read and write the cookies

belonging to x.a.com including any cookies created later.

Effectively, if the attacker can compromise a page in one

of the subdomains, he can access the cookies of any other

subdomains that change their effective origin to the base

domain.

2) XMLHttpRequest: Change of origin for scripts does

not change the effective principal ID for XMLHttpRequest

usage. This enables a (malicious) script in a (compromised)

subdomain to issue XMLHttpRequest to the servers be-

longing to the base domain and its other subdomains. The

attack scenario is illustrated in Figure 3. Page 1.html

has changed its effective domain value to a.com from the

original value of x.a.com. With no effect on XMLHttpRe-

quest usage, scripts in 1.html can still make requests

to the server belonging to x.a.com. This again gives a

script a dual identity – one for DOM access (a.com) and

another for XMLHttpRequest (x.a.com). Therefore, an

attacker compromising any subdomain can inject a script

Figure 3. Lack of effective principal ID consideration in XMLHttpRe-
quest’s access control policy

into 1.html via DOM access, and this script can then

make XMLHttpRequest calls to the original domain of the

page. Since a well-crafted XMLHttpRequest can change the

server-side state for the web application, and this state might

be shared between other pages within the domain x.a.com,

such attack can possibly impact all pages belonging to

x.a.com.

3) postMessage: postMessage also ignores any

document.domain changes: if x.a.com changes do-

main to a.com and sends a message to y.b.com,

y.b.com still sees the message’s origin as x.a.com. Also,

if y.b.com changes its domain to b.com, x.a.com still

has to address messages to y.b.com for them to be deliv-

ered. This gives the attacker (with a compromised subdo-

main) an opportunity to send messages while masquerading

under the identity of another subdomain (Figure 4).

4) Storage: Based on our tests, IE 8 does not take any

document.domain changes into consideration for both

local storage and session storage. Firefox 3.5 also ignores

effective principal ID for local storage. However, for session

storage, any domain changes via document.domain are

considered: the old session storage is lost for the original

domain and a new session storage is created for the effective

principal.

Inconsistency arises when document.domain changes

are ignored (for both session storage and local storage in IE;

for only local storage in Firefox). An attacker (being able to

inject a script into one of the pages of any subdomain, say

x.a.com) can change its origin to the base domain a.com

and can successfully inject a script into the DOM of the base

domain or any other origins (e.g., y.a.com) that change

identity to the base domain. Since access control checks

on storage rely on original domain (i.e., y.a.com), the

malicious script can now freely access the storage belonging



Figure 4. Lack of effective principal ID consideration in postMessage

to y.a.com.

E. The User Principal

In this paper, we introduce the concept of the user prin-

cipal in the browser setting. The user principal represents

the user of the browser. Unfortunately, it has often been

neglected in browser access control policies.

While a web application does manage the user’s data

and experience for that particular application (e.g., a user’s

banking data at a banking site), certain browser resources

or data belong to the user exclusively and should not be

accessible by any web site without user permissions. Such

resources include: user’s private data, such as clipboard

data and geolocation; user actions, such as clicking on

the forward and back button; devices, such as camera and

microphone; and browser UI, including the current tab

window (top-level window).

Unfortunately, in today’s browsers, some of these re-

sources are directly exposed to web applications through

the DOM API. This breaks the fundamental rule of pro-

tecting resources belonging to different principals from one

another, as the user principal’s resources can be accessed

and manipulated by site principals. This can result in pri-

vacy compromises, information leaks, and attacks that trick

users into performing unintended actions. In this section,

we examine the user principal resources and describe our

findings on how they may be accessed improperly by web

applications.

1) User actions: The focus and blur properties of the

window object allow web sites to change focus between the

windows that they opened irrespective of the origins. This

enables an attacker site to steal focus or cause the user to

act on a window unintentionally.

The window object has a history property with an

array of user-visited URLs. Browsers have been denying any

site’s access to this array to protect user privacy, but they

do allow a site to navigate the browser back and forward in

history through the back() and forward() methods [8].

Worse, our tests indicate that Firefox 3 and Google Chrome

2 allow any child window to navigate the top-level window

back or forward in history irrespective of the origin. In

many cases this is just a nuisance, but some properly-crafted

history navigation by a malicious application can lead to

more severe damage. For example, the user might be tricked

to make multiple purchases of the same product.

We have also investigated synthetic event creation. The

DOM API allows a site to generate synthetic mouse or key-

board events through the document.createEvent()

method (or document.createEventObject() in IE).

In IE, a programmer could directly invoke a click()

method on any HTML element to simulate user clicks. These

techniques are useful for debugging purposes. To our delight,

all major browsers are careful not to let a web site to manip-

ulate another site’s user experience with these synthetic user

events. Note that it is benign for a site to simulate the user’s

actions for itself, since loading and rendering site content

can by itself achieve any effects of simulating user actions

(e.g., simulating a mouse click is equivalent of calling the

onclick function on the corresponding element).

2) Browser UI: An important part of the browser UI

is the current tab window, or top-level window. In today’s

browsers, any web site loaded in any window is able to repo-

sition and resize a top-level window through the moveTo,

moveBy, resizeTo, and resizeBy properties of the

top-level window. Resizing the currently active top-level

window effectively resizes the browser window. Firefox 3

allows an application to resize a browser window even in the

presence of multiple tabs, while IE 8 and Chrome 2 do not

allow this. A site can also open and close a top-level window

using open and close methods. The use of open method

has been mitigated through built-in popup blockers. IE 8

allows any frame to close a top-level window irrespective of

the origin, while Firefox 3 and Chrome 2 prevent this from

happening. These capabilities allow an attacker site (even

when deeply nested in the DOM hierarchy, say a malicious

ad) to directly interfere with the user’s experience with the

browser UI.

Some of the other loopholes in browser UI have already

been fixed. For example, the status bar can no longer be set

by a web site.

3) User-private state: Jackson et al. have shown that a

user’s browsing history can be exposed by inspecting the

color of a visited hyperlink [21], raising privacy concerns.

The hyperlink’s color is intended for the user, and it is not

necessary for web sites to be able to read it.

The clipboard data also belongs exclusively to the

user principal. All versions of IE since 5.0 support



APIs to access clipboard data. A web site can get

contents of a user’s clipboard by successfully calling

window.clipboardData.getData("Text").

Depending on the default Internet security settings, the

browser may prompt user before getting the data. However,

the prompt does not identify the principal making the

request (simply using the term “this site”). As a result, a

malicious script embedded on a third-party frame may trick

the user into giving away his clipboard because he thinks

that such access is being requested by the trusted top-level

site.

Geolocation is one of the latest browser features that

allows a site to determine the client’s location by using the

navigator.geolocation [12] interface. At the time

of writing, Firefox 3.5 is the only stable production browser

supporting this HTML5 feature. Geolocation is user-private

data. Today’s browsers do ask user permission before access-

ing it. However, issues arise when a site embeds content

from multiple principals (i.e., in frames), and more than

one origin needs access to geolocation information. The

geolocation dialog is active for only one origin at a time;

if there is a request to access geolocation from b.com

while the dialog for a.com is still active, it is ignored

— the principal that succeeds in invoking the geolocation

dialog first wins. Therefore, if a malicious party manages to

embed a script (or a frame) on the page, it can prevent the

main site from triggering the geolocation dialog by invoking

the dialog first. As a result, the malicious party can create

denial-of-service against the main site, preventing it from

retrieving a user’s geolocation information. Additionally, it

could trick the user into giving away location to itself rather

than the main site (e.g., using phishing domain names like

www.gooogle.com).

Changing document.domain also generates inconsis-

tencies. The geolocation prompt is designed to work only

with the original principals, and even if a site changes

identity, the prompt still displays the original domain as

the requesting domain. For an example site good.a.com

that changes its document.domain to a.com, this causes the

following problems:

• If an attacker site evil.a.com changes its

document.domain to a.com, it can steal position

information from good.a.com, if good.a.com

has stored or displayed this information in

a place that is accessible via the DOM (e.g.,

using parent.document.getElementById(

"coords").innerHTML).

• If another site evil.a.com also changes its domain

to a.com, it could impersonate good.a.com,

by using parent.navigator.geolocation

.getCurrentPosition, which would trigger

the access prompt using good.a.com, instead of

evil.a.com.

III. THE WEBANALYZER MEASUREMENT FRAMEWORK

To achieve consistent browser access control poli-

cies, browser vendors need to remove or modify the

features that contribute to incoherencies. For exam-

ple, disallowing domain-setting for cookies, eliminating

document.domain, and removing support for access-

ing user principal resources are steps towards secure new

browsers. However, this begs the question of what the cost of

these feature removals is and how many web sites will break

as a result. In today’s highly competitive browser market,

backward compatibility with the existing web is paramount.

To help browser vendors balance security and compati-

bility, we set off to build a measurement system to measure

the cost of security. Many previous web compatibility studies

have been browser-centric: they have evaluated the degree to

which a given browser supports various web standards or is

vulnerable to attacks [22], [23]. In contrast, we take a web-

centric perspective and actively crawl the web to look for

prevalence of unsafe browser features on existing web pages.

Compared to existing crawlers, however, static web page

inspection is insufficient. Dynamic features such as AJAX

or post-render script events require us to actively render a

web page to analyze its behavior at run time. Moreover, the

incoherencies we identified in Section II require analysis of

not just a page’s JavaScript execution [24], but also DOM

interactions, display layout, and protocol-layer data.

To address these challenges, we have constructed a scal-

able, execution-based crawling platform, called WebAna-

lyzer, that can inspect a large number of web pages by

rendering them in an instrumented browser. The platform

consumes a list of URLs (defined by a human operator or

generated by a traditional web crawler), and distributes them

among virtual machine workers, which renders them using

IEWA, a specially instrumented version of Internet Explorer.

IEWA provides dynamic mediation for all browser resources,

and detects when a resource invocation matches one of

preset policy rules. Even though our framework is extensible

to a large variety of browser policies, we concentrate on “un-

safe feature” rules derived from our analysis in Section II.

To build IEWA, the central piece of our measurement

platform, we leverage public COM interfaces and exten-

sibility APIs exported by Internet Explorer 8. Figure 5

shows the architecture of IEWA, which centers around three

major interposition modules: (1) a script engine proxy, which

provides JavaScript and DOM interposition, (2) a network

proxy based on Fiddler [25], and (3) display dumper, which

enables custom analysis of a page’s layout as it is visible to

the user. Next, we discuss each module in turn.

Script engine proxy. We build on our earlier system

in MashupOS [1] to implement a JavaScript engine proxy

(called script engine proxy (SEP)): SEP is installed be-

tween IE’s rendering and script engines, and it mediates

and customizes DOM object interactions. SEP exports the



Figure 5. High-Level Architecture of IEWA.

script engine API to IE’s renderer, and it exports the DOM

and rendering interfaces to IE’s script engine. Each DOM

object is interposed by a corresponding object wrapper.

When IE’s script engine asks for a DOM object from the

rendering engine, SEP intercepts the request, retrieves the

corresponding DOM object, associates the DOM object with

its wrapper object inside SEP, and then passes the wrapper

object back to the original script engine. Any subsequent

invocation of wrapper object methods from the original

script engine passes through SEP. SEP is implemented as

a COM object and is installed into IE by modifying IE’s

JavaScript engine ID in the Windows registry.

Network interposition. In addition to SEP, we route the

browser’s network traffic through a proxy to monitor all

HTTP/HTTPS requests and analyze cookie transfers as well

as network APIs like XMLHttpRequest. Our network proxy

is implemented using the FiddlerCore interfaces provided by

the public-domain Fiddler web debugging proxy [25], [26].

Display analysis. In order to evaluate display policies, it

is necessary to analyze a browser’s visual output as seen by

the user. For this purpose, we use a customized version of

IE’s rendering engine that exposes COM interfaces to extract

a textual representation of a particular page’s visual layout

at any stage of rendering. In our current evaluation, we use

these COM interfaces to save a snapshot log of IE’s display

after a page has fully loaded. Because some pages have

post-render events that alter layout, we wait an additional

5 seconds before taking a display snapshot. Snapshot logs

provide a mapping between a page’s objects and their layout

properties, such as position, dimensions, or transparency.

They can be analyzed offline for the presence of unsafe

frame overlapping behavior or other dangerous page layouts.

Navigation. To facilitate automatic analysis for a large

number of URLs, IEWA includes a URL navigation en-

gine, which utilizes IE’s extensibility interfaces, such as

IWebBrowser2, to completely automate the browser’s nav-

igation. In addition to pointing the browser to new URLs,

this module also cleans up state such as pop-ups between

consecutive URLs, detects when sites fail to render (e.g.,

404 errors), and recovers from any browser crashes.

Visiting a site’s home page is sometimes insufficient to

invoke the site’s core functionality. For example, a feature

may be accessed only when the user clicks on a link, types

search queries, or causes mouse event handlers to run.

It is difficult and time-consuming to fully automate a site’s

analysis to study all possible features and pages that could

be invoked using all combinations of user input. Instead of

aiming for complete coverage within a particular site, we

enhanced our navigation engine with simple heuristics that

simulate some user interaction. After rendering a site’s home

page, IEWA will find and simulate a click on at most five

random links, producing five random navigation events. In

addition, IEWA will check for presence of a search form,

fill it with random keywords, and submit it. We restrict all

simulated navigations to stay within the same origin as a

site’s home page.

These simple enhancements maintain our ability to ex-

amine a large number of sites while adding the ability to

properly handle many (but not all) sites with home pages

that do not invoke the site’s main functionality. For example,

we can navigate to a random article on Wikipedia, a random

video on YouTube, a random profile on MySpace, a random

Twitter feed, and a random search query on Google. We

evaluate the success of this methodology against a user-

driven browsing study in Section IV-G and discuss its

limitations in Section V.

Performance. We deployed our system on several desktop

machines, each with an Intel 2.4 GHz quad-core CPU and

4 GB of RAM. Our IEWA workers run inside a Windows

Vista VMware virtual machine to prevent malware infection.

We executed multiple workers in each VM, isolating them

from one another using different UIDs and different remote

desktop sessions.

On such a setup, one IEWA worker is able to analyze about

115 typical web sites per hour. Each site’s processing time

includes the home page, five random link clicks, and one



form submission, as well as overheads introduced by IEWA’s

three interposition modules. We found that we could execute

up to eight parallel workers in one VM, for a throughput of

900 sites per VM, before saturating the CPU. Optimizing

this infrastructure for performance was not a goal of this

paper and is left as future work.

IV. EXPERIMENTAL RESULTS

Our analysis in Section II provides an understanding of the

security characteristics of the current access control policies

in browsers. In this section, we complete the other half

of the equilibrium by using the measurement infrastructure

presented in Section III to study the prevalence of unsafe

browser features (analyzed in Section II) on a large set of

popular web sites. By presenting both sides, we enable the

browser vendors to make more informed decisions about

whether or not to continue supporting a particular unsafe

feature based on its real-world usage.

A. Experimental overview

1) Choosing the sites for analysis: Instead of randomly

crawling the web and looking for unsafe features, we de-

cided to focus our attention on the “interesting” parts of the

web that people tend to visit often. Accordingly, to seed our

analysis, we take the set of 100,000 most popular web sites

ranked by Alexa [5], as seen on November 9, 2009, as our

representative data set. The data collection and analysis were

completed in the last week of February 2010.

2) Defining the compatibility cost: We define the cost of

removing a feature to be the number of Alexa-ranked, top

100,000 sites that use the feature.

We conservatively assume that disallowing a feature will

significantly hinder a site’s functionality, whereas it could

simply cause a visual nuisance. A more detailed analysis on

the effect of policy changes on page behavior is promising

but is left as future work.

3) High-level results: We obtained our results by ren-

dering each of the 100,000 seed links using WebAnalyzer,

saving all interposition logs for offline analysis. This way,

we were able to obtain data for 89,222 of the 100,000 sites.

There are several reasons why no data was produced for the

rest of sites. First, some sites could not be accessed at the

time of our analysis due to failed DNS lookups, “404 Not

Found” errors, and other similar access problems. Second,

some sites timed out within our chosen threshold interval of

2 minutes, due to their slow or continuous rendering. We

decided to drop any such sites from our analysis. Finally,

some sites did not contain any JavaScript code, and as a

result they did not trigger our event filters. Nonetheless, we

believe that we have been able to analyze a sufficiently large

set of sites with a reasonable success ratio, and our data set

and the scope of measurement is much larger than that used

by earlier related studies [24].

Tables IV, V, and VI present the results of our analysis,

showing how frequently each feature we analyzed earlier is

encountered. Next, we organize our findings according to

our discussion in Section II and discuss their implications

on future browser security policies.

B. The interplay of browser resources

1) DOM and Cookies: Cookie usage is extremely pop-

ular, and so is their programmatic DOM access via

document.cookie, which we found on 81% web sites

for reading and 76% of web sites for writing cookie values,

respectively. The use of the cookie’s domain attribute is

also widespread (67% of sites), with about 46% of sites

using it to actually change the domain value of the cookie.

As a result, the issues described in Section II-C1 cannot

be solved by simply deprecating the usage of this attribute

and changing the principal definition of cookies. One pos-

sible approach to solve the inconsistency issue with cookie

handling is to tag the cookie with the origin of the page

setting the cookie. This information should be passed to the

server to allow the server to differentiate between duplicate

cookies.

Section II-C1 also identified inconsistencies pertaining

to cookies and HTTP/HTTPS, which we now support

with measurements. First, 0.07% of sites alarmingly send

secure cookies over HTTP. This effectively tampers with

the integrity of cookies that may have been intended for

HTTPS sessions [10]. Fortunately, it appears that this func-

tionality can be disallowed with little cost. Surprisingly, a

much larger number of sites (5.48%) sent HTTP cookies

over HTTPS. The HTTP cookies cannot be kept confidential

and are accessible to HTTP sessions. Our recommended

solution to this problem is that the “secure” flag should be

enforced for any cookies passed over an HTTPS connection

even if the web developer fails to set the flag. This would

still enable the HTTPS site to access the cookie for its own

functionality and any sharing with the HTTP site should be

done explicitly.

We found a large number of sites (16.2%) using HttpOnly

cookies, which is an encouraging sign — many sites appear

to be tightening up their cookie usage to better resist XSS

attacks.

2) Cookies and XMLHttpRequest: Our measurements

show that the issues arising from undesirable interplay of

XMLHttpRequest and HttpOnly cookies (Section II-C2)

can possibly be eliminated, since very few sites (0.30%)

manipulate cookie headers in XMLHttpRequest responses.

3) DOM and Display: Section II-C3 argued that the

descendant navigation policy is at conflict with SOP for

DOM. We observe iframe navigations on 7.7% of sites and

all of them are child navigation (regardless of the origin).

The absence of descendant navigation in the top 100,000

sites indicates a potentially very low cost to remove it.



Measurement Criteria
Total instances Unique sites

(count) Count Percentage

document.cookie (read) 5656310 72587 81.36%

document.cookie (write) 2313359 68230 76.47%

document.cookie domain usage (read) 2032522 59631 66.83%

document.cookie domain usage (write) 1226800 41327 46.32%

Secure cookies over HTTP 259 62 0.07%

Non-secure cookies over HTTPS 15589 4893 5.48%

Use of “HttpOnly” cookies 33180 14474 16.22%

Frequency of duplicate cookies 159755 4955 5.55%

Use of XMLHttpRequest 19717 4631 5.2%

Cookie read in response of XMLHttpRequest 1261 265 0.30%

Cross-origin descendant navigation (reading descendant’s location) 6043 61 0.07%

Cross-origin descendant navigation (changing descendant’s location) 0 0 0.00%

Child navigation (parent navigating direct child) 22572 6874 7.7%

document.domain (read) 1253274 63602 71.29%

document.domain (write) 8640 1693 1.90%

Use of cookies after change of effective domain 295960 1569 1.76%

Use of XMLHttpRequest after change of effective domain 225 87 0.10%

Use of postMessage after change of effective domain 0 0 0.00%

Use of localStorage after change of effective domain 42 10 0.01%

Use of local storage 1227 169 0.19%

Use of session storage 0 0 0.00%

Use of fragment identifier for communication 5192 3386 3.80%

Use of postMessage 6523 845 0.95%

Use of postMessage (with no specified target) 0 0 0.00%

Use of XDomainRequest 527 125 0.14%

Presence of JavaScript within CSS 224266 4508 5.05%

Table IV
USAGE OF VARIOUS BROWSER FEATURES ON POPULAR WEB SITES (FEBRUARY 2010). ANALYSIS INCLUDES 89,222 SITES.

Sites containing at least one <iframe> 36549 (40.8%)

Average number of <iframe>’s per site 3.2

Sites with at least one pair of overlapping frames 5544 (6.2%)

Sites with at least one pair of overlapping cross-origin frames 3786 (4.2%)

Sites with at least one pair of transparent overlapping frames 1616 (1.8%)

Sites with at least one pair of transparent overlapping cross-origin frames 1085 (1.2%)

Table V
SUMMARY OF DISPLAY LAYOUTS OBSERVED FOR THE TOP 100,000 ALEXA WEB SITES (DECEMBER 2009). 89,483 SITES WERE RENDERED

SUCCESSFULLY AND ARE INCLUDED IN THIS ANALYSIS.

In addition, we have analyzed the visual layouts of all sites

to determine whether there are dangerous pixel interplays

between windows of different principals (Section II-C3). Our

results are summarized in Table V1. We found that 41% of

sites embed at least one iframe, and the average number of

iframes embedded on a particular page is 3.2. Overlapping

iframes appear to be common — 6.2% of sites contained

1Our display analysis was performed in December 2009, separately from
script engine and network analysis that we performed in February 2010,
causing a slight difference in the number of successfully rendered sites in
Tables V and IV.

at least one overlapping pair of iframes — but only 29%

of these overlaps involved transparent iframes. Most (68%)

overlapping scenarios involve different principals.

The most dangerous situations occur when a transparent

frame is overlaid on top of a frame belonging to a dif-

ferent principal (Section II-C3). We identified 1,085 sites

(1.2%) that contained at least one pair of transparent, cross-

origin overlapping iframes. We observed that most of these

overlaps involved domains serving ad banners, so the main

site functionality might remain unaffected if the dangerous

transparency is disallowed.



Measurement Criteria
Total instances Unique sites

(count) Count Percentage

Setting top-level window’s location 55759 2851 3.20%

Change focus of window 5221 2314 2.59%

Reading color of hyperlinks 82587 1560 1.75%

Accessing browser’s history 1910 721 0.81%

Use of defaultStatus (write) 1576 241 0.27%

Reading user’s Geolocation 251 149 0.17%

Use of resizeTo 339 134 0.15%

Use of defaultStatus (read) 528 108 0.12%

Use of moveTo 258 100 0.11%

Close a window 130 86 0.10%

Access to user’s clipboard 24 17 0.02%

Blur a window 54 13 0.01%

Use of resizeBy 13 8 0.01%

Use of moveBy 4 1 0.00%

Use of outerWidth 2 1 0.00%

Use of outerHeight 4 1 0.00%

Table VI
PREVALENCE OF RESOURCES BELONGING TO THE USER PRINCIPAL ON POPULAR WEB SITES. ANALYSIS INCLUDES 89,222 SITES.

Summary. We found that interplays between DOM and

cookies have a high compatibility impact, while removing

the interplays between cookies and XMLHttpRequest would

affect only 0.30% of sites. For interplays related to display,

we found that descendant navigation can be disallowed

with no cost, while disallowing overlaps between transparent

cross-origin frames would affect 1.2% of sites.

C. Changing effective Principal ID

In Section II-D, we showed that document.domain is

an unsafe and undesirable part of today’s web, as observed

by others as well [9]. Unfortunately, we found its usage on

the web to be significant: 1.9% of sites change their effective

domain via document.domain.

We mentioned certain features which become incoherent

when combined with document.domain. Cookies are

accessed by about 1.76% of the sites after a change in

effective domain, making it difficult to enforce a unified

effective domain for cookie access (Section II-D1). Only

0.08% of sites use XMLHttpRequest after an effective UID

change (Section II-D2), so it appears possible to make

XMLHttpRequest respect effective domain with little cost.

The same holds true for postMessage — we found no

sites using postMessage after an effective UID change. The

new local storage abstractions are not widespread — only

0.19% of the sites were using localStorage (0.01%

after an effective domain change), and no sites were us-

ing sessionStorage — so we anticipate that origin-

changing weaknesses that we outlined in Section II-D4 can

be removed with little compatibility cost.

Summary. Overall, while disallowing

document.domain completely carries a substantial

cost (1.9% of sites), browsers can eliminate its impact on

XMLHttpRequest, local storage, and postMessage at a much

lower cost (0.19% of sites total). On the flip side, browser

vendors have to make a much tougher choice (affecting

1.76% of sites) to prevent effective UID inconsistencies

pertaining to cookies.

D. Resources belonging to the user principal

Table VI shows the results of our analysis for the cost of

protecting user-owned resources discussed in Section II-E.

The cost of tightening access control for user resources

appears to be low with the exceptions of link-color access

(1.8%), the focus-changing functions (2.6%), and setting

top-level window location (3.2%).

Interestingly, 149 sites (0.17%) already use the new

Geolocation primitives [12]. This number seems low enough

for browsers to take actions to tighten its access control.

Overall, we found that 12 of the 16 user-principal APIs

we examined can be removed while collectively affecting

only 0.80% of unique sites.

E. Other noteworthy measurements

We measured prevalence of some primitives for cross-

frame and cross-window communication, which are critical

for cross-principal security. Fragment identifier messaging

is most popular, being found at 3.8% of sites. A non-

negligible number (0.95%) of sites have already adopted

postMessage, and all sites use its newer definition that

requires specifying the target window [13]. Another safer

alternative for cross-domain communication, XDomainRe-

quest, is also being slowly adopted (0.14%).



0 20000 40000 60000 80000 100000

Sites ranked by popularity

0

20

40

60

80

100

C
D

F
 

document.domain mutation 

PostMessage 

Frame Identifier Messaging 

Figure 6. A CDF for prevalence of cross-frame communication mecha-
nisms according to the ranking of sites that use them.

Using JavaScript within CSS has long been considered

dangerous [9]. We found this pattern in use on about 5% of

the sites.

F. Correlating unsafe features and site popularity

Next, we consider how the popularity of sites correlates

with prevalence of unsafe features. A policy is more costly

to correct if it is used by very highly ranked sites, since more

people would visit them and encounter broken functionality.

Fortunately, we found that most features do not exhibit

a significant popularity bias, behaving uniformly with no

regard to a site’s popularity. Nevertheless, we found some

exceptions. Figure 6 shows a CDF of the usage of various

mechanisms that could be used for cross-frame communica-

tion according to the sites’ ranking. Interestingly, fragment

identifier messaging has little dependence on popularity,

document.domain tends to be used more by higher-

ranked sites, and postMessage is found more on lower-

ranked sites, with very little use in the top 2000 sites. This

went against our hypothesis that higher-ranked, high-profile

sites would likely be written using the latest and safest web

standards. A possible explanation could be that the top sites

are motivated to use features compatible with the largest

number of browsers and client platforms.

As another example, Figure 7 diagrams the prevalence of

resources belonging to the user principal according to the

ranking of the sites that use them (a dot is displayed for

every site using a particular feature). Some features, such

as resizeBy or clipboard access, are only found on very

low-ranked sites and are thus good candidates to remove

with little impact. Only a handful of features appear in the

top 100 sites, where compatibility cost is very high for any

site.

1 10 100 1000 10000 100000

Popularity Ranking (log)

history
color 

clipboard 
geolocation 

close 
focus 

blur 
location 
resizeTo 
resizeBy 
moveTo 

defaultStatus (write) 
defaultStatus (read) 

Figure 7. A CDF for prevalence of user-owned resources according to the
ranking of sites that use them.

G. Methodology validation using user-driven analysis

In the previous sections, we examined sites by visiting

their home pages and relying on WebAnalyzer’s heuristics

(see Section III) to simulate a few basic user actions to

invoke additional functionality that may be hidden behind

“splash” home pages. However, our methodology may miss

site functionality that requires user login forms (e.g., on

Facebook), other more sophisticated user event handlers

(e.g., mouse movements), or following many links away

from the home page. In general, it is very difficult, if not

impossible, to simulate user actions that open access to

representative features of an arbitrary site.

To evaluate the limitations of our heuristics-driven ap-

proach, we conducted a user-driven examination of the top

100 Alexa sites. To do this, one of the authors manually

visited these sites with IEWA and used his best judgement

to invoke the site’s representative functionality. For example,

for analyzing Facebook, the author logged into his Facebook

account, browsed through several profiles, and invoked sev-

eral applications such as photo viewing or messaging.

We then compared the results obtained through this man-

ual analysis to those obtained using WebAnalyzer for the

same sites. Table VII summarizes the results of our compar-

ison. We observe that the numbers of sites using a particular

feature are mostly comparable, providing confidence that our

heuristic-driven navigation engine in WebAnalyzer works

well in practice. Some features have higher prevalence

with the user-driven analysis, as expected, but there are

only a couple of outliers. For example, Geolocation was

found on nine sites, all found on multilingual versions of

maps.google.com. In manual analysis, the user invoked

maps on each of the nine versions of the Google site,

where WebAnalyzer randomly picked and followed the link

to Maps on three of these sites. On the other hand, on

several occasions, WebAnalyzer also found features that

were missed by manual analysis, as can be seen in higher

prevalence for features like reading document.domain.

This can happen when WebAnalyzer navigates to a link

that the user did not examine as part of representative



Measurement Criteria
Number of sites

WebAnalyzer Manual

document.cookie (read) 93 86

document.cookie (write) 86 76

document.cookie domain usage (read) 78 70

document.cookie domain usage (write) 59 59

Secure cookies over HTTP 0 2

Non-secure cookies over HTTPS 11 8

Use of “HttpOnly” cookies 27 30

Frequency of duplicate cookies 17 8

Use of XMLHttpRequest 32 28

Cookie read in response of XMLHttpRequest 0 0

Cross-origin descendant-navigation (reading descendant’s location) 0 0

Cross-origin descendant-navigation (changing descendant’s location) 0 0

Child navigation (parent navigating direct child) 1 2

document.domain (read) 78 59

document.domain (write) 18 19

Use of cookies after change of effective domain 18 19

Use of XMLHttpRequest after change of effective domain 4 2

Use of localStorage after change of effective domain 2 1

Use of session storage 0 0

Use of local storage 4 3

Use of fragment identifier for communication 0 1

Use of postMessage 1 1

Use of XDomainRequest 1 2

Presence of JavaScript within CSS 16 27

Setting top-level window’s location 1 2

Change focus of window 2 2

Reading user’s Geolocation 3 9

Table VII
COMPARISON OF USER-DRIVEN ANALYSIS VS. WEBANALYZER FOR THE TOP 100 ALEXA SITES. FEATURES NOT SHOWN HERE WERE USED BY ZERO

SITES FOR BOTH USER-DRIVEN AND WEBANALYZER STUDIES.

functionality on a given site. Overall, we felt our heuristics-

driven approach achieved good coverage, though larger-scale

user-driven measurements would still be very valuable in

complementing WebAnalyzer measurements.

V. DISCUSSION AND LIMITATIONS

Benefits of heuristics-driven automated crawling. In

our original design, WebAnalyzer visited only the top-

level page of each site we studied. We quickly realized

that this analysis failed for sites that hide much of their

functionality behind “splash” home pages. This became most

apparent when studying the original results for Table VII. We

observed that for many sites, clicking on a link or filling out

a search form on the home page would expose a noticeably

larger (though still not complete) set of functionality. Thus,

we augmented WebAnalyzer with simple heuristics that

imitate this user behavior (see Section III).

As an example, our original system saw XMLHttpRequest

calls on only 13 pages of the top 100 pages, whereas the

new one identified 32 such pages (see Table VII). One of

the reasons is that many search sites use XMLHttpRequest

to auto-complete the search string as users type it; our old

system did not trigger this behavior, whereas our new system

triggered it when auto-filling the search textbox. Many other

features showed a similarly dramatic jump in prevalence.

Limits of automated crawler-based measurements. Al-

though we believe that our resulting measurements provide a

good representation of the use of browser features on popular

web sites, it is likely that we missed certain features because

the code path to invoke them was not triggered in our

analysis. For example, sites like Facebook or banks require a

user to sign in, game sites require particular mouse gestures

to invoke certain behavior, and numerous sites require appro-

priate text (such as stock symbols or user’s personal data) to

be entered into forms. Even if we could solve some of these

problems, for example by enumerating all events registered

on a page or using a database of dummy usernames and

passwords [27], automatically invoking certain features, such



as buying products on shopping sites, is inappropriate. This

ultimately limits our ability to explore all features invoked

on today’s web.

We also did not try to exhaustively crawl each site. Even in

our user-driven analysis (Section IV-G), we did not attempt

to enumerate and invoke all gadgets on every page of each

site. Thus, the results we collect for a particular site cannot

be used as a list of all features the site might have. Our aim

was to favor breadth over depth and obtain good coverage

for the representative features of 100,000 sites we tested.

While our infrastructure could also be used for exhaustively

crawling each site, we would need to dramatically scale up

our current infrastructure to cover a comparable number of

sites, and we leave this as future work.

Picking the right browser. Some sites check the client’s

browser version (using the user-agent header) before de-

ciding to invoke a particular code path. Although not a

base requirement, we developed WebAnalyzer with IE as

the underlying browser. This could prevent code invocations

that are intended for non-IE browsers, thereby leading to

missed features. For example, XMLHttpRequest2 [15] is

currently not supported by IE, and it would be missed

by WebAnalyzer if the site invokes it only after verifying

browser support.

A related problem is fallback code that invokes an alter-

native implementation of a feature that a browser doesn’t

support. For example, a site could first check whether the

browser supports postMessage for cross-frame commu-

nication, and fall back on fragment identifier messaging if it

does not. Because we use IE 8, we will log that this site uses

postMessage, but older browsers would utilize fragment

identifier messaging.

The compatibility cost of features invoked in browser-

dependent code paths depends not only on the number

of web sites using a feature, but also on the number of

visitors utilizing a particular browser that relies on such

code. Evaluating the second part of this cost is orthogonal

to our goals in this paper: rather than exploring prevalence

of features on web sites, it asks how many of a web site’s

clients rely on a particular browser. Web server operators

can easily answer this question by profiling “user-agent”

strings in incoming HTTP requests. As future work, we

can integrate other browsers into WebAnalyzer, or we can

modify IEWA to render a site with a set of user-agent strings

representing other browsers; this would capture a more

complete set of the site’s code.

Studying other web segments. Our focus on the top

100,000 sites represents a particular segment of the web

with a good balance of the very top sites and some of the

less popular “tail”. However, this still covers only a tiny

fraction of the billions of pages on today’s web. In addition,

our analysis excluded intranet sites, which are hidden from

traditional crawlers, and which can influence backwards

compatibility decisions for a browser. We leave exploration

of these other segments of the web as important future work.

VI. RELATED WORK

We are not the first to find and analyze flaws in browser

security policies. Previous work has looked at weaknesses in

cross-frame communication mechanisms [13], frame naviga-

tion policies [3], [13], client-side browser state [21], cookie

path protection [28], protection among documents within

same origin [2], display protection [3], and other issues.

Zalewski [9] documents the security design in browsers

including some loopholes. This work complements these

efforts by identifying incoherencies in browser’s access

control policies. To our knowledge, this is the first principal-

driven analysis on browsers’ access control policies.

DOM access checker [22] is a tool designed to au-

tomatically validate numerous aspects of domain security

policy enforcement (cross-domain DOM access, JavaScript

cookies, XMLHttpRequest calls, event and transition han-

dling) to detect common security attacks or information

disclosure vectors. Browserscope [29] is a community-driven

project for tracking browser functionality. Its security test

suite [23] checks whether new browser security features

are implemented by a browser. In our analysis of access

control policies, we uncovered incoherencies by examining

the interplay between resources, runtime identity changes,

and the user principal’s resource access control. This focus

and methodology differ from this previous or ongoing work,

and our analysis not only touches on DOM, but also on the

HTTP network layer and display. Nevertheless, we plan to

contribute our test programs to one of these test suites.

Compared to previous work, a unique aspect of this

work is our extensive evaluation of the cost of removing

unsafe policies from the current web by actively crawling

and executing web content. Yue et al. [24] also used a

crawling-based, execution-based approach to measure the

prevalence of unsafe JavaScript features on 6805 popular

web sites. They used a JavaScript interposition technique

that is similar to IEWA’s script engine proxy, but they

lack IEWA’s network and display interposition capabilities,

limiting the policies they can monitor. As well, we present

results from a significantly larger dataset.

Our active crawling infrastructure builds on previous

efforts that have analyzed safety of web pages by rendering

them in real browsers running within virtual machines [30]–

[34]. We extend these frameworks with additional browser

interposition support to monitor unsafe browser security

policies.

VII. CONCLUSIONS

In this paper, we have examined the current state of

browser access control policies and analyzed the incoheren-

cies that arise when browsers mishandle their principals

by (1) inconsistently labeling resources with principal IDs,

(2) inappropriately handling principal identity changes via



document.domain, and (3) neglecting access control for

certain resources belonging to the user principal. In addition

to pointing out these incoherencies, we have developed a

web compatibility analysis infrastructure and measured the

cost of removing many unsafe policies we identified for a

large set of popular web sites. Overall, this work contributes

to the community’s understanding of browser access control

policies, and it provides the much-needed answer to the

browsers’ compatibility vs. security dilemma by identifying

unsafe policies that can be removed with little compatibility

cost.

ACKNOWLEDGEMENT

We would like to thank Xiaofeng Fan, Yutaka Suzue, and

Carl Edlund for their valuable help during the implementa-

tion of this work. We would also like to acknowledge Collin

Jackson and David Wagner for their helpful discussions.

We also thank the anonymous reviewers and our shepherd

Michael Locasto for their valuable comments.

REFERENCES

[1] H. J. Wang, X. Fan, J. Howell, and C. Jackson, “Protec-
tion and Communication Abstractions for Web Browsers in
MashupOS,” in Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP), Stevenson, WA, Oct.
2007.

[2] C. Jackson and A. Barth, “Beware of Finer-Grained Origins,”
in Web 2.0 Security and Privacy (W2SP), Oakland, CA, May
2008. [Online]. Available: http://seclab.stanford.edu/websec/
origins/fgo.pdf

[3] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury,
and H. Venter, “The Multi-Principal OS Construction of the
Gazelle Web Browser,” in Proceedings of the 18th USENIX
Security Symposium, Montreal, Canada, Aug. 2009.

[4] J. Ruderman, “Same Origin Policy for JavaScript,”
http://www.mozilla.org/projects/security/components/
same-origin.html. Accessed on Nov. 14, 2009.

[5] “Alexa,” http://www.alexa.com/.
[6] “Document Object Model,” http://www.w3.org/DOM/. Ac-

cessed on Nov. 14, 2009.
[7] D. Kristol and L. Montulli, “HTTP State Management Mech-

anism,” in IETF RFC 2965, Oct. 2000.
[8] D. Flanagan, Javascript: The Definitive Guide. O’Reilly

Media Inc., 2006.
[9] M. Zalewski, “Browser Security Handbook,” 2008, http://

code.google.com/p/browsersec/wiki/Main. Accessed on Nov.
14, 2009.

[10] A. Barth, “HTTP State Management Mechanism,”
IETF Draft 2109, Feb 2010, http://tools.ietf.org/html/
draft-ietf-httpstate-cookie-03.

[11] C. Jackson and A. Barth, “ForceHTTPS: Protecting High-
Security Web Sites from Network Attacks,” in WWW, 2008.

[12] “HTML 5 Editor’s Draft,” October 2008, http://www.w3.org/
html/wg/html5/.

[13] A. Barth, C. Jackson, and J. C. Mitchell, “Securing Frame
Communication in Browsers,” in Proceedings of the 17th

USENIX Security Symposium, San Jose, CA, Jul. 2008.
[14] “XMLHttpRequest,” http://www.w3.org/TR/

XMLHttpRequest/. Accessed on Nov. 14, 2009.
[15] “XMLHttpRequest Level 2,” http://www.w3.org/TR/

XMLHttpRequest2/. Accessed on Nov. 14, 2009.

[16] “Mitigating Cross-site Scripting With HTTP-only Cookies,”
http://msdn2.microsoft.com/en-us/library/ms533046.aspx.
Accessed on Nov. 14, 2009.

[17] “HttpOnly,” http://www.owasp.org/index.php/HTTPOnly.
Accessed on Nov. 14, 2009.

[18] “Mozilla Foundation Security Advisory 2009-05:
XMLHttpRequest allows reading HTTPOnly cookies,” http://
www.mozilla.org/security/announce/2009/mfsa2009-05.html.
Accessed on Nov. 14, 2009.

[19] “Clickjacking,” http://en.wikipedia.org/wiki/Clickjacking.
[20] “Whats New in Internet Explorer 8,” 2008, http://

msdn.microsoft.com/en-us/library/cc288472.aspx. Accessed
on Nov. 14, 2009.

[21] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell, “Protect-
ing Browser State from Web Privacy Attacks,” in Proceedings
of the 15th International Conference on World Wide Web
(WWW), Edinburgh, Scotland, May 2006.

[22] M. Zalewski and F. Almeida, “Browser DOM Access Checker
1.01,” http://lcamtuf.coredump.cx/dom checker/. Accessed
on Nov. 14, 2009.

[23] C. Jackson and A. Barth, “Browserscope Security
Test Suite,” http://mayscript.com/blog/collinj/
browserscope-security-test-suite. Accessed on Nov. 14,
2009.

[24] C. Yue and H. Wang, “Characterizing Insecure JavaScript
Practices on the Web,” in Proceedings of the 18th Inter-
national Conference on World Wide Web (WWW), Madrid,
Spain, Apr. 2009.

[25] E. Lawrence, “Fiddler web debugging tool,” http://www.
fiddler2.com/fiddler2/. Accessed on Nov. 14, 2009.

[26] “FiddlerCore,” http://fiddler.wikidot.com/fiddlercore.
Accessed on Nov. 14, 2009.

[27] “BugMeNot,” http://www.bugmenot.com/. Accessed on Mar.
1, 2010.

[28] M. O’Neal, “Cookie Path Best Practice,” http://research.
corsaire.com/whitepapers/040323-cookie-path-best-practice.
pdf. Accessed on Nov. 14, 2009.

[29] “Browserscope,” http://www.browserscope.org/. Accessed on
Nov. 14, 2009.

[30] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A
Crawler-based Study of Spyware on the Web,” in Proceedings
of the 13th Annual Network and Distributed Systems Security
Symposium (NDSS), San Diego, CA, Feb. 2006.

[31] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. King, “Automated Web Patrol with Strider
HoneyMonkeys,” in Proceedings of the 13th Network and
Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2006.

[32] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose,
“All Your iFrames Point to Us,” in Proceedings of the 17th

USENIX Security Symposium, San Jose, CA, Jul. 2008.
[33] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and

N. Modadugu, “The Ghost in the Browser: Analysis of Web-
Based Malware,” in Proceedings of the 1st Workshop on Hot
Topics in Understanding Botnets (HotBots), Berkeley, CA,
USA, 2007.

[34] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H. M.
Levy, “SpyProxy: Execution-based Detection of Malicious
Web Content,” in Proceedings of the 16th USENIX Security
Symposium, Boston, MA, Aug. 2007.


