

Proposed Development of Palmietkuilen Open Pit Coal Mine and Associated Infrastructure, near Springs, Gauteng Province

Flora and Fauna Impact Assessment Report

DMR Reference Number:

Project Number:

CNC4065

Prepared for:

Canyon Coal

November 2016

Digby Wells and Associates (South Africa) (Pty) Ltd (Subsidiary of Digby Wells & Associates (Pty) Ltd). Co. Reg. No. 2010/008577/07. Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191. Private Bag X10046, Randburg, 2125, South Africa Tel: +27 11 789 9495, Fax: +27 11 789 9498, info@digbywells.com, www.digbywells.com

Directors: AJ Reynolds (Chairman) (British)*, GE Trusler (C.E.O), B Beringer, LF Koeslag, J Leaver*, NA Mehlomakulu, DJ Otto
*Non-Executive

This document has been prepared by Digby Wells Environmental.

Report Type:	Flora and Fauna Impact Assessment Report
Project Name:	Proposed Development of Palmietkuilen Open Pit Coal Mine and Associated Infrastructure, near Springs, Gauteng Province
Project Code:	CNC4065

Name	Responsibility	Signature	Date
Rudi Greffrath (Pr.Sci.Nat.)	Report Writer	2 godfra	December 2016
Koos Smit	Review	Jan-	December 2016
Danie Otto (Pr.Sci.Nat.)	Review		December 2016

This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent.

DECLARATION OF INDEPENDENCE

Digby Wells and Associates (South Africa) (Pty) Ltd

Contact person: Rudi Greffrath

Digby Wells House Tel: 011 789 9495
Turnberry Office Park Fax: 011 789 9498

48 Grosvenor Road E-mail: rudi.greffrath@digbywells.com

Bryanston

2191

I, Rudi Greffrath as duly authorised representative of Digby Wells and Associates (South Africa) (Pty) Ltd., hereby confirm my independence (as well as that of Digby Wells and Associates (South Africa) (Pty) Ltd.) and declare that neither I nor Digby Wells and Associates (South Africa) (Pty) Ltd. have any interest, be it business, financial, personal or other, in any proposed activity, application or appeal in respect of Canyon Coal, other than fair remuneration for work performed, specifically in connection with the proposed development of an opencast coal mine and associated infrastructure, located near Springs, Gauteng Province.

Full Name:	Rudolph Johannes Greffrath
Title/ Position:	Flora, Fauna and Wetlands Unit Manager
Qualification(s):	B-tech
Experience (Years):	10
Registration(s):	Pr. Sci. Nat. Consevation Science: Reg. No. 400018/17

CNC4065

EXECUTIVE SUMMARY

Digby Wells Environmental (Digby Wells) has been appointed by Canyon Coal, owned by Canyon Resources (Pty) Ltd, hereafter referred to as Canyon, to complete a flora and fauna impact assessment, as part of the fulfilment of the environmental authorisation for the proposed development and operation of an opencast coal mine east of Springs, Gauteng Province. The Prospecting Right includes Portions 1, 2, 4, 9, 13 and 19 of the Farm Palmietkuilen IR located in Springs, Sedibeng District, Gauteng Province. The mine, and mining-related infrastructure, will be placed on Portion 2 and 19.

The site falls primarily within the regional vegetation types: Eastern Highveld Grasslands, Andesite Mountain Bushveld and the Soweto Highveld Grasslands; all of which are listed as threatened ecosystems by the National Environmental Management:Biodiversity Act, 2004 (Act No. 10 of 2004) (NEMBA).

The majority of the study area was dominated by cultivation (1738 ha) and the dominant natural habitat type was broadly classified as *Eragrostis* dominated Grassland, covering an area of 807 ha. In addition, ephemeral pan habitat (27 ha), alien bushclumps comprised of *Eucalyptus camuldulensis* and *Acacia mearnsii* (10 ha) and Wetland habitat (835 ha) were delineated. A total of 90 plant species were recorded on site of the 102 recorded for the region.

Of the four plant Species of Special Concern (SSC) recorded from the regional list, none were recorded, these were: *Kniphofia typhoides, Khadia beswickii, Lithops lesliei subsp. lesliei* and *Nerine gracillis*. Although no SCC were recorded at the time of the assessment in the general project area, they may potentially occur.

A total of 13 mammal species were recorded on site, two of these species are regarded as species of special concern, Cape Clawless Otter (*Aonyx capensis*) and Serval (*Felis serval*) are protected according to NEMBA TOPS list). A total of 89 bird species were recorded, one SSC was recorded namely, the Secretary Bird (*Sagittarius serpentarius*). Four frog species were recorded on site, namely: *Amietia angolensis* (Common River Frog), *Bufo gutturalis* (Guttural Toad), *Cacosternum boettgeri* (Common Caco) and *Strongylopus fasciatus* (Striped Stream Frog).

The primary impact of the proposed development is a loss of flora and fauna habitat in the form of *Eragrostis* dominated Grassland (280 ha) and Riparian vegetation type (52 ha) due to infrastructure development. Due to the minimal extent and the moderate sensitivity assigned to this habitat, the impacts identified will be moderate. Alien plant invasion is expected due to surface disturbance as a result of infrastructure development and this should be managed by implementing an Alien Invader Plant species (AIPs) management plan for quarterly monitoring that should take place for at least two years after construction and an additional two years after decommissioning. AIPs monitoring during operational Phase on biannual base must also be completed.

Flora and Fauna Impact Assessment Report

Proposed Development of Palmietkuilen Open Pit Coal Mine and Associated Infrastructure, near Springs, Gauteng **Province**

The direct impacts on fauna are expected to be low to negligible. The impact of habitat destruction will not affect fauna SSC as these species will move away from the area of construction and settle on other areas, probably within the project area.

TABLE OF CONTENTS

1 I	ntrodu	uction	1
1.1	Pro	ject Background	1
1.2	Ter	ms of Reference	5
2 [Details	s of the Specialist	6
3 /	Aims a	and Objectives	6
4 [Metho	dology	6
4.1	Lite	erature Review and Desktop Study	6
4.2	Fie	ld Investigations and Seasonal Influence	7
4.	2.1	Flora	
4.	2.2	Species of Special Concern (SSC)	10
4.3	Fau	ına	11
4.	3.1	Mammals	11
4.	3.2	Avifauna	11
4.	3.3	Herpetofauna (Reptiles and Amphibians)	12
4.	3.4	Macro-Invertebrates	12
4.	3.5	Red Data Faunal Assessment	12
5 /	Assum	nptions and Limitations	13
6 I	Regior	nal Vegetation	14
7 F	Result	s of Baseline Fauna and Flora Assessment	18
7.1	Flo	ra	18
7.	1.1	Riparian Habitat (Wetlands and Pans)	19
7.	1.2	Grassland	19
7.	1.3	Ephemeral Pans	22
7.	1.4	Plant Species of Special Concern	24
7.	1.5	Alien Plant Species	25
7.2	Fau	ına	27
7.	2.1	Mammals	27
7.	2.2	Avifauna	28
7.	2.3	Herpetofauna	32
7	24	Macro-Invertehrates	33

8		Se	ensiti	vity Analysis and No-go Areas	.35
	8.1		Gau	teng C-Plan (Conservation Plan)	35
	8.2		Prot	ected Areas	37
	8.3		Imp	ortant Bird Areas (IBA) (Birdlife SA, 2013)	39
	8.4	•	Nati	onally Threatened Ecosystems	42
	8.5	,	Nati	onally Protected Areas Expansion Strategy	44
	8.6	;	Site	-specific Sensitivity	46
9		lm	pact	Assessment	.48
	9.1		Met	nodology	48
	9.2		Proj	ect Activities	55
	9.3	,	Imp	act Assessment	56
	9	9.3.	1	Construction Phase	56
	9	9.3.	2	Operational Phase	62
	9	9.3.	3	Closure and Rehabilitation Phase	63
1	0	Сι	ımula	ative Impacts	.66
1	1	Ur	plan	ned Events and Low Risks	.67
1	2	En	viror	mental Management Plan	.68
	12.	1	Proj	ect Activities with Potentially Significant Impacts	68
	12.	2	Sun	nmary of Mitigation and Management	68
	12.	3	Mor	itoring Plan	70
1	3	Co	nsul	tation Undertaken	.71
1	4	Co	mme	ents and Responses	.71
1	5	Dis	scus	sion and Conclusions	.71
1	6	Re	efere	nces	.72

LIST OF FIGURES

Figure 1-1: Site Locality of the proposed Palmietkuilen Project Area	3
Figure 1-2: Study Area and proposed Mine Layout Plan	4
Figure 4-1: Location of the Fauna and Flora Sampling Points	8
Figure 6-1: Vegetation types (Mucina and Rutherford, 2006)	17
Figure 7-1: Examples of Riparian Habitat	20
Figure 7-2: Examples of the Landscape and Common Features of the Grassland during to	
Figure 7-3: Examples of Ephemeral Pan Habitat on Site	22
Figure 7-4: Vegetation delineation	23
Figure 7-5: Examples of Plant SSC recorded on Site (Above; Crinum bulbispermum a below: Hypoxis hemerocallidea)	
Figure 7-6: Examples of Small Mammals recorded on Site (A: <i>Mastomys coud</i> (Multimammate Mouse); B: <i>Leptailurus serval</i> (Serval); C: <i>Hystrix africaeaustra</i> (Porcupine); D: <i>Aonyx capensis</i> (Cape Clawless Otter) – taken by Hardaker (2011)	alis
Figure 7-7: Examples of Avifauna Species recorded on Site (A: Sagittarius serpentar (Secretarybird); B: Ceryle rudis (Pied Kingfisher), (C: Plegadis falcinellus (Glossy Ibis) a Burhinus capensis (Spotted Thick knee). Hardaker (2011)	ınd
Figure 7-8: Examples of Amphibians recorded on site (left: <i>Hylarana signata</i> (Striped Streating) and right: <i>Afrana angolensis</i> (Common River Frog) taken by Hardaker)	
Figure 7-9: Invertebrate species encountered, (A: Paracinema tricolor, B: Rhodome sacraria (Vestel) C: Spilostethus pandurus (Seed bugs) D: Ctenus spp (Wolf Spider)	
Figure 8-1: Gauteng Biodiversity Conservation Plan (2014)	36
Figure 8-2: Protected Areas	38
Figure 8-3: Important Bird Area (IBA) (Birdlife SA, 2013)	41
Figure 8-4: Nationally Threatened Ecosystems (SANBI)	43
Figure 8-5: National Protected Areas Expansion Strategy	45
Figure 8-6: Ecological Sensitivity	47
LIST OF TABLES	

Digby Wells Environmental

Table 4-2: Red Data Categories (taken from SANBI 2012)
Table 6-1: Common and Characteristic Plant Species of the Eastern Highveld Grassland 14
Table 6-2: Common and Characteristic Plant Species of the Soweto Highveld Grassland 15
Table 6-3: Common and Characteristic species of the Andesite Mountain Bushveld 16
Table 7-1: Vegetation Habitats (and other landuse) and Approximate Areas
Table 7-2: Expected plant Species of Special Concern (SSC) for the QDS' in which the study area occurs
Table 7-3: Alien Plant Species recorded on Site
Table 7-4: Mammal Species Recorded
Table 7-5: Red Data Species Recorded in by SABAP2 QDS search that could potentially occur on Palmietkuilen Mining area
Table 7-6: Amphibian Species recorded in the Palmietkuilen Project Area
Table 8-1: Criteria for the Listing of National Threatened Ecosystems
Table 9-1: Impact Assessment Parameter Ratings
Table 9-2: Probability/Consequence Matrix
Table 9-3: Significance Rating Description
Table 9-4: Loss of Habitat from Surface Infrastructure
Table 9-5: Interactions and Impacts
Table 9-6: Potential Impacts of the Construction Phase – Loss of Habitat/Vegetation Types, Grassland
Table 9-7: Potential Impacts of the Construction Phase – Loss of Habitat/Vegetation Types, Riparian
Table 9-8: Potential Impacts of the Construction Phase – Habitat Fragmentation and Alien Invasion
Table 9-9: Potential Risks of the Operational Phase – Increased Vehicular Movement on Site
Table 9-10: Potential Impacts of the Decommissioning Phase – Establishment of Alien Plant Species
Table 9-11: Potential Impacts of the Decommissioning Phase Rehabilitation of infrastructure footprint areas
Table 11-1: Unplanned Events, Low Risks and their Management Measures 67
Table 12-1: Potentially Significant Project Impacts
Table 12-2: Mitigation and Management Plan

Table 12-3: Monitoring Plan70

LIST OF APPENDICES

Appendix A: Staff CV's

Appendix B: Expected Plant Species List

Appendix C: Site Plant Species List

Appendix D: Expected Mammal Species List

Appendix E: Expected Bird Species List

Appendix F: Expected Reptile Species List

Appendix G: Expected Amphibian Species List

1 Introduction

Canyon Coal, owned by Canyon Resources (Pty) Ltd, hereafter referred to as Canyon, is planning the development of a new opencast coal mining operation located near Springs within the Gauteng Province. A coal processing plant and associated infrastructure will also be constructed. The Project is a greenfields development planned on Portions 1, 2, 4, 9, 13 and 19 of the Farm Palmietkuilen 241 IR. The proposed area of development is on the border of Gauteng and Mpumalanga, in the Sedibeng District Municipality and the Lesedi Local Municipality. The project borders the Ekurhuleni Metropolitan Municipality (Gauteng), the Nkangala District Municipality and the Victor Khanye Local Municipality (Mpumalanga).

1.1 Project Background

Palmietkuilen Mining Project is planning the development of a new open pit coal mining operation located near Springs within the Gauteng Province. The Project is a greenfields development planned on portions 1, 2, 4, 9, 13 and 19 of the farm Palmietkuilen 241 IRI. Coal mining will be undertaken by conventional truck and shovel operations. A coal processing plant and associated infrastructure will be constructed, where run-of-mine (RoM) coal will be processed at the proposed plant and sold to local and export markets. Key infrastructure will include:

- Open pit for mining;
- Processing plant and fuel storage;
- Haul roads from pit to plant and from plant to mine access point, and various conveyor belts;
- Various overburden dumps and RoM stockpile area;
- Pollution control dam (PCD), stormwater trenches and sewage management systems; and
- Site offices and security offices.

The project activities will include the following:

- Construction
 - Site establishment;
 - Site clearing, including the removal of topsoil and vegetation;
 - Construction of mine-related infrastructure, including haul roads, pipes, dams;
 - Construction of washing plant;
 - Relocation of Infrastructure
 - Blasting and development of initial box-cut for mining, including stockpiling from initial box-cuts; and

 Temporary storage of hazardous products, including fuel and explosives, as well as waste and sewage.

Operation

- Stripping topsoil and soft overburden;
- Removal of overburden, including drilling and blasting of hard overburden;
- Loading, hauling and stockpiling of overburden;
- Drilling and blasting of coal.
- Load, haul and stockpiling of RoM coal.
- Use and maintenance of haul roads for the transportation of coal to the washing plant;
- Water use and storage on-site; and
- Storage, handling and treatment of hazardous products (including fuel, explosives and oil) and waste.

Decommissioning and closure

- Demolition and removal of all infrastructure, including transporting materials off site:
- Rehabilitation, including spreading of soil, re-vegetation and profiling or contouring;
- Environmental monitoring of decommissioning activities; and
- Storage, handling and treatment of hazardous products (including fuel, explosives and oil) and waste.
- Post-closure monitoring and rehabilitation.

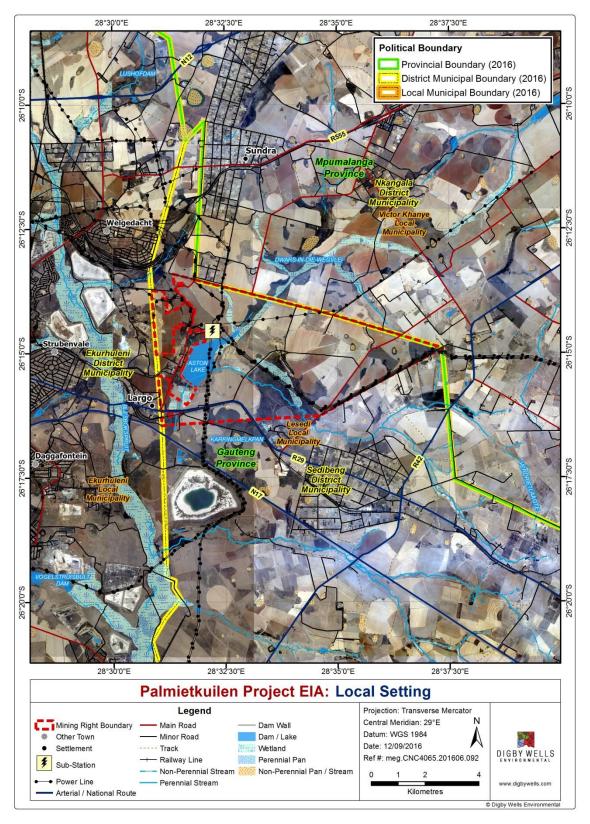


Figure 1-1: Site Locality of the proposed Palmietkuilen Project Area

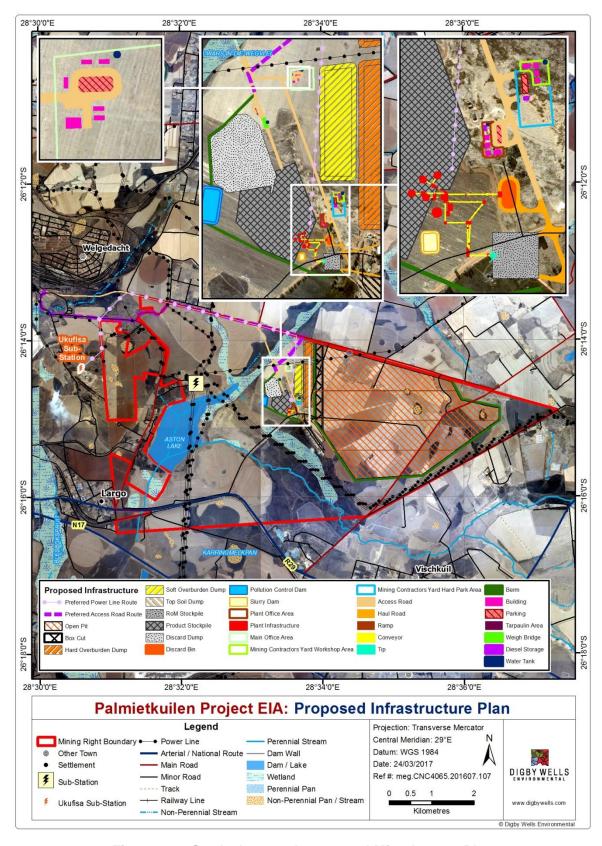


Figure 1-2: Study Area and proposed Mine Layout Plan

1.2 Terms of Reference

The agreed terms of reference include the following deliverables for this Flora and Fauna Impact Assessment Report:

- Record the plant species that occur within the study area based on the results of the infield vegetation/flora assessment;
- Record the animal species (mammals, reptiles, amphibians, birds and invertebrates (butterflies and spiders) that occur within the study area based on the results of the infield fauna assessments;
- Identify which of the species recorded are Species of Special Concern (SSC) based on the following lists:
 - International Union for the Conservation of Nature (IUCN) Red Data List (2016):
 - The South African National Biodiversity Institute (SANBI) Red Data List (2016);
 - SIBIS: SABIF (South African Biodiversity Information Facility) established by the Department of Science and Technology (DST); and
 - The Threatened Species Programme (TSP) listing in collaboration with the National Botanical Institute (NBI) was consulted to identify any SSC and/ or any Red Data Fauna and Flora Listed Species that may be present within the proposed Palmietkuilen Project area of development;
 - The National Environmental Biodiversity Act, 2004 (Act No. 10 of 2004) (NEMBA): Threatened or Protected Species List (ToPS).
- Determine if any of the recorded species are alien invasive species or problem species in terms of NEMBA alien invasive species;
- Using the results of the vegetation infield assessment and conduct a vegetation classification to identified the different plant communities within the study area;
- Compile a vegetation distribution map of the identified plant communities recorded;
- Map important faunal habitats identified within the study area;
- Determine the biodiversity value of the study area using information gathered on both flora and fauna;
- Compile a Biodiversity sensitivity map based on the identified biodiversity value s;
 and
- Assess the identified impacts of the proposed project and recommend mitigation measures.

2 Details of the Specialist

Rudi Greffrath is manager of Digby Well's Biodiversity department and has a National diploma and B-tech in Nature Conservation from Nelson Mandela Metropolitan University's George Campus and is a registration as a *Professional Natural Scientist* in the field of practice *Conservation Science*, registration number 400018/17. He has ten years' experience in the environmental consulting field specifically in the terrestrial ecology within the Highveld grasslands and Savanna regions of Southern and central Africa and the forest regions of central and West Africa. He specialises in fauna and flora surveys, biodiversity surveys, environmental management plans, environmental monitoring and rehabilitation for projects in accordance with the International Finance Corporation (IFC) and World Bank. Rudi has gained experience working throughout Africa specifically Sierra Leone, Ghana, Mali, Botswana, Namibia and Cote D'Ivoire.

Curricula Vitae of the specialist involved in this study can be found in Appendix A.

3 Aims and Objectives

Information generated from this survey was used to identify the potential impacts that the construction, operational and decomisioning activities will have on the environment. In order to achieve this aim the following objectives were considered for this specialist study:

- To delineate the various vegetation/habitat types and describe their sensitivity, present within the study area;
- To determine if any flora and fauna species or assemblages will be directly impacted upon by the proposed mining activities and its associated infrastructure, this includes flora and fauna communities present, the ecological state of these communities, identification of possible Red Data Listed species (according to the International Union for the Conservation of Nature (IUCN)) as well as considering National and Provincial criteria, and;
- To determine mitigation measures for the identified impacts in order to reduce the severity of these impacts. In cases where impacts cannot be mitigated, areas may be regarded as 'no-go' owing to the presence of Species of Special Concern (SSC) or critical habitat.

4 Methodology

4.1 Literature Review and Desktop Study

A desktop study was undertaken, aiming to identify:

- Potential species in the proposed development area/site area according to the (South African National Botanical Institute (SANBI), Pretoria Computerised Information System) PRECIS List's;
- South African Bird Atlasing Project (SABAP2);

CNC4065

- Potential Red Data Listed species and their current status according to Provincial legislation;
- Expected vegetation type and community structure, (Mucina and Rutherford 2006);
 and
- Current biodiversity and ecosystem status.

4.2 Field Investigations and Seasonal Influence

The site visits and detailed infield flora and fauna assessments took place from the 1st to the 3nd of November 2016 and winter 23th to the 24th of August 2016. Flora sampling points are indicated in Figure 4-1.

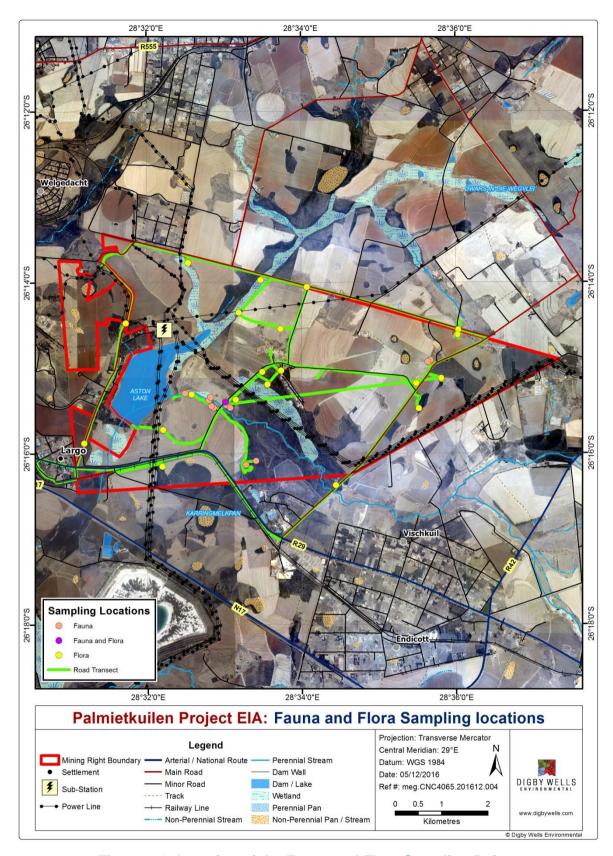


Figure 4-1: Location of the Fauna and Flora Sampling Points

4.2.1 Flora

As the sampling of the entire study area is not possible, representative samples of the vegetation were assessed. Aerial imagery was utilized to identify and stratefy homogenous vegetation units. Sampling points were then randomly selected within representative areas of this homogenous vegetation units and then groundtruth by means of detailed infield assessment. The number of sample sites visited was determined by the time available for the study as well as the accessibility of each of the sample sites. This methodology allows for more efficient sampling than overall random sampling.

At each sample site, a plot size of 50 m² was sampled. In each plot; the species were identified in the field. The Braun-Blanquet method was used for the listing of species and their associated cover. The Braun-Blanquet method incorporates seven cover-abundance categories as listed in Table 4-1. A general species list was also compiled from random traversing through the site.

Table 4-1: Braun-Blanquet Analysis Cover Abundance

Cover Abundance	Category
One or few individuals.	r
Occasional and less than 5% of total plot area.	+
Abundant and with very low cover, or less abundant but higher cover; in any case less than 5% cover of total plot area.	1
Very abundant and less than 5%, or 5-25% cover, of a total plot area:	
2m – Very abundant	
 2a – 5-12.5 % cover, irrespective of number of individuals 	2
 2b – 12.5-25% cover, irrespective of number of individuals 	
25-50% cover of total plot area, irrespective of number of individuals.	3
50-75% cover of total plot area, irrespective of number of individuals	4
75-100% cover of total plot area, irrespective of number of individuals	5

Vegetation was classified and the broad plant communities identified during the classification was then mapped to show their distribution. Species lists were compiled for each broad habitat type.

4.2.2 Species of Special Concern (SSC)

From the overall species list, a list of SSC was compiled. A comprehensive SSC species list was compiled taking the following Red Data Lists into consideration:

- International Union for the Conservation of Nature (IUCN) Red Data List (2015);
- The South African National Biodiversity Institute (SANBI) Red Data list version 2015.1;
- The South African Red Data lists for mammals (2004), birds (2016), butterflies and Herpetafauna;
- National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004)
 Threatened or Protected Species Regulations, and
- The Convention on International Trade in Endangered Species of Flora and Fauna (CITES) list (2016).

The South African Red Data List uses the same criteria as that defined by the IUCN. According to the IUCN all species are classified in nine groups, set through criteria such as rate of decline, population size, area of geographic distribution, and degree of population and distribution fragmentation (IUCN, 2016). The categories are described in Table 4-2 below.

Table 4-2: Red Data Categories (taken from SANBI 2012)

CATEGORY			DESCRIPTION
Extinct		(EX)	No known individuals remaining.
Extinct	in the Wild	(EW)	Known only to survive in captivity.
Criticall	y Endangered	(CR)	Extremely high risk of extinction in the wild.
Endang	jered	(EN)	High risk of extinction in the wild
Vulnera	ıble	(VU)	High risk of endangerment in the wild.
Near Th	Near Threatened (I		Likely to become endangered in the near future.
Least Concern		(LC)	Lowest risk. Does not qualify for a more at risk category. Widespread and abundant taxa are included in this category.
Data De	eficient	(DD)	Not enough data to make an assessment of its risk of extinction.
Not Eva	Not Evaluated		Has not yet been evaluated against the criteria.
	Extinct		Threatened species are species that are facing a high risk of
Other categories conservation con			extinction. Any species classified in the IUCN categories CR, EN or VU is a threatened species. Species of conservation concern are
			species that have a high conservation importance in terms of preserving South Africa's high floristic diversity and include not only

CNC4065

CATEGORY		DESCRIPTION
	Other categories	threatened species, but also those classified in the categories, NT, LC and DD

The online IUCN data base was referenced in order to identify Red Data Listed species and their various threat status categorisations.

4.3 Fauna

A two season survey, summer (1st to the 3nd of November 2016) and winter (23th to the 24th of August 2016), was conducted for this project. In support of this, a detailed desktop study was also conducted for mammals, birds, reptiles and frogs, this information can be found in the relevant scoping report. All fauna species encountered on site were identified and recorded. The following methods were used during the survey, the location of the sampling areas are shown in Figure 4-1.

4.3.1 Mammals

Small mammals were sampled through opportunistic sightings, as well as the use of Sherman traps. The 20 traps were baited with small mammal bait and left for the duration of the field work time, two nights and three days. If no small mammals were captured after a day, the traps were moved to a different location and re-baited. If small mammals were captured, the traps were rebaited and re-set in the same position. All Sherman traps were checked once a day, in the early morning. Large mammals were recorded using scats, tracks and nesting or breeding sites such as burrows and dens. Scats and tracks found, during active searches, were photographed with a scale and identified. For identification purposes the following field guides were used, Mammals of Southern Africa (Smithers, 1983), The Mammals of the Southern African Sub-region (Skinner & Chimimba, 2005), Red Data Book of the Mammals of South Africa (Friedman & Daly 2004) and camera traps placed throught the sites, mainly at water points within the different vegetation units.

4.3.2 Avifauna

The principal ornithological field survey technique used was transect surveys and random point surveys. Transect surveys were planned based on representative sites of different avifauna habitat, such as pans, dams, wetlands, open grassland and road reserves by simply following available roads and paths that transect over these habitat types. Transect procedures involve slow attentive walks along transects during which any bird seen or heard is identified and recorded; this was completed during diurnal surveys only. Species observed during the vegetation surveys and other field trips were also recorded.

The following was recorded:

- All birds encountered or noted during the survey;
- All birds observed by people residing in the study area; and

A list of rare and endangered species encountered.

Visual identification of birds was used to confirm bird calls where possible. Bird species were confirmed using Robert's birds (2009).

4.3.3 Herpetofauna (Reptiles and Amphibians)

Herpetofauna include reptile and amphibian species. Direct/opportunistic observations were conducted along trails or paths within the project area. Any herpetofauna species seen or heard along such paths or trails within the project area were identified and recorded. Another method used was refuge examinations using visual scanning of terrains to record smaller herpetofaunal species which often conceal themselves under rocks and in fallen logs, rotten tree stumps, under rocks, in leaf litter, rodent burrows, ponds, old termite mounds, etc. Amphibians and reptiles observed by people residing in the study area were also recorded. Branch (2001), Du Preez and Caruthers (2009) and Carruthers (2009) was used to confirm identification where necessary.

4.3.4 Macro-Invertebrates

A sweep net (750 mm diameter) was used to sample the grassland and riparian vegetation for macro-invertebrates. Day flying butterflies (Lepidoptera) and other flying insects were caught using a 750 mm butterfly net. Identification was done by using Picker *et al.* (2002).

During the wet season survey insects were caught using a 750 mm butterfly net, in addition butterflies were photographed and identified where and when they were seen. In the dry season, transects were walked within identified vegetation/habitat types in order to identify any invertebrate activity or individuals, sweep netting was performed in areas not affected by fire.

4.3.5 Red Data Faunal Assessment

The following parameters were used to assess the Probability of Occurrence of each Red Data species:

- Habitat requirements (HR) Most Red Data Listed animals have very specific habitat requirements and the presence of these habitat characteristics in the study area was evaluated;
- Habitat status (HS) The status or ecological condition of available habitat in the area is assessed. Often a high level of habitat degradation prevalent in a specific habitat will negate the potential presence of Red Data Listed species (this is especially evident in wetland habitats); and
- Habitat linkage (HL) (corridors) Movement between areas for breeding and feeding forms an essential part of the existence of many species. Connectivity of the study area to surrounding habitat and the adequacy of these linkages are evaluated for the ecological functioning of Red Data species habitat within the study area.

CNC4065

Probability of occurrence is presented in four categories, namely:

- Low (unlikely to occur);
- Medium (could possibly occur);
- High (most likely could occur); or
- Recorded (does occur on site).

The IUCN Red Data categories (2016) are used for the status identification of mammals, birds, reptiles and amphibians globally.

5 Assumptions and Limitations

The following limitations were encountered during this study:

Whilst every effort is made to cover as much of the site as possible, representative sampling is done and it is possible that some plant and animal species that are present on site were not recorded during the field investigations, due to seasonality;

6 Regional Vegetation

The project area falls within the Andesite Mountain Bushveld, Soweto Highveld Grassland and Eastern Highveld Grassland as described by Mucina and Rutherford (2006) in the Grassland Biome (Table 6-1). The Grassland Biome covers roughly a third of the country. It occurs across six provinces and is the second largest of South Africa's nine biomes, covering an area of 339 237.68 km² (SANBI, 2016).

The term 'grassland' creates the impression that the biome consists only of grass species. In fact, it is a complex ecosystem, including rivers and wetlands, where only one in six plant species are grasses.

Thirty percent of the biome has been irreversibly transformed and only 1,9% is formally conserved. As a result, the National Biodiversity Strategy and Action Plan has identified the grasslands biome as one of the spatial priorities for conservation action (SANBI, 2016). The important biodiversity contained within the grasslands, which underpins life, is being eroded to such an extent that human wellbeing is threatened. Common and characteristic plant species of the Eastern Highveld and Soweto Highveld Grasslands are listed in Table 6-1 and Table 6-2 with Andesite Mountain Bushveld in Table 6-3, and their distribution relative to the project area is found in Figure 6-1.

Table 6-1: Common and Characteristic Plant Species of the Eastern Highveld
Grassland

Plant form	Species (names based on taxonomic names as in 2006)
Graminoids (grasses and sedges)	Heteropogon contortus, Aristida aequigluims, A. congesta, A. junciformis subsp. Galpini, Brachiaria serrata, Cynodon dactylon, Digitaria monodactyla, D. tricholaenoides, Elionurus muticus, Eragrostis chloromelas, E. curvula, E. plana, E. racemosa, E. sclerantha, Heteropogon contortus, Loudetia simplex, Microchloa caffra, Monocymbium cereiiforme, Setaria sphacelata, Sporobolus africanus, S. pectinatus, Themeda triandra, Trachypogon spicatus, Tristachya leucothrix, T. rhmanni, Alloteropsis semialata subsp. eckloniana, Andrpogon appendiculatus, A. schirensi, Bewsia biflora, Ctenuim concinnum, Diheteropogon amplectens, Eragrostis capensis, E. dummiflua, E. patentissima, Harpochloa falx, Panicum natalense, Rendlia altera, Schizachyruim sanguineum, Setaria nigrirostris, Urelytrum agropyroides

Plant form	Species (names based on taxonomic names as in 2006)
Herbs	Berkheya setifera, Haplocarpha scaposa, Euryops gifillani, Justicia anagalloides, Acalyha angusta, Cahmaecrista mimosoides, Dicoma anomala, E. transvalensis subsp. setilobus, Helichrysum aureonitens, H. caespititium, H. callicomum, H. oreophilum, H. caespititium, H. oerophilum, H. rugulosum, Ipomoea crassipes, Pentanisia prunelloides subsp. latifolia, Selago densiflora, Senecio coronatus, Hilliardiella oligocephala, Wahlenbergia undulata
Geophytic herbs	Gladiolus crassifolius, Haemanthus humilis subsp. hirsutus, Hypoxis rigidulua var. pilosissima, Ledebouria ovatifolia
Succulent herb	Aloe ecklonis
Low shrubs	Anthospermum rigidum subsp. pumilum, Seriphium plumosa

Table 6-2: Common and Characteristic Plant Species of the Soweto Highveld Grassland

Plant Forms	Species (names based on taxonomic names as in 2006)	
Graminoids (grasses)	Andropogon appendiculatus, Brachiaria serrata, Cymbopogon pospischillii, Cynodon dactylon, Elionurus muticus, Eragrostis capensis, E. chloromelas, E. curvula, E. plana, E. planiculmis, E. racemosa, Heteropogon contortus, Hyparrhenia hirta, Setaria nigrirostris, S. sphacelata, Themeda triandra, Tristachya leucothrix, Andropogon schirensis, Aristida adscensionis, A. bipartita, A. congesta, A. junciformis subsp. galpinii, Cymbopogon caesius, Digitaria diagonalis, Diheteropogon amplectens, Eragrostis micrantha, E. superba, Harpochloa falx, Microchloa caffra, Paspalum dilatatum	
Herbs	Hermannia depressa, Acalypha angustata, Berkheya setifera, Dicoma anomala, Euryops gilfillanii, Geigeria aspera var. aspera, Graderia subintergra, Haplocarpha scaposa, Helichrysum miconiifolium, H. nudifolium var. nudifolium, H. rugulosum, Hibuscus pusillus, Justicia anagalloides, Lippia scaberrima, Rhynchosia effusa, Schistostephium crataegifolium, Selago densiflora, Senecio coronatus, Hilliardiella oligocephala, Wahlenbergia undulata	
Geophytic herbs	Haemanthus humilis subsp. hirsutus, Haemanthus montanus	
Herbaceuos climber	Rhynchosia totta	
Low shrubs	Anthospermum hispidulum, A. rigidum subsp. pumilum, Berkheya annectens, Felicia muricata, Ziziphus zeyheriana	

Table 6-3: Common and Characteristic species of the Andesite Mountain Bushveld

Plant Forms	Species (names based on taxonomic names as in 2006)	
Graminoids (grasses)	Eragrostis curvula, Hyparrhenia hirta, Setaria sphacelata, Themeda triandra, Cymbopogon pospischilii, Digitaria eriantha subsp. eriantha, Elionurus muticus, Eragrostis racemosa, E. superba, Panicum maximum.	
Herbs	Commelina africana, Vernonia galpinii, V. oligocephala. Succulent Herb: Aloe greatheadii var. davyana	
Woody Climber	Rhoicissus tridentata	
Tall Shrubs	Asparagus laricinus, Euclea crispa subsp. crispa, Rhus pyroides var. pyroides, Diospyros lycioides subsp. lycioides, Gymnosporia polyacantha, Lippia javanica, Rhamnus prinoides	
Small Trees	Acacia caffra, A. karroo, Celtis africana, Protea caffra, Zanthoxylum capense, Ziziphus mucronata	
Low shrubs	Asparagus suaveolens, Rhus rigida var. margaretae, Teucrium trifidum. Soft Shrub: Isoglossa grantii	

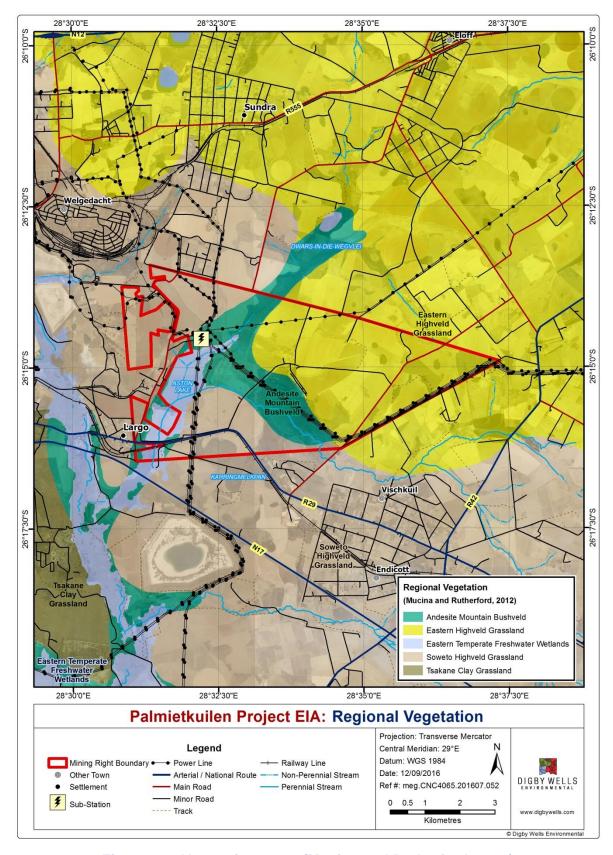


Figure 6-1: Vegetation types (Mucina and Rutherford, 2006)

7 Results of Baseline Fauna and Flora Assessment

7.1 Flora

The majority of the study area (1 740 ha or 50.3%) had undergone transformation due to cultivation for maize and soy beans. Livestock were also observed throughout most of the site and evidence of overgrazing was recorded in grassland areas; showing a dominance of increaser species and some erosion. Despite these impacts, areas that were left intact showed a moderate diversity of grasses and some forbs, particularly members of the Asteraceae family and the *Helichrysum* genus.

A total of 90 plant species were recorded on site (Appendix C), of 266 listed (recorded by SANBI in the relevant grid in the past) in the regional list (Appendix B), however more may

occur that was not recorded and identified by SANBI and therefore not on the PRECIS List. The natural areas associated with the project area are discussed in more detail in the sections to follow. The disturbed areas included former cultivated fields that had been colonised by alien plants and pioneer species. The primary landuses and vegetation habitats identified on site are listed in Table 7-1.

Acacia Name Change

The International Code of Botanical Nomenclature, the official botanical names authority, made a decision in July 2005 to reserve the name *Acacia* for Australian species only. Both Africa and Australia had been sharing the genus name for two distinctly different groups of species and a final call had become a necessity. The *Acacia* name change has been a matter of dispute for over a decade but it is important to note that the change is now official. The reasons for voting *Acacia* as an Australian type were numerous, primarily owing to the fact that over 1000 *Acacia*'s (many that are endemic) are to be found in Australia, making up the largest genus in the country. In addition, the *Acacia* has significant cultural and traditional value as a symbol in the Australian coat of arms. A taxonomic revision of African *Acacia*'s is underway and all species will be renamed into either *Vachellia* or *Senegalia*. The *Acacia* name is maintained for the purpose of this report.

Table 7-1: Vegetation

Habitats (and other landuse) and Approximate Areas

Vegetation Unit	Area (ha)	Proportion of total project area (%)
Wetland	25	2.11
Pan	26	2.1
Cultivated	851	71
Eragrostis Dominated Grassland	280	23
Alien Vegetation	0.005	0.004
Developed	1.7	0.14
Total	1184	100%

CNC4065

7.1.1 Riparian Habitat (Wetlands and Pans)

The riparian habitat is associated with the Ashton Lake which forms part of the unchanneled valley bottom wetland system and channelled valley bottom wetlands that run centrally through the site. A further five pans and various seeps were also encountered and delineated. The wetland delineation is represented in the Wetland Assessment Report (Digby Wells, 2016). The wetland/riparian vegetation type is composed of typical riparian plant species which are adapted to permanent or perennial saturation. This includes *Schoenoplectus* and *Cyperus* species as well as a number of wet grasses, such as Cotton Wool Grass (*Imperata cylindrica*), Rye Grass (*Lolium perenne*), Rescue Grass (*Bromus catharticus*) and swamp couch Grass (*Cynodon dactylon*).

Other forb species present include Edging lobelia (*Lobelia erinus*) and, as a result of the dams which have been constructed and grazing and trampling by livestock this vegetation type has been impacted. Additionally Cotton Wool Grass (*Imperata cylindrica*) patches occur in the study area, indicating surface water seep points. These water seep points are seen as areas where diversity will differ from the surrounding vegetation.

7.1.2 Grassland

This *Eragrostis*-dominated Grassland covered the majority of the natural areas associated with the study site and can further be subdivided into wetland and terrestrial habitats. The substrate of the wetland areas was composed of moist clays which formed the top of hillslope seeps. *Eragrostis gummiflua* (Gum Grass), unfavoured by cattle, was dominant and additional *Eragrostis* species were prevalent, including: *Eragrostis curvula* (Lovegrass), *Eragrostis racemosa* (Narrow Heart Love Grass) and *Eragrostis chloromelas* (Curly Leaf). Additional grass species included *Aristida congesta* subsp. *congesta* (Spreading Threeawn), *Hyparrhenia hirta* (Common Thatching Grass), *Themeda triandra* (Red Grass), *Agrostis lachnantha* (Bent Grass) and *Imperata cylindrica* (Cottonwool Grass) along hillslope seeps.

Common and characteristic forbs and succulents included: *Helichrysum oligocephala*, *Wahlenbergia* spp., and *Verbena brasiliensis* (Brazilian Vervain). Alien plant invasion was moderate in certain areas adjacent to cultivated fields and along roadsides, including species such as: *Datura stramonium* (Downy Thorn Apple), *Solanum sysimbriifolium* (Sticky Nightshade) and *Verbena brasiliensis* (Brazilian Vervain).

Figure 7-1: Examples of Riparian Habitat

Figure 7-2: Examples of the Landscape and Common Features of the Grassland during the dry season

7.1.3 Ephemeral Pans

Pans represented unique environments on site and were typically not colonised by plant species, except for the seepage areas around them. Pans are depressions without outflow that occur mainly in the drier western parts of the country (including the Northern Cape, Free State and North-west Provinces), but are also found in the wetter eastern parts (Gauteng and Mpumalanga Provinces) and in the Kruger Park National Park. Common and characteristic plant species found to colonise pan edges included: *Cyperus semitrifidus*; *Juncus effusus* (Common Rush), *Persicaria lapatholia* and *Agrostis lachnantha* (Bent Grass). No Red Data Listed or any protected plant species were recorded in this habitat.

Figure 7-3: Examples of Ephemeral Pan Habitat on Site

The distribution of vegetation units is represented in Figure 7-4.

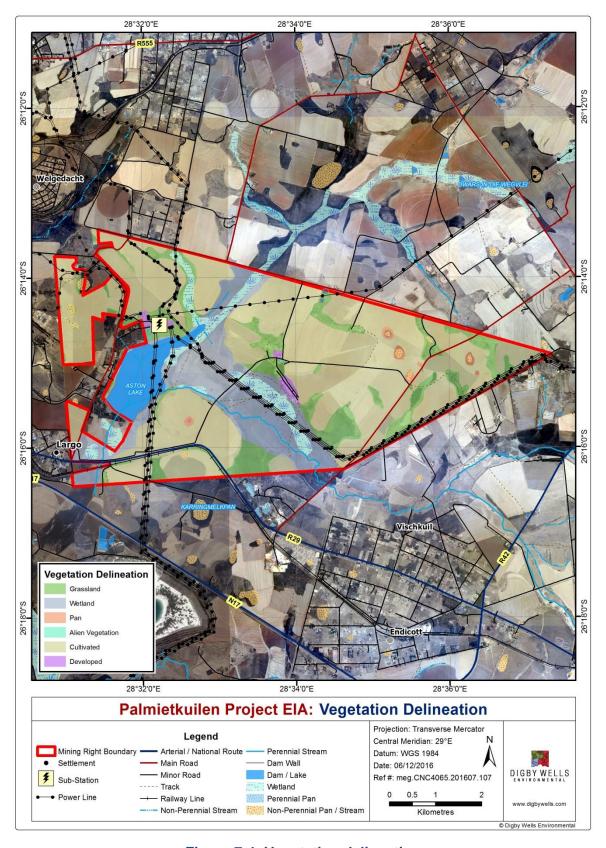


Figure 7-4: Vegetation delineation

7.1.4 Plant Species of Special Concern

The study area falls within the Quarter Degree Squares (QDS); 2628BC and 2628BA. The Gauteng Province has been extensively surveyed from a botanical perspective and as a result, the South African database, known as PRECIS, adequately represents species diversity for this part of the country. For the expected species lists generated for the QDS in which the study area occurs, 78 plant species have been recorded, 3 of which were allocated Red Data Status (one listed as Near-Threatened and one as Vulnerable), according the the South African Red data list of Plants.

Based on desktop analysis, the vegetation consists of disturbed grassland, hydromorphic grassland (in wetland areas) and alien bush clumps. Alien species expected to make up the bush clumps include: *Eucalyptus, Phragmites* and *Pinus* species. Alien invasion is likely to be a potential concern for the Palmietkuilen project area, owing to the historic, large-scale soil disturbance that has taken place in the surrounding area, mostly due to agricultural activities.

According to Lorraine Mills from GDARD (personal communication), there are four Red/Orange List plant taxa that have been recorded in Red/Orange List plant taxa. These species are listed in Table 7-2, two Near Threatened and two Vulnerable species have been recorded here in the past. *Crinum bulbispermum* and *Hypoxis hemerocallidea* were recorded during this wet season survey, these are designated as Declining according to the South Africal Red List of Plants.

Table 7-2: Expected plant Species of Special Concern (SSC) for the QDS' in which the study area occurs

Family	Species	Threat Status
ASPHODELACEAE	Kniphofia typhoides Codd	Near threatened
MESEMBRYANTHEMACEAE	Khadia beswickii (L.Bolus) N.E.Br.	Vulnerable
AIZOACEAE	Lithops lesliei subsp. lesliei	Near threatened
AMARYLLIDACEAE	Nerine gracillis	Vulnerable

Figure 7-5: Examples of Plant SSC recorded on Site (Above; *Crinum bulbispermum* and below: *Hypoxis hemerocallidea*)

7.1.5 Alien Plant Species

Further to this, alien plant species have also been classified according to National Environmental Management Biodiversity Act, 2004 (Act No. 10 of 2004) (NEMBA), as

published in August 2014 (GN R599 in *GG* 37886 of 1 August 2014) into the following categories:

- Category 1a: Species requiring compulsory control;
- Category 1b: Invasive species controlled by an invasive species management programme;
- Category 2: Invasive species controlled by area, and;
- Category 3: Invasive species controlled by activity.

A total of 17 alien invader plant species (AIP) were recorded on site (Bromilow 2010) (Table 7-3); seven of these have been assigned alien invader plant categories according to CARA and NEMBA. These species have established due to disturbance of the soil, largely due to cultivation in the area, as well as trampling by livestock. Large alien bushclumps have been delineated in Figure 7-4.

Table 7-3: Alien Plant Species recorded on Site

Family	Species	Category (CARA/NEMBA)
Amaranthaceae	Gomphrena celesioides	No category
Amaranthaceae	Guilleminea densa	No category
	Bidens pilosa	No category
	Cirsium vulgare	1; 1b
	Conyza albida	No category
Asteraceae	Cosmos bippinatus	No category
	Tagetes minuta	No category
	Taraxacum offininale	No category
	Xanthium strumarium	1; 1b
Cactaceae	Opuntia ficus-indica	1; 1b
Fabaceae	Acacia mearnsii	2; 2
Myrtaceae	Eucalyptus camuldulensis	2; 1b
Poaceae	Paspalum notatum	No category
Poaceae	Trichoneura grandiglumis	No category
Salicaceae	Salix babylonica	No category
	Datura ferox	1; 1b
Solanaceae	Solanum sp.	No category
	Solanum sysimbriifolium	1; 1b
Verbenaceae	Verbena brasiliensis	No category

7.2 Fauna

7.2.1 Mammals

Actual sightings, spoor, calls, dung and nesting sites, as well as active sampling by means of motion detection cameras and Sherman traps, were used to establish the presence of mammals on the proposed project site. The evidence of dung and spoor suggests that animals were present in the area although relatively few were recorded during the surveys. Table 7-4 lists mammals that were recorded in the proposed project area during this survey, this includes personal communication with farmers. The mammals recorded were found within a variety of the vegetation communities recorded onsite. A full list of mammals recorded onsite are included in Table 7-4.

Two of these species are regarded as species of special concern and include the Cape Clawless Otter (*Aonyx capensis*) and Serval (*Felis serval*). These two species are protected according to NEMBA TOPS list. Examples of small mammal fauna identified on site are represented in Figure 7-6. Appendix D lists the expected mammal species for the site, based on the results of a desktop assessment.

Table 7-4: Mammal Species Recorded

Scientific Name	English Name	IUCN (2016.2)	NEMBA TOPS List (2007)
Aonyx capensis	Cape Clawless Otter	Near Threatened	Not Listed
Hystrix africaeaustralis	Porcupine	Least Concern	Not Listed
Leptailurus serval	Serval**	Least Concern	Protected
Lepus saxatilis	Scrub Hare	Least Concern	Not Listed
Canis mesomelas	Black-backed Jackal	Not Listed	Not Listed
Cryptomys hottentotus	Common Mole Rat	Least Concern	Not Listed
Cynictis penicillata	Yellow Mongoose	Least Concern	Not Listed
Mastomys coucha	Multimammate Mouse	Least Concern	Not Listed
Potamochoerus larvatus	Bushpig**	Least Concern	Not Listed
Raphicerus campestris	Steenbok**	Least Concern	Protected
Rhabdomys pumilio	Striped Mouse	Least Concern	Not Listed

Scientific Name	English Name	IUCN (2016.2)	NEMBA TOPS List (2007)
Sylvicapra grimmia	Common Duiker**	Least Concern	Not Listed
Tatera leucogaster	Bushveld Gerbil*	Least Concern	Not Listed

^{* -} Recorded previously

^{** -} Recorded via personal communication with landowner

Figure 7-6: Examples of Small Mammals recorded on Site (A: *Mastomys coucha* (Multimammate Mouse); B: *Leptailurus serval* (Serval); C: *Hystrix africaeaustralis* (Porcupine); D: *Aonyx capensis* (Cape Clawless Otter) – taken by Hardaker (2011)

7.2.2 Avifauna

A total of 89 species were identified during the dry season and the wet season survey (combined) (Refer to Appendix E). It is generally accepted that vegetation structure, rather than the actual plant species, influences bird species distribution and abundance (in Harrison *et al.*; 1997). Therefore, the vegetation description below does not focus on lists of plant species, but rather on factors which are relevant to bird distribution.

Proposed Development of Palmietkuilen Open Pit Coal Mine and Associated Infrastructure, near Springs, Gauteng Province

CNC4065

The natural habitat of the project areas consist predominantly of the Eastern Highveld Grassland vegetation type, which occurs on slightly to moderately undulating plains, including some low hills and pan depressions. The vegetation is short, dense grassland dominated by the usual highveld grass composition (*Aristida, Digitaria, Ergrostis, Themeda, Tristachya* etc.). Rainfall is strongly summer seasonal (average 726 mm), with very dry winters (Mucina & Rutherford 2012).

7.2.2.1 Wetland Areas

Multiple wetland systems occur throughout all study sites. These areas are dominated by marshy vegetation that grows in seasonally to permanent wet soil. In addition to wetlands, pans are an important feature of the general site. Greater Flamingo (*Phoenicopterus roseus*) (Least Concern) was observed in the pans. Reed pans are mostly permanent, usually retaining water throughout the year. They have a diverse flora, characterized by *Phragmites* spp., which forms a dense extensive reedbed covering most of the pan basin. Imperata cylindrica (Cottonwool Grass) was identified on site, this is the preffered habitat type of the African Grass Owl (Tyto capensis), and these birds were however not recorded during this survey. Sedge pans are semi-permanent, usually drying up during the winter and/or dry spells, when they are almost devoid of vegetation. Saline pans are characterized by their glaring white basins when dry and have extremely saline substrata and water. The basins of these pans usually lack vegetation. There is considerable overlap in the common plants between the three pan-types. The pans, and their functioning, remain intact, despite existing in a matrix that consists almost exclusively of maize (80%), interspersed with small fragmented patches of natural grassland (20%). According to the land owner there are two breeding pairs of the endangered Secretary bird (Sagittarius serpentarius) present on the property in the grassland areas.

CNC4065

The wetlands within the property are an important habitat for common water birds such as: Redknobbed Coot (Fulica cristata), Grey Heron (Ardea cinerea), Purple Heron (Ardea purpurea), Egyptian Goose (Alopochen aegyptiacus), Cape Shoveler (Anas smithii), Spurwinged Goose (Plectropterus gambensis), Yellowbilled Duck (Anas undulata), Cattle Egret (Bubulcus ibis) and Three banded Plover (Charadrius tricollaris) and the adjacent grasslands provide potential habitat (Imperata cylindrica) for the Vulnerable African Grass Owl (Tyto capensis (according to the national Red Data List).

During the site visits a number of typical Grassland species were observed. These areas also included the road infrastructure, farm boundary and isolated patches throughout the property and included species such as Redeyed Dove (Streptopelia semitorquata), Laughing Dove (Spilopelia senegalensis), Cape Turtle Dove (Streptopelia capicola), Common Fiscal (Lanius collaris), Cape Sparrow (Passer melanurus), Neddicky (Cisticola fulvicapilla), Swainsons Spurfowl (Pternistis swainsonii), Helmeted Guineafowl (Numida meleagris), Black Shouldered Kite (Elanus axillaris) and large numbers of exotic Feral Pigeons (Columba livia domestica).

7.2.2.2 <u>Transformed/Cultivation</u>

The habitat in the study area has been transformed through dryland cultivation, mostly maize. Areas of current cultivation are situated on the areas with the least gradient, but also on the hill slopes where the gradient is not too aggressive. The agricultural fields of the property harbour a number of typical highveld endemics. These included several widow, weaver and bishop species (within the wetter areas). A number of African Quailfinch's (Ortygospiza fuscocrissa) were observed within the fields – these species generally feed on the seeds of the wetter grass species and are renowned wetland indicators. African Pipit (Anthus cinnamomeus) and Cape Longclaw (Macronyx capensis) were observed throughout the property, although there is enough nesting habitat in the surrounding area for the more endangered lark species it is noted that the existing mining activities, increased traffic loads and earth movement have negatively impacted on the breeding of all lark and pipit species on the property. However once rehabilitation is concluded this is usually not a permanent impact. The altitude of the proposed development and species type of the grassland suggests that the area could be home to some endemic and endangered lark and pipit species such as: Botha's Lark (Spizocorys fringillaris). This species, however were not observed during any of the surveys.

7.2.2.3 Alien Vegetation

Relatively small but prominent collection of alien invasive and exotic tree species is present the project site. These tree species were either planted as windbreaks by local farmers, as is the case with *Pine* and *Eucalyptus spp.*, or they were transported to the area via waterways such as *Populus* spp. The alien vegetation habitat type is also present on the hill slopes of rolling hills and flat areas between these hills.

Examples of avifauna recorded on site are represented in Figure 7-7.

Table 7-5: Red Data Species Recorded in by SABAP2 QDS search that could potentially occur on Palmietkuilen Mining area

Common name	Taxon name	IUCN 2016-2	SA Red List	NEMBA
Crane, Blue	Anthropoides paradiseus	VU	VU	Protected
Grass-Owl, African	Tyto capensis	LC	VU	Protected
Kestrel, Lesser	Falco naumanni	LC	LC	Protected
Korhaan, White-bellied	Eupodotis senegalensis	LC	VU	Protected
Marsh-Harrier, African	Circus ranivorus	LC	EN	Protected
Secretarybird*	Sagittarius serpentarius	VU	VU	Protected
Stork, Black	Ciconia nigra	LC	VU	Protected
Stork, Yellow-billed	Mycteria ibis	LC	EN	Protected

^{*-}Recorded

Figure 7-7: Examples of Avifauna Species recorded on Site (A: Sagittarius serpentarius (Secretarybird); B: Ceryle rudis (Pied Kingfisher), (C: Plegadis falcinellus (Glossy Ibis) and Burhinus capensis (Spotted Thick knee). Hardaker (2011)

7.2.3 Herpetofauna

According to Du Preez and Carruthers (2009), frogs occur throughout every habitat within Southern Africa. A number of factors influence their distribution, and they are generally restricted to the habitat type they prefer, especially in their choice of breeding site. The choices available of these habitats coincide with different biomes, these biomes in turn, are distinguished by means of biotic and abiotic features prevalent within them (Gerlanc et al). Therefore a collection of amphibians associated with the Grassland Biome will all choose to breed under the prevailing biotic and abiotic features present. Further niche differentiation is encountered by means of geographic location within the biome, this differentiation includes, banks of pans, open water, inundated grasses, reed beds, trees, rivers and open ground, all of which are present within the area of interest.

Three amphibians were encountered during this field survey by (Deulman et al), means of active searching, with three species encountered during previous surveys. The expected amphibian species for the area are included as (Annexure/Appendix G). All species identified on site are listed in Table 7-6. The species listed as encountered below were all encountered within the wetlands habitat types. Examples of frogs recorded on site are represented in Figure 7-8.

Table 7-6: Amphibian Species recorded in the Palmietkuilen Project Area

Scientific Name	English Name	IUCN (2016.2)	NEMBA TOPS List (2015)
Afrana angolensis	Common River Frog	-	-
Bufo gutturalis	Guttural Toad	-	-
Cacosternum boettgeri	Common Caco	-	-
Strongylopus fasciatus	Striped Stream Frog	-	-

No reptile species were encountred during the field survey. No IUCN protected species were encountered.

Figure 7-8: Examples of Amphibians recorded on site (left: *Hylarana signata* (Striped Stream Frog) and right: *Afrana angolensis* (Common River Frog) taken by Hardaker)

7.2.4 Macro-Invertebrates

During the wet season survey, butterflies were recorded through sweep netting and oppurtunistic observations and photographed where possible. In the dry season, transects were walked along the roads, rehabilitated areas, exotic plantations and grassland area to identify any scorpion or spider nests/burrows/webs. Butterflies are a good indication of the habitats available in a specific area (Woodhall 2005). Although many species are eurytropes (able to use a wide range of habitats) and are widespread and common, South Africa has many stenotrope (specific habitat requirements with populations concentrated in a small area) species which may be very specialised (Woodhall 2005). Butterflies are useful indicators as they are relatively easy to locate and catch, and to identify. It is for this reason that Lepidoptera were used as the primary focus for the invertebrate survey. Three butterfly species were observed within the proposed mining area, these included the, African Monarch (Danaus chrysippus), Brown-veined White (Belenois aurota), Broad Bordered Grass Yellow (Eurema brigitta). All the species were located within grassland or the wetland areas. No butterfly species observed were considered to be Species of Special Concern.

However according to SANBI, it is possible that the Near Threatened Marsh Sylph (*Metisella meninx*) can be located on the site. It is endemic to the wet vleis of highland grassland in northern KwaZulu-Natal, Mpumalanga, Gauteng, the northern part of the Orange Free State and the extreme east of the North West Province, they preferred *Leersia hexandra* dominate grassland. It has become extinct in many areas close to Johannesburg due to building developments.

Paracinema tricolor, a locust species was encountered in the grasslands of the project site, Rhodometra sacraria (Vestal) was found in the wetlands areas. Spilostethus pandurus or Seed Bug was found in the grassland areas and the Wolf spider (Ctenus spp.) was encountrered by the pans to the north east of the project area (Figure 7-9).

Figure 7-9: Invertebrate species encountered, (A: *Paracinema tricolor, B: Rhodometra sacraria* (Vestel) C: *Spilostethus pandurus* (Seed bugs) D: *Ctenus spp* (Wolf Spider)

The diversity and density of the invertebrates was relatively high for the proposed Palmietkuilen Coal Mine mining development footprint area and surroundings, and this in general could assist in providing an indication of the health of the regional ecology. Although existing agricultural activities has modified the immediate area, there is sufficient habitat

Proposed Development of Palmietkuilen Open Pit Coal Mine and Associated Infrastructure, near Springs, Gauteng Province

CNC4065

within the surrounding unaffected areas to sustain moderate populations of the typical highveld grassland species of fauna. It would however be recommended that the management of any encroachment of alien invasive plant species is strictly enforced in order to retain the preferred faunal species types that currently dominate the grassland biome of Gauteng Province.

8 Sensitivity Analysis and No-go Areas

There are several assessments for South Africa as a whole, as well as on provincial levels that allow for detailed conservation planning as well as meeting biodiversity targets for the country's variety of ecosystems. These guides are essential to consult for development projects, and will form an important part of the sensitivity analysis.

Areas earmarked for conservation in the future, or that are essential to meet biodiversity and conservation targets should not be developed, and have a high sensitivity as they are necessary for overall ecological functioning. Further to this, details of the field investigation are used to determine the site-specific sensitivity.

8.1 Gauteng C-Plan (Conservation Plan)

Knowledge of the distribution of biodiversity, the status of species, approaches for dealing with aspects such as climate change, methods of data analysis, and the nature of threats to biodiversity within a planning region are constantly changing, especially in the Gauteng province which is developing at an extremely rapid rate. This requires that the conservation plan be treated as a living document with periodic review and updates.

The Gauteng Conservation Plan (C-Plan) is based on the systematic conservation principles outlined by Margules and Pressey (2000): complementarity, efficiency, defensibility and flexibility, irreplaceability, retention, persistence and accountability. The Gauteng C-Plan is a living document that is constantly reviewed and updated and documents the distribution of conservation important areas for biodiversity. According to the Gauteng C-Plan the wetlands throughout the project are is regarded as Important Areas, with a small patch of Irriplaceble habitat being present in the south, all of which forms part of the wetlands system present. Large parts of Ecological support areas are aslo present (Figure 8-1)

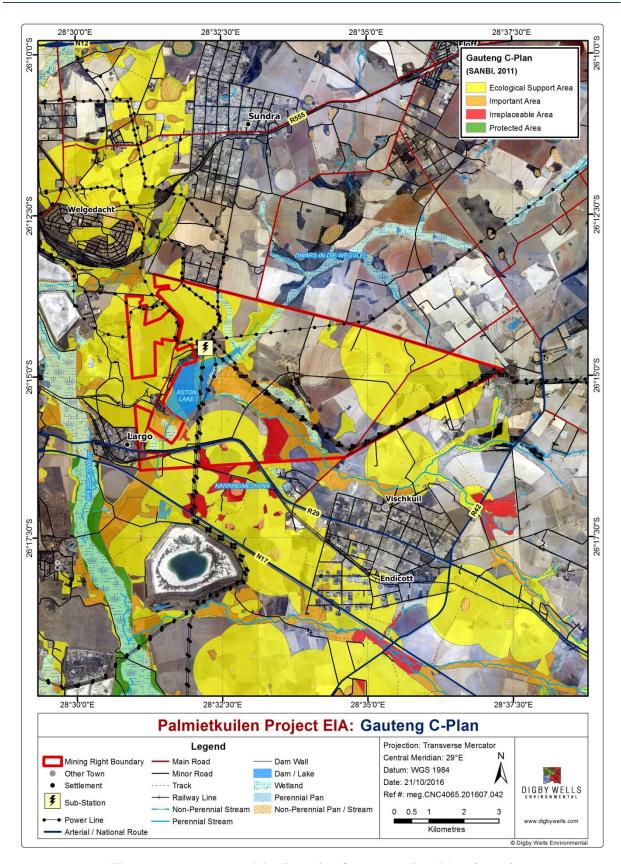


Figure 8-1: Gauteng Biodiversity Conservation Plan (2014)

CNC4065

8.2 Protected Areas

Officially protected areas, either provincially or nationally, that occur within proximity to the project site could have consequences as far as impact on these areas are concerned. For the project area, the Marievale Nature Reserve is less than 1 km west of the project boundary, this coincides with the Blesbokspruit Ramsar site. The protected areas within proximity to the project site are represented in Figure 8-2.

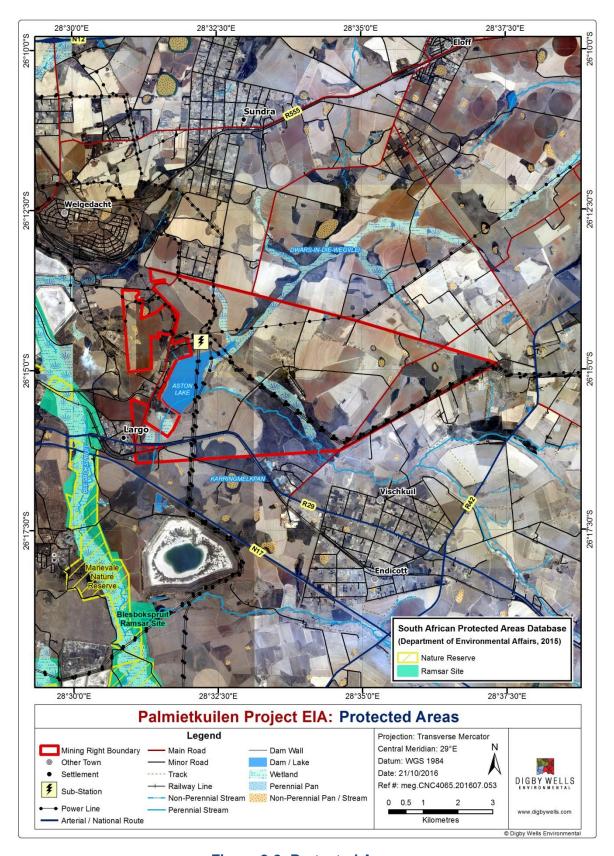


Figure 8-2: Protected Areas

CNC4065

8.3 Important Bird Areas (IBA) (Birdlife SA, 2013)

An IBA is an area recognised as being globally important habitat for the conservation of bird populations. Currently there are about 10,000 IBAs worldwide. At present, South Africa has 124 IBA's, covering over 14 million hectares of habitat for our threatened, endemic and congregatory birds. Yet only a million hectares of the total land surface covered by our IBA's is legally protected. The BirdLife SA IBA programme continues a programme of stewardship which will ultimately achieve formal protection (Birdlife, 2013).

These areas are identified by BirdLife International. These sites are small enough to be entirely conserved and differ in their character, habitat or ornithological importance from the surrounding habitat. Often IBAs form part of a country's existing protected area network, and so are protected under national legislation. There is no formal National IBA Conservation Strategy for this area within South Africa (Birdlife, 2013).

The proposed project area coincides with the Blesbokspruit IBA, (Figure 8-3). Located 15 km southeast of Springs, at an altitude of 1 585 m a.s.l., Blesbokspruit is a modified high-altitude wetland. The IBA includes the entire system, from the Springs Bird Sanctuary in the north to Marievale Bird Sanctuary in the south. Blesbokspruit is one of the Vaal River's larger tributaries and its catchment covers 1 000 km². The vlei holds much open water, often shallow, with extensive fringing vegetation and some relatively small patches of emergent vegetation.

The dominant marginal vegetation includes *Phragmites australis*, *Typha capensis*, *Juncus spp.* and *Cyperus spp.* Water levels in the spruit are artificially maintained by the input of mining, industrial and municipal effluents that are contained by embankments. The input of additional organic matter produces highly eutrophic conditions favoured by marginal vegetation, such as vast reedbeds, which provide a variety of reed and edge habitats (Birdlife, 2013).

At least 286 species, 78 of which are waterbirds, have been recorded in the reserve. Blesbokspruit, which in the past regularly supported more than 20 000 waterbirds, was designated a Ramsar wetland of international importance for waterfowl in 1986. The vlei used to support large numbers of Great Crested Grebe (*Podiceps cristatus*), Yellow-billed Duck (*Anas undulate*) and Spur-winged Goose (*Plectropterus gambensis*) in the dry season when high water levels were artificially maintained at Blesbokspruit, and neighbouring wetlands dried up. Numbers of waterfowl at Blesbokspruit have decreased dramatically in the last 10 years, and no species has had numbers exceeding the 1% of the biogeographical population estimate for over a decade (Birdlife, 2013).

The highly productive water used to provide food for large numbers of Lesser Flamingo (*Phoeniconaias minor*) and Greater Flamingo (*Phoenicopterus ruber*) however, these have disappeared in recent years. The system still supports locally important numbers of Goliath Heron (*Ardea goliath*), Purple Heron (*Ardea purpurea*), African Spoonbill (*Platalea alba*), Glossy Ibis (*Plegadis falcinellus*), Pied Avocet (*Recurvirostra avosetta*), Red-knobbed Coot (*Fulica cristata*) and White-winged Tern (*Chlidonias leucopterus*). The African Marsh Harrier

Flora and Fauna Impact Assessment Report

Proposed Development of Palmietkuilen Open Pit Coal Mine and Associated Infrastructure, near Springs, Gauteng Province

CNC4065

(*Circus ranivorus*), which has been displaced from much of the surrounding veld by intense industrialisation, urbanisation and habitat modification, used to have a strong population here; this too has dwindled over the last 5 years, and now it is only an occasional visitor (Birdlife, 2013).

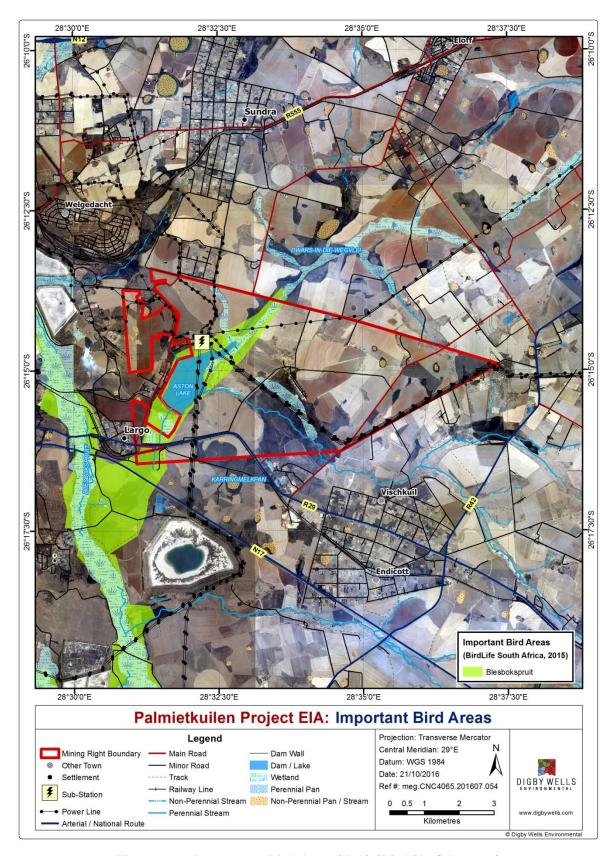


Figure 8-3: Important Bird Area (IBA) (Birdlife SA, 2013)

8.4 Nationally Threatened Ecosystems

The list of nationally threatened ecosystems has been gazetted by the NEM:BA, 2004) (Act No. 10 of 2004): National list of ecosystems that are threatened and in need of protection and results in several implications in terms of development within these areas. Four basic principles were established for the identification of threatened ecosystems.

Areas were delineated based on as fine a scale as possible and are defined by one of several assessments:

- The vegetation of South Africa, Lesotho and Swaziland (Mucina and Rutherford 2006);
- National forest types recognised by the Department of Water Affairs and Forestry (DWAF), now Department of Water and Sanitation (DWS);
- Priority areas identified in a provincial systematic biodiversity plan; and
- High irreplaceability forest patches or clusters identified by DWAF (DWS).

The criteria for identifying threatened terrestrial ecosystems include six criteria overall, two of which are dormant due to lack of data (criteria B and E). The criteria are presented in Table 8-1 below and Figure 8-4 shows that the Blesbospruit highvled grassland (referred to in section 6) is listed as a threatened ecosystem. Cumulative loss of these areas must be avoided.

Table 8-1: Criteria for the Listing of National Threatened Ecosystems

Criterion	Details
A1	Irreversible loss of natural habitat
A2	Ecosystem degradation and loss of integrity
В	Rate of loss of natural habitat
С	Limited extent and imminent threat
D1	Threatened plant species associations
D2	Threatened animal species associations
E	Fragmentation
F	Priority areas for meeting explicit biodiversity targets as defined in a systematic biodiversity plan

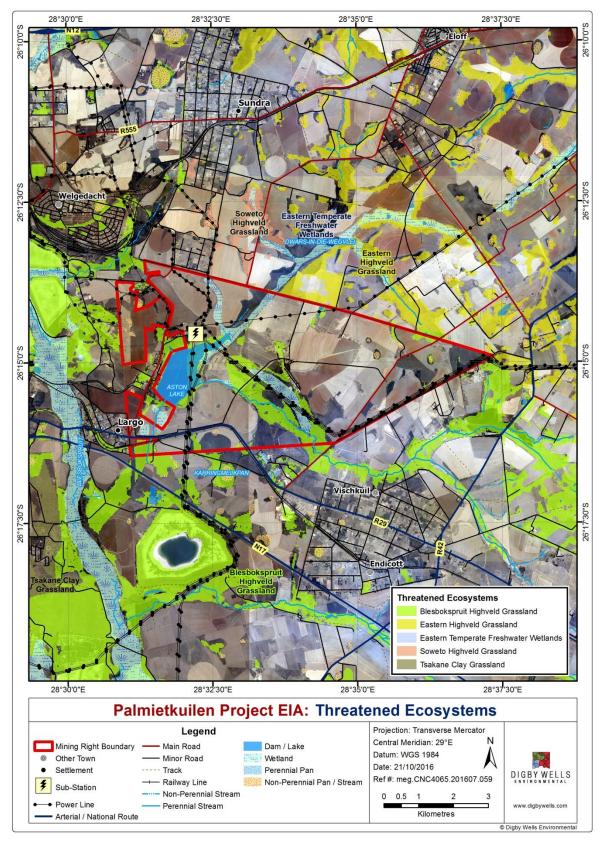


Figure 8-4: Nationally Threatened Ecosystems (SANBI)

CNC4065

8.5 Nationally Protected Areas Expansion Strategy

The National Protected Areas Expansion Strategy (NPAES) shows areas designated for future incorporation into existing protected areas (both national and informal protected areas). These areas are large, mostly intact areas required to meet biodiversity targets, and suitable for protection. They may not necessarily be proclaimed as protected areas in the future and are a broad scale planning tool allowing for better development and conservation planning. There are no areas earmarked for conservation within 50 km of the proposed development (Figure 8-5). The closest area is approximately 70 km away, the NW/Gauteng Bushveld.

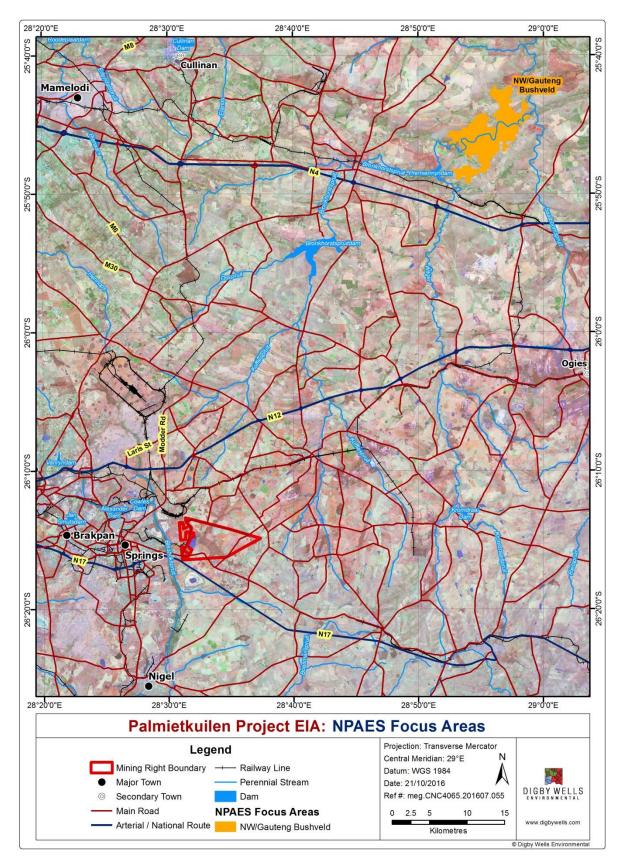


Figure 8-5: National Protected Areas Expansion Strategy

CNC4065

8.6 Site-specific Sensitivity

The ecological sensitivity map for the site is represented in Figure 8-6. The Wetland/Riparian and pan vegetation units were allocated a high sensitivity since wetlands are regarded as important habitats that should be conserved due to the presence of plant SSC and habitat diversity. Further to this *Eragrostis* – dominated Grassland was assigned moderate ecological sensitivity due to the potential presence of plant SSC and current high species diversity and ecosystems function.

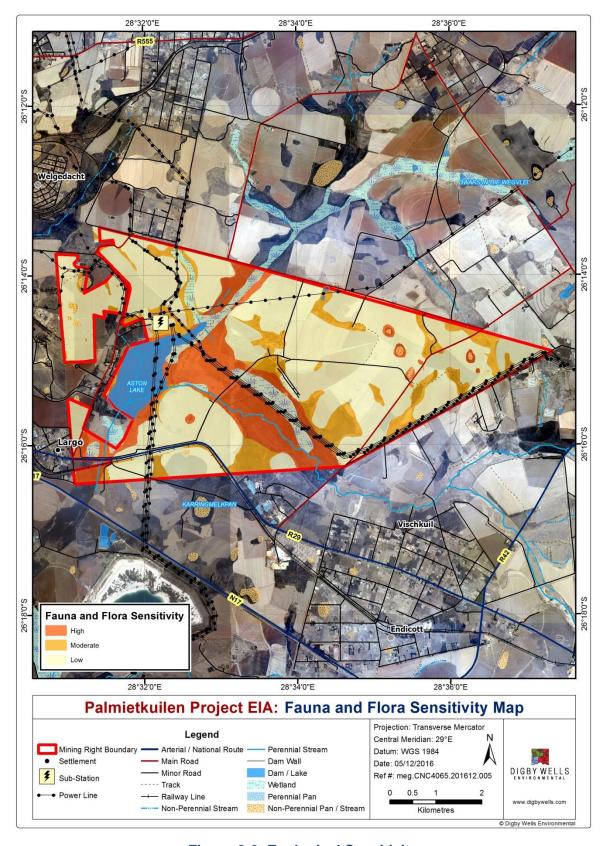


Figure 8-6: Ecological Sensitivity

9 Impact Assessment

9.1 Methodology

Details of the impact assessment methodology used to determine the significance of physical, bio-physical and socio-economic impacts are provided below.

The significance rating process follows the established impact/risk assessment formula:

Where

Consequence = Intensity + Extent + Duration

And

Probability = Likelihood of an impact occurring

And

Nature = Positive (+1) or negative (-1) impact

Note: In the formula for calculating consequence, the type of impact is multiplied by +1 for positive impacts and -1 for negative impacts.

The matrix calculates the rating out of 147, whereby Intensity, Extent, Duration and Probability are each rated out of seven as indicated in Table 9-3. The weight assigned to the various parameters is then multiplied by +1 for positive and -1 for negative impacts.

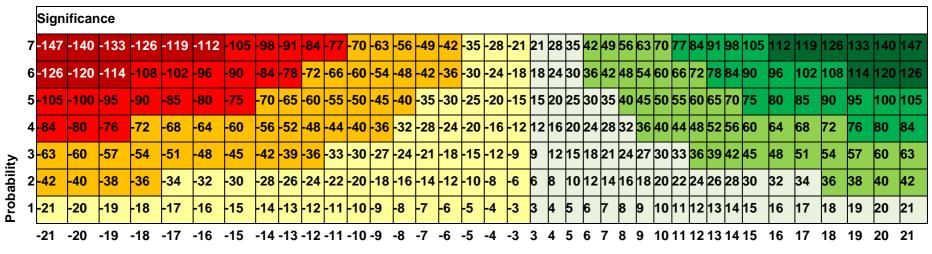
Impacts are rated prior to mitigation and again after consideration of the mitigation measure proposed in this report. The significance of an impact is then determined and categorised into one of eight categories, as indicated in Table 9-2, which is extracted from Table 9-1. The description of the significance ratings is discussed in Table 9-3.

It is important to note that the pre-mitigation rating takes into consideration the activity as proposed, i.e. there may already be certain types of mitigation measures included in the design (for example due to legal requirements). If the potential impact is still considered too high, additional mitigation measures are proposed.

Table 9-1: Impact Assessment Parameter Ratings

	Intensity/Re	placability			Probability
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	
7	Irreplaceable loss or damage to biological or physical resources or highly sensitive environments. Irreplaceable damage to highly sensitive cultural/social resources.	Noticeable, on-going natural and/or social benefits which have improved the overall conditions of the baseline.	International The effect will occur across international borders.	Permanent: The impact is irreversible, even with management, and will remain after the life of the project.	Definite: There are sound scientific reasons to expect that the impact will definitely occur. >80% probability.
6	Irreplaceable loss or damage to biological or physical resources or moderate to highly sensitive environments. Irreplaceable damage to cultural/social resources of moderate to highly sensitivity.	Great improvement to the overall conditions of a large percentage of the baseline.	<u>National</u> Will affect the entire country.	Beyond project life: The impact will remain for some time after the life of the project and is potentially irreversible even with management.	Almost certain/Highly probable: It is most likely that the impact will occur. <80% probability.

	Intensity/Re	placability				
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability	
5	Serious loss and/or damage to physical or biological resources or highly sensitive environments, limiting ecosystem function. Very serious widespread social impacts. Irreparable damage to highly valued items.	On-going and widespread benefits to local communities and natural features of the landscape.	Province/ Region Will affect the entire province or region.	Project Life (>15 years): The impact will cease after the operational life span of the project and can be reversed with sufficient management.	Likely: The impact may occur. <65% probability.	
4	Serious loss and/or damage to physical or biological resources or moderately sensitive environments, limiting ecosystem function. On-going serious social issues. Significant damage to structures/items of cultural significance.	Average to intense natural and/or social benefits to some elements of the baseline.	Municipal Area Will affect the whole municipal area.	Long term: 6-15 years and impact can be reversed with management.	Probable: Has occurred here or elsewhere and could therefore occur. <50% probability.	


	Intensity/Re	placability				
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability	
3	Moderate loss and/or damage to biological or physical resources of low to moderately sensitive environments and, limiting ecosystem function. On-going social issues. Damage to items of cultural significance.	Average, on-going positive benefits, not widespread but felt by some elements of the baseline.	Local Local extending only as far as the development site area.	Medium term: 1-5 years and impact can be reversed with minimal management.	Unlikely: Has not happened yet but could happen once in the lifetime of the project, therefore there is a possibility that the impact will occur. <25% probability.	
2	Minor loss and/or effects to biological or physical resources or low sensitive environments, not affecting ecosystem functioning. Minor medium-term social impacts on local population. Mostly repairable. Cultural functions and processes not affected.	· •		Short term: Less than 1 year and is reversible.	Rare/improbable: Conceivable, but only in extreme circumstances. The possibility of the impact materialising is very low as a result of design, historic experience or implementation of adequate mitigation measures. <10% probability.	

	Intensity/Re	placability			
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability
1	Minimal to no loss and/or effect to biological or physical resources, not affecting ecosystem functioning. Minimal social impacts, low-level repairable damage to commonplace structures.	Some low-level natural and / or social benefits felt by a very small percentage of the baseline.	Very limited/Isolated Limited to specific isolated parts of the site.	Immediate: Less than 1 month and is completely reversible without management.	Highly unlikely/None: Expected never to happen. <1% probability.

Table 9-2: Probability/Consequence Matrix

Consequence

Table 9-3: Significance Rating Description

Score	Description	Rating
109 to 147	A very beneficial impact that may be sufficient by itself to justify implementation of the project. The impact may result in permanent positive change.	Major (positive) (+)
73 to 108	A beneficial impact which may help to justify the implementation of the project. These impacts would be considered by society as constituting a major and usually a long-term positive change to the (natural and/or social) environment.	Moderate (positive) (+)
36 to 72	A positive impact. These impacts will usually result in positive medium to long-term effect on the natural and/or social environment.	Minor (positive) (+)
3 to 35	A small positive impact. The impact will result in medium to short term effects on the natural and/or social environment.	Negligible (positive) (+)
-3 to -35	An acceptable negative impact for which mitigation is desirable. The impact by itself is insufficient even in combination with other low impacts to prevent the development being approved. These impacts will result in negative medium to short term effects on the natural and/or social environment.	Negligible (negative) (-)
-36 to -72	A minor negative impact requires mitigation. The impact is insufficient by itself to prevent the implementation of the project but which in conjunction with other impacts may prevent its implementation. These impacts will usually result in negative medium to long-term effect on the natural and/or social environment.	Minor (negative) (-)
-73 to -108	A moderate negative impact may prevent the implementation of the project. These impacts would be considered as constituting a major and usually a long-term change to the (natural and/or social) environment and result in severe changes.	Moderate (negative) (-)
-109 to -147	A major negative impact may be sufficient by itself to prevent implementation of the project. The impact may result in permanent change. Very often these impacts are immitigable and usually result in very severe effects. The impacts are likely to be irreversible and/or irreplaceable.	Major (negative) (-)

9.2 Project Activities

The following activities are envisioned for each of the project phases:

Construction:

- Site establishment;
- Site clearing, including the removal of topsoil and vegetation;
- Construction of mine related infrastructure, including haul roads, pipes, dams;
- Construction of washing plant;
- Relocation of Infrastructure;
- Blasting and development of initial box-cut for mining, including stockpiling from initial box-cuts; and
- Temporary storage of hazardous products, including fuel and explosives, as well as waste and sewage.

Operational:

- Stripping topsoil and soft overburden;
- Removal of overburden, including drilling and blasting of hard overburden;
- Loading, hauling and stockpiling of overburden;
- Drilling and blasting of coal;
- Load, haul and stockpiling of RoM coal;
- Use and maintenance of haul roads for the transportation of coal to the washing plant;
- Water use and storage on-site; and
- Storage, handling and treatment of hazardous products (including fuel, explosives and oil) and waste.

Decommissioning and closure:

- Demolition and removal of all infrastructure, including transporting materials off site;
- Rehabilitation, including spreading of soil, re-vegetation and profiling or contouring;
- Environmental monitoring of decommissioning activities;
- Storage, handling and treatment of hazardous products (including fuel, explosives and oil) and waste; and
- Post-closure monitoring and rehabilitation

9.3 Impact Assessment

9.3.1 Construction Phase

9.3.1.1 Project Activities, Site Clearing

During the construction phase (construction of surface infrastructure), cultivated areas (851 ha), *Eragrostis* – dominated Grassland (280 ha), Riparian areas (Pan-26 ha and Wetlands 26 ha, with a portion of this being *Irriplaceble* according to the Gaunteng C-Plan) will be cleared (refer to Table 9-4). The impact of loss of cultivated fields and alien bushclumps is neutral but the loss of the *Eragrostis* – dominated Grassland and Riparian areas (assigned a high sensitivity) will have negative impacts on biodiversity. It is not anticipated that any plant SSC will be lost. Should any plant SSC be recorded within the infrastructure development footprint area, it should be reported to the relevant authoristies and a relocation strategy must be compiled. Once all permits are in place, such species must be relocated.

Table 9-4: Loss of Habitat from Surface Infrastructure

Vegetation/Habitat Type	Areas Disturbed (ha)
Eragrostis Grassland	280
Wetland (Irriplaceble)	26
Pan	26
Cultivated	851
	332 ha (excluding Cultivated)

Table 9-5: Interactions and Impacts

Interaction	Impact	
Site elegring	Loss of <i>Eragrostis</i> -dominated Grassland and Riparian Areas	
Site clearing	Habitat fragmentation and edge effects	

9.3.1.2 Impact Description

For site clearing, one of the habitats that have been rated as high or very high will be impacted on, the Wetlands unit. The *Eragrostis* – dominated Grassland, represents a ubiquitous habitat that shows moderate ecological sensitivity and as a result, the intensity of the impact was rated as moderate. Further to this, the extent of the impact is limited to a small area and will not have considerable negative impacts on overarching biodiversity of the site.

Proposed Development of Palmietkuilen Open Pit Coal Mine and Associated Infrastructure, near Springs, Gauteng Province

CNC4065

Ecosystem function is the measure of the combined functioning of the vegetation and associated species, faunal habitats and wetlands, all of which result in the ecosystem health. Clearing for the infrastructure will affect the ecosystem functioning in two main ways. The first is the fragmentation of the ecosystem, which will occur with land surface changes. Fragmentation occurs in conjunction with edge-effects, which change the composition of the ecosystem on the edge of structures such as buildings and roads. The consequence of this is a loss of cohesiveness between larger fragments of habitat which limits the exchange of genes and resources across them. An additional contributor to loss of ecosystem function is the introduction of alien and invasive species. Disturbance to the soil after vegetation clearing results in the establishment of alien species, that may form dense monospecific stands.

9.3.1.3 Management Objectives

The objective of management measures is to ensure that the impact to habitat is restricted only to the footprint area and that alien plant invasion does not take place as a result of development.

9.3.1.4 Management Actions and Targets

In addition, the following mitigation and management measures have been prescribed:

- The footprint area should be kept as small as possible;
- Existing access roads should be used to reach the site for clearing and vehicles should not be allowed to traverse natural areas or leave the demarcated road;
- An Alien Invader Plant species (AIPs) management plan should be implemented, whereby the disturbed site is monitored quarterly for at least two years to ensure that alien invasion does not take place.

9.3.1.5 Impact Ratings

The impacts of the contruction phase are rated in the table below.

Table 9-6: Potential Impacts of the Construction Phase – Loss of Habitat/Vegetation

Types, Grassland

Dimension	Rating	Motivation	Significance	
Site Clearing				
Impact Descript	ion: Loss of Eragro	stis – dominated Grassland		
	Pi	rior to Mitigation/Management		
Duration	Permanent (7)	Native vegetation/ fauna habitat will be removed (52ha) for surface infrastructure and the impact will be permanent. Fauna species will move away with no permanent impact on them. Occasional and accidental moralities may occur.		
Extent	Very limited (2)	The area to be cleared is minor in comparison to the extent of the vegetation unit, as well as the extent of the total study area. No faunal SSC was encountered in the area of disturbance; therefore no direct impact is expected.	Moderate (negative) 84	
Intensity x type of impact	Moderate (-3)	Since the vegetation unit has been assigned moderate ecological sensitivityand as CBA areas are avoided, the impact is not regarded as particularly significant for terrestrial biodiversity.		
Probability	Certain (7)	Clearing of vegetation will definitely take place for the establishment of infrastructure.		
Nature	Negative	The impact will be negative.		

Dimension	Rating	Motivation	Significance	
	Mitigation/Management Actions			
 Rehabilitation of the disturbed area should take place after construction, whereby a mixture of native grass species harvested from climax <i>Themeda</i> grassland and native grass species (such as <i>Cynodon dactylon</i>) are planted immediately to prevent erosion; and The footprint area should be limited as far as possible. 				
	Post-Mitigation			
Duration	Project Life (5)	The area can be reinstated to the former landuse, such as grazing after decommissioning.		
Extent	Very limited (1)	The area to be cleared is minor in extent.		
Intensity x type of impact	Minimal (1)	Loss of cultivated areas has a neglible impact on flora and fauna.	Minor (negative) 49	
Probability	Likely (7)	It is unlikely that compaction will have an effect after rehabilitation, should the area be compacted, the area can be ripped.		
Nature	negative	The impact will be negative.		

Table 9-7: Potential Impacts of the Construction Phase – Loss of Habitat/Vegetation Types, Riparian

Dimension	Rating	Motivation	Significance		
	Site Clearing				
Impact Descript	t ion: Loss of Riparia	an areas, Wetlands and Pans			
	Pi	rior to Mitigation/Management			
Duration	Permanent (7)	Native vegetation/ fauna habitat will be removed for surface infrastructure and the impact will be permanent. Fauna species will move away with no permanent impact on them. Occasional and accidental moralities may occur.	Moderate		
Extent	Very limited (2)	The area to be cleared is minor in comparison to the extent of the vegetation unit, as well as the extent of the total study area. No faunal SSC was encountered in the area of disturbance; therefore no direct impact is expected.	(negative) 98		

Dimension	Rating	Motivation	Significance
Intensity x type of impact	Moderate (-5)	Since the vegetation unit has been assigned moderate ecological sensitivity, and C-PlaniIrriplaceble category, and is earmarked for destruction, the impact is regarded as particularly significant for riparian, wetlands and pans biodiversity.	
Probability	Certain (7)	Clearing of vegetation in wetlands will definitely take place for the establishment of infrastructure.	
Nature	Negative	The impact will be negative.	

Mitigation/Management Actions

- Rehabilitation of the disturbed area should take place after construction, whereby a mixture of native grass species harvested from wetland areas are planted immediately to prevent erosion; and
- The footprint area should be limited as far as possible.

Post-Mitigation				
Duration	Project Life (5)	The area can be reinstated to the former landuse after decommissioning as far as possible, or a more suited land use.		
Extent	Very limited (1)	The area to be cleared is minor in extent.		
Intensity x type of impact	Minimal (1)	Loss of Riparian, wetlands and pans areas has a neglible impact on flora and fauna.	Minor (negative) 49	
Probability	Likely (7)	It is unlikely that compaction will have an effect after rehabilitation, should the area be compacted, the area can be ripped		
Nature	negative	The impact will be negative.		

Table 9-8: Potential Impacts of the Construction Phase – Habitat Fragmentation and Alien Invasion

Dimension	Rating	Motivation	Significance	
Site Clearing				
Impact Description: Habitat fragementation and edge effects resulting in alien plant invasion				
Prior to Mitigation/Management				

Dimension	Rating	Motivation	Significance	
Duration	Medium-term (3)	Habitat fragmentation and alien plant invasion will take place for a period of 2 – 5 years.		
Extent	Limited (2)	Alien plants will establish around disturbed areas associated with the construction phase.		
Intensity x type of impact	Serious (4)	Alien plant invasion is a serious problem with significant ecological consequences; hence its reference in the NEMBA and CARA legislation.	Minor (negative) 54	
Probability	Highly probable (6)	Since alien plants have already been recorded on site, the spread of these species due to disturbance will invariably take place. The seedbank in the soil will contain alien species.		
Nature	negative	The impact will be negative		
	Mitigation/Management Actions			
 An alien 	plant species mana	gement plan should be compiled and implem	ented.	
		Post-Mitigation		
Duration	Medium-term (3)	As seedlings emerge, they will be removed bi-annually as part of an alien management plan.		
Extent	Limited (2)	Alien plants will establish around disturbed areas associated with the construction phase.		
Intensity x type of impact	Minimal (1)	Alien plant invasion is serious for terrestrial biodiversity; however, if these species are controlled timeously, the impact will be reduced.	Minor (negative) 42	
Probability	Likely (7)	Since alien plants have already been recorded on site, the spread of these species due to disturbance will invariably take place. The seedbank in the soil will contain alien species.		
Nature	Negative	The impact will be negative		

9.3.2 Operational Phase

9.3.2.1 Project Activities Assessed

During the operational phase of the development, topsoils and overburden will be stripped and topsoils stockpiled. Progressive Open Cast Minig will cause planned loss of habitat and flora and fauna species, this is however discussed in the construction section. Furthermore the activity of increased vehicular movement and associated human activites on the site will occur. The following impacts on fauna are expected per activity.

- Vegetation clearing in opencast mining area as pit expand;
- Blating and vibration;
- Waste Rock Berms noise during operational phase/expansion;
- Product Stockpile noise and vehicle movement;
- Overland Conveyor Belt noise impacts on animals / coal dust on vegetation/spills;
- Haul and Access Roads, faunal road deaths, dust and noise; and
- Crushing and Screening Plant noise/dust on neighbouring vegetation and fauna.

9.3.2.2 Impact Description

Due to increased vehicular movement on site, fauna may be disturbed due to noise and dust. Further to this, roadkill of smaller fauna and birds may take place.

9.3.2.3 Management Objectives

The objective of management measures is to ensure that roadkills do not take place and faunal disturbance is kept to a minimum.

9.3.2.4 <u>Management Actions and Targets</u>

Signage should be erected to indicate a minimum speed limit of 30 km/hr on access raods on site. Signage should also warn drivers of the risk of animal kills on the road. Further to this, driving of vehicles should be restricted to daylight hours.

9.3.2.5 Impact Ratings

The impacts of the operational phase are rated in the table below.

Table 9-9: Potential Risks of the Operational Phase – Increased Vehicular Movement on Site

Dimension	Rating	Motivation	Significance	
Increased vehicular movement and noise on site				
Impact Description: Disturbance to fauna on site (noise, roadkills)				

Dimension	Rating	Significance				
Prior to Mitigation/Management						
Duration	Project life (5)	The impact will last for the project life.				
Extent	Very limited (2)	The extent is limited since surface infrastructure is minimal.				
Intensity x type of impact	Moderate (3)	No Red Data fauna species are expected to be at risk and the impact will not be frequent.	Minor (negative) 40			
Probability	Probable (4)	This is a commonly observed impact but it is not definite.				
Nature	negative	The impact will be negative.				

Mitigation/Management Actions

- Erect signage on site;
- Adhere to speed limits;
- Make use of internal fencing; and
- Avoid vehicle movement at night.

		•				
Post-Mitigation						
Duration	Project Life (5)	The impact will last for the project life.				
Extent	Very limited (1)	The extent is limited since surface infrastructure is minimal.				
Intensity x type of impact	Minimal (1)	No Red Data fauna species are expected to be at risk and the impact will not be frequent.	Negligible(negative) 14			
Probability	Rare (2)	Roadkills will be minimal if the speed limit is adhered to and activity is restricted to daylight hours.				
Nature	negative	The impact will be negative.				

9.3.3 Closure and Rehabilitation Phase

9.3.3.1 Project Activities Assessed

Decommissioning will take place after minig has seased production. The dismantling of surface infrastructure will involve increased activity on site and minor disturbance of the faunand flora. This may promote the establishment of alien plant species if seeds persist in the seedbank. The impact of this will be minor. Rehabilitation of all open and disturbed areas must take place. This will be a positive impact.

9.3.3.2 Impact Description

When the soil is disturbed, alien plants in the seedbank will establish and spread. Rehabilitation must take by using local indigenous grass species that are sown in the correct depth and method, and type of topsoil, which is layered on the correct slope.

9.3.3.3 Management Objectives

The objective for this phase will be to maximise the success of the rehabilitation that will take place after infrastructure is removed, and to furthermore reduce any impacts that may occur during this phase. In addition the objective of the management actions will be to ensure that alien plant species do not establish and erode the natural capital of the area.

9.3.3.4 Management Actions and Targets

Decommissioning of infrastructure in the proposed Palmietkuilen Coal Mine MRA will be predominantly a rehabilitation activity of footprint areas including surface infrastructure and the open pit. In order for this to be a positive impact the removal of the infrastructure must be completed so as to not harm or negatively impact surrounding vegetation. Furthermore the rehabilitation must be conducted in such a manner to achieve rehabilitation objectives for the process. These objectives will be to ensure the footprint areas are re-vegetated and that erosion through runoff and wind does not occur. Efforts will be maximised if rehabilitation is completed in the before the first rains fall so as to make use of the rainfall to assist in plant recruitmentAn alien plant management plan should be implemented.

9.3.3.5 Impact Ratings

The impact ratings for the decommissioning phase are listed in the table below. Recommendations for the rehabilitation phase are included in the Rehabilitation Plan Report (Digby Wells, 2016a).

Table 9-10: Potential Impacts of the Decommissioning Phase – Establishment of Alien Plant Species

Dimension	Rating Motivation		Significance				
	Dismantling and removal of infrastructure						
Impact Descript	ion: Alien plant inva	asion may take place					
	Prior to Mitigation/Management						
Duration	Medium-term (3)	Alien plant invasion may occur for a short period of time.					
Extent	Limited (2)	Alien plants will establish around disturbed areas associated with the decommissioning phase.	Minor (negative) 36				

Dimension	Rating	Motivation	Significance
Intensity x type of impact	Serious (4)	Alien plant invasion is a serious problem with significant ecological consequences; hence its reference in the NEMBA and CARA legislation.	
Probability	Probable (4)	Since alien plants have already been recorded on site, the spread of these species due to disturbance will invariably take place. The seedbank in the soil will contain alien species.	
Nature	negative	The impact will be negative	
	Mi	tigation/Management Actions	
An alien	plant species mana	gement plan should be implemented for two	years.
		Post-Mitigation	
Duration	Medium-term (3)	As seedlings emerge, they will be removed quarterly as part of an alien management plan.	
Extent	Limited (2)	Alien plants will establish around disturbed areas associated with decommissioned infrastructure.	
Intensity x type of impact	Minimal (1)	The impact is significantly reduced if controls are implemented.	Negligible (negative) 24
Probability	Probable (4)	Since alien plants have already been recorded on site, the spread of these species due to disturbance will invariably take place. The seedbank in the soil will contain alien species.	
Nature	Negative	The impact will be negative	

Table 9-11: Potential Impacts of the Decommissioning Phase Rehabilitation of infrastructure footprint areas

Activity and Interaction: Rehabilitation of infrastructure footprint areas						
Dimension	sion Rating Motivation Significance					
Impact Description: Restoration of vegetation and habitat types.						

	Γ		
Duration	Short term (2)	If rehabilitation is not completed effectively it will have to be re-done.	
Extent	Limited (2)	Only certain parts of the site will have revegetated cover, this will include all open areas left behind by infrastructure removal, this will include the open pit.	
Intensity	Moderate (3)	The effectiveness of the rehabilitation will determine the intensity.	"Small Positive"
Probability	Unlikely (3)	It's unlikely that the rehabilitation will be as effective as pre-mining vegtations cover	
Nature	Positive	The impact will be positive.	
Impact Descript	ion: Rehabilitation of infi	rastructure footprint areas	
Duration	Permanent (7)	If rehabilitation is completed successfully this impact will be permanent	
Extent	Local (3)	The general area beyond the project site will be positively impacted on.	84
Intensity	Positive (4)	Vegetation will be restored.	"Moderate positive"
Probability	Almost certain (6)	With correct implementation this impact has a high probability of occurring	
Nature	Positive	The impact will be positive.	

10 Cumulative Impacts

The cumulative impacts that are considered from a perspective of terrestrial biodiversity include the following:

Loss of habitat on a national scale – the threatened ecosystems programme (described in section 8.4) outlines the most significant habitats that are important for conserving on a national scale. Minimal loss of the Eastern Highveld Grassland (correlating to the *Eragrostis*-dominated grassland in this report) is expected and the impact of this is regarded as minor.

- Loss of diversity on a regional scale the *Eragrostis* Grassland is a broad habitat that encompasses many smaller plant communities. Due to the loss of 280 ha of this unit, the regional impact will be minor.
- Loss of diversity on a regional scale the Riparian vegetation type is a broad habitat that encompasses wetlands and pans plant and habitat communities. Due to the loss of 52 ha of this unit, the regional impact will be minor.

11 Unplanned Events and Low Risks

A summary of exologically significant risks are listed in the table below.

Table 11-1: Unplanned Events, Low Risks and their Management Measures

Unplanned event	Potential impact	Mitigation/ Management/ Monitoring		
Hydrocarbon spillage in/near wetlands	Contamination of waterbodies utilised by terrestrial fauna.	Vehicles must only be serviced within designated service bays. Procedures should be put in place to clean-up spillages in the event that they should occur. Spill kits need to be obtained and should be available on site to clean up any leaks or spills. Spillages of magnitude should also be reported to the authorities within 24 hours and an internal incident reporting system implemented. Construction will take place in the dry-season.		
Poaching of animal species on site due to increase activity on site.	Small mammals and reptiles may be at risk due to increased human activity on site.	Ensure continuous environmental awareness training takes place. This needs to be monitored and reported on and the appropriate actions should take place dependant on the results.		

12 Environmental Management Plan

The Environmental Management Plan (EMP) has been described according to the project activities in order to provide an understanding of what objectives and recommended management measures are required to minimise the environmental impacts arising from these activities.

12.1 Project Activities with Potentially Significant Impacts

In summary, the impacts of the development on flora and fauna are primarily related to vegetation clearing, in addition to minor disturbance of fauna, as listed in Table 12-1.

Table 12-1: Potentially Significant Project Impacts

Activities	Potentially Significant Project Impacts	
	Loss of Eragrostis Grassland	
Clearing of vegetation	Habitat fragmentation and edge effects (alien plant invasion)	
	Loss of Riparian habitat and vegetatiom type	
Increased vehicular movement on site	Faunal disturbance and potential roadkills	

12.2 Summary of Mitigation and Management

Table 12-2 provides a description of the mitigation and management options for the environmental impacts anticipated during the construction, operations and closure and rehabilitations phases on the fauna and flora.

Table 12-2: Mitigation and Management Plan

Activities	Potential Impact	Size and scale of disturbance	Aspects Affected	Phase	Mitigation Type/Measures	Compliance with standards/Standard to be achieved	Time period for Implementation
Clearing of vegetation	Loss of <i>Eragrostis</i> Grassland (280ha) Loss of Riparian Vegetation/habitat type (51ha)	Moderate (negative) 84/99	Habitat loss for flora and fauna; Loss of species diversity; and Potential loss of Red Data plant species	Construction phase	Relocation of infrastructure; Rehabilitation with native grass species; and Relocation of Red Data species, should any species be recorded in developing footprint area during vegetation clearing.	National Environmental Management Act (NEMA),1998 (Act 107 of 1998); and National Environmental Biodiversity Act (NEMBA),2004 (Act10 of 2004).	Rehabilitation should take place after decommissioning as outlined in the Rehabiliation Plan Report; and Relocation of Red Data flora species prior to vegetation clearing – screening of areas prior to vegetation clearance
Clearing of vegetation	Habitat fragmentation and increased establishment of alien plant species.	Minor (negative) 54/36	Flora – alien plant invasion	Construction, operation and decommissioning phases	Alien management plan.	National Environmental Management Act (NEMA),1998 (Act 107 of 1998); and National Environmental Biodiversity Act (NEMBA),2004 (Act10 of 2004).	Alien management plan to be implemented after construction quarterly for 2 years and after decommsioning quarterly for two years., Monitorinf frequency during operation phase must be seasonal.
Increased vehicular activities	Roadkills and disturbance of fauna	Minor (negative) 54/40	Potential loss of fauna diversity	Construction, operation and decommissioning phases	Erection of signage; Implementing speed limit on site; and Restricting driving at night	National Environmental Management Act (NEMA),1998 (Act 107 of 1998); and National Environmental Biodiversity Act (NEMBA),2004 (Act10 of 2004)	Signage should be erected before the operational phase.

12.3 Monitoring Plan

The only aspect requiring monitoring, based on the flora and fauna assessment, is the establishment of alien plant species as described below. This should be completed by a qualified botanical specialist.

Table 12-3: Monitoring Plan

Activities	Impacts requiring monitoring programmes	Functional requirements for monitoring	Roles and responsibilities (For the execution of the monitoring programmes)	Monitoring and reporting frequency and time periods for implementing impact management actions
Fauna and Flora Monitoring	Impacts on vegetation stucure and health; and Impacts on faunal populations and numbers; Red Data Listed fauna and flora species (should it be recorded going forward)	Ensuring susatainable populations of both faunand flora persist till closure	Terrestrial Ecologist	Annually
Rehabilitation	Success of rehabilitation	Rehabilitation success	Rehabilitation Specialist and/or botanist	Quarterly for 2 years after closure
Soil disturbance	Establishment of alien plant species	Alien plant monitoring	Qualified botanist	Seasonal monitoring for two years

13 Consultation Undertaken

No comments directly related to flora and fauna have been received.

14 Comments and Responses

No Comments have been received thus far.

15 Discussion and Conclusions

The study area is located within the threatened ecosystems: Blesbospruit Highvled Grassland. According to the Gauteng C-Plan the wetlands throughout the project area is regarded as Important Areas, with a small patch of Irriplaceble habitat being present in the south according to the Gauteng C-Plan. The results of the field investigations confirm that the irreplaceable areas are intact natural systems and should be conserved, and if disturbed off sets will be required.

The surface infrastructure coincide with irreplaceable and ecological support areas according to the Gauteng C-Plan. The loss of habitat due to the surface infrastructure will be moderate negative within mitigation. The impact of habitat fragmentation will be minor and the impact of disturbance to fauna will be minor, reduced to negligible with mitigation. The overall impact of the proposed development on flora and fauna is expected to be moderate. The following recommendations have been made for this study:

- The site should be screened prior to construction, preferably between the months of November to March, for any plant SSC;
- If any plant SSC are recorded, these should be translocated with the involvement of a qualified botanist. The donor habitat should resemble the receiving habitat and the species/populations should be monitored monthly after translocation for up to one year;
- If any important fauna species (SSC) are identified (as listed in the expected species lists) that have not been included in the site-specific species lists, this should be reported to the Environmental Control Officer on site and the provincial authority (MPTA) for their reference. Further to this, measures should be undertaken to ensure that negative impacts to the species in question are not imposed due to the development; and
- The mine has an opportunity to reduce their overall liability in terms of spread of alien plant species. It is recommended that all alien plant species are controlled throughout the site as far as possible.

The specialist opinion is that the proposed project should go ahead, should all recommendations for mitigation and management be adhered to.

16 References

- Driver, M., Raimondo, D., Maze, K., Pfab, M.F. and Helme, N.A. 2009. Applications of the Red List for conservation practitioners. In: D. Raimondo, L. Von Staden, W. Foden, J.E. Victor, N.A. Helme, R.C. Turner, D.A. Kamundi and P.A. Manyama (eds). *Red List of South African Plants*. Strelitzia 25:41-52. South African National Biodiversity Institute, Pretoria
- Digby Wells, 2016. Wetland Assessment Report: Proposed Development of an Open Cast Coal Mine and Associated Infrastructure, Gauteng Province.
- Birdlife International, 2013. Important Birding Areas, Available Online at www.birdlife.org/action/science/sites/
- Branch, B. 2001. Snakes and Other Reptiles of Southern Africa. Struik Publishers, South Africa.
- Bromilow, C (2010). Problem Plants and Alien Weeds of South Africa. Briza Publications. Pretoria, South Africa.
- Carruthers, V. 2009. Frog and Frogging in Southern Africa. Struik Publishers (Pty) Ltd, Cape Town.
- Duellman, W.E and Trueb, L 1986. Biology of Amphibians. JHU Press. 1986.
- du Preez, L. & Caruthers, V. 2009. A Complete guide to the frogs of South Africa. Struik Nature, South Africa
- Friedman, Y. and Daly, B. 2004 Red Data Book of the Mammals of South Africa: A Conservation Assessment. CBSG Southern Africa, Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust. South Africa.
- Gerlanc, N. M. and Kaufman, G. A. Habitat of Origin and Changes in Water Chemistry Influence Development of Western Chorus Frogs. Journal of Herpetology 39 (2): 254-265 2005.
- International Union for the Conservation of Nature, IUCN.org, 2016.
- Margules C. R. & Pressey R. L. 2000: Systematic Conservation Planning. *Nature* 405, 243-253 (11 May 2000).
- Mucina, L.and Rutherford, M.C. (eds) 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- Passmore N.I., & Carruthers, V.C. 1995. South African Frogs: A complete Guide. Southern Book Publishers, Witwatersrand University Press, South Africa.
- Picker, M., C. Griffiths and Weaving .A. 2002. Field Guide to Insects. Random House Struik (Pty) Ltd
- Pooley, E.S. 1998. A Field Guide to Wildflowers Kwazulu-Natal and the eastern region. Natal Flora Publishers Trust: Durban, South Africa

- Roberts 2009. Roberts' Multimedia Birds of Southern Africa. Southern African Birding, Westville.
- Smithers, R.H.N. 1983. South African Red Data Book Terrestrial Mammals. South African National Scientific Programme Report no 125.
- Skinner J.D. & Chimimba C.T. 2005. The Mammals of the Southern African Subregion (3rd Ed.). Cambridge University Press, Cape Town
- SINCLAIR, I., HOCKEY, P & WARWICK, T. 1993. Sasol Voëlgids van Suider-Afrika. Struik Uitgewers, Kaapstad
- SoER: http://soer.deat.gov.za/dm_documents/TOR_Specialist_Studies_1qWDC.pdf
- South African National Botanical Institute (2013). Grasslands Available Online at http://www.grasslands.org.za/

Woodhall S. 2005. Field Guide to Butterflies of South Africa. Struik Publishers: Cape Town, South Africa.

Appendix A: Staff CV's

Mr. Rudolph Greffrath

Manager: Biodiversity, Senior Terrestrial Ecology specialist

Biophysical Department

Education

- 2005-2006: B-tech Degree in Nature Conservation, Nelson Mandela Metropolitan University (NMMU).
- 2001- 2004: National Diploma in Nature Conservation, Nelson Mandela Metropolitan University (NMMU).

Courses

- African Reptiles and Venom: Venomous Snake Handling, 2014.
- African Reptiles and Venom: Snake identification and Snakebite Treatment, 2014.
- Dr Phil Tanner: Land Rehabilitation Seminar, 2014.
- Executrain: Microsoft Excel, 2012.
- Executrain: Microsoft Word, 2012.
- Measurements of Biodiversity at the University of the Free State, by Prof. M. T. Seaman. September 2008.
- Bird Identification course, by Ettiene Marais November 2009.
- Introduction to VEGRAI and Eco-classification, by Dr. James Mackenzie December 2009.
- Rehabilitation of Mine impacted areas, with Fritz van Oudshoorn, Dr Wayne Truter and Gustav le Roux 2011.

Language Skills

English : Fluent Afrikaans : Fluent

Employment

- 2006 Present: Digby Wells Environmental, Johannesburg, South Africa.
- 2002 2003: Shamwari Game Reserve, Eastern Cape, South Africa.
- 2001: Kop-Kop Geotechnical instrumentation specialists, Johannesburg, South Africa.

Experience

Senior Ecologist

Rudi's current role is that of a terrestrial ecology, specifically fauna and flora specialist, in this capacity he is responsible for planning and conducting fauna and flora surveys/studies that are either completed in support of environmental authorisations or are focused specialist studies which meet local and international standards. In addition to this, Rudi is responsible for compiling Biodiversity Land Management Programs where different specialist studies are collated into a working document for clients in order to aid in pre or post mining

management. He is also involved in rehabilitation studies which entail the planning, implementation and monitoring of vegetative rehabilitation in designated areas on mines. Rudi also fulfils the role of project manager here he manages national and international projects across Africa, specifically west, central and southern Africa, managing a multi-disciplinary team of specialists.

Rudi is also involved in the acquisition of permits for mines, this includes the planning of relocation strategies for protected and endangered plant species in areas where mines are to be established. This involves the planning and execution of data gathering surveys, thereafter he manages the process involving relevant provincial and National authorities in order to obtain the specific permit that allows for a development to continue.

Information pertaining to the technical expertise of Rudi includes the following:

- Environmental Impact Assessments (EIAs), Basic Assessments and Environmental Management Plans (EMPs) for environmental authorisations in terms of the South African National Environmental Management Act (NEMA), 1998 (Act 107 of 1998);
- Environmental pre-feasibility studies for gold tailings reclamation and iron ore mining projects;
- International Finance Corporation (IFC) related projects across Africa, applying performance standards and Equator Principles on the Environmental Health and Safety Guidelines set down by the IFC;
- Environmental and Social Impact Assessments (ESIA) for Environmental Authorisation;
- Biodiversity Assessments including Mammalia, Avifauna, Herpetofauna and Arthropoda;
- Impact assessments based on the terrestrial environment;
- Biodiversity and Land Management Programs;
- Protected plant species management strategies planning and implementation;
- Monitoring of rehabilitation success through vegetation establishment;
- Rehabilitation planning;
- Environmental auditing of rehabilitated areas;
- Project management of ecological specialist studies;
- No Net Loss (NNL) and Net Positive Impact on Biodiversity (NPI)strategies and implementation;
- Planning and design of Rehabilitation off-set strategies.

Biodiversity Manager

Rudi is also responsible for the team of specialists within the fauna, flora and wetlands department, in the capacity of workload planning and execution. Project planning, reviewing of project reports and field work plans. The management and planning of each individual in the departments further studies, Key Performance Indicators and subsequent performance reviews. A more detailed list of roles and responsibilities are given in the table below.

Task
Workload delegation
Timesheet control
Inter-departmental projects coordination
Up-to-date schedule of projects and proposals
Formal and on-the job training
Bi-annual Staff reviews
Salary and Bonus review
Preparation and presentation of budget – monitoring
Recruitment of new staff
Disciplinary procedures
Quality of work and review of documents
Employee leave and administration
Management Committee (MANCO) member
Proposals compilation, review, submission
Feedback from employees

Project Experience

Project	Location	Client	Main project features	Positions held	Activities performed
Mmamabula	Botswana	CIC	Construction of	Technical	IFC level

Energy Project (MEP).		energy	a railway, opencast mine, wellfield, conveyors, addits, housing.	Specialist Ecologist	specialist studies, Fauna and Flora surveys for the project features, including impact assessments, management plans. Alien eradication plans.
Orlight Solar PV Power Project	South Africa	Orlight SA	Environmental Impact Assessment (EIA) process for five proposed Solar Photovoltaic (PV) Power Plants	Technical Specialist Ecologist	EIA Terrestrial Biodiversity studies, IFC level specialist studies
Twenty Nine Capitol	South Africa	CSIR	Photovoltaic Power stations	Technical Specialist Ecologist	EIA Terrestrial Biodiversity studies, in support of the EIA report, IFC level specialist studies
Tongan Biodiversity Land Management Plan	Ivory Coast	Randgold	Design, compilation and implementation of the BLMP	Technical Specialist Ecologist, Project Manager	Fauna and Flora surveys for the BLMP, compilation of BLMP. Alien eradication plans. IFC level specialist

					studies
Kibali Gold mine	DRC Congo	Randgold	Gold mine infrastructure	Technical Specialist Ecologist	Technical specialist, fauna and flora, for the Kibali ESIA. IFC level specialist studies
Kibali Gold mine	DRC Congo	Randgold	ESIA Update	Technical Specialist Ecologist	Technical specialist, fauna and flora, for the Kibali ESIA. IFC level specialist studies
Nzoro Hydroelectric station	DRC Congo	Randgold	Hydroelectric plant	Technical Specialist Ecologist	Technical specialist, fauna and flora, for the Nzoro ESIA. IFC level specialist studies.
Loulo Biodiversity Land Management Plan	Mali	Randgold	Design, compilation and implementation of the BLMP	Technical Specialist Ecologist, Project Manager	Fauna and Flora surveys for the project features, compilation of BLMP.
Koidu Diamond Mine	Sierra Leone	Koidu Resources	Construction of new open pit	Technical Specialist Ecologist	Technical specialist, fauna and flora, for the Koidu ESIA.

					IFC level specialist studies, terrestrial ecology management plans
Resource Generation	South Africa	Temo Coal	Coal mine/Railway Line	Technical Specialist Ecologist	Fauna and Flora surveys, Protected plant species management plans, Permitting and Rehabilitation design.
Impunzi Rehabilitation monitoring	South Africa	Glencore	Monitoring of rehabilitation success and suggested management measures	Technical Specialist Flora specialist, Project manager	Vegetation surveys, rehabilitation monitoring. Alien eradication plan.

Professional Affiliations

- Birdlife International;
- Endangered Wildlife Trust (EWT);
- Grassland Society of Southern Africa.
- Botanical Society of South Africa;

Professional Registration

- South African Council for Natural Scientific Professions, Professional Natural Scientist in the field of practice Conservation Science, registration number is 400018/17.
- IAIA, International Association for Impact assessments;
- The Land Rehabilitation Society of Southern Africa, LARSA (Membership No. 0085);

Publications

■ Biodiversity Action Plans for faunal habitat maintenance and expansion in mining. Poster presented at the 48th Annual Grassland Society of Southern Africa (GSSA) conference.

Limpopo Province South Africa – the Biodiversity perspective Paper presentation, presented at the Limpopo Minerals Conference and Trade show, hosted by the fossil fuel foundation and LEDET, 2015/11/11.

Appendix B: Expected Plant Species List

Family Species

CYPERACEAE Abildgaardia ovata (Burm.f.) Kral

FABACEAE Acacia baileyana F.Muell.
FABACEAE Acacia dealbata Link
EUPHORBIACEAE Acalypha angustata Sond.

EUPHORBIACEAE Acalypha caperonioides Baill. var. caperonioides

ASTERACEAE Acanthospermum glabratum (DC.) Wild AMARANTHACEAE Achyranthes aspera L. var. aspera

LAMIACEAE Acrotome hispida Benth.

APIACEAE Afrosciadium magalismontanum (Sond.) P.J.D.Winter

POACEAE Agrostis avenacea C.C.Gmel.

POACEAE Agrostis lachnantha Nees var. lachnantha

APIACEAE Alepidea peduncularis A.Rich.

POACEAE Alloteropsis semialata (R.Br.) Hitchc. subsp. eckloniana (Nees) Gibbs Russ.

AMARANTHACEAE Amaranthus hybridus L. subsp. hybridus var. erythrostachys Moq.

POACEAE Andropogon eucomus Nees
APONOGETONACEAE Aponogeton junceus Lehm.

ASTERACEAE Arctotis arctotoides (L.f.) O.Hoffm.

FABACEAE Argyrolobium speciosum Eckl. & Zeyh.

APOCYNACEAE Asclepias albens (E.Mey.) Schltr.

APOCYNACEAE Asclepias aurea (Schltr.) Schltr.

APOCYNACEAE Asclepias eminens (Harv.) Schltr.

APOCYNACEAE Asclepias gibba (E.Mey.) Schltr. var. gibba

APOCYNACEAE Asclepias stellifera Schltr.

APOCYNACEAE Aspidoglossum interruptum (E.Mey.) Bullock
APOCYNACEAE Aspidoglossum lamellatum (Schltr.) Kupicha
APOCYNACEAE Aspidoglossum restioides (Schltr.) Kupicha

ASPLENIACEAE Asplenium adiantum-nigrum L. var. adiantum-nigrum

ASTERACEAE Aster harveyanus Kuntze
ASTERACEAE Aster peglerae Bolus

ASTERACEAE Aster squamatus (Spreng.) Hieron.

ASTERACEAE Athrixia elata Sond.
CHENOPODIACEAE Atriplex suberecta I.Verd.
AZOLLACEAE Azolla filiculoides Lam.
IRIDACEAE Babiana bainesii Baker

ELATINACEAE Bergia decumbens Planch. ex Harv. ASTERACEAE Berkheya insignis (Harv.) Thell.

ASTERACEAE Berkheya pinnatifida (Thunb.) Thell. subsp. ingrata (Bolus) Roessler

ASTERACEAE Berkheya radula (Harv.) De Wild.

ASTERACEAE Berkheya setifera DC.

ASTERACEAE Berkheya zeyheri Oliv. & Hiern subsp. zeyheri

ACANTHACEAE Blepharis stainbankiae C.B.Clarke

APOCYNACEAE Brachystelma barberae Harv. ex Hook.f.

BRYACEAE Bryum argenteum Hedw.

BORAGINACEAE Buglossoides arvensis (L.) I.M.Johnst.

ASPHODELACEAE Bulbine abyssinica A.Rich.

ASPHODELACEAE Bulbine favosa (Thunb.) Schult. & Schult.f

ASPHODELACEAE Bulbine narcissifolia Salm-Dyck

CYPERACEAE Bulbostylis burchellii (Ficalho & Hiern) C.B.Clarke

CYPERACEAE Bulbostylis oritrephes (Ridl.) C.B.Clarke

CYPERACEAE Bulbostylis scleropus C.B.Clarke

CYPERACEAE Carex acutiformis Ehrh.

CYPERACEAE Carex glomerabilis V.I.Krecz.

APIACEAE Centella asiatica (L.) Urb.

DIPSACACEAE Cephalaria zeyheriana Szabó

CARYOPHYLLACEAE Cerastium capense Sond.

FABACEAE Chamaecrista biensis (Steyaert) Lock

SINOPTERIDACEAE Cheilanthes hirta Sw. var. brevipilosa W.& N.Jacobsen

CHENOPODIACEAE Chenopodium album L.

CHENOPODIACEAE Chenopodium phillipsianum Aellen
ANTHERICACEAE Chlorophytum cooperi (Baker) Nordal
ANTHERICACEAE Chlorophytum fasciculatum (Baker) Kativu
ANTHERICACEAE Chlorophytum transvaalense (Baker) Kativu
ASPHODELACEAE Chortolirion angolense (Baker) A.Berger
ASPHODELACEAE Chortolirion angolense (Baker) A.Berger

ASTERACEAE Cirsium vulgare (Savi) Ten.

BRUCHIACEAE Cladophascum gymnomitrioides (Dixon) Dixon

CAPPARACEAE Cleome monophylla L.

COLCHICACEAE Colchicum striatum (Hochst. ex A.Rich.) J.C.Manning & Vinn.

COMMELINACEAE Commelina africana L. var. krebsiana (Kunth) C.B.Clarke

COMMELINACEAE Commelina livingstonii C.B.Clarke

COMMELINACEAE Commelina subulata Roth CONVOLVULACEAE Convolvulus farinosus L.

ASTERACEAE Conyza bonariensis (L.) Cronquist

ASTERACEAE Conyza podocephala DC.
APOCYNACEAE Cordylogyne globosa E.Mey.

CARYOPHYLLACEAE Corrigiola litoralis L. subsp. litoralis var. litoralis

ASTERACEAE Cotula coronopifolia L.

CRASSULACEAE Cotyledon orbiculata L. var. oblonga (Haw.) DC.

ACANTHACEAE Crabbea acaulis N.E.Br.

CRASSULACEAE Crassula lanceolata (Eckl. & Zeyh.) Endl. ex Walp. subsp. lanceolata

CRASSULACEAE Crassula natans Thunb. var. natans

CRASSULACEAE Crassula setulosa Harv. var. setulosa forma setulosa

ASTERACEAE Crepis hypochaeridea (DC.) Thell.

AMARYLLIDACEAE Crinum bulbispermum (Burm.f.) Milne-Redh. & Schweick.

AMARYLLIDACEAE Crinum graminicola I.Verd.

FABACEAE Crotalaria globifera E.Mey.

CONVOLVULACEAE Cuscuta australis R.Br.

CONVOLVULACEAE Cuscuta campestris Yunck.

COMMELINACEAE Cyanotis speciosa (L.f.) Hassk.

BORAGINACEAE Cynoglossum lanceolatum Forssk.

CYPERACEAE Cyperus congestus Vahl
CYPERACEAE Cyperus difformis L.

CYPERACEAE Cyperus esculentus L. var. esculentus

CYPERACEAE Cyperus fastigiatus Rottb.

CYPERACEAE Cyperus longus L. var. tenuiflorus (Rottb.) Boeck.

CYPERACEAE Cyperus marginatus Thunb.

CYPERACEAE Cyperus obtusiflorus Vahl var. flavissimus (Schrad.) Boeck.

CYPERACEAE Cyperus obtusiflorus Vahl var. obtusiflorus

CYPERACEAE Cyperus rigidifolius Steud.
CYPERACEAE Cyperus semitrifidus Schrad.

CYPERACEAE Cyperus uitenhagensis (Steud.) C.Archer & Goetgh.

CYPERACEAE Cyperus usitatus Burch.

AMARYLLIDACEAE Cyrtanthus breviflorus Harv.

ASTERACEAE Denekia capensis Thunb.

BRASSICACEAE Descurainia sophia (L.) Webb ex Prantl

POACEAE Diandrochloa namaquensis (Nees) De Winter

CARYOPHYLLACEAE Dianthus mooiensis F.N.Williams subsp. kirkii (Burtt Davy) S.S.Hooper

FABACEAE Dichilus gracilis Eckl. & Zeyh.
FABACEAE Dichilus lebeckioides DC.
FABACEAE Dichilus strictus E.Mey.

ASTERACEAE Dicoma anomala Sond. subsp. anomala
POACEAE Diheteropogon filifolius (Nees) Clayton

ASTERACEAE Dimorphotheca caulescens Harv.
ASTERACEAE Dimorphotheca caulescens Harv.
ASTERACEAE Dimorphotheca spectabilis Schltr.

EBENACEAE Diospyros lycioides Desf. subsp. guerkei (Kuntze) De Winter

FABACEAE Dolichos angustifolius Eckl. & Zeyh.

FABACEAE Elephantorrhiza elephantina (Burch.) Skeels

POACEAE Eragrostis curvula (Schrad.) Nees

POACEAE Eragrostis gummiflua Nees
POACEAE Eragrostis micrantha Hack.
POACEAE Eragrostis planiculmis Nees
POACEAE Eragrostis tef (Zuccagni) Trotter

FABACEAE Eriosema burkei Benth. ex Harv. var. burkei

FABACEAE Eriosema nutans Schinz
FABACEAE Eriosema nutans Schinz
FABACEAE Eriosema salignum E.Mey.

ERIOSPERMACEAE Eriospermum flagelliforme (Baker) J.C.Manning

FABACEAE Erythrina zeyheri Harv.
EUPHORBIACEAE Euphorbia prostrata Aiton

EUPHORBIACEAE Euphorbia striata Thunb. var. striata

EXORMOTHECACEAE Exormotheca holstii Steph.

CONVOLVULACEAE Falkia oblonga Bernh. ex C.Krauss

ASTERACEAE Felicia muricata (Thunb.) Nees subsp. muricata

CYPERACEAE Fimbristylis complanata (Retz.) Link
POACEAE Fingerhuthia sesleriiformis Nees

CYPERACEAE Fuirena pubescens (Poir.) Kunth var. pubescens

RUBIACEAE Galium capense Thunb. subsp. garipense (Sond.) Puff var. garipense

ASTERACEAE Gazania krebsiana Less. subsp. serrulata (DC.) Roessler

ASTERACEAE Geigeria aspera Harv. var. aspera ASTERACEAE Gerbera piloselloides (L.) Cass.

IRIDACEAE Gladiolus elliotii Baker

IRIDACEAE Gladiolus sericeovillosus Hook.f. subsp. calvatus (Baker) Goldblatt

ASTERACEAE Gnaphalium confine Harv.

ASTERACEAE Gnaphalium filagopsis Hilliard & B.L.Burtt

APOCYNACEAE Gomphocarpus fruticosus (L.) Aiton f. subsp. fruticosus

ASTERACEAE Haplocarpha scaposa Harv.

ASTERACEAE Helichrysum argyrosphaerum DC.
ASTERACEAE Helichrysum aureonitens Sch.Bip.
ASTERACEAE Helichrysum caespititium (DC.) Harv.

ASTERACEAE Helichrysum callicomum Harv.
ASTERACEAE Helichrysum lepidissimum S.Moore

ASTERACEAE Helichrysum nudifolium (L.) Less. var. nudifolium

ASTERACEAE Helichrysum rugulosum Less.
ASTERACEAE Helichrysum setosum Harv.
ASTERACEAE Helichrysum stenopterum DC.
BORAGINACEAE Heliotropium curassavicum L.

MALVACEAE Hibiscus sabdariffa L.

MALVACEAE Hibiscus trionum L.

ASTERACEAE Hilliardiella hirsuta (DC.) H.Rob.
APOCYNACEAE Huernia stapelioides Schltr.
POACEAE Hyparrhenia anamesa Clayton
POACEAE Hyparrhenia hirta (L.) Stapf

FABACEAE Indigastrum burkeanum (Benth. ex Harv.) Schrire

FABACEAE Indigofera confusa Prain & Baker f.
FABACEAE Indigofera evansiana Burtt Davy

FABACEAE Indigofera hybrida N.E.Br.

FABACEAE Indigofera oxytropis Benth. ex Harv.

FABACEAE Indigofera zeyheri Spreng. ex Eckl. & Zeyh.

CONVOLVULACEAE Ipomoea bathycolpos Hallier f.

CONVOLVULACEAE Ipomoea crassipes Hook. var. crassipes
CONVOLVULACEAE Ipomoea crassipes Hook. var. crassipes
CONVOLVULACEAE Ipomoea obscura (L.) Ker Gawl. var. obscura

CONVOLVULACEAE Ipomoea oenotherae (Vatke) Hallier f. var. oenotherae

CONVOLVULACEAE Ipomoea ommanneyi Rendle CONVOLVULACEAE Ipomoea simplex Thunb.

POACEAE Ischaemum fasciculatum Brongn.

CYPERACEAE Isolepis fluitans (L.) R.Br. var. fluitans

ACANTHACEAE Justicia anagalloides (Nees) T.Anderson

MESEMBRYANTHEMACEAE Khadia beswickii (L.Bolus) N.E.Br.
ASPHODELACEAE Kniphofia porphyrantha Baker
ASPHODELACEAE Kniphofia typhoides Codd

CYPERACEAE Kyllinga alata Nees

CYPERACEAE Kyllinga erecta Schumach. var. erecta

CYPERACEAE Kyllinga melanosperma Nees
CYPERACEAE Kyllinga pulchella Kunth
ASTERACEAE Lactuca inermis Forssk.

ASTERACEAE Launaea rarifolia (Oliv. & Hiern) Boulos var. rarifolia

HYACINTHACEAE

HYACINTHACEAE

Ledebouria cooperi (Hook.f.) Jessop

Ledebouria ovatifolia (Baker) Jessop

Ledebouria revoluta (L.f.) Jessop

BRASSICACEAE Lepidium bonariense L.
FABACEAE Lessertia affinis Burtt Davy
FABACEAE Lessertia prostata DC.

LINACEAE Linum thunbergii Eckl. & Zeyh.

BORAGINACEAE Lithospermum cinereum A.DC.

FABACEAE Lotononis laxa Eckl. & Zeyh.

FABACEAE Melolobium wilmsii Harms

CONVOLVULACEAE Merremia verecunda Rendle

ANEMIACEAE Mohria vestita Baker

IRIDACEAE Moraea pallida (Baker) Goldblatt

ASTERACEAE Nidorella anomala Steetz
ASTERACEAE Nidorella hottentotica DC.
ASTERACEAE Nolletia rarifolia (Turcz.) Steetz

ASTERACEAE Oncosiphon piluliferum (L.f.) Källersjö APOCYNACEAE Pachycarpus schinzianus (Schltr.) N.E.Br.

APOCYNACEAE Pachycarpus suaveolens (Schltr.) Nicholas & Goyder

POACEAE Panicum stapfianum Fourc.

CHRYSOBALANACEAE Parinari capensis Harv. subsp. capensis

POACEAE Paspalum dilatatum Poir.

POACEAE Paspalum distichum L.

FABACEAE Pearsonia cajanifolia (Harv.) Polhill subsp. cajanifolia
FABACEAE Pearsonia sessilifolia (Harv.) Dummer subsp. sessilifolia

POLYGONACEAE Persicaria limbata (Meisn.) H.Hara

ASTERACEAE Phymaspermum athanasioides (S.Moore) Källersjö

CARYOPHYLLACEAE Pollichia campestris Aiton

POACEAE Polypogon monspeliensis (L.) Desf.

ASTERACEAE Pseudognaphalium luteo-album (L.) Hilliard & B.L.Burtt

CYPERACEAE Pycreus macranthus (Boeckeler) C.B.Clarke
APOCYNACEAE Raphionacme hirsuta (E.Mey.) R.A.Dyer
FABACEAE Rhynchosia adenodes Eckl. & Zeyh.

FABACEAE Rhynchosia nervosa Benth. ex Harv. var. nervosa

RICCIACEAE Riccia albovestita O.H.Volk RICCIACEAE Riccia angolensis Steph.

RICCIACEAE Riccia stricta (Lindenb.) Perold

POLYGONACEAE Rumex crispus L.

LAMIACEAE Salvia reflexa Hornem.

DIPSACACEAE Scabiosa columbaria L.

ASTERACEAE Schistostephium crataegifolium (DC.) Fenzl ex Harv.

APOCYNACEAE Schizoglossum periglossoides Schltr.

CYPERACEAE Schoenoplectus decipiens (Nees) J.Raynal CYPERACEAE Schoenoplectus lateriflorus (J.F.Gmel.) Lye

CYPERACEAE Schoenoplectus muricinux (C.B.Clarke) J.Raynal CYPERACEAE Schoenoplectus muriculatus (Kük.) Browning CYPERACEAE Schoenoplectus pulchellus (Kunth) J.Raynal

CYPERACEAE Scirpoides burkei (C.B.Clarke) Goetgh., Muasya & D.A.Simpson

ANACARDIACEAE Searsia discolor (E.Mey. ex Sond.) Moffett
ANACARDIACEAE Searsia pyroides (Burch.) Moffett var. pyroides

ASTERACEAE Senecio coronatus (Thunb.) Harv.

ASTERACEAE Senecio erubescens Aiton var. erubescens

ASTERACEAE Senecio inornatus DC. ASTERACEAE Senecio isatideus DC.

ASTERACEAE Senecio laevigatus Thunb. var. laevigatus
ASTERACEAE Senecio lydenburgensis Hutch. & Burtt Davy

ASTERACEAE Senecio madagascariensis Poir.

ASTERACEAE Senecio othonniflorus DC.

ASTERACEAE Senecio oxyriifolius DC. subsp. oxyriifolius

ASTERACEAE Senecio venosus Harv.

CARYOPHYLLACEAE Silene gallica L.

ASTERACEAE Sonchus nanus Sond, ex Harv.

ASTERACEAE Tagetes minuta L.

FABACEAE Tephrosia semiglabra Sond.
ACANTHACEAE Thunbergia natalensis Hook.

ASTERACEAE Tolpis capensis (L.) Sch.Bip.

ASPHODELACEAE Trachyandra asperata Kunth var. macowanii (Baker) Oberm.

ASPHODELACEAE Trachyandra saltii (Baker) Oberm. var. saltii FABACEAE Trifolium africanum Ser. var. africanum ASTERACEAE Tripteris aghillana DC. var. aghillana

IRIDACEAE Tritonia nelsonii Baker
ALLIACEAE Tulbaghia acutiloba Harv.
ALLIACEAE Tulbaghia leucantha Baker

ASTERACEAE Ursinia nana DC. subsp. leptophylla Prassler

ASTERACEAE Vernonia galpinii Klatt

SCROPHULARIACEAE Veronica anagallis-aquatica L.

LEMNACEAE Wolffia arrhiza (L.) Horkel ex Wimm.

APOCYNACEAE Xysmalobium brownianum S.Moore

Appendix C: Site Plant Species List

Family	Species	Threat Status	Riparian	Eragrostis	Disturbed	Pans
Mimosaceae	Acacia karoo	Medicinal				х
Fabaceae	Acacia mearnsii	Alien			Х	Х
Poaceae	Agrostis lachnantha	LC	Х	Х		Х
Orobanchaceae	Alectra capensis	LC	Х			
Amaranthaceae	Amaranthus hybridus	LC	Х		Х	
Poaceae	Andropogon appendiculatus	LC		х	х	
Poaceae	Andropogon eucomus	LC		Х		Х
Poaceae	Andropogon huillensis	LC		Х		
Poaceae	Aristida congesta subsp. barbicollis	LC		х	х	х
Poaceae	Arundinella nepalensis	LC	х			
	Asclepias gibba var gibba		х			
Asparagaceae	Asparagus sp.			Х	х	
	Berkheya echinacea	Medicinal				
Asteraceae	Berkheya erysithales	LC	х	Х	Х	
Asteraceae	Berkheya setifera	LC	х		х	
Asteraceae	Bidens pilosa	Alien			Х	
Acanthaceae	Blepharis acuminata	LC		Х		
Poaceae	Bromus catharticus	LC		Х		
Asteraceae	Cirsium vulgare	Alien	х	Х	х	
Commelinaceae	Commelina africana	LC	х	Х		
Commelinaceae	Commelina subulata	LC		Х		
Asteraceae	Conyza albida	Alien			х	
Asteraceae	Cosmos bippinatus	Alien			Х	
Acanthaceae	Crabbea acaulis		х			
Amaryllydaceae	Crinum bulbispermum	Declining	х	Х		
Poaceae	Ctenium concinnum	LC		Х		
Poaceae	Cynodon dactylon	LC	х	х	х	
Cyperaceae	Cyperus congestus	LC	х			
Cyperaceae	Cyperus esculentus	LC	х			
Cyperaceae	Cyperus semitrifidus	LC	х			х
Solanaceae	Datura ferox	Alien			Х	
Asteraceae	Dicoma anomala	Medicinal				

Poaceae	Eragrostis capensis	LC		х	х	
Poaceae	Eragrostis curvula	LC	Х	Х	Х	
Poaceae	Eragrostis gummiflua	LC	Х	Х		Х
Poaceae	Eragrostis racemosa	LC		Х		
Fabaceae	Erythrina zeyheri	Medicinal	х	х		
Myrtaceae	Eucalyptus camaldulensis	Alien Invasive 1b			х	
Euphorbiaceae	Euphorbia clavarioides	Medicinal (LC)		х		
Asteraceae	Felicia muricata	Medicinal	Х	Х		
Poaceae	Fingerhuthia africana	LC		х		
Asteraceae	Geigeria burkei	LC	Х	Х		
Asclepiadaceae	Gomphocarpus fruticosus	LC		х		
Amaranthaceae	Gomphrena celesioides	Alien			Х	
Amaranthaceae	Guilleminea densa	Alien	Х	х	х	
Asteraceae	Haplocarpha scaposa	LC		Х		
Asteraceae	Helichrysum aureonitens	LC		х		
Asteraceae	Helichrysum inornatum	LC		Х		
Poaceae	Hyparrhenia hirta	LC	Х	Х	Х	
Poaceae	Hyparrhenia tamba	LC		Х		
Asteraceae	Hypochaeris radicata	LC		х		
Hypoxidaceae	Hypoxis hemerocallidea	Declining	х	х		
Hypoxidaceae	Hypoxis acuminata	LC	х			
Poaceae	Imperata cylindrica	LC	х	х		
	Ipomoa crassipes	Medicinal	х			
Convolvulaceae	Ipomoea sp.			Х		
Juncaceae	Juncus effusus	LC	Х		Х	
Juncaceae	Juncus exsertus	LC	Х			
Hyacinthaceae	Ledebouria ovatifolia	Medicinal	х	х		
Poaceae	Melinis repens	LC	Х	х		
Lobeliaceae	Monopsis decipiens	LC	х			
Hirpicium armeroides	Mountain gerberea	Herb		х		х
Onagraceae	Oenothera rosea	LC			х	
Cactaceae	Opuntia ficus-indica	Alien			Х	
Poaceae	Panicum coloratum	LC		х		
Poaceae	Paspalum dilatatum	LC			Х	х
Poaceae	Paspalum notatum	Alien	х		х	1
Polygonaceae	Persicaria lapathifolia	LC				х
Poaceae	Phragmites australis	Decreaser	х			х
Plantaginaceae	Plantago minor	LC		х		†
Salicaceae	Salix babylonica	Exotic	х			\dagger

Cyperaceae	Schoenoplectus brachyceras	LC	x			
Cyperaceae	Schoenoplectus corymbosus	LC	х			
Cyperaceae	Schoenoplectus decipiens	LC	х			
Asteraceae	Senecio inornatus	LC		х		
Asteraceae	Seriphium plumosum	LC		х	х	
Poaceae	Setaria sphacelata	LC	Х			
Solanaceae	Solanum sysimbriifolium	Alien		х		
Poaceae	Sporobolus africanus	LC		х	х	
Poaceae	Sporobolus pyramidalis	LC		х	х	
Asteraceae	Tagetes minuta	Alien			х	
Asteraceae	Taraxacum offininale	Alien			Х	
Poaceae	Themeda triandra	LC		х		
Asphodelaceae	Trachyandra asperata	Medicinal		х		
Poaceae	Trichoneura grandiglumis	Alien		х		
Poaceae	Tristachya leucothrix	LC		х		
Typhaceae	Typha capensis	LC	Х			Х
Verbenaceae	Verbena brasiliensis	Alien	Х	Х	Х	Х
Asteraceae	Vernonia oligocephala	Medicinal		Х		
Asteraceae	Xanthium strumarium	Alien	Х			

Appendix D: Expected Mammal Species List

TABLE C1 - MAMMAL LIST

Family	Species	Common Name	P.o.O.
Bathyergidae	Cryptomys hottentotus	African Mole Rat	Medium
Bovidae	Damaliscus pygargus	Blesbok	Recorded
Bovidae	Raphicerus campestris	Steenbok	Recorded
Bovidae	Sylvicapra grimmia	Common Duiker	Recorded
Chrysochloridae	Amblysomus septentrionalis	Highveld Golden Mole	High
Erinaceidae	Atelerix frontalis	Southern African hedgehog	Medium
Felidae	Leptailurus serval	Serval	Recorded
Herpestidae	Atilax paludinosus	Water Mongoose	Medium
Herpestidae	Cynictis penicillata	Yellow Mongoose	High
Herpestidae	Suricata suricatta	Meerkat	Recorded
Hyaenidae	Proteles cristata	Aardwolf	Low
Mustelidae	Aonyx capensis	Cape Clawless Otter	Low
Mustelidae	Poecilogale albinucha	African Striped Weasel	High
Nesomyidae	Mystromys albicaudatus	White-tailed Mouse	Medium
Orycteropodidae	Orycteropus afer	Aardvark	Low
Procaviidae	Procavia capensis	Rock Hyrax	Recorded
Soricidae	Crocidura cyanea	Reddish-Gray Musk Shrew	Low
Soricidae	Crocidura mariquensis	Swamp musk Shrew	Low
Soricidae	Crocidura silacea	Lesser Gray-brown Musk Shrew	Low
Soricidae	Myosorex varius	Forest Shrew	Low
Soricidae	Suncus infinitesimus	Least Dwarf Shrew	Low
Soricidae	Suncus varilla	Lesser Dwarf Shrew	Low

TABLE C – 2 BAT SPECIES LIST (DIGBY WELLS SCOPING REPORT)

Species	Common Name
Chaerephon ansorgei	Ansorge's free-tailed bat
Chaerephon pumilus	Little free-tailed bat
Cloeotis percivali	Short-eared trident bat
Eidolon helvum	Straw-coloured fruit bat
Epomophorus crypturus	Angolan epauletted fruit bat
Epomophorus wahlbergi	Wahlberg's epauletted fruit bat
Hipposideros caffer	Sundevall's roundleaf bat
Hypsugo anchietae	Anchieta's pipistrelle
Miniopterus fraterculus	Lesser long-fingered bat
Miniopterus inflatus	Greater long-fingered bat
Miniopterus natalensis	Greater long-fingered bat
Mops condylurus	Angola free-tailed bat
Myotis bocagii	Rufous mouse-eared bat
Myotis tricolor	Temminck's hairy bat
Myotis welwitschii	-
Neoramicia nana	-
Neoromicia capensis	Cape serotine bat
Neoromicia zuluensis	Aloe serotine bat
Nycteris thebaica	Egyptian slit-faced bat
Nycticienops schlieffeni	Schlieffen's bat
Pipistrellus hesperidus	African pipistrelle
Rhinolophus blasii	Blasius's horseshoe bat
Rhinolophus clivosus	Geoffroy's horseshoe bat
Rhinolophus darlingi	Darling's horseshoe bat
Rhinolophus simulator	Bushveld horseshoe bat
Rhinolophus swinnyi	Swinny's horseshoe bat
Rousettus aegyptiacus	Egyptian rousette

Species	Common Name
Scotoecus dinganii	African yellow bat
Scotophilus viridis	Greenish yellow bat
Tadarida aegyptiaca	Egyptian free-tailed bat

Appendix E: Expected Bird Species List

Roberts no.	English Name	Scientific Name	IUCN Status
8	Little Grebe	Tachybaptus ruficollis	Least Concern
55	Whitebreasted Cormorant	Phalacrocorax lucidus	Least Concern
58	Reed Cormorant	Phalacrocorax africanus	Least Concern
60	Darter	Anhinga rufa	Least Concern
62	Grey Heron	Ardea cinerea	Least Concern
63	Blackheaded Heron	Ardea melanocephala	Least Concern
64	Goliath Heron	Ardea goliath	Least Concern
65	Purple Heron	Ardea purpurea	Least Concern
66	Great White Egret	Egretta alba	Least Concern
67	Little Egret	Egretta garzetta	Least Concern
68	Yellowbilled Egret	Egretta intermedia	Least Concern
69	Black Egret	Egretta ardesiaca	Least Concern
71	Cattle Egret	Bubulcus ibis	Least Concern
72	Squacco Heron	Ardeola ralloides	Least Concern
74	Greenbacked Heron	Butorides striatus	Least Concern
76	Blackcrowned Night Heron	Nycticorax nycticorax	Least Concern
78	Little Bittern	Ixobrychus minutus	Least Concern
81	Hamerkop	Scopus umbretta	Least Concern
83	White Stork	Ciconia ciconia	Least Concern
84	Black Stork	Ciconia nigra	Near Threatened
85	Abdim's Stork	Ciconia abdimii	Least Concern
90	Yellowbilled Stork	Mycteria ibis	Least Concern
91	Sacred Ibis	Threskiornis aethiopicus	Least Concern
93	Glossy Ibis	Plegadis falcinellus	Least Concern
94	Hadeda Ibis	Bostrychia hagedash	Least Concern
95	African Spoonbill	Platalea alba	Least Concern
96	Greater Flamingo	Phoenicopterus ruber	Near Threatened
97	Lesser Flamingo	Phoenicopterus minor	Near Threatened
99	White faced Duck	Dendrocygna viduata	Least Concern
100	Fulvous Duck	Dendrocygna bicolor	Least Concern

Roberts no.	English Name	Scientific Name	IUCN Status
101	Whitebacked Duck	Thalassornis leuconotus	Least Concern
102	Egyptian Goose	Alopochen aegyptiacus	Least Concern
103	South African Shelduck	Tadorna cana	Least Concern
104	Yellowbilled Duck	Anas undulata	Least Concern
105	African Black Duck	Anas sparsa	Least Concern
106	Cape Teal	Anas capensis	Least Concern
107	Hottentot Teal	Anas hottentota	Least Concern
108	Redbilled Teal	Anas erythrorhyncha	Least Concern
112	Cape Shoveller	Anas smithii	Least Concern
113	Southern Pochard	Netta erythrophthalma	Least Concern
116	Spurwinged Goose	Plectropterus gambensis	Least Concern
118	Secretarybird	Sagittarius serpentarius	Vulnerable
126	Black Kite	Milvus migrans	Least Concern
126.1	Yellowbilled Kite	Milvus aegyptius	Least Concern
127	Blackshouldered Kite	Elanus caeruleus	Least Concern
130	Honey Buzzard	Pernis apivorus	Least Concern
149	Steppe Buzzard	Buteo vulpinus	Least Concern
157	Little Sparrowhawk	Accipiter minullus	Least Concern
158	Black Sparrowhawk	Accipiter melanoleucus	Least Concern
159	Little Banded Goshawk	Accipiter badius	Least Concern
160	Ovambo Sparrowhawk	Accipiter ovampensis	Least Concern
161	Gabar Goshawk	Melierax gabar	Least Concern
165	African Marsh Harrier	Circus ranivorus	Vulnerable
166	Montagu's Harrier	Circus pygargus	Least Concern
167	Pallid Harrier	Circus macrourus	Near threatened
169	Gymnogene	Polyboroides typus	Least Concern
180	Eastern Redfooted Kestrel	Falco amurensis	Least Concern
181	Rock Kestrel	Falco rupicolis	Least Concern
182	Greater Kestrel	Falco rupicoloides	Least Concern
183	Lesser Kestrel	Falco naumanni	Vulnerable

Roberts no.	English Name	Scientific Name	IUCN Status
190	Orange-river Francolin	Scleroptila levaillantoides	Least Concern
192	Redwing Francolin	Scleroptila levaillantii	Least Concern
199	Swainson's Spurfowl	Pternistis swainsonii	Least Concern
200	Common Quail	Coturnix coturnix	Least Concern
201	Harlequin Quail	Coturnix delegorguei	Least Concern
203	Helmeted Guineafowl	Numida meleagris	Least Concern
205	Kurrichane Buttonquail	Turnix sylvatica	Least Concern
207	Wattled Crane	Grus carunculatus	Vulnerable
208	Blue Crane	Anthropoides paradisea	Vulnerable
210	African Rail	Rallus caerulescens	Least Concern
211	Corncrake	Crex crex	Least Concern
213	Black Crake	Amaurornis flavirostris	Least Concern
215	Baillon's Crake	Porzana pusilla	Least Concern
217	Redchested Flufftail	Sarothrura rufa	Least Concern
223	Purple Gallinule	Porphyrio madagascariensis	Least Concern
226	Common Moorhen	Gallinula chloropus	Least Concern
228	Redknobbed Coot	Fulica cristata	Least Concern
229	African Finfoot	Podica senegalensis	Least Concern
231	Stanley's Bustard	Neotis denhami	Least Concern
233	Whitebellied Korhaan	Eupodotis barrowii	Vulnerable
234	Blue Korhaan	Eupodotis caerulescens	Near threatened
240	African Jacana	Actophilornis africanus	Least Concern
245	Ringed Plover	Charadrius hiaticula	Least Concern
248	Kittlitz's Plover	Charadrius pecuarius	Least Concern
249	Threebanded Plover	Charadrius tricollaris	Least Concern
252	Caspian Plover	Charadrius asiaticus	Least Concern
255	Crowned Lapwing	Vanellus coronatus	Least Concern
257	Blackwinged Plover	Vanellus melanopterus	Least Concern
258	Blacksmith Lapwing	Vanellus armatus	Least Concern
260	Wattled Plover	Vanellus senegallus	Least Concern

Roberts no.	English Name	Scientific Name	IUCN Status
262	Ruddy Turnstone	Arenaria interpres	Least Concern
264	Common Sandpiper	Actitis hypoleucos	Least Concern
265	Green Sandpiper	Tringa ochropus	Least Concern
266	Wood Sandpiper	Tringa glareola	Least Concern
269	Marsh Sandpiper	Tringa stagnatilis	Least Concern
270	Greenshank	Tringa nebularia	Least Concern
272	Curlew Sandpiper	Calidris ferruginea	Least Concern
274	Little Stint	Calidris minuta	Least Concern
284	Ruff	Philomachus pugnax	Least Concern
286	African Snipe	Gallinago nigripennis	Least Concern
294	Pied Avocet	Recurvirostra avosetta	Least Concern
295	Blackwinged Stilt	Himantopus himantopus	Least Concern
297	Spotted Dikkop	Burhinus capensis	Least Concern
298	Water Dikkop	Burhinus vermiculatus	Least Concern
338	Whiskered Tern	Chlidonias hybridus	Least Concern
339	Whitewinged Tern	Chlidonias leucopterus	Least Concern
348	Feral Pigeon*	Columba livia	Least Concern
349	Rock Pigeon	Columba guinea	Least Concern
350	African Olive Pigeon	Columba arquatrix	Least Concern
352	Redeyed Dove	Streptopelia semitorquata	Least Concern
354	Cape Turtle Dove	Streptopelia capicola	Least Concern
355	Laughing Dove	Streptopelia senegalensis	Least Concern
356	Namaqua Dove	Oena capensis	Least Concern
373	Grey Go away Bird	Corythaixoides concolor	Least Concern
374	Eurasian Cuckoo	Cuculus canorus	Least Concern
375	African Cuckoo	Cuculus gularis	Least Concern
377	Redchested Cuckoo	Cuculus solitarius	Least Concern
382	Jacobin Cuckoo	Clamator jacobinus	Least Concern
385	Klaas's Cuckoo	Chrysococcyx klaas	Least Concern
386	Diederik Cuckoo	Chrysococcyx caprius	Least Concern

Roberts no.	English Name	Scientific Name	IUCN Status
391	Burchell's Coucal	Centropus burchellii	Least Concern
392	Barn Owl	Tyto alba	Least Concern
393	Grass Owl	Tyto capensis	Near threatened
395	Marsh Owl	Asio capensis	Least Concern
401	Spotted Eagle Owl	Bubo africanus	Least Concern
404	Eurasian Nightjar	Caprimulgus europaeus	Least Concern
405	Fierynecked Nightjar	Caprimulgus pectoralis	Least Concern
408	Freckled Nightjar	Caprimulgus tristigma	Least Concern
411	Eurasian Swift	Apus apus	Least Concern
412	Black Swift	Apus barbatus	Least Concern
415	Whiterumped Swift	Apus caffer	Least Concern
416	Horus Swift	Apus horus	Least Concern
417	Little Swift	Apus affinis	Least Concern
418	Alpine Swift	Tachymarptis melba	Least Concern
421	Palm Swift	Cypsiurus parvus	Least Concern
424	Speckled Mousebird	Colius striatus	Least Concern
426	Redfaced Mousebird	Urocolius indicus	Least Concern
428	Pied Kingfisher	Ceryle rudis	Least Concern
429	Giant Kingfisher	Megaceryle maxima	Least Concern
430	Halfcollared Kingfisher	Alcedo semitorquata	Near threatened
431	Malachite Kingfisher	Alcedo cristata	Least Concern
433	Woodland Kingfisher	Halcyon senegalensis	Least Concern
435	Brownhooded Kingfisher	Halcyon albiventris	Least Concern
438	Eurasian Bee-eater	Merops apiaster	Least Concern
443	Whitefronted Bee-eater	Merops bullockoides	Least Concern
444	Little Bee-eater	Merops pusillus	Least Concern
446	Eurasian Roller	Coracias garrulus	Near threatened
451	African Hoopoe	Upupa africana	Least Concern
452	Redbilled Woodhoopoe	Phoeniculus purpureus	Least Concern
464	Blackcollared Barbet	Lybius torquatus	Least Concern

Roberts no.	English Name	Scientific Name	IUCN Status
465	Pied Barbet	Tricholaema leucomelas	Least Concern
470	Yellowfronted Tinker Barbet	Pogoniulus chrysoconus	Least Concern
473	Crested Barbet	Trachyphonus vaillantii	Least Concern
474	Greater Honeyguide	Indicator indicator	Least Concern
476	Lesser Honeyguide	Indicator minor	Least Concern
478	Sharpbilled Honeyguide	Prodotiscus regulus	Least Concern
480	Ground Woodpecker	Geocolaptes olivaceus	Least Concern
483	Golden tailed Woodpecker	Campethera abingoni	Least Concern
486	Cardinal Woodpecker	Dendropicos fuscescens	Least Concern
489	Redthroated Wryneck	Jynx ruficollis	Least Concern
494	Rufousnaped Lark	Mirafra africana	Least Concern
495.2	Eastern Clapper Lark	Mirafra fasciolata	Least Concern
496	Flappet Lark	Mirafra rufocinnamomea	Least Concern
498	Sabota Lark	Calendulauda sabota	Least Concern
499	Bothas Lark	Heteromirafra ruddi	Endangered
500.2	Eastern Longbilled Lark	Certhilauda semitorquata	Least Concern
506	Spikeheeled Lark	Chersomanes albofasciata	Least Concern
507	Redcapped Lark	Calandrella cinerea	Least Concern
508	Pinkbilled Lark	Spizocorys conirostris	Least Concern
518	Barn Swallow	Hirundo rustica	Least Concern
520	Whitethroated Swallow	Hirundo albigularis	Least Concern
523	Pearlbreasted Swallow	Hirundo dimidiata	Least Concern
524	Redbreasted Swallow	Hirundo semirufa	Least Concern
526	Greater Striped Swallow	Hirundo cucullata	Least Concern
528	South African Cliff Swallow	Hirundo spilodera	Least Concern
529	Rock Martin	Hirundo fuligula	Least Concern
530	House Martin	Delichon urbica	Least Concern
531	Greyrumped Swallow	Pseudhirundo griseopyga	Least Concern
532	Sand Martin	Riparia riparia	Least Concern
533	Brownthroated Martin	Riparia paludicola	Least Concern

Roberts no.	English Name	Scientific Name	IUCN Status
534	Banded Martin	Riparia cincta	Least Concern
538	Black Cuckooshrike	Campephaga flava	Least Concern
541	Forktailed Drongo	Dicrurus adsimilis	Least Concern
545	Blackheaded Oriole	Oriolus larvatus	Least Concern
547	Black Crow	Corvus capensis	Least Concern
548	Pied Crow	Corvus albus	Least Concern
554	Southern Black Tit	Parus niger	Least Concern
568	Blackeyed Bulbul	Pycnonotus tricolor	Least Concern
576	Kurrichane Thrush	Turdus libonyanus	Least Concern
577	Olive Thrush	Turdus olivaceus	Least Concern
580	Groundscraper Thrush	Psophocichla litsipsirupa	Least Concern
581	Cape Rockthrush	Monticola rupestris	Least Concern
582	Sentinel Rockthrush	Monticola explorator	Least Concern
586	Mountain Chat	Oenanthe monticola	Least Concern
587	Capped Wheatear	Oenanthe pileata	Least Concern
588	Buffstreaked Chat	Oenanthe bifasciata	Least Concern
589	Familiar Chat	Cercomela familiaris	Least Concern
593	Mocking Chat	Thamnolaea cinnamomeiventris	Least Concern
595	Anteating Chat	Myrmecocichla formicivora	Least Concern
596	Stonechat	Saxicola torquata	Least Concern
600	Natal Robin	Cossypha natalensis	Least Concern
601	Cape Robin	Cossypha caffra	Least Concern
621	Titbabbler	Parisoma subcaeruleum	Least Concern
625	Icterine Warbler	Hippolais icterina	Least Concern
628	Great Reed Warbler	Acrocephalus arundinaceus	Least Concern
631	African Marsh Warbler	Acrocephalus baeticatus	Least Concern
633	Eurasian Marsh Warbler	Acrocephalus palustris	Least Concern
634	Eurasian Sedge Warbler	Acrocephalus schoenobaenus	Least Concern
635	Cape Reed Warbler	Acrocephalus gracilirostris	Least Concern
637	Yellow Warbler	Chloropeta natalensis	Least Concern

Roberts no.	English Name	Scientific Name	IUCN Status
638	African Sedge Warbler	Bradypterus baboecala	Least Concern
643	Willow Warbler	Phylloscopus trochilus	Least Concern
651	Longbilled Crombec	Sylvietta rufescens	Least Concern
661	Grassbird	Sphenoeacus afer	Least Concern
664	Zitting Cisticola	Cisticola juncidis	Least Concern
665	Desert Cisticola	Cisticola aridulus	Least Concern
666	Cloud Cisticola	Cisticola textrix	Least Concern
667	Ayres' Cisticola	Cisticola ayresii	Least Concern
677	Levaillant's Cisticola	Cisticola tinniens	Least Concern
681	Neddicky	Cisticola fulvicapillus	Least Concern
683	Tawnyflanked Prinia	Prinia subflava	Least Concern
685	Blackchested Prinia	Prinia flavicans	Least Concern
686.1	Spotted Prinia	Prinia hypoxantha	Least Concern
689	Spotted Flycatcher	Muscicapa striata	Least Concern
690	Dusky Flycatcher	Muscicapa adusta	Least Concern
694	Black Flycatcher	Melaenornis pammelaina	Least Concern
698	Fiscal Flycatcher	Sigelus silens	Least Concern
710	Paradise Flycatcher	Terpsiphone viridis	Least Concern
713	Cape Wagtail	Motacilla capensis	Least Concern
716	African Pipit	Anthus cinnamomeus	Least Concern
717	Longbilled Pipit	Anthus similis	Least Concern
718	Plainbacked Pipit	Anthus leucophrys	Least Concern
719	Buffy Pipit	Anthus vaalensis	Least Concern
720	Striped Pipit	Anthus lineiventris	Least Concern
725	Yellowbreasted Pipit	Anthus chloris	Least Concern
727	Cape Longclaw	Macronyx capensis	Least Concern
731	Lesser Grey Shrike	Lanius minor	Least Concern
732	Fiscal Shrike	Lanius collaris	Least Concern
733	Redbacked Shrike	Lanius collurio	Least Concern
736	Southern Boubou	Laniarius ferrugineus	Least Concern

Roberts no.	English Name	Scientific Name	IUCN Status
740	Puffback	Dryoscopus cubla	Least Concern
741	Brubru	Nilaus afer	Least Concern
746	Bokmakierie	Telophorus zeylonus	Least Concern
758	Indian Myna*	Acridotheres tristis	Least Concern
759	Pied Starling	Spreo bicolor	Least Concern
760	Wattled Starling	Creatophora cinerea	Least Concern
761	Plumcoloured Starling	Cinnyricinclus leucogaster	Least Concern
764	Glossy Starling	Lamprotornis nitens	Least Concern
769	Redwinged Starling	Onychognathus morio	Least Concern
772	Redbilled Oxpecker	Buphagus erythrorhynchus	Least Concern
787	Whitebellied Sunbird	Cinnyris talatala	Least Concern
792	Black Sunbird	Chalcomitra amethystina	Least Concern
796	Cape White-eye	Zosterops virens	Least Concern
799	Whitebrowed Sparrowweaver	Plocepasser mahali	Least Concern
801	House Sparrow	Passer domesticus	Least Concern
803	Cape Sparrow	Passer melanurus	Least Concern
804	Southern Greyheaded Sparrow	Passer diffusus	Least Concern
805	Yellowthroated Sparrow	Petronia superciliaris	Least Concern
807	Thickbilled Weaver	Amblyospiza albifrons	Least Concern
810	Spectacled Weaver	Ploceus ocularis	Least Concern
811	Spottedbacked Weaver	Ploceus cucullatus	Least Concern
813	Cape Weaver	Ploceus capensis	Least Concern
814	Masked Weaver	Ploceus velatus	Least Concern
816	Golden Weaver	Ploceus xanthops	Least Concern
820	Cuckoofinch	Anomalospiza imberbis	Least Concern
821	Redbilled Quelea	Quelea quelea	Least Concern
824	Red Bishop	Euplectes orix	Least Concern
826	Yellow-crowned Bishop	Euplectes afer	Least Concern
827	Yellowrumped Widow	Euplectes capensis	Least Concern
828	Redshouldered Widow	Euplectes axillaris	Least Concern

Roberts no.	English Name	Scientific Name	IUCN Status
829	Whitewinged Widow	Euplectes albonotatus	Least Concern
831	Redcollared Widow	Euplectes ardens	Least Concern
832	Longtailed Widow	Euplectes progne	Least Concern
840	Bluebilled Firefinch	Lagonosticta rubricata	Least Concern
842	Redbilled Firefinch	Lagonosticta senegala	Least Concern
844	Blue Waxbill	Uraeginthus angolensis	Least Concern
846	Common Waxbill	Estrilda astrild	Least Concern
850	Swee Waxbill	Estrilda melanotis	Least Concern
852	Quail Finch	Ortygospiza atricollis	Least Concern
854	Orangebreasted Waxbill	Amandava subflava	Least Concern
855	Cutthroat Finch	Amadina fasciata	Least Concern
856	Redheaded Finch	Amadina erythrocephala	Least Concern
857	Bronze Mannikin	Lonchura cucullata	Least Concern
860	Pintailed Whydah	Vidua macroura	Least Concern
862	Paradise Whydah	Vidua paradisaea	Least Concern
864	Black Indigobird	Vidua funerea	Least Concern
867	Village Indigobird	Vidua chalybeata	Least Concern
869	Yelloweyed Canary	Serinus mozambicus	Least Concern
870	Blackthroated Canary	Serinus atrogularis	Least Concern
872	Cape Canary	Serinus canicollis	Least Concern
877	Bully Canary	Serinus sulphuratus	Least Concern
881	Streakyheaded Canary	Serinus gularis	Least Concern
884	Goldenbreasted Bunting	Emberiza flaviventris	Least Concern
885	Cape Bunting	Emberiza capensis	Least Concern
886	Rock Bunting	Emberiza tahapisi	Least Concern

Appendix F: Expected Reptile Species List

Family	Species	Common Name
Agamidae	Agama aculeata	Ground agama
Aparallactus	Aparallactus capensis	Black Headed centipede-eater
Colubridae	Psammophylax tritaeniatus	Three-lined grass snake
Colubridea	Psammophylax rhombeatus	Spotted skaapsteker
Colubridea	Lycodonomorphus rufulus	Common water snake
Colubridea	Lamprophis capensis	Brown house snake
Colubridea	Lamprophis inornatus	Olive house snake
Colubridea	Lamprophis guttatus	Spotted rock snake
Colubridea	Lamprophis aurora	Aurora house snake (LC)
Colubridea	Lycophidion capensis	Common wolf snake
Colubridea	Duberria lutrix	Common slug eater
Colubridea	Pseudaspis cana	Mole snake
Colubridea	Amplorhinus mutimaculatus	Many spotted snake
Colubridea	Dasypeltis inornata	Southern brown egg-eater
Colubridea	Crotaphopeltis hotamboeia	Herald snake
Colubridea	Lamprophis fuscus	Yellow bellied house snake
Cordylidae	Cordylus giganteus	Giant girdled lizard
Cordylidae	Pseudocordylus melanotus	Drakensberg crag lizard
Elapidea	Elapsoidea sundevalli	Sundevall's garter snake
Elapidea	Hemachatus haemachatus	Rinkhals
Elapidea	Homoroselaps dorsalis	Striped Harlequin Snake
Gekkonidae	Lygodactylus ocellatus	Spotted dwarf gecko
Gerrhosauridae	Tetradactylus breyeri	Breyer's long-tailed seps
Homoroselaps	Homoroselaps lacteus	Spotted harlequin snake
Lamprophiidae	Psammophylax rhombeatus rhombeatus	Spotted Grass Snake
Leptotyphlopidae	Leptotyphlops scutifrons	Peters thread snake
Pelomedusidae	Pelomedusa subrufa	Marsh terrapin
Pythonidae	Python natalensis	Southern African python (V)
Scincidae	Acontias gracilicauda	Slendertail lance skink
Scincidae	Trachylepis punctatissima	Speckled Rock Skink

Family	Species	Common Name
Scincidea	Acontias breviceps	Short headed legless skink
Scincidea	Trachylepsis capensis	Cape skink
Scincidea	Trachylepsis varia	Variable skink
Scincidea	Trachylepsis striata	Striped skink
Typhlopidae	Typhlops bibronii	Bibron's blind snake
Varanidea	Veranus niloticus	Water monitor
Viperidea	Causus rhombeatus	Rhombic night adder
Viperidea	Bitis arietans	Puff adder

Appendix G: Expected Amphibian Species List

Family	Species	Common Name
Bufonidae	Bufo gutturalis	Guttural toad
	Amietophrynus regularis	African common toad
	Amietophrynus maculatus	Flat-backed toad
Hyperoliidae	Hyperolius marmoratus	Painted reed frog
	Kassina senegalensis	Bubbling Kasina
	Semnodactylus wealii	Rattling frog
Pipidae	Xenopusa laevis	Common platanna
Pyxicephalidae	Amietia angolensis	Common river frog
	Amietia fuscigula	Cape river frog
	Cacosternum boettgeri	Common Caco
	Strongylopus fasciatus	Striped stream frog
	Strongylopus grayii	Clicking stream frog
	Strongylopus wageri	Plain stream frog (NT)
	Tomopterna cryptotis	Tremelo's sand frog
	Tomopterna natalensis	Tandy's sand frog
Ranidae	Hyperolius sp.	-
	Ptychadena porosissima	Striped grass frog
	Amietia angolensis	Common river frog
	Rana fasciatus	-
	Rana sp.	-