
Design of Digital Circuits
Lecture 8: Timing and Verification

Minesh Patel
Prof. Onur Mutlu

ETH Zurich
Spring 2018

16 March 2018

Readings
n Please study Slides 102-120 from Lecture 6 on your own

n This week
q Sequential Logic

n P&P Chapter 3.4 until end + H&H Chapter 3 in full
q Hardware Description Languages and Verilog

n H&H Chapter 4 in full
q Timing and Verification

n H&H Chapters 2.9 and 3.5 + Chapter 5

n Next week
q Von Neumann Model, LC3, and MIPS

n P&P Chapter 4-5 + H&H Chapter 6
q Digital Building Blocks

n H&H Chapter 5
2

What Will We Learn Today?
n Timing in combinational circuits

q Propagation delay and contamination delay
q Glitches

n Timing in sequential circuits
q Setup time and hold time
q Determining how fast a circuit can operate

n Circuit Verification
q How to make sure a circuit works correctly
q Functional verification
q Timing verification

3

Tradeoffs in Circuit Design

4

Circuit Design is a Tradeoff Between:

n Area
q Circuit area is proportional to the cost of the device

n Speed / Throughput
q We want faster, more capable circuits

n Power / Energy
q Mobile devices need to work with a limited power supply
q High performance devices dissipate more than 100W/cm2

n Design Time
q Designers are expensive
q The competition will not wait for you

5

Requirements and Goals Depend On Application

6

Circuit Timing
n Until now, we investigated logical functionality

n What about timing?
q How fast is a circuit?
q How can we make a circuit faster?
q What happens if we run a circuit too fast?

n A design that is logically correct can still fail because of
real-world implementation issues!

7

Part 1:
Combinational Circuit Timing

8

Combinational Circuit Delay
n Outputs do not change instantaneously with inputs

q Transistors take a finite amount of time to switch
q Gate outputs are delayed with respect to inputs

A

Y

Time

delay

A Y

9

time

Circuit Delay Variations
n Unfortunately, this is an oversimplified view of circuit delay

n Delay is fundamentally caused by
q Capacitance and resistance in a circuit
q Finite speed of light (not so fast on a nanosecond scale!)

n Anything affecting these quantities can change delay:
q Rising (i.e., 0 -> 1) vs. falling (i.e., 1 -> 0) inputs
q Different inputs have different delays
q Changes in environment (e.g., temperature)

n We have a range of possible delays from input to output

10

Delays from Input to Output
n Contamination delay (tcd): minimum delay
n Propagation delay (tpd): maximum delay

11

Example Circuit Effect of Changing Input ‘A’

Cross-hatching
means value is changing

Calculating Long/Short Paths

n Critical (Longest) Path: tpd = 2 tpd_AND + tpd_OR
n Shortest Path: tcd = tcd_AND

A
B

C

D Y

Critical Path

Short Path

n1
n2

12

n We care about both the longest and shortest paths in a
circuit (we will see why later in the lecture)

Example tpd for a Real NAND-2 Gate

n Heavy dependence on voltage and temperature!

13Source: Nexperia 2-input NAND (74HC00) Datasheet, Section 10

Example Worst-Case tpd

14

n Two different implementations of a 4:1 multiplexer
Gate Delays Implementation 1 Implementation 2

n Different designs lead to very different delays

Disclaimer: Calculating Long/Short Paths
n It’s not always this easy to determine the long/short paths!

q Not all input transitions affect the output
q Can have multiple different paths from an input to output

n In reality, circuits are not all built equally
q Different instances of the same gate have different delays
q Wires have nonzero delay (increasing with length)
q Temperature/voltage affect circuit speeds

n Not all circuit elements are affected the same way
n Can even change the critical path!

n Designers assume “worst-case” conditions and run many
statistical simulations to balance yield/performance

15

Combinational Timing Summary
n Circuit outputs change some time after the inputs change

q Caused by finite speed of light (not so fast on a ns scale!)
q Delay is dependent on inputs, environmental state, etc.

n The range of possible delays is characterized by:
q Contamination delay (tcd): minimum possible delay
q Propagation delay (tpd): maximum possible delay

n Different circuit topologies can have different delays

16

Output Glitches

17

Glitches
n Glitch: one input transition causes multiple output transitions

18

Circuit	initial	state

1

1

0
0

Glitches

19

0

1

1 -> 0
1 -> ?

n Glitch: one input transition causes multiple output transitions

Glitches

20

0

1

1 -> 0
1 -> ?

Slow path (3 gates)

Fast path (2 gates)

n Glitch: one input transition causes multiple output transitions

Glitches

21

0

1

1 -> 0
1 -> 0 -> 1

Slow path (3 gates)

Fast path (2 gates)

n Glitch: one input transition causes multiple output transitions

Glitches

22

0

1

(B) 1 -> 0
(Y) 1 -> 0 -> 1

Slow path (3 gates)

Fast path (2 gates)

n1

n2

n Glitch: one input transition causes multiple output transitions

Avoiding Glitches Using K-Maps
n Glitches are visible in K-maps

q Recall: K-maps show the results of a change in a single input
q A glitch occurs when moving between prime implicants

23

(A) 0

(C) 1

(B) 1 -> 0
(Y) 1 -> 0 -> 1

AB

BC

Avoiding Glitches Using K-Maps
n We can fix the issue by adding in the consensus term

q Ensures no transition between different prime implicants

24

(A) 0

(C) 1

(B) 1 -> 0
(Y) 1 -> 1

AB

BC

AC

No dependence on B
=> No glitch!

Avoiding Glitches
n Q: Do we always care about glitches?

q Fixing glitches is undesirable
n More chip area
n More power consumption
n More design effort

q The circuit is eventually guaranteed to converge to the
right value regardless of glitchiness

n A: No, not always!
q If we only care about the long-term steady state output,

we can safely ignore glitches
q Up to the designer to decide if glitches matter in their

application

25

Part 2:
Sequential Circuit Timing

26

Recall: D Flip-Flop
n Flip-flop samples D at the active clock edge

q It outputs the sampled value to Q
q It “stores” the sampled value until the next active clock edge

27

D Q

CLK

n The D flip-flop is made from combinational elements
n D, Q, CLK all have timing requirements!

D Flip-Flop Input Timing Constraints
n D must be stable when sampled (i.e., at active clock edge)

CLK

tsetup

D

thold

ta

28

D Q

CLK

n Setup time (tsetup): time before the clock edge that data
must be stable (i.e. not changing)

n Hold time (thold): time after the clock edge that data must
be stable

n Aperture time (ta): time around clock edge that data
must be stable (ta = tsetup + thold)

Violating Input Timing: Metastability
n If D is changing when sampled, metastability can occur

q Flip-flop output is stuck somewhere between ‘1’ and ‘0’
q Output eventually settles non-deterministically

29Source: W. J. Dally, Lecture notes for EE108A, Lecture 13: Metastability and
Synchronization Failure (When Good Flip-Flops go Bad) 11/9/2005.

CLK

Q

Example Timing Violations (NAND RS Latch)

Metastability

Non-deterministic
Convergence

Flip-Flop Output Timing

n Contamination delay clock-to-q (tccq): earliest time after
the clock edge that Q starts to change (i.e., is unstable)

n Propagation delay clock-to-q (tpcq): latest time after the
clock edge that Q stops changing (i.e., is stable)

30

CLK

tccq
tpcq

Q

D Q

CLK

Recall: Sequential System Design

n Multiple flip-flops are connected with combinational logic
n Clock runs with period Tc (cycle time)

31

n Must meet timing requirements for both R1 and R2!

Ensuring Correct Sequential Operation
n Need to ensure correct input timing on R2

n Specifically, D2 must be stable:
q at least tsetup before the clock edge
q at least until thold after the clock edge

32

CLK

tsetup

D

thold

ta

Ensuring Correct Sequential Operation
n This means there is both a minimum and maximum

delay between two flip-flops
q CL too fast -> R2 thold violation
q CL too slow -> R2 tsetup violation

CL

CLKCLK

R1 R2

Q1 D2

(a)

CLK

Q1

D2
(b)

Tc

33

Setup Time Constraint
n Depends on the maximum delay from R1 to R2
n The input to R2 must be stable at least tsetup before the clock edge.

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK
Q1 D2

R1 R2

Tc >=

34

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK
Q1 D2

R1 R2

Setup Time Constraint

Tc >=	tpcq

35

n Depends on the maximum delay from R1 to R2
n The input to R2 must be stable at least tsetup before the clock edge.

Setup Time Constraint

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK
Q1 D2

R1 R2

Tc >=	tpcq +	tpd

36

n Depends on the maximum delay from R1 to R2
n The input to R2 must be stable at least tsetup before the clock edge.

Setup Time Constraint

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK
Q1 D2

R1 R2

Tc >=	tpcq +	tpd +	tsetup

37

n Depends on the maximum delay from R1 to R2
n The input to R2 must be stable at least tsetup before the clock edge.

n Depends on the maximum delay from R1 to R2
n The input to R2 must be stable at least tsetup before the clock edge.

Setup Time Constraint

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK
Q1 D2

R1 R2

Tc >=	tpcq +	tpd +	tsetup

38

Useful	work

Wasted	work

Sequencing overhead:
amount of time wasted
each cycle due to sequencing
element timing requirements

tsetup Constraint and Design Performance

n Critical path: path with the longest tpd

n Overall design performance is determined by the critical path tpd
q Determines the minimum clock period (i.e., max operating frequency)
q If the critical path is too long, the design will run slowly
q if critical path is too short, each cycle will do very little useful work

n i.e., most of the cycle will be wasted in sequencing overhead

39

Tc >=	tpcq +	tpd +	tsetup

Hold Time Constraint
n Depends on the minimum delay from R1 to R2
n The input to R2 must be stable for at least thold after the clock edge

CLK

Q1

D2
tccq tcd
thold

CL

CLKCLK
Q1 D2

R1 R2

40

thold <

Hold Time Constraint

CLK

Q1

D2
tccq tcd
thold

CL

CLKCLK
Q1 D2

R1 R2

41

thold <	tccq

n Depends on the minimum delay from R1 to R2
n The input to R2 must be stable for at least thold after the clock edge

Hold Time Constraint

CLK

Q1

D2
tccq tcd
thold

CL

CLKCLK
Q1 D2

R1 R2

42

thold <	tccq +	tcd

n Depends on the minimum delay from R1 to R2
n The input to R2 must be stable for at least thold after the clock edge

Hold Time Constraint

CLK

Q1

D2
tccq tcd
thold

CL

CLKCLK
Q1 D2

R1 R2

43

thold <	tccq +	tcd

tcd >	thold - tccq

We need to have a minimum
combinational delay!

n Depends on the minimum delay from R1 to R2
n The input to R2 must be stable for at least thold after the clock edge

n Depends on the minimum delay from R1 to R2
n The input to R2 must be stable for at least thold after the clock edge

Hold Time Constraint

CLK

Q1

D2
tccq tcd
thold

CL

CLKCLK
Q1 D2

R1 R2

44

thold <	tccq +	tcd

tcd >	thold - tccq

Does NOT depend on Tc!

Example: Timing Analysis

CLK CLK
A

B

C

D

X'

Y'

X

Y

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps
tpd =

tcd =

Check	setup	time	constraints:

Tc ≥

fmax =	1/Tc =

Check	hold	time	constraint:

tccq +	tcd >	thold ?

45

Example: Timing Analysis

CLK CLK
A

B

C

D

X'

Y'

X

Y

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps
tpd =	3	x	35	ps =	105	ps

tcd =

Check	setup	time	constraints:

Tc ≥

fmax =	1/Tc =

Check	hold	time	constraint:

tccq +	tcd >	thold ?

46

Example: Timing Analysis

CLK CLK
A

B

C

D

X'

Y'

X

Y

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps
tpd =	3	x	35	ps =	105	ps

tcd =	25	ps

Check	setup	time	constraints:

Tc ≥

fmax =	1/Tc =

Check	hold	time	constraint:

tccq +	tcd >	thold ?

47

Example: Timing Analysis

CLK CLK
A

B

C

D

X'

Y'

X

Y

tpd =	3	x	35	ps =	105	ps

tcd =	25	ps

Check	setup	time	constraints:

Tc ≥	(50	+	105	+	60)	ps =	215	ps

fmax =	1/Tc =	4.65	GHz

Check	hold	time	constraint:

tccq +	tcd >	thold ?

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps

48

Example: Timing Analysis

CLK CLK
A

B

C

D

X'

Y'

X

Y

tpd =	3	x	35	ps =	105	ps

tcd =	25	ps

Check	setup	time	constraints:

Tc ≥	(50	+	105	+	60)	ps =	215	ps

fmax =	1/Tc =	4.65	GHz

Check	hold	time	constraint:

tccq +	tcd >	thold ?

(30	+	25)	ps >	70	ps ?	
pe

r g
at

e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps

49

Example: Timing Analysis

CLK CLK
A

B

C

D

X'

Y'

X

Y

tpd =	3	x	35	ps =	105	ps

tcd =	25	ps

Check	setup	time	constraints:

Tc ≥	(50	+	105	+	60)	ps =	215	ps

fmax =	1/Tc =	4.65	GHz

Check	hold	time	constraint:

tccq +	tcd >	thold ?

(30	+	25)	ps >	70	ps ?
pe

r g
at

e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps

50

Example: Fixing Hold Time Violation

CLK CLK
A

B

C

D

X'

Y'

X

Y

tpd =	

tcd =

Check	setup	time	constraints:

Tc ≥

fc =

Check	hold	time	constraint:

tccq +	tcd >	thold ?

Add	buffers	to	the	short	paths:

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps

51

Example: Fixing Hold Time Violation

CLK CLK
A

B

C

D

X'

Y'

X

Y

tpd =	3	x	35	ps =	105	ps

tcd =	2	x	25	ps =	50	ps

Check	setup	time	constraints:

Tc ≥

fc =

Check	hold	time	constraint:

tccq +	tcd >	thold ?

Add	buffers	to	the	short	paths:

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps

52

Example: Fixing Hold Time Violation

CLK CLK
A

B

C

D

X'

Y'

X

Y

tpd =	3	x	35	ps =	105	ps

tcd =	2	x	25	ps =	50	ps

Check	setup	time	constraints:

Tc ≥	(50	+	105	+	60)	ps =	215	ps

fc =	1/Tc =	4.65	GHz

Check	hold	time	constraint:

tccq +	tcd >	thold ?

Add	buffers	to	the	short	paths:

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps

53

Note:	no	change
to	max	frequency!

Example: Fixing Hold Time Violation

CLK CLK
A

B

C

D

X'

Y'

X

Y

tpd =	3	x	35	ps =	105	ps

tcd =	2	x	25	ps =	50	ps

Check	setup	time	constraints:

Tc ≥	(50	+	105	+	60)	ps =	215	ps

fc =	1/Tc =	4.65	GHz

Check	hold	time	constraint:

tccq +	tcd >	thold ?

(30	+	50)	ps >	70	ps ?	

Add	buffers	to	the	short	paths:

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps

54

Example: Fixing Hold Time Violation

CLK CLK
A

B

C

D

X'

Y'

X

Y

tpd =	3	x	35	ps =	105	ps

tcd =	2	x	25	ps =	50	ps

Check	setup	time	constraints:

Tc ≥	(50	+	105	+	60)	ps =	215	ps

fc =	1/Tc =	4.65	GHz

Check	hold	time	constraint:

tccq +	tcd >	thold ?

(30	+	50)	ps >	70	ps ?	

Add	buffers	to	the	short	paths:

pe
r g

at
e

Timing	Characteristics
tccq =	30	ps

tpcq =	50	ps

tsetup =	60	ps

thold =	70	ps

tpd =	35	ps

tcd =	25	ps

55

Clock Skew
n To make matters worse, clocks have delay too!

q The clock does not reach all parts of the chip at the same time!
n Clock skew: time difference between two clock edges

56

Clock Source
Point A
Point B

clock skew

A

BLong, slow
clock path

CLOCK
SOURCE

Clock Skew Example
n Example of the Alpha 21264 Clock Skew Distribution

57P. E. Gronowski+, "High-performance Microprocessor Design," JSSC’98.

Clock Skew: Setup Time Revisited
n Safe timing requires considering the worst-case skew

q Clock arrives at R2 before R1
q Leaves as little time as possible for the combinational logic

58

tc >=	tpcq +	tpd +	tsetup +	tskew

Clock Skew: Hold Time Revisited

59

tcd >=	-tccq +	thold +	tskew

n Safe timing requires considering the worst-case skew
q Clock arrives at R2 after R1
q Increases the minimum required delay for the combinational logic

Clock Skew: Summary
n Skew effectively increases both tsetup and thold

q Increased sequencing overhead
q i.e., less useful work done per cycle

n Designers must keep skew to a minimum
q Requires intelligent “clock network” across a chip
q Goal: clock arrives at all locations at roughly the same time

60

Source: Abdelhadi, Ameer, et al. "Timing-driven variation-aware nonuniform clock mesh synthesis." GLSVLSI’10.

Part 3:
Circuit Verification

61

How Do You Know That A Circuit Works?

n You have designed a circuit
q Is it functionally correct?
q Even if it is logically correct, does the hardware meet all

timing constraints?

n How can you test for:
q Functionality?
q Timing?

n Answer: simulation tools!
q Formal verification tools (e.g., SAT solvers)
q HDL timing simulation (e.g., Vivado)
q Circuit simulation (e.g., SPICE)

62

Testing Large Digital Designs
n Testing can be the most time consuming design stage

q Functional correctness of all logic paths
q Timing, power, etc. of all circuit elements

n Unfortunately, low-level (e.g., circuit) simulation is much
slower than high-level (e.g., HDL, C) simulation

n Solution: we split responsibilities:
q 1) Check only functionality at a high level (e.g., C, HDL)

n (Relatively) fast simulation time allows high code coverage
n Easy to write and run tests

q 2) Check only timing, power, etc. at low level (e.g., circuit)
n No functional testing of low-level model
n Instead, test functional equivalence to high-level model

q Hard, but easier than testing logical functionality at this level
63Adapted from ”CMOS VLSI Design 4e”, Neil H. E. Weste and David Money Harris ©2011 Pearson

Testing Large Digital Designs
n We have tools to handle different levels of verification

q Logic synthesis tool guarantees equivalence of high-level logic
and synthesized circuit-level description

q Timing verification tools check all circuit timings
q Design rule checks ensure that physical circuits are buildable

n Our job as a logic designer is to:
q Provide functional tests for logical correctness of the design

n C/C++/HDL test routines
n Formal verification techniques (not discussed in this course)

q Provide timing constraints (e.g., desired operating frequency)
n The tools + circuit guys will handle the rest OR say “impossible!”

64Adapted from ”CMOS VLSI Design 4e”, Neil H. E. Weste and David Money Harris ©2011 Pearson

Part 4:
Functional Verification

65

Testbench-Based Functional Testing
n Testbench: a module created specifically to test a design

q Tested design is called the “device under test (DUT)”

66

Testbench

DUT

In
pu

ts

O
ut

pu
tsTest

Pattern
Generator

Output
Checking

Logic

n Testbench provides inputs (test patterns) to the DUT
q Hand-crafted values
q Automatically generated (e.g., sequential or random values)

n Testbench checks outputs of the DUT against:
q Hand-crafted values
q A “golden design” that is known to be bug-free

Testbench-Based Functional Testing
n A testbench can be:

q HDL code written to test other HDL modules
q Circuit schematic used to test other circuit designs

n The testbench is not designed for hardware synthesis!
q Runs in simulation only

n HDL simulator (e.g., Vivado simulator)
n SPICE circuit simulation

q Testbench uses simulation-only constructs
n E.g., “wait 10ns”
n E.g., ideal voltage/current source
n Not suitable to be physically built!

67

Common Verilog Testbench Types

68

Testbench Input/Output
Generation Error Checking

Simple Manual Manual
Self-Checking Manual Automatic

Automatic Automatic Automatic

Example DUT
n We will walk through different types of testbenches to test

a module that implements the logic function:
y = (b ∙ c) + (a ∙ b)

69

// performs y = ~b & ~c | a & ~b
module sillyfunction(input a, b, c,

output y);
wire b_n, c_n;
wire m1, m2;

not not_b(b_n, b);
not not_c(c_n, c);

and minterm1(m1, b_n, c_n);
and minterm2(m2, a, b_n);
or out_func(y, m1, m2);

endmodule

Useful Verilog Syntax for Testbenching

70

module example_syntax();
reg a;

// like “always” block, but runs only once at sim start

initial
begin

a = 0; // set value of reg: use blocking assignments

#10; // wait (do nothing) for 10 ns

a = 1;

$display(“printf() style message!"); // print message
end

endmodule

Simple Testbench

71

Simple Testbench
module testbench1(); // No inputs, outputs
reg a, b, c; // Manually assigned

wire y; // Manually checked

// instantiate device under test

sillyfunction dut (.a(a), .b(b), .c(c), .y(y));

// apply hardcoded inputs one at a time

initial begin
a = 0; b = 0; c = 0; #10; // apply inputs, wait 10ns
c = 1; #10; // apply inputs, wait 10ns

b = 1; c = 0; #10; // etc .. etc..

c = 1; #10;
a = 1; b = 0; c = 0; #10;

end
endmodule

72

Simple Testbench: Output Checking
n Most common method is to look at waveform diagrams

73

n Manually check that output is correct at all times

time

Simple Testbench
n Pros:

q Easy to design
q Can easily test a few, specific inputs (e.g., corner cases)

n Cons:
q Not scalable to many test cases
q Outputs must be checked manually outside of the simulation

n E.g., inspecting dumped waveform signals
n E.g., printf() style debugging

74

Self-Checking Testbench

75

Self-Checking Testbench
module testbench2();
reg a, b, c;

wire y;

sillyfunction dut(.a(a), .b(b), .c(c), .y(y));

initial begin
a = 0; b = 0; c = 0; #10; // apply input, wait 10ns
if (y !== 1) $display("000 failed."); // check result

c = 1; #10;
if (y !== 0) $display("001 failed.");
b = 1; c = 0; #10;
if (y !== 0) $display("010 failed.");

end
endmodule

76

Self-Checking Testbench
n Pros:

q Still easy to design
q Still easy to test a few, specific inputs (e.g., corner cases)
q Simulator will print whenever an error occurs

n Cons:
q Still not scalable to millions of test cases
q Easy to make an error in hardcoded values

n You make just as many errors writing a testbench as actual code
n Hard to debug whether an issue is in the testbench or in the DUT

77

Self-Checking Testbench using Testvectors

n Write testvector file
q List of inputs and expected outputs
q Can create vectors manually or automatically using an

already verified, simpler “golden model” (more on this later)
n Example file:

78

$ cat testvectors.tv
000_1
001_0
010_0
011_0
100_1
101_1
110_0
111_0

…

Format:
input_output

Testbench with Testvectors Design

n Use a “clock signal” for assigning inputs, reading outputs
q Test one testvector each clock cycle

79

Apply	input
on	rising	edge

Check	outputs	
on	falling	edge

Clock	cycle

n Apply inputs at (or sometime after) the active clock edge
n Check output before the next active clock edge

q The book examples check on the falling edge of the clock
n Note: functional simulation does NOT model timing

q We’ll discuss this more later in this lecture

Testbench Example (1/5): Signal Declarations

module testbench3();
reg clk, reset; // clock and reset are internal

reg a, b, c, yexpected; // values from testvectors

wire y; // output of circuit
reg [31:0] vectornum, errors; // bookkeeping variables

reg [3:0] testvectors[10000:0];// array of testvectors

// instantiate device under test

sillyfunction dut(.a(a), .b(b), .c(c), .y(y));

80

n Declare signals to hold internal state

Testbench Example (2/5): Clock Generation
// generate clock

always // no sensitivity list, so it always executes
begin
clk = 1; #5; clk = 0; #5; // 10ns period

end

81

Testbench Example (3/5): Read Testvectors into Array

// at start of test, load vectors and pulse reset

initial // Only executes once
begin

$readmemb("example.tv", testvectors); // Read vectors
vectornum = 0; errors = 0; // Initialize

reset = 1; #27; reset = 0; // Apply reset wait
end

// Note: $readmemh reads testvector files written in

// hexadecimal

82

Testbench Example (4/5): Assign Inputs/Outputs

n Apply inputs with some delay (1ns) AFTER clock

n This is important
q Inputs should not change at the same time with clock
q Timing may not be modeled for ideal circuits (HDL code), but

real circuits (netlists) may suffer from hold violations.

// apply test vectors on rising edge of clk
always @(posedge clk)
begin

#1; {a, b, c, yexpected} = testvectors[vectornum];
end

83

Testbench Example (5/5): Check Outputs
always @(negedge clk)
begin

if (~reset) // don’t test during reset
begin

if (y !== yexpected)
begin

$display("Error: inputs = %b", {a, b, c});
$display(" outputs = %b (%b exp)",y,yexpected);
errors = errors + 1;

end

// increment array index and read next testvector
vectornum = vectornum + 1;

if (testvectors[vectornum] === 4'bx)
begin

$display("%d tests completed with %d errors",
vectornum, errors);

$finish; // End simulation
end

end
end

84

Self-Checking Testbench with Testvectors
n Pros:

q Still easy to design
q Still easy to tests a few, specific inputs (e.g., corner cases)
q Simulator will print whenever an error occurs
q No need to change hardcoded values for different tests

n Cons:
q May be error-prone depending on source of testvectors
q More scalable, but still limited by reading a file

n Might have many more combinational paths to test than will fit in
memory

85

Automatic Testbench

86

Golden Models
n A golden model represents the ideal circuit behaviour

q Must be developed, and might be difficult to write
q Can be done in C, Perl, Python, Matlab or even in Verilog

n For our example circuit:

87

module golden_model(input a, b, c,
output y);

assign y = ~b & ~c | a & ~b;// high-level abstraction
endmodule

n Simpler than our earlier gate-level description
q Golden model is usually easier to design and understand
q Golden model is much easier to verify

Automatic Testbench
n The DUT output is compared against the golden model

88

Testbench

DUT

Inputs Outputs

Check
Equality

Golden
Model

Test
Pattern

Generation

n Challenge: need to generate inputs to the designs
q Sequential values to cover the entire input space?
q Random values?

Automatic Testbench: Code

89

module testbench1();
... // variable declarations, clock, etc.

// instantiate device under test

sillyfunction dut (a, b, c, y_dut);

golden_model gold (a, b, c, y_gold);

// instantiate test pattern generator

test_pattern_generator tgen (a, b, c, clk);

// check if y_dut is ever not equal to y_gold

always @(negedge clk)
begin

if(y_dut !== y_gold)

$display(...)
end

endmodule

Automatic Testbench
n Pros:

q Output checking is fully automated
q Could even compare timing using a golden timing model
q Highly scalable to as much simulation time as is feasible

n Leads to high coverage of the input space
q Better separation of roles

n Separate designers can work on the DUT and the golden model
n DUT testing engineer can focus on important test cases

instead of output checking

n Cons:
q Creating a correct golden model may be (very) difficult
q Coming up with good testing inputs may be difficult

90

However, Even with Automatic Testing…
n How long would it take to test a 32-bit adder?

q In such an adder there are 64 inputs = 264 possible inputs
q If you test one input in 1ns, you can test 109 inputs per

second
n or 8.64 x 1014 inputs per day
n or 3.15 x 1017 inputs per year

q we would still need 58.5 years to test all possibilities

n Brute force testing is not feasible for most circuits!
q Need to prune the overall testing space
q E.g., formal verification methods, choosing ‘important cases’

n Verification is a hard problem

91

Part 5:
Timing Verification

92

Timing Verification Approaches
n High-level simulation (e.g., C, Verilog)

q Can model timing using “#x” statements in the DUT
q Useful for hierarchical modeling

n Insert delays in FF’s, basic gates, memories, etc.
n High level design will have some notion of timing

q Usually not as accurate as real circuit timing

n Circuit-level timing verification
q Need to first synthesize your design to actual circuits

n No one general approach- very design flow specific
n Your FPGA/ASIC/etc. technology has special tool(s) for this

q E.g., Xilinx Vivado (what you’re using in lab)
q E.g., Synopsys/Cadence Tools (for VLSI design)

93

The Good News

n Tools will try to meet timing for you!
q Setup times, hold times
q Clock skews
q …

n Usually it generates a ‘timing report’ or ‘timing summary’
q Provides worst-case delay paths
q Maximum operation frequency
q Any timing errors that were found

94

The Bad News

n The tool can fail to find a solution
q Desired clock frequency is too aggressive

n Can result in setup time violation on a particularly long path
q Too much logic on clock paths

n Introduces excessive clock skew
q Timing issues with asynchronous logic

n The tool will provide (hopefully) helpful errors
q Reports will contain paths that failed to meet timing
q Gives a place from where to start debugging

n Q: How can we fix timing errors?

95

Meeting Timing Constraints

n Unfortunately, this is often a manual, iterative process
q Meeting strict timing constraints (e.g., high performance

designs) can be tedious

n Can try synthesis/place-and-route with different options
q Different random seeds
q Manually provided hints for place-and-route

n Can manually optimize the reported problem paths
q Simplify complicated logic
q Split up long combinational logic paths
q Recall: fix hold time violations by adding more logic!

96

Lecture Summary
n Timing in combinational circuits

q Propagation delay and contamination delay
q Glitches

n Timing in sequential circuits
q Setup time and hold time
q Determining how fast a circuit can operate

n Circuit Verification
q How to make sure a circuit works correctly
q Functional verification
q Timing verification

97

Design of Digital Circuits
Lecture 8: Timing and Verification

Prof. Onur Mutlu
ETH Zurich
Spring 2018

16 March 2018

