

ECOLOGICAL & WETLAND ASSESSMENT REPORT

Northern Spark 428 (Pty) Ltd

Brakfontein Diamond Prospecting Operation

Address: 46 Marulani Lodge 755 Wapadrand Road Wapadrand 0081

Tel: 082 992 1261 Email: BosciaEcology@gmail.com

Northern Spark 428 (Pty) Ltd

Remaining Extent of the Farm Brakfontein 276

Districts of Hopetown Northern Cape Province

Ecological & Wetland Assessment Report in application for Environmental Authorisation related to a Diamond Prospecting Right

June 2023

EXECUTIVE SUMMARY

Northern Spark 428 Pty (Ltd) is proposing the prospecting of Diamonds on the Remaining Extent of the Farm Brakfontein 276, near Douglas in the District of Hopetown, Northern Cape Province. They have submitted a Prospecting Right application, which triggers the requirement to apply for Environmental Authorisation. For this, an ecological and wetland assessment is required to consider the impacts that the proposed activities might have on the ecosystems of the property, and therefore Boscia Ecological Consulting has been appointed by the applicant to conduct an assessment and provide an ecological and wetland assessment report. This report considers the impacts that the proposed activities might have on the ecological integrity of the property. It describes the characteristics of terrestrial, aquatic and wetland habitats in the proposed prospecting area, identifies the source of impacts from the prospecting operation and assesses these impacts, as well as the residual impacts after closure.

A desktop study and field investigations were performed to obtain ecological and biodiversity information for the proposed study area and three plant communities were identified on site. Two depressional wetlands are of very high sensitivity due to their vital ecological functionality and significance. The calcrete terraces are of high sensitivity, primarily because of the high number of the nationally protected tree (*Boscia albitrunca*) that occur here and the suitable habitat and overlapping distribution range for protected birds. The most profound impacts are expected to be related to the cumulative loss of natural terrestrial habitat on a landscape scale as well as the removal of the nationally protected tree, *Boscia albitrunca*. A number of provincially protected species also occur on site. Before any of these species are damaged or removed, permits need to be obtained from the Northern Cape Department of Environment and Nature Conservation and/or Department of Agriculture, Forestry and Fisheries, at least three months prior to any clearance of affected species.

The wetlands are sensitive and important for the maintenance of biodiversity in the form of unique habitats they provide for freshwater crustaceans. Even though rarely wet, these wetlands harbour egg banks of these specialised freshwater invertebrates in the dry sediment. Protecting the sediment insitu is therefore vital. Before any direct activities can take place within a wetland, a water use licence needs to be obtained for Department of Water and Sanitation prior to such activities.

All things considered, authorisation for the proposed prospecting operation can be granted if the applicant commits to strictly adhere to effective avoidance, management, mitigation, and rehabilitation measures.

TABLE OF CONTENTS

EXE	CUTI	VE SI	UMMARY	i
TAE	BLE O	F CO	NTENTS	ii
LIST	OF	FIGU	RES	iv
LIST	OF	TABL	ES	vii
LIST	OF	APPE	NDICES	ix
1.	INT	ROD	UCTION	1
1	.1.	Bacl	<pre></pre>	1
1	.2.	Scop	pe of study	3
1	.3.	Deta	ails of the specialist consultant	3
1	.4.	Des	cription of the proposed activity	5
2.	ME	тно	DOLOGY	6
2	.1.	Data	a collection	6
2	.2.	Flor	a	6
	2.2.	1.	Field survey	6
	2.2.	2.	Desktop survey	6
2	.3.	Fau	na	7
	2.3.	1.	Field survey	7
	2.3.	2.	Aquatic invertebrate cultures	7
	2.3.	3.	Desktop survey	8
2	.4.	Wet	land assessment procedures	8
2	.5.	Sens	sitivity mapping and assessment	15
2	.6.	Imp	act assessment and mitigation	16
2	.7.	Assu	umptions and limitations	18
3.	DES	SCRIP	TION OF THE AFFECTED ENVIRONMENT	18
3	.1.	Curr	ent and historic land use	18
3	.2.	Geo	logy, soils, and topography	20
3	.3.	Veg	etation	20
	3.3.	1.	Broad-scale vegetation patterns	20
	3.3.	2.	Fine-scale vegetation patterns	23
	3.3.	3.	Population of sensitive, threatened and protected plant species	28
	3.3.	4.	Weeds and invader plant species	29
	3.3.	5.	Indicators of bush encroachment	31

3	3.4.	Fau	nal communities	32
	3.4	.1.	Mammals	32
	3.4	.2.	Reptiles	34
	3.4	.3.	Amphibians	36
	3.4	.4.	Avifauna	37
	3.4	.5.	Fish	40
	3.4	.6.	Invertebrates	40
3	3.5.	Wat	er resources	45
	3.5	.1.	Water resources setting	45
	3.5	.2.	Watercourse delineation and classification	48
	3.5	.3.	Wetland Health Assessment (PES)	55
	3.5	.4.	Wetland Ecological Importance and Sensitivity	59
	3.5	.5.	Wetland functional importance	61
	3.5	.6.	Recommended wetland buffer zone	64
	3.6.	Criti	cal biodiversity areas and broad-scale processes	66
	3.7.	Site	sensitivity	70
4.	EC	OLOG	ICAL IMPACT ASSESSMENT	
2	4.1.	тор	ography, soil erosion and associated degradation of landscapes	72
	4.1	.1.	Alteration of soil character and quality	
	4.1	.2.	Loss of soil fertility	
	4.1	.3.	Soil erosion	76
2	4.2.	Veg	etation and floristics	77
	4.2	.1.	Loss of indigenous vegetation	77
	4.2	.2.	Loss of Red data and/or protected floral species	77
	4.2	.3.	Introduction or spread of alien species	79
	4.2	.4.	Encouraging bush encroachment	79
2	4.3.	Fau	na	80
	4.3	.1.	Habitat fragmentation	80
	4.3	.2.	Disturbance, displacement and killing of fauna	81
4	1.4.	Wat	er resources	83
	4.4	.1.	Alteration/destruction of watercourses	83
	4.4	.2.	Siltation of surface water	83
4	4.5.	Broa	ad-scale ecological processes	84
5	~~	NCU		
э.	U	INCLU	SIGN, RECONNICINDATIONS AND OPINION REGARDING AUTHORISA	
6.	RE	FERE	NCES	87

LIST OF FIGURES

Figure 1.	The location of the Brakfontein prospecting area is indicated in red2
Figure 2.	The area on Brakfontein, where core prospecting activities are planned5
Figure 3.	The extent of the map filter (large black square) applied on the POSA website to extract species information for the study area. The small red squares indicate historical data points
Figure 4.	The existing land use features on the Brakfontein prospecting right area19
Figure 5.	The distribution of geological features in the study area21
Figure 6.	The distribution of land types in the study area
Figure 7.	The broad-scale vegetation units (Mucina and Rutherford 2012) present in the study area.
Figure 8.	The distribution of fine-scale plant communities in the study area24
Figure 9.	The calcrete terraces are occupied by a shubland community with a tall shrub layer, growing among a grassy matrix intermixed with low shrubs (top). The shallow calcareous soil is covered with biological soil crusts (bottom)
Figure 10.	The vegetation community on sand includes a dominant grass layer intermixed with low shrubs, with tall shrubs sparsely scattered throughout (left). Biological soil crusts are common (right)
Figure 11.	The plant composition of the two pans on Brakfontein differ substantially although both have been significantly infested by <i>Prosopis velutina</i> . The pan in the west is primarily represented by grassland (top), while the pan in the east is represented by shrubland (bottom)
Figure 12.	The different growth forms of the protected tree <i>Boscia albitrunca</i> found in the study area
Figure 13.	Evidence of fossorial mammal activity recorded during the field visit

Figure 14.	Reptile species of special importance that are expected to occur in the study area (top).
	The Agama was frequently encountered during the field survey and the Marsh Terrapin
	is expected to occur in the pans (bottom)
Figure 15.	The Giant Bull Frog's distribution range overlaps with that of the study area and is likely
	to occur in the ephemeral pan in the west (left), while the South African endemics, i.e.,
	Raucous Toad (middle) and Southern Pygmy Toad (right) could potentially occur in the
	terrestrial habitats, before migrating to temporary pools for breeding in the rainy season.
Figure 16.	Bird species of conservation concern that are expected to occur in the study area39
Figure 17.	Terrestrial invertebrates that have been recorded in the study area43
Figure 18.	Crustacean taxa that hatched from sediment collected in the Brakfontein depressional
	wetlands. Their egg banks are found in the first few centimetres of the soil44
Figure 19.	The locality of the proposed prospecting area in relation to the quaternary catchments
	of the Lower Orange Water Management Area46
Figure 20.	The location of SAIIAE wetlands on, and nearby, the proposed prospecting right area. 47
Figure 21.	The delineation of watercourses in the prospecting right area, along with their GIS buffer
	requirements
Figure 22.	A digital elevation model, indicating the catchment areas of the depressional wetlands
U	on Brakfontein
Figure 23.	Conceptual illustration of a depressional wetland, showing the typical landscape setting
	and the dominant inputs, throughputs and outputs of water (Ollis et al. 2013)53
Figure 24.	Key wetland descriptors for the depressional wetlands on Brakfontein. The substrata
	comprised sandy loam soil on Pan 1 and silty clay soil on Pan 2. The floristic compositions
	differed, with Pan 1 being dominated by grassland, and Pan 2 by shrubland. Both pans
	were highly infested by the declared invasive <i>Prosopis velutina</i> 54
Figure 25.	The depressional wetland assessment units on Brakfontein, indicating their PES56

Figure 27.	Refined landcover categories and disturbance units according to NLC2018, associated	
	with the depressional wetlands on Brakfontein58	
Figure 28.	Final aquatic impact buffer requirements, including practical management considerations, for the depressional wetlands on Brakfontein	
Figure 29.	The study area in relation to the Northern Cape Critical Biodiversity Areas67	
Figure 30.	Environmental sensitivities in the study area, according to the National Web based Environmental Screening Tool	
Figure 31.	The distribution of mining properties and crop irrigation in the study region69	
Figure 32.	A sensitivity map for the Brakfontein prospecting area71	

LIST OF TABLES

Table 1.	Criteria used to assess the significance of the impacts
Table 2.	Plant species from the region that are of conservation concern. Those recorded in the study
	area are indicate with *
Table 3.	The categorisation of weeds and invader plant species, according to NEMBA and CARA. 31
Table 4.	A list of declared weeds and invasive species recorded in the study region
Table 5.	A list of declared indicators of bush encroachment in the Northern Cape, which were
	recorded in the study area32
Table 6.	A list of mammal species that are likely to be found in the study area, which are of
	conservation concern in terms of the international (IUCN) Red List and the 2016 Mammal
	Red List of South Africa Lesotho and Swaziland (EWT 2016). Their respective NCNCA
	schedule numbers are indicated in superscript33
Table 7.	Bird of conservation concern that are likely to occur on site. Species are indicated in terms
	of the IUCN, SA Red Data Book and Schedule 1 of the NCNCA
Table 8.	Invertebrate species found in the Northern Cape that are of conservation concern 41
Table 9.	Catchment characteristics for the Boegoeberg quaternary catchments (Smook et al. 2002).
Table 10.	Percentage of inland wetland spatial extent according to the present ecological status per
	wetland type of the Upper Karoo Bioregion46
Table 11.	Summary of the results for the application of Levels 1 to 6 of the Classification System (Ollis
	et al. 2013), to the depressional wetlands. Confidence ratings at each level are given in
	brackets51
Table 12.	Summarised results of Wet-Health level 2 assessments (Macfarlane et al. 2020) to the
	Brakfontein wetlands

Table 13.	Summary of the results for the application of an EIS assessment (Duthie 1999) to the
	depressional wetlands on Brakfontein60
Table 14.	Summary of the results of a WET-EcoServices (Version 2) assessment (Kotze et al. 2020), to
	Pan 1 on Brakfontein
Table 15.	Summary of the results of a WET-EcoServices (Version 2) assessment (Kotze et al. 2020), to
	Pan 2 on Brakfontein
Table 16.	The recommended final aquatic impact buffer requirements for the Brakfontein wetlands.
Table 17.	A detailed analysis of ecological impacts identified for the Brakfontein prospecting
	operation73

LIST OF APPENDICES

- **APPENDIX 1:** Plant species list
- APPENDIX 2: Fauna species list
- **APPENDIX 3:** A photographic guide for species of conservation concern that occur on site

1. INTRODUCTION

1.1. Background information

Northern Spark 428 Pty (Ltd) is proposing the prospecting of Diamonds on the Remaining Extent of the Farm Brakfontein 276 (from heron referred to as Brakfontein). The prospecting right area is located within the Hopetown District Municipality of the Northern Cape Province. It lies approximately 65 km south-west of the town Douglas, on a gravel road that turns of from the R357 leading to Prieska (Figure 1). The total extent of the prospecting right area is ± 2 145 ha.

Northern Spark has submitted a Prospecting Right application, which triggers the requirement for Environmental Authorisation. For this, an ecological and wetland assessment is required to consider the impacts that the proposed activities might have on the ecosystems of the property, and therefore Boscia Ecological Consulting has been appointed by the applicant to conduct an assessment and provide an ecological and wetland assessment report.

This assessment report describes the characteristics of terrestrial, aquatic and wetland habitats in the proposed prospecting area, identifies the biodiversity and species of conservation concern, identifies invasive and encroaching species and their distribution, indicates the source of impacts from the prospecting operation and assesses these impacts as well as the residual impacts after closure.

A variety of avoidance and mitigation measures associated with each identified impact are recommended to reduce the likely impact of the operation. Ecological responsibilities pertaining to relevant conservation legislation are also indicated. These should all be included in the EMPR.

Figure 1. The location of the Brakfontein prospecting area is indicated in red.

1.2. Scope of study

The specific terms of reference for the study include the following:

- conduct a desktop study and field investigation to identify and describe different ecological habitats (terrestrial, aquatic and wetland) and provide an inventory of biodiversity, i.e. communities/species/taxa and associated species of conservation concern within the environment that may be affected by the proposed activity;
- identify the relative ecological sensitivity of the project area;
- produce an assessment report that:
 - indicates identified habitats and fauna and flora species,
 - delineates and classifies wetlands,
 - indicates the ecological sensitivity of habitats and conservation values of species, including Wetland Health Assessment (PES), Wetland Ecological Importance and Sensitivity (EIS) and Wetland Functional Assessment (Eco-Services)
 - determines the potential impacts of the project on the ecological integrity,
 - provides mitigation measures and recommendations to limit project impacts,
 - indicates ecological responsibilities pertaining to relevant conservation legislation.

1.3. Details of the specialist consultant

Company Name	Boscia Ecological Consulting cc	Registration No:	2011/048041/23
Address	46 Marulani Lodge 755 Wapadrand Road Wapadrand 0081		
Contact Person	Dr Elizabeth (Betsie) Milne (Pr. Sci. Nat)		
Contact Details	Cell: 082 992 1261	Email: BosciaEcolo	ogy@gmail.com
Qualifications	Professional Natural Scientist - Ecologica PhD Botany (Nelson Mandela Metropolit Masters Environmental Management (Un BTech Nature Conservation (Tshwane Un	l Science (Registrati an University), niversity of the Free niversity of Technolo	on No: 131395) e State), ogy)

Declaration of independence

I, Elizabeth (Betsie) Milne, owner of Boscia Ecological Consulting, declare that I:

- act as the independent specialist in this application;
- regard the information contained in this report as it relates to my
- specialist input/study to be true and correct;
- do not have, and will not have any financial interest in the undertaking of the activity; other than the remuneration of work performed in terms of the Environmental Impact Assessment Regulations, 2014 and any specific environmental management Act;
- have and will not have any vested interest in the activity proceedings;
- have no, and will not engage in conflicting interest in the undertaking of the activities;
- undertake to disclose to the component authority any material information that have or may have the potential to influence the decision of the competent authority, or the objectivity of any report, plan or document required in terms of the Environmental Impact Assessment Regulations, 2014 and any specific environmental management Act;
- will provide the competent authority with access to all information at my disposal regarding the study.

1.4. Description of the proposed activity

The prospecting operation is primarily based on alluvial diamond deposits that are restricted to the paleo terraces of the Orange River (Figure 2). The deposits will be sampled by means of pitting and trenching (including bulk sampling) using a phased approached. Approximately 100 pits (2 m x 3 m x 0.5 - 5 m each) and 30 trenches (100 m x 50 m x 0.5 - 5 m each) will be created for bulk sampling. This will be performed by means of an opencast method using heavy earthmoving machinery. Vegetated soil or overburden will be stripped, and the underlying gravels will be excavated, screened, and treated through a rotary plan plant before fed to a sorting plant for final recovery. The rough diamond product will then be removed for further beneficiation. No ore processing reagents are required or used in the treatment of the ore. An estimated total volume of 1 200 m³ and 300 000 m³ for pitting and trenching will be processed, but haul roads will also be created to access the prospecting areas. Supporting infrastructure include temporary office, workshop and ablution facilities with chemical toilets, storm water control berms, water tanks, fuel storage facility, wash bay, salvage yard, waste disposal site, a central processing plant and pipeline infrastructure.

Figure 2. The area on Brakfontein, where core prospecting activities are planned.

2. METHODOLOGY

2.1. Data collection

The study comprised a combination of field and desktop surveys for data collection on fauna and flora. The fieldwork component was conducted on 25 November 2022. Data for the desktop assessment was obtained from the quarter degree squares that include the study area (2923AC and 2923AD).

2.2. Flora

2.2.1. Field survey

For the field work component, satellite images were used to identify homogenous vegetation units within the proposed prospecting area. Representative sampling plots were allocated in these units and sampled with the aid of a GPS to characterise the species composition. The following quantitative data was collected:

- Species composition
- Species percentage cover
- Amount of bare soil and rock cover
- Presence of biotic and anthropogenic disturbances

Additional checklists of plant species were compiled during the surveys by traversing a linear route and recording species as they were encountered in each unit.

2.2.2. Desktop survey

For the desktop component, the South African National Vegetation Map (Mucina and Rutherford 2006) was used to obtain data on broad scale vegetation types. Further searches were undertaken specifically for Red List plant species within the current study area. Historical occurrences of Red List plant species were obtained from the SANBI: POSA database (Figure 3). The IUCN conservation status of plants in the species list was also extracted from the SANBI database and is based on the Threatened Species Programme (SANBI 2020).

Figure 3. The extent of the map filter (large black square) applied on the POSA website to extract species information for the study area. The small red squares indicate historical data points.

2.3. Fauna

2.3.1. Field survey

The faunal field survey was conducted concurrent with the vegetation surveys. Habitats on site were assessed to compare with the habitat requirements of Red Data species. The presence of faunal species was determined using the following methods:

- Identification by visual observation,
- Identification of bird and mammal calls,
- Identification of signs (spoor, faeces, burrows, and nests).

2.3.2. Aquatic invertebrate cultures

To verify the presence of branchiopods, dry sediment was collected from the ephemeral pans on site. A hand spade was used to remove at least 1L of the top 5 cm at a minimum of three plots. Sub-samples were then inundated in containers for a minimum of 14 days in a temperature-controlled incubator with aeration, to simulate average habitat conditions for the region. All hatchlings were identified under the microscope to the lowest possible taxonomic rank. Water quality variables (pH and Electrical Conductivity (uS/cm)) were measured after three days of inundation using a handheld multi meter.

2.3.3. Desktop survey

A lists of mammals, reptiles, amphibians, birds, fish, and invertebrates, which are likely to occur in the study area, were obtained based on distribution records from the literature, including Friedmann and Daly (2004) and Stuart and Stuart (2015) for mammals, Alexander and Marais (2007) and Bates et al. (2014) for reptiles, Du Preez and Carruthers (2009) for amphibians, Gibbon (2006) for birds, Kleynhans (2007) for fish and Thirion (2007), Picker et al. (2004) and Griffiths et al. (2015) for invertebrates. A map of important bird areas (BirdLifeSA 2015) was also consulted.

Additional information on faunal distribution was extracted from the various databases hosted by the ADU web portal, <u>http://adu.org.za</u>, as well as from the Baboon Spider Atlas <u>https://www.baboonspideratlas.co.za/</u>, Freshwater Biodiversity Information System (FBIS) <u>https://freshwaterbiodiversity.org/</u>, and iNaturalist <u>https://www.inaturalist.org/</u>. The faunal species lists provided are based on species which are known to occur in the broad geographical area, as well as a preliminary assessment of the availability and quality of suitable habitat at the site.

The likelihood of Red Data species occurring on site has been determined using the distribution maps in the Red Data reference books (Friedmann and Daly 2004, Minter et al. 2004, Bates et al. 2014, Taylor et al. 2015, ADU 2016) and comparing their habitat preferences with the habitats described from the field survey. The conservation status of each species is also listed, based on the IUCN Red List Categories and Criteria (IUCN 2022) and/or the various regional and national red data books/lists for the respective taxa.

2.4. Wetland assessment procedures

a) Wetland and riparian areas delineation

Wetlands and riparian areas were delineated according to methodology adapted from the delineation procedure as set out by Rountree et al. (2008). Even though the presence of all indicators included in this delineation procedure provides a logical, defensible, and technical basis for identifying an area as wetland or riparian area; these procedures were primarily developed for wetlands and riparian areas in mesic and humid regions. The soil and vegetation descriptors outlined in these procedures do not fully accommodate those wetland and riparian areas found in more arid regions. Therefore, delineation of wetlands and riparian areas were performed by estimating their boundaries from satellite imagery and topographical maps, and then drawing it onto the site map, using clues such as topography, differences in colour, shading, texture, and elevation. These boundaries were then verified in the field. The field verification further considered topography, vegetation and alluvial soils or deposited material.

In terms of topography, terrain unit indicators were considered:

• **Terrain Unit Indicator** helps identifying those parts of the landscape where wetlands are most likely to occur. Typical terrain units are depicted below:

b) Wetland Classification

The wetlands were subsequently classified according to the classification procedure for inland systems (Level 2) developed by Ollis et al. (2013). The inland component of the Classification System has a tiered structure (see below diagram), which progresses from Regional Setting (Level 2) and Landscape Units (Level 3), to Hydrogeomorphic (HGM) Units at the finest spatial scale (Level 4). At Level 5, Inland Systems are distinguished from each other based on the hydrological regime and, in the case of open waterbodies, the inundation depth class. At Level 6, six 'descriptors' have been incorporated into the Classification System. These descriptors allow you to distinguish between aquatic ecosystems with different structural, chemical, and/or biological characteristics.

Northern Spark - Brakfontein Ecological & Wetland Assessment

c) Wetland Health Assessment

A Present Ecological State (PES) assessment was conducted to establish baseline health for wetlands in the study area, based on WET-Health Version 2 (Macfarlane et al. 2020). The WET-Health tool is designed to assess the PES of a wetland by scoring the perceived deviation from a theoretical reference condition. The tool considers wetland PES to be a function of three core inter-related drivers, namely hydrology, geomorphology, and water quality. The biology of the wetland responds to changes in these drivers. The suite of tools developed for WET-Health Version 2 therefore assesses wetland PES based on four modules: (1) Hydrology, (2) Geomorphology, (3) Water quality, and (4) Vegetation:

Vegetation generally plays a central role in the biology of wetlands located in mesic and humid regions. However, in more arid environments, such as Brakfontein, wetlands are often naturally devoid of typical wetland vegetation, especially if wetlands are ephemeral. Wet-Health Version 2 recognises that their recommended method may not adequately cater for every situation, and expert review and refinement of impact scores is encouraged based on additional information and expert interpretation. This is accommodated in the Level 2 assessments by allowing the assessor to review and moderate scores with appropriate justification. Therefore, an adapted Wet-Health level 2 assessment was conducted to determine the PES of wetlands on Brakfontein.

A Level 2 approach is a rapid but robust field-based wetland PES assessment that includes a series of separate modules, brought together in an integrated assessment:

Wetland Mapping	1. Wetland Attributes	2A. Wetland Landcover	3A. Catchment Questions	Hydrology Module	4A. WET-Health (Review)
 Delineate wetland boundary 	Capture the following information for the wetland being assessed:	Map and capture the extent of each landcover type in the wetland. LC Scores (Wetland)	 Complete a series of focused questions pertaining to the wetland's catchment to supplement the land- cover information, and thereby increase the 	Detailed working of the Hydrology module is presented.	A detailed summary of the outcomes of the assessment is presented.
	 Natural wetness regimes Broad vegetation attributes 	Default impact intensity scores are allocated to each landcover type in the	resolution of the assessment.		 necessary. Provide justification for any changes made.
	 Perimeter of wetland (m) Down-slope length of wetland (m) 	wetland.	3B. Wetland Disturbance Units	Geomorphology Module	 Rate the expected Trajectory of change for each module.
	 Elevation change over length (m) 	2B. Catchment Landcover	 Indicate the number of disturbance units identified. 	Detailed working of the Geomorphology module is presented.	
	 Propensity to erode (Category) Dominant sediment 	Map and capture the extent of each landcover type in each area of	 Map and calculate the extent of each DU 		
	accumulation process	Influence:	 Describe & rate impacts to wetland vegetation in each disturbance unit. 		
Catchment Mapping	additional catchment information:	LC Scores (Catchment)	3C. Wetland Questions	Water Quality Module	4B. WET-Health (Summary)
Map topographical catchment Sub-divide into separate areas of influence including: Wetland buffer Catchment area a utified of wetland	Quaternary catchment HydrogeologicalType Setting Regional aquifer characteristics (where relevant) Number of dams in the catchment	Default impact intensity scores are allocated to each landcover type in the wetland's catchment.	♦ For each disturbance unit complete a series of questions dealing with stream channel modification, infling, sediment deposition, dams, etc. within the unit.	Detailed working of the Geomorphology module is presented.	A concise summary of the results of the assessment is presented.
 buffer: Inflowing stream buffers 	HGM Weights	Level 1B (Summary)	Point Source Scores	Vegetation Module	
Broader catchment					
	Weights are automatically assigned to each HGM unit. These are based on a conceptual understanding of the importance of	The outcomes of the Level 18 assessment are presented in this tab.	Default impact intensity scores for different point- source discharges.	Detailed working of the Vegetation module is presented.	

The WET-Health tool uses algorithms to produce impact intensity scores for each module, which are then combined in a standardised manner to produce an overall impact intensity score for the assessed wetland. These intensity scores correlate to an overall ecological category:

Ecological Category	Description	Impact score	PES Score (%)
Α	Unmodified, natural.	0-0.9	91% - 100%
В	Largely natural with few modifications / in good health. A small change in natural habitats and biota may have taken place but the ecosystem functions are still predominantly unchanged.	1 – 1.9	81% - 90%
с	Moderately modified / fair condition. Loss and change of natural habitat and biota have occurred, but the basic ecosystem functions are still predominantly unchanged.	2 – 3.9	61% - 80%
D	Largely modified / poor condition. A large loss of natural habitat, biota and basic ecosystem functions has occurred.	4 – 5.9	41% - 60%
E	Seriously modified / very poor condition. The loss of natural habitat, biota and basic ecosystem functions is extensive.	6 – 7.9	21% - 40%
F	Critically modified / totally transformed. Modifications have reached a critical level and the lotic system has been modified completely with an almost complete loss of natural habitat and biota.	8 - 10	0-20%

Trajectory of Change classes and symbols used to describe the predicted nature of change in the state of a wetland from its present state given threats and vulnerability, are:

Trajectory class	Description	Symbol
Improve markedly	Likely to improve substantially over the next 5 years	$\uparrow\uparrow$
Improve	Likely to improve slightly over the next 5 years	\uparrow
Remain stable	Likely to remain stable over the next 5 years	\rightarrow
Deteriorate slightly	Likely to deteriorate slightly over the next 5 years	\downarrow
Deteriorate markedly	Likely to deteriorate substantially	$\downarrow\downarrow$

d) Wetland Ecological Importance and Sensitivity

An Ecological Importance and Sensitivity (EIS) assessment was conducted by using methodology adapted from Duthie (1999). For this assessment procedure, a series of determinants are considered using a ranking scale of 0 to 4, i.e. Very high = 4; High = 3, Moderate = 2; Marginal/Low = 1; None = 0:

Determinant			
PRIMARY DETERMINANTS			
1. Rare & Endangered Species			
2. Populations of Unique Species			
3. Species/taxon Richness			
4. Diversity of Habitat Types or Features			
5 Migration route/breeding and feeding site for wetland species			
6. Sensitivity to Changes in the Natural Hydrological Regime			
7. Sensitivity to Water Quality Changes			
8. Flood Storage, Energy Dissipation & Particulate/Element Removal			
9. Protected Status			
10. Ecological Integrity			

The median of the determinants is used to allocate an Ecological Management Class (EMC):

EIS Category	Mean range	EMC
Very high Wetlands that are considered ecologically important and sensitive on a national or even international level. The biodiversity of these wetlands is usually very sensitive to flow and habitat modifications.	> 3 and <= 4	A
High Wetlands that are considered to be ecologically important and sensitive. The biodiversity of these wetlands may be sensitive to flow and habitat modifications.	> 2 and <= 3	В
Moderate Wetlands that are considered to be ecologically important and sensitive on a provincial or local scale. The biodiversity of these wetlands is not usually sensitive to flow and habitat modifications.	> 1 and <= 2	С
Low/marginal Wetlands that are not ecologically important and sensitive at any scale. The biodiversity of these wetlands is ubiquitous and not sensitive to flow and habitat modifications.	> 0 and <= 1	D

e) Wetland Functional Assessment

To evaluate the ecosystem services supplied by the wetlands of the study area, an assessment was conducted according to guidelines provided in WET-EcoServices (Version 2) (Kotze et al. 2020). This assessment examines and rates the following services according to their degree of importance and the degree to which the service is provided:

		S	Flood att	enuat	tion		The spreading o floodwaters in t reducing the sev downstream	ut and slowing down he wetland, therel verity of floods	wn of oy			
	Indirect benefits	Indirect benefits Regulating and supporting benefit	Streamfle	ow re	gulation		Sustaining strea periods	mflow during low	flow			
				Sedi	iment tra	pping	The trapping an of sediment car	d retention in the ried by runoff wate	wetland ers			
			pport	pport	pport	ty enefits	Pho	sphate a	ssimilation	Removal by the wetland of phosphates carried by runoff waters		
			qualit ent be	Nitr	ate assim	nilation	Removal by the carried by runof	wetland of nitrate f waters	S			
etlands			Water hancem	Тохі	icant assi	milation	Removal by the metals, biocides runoff waters	wetland of toxicar and salts) carried	nts (e.g. by			
id by w			Reg	Reg	en	Eros	sion cont	rol	Controlling of er principally throu provided by veg	osion at the wetla Igh the protection etation	nd site,	
pplie			Carbon s	torage	9		The trapping of carbon by the wetlan principally as soil organic matter					
ervices su		Biodiversity maintenance					Through the provision of habitat and maintenance of natural process by the wetland, a contribution is made to maintaining biodiversity					
/stem so	nefits	ovisioning senefits	Provisior	of wa	ater for h	numan use	The provision of water extracted directly from the wetland for domestic, agriculture or other purposes					
Ecos			Provisior	ı of ha	arvestabl	e resources	The provision of natural resources from the wetland, including livestock grazing, craft plants, fish etc.					
	be	Pr	Food for	livest	ock	The provision of grazing for lives						
	Direct		Provisior	of cu	lltivated	foods	The provision of areas in the wetland favourable for the cultivation of foods					
		D Cultural benefits	Cultural and spiritual experience				Places of special cultural significance in the wetland, e.g. for baptisms or gathering of culturally significant plants					
			Tourism and recreation			l	Sites of value for tourism and recreation in the wetland, often associated with scenic beauty and abundant birdlife					
	Education and research			1	Sites of value in or research	the wetland for ed	ducation					
Score				< 0.5	0.5 – 1.2	1.3 – 2.0	2.1 – 2.8	> 2.8				
Rating of the likely extent to which a benefit is being supplied			Low	Moderately low	Intermediate	Moderately high	High					

f) Determining the recommended buffer zone

A buffer is required by the NWA to be assigned to all watercourses that fall within an area earmarked for development, to reduce the impacts to aquatic resources and protect the range of goods and services that these resources provide to society. The buffer zones for wetlands on site were determined according to guidelines set out in Macfarlane and Bredin (2017), accompanied by their Site-Based Wetland Buffer Model.

2.5. Sensitivity mapping and assessment

An ecological sensitivity map of the site was produced by integrating the information collected on site with the available ecological and biodiversity information available in the literature and various spatial databases.

The sensitivity mapping entails delineating different habitat units identified on the satellite images and assigning likely sensitivity values to the units based on their ecological properties, conservation value and the potential presence of species of conservation concern, as well as their probability of being affected by proposed activities.

The sensitivity of the different units identified in the mapping procedure increased with probability and was rated according to the following scale:

- Low: Areas of natural or transformed habitat with a low sensitivity where there is likely to be a negligible impact on ecological processes and biodiversity. Most types of activities can proceed within these areas with little ecological impact.
- Medium: Areas of natural or previously transformed land where the impacts are likely to be largely local and the risk of secondary impact such as erosion low. Activities within these areas can proceed with relatively little ecological impact provided that appropriate mitigation measures are taken.
- High: Areas of natural or transformed land where a high impact is anticipated due to the high biodiversity value, sensitivity or important ecological role of the area. These areas may contain or be important habitat for faunal species or provide important ecological services such as water flow regulation or forage provision. Activities within these areas are undesirable and should only proceed with caution as it may not be possible to mitigate all impacts appropriately.
- Very High: Critical and unique habitats that serve as habitat for species of conservation concern or perform critical ecological roles. These areas are essentially no-go areas for activities and should be avoided as much as possible.

2.6. Impact assessment and mitigation

The criteria used to assess the significance of the impacts are shown in Table 1. The different project activities and associated infrastructure were identified and considered in order to identify and analyse the various possible impacts. The limits were defined in relation to project characteristics. Those for severity, extent, duration and probability are subjective, based on rule-of-thumb and experience.

Natural and existing mitigation measures were considered. These natural mitigation measures were defined as natural conditions, conditions inherent in the project design and existing management measures, which alleviate impacts.

The Consequence value of the impacts was calculated by using the following formula:

CONSEQUENCE	v	PROBABILITY
(Severity + Spatial Scope + Duration)	~	(Frequency of activity + Frequency of impact)

Consequence of impacts is defined as follows:

Very Low: Impact would be negligible. Almost no mitigation and/or remedial activity would be needed, and any minor steps which might be needed would be easy, cheap and simple.

Low: Impact would have little real effect. Mitigation and/or remedial activity would be either easily achieved or little would be required or both.

Low – Medium: Impact would be real but not substantial within the bounds of those which could occur.Mitigation and/or remedial activity would be both feasible and fairly easily possible.

Medium – High: Impact would be real and rather substantial within the bounds of those which could occur. Mitigation and/or remedial activity would be feasible, but not necessarily possible without difficulty.

High: Impacts of substantial order. Mitigation and/or remedial activity would be feasible but difficult, expensive, time consuming or some combination of these.

Very High: Of the highest order possible within the bounds of impacts which could occur. There would be no possible mitigation and/or remedial activity to offset the impact at the spatial or time scale for which was predicted.

Waia	uh t	60	Severity Spatial scope (Extent)						D	ration								
weig	jiit	Seventy											Du					
5		Dis	sastrou	JS			Trans boundary effects						Per	Permanent				
4		Catastrophic / major					National / Severe environmental damage						Re	Residual				
3		High/ Critical / Serious					Regional effect							De	commiss	ioning		
2		Me	edium /	/ slightly	harm	nful	Immediate surroundings / local / outside mine fence								Life of operation			
1	1 Minimal/potentially						Slight permit deviation / on-site								Short term / construction (6 months – 1 yrs)			
0		lns ha	signific Irmful	ant / no	n-		Activity specific / No effect / Controlled							Imr (0 -	Immediate $(0 - 6 \text{ months})$			
Woic	uht n	umb	or				1			2			2					
Frea	uend	unio cv								2			3		-			
								kely	F	Rare Low likelihoo			od	Probable / Certain			ain	
Probability		ty	impact				Practica	lly ble	Conceivable but verv unlikelv			Only remotely		ely	Unusual but		Definite	
		Frequency of activity				A	Annually or 6 monthly /				Infrequent			Frequently		Life of operation		
	activity																	
	_						(Seve	erity -	CONSE	QUENC Scope	Ε + [Durat	ion)					
ct)	1	1	2	3	4		5	6	7	8		9	10	11	12	13	14	15
impa	- 2	2	4	6	8		10	12	14	16		18	20	22	24	26	28	30
icv of	, 3	3	6	9	12		15	18	21	24		27	30	33	36	39	42	45
T≺ quen		1	8	12	16	2	20	24	28	32		36	40	44	48	52	56	60
ABILI + Fre	5	5	10	15	20	2	25	30	35	40		45	50	55	60	65	70	75
KOB/	6	6	12	18	24	:	30	36	42	48		54	60	66	72	78	84	90
of act	7	7	14	21	28	:	35	42	49	56		63	70	77	84	91	98	105
ancv e	` E	3	16	24	32	4	40	48	56	64		72	80	88	96	104	112	120
reque	. 9	Ð	18	27	36	4	45	54	63	72		81	90	99	108	117	126	135
Ē	1	0	20	30	40	(50	60	70	80		90	100	110	120	130	140	150
Colo cod	our le	Significance V rating				Va	alue	ue Negative impact Management strategy					Positive Impact Management strategy				/	
	VERY HIGH 126				126	- 150	- 150 Improve current management					Maintain current management				ment		
HIGH 10				101	– 125 Improve current management					Maintain current management								
				70	4.0.0	400												

Table 1. Criteria used to assess	the significance of the imp	acts.
----------------------------------	-----------------------------	-------

HIGH	101 – 125	Improve current management	Maintain current management
MEDIUM – HIGH	76 – 100	Improve current management	Maintain current management
LOW – MEDIUM	51 – 75	Improve current management	Maintain current management
LOW	26 – 50	Improve current management	Maintain current management
VERY LOW	1 – 25	Improve current management	Maintain current management

2.7. Assumptions and limitations

The study took place during early summer, which is not an optimal time of the year. The area received good rainfall during the previous season, but most grasses and annuals were still dormant during the time of the field survey and therefore the vegetation was not in a favourable state for the assessment. Furthermore, due to the brief duration of the survey and lack of seasonal coverage, the species lists reflected in this report cannot be regarded as fully representative. Ideally, a site should be visited during different seasons to ensure the variation in species presence and habitat conditions are captured. However, this is rarely possible due to time and cost constraints related to prospecting and mining right application processes. The survey was nevertheless conducted in a manner to ensure all representative communities were traversed, to include most of the common and important species present.

Official guideline documents and tools currently available to assess wetlands in South Africa were mainly developed for- and best applied to temperate wetlands of South Africa. The suite of methodologies available to date do not provide for a comprehensive and accurate assessment of our ephemeral wetlands. This is mainly because they are rarely wet and do not display typically descriptors used for wetland assessments in South Africa. These systems have also received little attention in terms of scientific research. Therefore, the nature of the wetland on site and the lack of fully applicable methodologies limits our ability to justify the impacts to-and sensitivity of these systems. Nevertheless, methodologies used for this assessment was adapted from the official guidelines, based on specialist knowledge and experience, to provide a comprehensive understanding of the wetlands and associated impacts related to prospecting.

3. DESCRIPTION OF THE AFFECTED ENVIRONMENT

3.1. Current and historic land use

The Brakfontein site is situated in a rural area, with major land uses in the region including mining and agriculture. According to AGIS, the land capability for the study site is primarily non-arable but is suitable for grazing. The agricultural region is demarcated for sheep farming, with the grazing capacity estimated at 32 Ha/LSU. Currently, the property is primarily used for grazing by livestock and wildlife. Existing infrastructure includes old homesteads, farm tracks and grazing camps (Figure 4).

Figure 4. The existing land use features on the Brakfontein prospecting right area.

3.2. Geology, soils, and topography

According to the 1:250 000 Geological Map of 2922 Prieska (1995), the geological features on Brakfontein comprise Quaternary and Tertiary deposits (Figure 5). Calcrete is prominent in the north and south, while sand and sandy soil occur in the centre of the study area. The alluvial diamond deposits are expected to be associated with the calcrete (Figure 5).

The topography of the study area is characterised by level plains with some relief. Here, altitude ranges from 1 010 – 1 050 m above sea level. The terrain is indicated by a very gentle slope of <1 % across the study area. Landtypes found on Brakfontein include Ag136, Ag143 and Fc568 (Figure 6). The calcrete terraces, primarily represented by the Ag136 and Ag143 land type, are characterised by red-yellow apedal, freely drained soils, red, with high base status, and are shallow (< 300 mm deep). The centre of the property, depicted by the Fc568 landtype, comprise Glenrosa and/or Mispah forms, with lime generally present. Soils of the study area have high wind erosion- crusting- and compaction susceptibility. Water erosion susceptibility is also high, but due to the arid climate water erosion risks are low.

3.3. Vegetation

3.3.1. Broad-scale vegetation patterns

The study area falls within the Nama Karoo Biome (Mucina and Rutherford 2006). According to the vegetation map of Mucina and Rutherford (2012), the site is represented by one broad-scale vegetation units, i.e. Northern Upper Karoo (Figure 7). This vegetation map however does not reflect the true character of the site, because it has not been mapped at a very fine scale. Therefore, field-based classification of small-scale vegetation patterns are discussed in the next section.

Northern Upper Karoo is found in the Northern Cape and Free State at altitudes between 1 000 and 1 500 m. It is mainly restricted to the Northern regions of the Upper Karoo plateau from Prieska, Vosburg and Carnarvon in the west to Phillipstown, Petrusville and Petrusburg in the east. The topography is typically flat to gently sloping, with isolated hills in the Upper Karoo Hardeveld (in the south) and Vaalbos Rocky Shrubland (in the northeast). Numerous pans are interspersed in this unit. The vegetation occurs mainly as shrubland dominated by dwarf karoo shrubs, grasses and *Senegalia mellifera*. The geology and soil of this unit varies greatly.

Figure 5. The distribution of geological features in the study area.

Figure 6. The distribution of land types in the study area.

Figure 7. The broad-scale vegetation units (Mucina and Rutherford 2012) present in the study area.

Geology includes shales of the Volksrust Formation, Dwyka Group Diamictite, Jurassic Karoo Dolerite sills and sheets, and calcretes of the Kalahari Group. Soils range from shallow to deep, red-yellow, apedal, freely drained to very shallow Glenrosa and Mispah forms. The most dominant landtypes are Ae, Ag and Fc. It is estimated that about 4% of the Northern Upper Karoo has been cleared for cultivation or transformed by building of dams; and human settlements are increasing in the north-eastern parts. Erosion is moderate, very low and low, while *Prosopis glandulosa*, considered among the top 12 agriculturally significant invasive alien plants in South Africa, are widely distributed in this unit. The unit is classified as being least threatened and it is not currently conserved within any formal conservation areas. Endemic plant species known from this unit include *Lithops hookeri, Stomatium pluridens, Atriplex spongiosa, Galenia exigua* and *Manulea deserticola*.

3.3.2. Fine-scale vegetation patterns

The proposed finer scale vegetation communities were delineated according to plant species correspondences and changes in soil structure. These can be divided into three distinct units (Figure 8) and are described below. A complete plant species list, including species historically recorded in the region, is presented in Appendix 1.

i) Senegalia mellifera - Enneapogon desvauxii open shrubland on calcrete

This plant community occupies most of the study area, where it is found on calcrete terraces in the north and south of the property (Figure 8). The vegetation is presented as shrubland with tall shrubs, scattered in a grassy matrix intermixed with dwarf shrubs (Figure 9). Rocky, calcareous soil covers 10 - 20% of the ground surface and biological soil crusts are prominent (Figure 9).

Senegalia mellifera dominates the tall shrub layer, but Boscia albitrunca is also common. Other tall and medium-sized shrubs include Phaeoptilum spinosum, Cadaba aphylla, Kleinia longiflora, Rhigozum trichotomum and Prosopis velutina. The dwarf shrub layer is more diverse and is dominated by Roepera lichtensteiniana, Pentzia incana, P. calcarea, Aptosimum albomarginatum and Pteronia mucronata, but Aizoon asbestinum, Melhania rehmannii, Thesium lineatum, Sericocoma avolans, Fagonia minutistipula, Aptosimum spinescens, Pegolettia retrofracta, Felicia fascicularis, Rosenia humilis, Pentzia globosa, Justicia incana and Plinthus karooicus are also widespread.

Figure 8. The distribution of fine-scale plant communities in the study area.

The grass layer is predominantly short and dominated by *Enneapogon desvauxii*, but *Aristida junciformis* forms dense patches in places. Other common grasses include *Eragrostis nindensis*, *E. echinochloidea*, *Stipagrostis ciliata*, *Fingerhuthia africana*.

Herbs include *Tribulus zeyheri* subsp. *zeyheri*, *Limeum aethiopicum, Geigeria ornativa*, *Lotononis laxa, Helichrysum argyrosphaerum* and the invasive *Argemone ochroleuca*.

Figure 9. The calcrete terraces are occupied by a shubland community with a tall shrub layer, growing among a grassy matrix intermixed with low shrubs (top). The shallow calcareous soil is covered with biological soil crusts (bottom).
ii) Stipagrostis uniplumis - Eragrostis rigidior shrubby grassland on red sand

This plant community is restricted to the sandy substrate in the centre of the study area (Figure 8). The vegetation occurs on shallow sand, which constitutes approximately 10 - 20% of the ground cover. Biological soil crusts are common (Figure 10). The vegetation is presented as a shrubby grassland where a dominant grass layer is intermixed with low shrubs, while tall shrubs are very sparsely scattered (Figure 10).

The grass layer is dominated by *Stipagrostis uniplumis*, with *Eragrostis rigidior* also being common. Other grasses include *Aristida congesta* subsp. *congesta*, *Eragrostis lehmanniana*, *Enneapogon desvauxii*, and *Stipagrostis ciliata*.

The low shrub component is diverse, with *Aptosimum albomarginatum*, *Justicia incana* and *Pegolettia retrofracta* dominating. Other common species include *Plinthus karooicus*, *Aptosimum marlothii*, *A. spinescens*, *Thesium hystrix*, *Lycium pilifolium*, *Pentzia calcarea*, *Asparagus suaveolens*, *Helichrysum lucilioides*, *Pteronia mucronata*, *Ruschia spinosa* and *Melolobium microphyllum*. Sparsely scattered tall shrubs include *Asparagus retrofractus*, *Lycium bosciifolium*, *Senegalia mellifera*, *Prosopis velutina* and *Rhigozum trichotomum*.

The herb layer is well developed and include *Hermannia erodioides*, *Senna italica*, *Indigofera alternans*, *Geigeria ornativa*, *Helichrysum argyrosphaerum*, *Sericorema remotiflora*, *Gazania krebsiana* subsp. *arctotoides* and the bulb *Moraea simulans*.

Figure 10. The vegetation community on sand includes a dominant grass layer intermixed with low shrubs, with tall shrubs sparsely scattered throughout (left). Biological soil crusts are common (right).

iii) Prosopis dominated ephemeral pans

The two ephemeral pans occur along the southern boundary of the study area (Figure 8). Their plant communities differ substantially, but both pans have been significantly infested by *Prosopis velutina* (Figure 11). The pan in the west is presented as grassland, with bare ground constituting approximately 10% of the ground cover (Figure 11) Here, *Aristida congesta* subsp. *congesta* dominate, but *Eragrostis echinochloidea, E. bicolor, E. obtusa* and *Panicum coloratum* are also common. Herbs include *Lotononis laxa, Osteospermum muricatum, Boerhavia diffusa, Heliotropium ciliatum* and *Selago densiflora*. Low shrubs from the surrounding shrubland matrix, such as *Pentzia globosa Aptosimum albomarginatum,* have encroached the pan. The pan in the east is presented as shrubland with very low diversity and bare ground constituting approximately 70% of the ground cover (Figure 11). Apart from *Prosopis, Atriplex nummularia* dominates this community, with *Mesembryanthemum coriarium* scattered sparsely across the pan.

Figure 11. The plant composition of the two pans on Brakfontein differ substantially although both have been significantly infested by *Prosopis velutina*. The pan in the west is primarily represented by grassland (top), while the pan in the east is represented by shrubland (bottom).

3.3.3. Population of sensitive, threatened and protected plant species

The SANBI Red List provides information on the national conservation status of South Africa's indigenous plants, while the National Forests Act (No. 84 of 1998) (NFA) and the Northern Cape Nature Conservation Act (Act No. 9 of 2009) (NCNCA) restricts activities regarding sensitive plant species. Section 15 of the NFA prevents any person to cut, disturb, damage, destroy or remove any protected tree; or collect, remove, transport, export, purchase, sell, donate or in any other manner acquire or dispose of any protected tree, except under a licence granted by the Minister. Section 49 (1) and 50 (1) of the NCNCA states that no person may, without a permit pick, transport, possess, or trade in a specimen of a specially protected (Schedule 1) or protected (Schedule 2) plants. Furthermore, Section 51(2) states that no person may, without a permit, pick an indigenous plant (Schedule 3) in such manner that it constitutes large-scale harvesting.

Most species of the region are classified as least concern; a category which includes widespread and abundant taxa (Table 2). However, two species are listed under the National Environmental: Biodiversity Act (Act No. 10 of 2004) (NEMBA). *Acanthopsis hoffmannseggiana* (Data Deficient – Taxonomically Problematic (DDT)) is a widespread and variable species that possibly contains several taxa, some of which may be of conservation concern and more study is needed to find reliable distinguishing characters to separate individual taxa. It was not recorded in the study area but are generally common on the calcrete plateaus and tillite ridge slopes of the region. *Salsola smithii* is also listed as DDT. The entire *Salsola* genus needs taxonomic revision because its species are poorly defined and difficult to separate. Therefore, based on currently available data, the risk of extinction of this species cannot be assessed. It was also not recorded during the field survey.

FAMILY Scientific name		Scientific name	Status	NFA	NCNCA
	ACANTHACEAE	Acanthopsis hoffmannseggiana	DDT		
	AIZOACEAE	Mesembryanthemum coriarium*			S2
	AIZOACEAE	Ruschia spinosa*			S2
	AMARANTHACEAE	Salsola smithii	DDT		
	APOCYNACEAE	Microloma armatum var. armatum			S2
	BRASSICACEAE	Boscia albitrunca*		Х	S2
	IRIDACEAE	Moraea simulans*			S2

Table 2. Plant species from the region that are of conservation concern. Those recorded in the study area are indicate with *.

Species protected in terms of the National Forests (NFA) Act No 84 of 1998 include *Boscia albitrunca* (Table 2 and Figure 12), which was restricted to the shrubland on calcrete. Here, it was found at low densities of approximately one individual per hectare, primarily as adults, i.e., stunted shrubs (80 cm - 1 m (h) x 2 m (d)), taller shrubs (1 - 2 m (h) x 2 m (d)), younger trees (1 - 2 m (h) x 1 m (d)) and very large old trees up to 3 m (h) x 6 m (d).

Protected species in terms of Schedule 1 and 2 of the Northern Cape Nature Conservation (NCNCA) Act No. 9 of 2009 are listed in Table 2. No species specially protected under Schedule 1 were recorded during the field survey. Those protected under Schedule 2 include all Aizoaceae species previously included in the family Mesembryanthemaceae, all species included in the family Apocynaceae and Iridaceae, as well as *Boscia albitrunca*. *Microloma armatum* var. *armatum* is known from the region but was not recorded on site. *Ruschia spinosa* and *Moraea simulans* were both restricted to the shrubby grassland on red sand, while *Mesembryanthemum coriarium* was restricted to the ephemeral pan in the east.

Although not formally regulated, biological soil crusts were associated with the calcareous soils of the shrubland and open grassland on red sand (Figure 9 and Figure 10). These are very sensitive microhabitats and an integral component of arid environments. These crusts are thin layers of living material formed in the uppermost millimetres of soil where soil particles are aggregated by a community of highly specialized organisms, including cyanobacteria and other bacteria, microfungi, algae, lichens, and mosses. The crust is crucial for soil stabilization, water retention, and soil fertility and is recognized as having a major influence on global ecosystems (Belnap and Weber 2013). After disturbance, biological soil crusts may take 250 to 1 000 years in arid regions to recover.

3.3.4. Weeds and invader plant species

Weeds and invasive species are controlled in terms of the National Environmental Management: Biodiversity (NEMBA) Act 10 of 2004, the Conservation of Agricultural Resources (CARA) Act 43 of 1993, as well as the NCNCA (Schedule 6). These are species that do not naturally occur in a given area and exhibit tendencies to invade that area, and others; at the cost of locally indigenous species. To govern the control of such species, NEMBA and CARA have divided weeds and invader species into categories (see Table 3). All declared weeds and invasive species recorded in the study region are listed in Table 4, along with their categories according to CARA, NEMBA and NCNCA.

Figure 12. The different growth forms of the protected tree *Boscia albitrunca* found in the study area.

	NEMBA	CARA			
1a	Listed invasive species that must be combatted or eradicated.	 Plant species that must be removed and destroyed immediately. These plants serve no economic purpose and possess characteristics that are harmful to humans animals and the environment. 	5,		
1b	Listed invasive species that must be controlled.	2 Plant species that may be grown under controlled conditions. These plants have certain useful qualities and are allowed in demarcated areas. In other areas they must be eradicated and controlled.			
2	Listed invasive species that require a permit to carry out a restricted activity within an area.	3 Plant species that may no longer be planted. These are alien plants that have escaped from, or are growing in gardens and are proven to be invaders. No further planting is allowed. Existing plants may remain (except those within the flood line, 30 m from a watercourse, or in a wetland) and must be prevented from spreading.	Dr		
3	Listed invasive species that are subject to exemptions and prohibitions				

Table 3. The categorisation of weeds and invader plant species, according to NEMBA and CARA.

Table 4. A list of declared weeds and invasive species recorded in the study region.

Scientific name	Common name	CARA	NEMBA	NCNCA
Argemone ochroleuca	White-flowered Mexican poppy	1	1b	S6
Atriplex nummularia	Old man saltbush	2	2	S6
Cylindropuntia fulgida var. fulgida	Chain-fruit cholla		1b	
Prosopis velutina	Velvet mesquite	2	3	S6

3.3.5. Indicators of bush encroachment

Bush encroacher species are controlled in terms of Regulation 16 of CARA; where land users of an area in which natural vegetation occurs and that contains communities of encroacher indicator plants are required to follow sound practices to prevent the deterioration of natural resources and to combat bush encroachment where it occurs. Declared indicators of bush encroachment in the Northern Cape, recorded in the study area, are listed in Table 5.

Table 5. A list of declared indicators of bush encroachment in the Northern Cape, which were recorded in the study area.

Scientific name	Common name
Rhigozum trichotomum	Three-thorn rhigozum
Senegalia mellifera	Black thorn

3.4. Faunal communities

According to Section 3(a) and 4(a) of the Northern Cape Nature Conservation (NCNCA) Act No. 9 of 2009, no person may, without a permit by any means hunt, kill, poison, capture, disturb, or injure any protected (Schedule 2) or specially protected (Schedule 1) wild animals. Furthermore, Section 12 (1) of NCNCA states that no person may, on a land of which he or she is not the owner, hunt a wild animal without the written permission from the landowner. According to the act "wild animal" means a live vertebrate or invertebrate animal, and the egg or spawn of such animal.

The landscape features on the Brakfontein site provide several habitat opportunities to faunal communities. Wild animals likely to be found in the study area are discussed in their respective faunal groups below.

3.4.1. Mammals

As many as 54 terrestrial mammals and nine bat species have been recorded in the region (see Appendix 2). Species that were encountered during the site visit include Gemsbok, Springbok, Greater Kudu, Steenbok and Yellow Mongoose. Signs of activities from fossorial mammal species were also observed (Figure 13).

Seven listed terrestrial mammal species and two listed bat species potentially occur in the area (Table 6). Virtually all mammals of the study area are protected; either according to Schedule 1, 2 or 3 of NCNCA (see Appendix 2). Those that are specially protected are also indicated in Table 6.

Figure 13. Evidence of fossorial mammal activity recorded during the field visit.

Table 6. A list of mammal species that are likely to be found in the study area, which are of conservation concern in terms of the international (IUCN) Red List and the 2016 Mammal Red List of South Africa Lesotho and Swaziland (EWT 2016). Their respective NCNCA schedule numbers are indicated in superscript.

Scientific name	Common name	IUCN Status	EWT 2016
² Eidolon helvum	African Straw-coloured Fruit-bat	NT	
² Rhinolophus denti	Dent's Horseshoe Bat		NT
¹ Orycteropus afer	Aardvark		
¹ Smutsia temminckii	Temminck's Ground Pangolin	VU	VU
² Parotomys littledalei	Littledale's Whistling Rat		NT
¹ Atelerix frontalis	South African Hedgehog		NT
¹ Proteles cristatus	Aardwolf		
¹ Felis silvestris cafra	African Wild Cat		
¹ Felis nigripes	Black-footed cat	VU	VU
¹ Vulpes chama	Cape Fox		
¹ Hyaena brunnea	Brown Hyena	NT	NT
¹ Otocyon megalotis	Bat-eared Fox		
² Aonyx capensis	Cape Clawless Otter	NT	NT
¹ Poecilogale albinucha	African Striped Weasel		NT
¹ Ictonyx striatus	Striped Polecat		
¹ Mellivora capensis	Honey Badger		

Honey Badger, Aardwolf, African Wild Cat, Cape Fox, Bat-eared Fox and Striped Polecat have a high chance of occurring across the site, given their wide habitat tolerances. Aardvark, Ground Pangolin and African striped Weasel have a high potential of occurring in the shrubby grassland on sand. Pangolins, however, are seldomly encountered due to their inconspicuous nature. Similarly, the South African Hedgehog also has a high chance of occurring on site based on their association with open, arid habitat.

Black-footed Cat prefers arid habitat, but their conspicuous nature might cause them to avoid the study area due to ongoing prospecting activities. It therefore has a moderate potential to occur on site.

The African Straw-coloured Fruit-bat requires fruit trees and is not expected to occur on site. Similarly, Dent's Horseshoe Bat also has a low chance to be found on site due to their preference for savanna habitats. The Brown Hyaena has a low potential to be found on site mainly since farm fences are restricting their occurrences across their natural distribution range. The Littledale's whistling rat is also not expected to occur on site based on their restricted distribution. The Cape Clawless Otter is restricted to river habitats and is therefore not expected to be found on site.

Apart from these special species of conservation concern, problem animals (Schedule 4 of the NCNCA) with a high likelihood to occur on site include Black-backed Jackal, Caracal and Vervet Monkey.

3.4.2. Reptiles

The Brakfontein prospecting area lies within the distribution range of at least 36 reptile species (see Appendix 2). No listed species are known to occur in the area, but most reptiles of the study area are protected either according to Schedule 1 or 2 of NCNCA (Appendix 2). Specially protected species include *Karusasaurus polyzonus* (Southern Karusa Lizard) and *Chamaeleo dilepis dilepis* (Common Flap-neck Chameleon). The Karusa Lizard is a rock-dwelling species inhabiting rocky outcrops and is not expected to occur on site. The Common Flap-neck Chameleon is typically found high up in bushes or trees and is expected to potentially occur across the site (Figure 14).

Southern Karusa Lizard

Common Banded Gecko

Aurora Snake

Greater Dwarf Tortoise

Common Flap-neck Chameleon

Marsh Terrapin

Western Ground Agama

Figure 14. Reptile species of special importance that are expected to occur in the study area (top). The Agama was frequently encountered during the field survey and the Marsh Terrapin is expected to occur in the pans (bottom).

South African endemics include *Pachydactylus mariquensis* (Common Banded Gecko), *Lamprophis aurora* (Aurora Snake) and *Homopus femoralis* (Greater Dwarf Tortoise). The Common Banded Gecko prefers sandy soil and sparse vegetation in a variety of habitats such as sandy plains and dry riverbeds. The Aurora Snake is often found near streams and under rocks and old termitaria, while the Greater Dwarf Tortoise occurs in rocky areas with dense vegetation where they take shelter among rocks or under plants. Images of these reptile species of special importance are shown in Figure 14.

The Western Ground Agama, a common species of Least Concern, was frequently encountered during the field survey (Figure 14). The remaining common reptile species of the region are expected to occur in the terrestrial habitats on site, while the Marsh Terrapin is expected to be associated with the ephemeral pans (Figure 14). It survives drought by burrowing into moist soil and then emerges after good rains.

3.4.3. Amphibians

Fourteen amphibian species are known from the region (Appendix 2). The ephemeral pans represent suitable habitat for breeding during wet periods. Those frog species that are fairly independent of water (i.e. Bushveld Rain Frog, Boettger's Caco) are expected to take refuge under rocks and logs, soil cracks, sandy substrates, leaf litter and abandoned mounds of termites.

The Giant Bull Frog (*Pyxicephalus adspersus*, Figure 15) is listed as Near Threatened in the Southern African Frog Atlas and is protected according to Schedule 1 of the NCNCA. They prefer seasonal shallow grassy pans, vleis and other rain-filled depressions in open flat areas of grassland or savanna, but mainly remain buried up to 1 m underground until conditions become favourable. The site lies within the known distribution of this species and the ephemeral pans provide ideal habitat for it on site, especially the pan in the west.

All other amphibians of the study area are protected according to Schedule 2 of NCNCA (see Appendix 2). Raucous Toad (*Amietophrynus rangeri*) and Southern Pygmy Toad (*Poyntonophrynus vertebralis*) (Figure 15) are endemic to South Africa and occur in a variety of terrestrial habitats for most of the time. However, they use temporary waterbodies containing rainwater to breed, including pans, pools, roadside ditches, farm dams and even quarries.

Figure 15. The Giant Bull Frog's distribution range overlaps with that of the study area and is likely to occur in the ephemeral pan in the west (left), while the South African endemics, i.e., Raucous Toad (middle) and Southern Pygmy Toad (right) could potentially occur in the terrestrial habitats, before migrating to temporary pools for breeding in the rainy season.

3.4.4. Avifauna

The study site does not fall within or near (< 100 km) any of the Important Bird Areas (IBA) defined by Birdlife South Africa. A total number of 261 bird species have been recorded from the region (see Appendix 2), of which as many as 25 are listed and classified as Vulnerable, Near Threatened, Endangered or Critically Endangered (Table 7). Furthermore, all birds are protected either according to Schedule 1, 2 or 3 of NCNCA (Appendix 2). Those that are specially protected (Schedule 1) are also listed in Table 7. Plants, from grass tufts to shrubs and trees provide important micro-habitats to birds in the terrestrial habitats, while ephemeral pans further increase habitat opportunities to water birds during the rainy season. Therefore, the study area is expected to host a diverse avifauna community.

Many of the species of conservation concern are expected to occur on site either by occasionally passing over, foraging, or nesting. The most common bird species of conservation concern expected to occur in the terrestrial habitats on site include Kori Bustard (Near Threatened), Ludwig's Bustard (Endangered), Secretarybird (Vulnerable) and Tawny Eagle (Endangered) (Figure 16). Pale Chanting Goshawk (NCNCA: Schedule 1) was encountered in the shrubland on calcrete (Figure 16). None of the ephemeral pans were inundated during the field survey, but they could potentially attract protected water birds, such as Curley Sandpiper, Black-winged Pratincole, Marabou Stork, Maccoa Duck, Lesser Flamingo, Greater Flamingo and Greater Painted-snipe during wet seasons, of which all are Near Threatened. Images of these bird species are shown in Figure 16.

Table 7. Bird of conservation concern that are likely to occur on site. Species are indicated in terms ofthe IUCN, SA Red Data Book and Schedule 1 of the NCNCA.

Scientific name	Common name	IUCN	SA RDB	NCNCA
Accipiter badius	Shikra			Х
Anthropoides paradisea	Blue Crane	VU	NT	
Aquila rapax	Tawny Eagle	VU	EN	Х
Aquila verreauxii	Verreaux's Eagle		VU	Х
Ardeotis kori	Kori Bustard	NT	NT	
Bubo africanus	Spotted Eagle-Owl			Х
Bubo lacteus	Verreaux's Eagle-Owl			Х
Buteo rufofuscus	Jackal Buzzard			Х
Buteo vulpinus	Steppe Buzzard			Х
Calidris ferruginea	Curlew Sandpiper	NT		Х
Caprimulgus europaeus	European Nightjar			Х
Caprimulgus rufigena	Rufous-cheeked Nightjar			Х
Caprimulgus tristigma	Freckled Nightjar			Х
Charadrius pallidus	Chestnut-banded Plover	NT	NT	Х
Ciconia abdimii	Abdim's Stork		NT	
Ciconia nigra	Black Stork		VU	Х
Circaetus pectoralis	Black-chested Snake-Eagle			Х
Circus maurus	Black Harrier	EN		Х
Circus pygargus	Montagu's Harrier			Х
Circus ranivorus	African Marsh-Harrier		EN	Х
Coracias garrulus	European Roller		NT	
Cursorius rufus	Burchell's Courser		VU	
Elanus caeruleus	Black-shouldered Kite			Х
Falco biarmicus	Lanner Falcon		VU	Х
Falco naumanni	Lesser Kestrel			Х
Falco peregrinus	Peregrine Falcon			Х
Falco rupicolis	Rock Kestrel			Х
Falco rupicoloides	Greater Kestrel			Х
Glareola nordmanni	Black-winged Pratincole	NT	NT	Х
Glaucidium perlatum	Pearl-spotted Owlet			Х
Gyps africanus	White-backed Vulture	CR	CR	Х
Gyps coprotheres	Cape Vulture	VU	EN	Х
Haliaeetus vocifer	African Fish-Eagle			Х
Hieraaetus pennatus	Booted Eagle			Х
Leptoptilos crumeniferus	Marabou Stork		NT	Х
Melierax canorus	Southern Pale Chanting Goshawk			Х
Melierax gabar	Gabar Goshawk			Х
Milvus migrans	Black Kite			Х
Neotis ludwigii	Ludwig's Bustard	EN	EN	Х
Oxyura maccoa	Maccoa Duck	VU	NT	
Phoenicopterus minor	Lesser Flamingo	NT	NT	Х
Phoenicopterus ruber	Greater Flamingo		NT	Х
Polemaetus bellicosus	Martial Eagle	EN	EN	Х
Polihierax semitorquatus	Pygmy Falcon			Х
Polyboroides typus	African Harrier-Hawk			Х
Ptilopsus granti	Southern White-faced Scops-Owl			Х
Rostratula benghalensis	Greater Painted-snipe		NT	Х
Sagittarius serpentarius	Secretarybird	EN	VU	Х
Torgos tracheliotus	Lappet-faced Vulture	EN	EN	Х
Tyto alba	Barn Owl			Х

Pale Chanting Goshawk

Kori Bustard

Tawny Eagle

Secretarybird

Curley Sandpiper

Black-winged Pratincole

Marabou Stork

Greater Painted-snipe

Maccoa Duck

Lesser Flamingo

Greater Flamingo

Figure 16. Bird species of conservation concern that are expected to occur in the study area.

3.4.5. Fish

In addition to those regulations in the NCNCA pertaining to wild animals, Section 32 and 33 of the NCNCA states that no person may, without a permit angle and not immediately release, catch, import, export, transport, keep, possess, breed, or trade in a specimen of a specially protected (Schedule 1) or protected (Schedule 2) fish. No fish are expected to occur in the ephemeral pans, even when filled, mainly due to their ephemerality. Therefore, no fish species are expected to occur on site.

3.4.6. Invertebrates

Invertebrates dominate inland habitats and play a significant role in the overall function of the ecosystem (Kremen et al. 1993, Weisser and Siemann 2004). In general, they are widely distributed and extremely diverse, which makes it almost impossible to list all species that may possibly occur on site without a dedicated study. Invertebrates have also not been surveyed as comprehensively as plants and mammals and therefore current available data on their distribution is much scarcer. Nevertheless, key morphospecies and species of conservation concern are discussed here, as well as the major habitats which delimit possible invertebrate communities on site.

Eight invertebrate species of the Northern Cape appear on the IUCN Red Data list of threatened species and are listed in Table 8. However, none of these species' distribution ranges overlap with that of the study area. In addition, those species that are specially protected according to Schedule 1 of the NCNCA include all Velvet Worms as well as some Baboon Spider species, Stag Beetles and the Flightless Dung Beetle (Table 8). Of these, Common Baboon Spiders (*Harpactira* sp.) have been recorded from the region (Figure 17).

All Rock- Creeping- and Burrowing Scorpions are protected according to Schedule 2 of the NCNCA, along with several beetles, butterflies and moths (Table 8). Of these, Burrowing and Rock Scorpions as well as some Gossamer-winged Butterflies, Skippers, Brush-footed Butterflies and Satyrs have the highest likelihood to be found on site.

All other invertebrates from the class Insecta and Arachnida are protected according to Schedule 3 of the NCNCA.

CLASS	ORDER	Scientific Name	Common name	Status
ARACHNIDA	MYGALOMORPHAE	Ceratogyrus spp.	Horned Baboon Spiders	S1
		Harpactira spp.	Common Baboon Spiders	S1
		Pterinochilus spp.	Goldenbrown Baboon Spiders	S1
	SCORPIONES	Hadogenes spp.	All Rock Scorpions	S2
		Opistacanthus spp.	All Creeping Scorpions	S2
		Opistophthalmus spp.	All Burrowing Scorpions	S2
INSECTA	COLEOPTERA	Circellium bacchus	Flightless Dung Beetle	S1
		Colophon spp.	All Stag Beetles	S1
		Dromica spp.	Tiger Beetles (all species)	S2
		Graphipterus assimilis	Velvet Ground Beetle	S2
		Ichnestoma spp.	All Fruit Chafer Beetles	S2
		Manticora spp.	All Monster Tiger Beetles	S2
		Megacephala asperata	Tiger Beetle	S2
		Megacephala regalis	Tiger Beetle	S2
		Nigidius auriculatus	Stag Beetle	S2
		Oonotus adspersus	Stag Beetle	S2
		Oonotus interioris	Stag Beetle	S2
		Oonotus rex	Stag Beetle	S2
		Oonotus sericeus	Stag Beetle	S2
		Platychile pallida	Tiger Beetle	S2
		Prosopocoilus petitclerci	Stag Beetle	S2
		Prothyma guttipennis	Tiger Beetle	S2
	LEPIDOPTERA	Lepidochrysops penningtoni	Pennington's Blue	DD
		Lycaenidae	All Gossamer-winged Butterflies	S2
		Hepialidae	All Swift Moths	S2
		Hesperiidae	All Skippers	S2
		Nymphalidae	All Brush-footed Butterflies	S2
		Satyridae	All Satyrs	S2
	ORTHOPTERA	Africariola longicauda	Richtersveld Katydid	VU
		Alfredectes browni	Brown's Shieldback	DD
		Brinckiella serricauda	Serrated Winter Katydid	DD
		Brinckiella arboricola	Tree Winter Katydid	EN
		Brinckiella aptera	Mute Winter Katydid	VU
		Brinckiella karooensis	Karoo Winter Katydid	VU
		Brinckiella mauerbergerorum	Mauerberger's Winter Katydid	VU
ONYCHOPHORA			All Velvet worms	S1

 Table 8. Invertebrate species found in the Northern Cape that are of conservation concern.

Two major habitats delimit possible invertebrate communities in the study area:

i. Terrestrial vegetation classified as Karoo for insect preference (Picker et al. 2004)

Species All the terrestrial vegetation communities on site fall within this habitat and represent unique species assemblages, with an above-average representation of beetles, grasshoppers, flies, wasps, and lacewings. The protected spiders, butterflies and scorpions discussed above would also be associated with this habitat. Termitaria, most likely belonging to *Trinervitermes trinervoides*, as well as Community Nest Spiders (*Stegodyphus* sp.), Brownveined White (*Belenois aurota*), and Cicadas were recorded during the field survey (Figure 17).

ii. Ephemeral pans

Ephemeral pans in the region are known to host specialist crustaceans which are specifically adapted to ephemerality. None of the pans on site had water during the field survey and therefore could not be sampled for live aquatic specimens. However, Branchipodopsis sp. (Anostraca, fairy shrimp), Daphnia sp. (Cladocera, water fleas), CHYDORIDA sp. (Cladocera, water fleas), and Ostracoda hatched from sediment collected from the Pan in the west (Figure 18). Ostracods also hatched from the pan in the east, while Anostraca and Notostraca eggs were found in the sediment, but no other hatchlings emerged during the hatching trials. Their eggs lie dormant in the soil until the pans are inundated. They then hatch and mature rapidly to produce eggs that accumulate in the top few centimetres of the sediment. These eggs are heat and drought resistant and ensure the continued existence of species in a habitat. The egg banks are essentially the vault that contains the biodiversity of the aquatic habitat during times of drought. Any disturbances to the soil will expose the eggs to erosion and crushing, which will result in species losses and possible extinction. Within a few days after the pans are inundated the crustaceans eggs will hatch. This usually attracts several wetland birds to forage on the crustaceans as their main food source. Therefore, the crustaceans are essential components in the food web. These pans also act as important breeding and feeding links to birds in terms of connectivity, by providing stepping-stone corridors in an arid landscape. The disturbance or destruction of these pans will not only impact the specialised pan invertebrate communities locally but will also have a regional and landscape-level effect.

Pieridae (Brown-veined White)

Trinervitermes mounds

Stegodyphus sp. (Community Nest Spiders)

Figure 17. Terrestrial invertebrates that have been recorded in the study area.

Branchipodopsis sp. (Anostraca: Fairy shrimp)

Daphnia sp. (Cladocera: Water flea)

CHYDORIDAE sp. (Cladocera: Water flea)

Ostracoda (Seed shrimp)

Sediment (Egg bank)

Figure 18. Crustacean taxa that hatched from sediment collected in the Brakfontein depressional wetlands. Their egg banks are found in the first few centimetres of the soil.

3.5. Water resources

The National Water Act (36 of 1998) (NWA) provides a framework to protect water resources. According to this Act, a water resource includes a watercourse, surface water, estuary, or aquifer; whereas a water course includes:

- a) a river or spring,
- b) a natural channel in which water flows regularly or intermittently,
- c) a wetland, lake or dam into which, or from which, water flows, and
- d) any collection of water which the Minister may, by notice in the Gazette, declare to be a watercourse.

Any reference to a watercourse includes its bed and banks and a water resource does not only include the water within the system, but also the entire water cycle; i.e. evaporation, precipitation, the habitats and processes. The purpose of this Act (Section 2) is to ensure that the nation's water resources are protected, used, developed, conserved, managed and controlled in ways which take into account amongst other factors - (g) protecting aquatic and associated ecosystems and their biological diversity and (h) reducing and preventing pollution and degradation of water resources. No activity may take place within a watercourse unless authorised by the Department of Water and Sanitation (DWS). Any area within a wetland or riparian zone is therefore excluded from development unless authorisation is obtained from the DWS in terms of Section 21 (c) and (i).

3.5.1. Water resources setting

The Brakfontein study area falls within the Boegoeberg quaternary catchment D71C of the Lower Orange Water Management Area (Figure 19). This quaternary catchment has been allocated a Present Ecological State (PES) of 'Moderately Modified' (C) by Smook et al. (2002), and information regarding its mean annual rainfall, evaporation potential and runoff is provided in Table 9.

Quaternary catchment	Catchment Area (km²)	Mean Annual Rainfall (mm)	Mean Annual Evaporation (mm)	Mean Annual Runoff (10 ⁶ m ³)
D71C	1 592	250	2 350	4.75

Table 9. Catchment characteristics for the Boegoeberg quaternary catchments (Smook et al. 2002).

Figure 19. The locality of the proposed prospecting area in relation to the quaternary catchments of the Lower Orange Water Management Area.

According to The South African Inventory of Inland Aquatic Ecosystems (SAIIAE), Brakfontein falls within the Upper Karoo Bioregion, where 1.9 % (236 551 ha) of the land area is covered by inland wetlands, including depressions, floodplains, seeps and valley-bottom wetland types (Van Deventer et al. 2019). Their spatial extent according to their present ecological status is depicted in Table 10. Most of these wetlands have been moderately to severely modified.

According to the SAIIAE, one ephemeral pan occurs on Brakfontein (Figure 20), which has been classified as being in a natural or near-natural condition.

Table 10. Percentage of inland wetland spatial extent according to the present ecological status perwetland type of the Upper Karoo Bioregion.

Wetland type	Total Extent (%)	% Natural or near- natural (A/B)	% Moderately modified (C)	% Heavily to severely/ critically modified (D/E/F)
Depression	27.9	49	10.6	40.4
Floodplain	27.5	0.4	1.7	98
Seep	2.8	11.9	76.2	11.9
Valley-bottom	41.8	5.5	35.1	59.4

Figure 20. The location of SAIIAE wetlands on, and nearby, the proposed prospecting right area.

3.5.2. Watercourse delineation and classification

Two depressional wetlands (colloquially known as ephemeral pans) and a few drainage lines were identified on Brakfontein. All these watercourses are indicated in Figure 21. A minimum GIS buffer of 200 m is indicated here for wetlands and the post-mitigation buffer requirements for the drainage lines is 20 m. However, it is recommended that a conservative approach be opted for, and that the pre-mitigation buffer width of 30 m be adopted.

The depressional wetlands combined cover a total area of \pm 8.6 ha, with Pan 1 being 1.6 ha and Pan 2, 6.9 ha in size. The wetland surface areas fall entirely within the boundaries of the prospecting right area. Their local upslope catchments combined total an area of \pm 811 ha, of which 64 % fall within the prospecting right area (Figure 22). Pan 1 has a much smaller catchment area of 52 ha, compared to Pan 2, which covers 759 ha. The drainage lines flow from the sandy plains, southwards towards the depression in the east, with total combined length of \pm 5.5 km, of which 5 km occurs within the study area. The depressional wetlands are the main assessment units considered for this report. Therefore, the ephemeral drainage lines will not be further defined, but their buffer requirements should be honoured during the prospecting operation to minimise impacts to these systems.

The depressional wetlands are found on plains terrain and their Hydrogeomorphic Unit (HGMU) classification is described below, up to Level 6.

HGMU1: NATURAL ENDORHEIC DEPRESSIONS (EPHEMERAL PANS)

The wetlands are all classified as endorheic depressions (colloquially known as pans), with high a confidence rating (Table 11). A conceptual illustration of a depressional wetland, according to Ollis et al. (2013) is presented in Figure 23. Pan 1 is a natural depression and Pan 2 is suspected to have been a natural depression originally, but cultivation practises in the 1980s leaves its status questionable. Due to its geomorphic setting however, it is classified here as a depressional wetland. Water enters both depressions primarily through direct precipitation and overland inflow. The wetlands are only filled after substantial summer rainfall events and are therefore intermittently and rarely inundated (ephemeral). Pan 1 has fresh water (EC = 88.25 μ S/cm), with a neutral (6.8) pH. Pan 2 is also fresh (EC = 148.4 μ S/cm), but alkaline (pH = 8.2). The soils are only intermittently saturated, and the soils do not show any soil wetness indicators. The substrata comprised sandy loam soil on Pan 1 and silty clay soil on Pan 2 (Figure 24).

Figure 21. The delineation of watercourses in the prospecting right area, along with their GIS buffer requirements.

Figure 22. A digital elevation model, indicating the catchment areas of the depressional wetlands on Brakfontein.

5C

n/a

Table 11. Summary of the results for the application of Levels 1 to 6 of the Classification System (Ollis)
et al. 2013), to the depressional wetlands. Confidence ratings at each level are given in brackets.

Level 1	Le	evel 2	Level 3	Level 4: HGM Unit			
System type	ystem DWA Wetland type Ecoregion Bioregion		Landscape Unit	4A	4B	4C	
INLAND	Nama Karoo	Northern Upper Karoo	Plain (high)	Depression (high)	Endorheic (high)	Without channelled inflow (high)	
	Level 5: Hydroperiod						

Level 6:	Substratum	type	[Proportional	rating	(0-6)1
		.,			(~ ~/]

5B

Intermittently saturated (high)

5A

Intermittently inundated (high)

Pan 1 (west)												
	Mineral soil (<10% organic carbon) (high)											
6A										6B		
Bedrock	Boulders	Cobbles	Pebbl Grav	es/ rel	Sandy soil	Silt	Clayey soil	Loamy soil	Organic soil	Salt crust	Other	Sandy
0	0	0	0		3	0	0	3	0	0	0	loam
Level 6: Vegetation cover, Form & Status [Proportional rating (0-6)]												
	6	A				e	В			6	iC	
Ve	getation	c over (high)					Ve	egetation	form (high	ו)		
Vegetated	k k	5		Aq	uatic		()	n/a			
		1						Geophytes		0		
							4		Grasses			4
									Herbs/Forbs			2
Unvegeta	ted			Herbaceous					Sedges/Rushes			0
									Reeds			0
									Restios			0
									Palmiet			0
				Shrubs 2			n/a					
			Forest 0			n/a						
			61	`						6	F	
bu bE							ctatus (b	igh)				
		vege			I (IIIgII)							العام) د
		Crasses					n/a		Alien	15		0
Herbaceo		Grasses					11/ a		Cron			0
	us								Indigenou	IS		5
	Herbs/Forbs		s				n/a		Alien	- n		1
								Crop			0	
					,				Indigenou	IS		1
Shrubs		n/a			n/a			Alien		5		

Northern Spark – Brakfontein Ecological & Wetland Assessment

Pan 2 (east)												
Mineral soil (<10% organic carbon) (high)												
6A										6B		
Bedrock	Boulders	Cobbles	Pebbl Grav	es/ el	Sandy soil	Silt	Clayey soil	Loamy soil	Organic soil	Salt crust	Other	Silty
0	0	0	0		0	3	3	0	0	0	0	clay
Level 6: Vegetation cover, Form & Status [Proportional rating (0-6)]												
	6A 6B 6C											
Ve	getation c	over (high)					Ve	egetation	form (high)			
Vegetate	ł	3		Aquatic 0			n/a					
							0		Geophytes			0
		3		Herbaceous					Grasses			0
									Herbs/Forbs			0
Unvegeta	ted								Sedges/Rushes			0
									Reeds		0	
									Restios		0	
				Palmiet				0				
Shrubs 6							i	n/a				
Forest 0							n/a					
6D							6E					
Vegetation form (high)						Vegetation status (high)			igh)			
Shrubs					n/a				Indigenou	IS		1
511 0.05					i y d			Alien			5	

The depression floors are vegetated, with Pan 1 having a high vegetation cover (5:1), while Pan 2 comprised a large proportion of bare ground (3:3). The floristic compositions differed, with Pan 1 being dominated by grassland, and Pan 2 by shrubland (Table 11 and Figure 24). A more comprehensive description of floristic composition is presented in Section 3.3.2 of this report. In general, Pan 1 was dominated by indigenous grasses and herbs, but heavily infested by the invasive shrub *Prosopis velutina*. The naturalised exotic herb *Boerhavia diffusa* also occurred here. Pan 2 was dominated by alien invasive shrubs, with *Atriplex nummularia* and *Prosopis velutina* occurring in high densities. No aquatic plant components were present in the pans during the field survey because it was dry. The aquatic communities are expected to only be activated after the pans are fully inundated for sufficient periods.

Figure 23. Conceptual illustration of a depressional wetland, showing the typical landscape setting and the dominant inputs, throughputs and outputs of water (Ollis et al. 2013).

Figure 24. Key wetland descriptors for the depressional wetlands on Brakfontein. The substrata comprised sandy loam soil on Pan 1 and silty clay soil on Pan 2. The floristic compositions differed, with Pan 1 being dominated by grassland, and Pan 2 by shrubland. Both pans were highly infested by the declared invasive *Prosopis velutina*.

3.5.3. Wetland Health Assessment (PES)

Pan 1 on Brakfontein is considered to be largely natural (PES B, Table 12, Figure 25), i.e., a small change in natural habitats and biota may have taken place but the ecosystem functions are still predominantly unchanged. Pan 2 however considered to be moderately modified (PES C, Table 12, Figure 25), i.e., loss and change of natural habitat and biota have occurred, but the basic ecosystem functions are still predominantly unchanged. All impact sources are described in Figure 26 and refined landcover categories for the wetland catchment areas are depicted in Figure 27.

Table 12. Summarised results of Wet-Health level 2 assessments (Macfarlane et al. 2020) to theBrakfontein wetlands.

	Wetland PES Summary						
Wetland name	Brakfontein Depressions						
Assessment Unit	Pan 1						
HGM type		Depression w	/ithout flushing				
Areal extent (Ha)		1.0	6 Ha				
	Final (adjusted) Scores					
PES Assessment	Hydrology	Geomorphology	Water Quality	Vegetation			
Impact Score	0.6	1.4	1.5	3.8			
PES Score (%)	94%	86%	85%	62%			
Ecological Category	А	В	В	С			
Trajectory of change (no prospecting)	÷	÷	÷	¥			
Confidence (revised results)	High	High	High	High			
Combined Impact Score	1.7						
Combined PES Score (%)	83%						
Combined Ecological Category	В						
Hectare Equivalents	1.3 Ha						
Assessment Unit	an 2						
HGM type	Depression without flushing						

Assessment ont							
HGM type	Depression without flushing						
Areal extent (Ha)	6.9 Ha						
Final (adjusted) Scores							
PES Assessment	Hydrology	Geomorphology	Water Quality	Vegetation			
Impact Score	1.3	2.3	1.6	5.5			
PES Score (%)	87%	77%	84%	45%			
Ecological Category	В	С	В	D			
Trajectory of change (no prospecting)	÷	÷	÷	↓			
Confidence (revised results)	High	High	High	High			
Combined Impact Score	2.5						
Combined PES Score (%)	75%						
Combined Ecological Category	C						
Hectare Equivalents	5.2 Ha						

Figure 25. The depressional wetland assessment units on Brakfontein, indicating their PES.

Figure 26. Features impacting the PES of the Brakfontein depressional wetlands.

Figure 27. Refined landcover categories and disturbance units according to NLC2018, associated with the depressional wetlands on Brakfontein.

The buffer zones and catchment areas of both pans are primarily still in pristine condition, with only a few impact sources, such as roads and general surface disturbances. The most significant direct modifications to both pans have occurred through the infestation of alien invasive plants, which dominate the pans and have significantly affected their vegetation impact score, due to the loss of indigenous vegetation (Figure 26). Another major impact in Pan 2 is past cultivation practises, which has significantly affected its geomorphology impact score. Deposition of material in Pan 1, assumingly to create a dam to retain rainwater for livestock (Figure 26) has affected its geomorphology and water quality but only to a very small degree. Minor surface disturbances also occur through farm roads that cut through the pan, altering its surface roughness and flow regime. However, these low-level modifications do not have a significant effect on the overall PES of the pan.

The current state of the water quality, geomorphology and hydrology is expected to remain stable for both pans, if no prospecting activities are planned near these depressional wetlands. However, a deterioration in the natural vegetation is expected to occur if the alien invasive species in these pans and their buffer zones are not controlled. Due to their aggressive nature, these species are expected to outcompete natural vegetation and put pressure on the water resources.

3.5.4. Wetland Ecological Importance and Sensitivity

Pan 1 is rated to have a High EIS (Table 13) and is considered to be ecologically important and sensitive. The biodiversity of this wetland may be sensitive to habitat modifications. Pan 2 however is rated to have a Moderate EIS (Table 13) and is considered to be ecologically important and sensitive on a provincial or local scale. The biodiversity of this wetland is no longer considered to be sensitive to habitat modifications. This EIS assessment was mainly based on a "wet scenario" because the ecological importance of the depressional wetlands on Brakfontein will only manifest during times of inundation. However, activities impacting the wetlands during the dry phase have direct implications on its ability to maintain the ecological integrity and sensitivity of the wet phase.

The Near Threatened Giant Bull Frog and a number of red listed water birds are expected to occur in Pan 1 when inundated. The hatching trials revealed that freshwater crustaceans are present in both pans. These are highly unique to depressions on a national scale. Their egg banks are found in the topsoil layers, which make them vulnerable to modifications.

Table 13. Summary of the results for the application of an EIS assessment (Duthie 1999) to thedepressional wetlands on Brakfontein.

Pan 1 (west)								
DETERMINANT	SCORE	CONFIDENCE						
PRIMARY DETERMINANTS								
1. Rare & Endangered Species	4	3						
2. Populations of Unique Species	4	4						
3. Species/taxon Richness	2	3						
4. Diversity of Habitat Types or Features	2	4						
5 Migration route/breeding and feeding site for wetland species	2	3						
6. Sensitivity to Changes in the Natural Hydrological Regime	1	3						
7. Sensitivity to Water Quality Changes	1	3						
8. Flood Storage, Energy Dissipation & Particulate/Element Removal	1	3						
MODIFYING DETERMINANTS								
9. Protected Status	3	4						
10. Ecological Integrity	3	4						
TOTAL	23							
MEAN	2.3							
OVERALL ECOLOGICAL SENSITIVITY AND IMPORTANCE	High							

Pan 2 (east)								
DETERMINANT	SCORE	CONFIDENCE						
PRIMARY DETERMINANTS								
1. Rare & Endangered Species	0	3						
2. Populations of Unique Species	4	4						
3. Species/taxon Richness	1	3						
4. Diversity of Habitat Types or Features	1	4						
5 Migration route/breeding and feeding site for wetland species	1	3						
6. Sensitivity to Changes in the Natural Hydrological Regime	1	3						
7. Sensitivity to Water Quality Changes	1	3						
8. Flood Storage, Energy Dissipation & Particulate/Element Removal	1	3						
MODIFYING DETERMINANTS								
9. Protected Status	3	4						
10. Ecological Integrity	2	4						
TOTAL	15							
MEAN	1.5							

OVERALL ECOLOGICAL SENSITIVITY AND IMPORTANCE Moderate

The exact species richness hosted by these wetlands is however not known. Although a number of species are expected to occur in these habitats, they are only expected to have a moderate significance, as they are only expected to have significant taxa richness at a local scale. Furthermore, Pan 1 in particular is expected to be an important breeding and feeding link in terms of connectivity, especially for wetland birds in South Africa during wet periods by providing stepping-stone corridors in an arid landscape. Pan 2 is not expected to provide a significant role in that regard, due to its altered state.

All depressional wetlands on Brakfontein have low sensitivity to changes in hydrology and water quality, because they flood infrequently (< annually). However, if these systems are inundated anthropogenically and for prolonged periods, they will lose their ability to sustain the unique aquatic communities, which are adapted for ephemerality, e.g. branchiopod eggs require periods of desiccation for their life cycles to complete. Furthermore, the wetlands have marginal food storage, energy dissipation and element removal ability, mainly based on fairly low roughness associated with the vegetation in these habitats.

All watercourses are protected under the National Water Act, which reflects their importance for the conservation of ecological diversity at a national scale and therefore they have high protected status. Pan 1 has not been significantly affected by human activity, and therefore it still has high ecological integrity. However, Pan 2 has been modified and therefore it has low ecological integrity.

3.5.5. Wetland functional importance

The Brakfontein wetlands scored very low on most of the typical ecosystem services provided by wetlands (Table 14 and Table 15). Most of the regulating and supporting services provided by the wetlands are compromised by the fact that the wetlands are strictly ephemeral. Pan 1 however scored very high in the maintenance of biodiversity and moderately high in provision of food for livestock (Table 14 and Table 15). The very high importance in the maintenance of biodiversity is attributable to the branchiopod communities that occur here, the suitable habitat the wetlands would attract during periods of inundation. The grass species found in these systems increase their provision of food for livestock. Although they occur as dense stands in the wetlands, not many people are dependent on this resource.
	ECOSYSTEM SERVICE		Supply	Demand	Importance Score	Importance
'ICES	Flood attenuation	Refers to the effectiveness of wetlands at spreading out and slowing down storm flows and thereby reducing the severity of floods and associated impacts.	0.0	0.0	0.0	Very Low
SERV	Stream flow regulation	Refers to the effectiveness of wetlands in sustaining flows in downstream areas during low-flow periods.	0.0	0.0	0.0	Very Low
STING	Sediment trapping	Refers to the effectiveness of wetlands in trapping and retaining sediments from sources in the catchment.	0.8	0.0	0.0	Very Low
HOPPOF	Erosion control	Refers to the effectiveness of wetlands in controlling the loss of soil through erosion.	0.9	0.0	0.0	Very Low
D SI	Phosphate assimilation	Refers to the effectiveness of wetlands in retaining, removing or	0.7	0.0	0.0	Very Low
NA 6	Nitrate assimilation	destroying nutrients and toxicants such as nitrates, phosphates, salts, biocides and bacteria from inflowing sources, essentially providing a water	0.7	0.0	0.0	Very Low
TINC	Toxicant assimilation	purification benefit.	0.8	0.0	0.0	Very Low
GULA	Carbon storage	Refers to the ability of wetlands to act as carbon sinks by actively trapping and retaining carbon as soil organic matter.	1.2	0.0	0.0	Very Low
RE(Biodiversity maintenance	Refers to the contribution of wetlands to maintaining biodiversity through providing natural habitat and maintaining natural ecological processes.	3.8	2.0	3.3	Very High
(J	Water for human use	Refers to the ability of wetlands to provide a relatively clean supply of water for local people as well as animals	0.0	0.0	0.0	Very Low
SIONING	Harvestable resources	Refers to the effectiveness of wetlands in providing a range of harvestable natural resources including firewood, material for construction, medicinal plants and grazing material for livestock.	1.0	0.0	0.0	Very Low
ROVIS	Food for livestock	Refers to the ability of wetlands to provide suitable vegetation as food for livestock.	4.0	0.3	2.7	Moderately High
₽.	Cultivated foods	Refers to the ability of wetlands to provide suitable areas for cultivating crops and plants for use as food, fuel or building materials.	3.0	0.0	1.5	Moderately Low
۶	Tourism and Recreation	Refers to the value placed on wetlands in terms of the tourism related and recreational benefits provided.	1.1	0.0	0.0	Very Low
ULTUR	Education and Research	Refers to the value of wetlands in terms of education and research opportunities, particularly concerning their strategic location in terms of catchment hydrology.	0.8	0.0	0.0	Very Low
-0.0	Cultural and Spiritual	Refers to the special cultural significance of wetlands for local communities	2.0	0.0	0.5	Very Low

Table 14. Summary of the results of a WET-EcoServices (Version 2) assessment (Kotze et al. 2020), to Pan 1 on Brakfontein.

	ECOSYSTEM SERVICE		Supply	Demand	Importance Score	Importance
'ICES	Flood attenuation	Refers to the effectiveness of wetlands at spreading out and slowing down storm flows and thereby reducing the severity of floods and associated impacts.	0.0	0.0	0.0	Very Low
SERV	Stream flow regulation	Refers to the effectiveness of wetlands in sustaining flows in downstream areas during low-flow periods.	0.0	0.0	0.0	Very Low
\$TING	Sediment trapping	Refers to the effectiveness of wetlands in trapping and retaining sediments from sources in the catchment.	0.8	0.0	0.0	Very Low
IOAA	Erosion control	Refers to the effectiveness of wetlands in controlling the loss of soil through erosion.	0.4	0.3	0.0	Very Low
D SI	Phosphate assimilation	Refers to the effectiveness of wetlands in retaining, removing or	0.7	0.0	0.0	Very Low
AN 5	Nitrate assimilation	destroying nutrients and toxicants such as nitrates, phosphates, salts, biocides and bacteria from inflowing sources, essentially providing a water	0.6	0.0	0.0	Very Low
TINC	Toxicant assimilation	purification benefit.	0.8	0.0	0.0	Very Low
GULA	Carbon storage	Refers to the ability of wetlands to act as carbon sinks by actively trapping and retaining carbon as soil organic matter.	0.5	0.0	0.0	Very Low
RE	Biodiversity maintenance	Refers to the contribution of wetlands to maintaining biodiversity through providing natural habitat and maintaining natural ecological processes.	0.6	2.0	0.1	Very Low
(J	Water for human use	Refers to the ability of wetlands to provide a relatively clean supply of water for local people as well as animals	0.0	0.0	0.0	Very Low
SIONING	Harvestable resources	Refers to the effectiveness of wetlands in providing a range of harvestable natural resources including firewood, material for construction, medicinal plants and grazing material for livestock.	0.5	0.0	0.0	Very Low
ROVIS	Food for livestock	Refers to the ability of wetlands to provide suitable vegetation as food for livestock.	2.0	0.3	0.7	Very Low
4	Cultivated foods	Refers to the ability of wetlands to provide suitable areas for cultivating crops and plants for use as food, fuel or building materials.	3.0	0.0	1.5	Moderately Low
AL S	Tourism and Recreation	Refers to the value placed on wetlands in terms of the tourism related and recreational benefits provided.	0.2	0.0	0.0	Very Low
ULTUR	Education and Research	Refers to the value of wetlands in terms of education and research opportunities, particularly concerning their strategic location in terms of catchment hydrology.	0.0	0.0	0.0	Very Low
-0.0	Cultural and Spiritual	Refers to the special cultural significance of wetlands for local communities	2.0	0.0	0.5	Very Low

 Table 15.
 Summary of the results of a WET-EcoServices (Version 2) assessment (Kotze et al. 2020), to Pan 2 on Brakfontein.

The low scores for the provisional services are because all wetlands on Brakfontein lack the ability to directly supply water or medicinal plants. No crop farming, hunting, or fishing is possible in these systems either. The wetlands are not used as public tourism or recreation destinations and is not associated with any cultural practises or beliefs. The wetlands have also not been subject to research in the past and the fact that Brakfontein is situated in a rural area, relatively far away from the nearest academic institution, and has restrictive access control; lowers their importance for education and research.

3.5.6. Recommended wetland buffer zone

The aquatic buffer segment identified for the depressional wetlands on Brakfontein (Figure 28) have gentle sloping land and shallow, moderately drained soils (Table 16). The wetland buffer requirements are low in general, due to the arid climate, lack of organic soils, and limited human use. For both pans, a pre-and post-mitigation buffer width of 35 m is deemed acceptable during the construction phase, and a 25 m during the operational phase to protect core wetland habitat and aquatic functioning from the operation. It is not clear if any prospecting activities are planned in or near these units, but the main impact risks are expected to be in the form of dust-fall that could increase the sediment input and turbidity of the wetlands. If pits are planned within the vicinity of the pans, then major associated impacts include increase in sediment inputs and turbidity, inputs of toxic heavy metal contaminants through possible petrochemical spills, as well as the alteration in pH. With effective mitigation, the impacts can be reduced and therefor the post-mitigation and final buffer requirements for these units are 35m.

Assessment Units	Differentiating characteristics of buffer	Pre-mitigati width (m)	on)	Post-mitigation width (m)	
	<u>Slope</u> : Very Gentle (0 - 2%) <u>Vegetation</u> : Good; Moderately robust vegetation with good interception potential	Construction Phase	35	Construction Phase	35
Pan 1 & 2	Soil permeability: Moderately low; Shallow (<30cm) moderately drained soils	Operational Phase	25	Operational Phase	25
	<u>Micro-topography</u> : Dominantly uniform topography: Dominantly smooth topography with few/minor concentrated flow paths to reduce interception.	Final aquatic impact buffer requirement		35	

Table 16. The recommended final aquatic impact buffer requirements for the Brakfontein wet
--

Figure 28. Final aquatic impact buffer requirements, including practical management considerations, for the depressional wetlands on Brakfontein.

3.6. Critical biodiversity areas and broad-scale processes

The proposed prospecting site falls within critical biodiversity areas, as defined by the Northern Cape Critical Biodiversity Areas Map (Holness and Oosthuysen 2016). This map identifies biodiversity priority areas, called Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs), which, together with protected areas, are important for the persistence of a viable representative sample of all ecosystem types and species as well as the long-term ecological functioning of the landscape as a whole. The ephemeral pan in the west, along with some calcrete terraces comprise of *Ecological Support Areas*, while the remainder of the study area comprise of *Other Natural Areas* (Figure 29). No protected areas occur in or near the study site.

According to the Mining and Biodiversity Guidelines (DEA 2013) no area on Brakfontein has been classified with biodiversity importance. These guidelines were developed to identify and categorize biodiversity priority areas sensitive to the impacts of mining, to support mainstreaming of biodiversity issues in decision making in the mining sector.

Furthermore, according to the National Web based Environmental Screening Tool the study area is considered to have sensitive environmental features (Figure 30). This tool is a geographically based web-enabled application which allows a proponent intending to apply for environmental authorisation in terms of the Environmental Impact Assessment (EIA) Regulations 2014 (as amended), to screen their proposed site for any environmental sensitivity. According to the screening tool, the Brakfontein study area is considered to be of low sensitivity based on the *Plant species Theme* but is considered to be of medium sensitivity based on the *Animal Species Theme*. This sensitivity is attributed to the suitable habitat and overlapping distribution range of the listed Ludwig's Bustard and Tawny Eagle, of which both are expected to occur here. Only the pan in the west is considered to be of very high sensitivity based on the *Aquatic Biodiversity Theme*. The same pan, along with the calcrete terraces in the west are of very high sensitivity based on the *Terrestrial Biodiversity* Themes, which is a direct function of the Ecological Support Areas on the Northern Cape Critical Biodiversity Areas Map.

According to the Pixley ka Seme Spatial Development Framework, all rivers and wetlands, including a generic buffer of 100m, are regarded as ecological corridors. Their mandate is to conserve existing ecological corridors and rehabilitate any remnants of corridors. Therefore, the pans on Brakfontein, including a 100m buffer should be conserved.

Figure 29. The study area in relation to the Northern Cape Critical Biodiversity Areas.

Figure 30. Environmental sensitivities in the study area, according to the National Web based Environmental Screening Tool.

Finally, the study area falls within a region where one of South Africa's largest economically most important alluvial diamond deposits are found (Figure 31), i.e. along the Orange and Vaal Rivers (Gresse 2003). The most significant crop irrigation in the Northern Cape also stretches along these rivers (Durand 2006). These factors increase the proposed operation's cumulative impacts. The Brakfontein prospecting activities are therefore expected to contribute to the cumulative effect of mining and habitat disturbances in the region.

Figure 31. The distribution of mining properties and crop irrigation in the study region.

3.7. Site sensitivity

The sensitivity map for the Brakfontein prospecting operation is illustrated in Figure 32. The depressional wetlands (ephemeral pans), along with their buffer requirements are of **very high** sensitivity due to their vital ecological functionality and significance, which was discussed in this report. The wetlands, albeit intermittent, are also protected in terms of the National Water Act (Act No 36 of 1998) and are important ecological corridors according to the Pixley ka Seme Spatial Development Framework. They are therefore regarded as important features for the conservation of biodiversity and broad-scale ecological processes and are essentially no-go areas.

The calcrete terraces are of high sensitivity, primarily because of the widespread occurrence of nationally and provincially protected plant species, specifically *Boscia albitrunca*, as discussed in section 3.3.3 of this report. Furthermore, these areas overlap with the distribution range of-and provides suitable habitat for the red listed Ludwig's Bustard and Tawny Eagle (see section 3.4.4). Although these units are not regarded as no-go areas, activities should only proceed with caution as it may not be possible to mitigate all impacts appropriately.

The grassland is considered to be of **medium** sensitivity. Although it also overlaps with the distribution range of those listed bird species discussed above, it does not harbour a significant population of plant species of conservation concern. Impacts are likely to be largely local here and activities within these areas can proceed with relatively little ecological impact provided that appropriate mitigation measures are taken.

Figure 32. A sensitivity map for the Brakfontein prospecting area.

4. ECOLOGICAL IMPACT ASSESSMENT

In this section, all potential impacts and associated risk factors that may be generated by the Brakfontein operation are identified and described. A detailed analysis of each impact is provided in Table 17. Impacts are assessed in terms of the relevant ecological aspects and each impact is associated with specific mitigation measures, which with proper implementation, will serve to reduce the significance of the impact.

4.1. Topography, soil erosion and associated degradation of landscapes

4.1.1. Alteration of soil character and quality

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, oil and petrochemical spills.

Description of the impact

Topsoil contains living organisms and seed banks that provide ecological resilience against disturbances, and any disturbances to the intact soil profile will change its ability to sustain natural ecological functioning. Vehicles and prospecting equipment may potentially leak hazardous fluids on the soil surface, which will cause soil pollution. Apart from the direct disturbances caused by the prospecting activities, soil compaction by dump loads as well as heavy machinery and vehicles will causes a decrease in large pores, and subsequently the water infiltration rate into soil.

- Topsoil needs to be removed and stored separately during prospecting and the construction of roads, infrastructure and stockpile areas.
- These topsoil stockpiles must be kept as small as possible in order to prevent compaction and the formation of anaerobic conditions.
- Topsoil must be stockpiled for the shortest possible timeframes to ensure that the quality of the topsoil is not impaired.
- Topsoil must not be handled when the moisture content exceeds 12 %.
- Topsoil stockpiles must by no means be mixed with sub-soils.
- The topsoil should be replaced as soon as possible on to the disturbed areas, thereby allowing for the re-growth of the seed bank contained within the topsoil.

Table 17. A detailed analy	ysis of ecological impacts	identified for the Brakfontei	n prospecting operation.
----------------------------	----------------------------	-------------------------------	--------------------------

	INDACT	Phase		Phase		2	Extent	Duration			Significanco	Significance after
	IIVIPACI	с	C O D		extent	Duration	Seventy	Probability	Significance	Mitigation		
	Alteration of soil character and quality	~	~	~	On-site (1)	Residual (4)	High (3)	Certain for life of operation (10)	Medium - High (80)	Low-Medium		
Soil	Loss of topsoil and soil fertility	~	~	~	On-site (1)	Residual (4)	High (3)	Certain for life of operation (10)	Medium - High (80)	Low-Medium		
	Increase in soil erosion	~	~		Local (2)	Decommissioning (3)	Medium (2)	Possible, frequently (8)	Low - Medium (56)	Low		
	Loss of indigenous vegetation	~	~		On-site (1)	Residual (4)	Medium (2)	Certain for life of operation (10)	Low - Medium (70)	Low-Medium		
	Loss of Red data and/or protected floral species	~	~		On-site (1)	Residual (4)	High (3)	Certain for life of operation (10)	Medium - High (80)	Low-Medium		
Flor	Introduction or spread of alien species	~	~	~	Local (2)	Residual (4)	Medium (2)	Possible, frequently (8)	Low-Medium (64)	Very low		
	Bush encroachment	1	1	1	On-site (1)	Residual (4)	Medium (2)	Possible, infrequently (7)	Low (49)	Very low		
na	Habitat fragmentation	~	~		Regional (3)	Residual (4)	High (3)	Certain for life of operation (10)	Medium - High (100)	Low-Medium		
Faun	Disturbance, displacement and killing of fauna	~	1	~	Local (2)	Decommissioning (2)	Medium (2)	Certain, for life of operation (10)	Low-Medium (60)	Low		

	INDACT		Phase		Evtont	Duration	Soverity	Drobobility	Significance	Significance after
	IIVIPACI	с	ο	D	extent	Duration	Seventy	Probability	Significance	Mitigation
ter urces	Alteration/destruction of watercourses	~	~		Regional (3)	Permanent (5)	High (3)	Possible, infrequent (7)	Medium - High (77)	Low-Medium
Wai resou	Siltation of surface water	~	~	~	Regional (3)	Residual (4)	High (3)	Possible, infrequent (7)	Low-Medium (70)	Low
Cumulative	Compromise of broadscale ecological processes	~	~		Regional (3)	Residual (4)	High (2)	Certain for life of operation (10)	Medium - High (90)	Low-Medium

 Table 17 (cont.). A detailed analysis of ecological impacts identified for the Brakfontein prospecting operation.

- For restoration of the affected areas without topsoil, soils can be sourced from other sustainable areas and chemically changed to match with the surrounding environment.
- To restore areas where compacted soil occurs, a ripper blade or deep plow can be pulled across the affected area to alleviate compaction.
- Encourage the growth of natural plant species in all affected areas by sowing indigenous seeds or by planting seedlings.
- Vehicles and machinery should be regularly serviced and maintained.
- Refuelling and vehicle maintenance must take place in well demarcated areas and over suitable drip trays to prevent soil pollution.
- Drip trays must be available on site and installed under all stationary vehicles.
- Spill kits to clean up accidental spills from any accidental spillages must be well-marked and available on site.
- Workers must undergo induction to ensure they are prepared for rapid clean-up procedures.
- Any soil or area that is contaminated must be cleaned immediately by removing the soil and disposing it as hazardous waste in the correct manner.

4.1.2. Loss of soil fertility

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling.

Description of the impact

Topsoil contains living organisms that naturally regulate the ecological functioning of a habitat. Therefore, any disturbances to the intact soil profile can result in soil sterilisation which will directly affect vegetation communities. Apart from the direct disturbances caused by the prospecting activities, loss of soil fertility can also occur through soil compaction by dump loads as well as heavy machinery and vehicles.

- Topsoil needs to be removed and stored separately during prospecting and the construction of roads, infrastructure and stockpile areas.
- These topsoil stockpiles must be kept as small as possible in order to prevent compaction and the formation of anaerobic conditions.

- Topsoil must be stockpiled for the shortest possible timeframes to ensure that the quality of the topsoil is not impaired.
- Topsoil must not be handled when the moisture content exceeds 12 %.
- Topsoil stockpiles must by no means be mixed with sub-soils.
- The topsoil should be replaced as soon as possible on to the disturbed areas, thereby allowing for the re-growth of the seed bank contained within the topsoil.
- For restoration of the affected areas without topsoil, soils can be sourced from other sustainable areas and chemically changed to match with the surrounding environment.
- To restore areas where compacted soil occurs, a ripper blade or deep plow can be pulled across the affected area to alleviate compaction.
- Encourage the growth of natural plant species in all affected areas by sowing indigenous seeds or by planting seedlings.

4.1.3. Soil erosion

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, natural events.

Description of the impact

Vegetation will be stripped for construction of new roads and prospecting areas and these areas will be bare and highly susceptible to erosion. Any topsoil-, overburden- and ore stockpiles can be eroded by wind, rain and flooding. Exposed sediments in the ephemeral wetland catchments can be carried away during runoff causing downstream sediment deposition and changing the geomorphology of the water resources. Any leaking pipes can also cause additional water erosion.

- Bare ground exposure should be minimised at all times in terms of surface area and duration.
- Re-establishment of plant cover on disturbed areas must take place as soon as possible once activities in the area have ceased.
- No new roads, infrastructure or prospecting areas should be developed over the wetlands.
- Disturbances during the rainy season should be monitored and controlled.
- Any potential run-off from exposed ground should be controlled with flow retarding barriers.
- Regular monitoring during the prospecting operation should be carried out to identify areas where erosion is occurring; followed by appropriate remedial actions.

4.2. Vegetation and floristics

4.2.1. Loss of indigenous vegetation

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling.

Description of the impact

The Brakfontein prospecting activities are expected to destroy a large area of natural vegetation. It is expected that the ecological functioning and biodiversity will take many years to fully recover. Vehicle traffic and prospecting activities generate lots of dust which can also reduce the growth success and seed dispersal of many small plant species in the adjacent pristine areas.

Mitigation and monitoring

- Implement best practise principles to minimise the footprint of transformation, by keeping to existing roads and earmarked areas where possible.
- Implement effective avoidance measures to limit any activities in the highly sensitive areas, by applying the no-go principles.
- Ensure measures for the adherence to a maximum speed limit of 40 km/h to minimise dust fallout and associated effects on plants in the adjacent pristine areas.
- Develop an effective dust suppression system to limit dust fallout risks.
- Encourage the growth of natural plant species in all affected areas by sowing indigenous seeds or by planting seedlings.
- The setup of a small nursery is advisable to maximise translocation and re-establishment efforts of affected areas.
- Apply for permits to authorise the large-scale clearance of indigenous plants from DENC at least three months before such activities will commence.

4.2.2. Loss of Red data and/or protected floral species

Source of the impact

Removal of plant species of conservation concern during clearing of an area for excavations, construction of infrastructure and roads, stockpiling. Intentional removal of plant species for non-mine related purposes, e.g. illegal plant trade, fire-wood, medicinal, ornamental use.

Description of the impact

There are a number of plant species of conservation concern present on the Brakfontein Prospecting Right area as discussed in section 3.3.3 of this report. Many of the species are found in the core prospecting area and therefore it is likely that the prospecting operation will impact on their population dynamics. The most significant concern is the loss of *Boscia albitrunca* recruits. Saplings are rarely visible during clearance operations and therefore the younger populations often get wiped out. Furthermore, any illegal harvesting of any other protected plants for whatever reason by staff, contractors or secondary land users could have devastating effects on the population of these species.

- The footprint areas of the prospecting activities must be scanned for Red Listed and protected plant species prior to any destructive activities by means of a search-and-rescue operation.
- These plants should be identified and marked prior to intended activity and should ideally be incorporated into the design layout and left in situ. However, due to the nature of the proposed prospecting activities they will most likely all be removed or relocated if possible. The relevant permits from DAFF / DENC should be obtained at least three months before such activities will commence.
- The setup of a small nursery is advisable to maximise translocation and re-establishment efforts of all the rescued plants.
- A management plan should be implemented to ensure proper establishment of ex situ individuals and should include a monitoring programme for at least two years after reestablishment in order to ensure successful translocation.
- The designation of an environmental officer is recommended to render guidance to the staff and contractors with respect to suitable areas for all related disturbance and must ensure that all contractors and workers undergo Environmental Induction prior to commencing with work on site. The environmental induction should occur in the appropriate languages for the workers who may require translation.
- All those working on site must be educated about the conservation importance of the flora occurring on site as well as the legislation relating to protected species.
- Employ regulatory measures to ensure that no illegal harvesting takes place.

4.2.3. Introduction or spread of alien species

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, improper rehabilitation practises.

Description of the impact

Several weeds and invasive species occur on site, as discussed in section 3.3.4 of this report with *Prosopis* being particularly abundant. Any anthropogenic disturbances to natural vegetation, especially the clearance of large areas of land, provide the opportunity for invasive plants to increase. This is due to their opportunistic nature of dispersal and establishing in disturbed areas. If invasive plants establish in disturbed areas, it may cause an impact beyond the boundaries of the prospecting site, because they spread easily to neighbouring habitats where they outcompete indigenous species. These alien invasive species are thus a threat to surrounding natural vegetation and can result in the decrease of biodiversity as well as reduction in the ecological value and land use potential of the area. Therefore, if alien invasive species are not controlled and managed, their propagation into new areas could have a high impact on the surrounding natural vegetation in the long term. With proper mitigation, the impacts can be substantially reduced.

Mitigation and monitoring

- Implement best practise principles to minimise the footprint of transformation, by keeping to existing roads and earmarked areas where possible.
- Mechanical methods of control should be implemented pro-actively as soon as invasive species start to emerge.
- Regular follow-up monitoring of invasive control areas needs to be implemented to ensure effective eradication.
- Encourage proper rehabilitation of disturbed areas through soil restoration and reseeding of indigenous plant species.

4.2.4. Encouraging bush encroachment

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, improper rehabilitation practises.

Description of the impact

The extent of bush encroaching species on site is high, especially regarding the densities of *Senegalia mellifera* and *Rhigozum trichotomum*. Bush encroachment is a natural phenomenon characterised by the excessive expansion of certain indigenous shrub species at the expense of other indigenous plant species. Any surface disturbances where the grassland matrix is removed can lead to the expansion of encroaching shrubs and trees. When the areas surrounding the shrubs area cleared, it causes an open niche for these competitive species to establish and outcompete the surrounding plants, eventually forming dense and impenetrable stands. This lowers the potential for future land use and decreases biodiversity. With proper mitigation, the impacts can be substantially reduced. In fact, the proposed prospecting activities could reduce the extent of these shrubs significantly. By clearing large stands of shrubs and subsequently effectively rehabilitating the cleared areas, it can benefit biodiversity.

Mitigation and monitoring

- Mechanical methods of control should be implemented pro-actively when encroaching species form dense stands.
- Regular follow-up monitoring of encroached control areas needs to be implemented to ensure effective eradication.
- Encourage proper rehabilitation of disturbed areas through soil restoration and reseeding of indigenous plant species.

4.3. Fauna

4.3.1. Habitat fragmentation

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling.

Description of the impact

Fragmentation of habitats typically leads to the loss of migration corridors, in turn resulting in degeneration of the affected population's genetic make-up. This can be in the form of small-scale fragmentation for reptiles, amphibians, and invertebrates, to more large-scale fragmentation that hinder dispersal of birds and plants. It also includes the degradation of aquatic habitats, like the ephemeral wetlands, which has regional connectivity and form important links in the food-chain on a landscape level. Fragmentation of habitats usually results in a subsequent loss of genetic variability between meta-populations occurring within the region. Pockets of fragmented natural habitats hinder the growth and development of populations. The prospecting activities on Brakfontein are expected to result in the loss of connectivity and fragmentation of natural terrestrial habitats on a local and landscape scale, especially in terms of terrestrial habitats.

Mitigation and monitoring

- All activities associated with the prospecting operation must be planned, where possible to encourage faunal dispersal and should minimise dissection or fragmentation of any important faunal habitat type.
- The extent of the earmarked area should be demarcated on site layout plans. No staff, contractors or vehicles may leave the demarcated area except those authorised to do so.
- Those pristine areas surrounding the earmarked area that are not part of the demarcated area should be considered as a no-go zone for employees, machinery or even visitors.
- No new roads should be created across a wetland.
- No prospecting should take place in the wetlands.
- If wetland disturbances are unavoidable, a water use license to alter the beds and banks of each affected wetland should be obtained from DWS prior to such activities.
- Employ sound rehabilitation measures to restore characteristics of all affected terrestrial and aquatic habitats.

4.3.2. Disturbance, displacement and killing of fauna

Source of the impact

Vegetation clearing; increase in noise and vibration; human and vehicular movement on site resulting from prospecting activities.

Description of the impact

The transformation of natural habitats will result in the loss of micro-habitats, affecting individual species and ecological processes. This will result in the displacement of faunal species that depend on such habitats, e.g. birds that nest in trees or animals residing in holes in the ground or among rocks. It also includes the egg banks of specialised branchiopod crustaceans which is found in the sediment of the depressional wetlands. Furthermore, increased noise and vibration will disturb and possibly displace wildlife.

Fast moving vehicles cause road kills of small mammals, birds, reptiles, amphibians, and a large number of invertebrates. Intentional killing of snakes, reptiles, vultures and owls due to superstition or fear can negatively affect their local populations.

- Careful planning of the operation is needed to avoid the destruction of pristine habitats and minimise the overall disturbance footprint.
- The extent of the prospecting activities should be demarcated on site layout plans, and no personnel or vehicles may leave the demarcated area except if authorised. Areas surrounding the earmarked site that are not part of the demarcated area should be considered as a no-go zone.
- No prospecting should take place in the ephemeral wetlands. If this is unavoidable, a water use license to alter the beds and banks of each affected wetland should be obtained from DWS prior to such activities.
- If any of the ephemeral wetlands will be excavated, it is vital that the top 5cm of the sediment, which contains the egg banks, be removed prior to such activities, and stored in a suitable location where it cannot be eroded by wind or rain or be compacted or crushed. These egg banks should then ideally be used to restore wetland characteristics if possible, during the rehabilitation phase. However, if this is not possible, the egg banks should be donated to the Albany Museum in Grahamstown, where the freshwater collection of South Africa is housed.
- If any of the protected wildlife species are directly threatened by habitat destruction or displacement during the prospecting operation, then the relevant permits from DENC should be obtained followed by the relevant mitigation procedures stipulated in the permits.
- Everyone on site must undergo environmental induction for awareness on not capturing or harming species that are often persecuted out of superstition and to be educated about the conservation importance of the fauna occurring on site.
- Reptiles, amphibians, mammals, special invertebrates, or active bird nests exposed during the clearing operations should be captured for later release or translocation by a qualified expert.
- Employ measures that ensure adherence to a speed limit of 40 km/h as well as driving mindfully to lower the risk of animals being killed on the roads or elsewhere in the prospecting area.

4.4. Water resources

4.4.1. Alteration/destruction of watercourses

Source of the impact

During excavation of minerals, construction of infrastructure and roads, stockpiling.

Description of the impact

Direct prospecting within the wetlands on site as well as development of roads, infrastructure or stockpiles within their active zones, catchment areas, or buffer zones can completely change the hydrologic regime, geomorphology, water quality and habitat conditions of the wetland, which will compromise their ecological functioning and status.

Mitigation and monitoring

- All activities associated with the prospecting operation must be planned to avoid any disturbances to the watercourses and their recommended buffer zones.
- No new roads should be created across the wetlands and no prospecting should take place in them. If this is unavoidable, a water use license to alter its beds and banks should be obtained from DWS prior to such activities.
- If any of the ephemeral wetlands will be excavated, it is vital that the top 5cm of the sediment, which contains the egg banks, be removed prior to such activities, and stored in a suitable location where it cannot be eroded by wind or rain or be compacted or crushed. These egg banks should then ideally be used to restore wetland characteristics if possible, during the rehabilitation phase. However, if this is not possible, the egg banks should be donated to the Albany Museum in Grahamstown, where the freshwater collection of South Africa is housed.
- Employ sound rehabilitation measures to restore characteristics of any affected watercourses.

4.4.2. Siltation of surface water

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, natural events.

Description of the impact

Vegetation will be stripped in preparation for the prospecting areas and associated infrastructure. These bare areas will be very susceptible to wind and water erosion without plants to stabilise the soil, creating potential sediment source zones. High runoff events could potentially cause the ephemeral wetlands to be filled with silt from prospecting areas if the sediment source zones lie along the drainage paths towards these water resources. Wind can also carry dust from the prospecting site to the wetlands, increasing siltation risks. This may lead to a change in hydrologic regime, water quality, character and PES of the wetlands.

Mitigation and monitoring

- Bare ground exposure should always be minimised in terms of the surface area and duration.
- Re-establishment of plant cover on disturbed areas must take place as soon as possible once activities in the area have ceased.
- No new roads, infrastructure or prospecting areas should be developed over the wetlands.
- Disturbances during the rainy season should be monitored and controlled.
- Any potential run-off from exposed ground should be controlled with flow retarding barriers.
- Regular monitoring during the prospecting operation should be carried out to identify areas where erosion is occurring; followed by appropriate remedial actions.
- Ensure measures for the adherence to a maximum speed limit of 40 km/h to minimise dust fallout and associated effects on wetlands in the adjacent areas.
- Develop an effective dust suppression system to limit dust fallout risks.

4.5. Broad-scale ecological processes

Source of the impact

Clearing of vegetation and disturbance during the construction of roads and prospecting activities; alterations to watercourse habitat characteristics.

Description of the impact

Transformation of intact habitat on a cumulative basis would contribute to the fragmentation of the landscape and would potentially disrupt the connectivity of the landscape for fauna and flora and impair their ability to respond to environmental fluctuations. The habitats on site are vulnerable to cumulative disturbances, due to the vast extent of transformation through mining and agriculture in the region. Fragmentation of these habitats through loss of keystone species will destroy connectivity of vital ecological corridors and it will disrupt the food web, which might have cascading effects on a landscape level over the long-term.

- Implement best practise principles to minimise the footprint of transformation, by keeping to existing roads and earmarked areas where possible.
- Apply for the relevant permits from DENC and DAFF relating to terrestrial flora and fauna.
- No new roads should be created across a wetland and no prospecting should take place in them. If this is unavoidable, a water use license should be obtained from DWS prior to such activities.
- Employ sound rehabilitation measures to restore characteristics of all affected habitats.
- For restoration of the affected terrestrial areas without topsoil, soils can be sourced from other sustainable areas and chemically changed to match with the surrounding environment.
- To restore areas where compacted soil occurs, a ripper blade or deep plow can be pulled across the affected area to alleviate compaction.
- Encourage the growth of natural plant species in all affected areas by sowing indigenous seeds or by planting seedlings.
- The setup of a small nursery is advisable to maximise translocation and re-establishment efforts of affected areas.
- If any of the ephemeral wetlands will be excavated, it is vital that the top 5cm of the sediment, which contains the egg banks, be removed prior to such activities, and stored in a suitable location where it cannot be eroded by wind or rain or be compacted or crushed. These egg banks should then ideally be used to restore wetland characteristics if possible, during the rehabilitation phase. However, if this is not possible, the egg banks should be donated to the Albany Museum in Grahamstown, where the freshwater collection of South Africa is housed.

5. CONCLUSION, RECOMMENDATIONS AND OPINION REGARDING AUTHORISATION

Three plant communities occur on site, including terrestrial and aquatic habitats. The two depressional wetlands are both considered to be of very high sensitivity due to their vital ecological and hydrological functionality and significance, which is portrayed in the various sections of this report. The calcrete terraces are of high sensitivity, primarily because of the high number of the nationally protected tree (*Boscia albitrunca*) that occur here and the suitable habitat and overlapping distribution range for protected birds. The grassland is of medium sensitivity.

The most profound impacts are expected to be related to the cumulative loss of natural terrestrial habitat on a landscape scale as well as the removal of the nationally protected tree, *Boscia albitrunca*. A number of provincially protected species also occur on site. Before any of these species are damaged or removed, permits need to be obtained from the Northern Cape Department of Environment and Nature Conservation and/or Department of Agriculture, Forestry and Fisheries, at least three months prior to any clearance of affected species.

The wetland in the west is in a near-natural condition, with high ecological importance and sensitivity, while the wetland in the east has been moderately modified. The most profound functional importance of the wetlands relates to the maintenance of biodiversity in the form of unique habitats they provide for freshwater crustaceans. Even though rarely wet, these wetlands harbour egg banks of these specialised freshwater invertebrates in the dry sediment, which allows for the continuation of the species once the wetlands flood. Protecting the sediment in-situ is therefore vital. It is not currently known if the wetlands are within the core areas earmarked for prospecting, but before any direct activities can take place within a wetland, a water use licence needs to be obtained for Department of Water and Sanitation prior to such activities.

To conclude, disturbances to ecological communities and the destruction of natural habitats are inevitable during prospecting operations. The significance of related impacts however depends on the mitigation and rehabilitation measures implemented by the prospecting company. In my opinion, authorisation for the proposed prospecting operation can be granted if the applicant commits to strictly adhere to effective avoidance, management, mitigation, and rehabilitation measures.

6. **REFERENCES**

- ADU. 2016. Summary Data of the Frogs of South Africa, Lesotho and Swaziland. Animal Demography Unit, Department of Zoology, University of Cape Town.
- ALEXANDER, G. and MARAIS, J. 2007. A guide to the reptiles of southern Africa. Struik Nature, Cape Town.
- BATES, F., BRANCH, W.R., BAUER, A.M., BURGER, M., MARAIS, J., ALEXANDER, G.J., and DE VILLIERS,
 M.S. 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. South
 African National Biodiversity Institute, Pretoria.
- BELNAP, J. and WEBER, B. 2013. Biological soil crusts as an integral component of desert environments. *Ecological Processes* 2:11, doi:10.1186/2192-1709-1182-1111.
- BIRDLIFESA. 2015. Important Bird Areas Map.
- DEA. 2013. Mining and Biodiversity Guideline: Mainstreaming biodiversity into the mining sector, Pretoria.
- DU PREEZ, L. and CARRUTHERS, V. 2009. A complete guide to the frogs of southern Africa. Struik Nature, Cape Town.
- DURAND, W. 2006. Assessing the impact of climate change on crop water use in South Africa. ARC-Grain Crops Institute, Potchefstroom.
- DUTHIE, A. 1999. Determining the Ecological Importance and Sensitivity (EIS) and Ecological Management Class (EMC).*in* H. MACKAY, editor. Resource Directed Measures for Protection of Water Resources. Volume 4: Wetland Ecosystems Version 1.0. Department of Water Affairs and Forestry, Pretoria.
- FRIEDMANN, Y. and DALY, B. 2004. Red data book of the mammals of South Africa: a conservation assessment. CBSG-EWT, Johannesburg.

- GIBBON, G. 2006. Robert's Multimedia Birds of Southern Africa version 3. . Southern African Birding cc.
- GRESSE, P.G. 2003. The preservation of alluvial diamond deposits in abandoned meanders of the middle-Orange River. SAIMM Colloquium: Diamonds Source to use, Oct. 2003.
- GRIFFITHS, C., DAY, J., and PICKER, M. 2015. Freshwater Life: A field guide to the plants and animals of Southern Africa. Struik Nature, Cape Town.
- HOLNESS, S. and OOSTHUYSEN, E. 2016. Critical Biodiversity Areas of the Northern Cape. Northern Cape Department of Environment and Nature Conservation, <u>http://bgis.sanbi.org</u>.
- HORNSVELD, H. 1977. 2822 Postmasburg, 1:250 000 scale published geological sheet. The Government Printer, Pretoria.

IUCN. 2022. IUCN Red List of Threatened Species. Version 2022-2

- KLEYNHANS, C.J. 2007. Module D: Fish Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry.
- KOTZE, D.C., MACFARLANE, D.M., and EDWARDS, D.P. 2020. A technique for rapidly assessing ecosystem services supplied by wetlands and riparian areas. Water Research Commission, Pretoria.
- KREMEN, C., COLWELL, R.K., ERWIN, T.L., MURPHY, D.D., NOSS, R.F., and SANJAYAN, M.A. 1993. Terrestrial arthropod assemblages: their use in conservation planning. *Conservation Biology* 7:4, 796-808.
- MACFARLANE, D.M. and BREDIN, I.P. 2017. Buffer Zone Guidelines for Rivers, Wetlands and Estuaries. WRC Report No. TT 715-1-17. Water Research Commission, Pretoria.
- MACFARLANE, D.M., OLLIS, D.J., and KOTZE, D.C. 2020. WET-Health (Version 2) Technical Guide. Report to the Water Research Commission. WRC Project No. K5/2549., Water Research Commission, Pretoria.

- MINTER, L.R., BURGER, M., HARRISON, J.A., BRAACK, H.H., BISHOP, P.J., and KLOEPFER, D. 2004. Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. Smithsonian Institution, Washington, DC.
- MUCINA, L. and RUTHERFORD, M.C. 2006. The Vegetation Map of South Africa, Lesotho and Swaziland. SANBI, Pretoria, South Africa.
- MUCINA, L. and RUTHERFORD, M.C. 2012. Vegetation Map of South Africa, Lesotho and Swaziland. SANBI, Claremont.
- OLLIS, D.J., SNADDON, C.D., JOB, N.M., and MBONA, N. 2013. Classification System for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. South African National Biodiversity Institute, Pretoria.
- PICKER, M., GRIFFITHS, C., and WEAVING, A. 2004. Field Guide to the Insects of South Africa. Struik Nature, Cape Town.
- ROUNTREE, M., BATCHELOR, A.L., MACKENZIE, J., and HOARE, D. 2008. Updated Manual for the Identification and Delineation of Wetlands and Riparian Areas (DRAFT). DWAF, Pretoria.

SANBI. 2020. Red List of South African Plants. Version 2020.1

- SMOOK, A.J., POURNARA, D.J., and CRAIG, A.R. 2002. Lower Orange Water Management Area: Water resource situation assessment. REPORT NO: 14000/00/0101. DEPARTMENT: WATER AFFAIRS AND FORESTRY.
- TAYLOR, M.R., PEACOCK, F., and WANLESS, R.M. 2015. The 2015 Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Dunkeld West.
- THIRION, C. 2007. Module E: Macroinvertebrate Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). WRC Report No. TT 332/08, Joint Water Research Commission and Department of Water Affairs and Forestry, Pretoria.
- VAN DEVENTER, H., SMITH-ADAO, L., COLLINS, N.B., GRENFELL, M., GRUNDLING, A., GRUNDLING, P.-L., IMPSON, D., JOB, N., LÖTTER, M., OLLIS, D., PETERSEN, C., SCHERMAN, P., SIEBEN, E., SNADDON, K., TERERAI, F., and VAN DER COLFF, D. 2019. South African National Biodiversity

Assessment 2018: Technical Report. Volume 2b: Inland Aquatic (Freshwater) Realm. South African National Biodiversity Institute, Pretoria.

WEISSER, W.W. and SIEMANN, E. 2004. The various effects of insects on ecosystem functioning. Pages
 3-24 in W. W. Weisser and E. Siemann, editors. Insects and Ecosystem Function, Ecological
 Studies Series, Volume 173. Springer-Verlag, Berlin.

APPENDICES

APPENDIX 1

Plant species list

FAMILY	SPECIES	STATUS	NFA	NCNCA
ACANTHACEAE	Acanthopsis hoffmannseggiana	DDT		
	Justicia incana	LC		
AIZOACEAE	Aizoon asbestinum	LC		
	Mesembryanthemum coriarium	LC		S2
	Plinthus karooicus	LC		
	Ruschia spinosa	LC		S2
AMARANTHACEAE	Atriplex nummularia	Decl. Inv.		
	Chenopodium album	Nat. Exot.		
	Salsola glabrescens	LC		
	Salsola rabieana	LC		
	Salsola smithii	DDT		
	Sericocoma avolans	LC		
	Sericorema remotiflora	LC		
ANACARDIACEAE	Searsia tridactyla	LC		
APOCYNACEAE	Microloma armatum var. armatum	LC		S2
ASPARAGACEAE	Asparagus retrofractus	LC		
	Asparagus suaveolens	LC		
ASTERACEAE	Chrysocoma ciliata	LC		
	Eriocephalus merxmuelleri	LC		
	Felicia fascicularis	LC		
	Gazania krebsiana subsp. arctotoides	LC		
	Geigeria ornativa	LC		
	– Helichrysum argyrosphaerum	LC		
	Helichrysum lucilioides	LC		
	Kleinia longiflora	LC		
	Lasiopogon glomerulatus	LC		
	Osteospermum muricatum	LC		
	Pegolettia retrofracta	LC		
	Pentzia calcarea	LC		
	Pentzia alobosa	LC		
	Pentzia incana	LC		
	Pteronia alauca	LC		
	Pteronia mucronata	LC		
	Rosenia humilis	LC		
BIGNONIACEAE	Rhiaozum trichotomum	Encr.		
BORAGINACEAE	Heliotropium ciliatum	LC		
BRASSICACEAE	Boscia albitrunca	LC	х	S2
	Cadaba aphylla	LC		
CACTACEAE	Cvlindropuntia fulaida var. fulaida	Decl. Inv.		
CAMPANULACEAE	Wahlenberaia nodosa	LC		
	Herniaria erckertii subsp. erckertii	10		
CUCURBITACEAF	Cucumis myriocarpus subsp. leptodermis	LC		
FABACEAF	Indiaofera alternans	10		
	Lotononis laxa	LC		
	Melolobium microphyllum	LC		

FAMILY	SPECIES	STATUS	NFA	NCNCA
FABACEAE	Prosopis velutina	Decl. Inv.		
	Schotia afra var. afra	LC		
	Senegalia mellifera	Encr.		
	Senna italica	LC		
GISEKIACEAE	Gisekia pharnaceoides	LC		
IRIDACEAE	Moraea simulans	LC		S2
LAMIACEAE	Acrotome inflata	LC		
	Stachys spathulata	LC		
LIMEACEAE	Limeum aethiopicum	LC		
	Limeum pterocarpum	LC		
	Limeum viscosum	LC		
MALVACEAE	Hermannia erodioides	LC		
	Melhania rehmannii	LC		
NYCTAGINACEAE	Boerhavia diffusa	Nat. Exot.		
	Phaeoptilum spinosum	LC		
PAPAVERACEAE	Argemone ochroleuca	Decl. Inv.		
POACEAE	Aristida congesta subsp. congesta	LC		
	Aristida junciformis	LC		
	Cenchrus ciliaris	LC		
	Enneapogon desvauxii	LC		
	Eragrostis bicolor	LC		
	Eragrostis echinochloidea	LC		
	Eragrostis lehmanniana	LC		
	Eragrostis nindensis	LC		
	Eragrostis obtusa	LC		
	Eragrostis rigidior	LC		
	Eragrostis truncata	LC		
	Fingerhuthia africana	LC		
	Panicum coloratum	LC		
	Stipagrostis ciliata	LC		
	Stipagrostis namaquensis	LC		
	Stipagrostis obtusa	LC		
	Stipagrostis uniplumis	LC		
	Tragus racemosus	LC		
POLYGALACEAE	Polygala krumanina	LC		
POLYGONACEAE	Oxygonum alatum var. alatum	LC		
RANUNCULACEAE	Ranunculus multifidus	LC		
SANTALACEAE	Thesium hystrix	LC		
	Thesium lineatum	LC		
SCROPHULARIACEAE	Aptosimum albomarginatum	LC		
	Aptosimum marlothii	LC		
	Aptosimum spinescens	LC		
	Chaenostoma halimifolium	LC		
	Selago albida	LC		
	Selago densiflora	LC		

FAMILY	SPECIES	STATUS	NFA	NCNCA
SOLANACEAE	Lycium bosciifolium	LC		
SOLANACEAE	Lycium pilifolium	LC		
ZYGOPHYLLACEAE	Fagonia minutistipula	LC		
	Roepera lichtensteiniana	LC		
	Tribulus zeyheri	LC		

APPENDIX 2

Fauna species list

LIST OF MAMMALS

Mammals protected according to NCNCA are indicated with their respective Schedule no. in superscript

	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
	² Eidolon helvum	African Straw-coloured Fruit-bat	NT	LC	Wide habitat tolerance.	Low
CHIROPTERA	² Eptesicus hottentotus	Long-tailed Serotine Bat	LC	LC	Mainly close to rivers and surrounding habitats.	Low
	² Neoromicia capensis	Cape Bat	LC	LC	Wide habitat tolerance, but found in arid areas, grassland, bushveld and <i>Acacia</i> woodland. Roosts under the bark of trees and similar vegetation.	Moderate
	³ Miniopterus natalensis	Natal Long-fingered Bat	LC	LC	Mainly roosts in caves or mine shafts, but also in crevices and holes in trees.	Low
	² Nycteris thebaica	Common Slit-faced Bat	LC	LC	Savanna species with wide habitat tolerance. Roosts in caves, mine adits, aardvark holes, rock crevices and hollow trees in open savanna.	Low
	² Rhinolophus denti	Dent's Horseshoe Bat	LC	NT	Savanna habitats in broken country with rocky outcrops or suitable caves	Low
	² Rhinolophus clivosus	Geoffroy's Horseshoe Bat	LC	LC	Wide habitat tolerance.	High
	² Rhinolophus darlingi	Darling's Horseshoe Bat	LC	LC	Savanna habitats.	Low
	² Tadarida aegyptiaca	Egyptian Free-tailed Bat	LC	LC	Wide habitat tolerance.	High
	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
-------------	---	--------------------	------	-------	--	----------------------
ELIDIDAE	² Macroscelides proboscideus	Round-eared Sengi	LC	LC	Restricted to gravel plains associated with alluvial plains and relatively flat areas between higher elevation areas such as outcrops, hills and mountains.	Low
MACROSC	² Elephantulus rupestris	Western Rock Sengi	LC	LC	Arid habitats, including deserts, dry savannas, and dry shrublands. Associated with rocky ridges, outcrops or koppies, and boulder fields at the bases of mountains.	High
TUBULENTATA	¹ Orycteropus afer	Aardvark	LC	LC	Wide habitat tolerance, being found in open woodland, scrub and grassland, especially associated with sandy soil.	High
HYRACOIDEA	² Procavia capensis	Rock Hyrax	LC	LC	Outcrops of rocks, especially granite formations and dolomite intrusions in the Karoo. Also erosion gullies.	Low

	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
IMATES	⁴ Papio ursinus	Chacma Baboon	LC	LC	Fynbos, montane grasslands, riverine courses in deserts. Only needs water and access to refuge.	Low
Å	⁴ Chlorocebus pygerythrus	Vervet Monkey	LC	LC	Woodland savanna, riverine woodland, isolated stands of trees along rivers.	High
_	² Lepus capensis	Cape Hare	LC	LC	Dry, open regions, with palatable bush and grass.	High
GOMORPHA	² Lepus saxatilis	Scrub Hare	LC	LC	Common in crop-growing areas or in fallow lands where there is some bush development.	High
ΓΥ	² Pronolagus rupestris	Smith's Red Rock Rabbit	LC	LC	Rocky habitats, from isolated outcrops to mountain ranges; in high and low rainfall areas but absent from true desert.	High
	² Hystrix africaeaustralis	Cape Porcupine	LC	LC	Catholic in habitat requirements.	High
٩I	² Xerus inauris	South African Ground Squirrel	LC	LC	Open terrain with a sparse bush cover and hard substrate.	High
RODENI	² Pedetes capensis	Springhare	LC	LC	Occurs widespread: open sandy ground, sandy scrub, overgrazed grassland, edges of vleis and dry riverbeds.	High
	² Graphiurus ocularis	Spectacled Dormouse	LC	LC	Rocky habitats, but also trees.	High

	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
	² Malacothrix typica	Large-eared (Gerbil) Mouse	LC	LC	Short grass habitats over hard soil.	High
	² Saccostomus campestris	Pouched Mouse	LC	LC	Wide habitat tolerance but prefers soft, particularly sandy soils; can be found in open and dense vegetation and in rocky areas; annual rainfall of 250 - 1 200 mm.	Moderate
	² Malacothrix typica	Large-eared (Gerbil) Mouse	LC	LC	Short grass habitats over hard soil.	High
ENTIA	² Desmodillus auricularis	Cape Short-tailed Gerbil	LC	LC	Occurs on hard ground, unlike other gerbil species, with some cover of grass or karroid bush.	High
RODI	² Gerbillurus paeba	Pygmy Hairy-footed Gerbil	LC	LC	Nama and Succulent Karoo, preferring sandy soil or sandy alluvium with a grass, scrub or light woodland cover.	High
	² Gerbilliscus leucogaster	Bushveld Gerbil	LC	LC	Sandy soils; wooded and more open grassland; areas of cultivation.	Moderate
	² Gerbilliscus brantsii	Highveld Gerbil	LC	LC	Sandy soils; wooded and more open grassland; areas of cultivation.	Moderate
	² Micaelamys namaquensis	Namaqua Rock Mouse	LC	LC	Catholic habitat requirements, but prefer rocky hills, outcrops or boulder-strewn hillsides.	High

	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
	³ Rhabdomys dilectus	Mesic Four-striped Grass Mouse	LC	LC	Wide habitat tolerance, from desert fringe to high-rainfall montane areas with grass cover.	High
	² Rhabdomys pumilio	Four-striped Grass Mouse	LC	LC	Occurs in wide variety of habitats where there is good grass cover.	High
	² Mastomys coucha	Southern Multimammate Mouse	LC	LC	Wide habitat tolerance.	High
DENTIA	³ Mus musculus	House Mouse	LC	Not assessed	Wide habitat tolerance.	High
	² Thallomys nigricauda	Black-tailed Tree Rat	LC	LC	Arboreal species generally associated with Acacia bushland habitats.	Low
RO	² Parotomys littledalei	Littledale's Whistling Rat	LC	NT	Occurs in shrublands, specifically in coastal hummocks, sand dunes, gravel plains and dry riverine systems. Avoids open habitats.	Low
	² Myotomys unisulcatus	Bush Karoo Rat	LC	LC	Shrub and fynbos associations in areas with rocky outcrops. Tend to avoid damp situations but exploit the semi- arid Karoo through behavioural adaptation.	High
	² Cryptomys hottentotus	African Mole Rat	LC	LC	Occurs in a wide range of substrates and habitats	High

	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
рношрота	¹ Smutsia temminckii	Ground Pangolin	VU	VU	Low to high rainfall areas, including open grassland, woodland and rocky hills, but excluding forest and true desert; nevertheless, present throughout the Kalahari sand country.	High
PHLA	² Crocidura cyanea	Reddish-Grey Musk Shrew	LC	LC	Occurs in relatively dry terrain, with a mean annual rainfall of less than 500 mm. Occur in karroid scrub and in fynbos often in association with rocks.	High
ΠΓΙΡΟΤΛ	² Suncus varilla	Lesser Dwarf Shrew	LC	LC	Generally associated with termite mounds, grassland habitat.	Low
Ū	¹ Atelerix frontalis	South African Hedgehog	LC	NT	Generally found in semi-arid and sub- temperate environments with ample ground cover.	High
NIVORA	¹ Vulpes chama	Cape Fox	LC	LC	Associated with open country, open grassland, grassland with scattered thickets and coastal or semi-desert scrub.	High
CAI	¹ Otocyon megalotis	Bat-eared Fox	LC	LC	Prefers short-grass plains, shrub lands and open arid savanna. Absent from true desert or afforested areas.	High

	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
	^₄ Canis mesomelas	Black-backed Jackal	LC	LC	Wide habitat tolerance.	High
	² Aonyx capensis	Cape Clawless Otter	ΝΤ	NT	Rivers, marshes, dams and lakes; dry stream beds if pools of water exist.	Low
	¹ Mellivora capensis	Honey Badger	LC	LC	Wide habitat tolerance.	High
٩	¹ Poecilogale albinucha	African Striped WeaselLCNTWide habitat tolerance, but most common in grassland areas.	High			
RNIVOR/	¹ Ictonyx striatus	Striped Polecat	LC	LC	Widely distributed throughout the sub- region.	High
C	² Cynictis penicillata	Yellow Mongoose	LC	LC	Semi-arid country on a sandy substrate.	Confirmed
	² Herpestes sanguineus	Slender Mongoose	LC	LC	Wide habitat tolerance, but areas with adequate cover.	High
	² Suricata suricatta	Suricate	LC	LC	Open arid country with hard and stony substrate. Occur in Nama- and Succulent Karoo but also fynbos.	High
	² Genetta genetta	Common (Small-spotted) Genet	LC	LC	Occur in open arid habitats.	High

	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
	¹ Hyaena brunnea	Brown Hyena	NT	NT	Found in dry areas, generally with annual rainfall of 100 - 700 mm, particularly along the coast, semi-desert, open scrub and open woodland savanna.	Low
VIVORA	¹ Proteles cristata	Aardwolf	LC	LC	Common in the 100-600mm rainfall range of country, Nama-Karoo, Succulent Karoo Grassland and Savanna biomes. Absent from true desert and forests.	High
CARI	¹ Felis silvestris	African Wild Cat	LC	LC	Wide habitat tolerance.	High
U	¹ Felis nigripes	Black-footed cat	VU	VU	Associated with arid country, particularly areas with open habitat that provides some cover in the form of tall stands of grass or scrub.	Moderate
	^₄ Caracal caracal	Caracal	LC	LC	Caracals tolerate arid regions, occur in semi-desert and karroid conditions.	High

	Scientific name	Common name	IUCN	SAMRL	Habitat	Potential occurrence
IVLA	² Oryx gazella	Gemsbok	LC	LC	Semi-arid and arid bushland and grassland of the Kalahari and Karoo and adjoining regions of Southern Africa.	Confirmed
DACT	² Tragelaphus strepsiceros	Greater Kudu	LC	LC	Wooded savanna	Confirmed
ARTIO	² Antidorcas marsupialis	Springbok	LC	LC	Open arid plains with short vegetation	Confirmed
CET/	² Raphicerus campestris	Steenbok	LC	LC	Inhabits open country.	Confirmed
	² Sylvicapra grimmia	Common Duiker	LC	LC	Presence of bushes are important.	High

LIST OF REPTILES

Reptiles protected according to NCNCA are indicated with their respective Schedule no. in superscript. South African endemics are indicated with ^E.

Family	Scientific name	Common name	IUCN status
AGAMIDAE	³ Aaama aculeata aculeata	Western Ground Agama	LC
	³ Agama atra	Southern Rock Agama	LC
AMPHISBAENIDAE	³ Monopeltis capensis	Cape Worm Lizard	LC
	³ Monopeltis infuscata	Dusky Worm Lizard	LC
	³ Zygaspis quadrifrons	Kalahari Dwarf Worm Lizard	LC
CHAMAELEONIDAE	¹ Chamaeleo dilepis dilepis	Common Flap-neck Chameleon	LC
COLUBRIDAE	² Dispholidus typus	Boomslang	LC
	² Philothamnus semivariegatus	Spotted Bush Snake	LC
CORDYLIDAE	¹ Karusasaurus polyzonus	Southern Karusa Lizard	LC
ELAPIDAE	³ Naja nivea	Cape Cobra	LC
GEKKONIDAE	³ Chondrodactylus bibronii	Bibron's Gecko	LC
	³ Pachydactylus capensis	Cape Gecko	LC
	³ Pachydactylus mariquensis ^E	Common Banded Gecko	LC
	³ Ptenopus garrulus garrulus	Common Barking Gecko	LC
GERRHOSAURIDAE	³ Gerrhosaurus flavigularis	Yellow-throated Plated Lizard	LC
LACERTIDAE	² Heliobolus lugubris	Bushveld Lizard	LC
	² Nucras intertexta	Spotted Sandveld Lizard	LC
	² Pedioplanis lineoocellata lineoocellata	Spotted Sand Lizard	LC
	² Pedioplanis namaquensis	Namaqua Sand Lizard	LC
LAMPROPHIIDAE	² Boaedon capensis	Common House Snake	LC
	² Lamprophis aurora ^E	Aurora Snake	LC
	³ Psammophis trinasalis	Fork-marked Sand Snake	LC
	³ Psammophylax tritaeniatus	Striped Grass Snake	LC
	³ Pseudaspis cana	Mole Snake	LC
LEPTOTYPHLOPIDAE	³ Leptotyphlops scutifrons	Peter's Thread Snake	LC
PELOMEDUSIDAE	³ Pelomedusa subrufa	Marsh Terrapin	LC
SCINCIDAE	³ Trachylepis capensis	Cape Skink	LC
	³ Trachylepis sulcata sulcata	Western Rock Skink	LC
	³ Trachylepis variegata	Variegated Skink	LC

LIST OF REPTILES (continued)

Reptiles protected according to NCNCA are indicated with their respective Schedule no. in superscript. South African endemics are indicated with $^{\rm E}$.

Family	Scientific name	Common name	IUCN status
TESTUDINIDAE	³ Homopus femoralis ^E	Greater Dwarf Tortoise	LC
	³ Psammobates oculifer	Serrated Tent Tortoise	LC
	³ Psammobates tentorius	Tent Tortoise	LC
	³ Stigmochelys pardalis	Leopard Tortoise	LC
TYPHLOPIDAE	³ Rhinotyphlops lalandei	Delalande's Beaked Blind Snake	LC
VARANIDAE	² Varanus albigularis albigularis	Southern Rock Monitor	LC
VIPERIDAE	³ Bitis arietans arietans	Puff Adder	LC

LIST OF AMPHIBIANS

Amphibians protected according to NCNCA are indicated with their respective Schedule no. in superscript. South African endemics are indicated with ^E.

Family	Scientific name	Common name	IUCN status
BUFONIDAE	² Amietophrynus gutturalis	Guttural Toad	LC
	² Amietophrynus poweri	Western Olive Toad	LC
	² Amietophrynus rangeri ^E	Raucous Toad	LC
	² Poyntonophrynus vertebralis ^E	Southern Pygmy Toad	LC
	² Bufo gariepensis	Karoo Toad	LC
HYPEROLIIDAE	² Kassina senegalensis	Bubbling Kassina	LC
MICROHYLIDAE	² Breviceps adspersus	Bushveld Rain Frog	LC
PIPIDAE	² Xenopus laevis	Common Platanna	LC
PYXICEPHALIDAE	² Amietia fuscigula	Cape River Frog	LC
	² Amietia quecketti	Common River Frog	LC
	² Cacosternum boettgeri	Boettger's Caco	LC
	¹ Pyxicephalus adspersus	Giant Bullfrog	NT
	² Tomopterna cryptotis	Tremolo Sand Frog	LC
	² Tomopterna tandyi	Tandy's Sand Frog	LC

LIST OF BIRDS

S	cientific name	Common name	IUCN status	SA RDB
1	Accipiter badius	Shikra	LC	LC
2	Acrocephalus baeticatus	African Reed-Warbler	LC	LC
2	Acrocephalus gracilirostris	Lesser Swamp-Warbler	LC	LC
2	Actitis hypoleucos	Common Sandpiper	LC	LC
2	Alcedo cristata	Malachite Kingfisher	LC	LC
2	Alopochen aegyptiacus	Egyptian Goose	LC	LC
2	Amadina erythrocephala	Red-headed Finch	LC	LC
2	Amaurornis flavirostris	Black Crake	LC	LC
2	Anas capensis	Cape Teal	LC	LC
2	Anas erythrorhyncha	Red-billed Teal	LC	LC
2	Anas hottentota	Hottentot Teal	LC	LC
2	Anas smithii	Cape Shoveler	LC	LC
2	Anas sparsa	African Black Duck	LC	LC
2	Anas undulata	Yellow-billed Duck	LC	LC
2	Anhinga rufa	African Darter	LC	LC
2	Anthoscopus minutus	Cape Penduline-Tit	LC	LC
2	Anthropoides paradisea	Blue Crane	VU	NT
2	Anthus cinnamomeus	African Pipit	LC	LC
2	Anthus vaalensis	Buffy Pipit	LC	LC
2	Apus affinis	Little Swift	LC	LC
2	Apus apus	Common Swift	LC	LC
2	Apus bradfieldi	Bradfield's Swift	LC	LC
2	Apus caffer	White-rumped Swift	LC	LC
2	Apus horus	Horus Swift	LC	LC
1	Aquila rapax	Tawny Eagle	VU	EN
1	Aquila verreauxii	Verreaux's Eagle	LC	VU
2	Ardea cinerea	Grey Heron	LC	LC
2	Ardea goliath	Goliath Heron	LC	LC
2	Ardea melanocephala	Black-headed Heron	LC	LC
2	Ardea purpurea	Purple Heron	LC	LC
2	Ardeola ralloides	Squacco Heron	LC	LC
1	Ardeotis kori	Kori Bustard	NT	NT
2	Batis pririt	Pririt Batis	LC	LC
2	Bostrychia hagedash	Hadeda Ibis	LC	LC
2	Bradornis infuscatus	Chat Flycatcher	LC	LC
2	Bradornis mariquensis	Marico Flycatcher	LC	LC
1	Bubo africanus	Spotted Eagle-Owl	LC	LC
1	Bubo lacteus	Verreaux's Eagle-Owl	LC	LC
2	Bubulcus ibis	Cattle Egret	LC	LC
2	Burhinus capensis	Spotted Thick-knee	LC	LC
1	Buteo rufofuscus	Jackal Buzzard	LC	LC

S	cientific name	Common name	IUCN status	SA RDB
1	Buteo vulpinus	Steppe Buzzard	LC	LC
2	Calandrella cinerea	Red-capped Lark	LC	LC
2	Calendulauda africanoides	Fawn-coloured Lark	LC	LC
2	Calendulauda bradfieldi	Bradfield's Lark	-	LC
2	Calidris alba	Sanderling	LC	LC
2	Calidris ferruginea	Curlew Sandpiper	NT	LC
2	Calidris minuta	Little Stint	LC	LC
2	Campethera abingoni	Golden-tailed Woodpecker	LC	LC
1	Caprimulgus europaeus	European Nightjar	LC	LC
1	Caprimulgus rufigena	Rufous-cheeked Nightjar	LC	LC
1	Caprimulgus tristigma	Freckled Nightjar	LC	LC
2	Cercomela familiaris	Familiar Chat	LC	LC
2	Cercomela sinuata	Sickle-winged Chat	LC	LC
2	Cercotrichas coryphoeus	Karoo Scrub-Robin	LC	LC
2	Cercotrichas paena	Kalahari Scrub-Robin	LC	LC
2	Ceryle rudis	Pied Kingfisher	LC	LC
2	Charadrius asiaticus	Caspian Plover	LC	LC
2	Charadrius hiaticula	Common Ringed Plover	LC	LC
1	Charadrius pallidus	Chestnut-banded Plover	NT	NT
2	Charadrius pecuarius	Kittlitz's Plover	LC	LC
2	Charadrius tricollaris	Three-banded Plover	LC	LC
2	Chersomanes albofasciata	Spike-heeled Lark	LC	LC
2	Chlidonias hybridus	Whiskered Tern	LC	LC
2	Chlidonias leucopterus	White-winged Tern	LC	LC
2	Chrysococcyx caprius	Diderick Cuckoo	LC	LC
2	Ciconia abdimii	Abdim's Stork	LC	NT
2	Ciconia ciconia	White Stork	LC	LC
1	Ciconia nigra	Black Stork	LC	VU
2	Cinnyris fusca	Dusky Sunbird	LC	LC
2	Cinnyris mariquensis	Marico Sunbird	LC	LC
1	Circaetus pectoralis	Black-chested Snake-Eagle	LC	LC
1	Circus maurus	Black Harrier	EN	LC
1	Circus pygargus	Montagu's Harrier	LC	LC
1	Circus ranivorus	African Marsh-Harrier	LC	EN
2	Cisticola aridulus	Desert Cisticola	LC	LC
2	Cisticola fulvicapillus	Neddicky	LC	LC
2	Cisticola juncidis	Zitting Cisticola	LC	LC
2	Cisticola subruficapillus	Grey-backed Cisticola	LC	LC
2	Cisticola tinniens	Levaillant's Cisticola	LC	LC
2	Clamator glandarius	Great Spotted Cuckoo	LC	LC
2	Clamator jacobinus	Jacobin Cuckoo	LC	LC

So	cientific name	Common name	IUCN status	SA RDB
3	Colius colius	White-backed Mousebird	LC	LC
2	Columba quinea	Speckled Pigeon	LC	LC
2	Columba livia	Rock Dove	LC	LC
2	Coracias caudata	Lilac-breasted Roller	LC	LC
2	Coracias garrulus	European Roller	LC	NT
2	Coracias naevia	Purple Roller	LC	LC
3	Corvus albus	Pied Crow	LC	LC
3	Corvus capensis	Cape Crow	LC	LC
2	Cossypha caffra	Cape Robin-Chat	LC	LC
2	Coturnix coturnix	Common Quail	LC	LC
2	Creatophora cinerea	Wattled Starling	LC	LC
2	Cuculus clamosus	Black Cuckoo	LC	LC
2	Cursorius rufus	Burchell's Courser	LC	VU
2	Cursorius temminckii	Temminck's Courser	LC	LC
2	Cypsiurus parvus	African Palm-Swift	LC	LC
2	Dendrocygna bicolor	Fulvous Duck	LC	LC
2	Dendrocygna viduata	White-faced Duck	LC	LC
2	Dendropicos fuscescens	Cardinal Woodpecker	LC	LC
2	Dicrurus adsimilis	Fork-tailed Drongo	LC	LC
2	Egretta alba	Great Egret	LC	LC
2	Egretta garzetta	Little Egret	LC	LC
2	Egretta intermedia	Yellow-billed Egret	LC	LC
1	- Elanus caeruleus	Black-shouldered Kite	LC	LC
2	Emberiza capensis	Cape Bunting	LC	LC
2	Emberiza flaviventris	Golden-breasted Bunting	LC	LC
2	Emberiza impetuani	Lark-like Bunting	LC	LC
2	Emberiza tahapisi	Cinnamon-breasted Bunting	LC	LC
2	Eremomela icteropygialis	Yellow-bellied Eremomela	LC	LC
2	Eremopterix verticalis	Grey-backed Sparrowlark	LC	LC
2	Estrilda astrild	Common Waxbill	LC	LC
2	Estrilda erythronotos	Black-faced Waxbill	LC	LC
2	Euplectes afer	Yellow-crowned Bishop	LC	LC
3	Euplectes orix	Southern Red Bishop	LC	LC
2	Eupodotis afraoides	Northern Black Korhaan	LC	LC
2	Eupodotis ruficrista	Red-crested Korhaan	LC	LC
1	Falco biarmicus	Lanner Falcon	LC	VU
1	Falco naumanni	Lesser Kestrel	LC	LC
1	Falco peregrinus	Peregrine Falcon	LC	LC
1	Falco rupicolis	Rock Kestrel	LC	LC
1	Falco rupicoloides	Greater Kestrel	LC	LC

So	ientific name	Common name	IUCN status	SA RDB
2	Fulica cristata	Red-knobbed Coot	LC	LC
2	Gallinago nigripennis	African Snipe	LC	LC
2	Gallinula chloropus	Common Moorhen	LC	LC
1	Glareola nordmanni	Black-winged Pratincole	NT	NT
1	Glaucidium perlatum	Pearl-spotted Owlet	LC	LC
2	Granatina granatina	Violet-eared Waxbill	LC	LC
1	Gyps africanus	White-backed Vulture	CR	CR
1	Gyps coprotheres	Cape Vulture	VU	EN
2	Halcyon chelicuti	Striped Kingfisher	LC	LC
1	Haliaeetus vocifer	African Fish-Eagle	LC	LC
1	Hieraaetus pennatus	Booted Eagle	LC	LC
2	Himantopus himantopus	Black-winged Stilt	LC	LC
2	Hippolais icterina	Icterine Warbler	LC	LC
2	Hirundo albigularis	White-throated Swallow	LC	LC
2	Hirundo cucullata	Greater Striped Swallow	LC	LC
2	Hirundo dimidiata	Pearl-breasted Swallow	LC	LC
2	Hirundo fuligula	Rock Martin	LC	LC
2	Hirundo rustica	Barn Swallow	LC	LC
2	Hirundo semirufa	Red-breasted Swallow	LC	LC
2	Hirundo spilodera	South African Cliff-Swallow	LC	LC
2	Indicator indicator	Greater Honeyguide	LC	LC
2	Ixobrychus minutus	Little Bittern	LC	LC
2	Lagonosticta senegala	Red-billed Firefinch	LC	LC
2	Lamprotornis nitens	Cape Glossy Starling	LC	LC
2	Laniarius atrococcineus	Crimson-breasted Shrike	LC	LC
2	Lanius collaris	Common Fiscal	LC	LC
2	Lanius collurio	Red-backed Shrike	LC	LC
2	Lanius minor	Lesser Grey Shrike	LC	LC
2	Larus cirrocephalus	Grey-headed Gull	LC	LC
1	Leptoptilos crumeniferus	Marabou Stork	LC	NT
2	Malcorus pectoralis	Rufous-eared Warbler	LC	LC
2	Megaceryle maxima	Giant Kingfisher	LC	LC
1	Melierax canorus	Southern Pale Chanting Goshawk	LC	LC
1	Melierax gabar	Gabar Goshawk	LC	LC
2	Merops apiaster	European Bee-eater	LC	LC
2	Merops hirundineus	Swallow-tailed Bee-eater	LC	LC
2	Milvus aegyptius	Yellow-billed Kite	LC	LC
1	Milvus migrans	Black Kite	LC	LC
2	Mirafra fasciolata	Eastern Clapper Lark	LC	LC
2	Mirafra passerina	Monotonous Lark	LC	LC

So	ientific name	Common name	IUCN status	SA RDB
2	Monticola brevipes	Short-toed Rock-Thrush	LC	LC
2	Motacilla capensis	Cape Wagtail	LC	LC
2	Muscicapa striata	Spotted Flycatcher	LC	LC
2	, Myrmecocichla formicivora	Anteating Chat	LC	LC
1	Neotis ludwiaii	Ludwig's Bustard	EN	EN
2	Netta ervthrophthalma	Southern Pochard	LC	LC
2	Nilaus afer	Brubru	LC	LC
2	Numenius phaeopus	Common Whimbrel	LC	LC
2	Numida meleaaris	Helmeted Guineafowl	LC	LC
2	Nycticorax nycticorax	Black-crowned Night-Heron	LC	LC
2	Oena capensis	Namagua Dove	LC	LC
2	Oenanthe monticola	Mountain Wheatear	LC	LC
2	Oenanthe nileata	Capped Wheatear	LC	LC
2	Onvchoanathus nabouroun	Pale-winged Starling	LC	LC
2	Oriolus oriolus	Furasian Golden Oriole	LC	LC
2	Ortvaosniza atricollis	African Quailfinch	LC	LC
2		Maccoa Duck	VU	NT
2	Parisoma lavardi	lavard's Tit-Babbler	LC	LC
2	Parisoma subcaeruleum	Chestnut-vented Tit-Babbler	LC	LC
2	Parus cinerascens	Ashy Tit	LC	LC
2	Passer diffusus	Southern Grey-headed Sparrow	LC	LC
3	Passer domesticus	House Sparrow	LC	LC
3	Passer melanurus	Cape Sparrow	LC	LC
2	Passer motitensis	Great Sparrow	LC	LC
2	Phalacrocorax africanus	Reed Cormorant	LC	LC
2	Phalacrocorax lucidus	White-breasted Cormorant	LC	LC
2	Philetairus socius	Sociable Weaver	LC	LC
2	Philomachus pugnax	Ruff	LC	LC
1	Phoenicopterus minor	Lesser Flamingo	NT	NT
1	Phoenicopterus ruber	Greater Flamingo	LC	NT
2	Phylloscopus trochilus	Willow Warbler	LC	LC
2	Platalea alba	African Spoonbill	LC	LC
2	Plectropterus gambensis	Spur-winged Goose	LC	LC
2	Plegadis falcinellus	Glossy Ibis	LC	LC
2	Plocepasser mahali	White-browed Sparrow-Weaver	LC	LC
3	Ploceus velatus	Southern Masked-Weaver	LC	LC
2	Podiceps cristatus	Great Crested Grebe	LC	LC
2	Podiceps nigricollis	Black-necked Grebe	LC	LC
1	Polemaetus bellicosus	Martial Eagle	EN	EN
1	Polihierax semitorquatus	Pygmy Falcon	LC	LC
1	Polyboroides typus	African Harrier-Hawk	LC	LC

S	cientific name	Common name	IUCN status	SA RDB
2	Porphyrio madagascariensis	African Purple Swamphen	LC	LC
2	Prinia flavicans	Black-chested Prinia	LC	LC
2	Psophocichla litsitsirupa	Groundscraper Thrush	LC	LC
2	Pterocles burchelli	Burchell's Sandgrouse	LC	LC
2	Pterocles namaqua	Namaqua Sandgrouse	LC	LC
1	Ptilopsus granti	Southern White-faced Scops-Owl	-	LC
3	Pycnonotus nigricans	African Red-eyed Bulbul	LC	LC
2	Pytilia melba	Green-winged Pytilia	LC	LC
3	Quelea quelea	Red-billed Quelea	LC	LC
2	Rallus caerulescens	African Rail	LC	LC
2	Recurvirostra avosetta	Pied Avocet	LC	LC
2	Rhinopomastus cyanomelas	Common Scimitarbill	LC	LC
2	Rhinoptilus africanus	Double-banded Courser	LC	LC
2	Riparia paludicola	Brown-throated Martin	LC	LC
2	Riparia riparia	Sand Martin	LC	LC
1	Rostratula benghalensis	Greater Painted-snipe	LC	NT
1	Sagittarius serpentarius	Secretarybird	EN	VU
2	Scleroptila levaillantoides	Orange River Francolin	LC	LC
2	Scopus umbretta	Hamerkop	LC	LC
2	Serinus albogularis	White-throated Canary	LC	LC
2	Serinus atrogularis	Black-throated Canary	LC	LC
2	Serinus flaviventris	Yellow Canary	LC	LC
2	Sigelus silens	Fiscal Flycatcher	LC	LC
2	Spizocorys conirostris	Pink-billed Lark	LC	LC
2	Sporopipes squamifrons	Scaly-feathered Finch	LC	LC
2	Spreo bicolor	Pied Starling	LC	LC
2	Stenostira scita	Fairy Flycatcher	LC	LC
2	Streptopelia capicola	Cape Turtle-Dove	LC	LC
2	Streptopelia semitorquata	Red-eyed Dove	LC	LC
2	Streptopelia senegalensis	Laughing Dove	LC	LC
2	Struthio camelus	Common Ostrich	LC	LC
2	Sylvia borin	Garden Warbler	LC	LC
2	Sylvietta rufescens	Long-billed Crombec	LC	LC
2	Tachybaptus ruficollis	Little Grebe	LC	LC
2	Tachymarptis melba	Alpine Swift	LC	LC
2	Tadorna cana	South African Shelduck	LC	LC
2	Tchagra australis	Brown-crowned Tchagra	LC	LC
2	Telophorus zeylonus	Bokmakierie	LC	LC
2	Threskiornis aethiopicus	African Sacred Ibis	LC	LC
2	Tockus leucomelas	Southern Yellow-billed Hornbill	LC	LC

Scientific name		Common name	IUCN status	SA RDB
S 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	cientific name Tockus nasutus Torgos tracheliotus Trachyphonus vaillantii Tricholaema leucomelas Tringa glareola Tringa nebularia Tringa stagnatilis Turdus smithi Turnix sylvatica Tyto alba Upupa africana Urocolius indicus Vanellus coronatus Vidua chalybeata Vidua macroura	Common name African Grey Hornbill Lappet-faced Vulture Crested Barbet Acacia Pied Barbet Wood Sandpiper Common Greenshank Marsh Sandpiper Karoo Thrush Small Buttonquail Barn Owl African Hoopoe Red-faced Mousebird Blacksmith Lapwing Crowned Lapwing Village Indigobird Pin-tailed Whydah	IUCN status LC EN LC	SA RDB LC EN LC LC LC LC LC LC LC LC LC LC
2 2	Vidua regia Zosterops pallidus	Shaft-tailed Whydah Orange River White-eye	LC LC	LC LC
	zosterops palliaus	Orange River White-eye	LU	LC

APPENDIX 3

A photographic guide for species of conservation concern that occur on

site

Ruschia spinosa All Mesembryanthemaceae spp. are protected under Schedule 2 of the NCNCA

Moraea simulans All Iridaceae spp. are protected under Schedule 2 of the NCNCA

