

PROPOSED LETSOAI SOLAR PHOTOVOLTAIC (PV) PROJECT – BIODIVERSITY BASELINE AND IMPACT ASSESSMENT

Aggeneys, Northern Cape Province

March 2023

CLIENT

Prepared by: The Biodiversity Company Cell: +27 81 319 1225 Fax: +27 86 527 1965 info@thebiodiversitycompany.com www.thebiodiversitycompany.com

Table of Contents

1	Introduction	1
1.1	Background	1
1.2	Project Area of Influence	2
1.3	Scope of Work	3
1.4	Assumptions and Limitations	3
1.5	Specialist Details	4
1.6	Key Legislative Requirements	5
1.7	Definitions	5
1.7.1	Species of Conservation Concern	5
1.7.2	Protected Species	6
2	Methods	6
2.1	Desktop Baseline	6
2.1.1	Spatially Relevant Legislative Boundaries	6
2.1.2	Ecologically Important Landscape Features	7
2.1.3	Desktop Flora Assessment10	C
2.1.4	Desktop Faunal Assessment1	1
2.2	Biodiversity Field Assessment12	2
2.2.1	Flora Survey12	2
2.2.2	Fauna Survey12	2
2.3	Terrestrial Site Ecological Importance (SEI)13	3
3	Results & Discussion	7
3.1	Desktop Baseline17	7
3.1.1	Spatially Relevent Legislative Boundaries1	7
3.1.2	Ecologically Important Landscape Features18	3
3.1.3	Flora Baseline	3
3.1.4	Faunal Baseline	6
3.1.5	DEA Screening Tool27	7
3.2	Field Assessment	1
3.2.1	Flora Assessment	1
3.2.2	Faunal Assessment34	4
4	Site Sensitivity Verification	9
4.1	Site Ecological Importance (SEI)	9

4.2	Ecosystem Processes43
5	Impact Risk Assessment
5.1	Biodiversity: Risk Assessment Method44
5.1.1	Present Impacts to Biodiversity44
5.1.2	Alternatives Considered46
5.1.3	Identification of Additional Potential Impacts47
5.1.4	Assessment of Impact Significance48
6	Management Outcomes
6.1	Biodiversity
7	Conclusion and Impact Statement
7.1	Conclusion63
7.2	Impact Statement63
8	References
9	Appendix Items
9.1	Appendix A – Flora species expected to occur in the project area
9.2	Appendix B – Amphibian species expected to occur in the project area83
9.3	Appendix C – Reptile species expected to occur in the project area
9.4	Appendix D – Mammal species expected to occur within the project area

List of Tables

Table 1-1	A list of key legislative requirements relevant to biodiversity and conservation in the Northern Cape Province
Table 2-1	Summary of Conservation Importance (CI) criteria14
Table 2-2	Summary of Functional Integrity (FI) criteria14
Table 2-3	Matrix used to derive Biodiversity Importance (BI) from Functional Integrity (FI) and Conservation Importance (CI)
Table 2-4	Summary of Resource Resilience (RR) criteria15
Table 2-5	Matrix used to derive Site Ecological Importance (SEI) from Receptor Resilience (RR) and Biodiversity Importance (BI)
Table 2-6	Guidelines for interpreting Site Ecological Importance (SEI) in the context of the proposed development activities
Table 3-1	Summary of relevance of the PAOI to ecologically important landscape features 18
Table 3-2	Threatened flora species that may occur within the project area
Table 3-3	Threatened reptile species that are expected to occur within the project area27

Table 3-4	Threatened mammal species that are expected to occur within the project area27		
Table 3-5	Trees, shrub and herbaceous plant species recorded in the project area		
Table 3-6	Summary of flora Species of Conservation Concern recorded within the Project Area of Influence (PAOI) during the field survey period		
Table 3-7	Summary of herpetofauna species recorded within the study area35		
Table 3-8	Summary of mammal species recorded within the study area		
Table 4-1	Summary of habitat types delineated within field assessment area of project area 40		
Table 5-1	Potential impacts to biodiversity associated with the proposed activity47		
Table 5-2	Impacts to biodiversity associated with the proposed construction phase		
Table 5-3	Impacts to biodiversity associated with the proposed construction phase		
Table 5-4	Impacts to biodiversity associated with the proposed construction phase		
Table 5-5	Impacts to biodiversity associated with the proposed operational phase51		
Table 5-6	Impacts to biodiversity associated with the proposed operational phase52		
Table 5-7	Impacts to biodiversity associated with the proposed operational phase53		
Table 5-8	Loss of habitat within a 30 km radius of the project		
Table 5-9	Cumulative impact assessment of the project56		
Table 6-1	Mitigation measures including requirements for timeframes, roles and responsibilities for this report		

List of Figures

Figure 1-1	The Project Area of Influence in proximity to the nearby towns1
Figure 1-2	The various components of the project2
Figure 1-3	Threatened species and Species of Conservation Concern (SANBI, 2016)6
Figure 2-1	Map illustrating extent of area used to obtain the expected flora species list from the Plants of South Africa (POSA) database
Figure 2-2	Map illustrating the field survey efforts including meandering track and trap locations within the area
Figure 3-1	Map illustrating the Strategic Transmission Corridors (EGI) dataset relevance
Figure 3-2	Map showing the Renewable Energy Development Zones (REDZs) dataset relevance
Figure 3-3	Map illustrating the ecosystem threat status associated with the study area
Figure 3-4	Map illustrating the ecosystem protection level associated with the study area20
Figure 3-5	The project area in relation to the National Protected Area Expansion Strategy21
Figure 3-6	The PAOI superimposed on the Northern Cape Conservation Plan
Figure 3-7	The project area in relation to the renewable energy database projects in the area23

Figure 3-8	Map illustrating the vegetation types associated with the project area24
Figure 3-9	Relative terrestrial biodiversity theme sensitivity for the project area
Figure 3-10	Relative plant species theme sensitivity for the project area
Figure 3-11	Relative animal species theme sensitivity for the project area
Figure 3-12	Photographs illustrating some of the flora recorded within the assessment area: A) Hermbstaedtia glauca, B) Aptosimum spinescens, C) Acanthopsis hoffmannseggiana, D) Kleinia longiflora, E) Boscia foetida subsp. foetida and F) Parkinsonia africana33
Figure 3-13	Photographs illustrating the reptile species recorded within the assessment area associated with the project area during the survey period: A) Pedioplanis lineoocellata subsp. pulchella, B) Chondrodactylus bibronii, C) Trachylepis occidentalis and, D) Bitis caudalis
Figure 3-14	Photographs illustrating the mammal species recorded within the study area during the survey period. A) Gerbillurus paeba (Hairy-footed Gerbil), B) Chlorocebus pygerythrus, C) Otocyon megalotis subsp. Megalotis (Southern Bat-eared Fox) and D) Antidorcas marsupialis subsp. Hofmeyri (Kalahari Springbok)
Figure 4-1	Photographs illustrating the habitat types delineated within the Project Area of Influence (PAOI): A) Gravel Grassland in the foreground with inselberg in the background, B) Sandy Grassland
Figure 4-2	Sensitivity of the study area42
Figure 4-1	A) Photograph illustrating individuals of Northern Harvester Termite within the PAOI andB) Messor capensis
Figure 5-1	Photographs illustrating impacts to biodiversity A) Fencing and Roads, B) Surface infrastructure
Figure 5-2	Map illustrating the revised development areas46
Figure 5-3	Map illustrating the additional renewable energy developments within the landscape overlaid onto the remnant vegetation types

1 Introduction

1.1 Background

..

The Biodiversity Company was appointed to undertake a Biodiversity Baseline and Impact Assessment for the proposed Letsoai solar photovoltaic (PV) facility and associated infrastructure (Figure 1-1). BioTherm Energy (Pty) Ltd is proposing the development of two (2) solar PV facilities and associated infrastructure on two (2) sites. The project is located approximately 16 km southeast of Aggeneys, within the Khãi-Ma Local Municipality and the Namakwa District Municipality in the Northern Cape Province. The projects will be known as the Letsoai PV1 Project and the Letsoai PV2 Project respectively – each will have a contracted generating capacity of up to 240 MW.

Preferred project sites with a development area of ~1243.5 ha and ~1155.9 ha within the project site has been identified by BioTherm Energy (Pty) Ltd as a technically suitable area for the development of the Letsoai PV1 Project and Letsoai PV2 Project respectively. The sites are adjacent to one another. This report pertains to the Letsoai PV1 Project. The development areas for the PV facilities are located on the remaining extent of the Farm Hartebeest Vlei 86 approximately. The project site is accessible via an existing gravel road off the N14 which is located north of the project site.

The Letsoai PV facility is proposed to accommodate the following infrastructure, which will enable the PV facility to supply a capacity of up to 240 MW.

- o Solar PV array comprising PV modules and mounting structures;
- Inverters and transformers;
- Low voltage cabling between the PV modules to the inverters;
- Fence around the development area;
- Camera surveillance;
- Internet connection;
- o 33 kV cabling between the project components and the facility substation;
- o 33/132 kV onsite facility substations;
- Battery Energy Storage System (BESS up to 153MW);
- Site offices and maintenance buildings, including workshop areas for maintenance and storage;
- Laydown areas; and
- o Access roads (up to 6 m) and internal distribution roads (up to 4 m).

This assessment was conducted in accordance with the amendments to the Environmental Impact Assessment Regulations. 2014 (GNR 326, 7 April 2017) of the National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA). The approach has taken cognisance of the recently published Government Notices (GN) 320 (20 March 2020) and GN 1150 (30 October 2020) in terms of NEMA, dated 20 March and 30 October 2020: "Procedures for the Assessment and Minimum Criteria for Reporting on Identified Environmental Themes in terms of Sections 24(5)(a) and (h) and 44 of the National Environmental Management Act, 1998, when applying for Environmental Authorisation" (Reporting Criteria). The National Web based Environmental Screening Tool has characterised the terrestrial biodiversity theme sensitivity of the project site as "Very High".

The purpose of the specialist studies is to provide relevant input into the environmental assessment process and provide a report for the proposed activities associated with the project. This report, after taking into consideration the findings and recommendations provided by the specialist herein, should

inform and guide the Environmental Assessment Practitioner (EAP) and regulatory authorities, enabling informed decision making, as to the ecological viability of the proposed project.

1.2 Project Area of Influence

The local setting of the project and reference to this locality is referred to as the study area from hereon. A 500 m buffer area was created from the property boundary provided, and a 200 m buffer was created in the gridline provided, assimilated, resulting in a Project Area of Influence (PAOI) is delineated to incorporate the proposed project components, this represents the total area to be assessed (Figure 1-1).

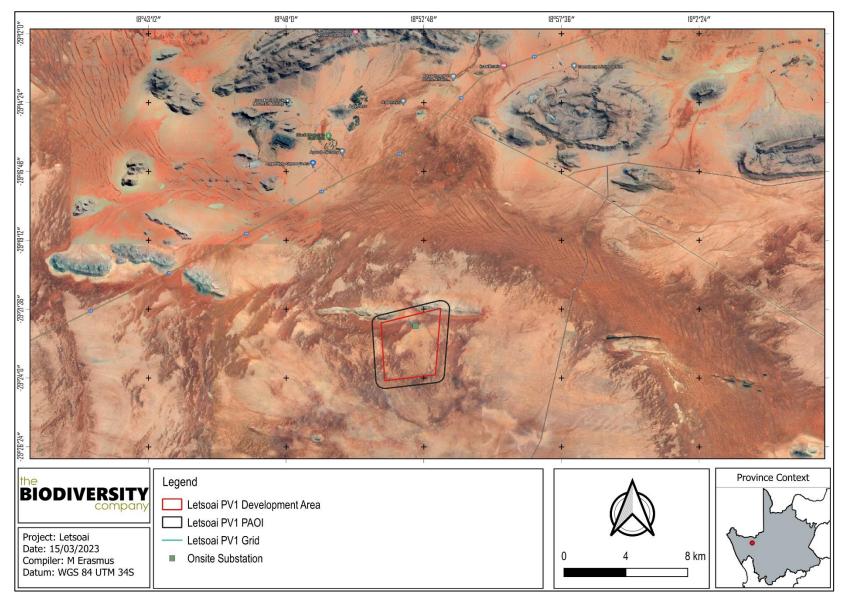


Figure 1-1 The Project Area of Influence in proximity to the nearby towns

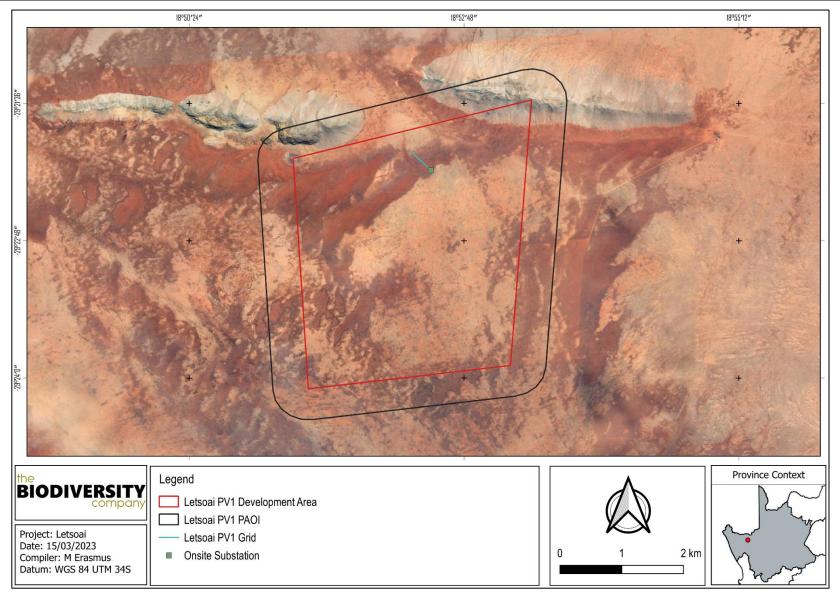


Figure 1-2 The various components of the project

Letsoai Solar PV Project

1.3 Scope of Work

The principle scope of work includes the following:

 Desktop assessment to identify the relevant ecologically important geographical features within the study area;

BIODIVER

iompan

- Desktop assessment to compile an expected species list and possible threatened flora and fauna species that occur within the study area;
- Field survey to ascertain the species composition of the present flora and fauna community within the study area;
- Delineate and map the habitats and their respective sensitivities that occur within the study area;
- Identify the manner that the proposed project impacts the flora and fauna community and evaluate the level of risk of these potential impacts; and
- The prescription of mitigation measures and recommendations for identified risks.

1.4 Assumptions and Limitations

The following assumptions and limitations are applicable for this assessment:

- The assessment area was based on the study area provided by the client and any alterations to the route and/or missing GIS information pertaining to the assessment area would have affected the area surveyed;
 - Only a single season survey was be conducted for the respective assessment, this would constitute a dry season survey with its limitations;
 - Flora identification is limited due to the lack of aboveground plant parts used to determine species, especially in regard to bulbous plants, the vegetation was dry, and most plants had lost the presently active growth;
 - It must be noted that during the survey, only a fraction of the expected geophytes/annuals were visible due to their variable emergence patterns.
 - It was noted that the area was in a peak dry season, resulting in the associated effect on results. The nature of any arid area has an effect results due to its 'reaction' to climate, mainly moisture, ultimately being highly variable and fluctuating. - It was noted that the area was in a peak dry season, thereby affecting the outcomes of the assessment. The extreme temporal variation in the climate of the region drives considerable seasonal variation in the biota.
 - Whilst every effort is made to cover as much of the site as possible, representative sampling is completed and by its nature, it is possible that some plant and animal species that are present on site were not recorded during the field investigations; and
 - The GPS used in the assessment has an accuracy of 5 m and consequently any spatial features may be offset by 5 m.

1.5 Specialist Details

Report Name	PROPOSED LETSOAI SOLAR PHOTOVOLTAIC (PV) PROJECT – BIODI AND IMPACT ASSESSMENT	VERSITY BASELINE
Reference	Letsoai PV 1	
Submitted to / Client	Savannah	ì
	Mahomed Desai	falle -
Fieldwork and Report Contributor	Mahomed Desai (Pr. Nat. Sci. registered number 134678) obtained his M. Engineering and Ph.D. in Ecological Sciences and has over 12 years of experimpact assessments for estuarine, freshwater and terrestrial biodiversity. Ma experience surveying for African fauna and flora as a researcher and consu- national and international projects, including those requiring IFC Per Mahomed has also completed training courses in GIS, stable-isotope analysis from waste amongst others.	erience in undertaking homed has extensive lltant, through various formance Standards.
	Marnus Erasmus	B
Report Writer	Martinus Erasmus obtained his B-Tech degree in Nature Conservation in University of Technology. Martinus has been conducting EIAs, IFC star assessments and assisting specialists in field during his studies since 2018 Nat. registered (118630) and is a specialist terrestrial ecologist and botanist surveys as well as faunal surveys which include mammals, birds, amphibiant	ndard surveys, basic 5. Martinus is Pr. Sci. which conducts floral
	Andrew Husted	Hant
Reviewer	Andrew Husted is Pr Sci Nat registered (400213/11) in the following fields of Science, Environmental Science and Aquatic Science. Andrew is an A Biodiversity Specialist with more than 13 years' experience in the environme	quatic, Wetland and
Declaration	The Biodiversity Company and its associates operate as independent of auspice of the South African Council for Natural Scientific Professions. We no affiliation with or vested financial interests in the proponent, other than for the Environmental Impact Assessment Regulations, 2017. We have no cont undertaking of this activity and have no interests in secondary development authorisation of this project. We have no vested interest in the project, oth professional service within the constraints of the project (timing, time and the principals of science.	declare that we have work performed under flicting interests in the nts resulting from the her than to provide a

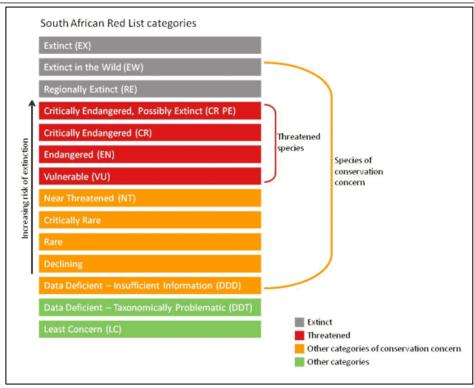
Letsoai Solar PV Project

1.6 Key Legislative Requirements

The legislation, policies and guidelines listed below in Table 1-1 are applicable to the current project. The list below, although extensive, may not be complete and other legislation, policies and guidelines may apply in addition to those listed below.

Table 1-1A list of key legislative requirements relevant to biodiversity and conservation in
the Northern Cape Province

Region	Legislation / Guideline	Comment
	The National Environmental Management Act (NEMA) (Act No. 107 of 1998)	Environmental Impact Assessment Regulations. 2014 (GNR 326, 7 April 2017), Appendix 6 requirements
	The National Environmental Management: Biodiversity Act (Act No. 10 of 2004), Threatened or Protected Species Regulations	The protection of species and ecosystems that warrant protection
	Procedures for the Assessment and Minimum Criteria for Reporting on Identified Environmental Themes in terms of Sections 24(5)(a) and (h) and 44 of the National Environmental Management Act, 1998, GNR 320 of Government Gazette 43310 (March 2020)	The minimum criteria for reporting.
	Procedures for the Assessment and Minimum Criteria for Reporting on Identified Environmental Themes in terms of Sections 24(5)(a) and (h) and 44 of the National Environmental Management Act, 1998, GNR 1150 of Government Gazette 43855 (October 2020)	Protocol for the specialist assessment and minimum report content requirements.
National	The National Environmental Management: Waste Act, 2008 (Act 59 of 2008);	The regulation of waste management to protect the environment.
	National Water Act (NWA) (Act No. 36 of 1998)	The regulation of water uses.
	Alien and Invasive Species Regulations and, Alien and Invasive Species List 20142020, published under NEMBA	The regulation and management of alien invasive species.
	Conservation of Agricultural Resources Act, 1983 (Act 43 of 1983) (CARA)	To provide for control over the utilization of the natural agricultural resources including the vegetation and the combating of weeds and invader plants.
	Government Notice No. 113 in Government Gazette No. 41445 and Government Notice No. 383 in Government Gazette No. 44504. Government Notice No. 2313 of Government Gazette No. 47095 of 27 July 2022	Strategic Transmission Corridors (STC) important for the planning of electricity transmission and distribution infrastructure as well as procedure to be followed when applying for environmental authorisation for electricity transmission and distribution expansion when occurring in these corridors.
	Government Notice No. 114 in Government Gazette No. 41445 and Government Notice No. 142, 144 and 145 in Government Gazette No. 44191	The procedure to be followed when applying for environmental authorisation for electricity transmission or distribution infrastructure or large scale wind and solar photovoltaic energy facilities in these REDZs
Provincial	Northern Cape Planning and Development Act no. 7 of 1998	To provide for the management and conservation of the province's biophysical environment and protected areas. To inform land use planning, environmental
TUVIIICIAI	Northern Cape Nature Conservation act no. 9 of 2009	assessments, land and water use authorisations, as well as natural resource management,


1.7 Definitions

1.7.1 Species of Conservation Concern

In accordance with the National Red List of South African Plants website, managed and maintained by the South African National Biodiversity Institute (SANBI), a Species of Conservation Concern (SCC) is a species that has a high conservation importance in terms of preserving South Africa's rich biodiversity. This classification covers a range of red list categories as illustrated in Figure 1-3 below.

Figure 1-3 Threatened species and Species of Conservation Concern (SANBI, 2016)

South Africa uses the internationally endorsed International Union for Conservation of Nature (IUCN) Red List Categories and Criteria (IUCN, 2012). This scientific system is designed to measure species' risk of extinction and its purpose is to highlight those species that are in need of critical conservation action. As this system has been adopted from the IUCN, the definition of an SCC as described and categorised above is extended to all red list classifications relevant to fauna as well as the IUCN categories, for the purposes of this report.

1.7.2 Protected Species

Protected species include both flora and fauna species that are protected according to some form of relevant legislation, be it provincial, national, or international. Provincial legislation may include that published in the form of a provincial ordinance, bill, or act, and national legislation includes that which is published in terms of the National Environmental Management: Biodiversity Act (Act No. 10 of 2004) or the National Forests Act (Act No. 84 of 1998). Relevant international legislation includes the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES, 2021).

2 Methods

2.1 Desktop Baseline

The desktop assessment was principally undertaken using a Geographic Information System (GIS) to access the latest available spatial datasets in order to develop digital cartographs and species lists. These datasets and their date of publishing are provided below.

2.1.1 Spatially Relevant Legislative Boundaries

Two aspects of legislation apply with regards to the development of certain project types within South Africa, and these have important implications for the EA processes for these project types. These two aspects are briefly discussed below. Where relevant the spatial orientation of the proposed project is referenced with respect to these important legislative boundaries, as the applicable legislation may be relevant to not only the overall EIA process, but also the specialist assessment process that is to be followed.

• Strategic Transmission Corridors (EGI):

On the 16th of February 2018 Minister Edna Molewa published Government Notice No. 113 in *Government Gazette* No. 41445 which identified 5 strategic transmission corridors important for the planning of electricity transmission and distribution infrastructure as well as procedure to be followed when applying for environmental authorisation for electricity transmission and distribution expansion when occurring in these corridors.

On the 29th of April 2021, Minister Barbara Dallas Creecy published Government Notice No. 383 in *Government Gazette* No. 44504, which expanded the eastern and western transmission corridors and gave notice of the applicability of the application procedures identified in Government Notice No. 113, to these expanded corridors.

In June 2022 the Standard for the Development and Expansion of Power Lines and Substations within Identified Geographical Areas Revision 2, Prepared by the CSIR and SANBI, was published. This standard was then adopted as per Government Notice No. 2313 of *Government Gazette* No. 47095 of 27 July 2022. The Standard was prepared to allow a proponent to achieve planning, routing, siting and remediation objectives that will ensure the acceptability of the impacts of the development of EGI (including substations) on the environment, independently from the need for an assessment by the competent authority. The standard enforces the following key environmental principles as part of its application with regards to the planning of powerline routes and substation positions (Note: several additional principles apply as relevant to avifauna assessments, however these are not included below):

- There must be no removal of threatened plant species;
- There must be no impact on Tier 1 plant species (i.e. threatened species reliant on critical habitat) identified through the screening process and site verification process;
- Clear-cutting during construction must be kept to a maximum of 8 m; and
- Wetlands must be avoided or, where wetland crossing is unavoidable, the power line should be routed over the narrowest part of the wetland. For the most part, wetlands and rivers can be traversed by the power line with little to no impact by placing the pylons outside of the wetland.
- Renewable Energy Development Zones (REDZs):

On 16 February 2018, Minister Edna Molewa published Government Notice No. 114 in *Government Gazette* No. 41445 which identified 8 renewable energy development zones important for the development of large scale wind and solar photovoltaic facilities. The Government Notice included the procedure to be followed when applying for environmental authorisation for large scale wind and solar photovoltaic energy facilities when occurring in these REDZs.

On 26 February 2021, Minister Barbara Dallas Creecy, published Government Notice No. 142, 144 and 145 in Government Gazette No. 44191 which identified 3 additional REDZs for implementation as well as the procedures to be followed when applying for environmental authorisation for electricity transmission or distribution infrastructure or large scale wind and solar photovoltaic energy facilities in these REDZs.

2.1.2 Ecologically Important Landscape Features

Existing ecologically relevant data layers were incorporated into a GIS to establish how the proposed project might interact with any ecologically important entities. Emphasis was placed around the following spatial datasets:

- Northern Cape Critical Biodiversity Areas (CBAs) (SANBI, 2016a);
- 2018 National Biodiversity Assessment (NBA, 2018) (Skowno et al., 2019);
- Vegetation Map of South Africa, Lesotho and Swaziland (SANBI, 2018);

- South Africa Protected and Conservation Areas Databases, 2022 (DFFE, 2022 & DFFE, 2022a);
- National Protected Areas Expansion Strategy, 2016 (DEA, 2016);
- Important Bird and Biodiversity Areas, 2015 (Marnewick et al., 2015);
- South African Inventory of Inland Aquatic Ecosystems (SAIIAE), NBA 2018 Rivers and Wetlands (Awuah, 2018 & Van Deventer et al., 2019);
- National Freshwater Priority Areas, Rivers and Wetlands, 2011 (Nel, 2011); and
- Strategic Water Source Areas, 2021 (Lötter & Le Maitre, 2021).

Descriptions of these datasets, and their associated relevance to terrestrial biodiversity, are provided below.

2.1.2.1 Provincial Conservation Plan

The Northern Cape Department of Environment and Nature Conservation has developed the Northern Cape CBA Map which identifies biodiversity priority areas for the province, called Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs). These biodiversity priority areas, together with protected areas, are important for the persistence of a viable representative sample of all ecosystem types and species as well as the long-term ecological functioning of the landscape as a whole. The identification of Critical Biodiversity Areas for the Northern Cape was undertaken using a Systematic Conservation Planning approach. Available data on biodiversity features (incorporating both pattern and process, and covering terrestrial and inland aquatic realms), their condition, current Protected Areas and Conservation Areas, and opportunities and constraints for effective conservation were collated.

- **CBAs** are areas of the landscape that need to be maintained in a natural or near-natural state to ensure the continued existence and healthy functioning of important species and ecosystems and the delivery of ecosystem services. Thus, if these areas are not maintained in a natural or near natural state then provincial biodiversity targets cannot be met (SANBI, 2017).
- **ESAs** are areas that are not essential for meeting biodiversity representation targets but play an important role in supporting the ecological functioning of ecosystems as well as adjacent Critical Biodiversity Areas, and/or in delivering ecosystem services that support socio-economic development (SANBI, 2017).

Provincial CBAs and ESAs are often further classified into sub-categories, such as CBA1 and CBA2 or ESA1 and ESA2. These present fine scale habitat and biodiversity area baseline requirements and associated land management objectives or outcomes. The highest categorisation level is often referred to as a CBA1 'Irreplaceable Critical Biodiversity Area' which usually represents pristine natural habitat that is very important for conservation.

2.1.2.2 National Biodiversity Assessment 2018

The National Biodiversity Assessment (NBA) was completed as a collaboration between the South African National Biodiversity Institute (SANBI), the then Department of Environmental Affairs (DEA), and other stakeholders including scientists and biodiversity management experts throughout the country over a three-year period (Skowno *et al.*, 2019).

The purpose of the NBA is to assess the state of South Africa's biodiversity with a view to understanding trends over time and informing policy and decision-making across a range of sectors. The two headline indicators assessed in the NBA are Ecosystem Threat Status and Ecosystem Protection Level (Skowno et al., 2019).

• Ecosystem Threat Status (ETS) outlines the degree to which ecosystems are still intact or alternatively losing vital aspects of their structure, function, and composition, on which their ability to provide ecosystem services ultimately depends. Ecosystem types are categorised as Critically

Endangered (CR), Endangered (EN), Vulnerable (VU) or Least Concern (LC), based on the proportion of each ecosystem type that remains in a good or healthy ecological condition (Skowno et al., 2019). CR, EN, or VU ecosystem types are collectively referred to as threatened ecosystems.

 Ecosystem Protection level (EPL) informs on whether ecosystems are adequately protected or under-protected. Ecosystem types are categorised as Not Protected (NP), Poorly Protected (PP), Moderately Protected (MP) or Well Protected (WP), based on the proportion of each ecosystem type that occurs within a protected area recognised in the Protected Areas Act (Skowno *et al.*, 2019). NP, PP or MP ecosystem types are collectively referred to as under-protected ecosystems.

2.1.2.3 South Africa Protected and Conservation Areas

The South African Protected Areas Database (SAPAD) and the South Africa Conservation Areas Database (SACAD) contains spatial data critical for the conservation of South Africa's natural resources. It includes spatial and attribute information for both formally protected areas and areas that have less formal protection, such as conservation areas. These databases are updated regularly and form the basis for the Register of Protected Areas, which is a legislative requirement under the National Environmental Management: Protected Areas Act (Act 57 of 2003).

Formally protected areas are categorised according to several different types, and each type is subject to specific legislative restrictions and management guidelines, many of which restrict development to some degree. Generally, these areas are assigned a buffer of influence of between 5 and 10 km (the latter pertaining to National Parks and World Heritage Sites), within which certain laws and management actions may apply. Many of the protected area types are further classified into sub-types as well. Formally protected area types include:

- National Parks;
- Nature Reserves;
- Special Nature Reserves;
- Mountain Catchment Areas;
- World Heritage Sites;
- Protected Environments;
- Forest Nature Reserves and Forest Wilderness Areas;
- Specially Protected Forest Areas; and
- Marine Protected Areas.

2.1.2.4 National Protected Areas Expansion Strategy

The Department of Environmental Affairs (now the Department of Forestry, Fisheries and the Environment) led the development of the National Protected Areas Expansion Strategy (NPAES) in consultation with the protected area agencies and other key private and public sector stakeholders. The need for the development of the NPAES was established in the National Biodiversity Framework in 2009. The NPAES is a 20-year strategy with 5-year implementation targets aligned with a 5-year revision cycle. (DEA, 2016).

South Africa's protected area network currently falls far short of representing all ecosystems and maintaining healthy functioning ecological processes. In this context, the goal of the NPAES is to achieve cost effective protected area expansion thus enabling better ecosystem representation, ecological sustainability, and resilience to climate change. A comprehensive set of priority areas was compiled

based on the priorities identified by provincial and other agencies in their respective protected area expansion strategies. These focus areas are generally large, intact and unfragmented and are therefore of high importance for biodiversity, climate resilience and freshwater protection (DEA, 2016).

2.1.2.5 Important Bird and Biodiversity Areas

Important Bird & Biodiversity Areas (IBAs) are sites of international significance for the conservation of the world's birds, and other conservation significant species, as identified through multi-stakeholder processes using globally standardised, quantitative, and scientifically agreed criteria. These sites are also Key Biodiversity Areas; sites that contribute significantly to the global persistence and health of biodiversity (Birdlife, 2020).

The selection of IBAs is achieved through the application of quantitative ornithological criteria, grounded in up-to-date knowledge on the sizes and trends of bird populations. The criteria ensures that sites selected as IBAs have true significance for the international conservation of bird populations, and it also ensures classification consistency among sites at all geographic levels.

IBAs constitute a global network of over 13 500 sites, of which 112 sites are found in South Africa. Approximately 60% of the IBA network is unprotected, leaving these sites vulnerable to habitat transformation and mismanagement. Additionally, habitats within many IBAs are poorly managed, leading to habitat degradation, especially in unprotected sites. (BirdLife SA, 2022)

2.1.2.6 Aquatic Habitats

Three inland aquatic habitat datasets are used to identify the ecological sensitivity of the project area with regards to local aquatic habitat, which is critical for the healthy functioning of both aquatic and terrestrial biodiversity. The presence of aquatic ecosystems is often a strong indicator for the presence of unique flora as well as the regular presence of fauna. Many national SCC are only found within or near to aquatic habitat.

- The South African Inventory of Inland Aquatic Ecosystems (SAIIAE): Established during the 2018 NBA, the SAIIAE is a collection of spatial data layers that represent the extent of river and inland wetland ecosystem types as well as the pressures on these systems. The same two headline indicators, and their associated categorisations, are applied as with the terrestrial ecosystem NBA, namely Ecosystem Threat Status and Ecosystem Protection Level. The Ecosystem Threat Status of river and wetland ecosystem types are based on the extent to which each ecosystem type had been altered from its natural condition.
- National Freshwater Ecosystem Priority Areas, Rivers and Wetlands (NFEPA): In an attempt to better conserve aquatic ecosystems, South Africa has categorised its inland aquatic systems according to set ecological criteria (i.e., ecosystem representation, water yield, connectivity, unique features, and threatened taxa) to identify Freshwater Ecosystem Priority Areas (FEPAs). The FEPAs are intended to be conservation support tools and it is envisioned that they will guide the effective implementation of measures to achieve the National Environment Management: Biodiversity Act's biodiversity conservation goals (Nel *et al.*, 2011).
- Strategic Water Source Areas (SWSAs): SWSAs are defined as areas of land that supply a disproportionate quantity of mean annual surface water runoff in relation to their size, and therefore contribute considerably to the overall water supply of the country, as well as national aquatic and terrestrial biodiversity resources. These are considered key ecological infrastructure assets and the effective protection of SWSAs is vital for national security because a lack of water security will compromise national security and human wellbeing on all levels.

2.1.3 Desktop Flora Assessment

The Vegetation of South Africa, Lesotho and Swaziland (Mucina & Rutherford, 2006) was used to identify the vegetation type that would have occurred under natural or pre-anthropogenically altered conditions. Furthermore, the Plants of Southern Africa (POSA) database was accessed to compile a list of expected

flora species within the study area (Figure 2-1). The Red List of South African Plants (Raimondo et al., 2009; SANBI, 2020) was utilized to provide the most current national conservation status of flora species.

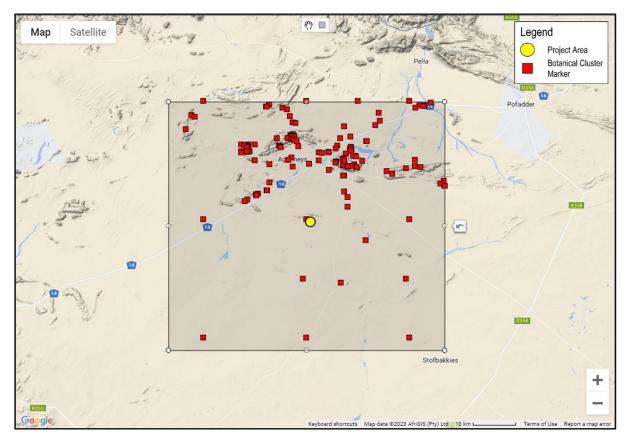


Figure 2-1 Map illustrating extent of area used to obtain the expected flora species list from the Plants of South Africa (POSA) database.

The latest information regarding provincially, and nationally protected flora was obtained from the following published legislative sources:

- Provincially Protected Plant Species (Schedules 1 and 2 of the Northern Cape Nature Conservation Act No. 9 Of 2009); and
- List of Nationally Protected Tree Species (DEFF, 2022).

2.1.4 Desktop Faunal Assessment

The faunal desktop assessment comprised of the following, compiling an expected:

- Amphibian list, generated from the IUCN spatial dataset (2017) and FrogMap database (Fitzpatrick Institute of African Ornithology, 2021a), using the 2918 quarter degree square;
- Reptile list, generated from the IUCN spatial dataset (2017) and ReptileMap database (Fitzpatrick Institute of African Ornithology, 2021b), using the 2918 quarter degree square; and
- Mammal list from the IUCN spatial dataset (2017) and MammalMap database (Fitzpatrick Institute of African Ornithology, 2021C), using the 2918 quarter degree square.

The latest information regarding provincially, and nationally protected fauna was obtained from the following published legislative lists:

• Provincially Protected Wildlife Species (Schedules 1 and 2 of the Northern Cape Nature Conservation Act No. 9 Of 2009); and

• Nationally Protected Wildlife species (The 2007 lists of Threatened or Protected Species (TOPS), published in terms of Section 56(1) of the National Environmental Management: Biodiversity Act, No. 10 of 2004).

2.2 Biodiversity Field Assessment

Field surveys for the area were undertaken during the week of the 27th of February till 3 March 2023, which is a dry-season surveys, to determine the presence of Species of Conservation Concern (SCC). Effort was made to cover all the different habitat types, within the limits of time and access (Figure 2-2)

2.2.1 Flora Survey

The fieldwork and sample sites were placed within targeted areas (i.e. target sites) perceived as ecologically sensitive based on the preliminary interpretation of satellite imagery (Google Corporation) and GIS analysis (which included the latest applicable biodiversity datasets) available prior to the fieldwork. The focus of the fieldwork was therefore to maximise coverage and navigate to each target site in the field, to perform a rapid vegetation and ecological assessment at each sample site. Emphasis was placed on sensitive habitats, especially those overlapping with the proposed project area.

Homogenous vegetation units were subjectively identified using satellite imagery and existing land cover maps. The floristic diversity and search for flora SCC were conducted through timed meanders within representative habitat units delineated during the scoping fieldwork. Emphasis was placed mostly on sensitive habitats overlapping with the proposed project areas.

The timed random meander method is highly efficient for conducting floristic analysis, specifically in detecting flora SCC and maximising floristic coverage. In addition, the method is time and cost effective and highly suited for compiling flora species lists and therefore gives a rapid indication of flora diversity. The timed meander search was performed based on the original technique described by Goff *et al.* (1982). Suitable habitat for SCC were identified according to Raimondo *et al.* (2009) and targeted as part of the timed meanders.

At each sample site notes were made regarding current impacts (e.g. livestock grazing, erosion etc.), subjective recording of dominant vegetation species and any sensitive features (e.g. wetlands, outcrops etc.). In addition, opportunistic observations were made while navigating through the study area.

Relevant field guides and texts consulted for identification purposes in the field during the survey included the following:

- Identification Guide to Southern African Grasses: An Identification Manual with Keys, Descriptions, and Distributions (Fish *et al*, 2015);
- iNaturalist;
- Flowering Plants of the Southern Kalahari (Van Rooyen and Van Rooyen, 2019);
- Problem Plants and Alien Weeds of South Africa (Bromilow, 2010);
- Field Guide to Succulents in Southern Africa (Smith et al, 2017);
- Guide to the Aloes of South Africa (Van Wyk & Smith, 2014);
- Medicinal Plants of South Africa (Van Wyk et al., 2013).

2.2.2 Fauna Survey

The faunal assessment within this report pertains to herpetofauna (amphibians and reptiles) and mammals. The faunal field survey comprised of the following techniques:

• *Visual and auditory searches* - This typically comprised of meandering and using binoculars to view species from a distance without them being disturbed; and listening to species calls;

Letsoai Solar PV Project

- Active hand-searches are used for species that shelter in or under particular micro-habitats (typically rocks, exfoliating rock outcrops, fallen trees, leaf litter, bark etc.); and
- Camera trapping as well as small mammal trapping.

Relevant field guides and texts consulted for identification purposes included the following:

- Field Guide to Snakes and other Reptiles of Southern Africa (Branch, 1998);
- A Complete Guide to the Snakes of Southern Africa (Marais, 2004);
- Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland (Bates et al, 2014);
- A Complete Guide to the Frogs of Southern Africa (du Preez and Carruthers, 2009);
- The Mammals of the Southern African Subregion Skinner, J.D. & Chimimba, C.T. (2005).
- A Field Guide to the Tracks and Signs of Southern and East African Wildlife (Stuart and Stuart, 2000).

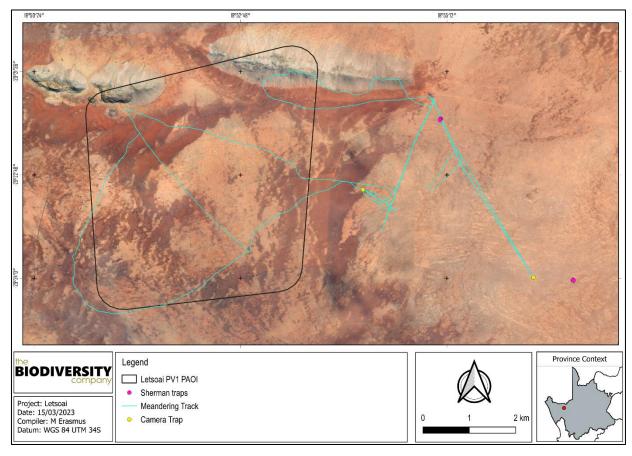


Figure 2-2 Map illustrating the field survey efforts including meandering track and trap locations within the area.

2.3 Terrestrial Site Ecological Importance (SEI)

The different habitat types within the study area were delineated and identified based on observations during the field assessment, and available satellite imagery. These habitat types were assigned Ecological Importance (EI) categories based on their ecological integrity, conservation value, the presence of species of conservation concern and their ecosystem processes.

Site Ecological Importance (SEI) is a function of the Biodiversity Importance (BI) of the receptor (e.g., SCC, the vegetation/fauna community or habitat type present on the site) and Receptor Resilience (RR) (its resilience to impacts) as follows.

Letsoai Solar PV Project

BI is a function of Conservation Importance (CI) and the Functional Integrity (FI) of the receptor as follows. The criteria for the CI and FI ratings are provided in Table 2-1 and Table 2-2, respectively.

Conservation Importance	Fulfilling Criteria
	Confirmed or highly likely occurrence of Critically Endangered (CR), Endangered (EN), Vulnerable (VU) of Extremely Rare or CR species that have a global extent of occurrence (EOO) of < 10 km ² .
Very High	Any area of natural habitat of a CR ecosystem type or large area (> 0.1% of the total ecosystem type extent) or natural habitat of an EN ecosystem type.
	Globally significant populations of congregatory species (> 10% of global population).
	Confirmed or highly likely occurrence of CR, EN, VU species that have a global EOO of > 10 km ² . IUCN threatened species (CR, EN, VU) must be listed under any criterion other than A.
	If listed as threatened only under Criterion A, include if there are less than 10 locations or < 10 000 mature individuals remaining.
High	Small area (> 0.01% but < 0.1% of the total ecosystem type extent) of natural habitat of EN ecosystem type o
	large area (> 0.1%) of natural habitat of VU ecosystem type.
	Presence of Rare species.
	Globally significant populations of congregatory species (> 1% but < 10% of global population).
	Confirmed or highly likely occurrence of populations of Near Threatened (NT) species, threatened species (CR
	EN, VU) listed under Criterion A only and which have more than 10 locations or more than 10 000 mature individuals.
Medium	Any area of natural habitat of threatened ecosystem type with status of VU.
	Presence of range-restricted species.
	> 50% of receptor contains natural habitat with potential to support SCC.
	No confirmed or highly likely populations of SCC.
Low	No confirmed or highly likely populations of range-restricted species.
	< 50% of receptor contains natural habitat with limited potential to support SCC.
	No confirmed and highly unlikely populations of SCC.
Very Low	No confirmed and highly unlikely populations of range-restricted species.
	No natural habitat remaining.

Table 2-1Summary of Conservation Importance (CI) criteria

Table 2-2 Summary of Functional Integrity (FI) criteria

Functional Integrity	Fulfilling Criteria
Very High	Very large (> 100 ha) intact area for any conservation status of ecosystem type or > 5 ha for CR ecosystem types. High habitat connectivity serving as functional ecological corridors, limited road network between intact habitat patches. No or minimal current negative ecological impacts, with no signs of major past disturbance.
High	Large (> 20 ha but < 100 ha) intact area for any conservation status of ecosystem type or > 10 ha for EN ecosystem types. Good habitat connectivity, with potentially functional ecological corridors and a regularly used road network between intact habitat patches. Only minor current negative ecological impacts, with no signs of major past disturbance and good rehabilitation potential.
Medium	Medium (> 5 ha but < 20 ha) semi-intact area for any conservation status of ecosystem type or > 20 ha for VU ecosystem types. Only narrow corridors of good habitat connectivity or larger areas of poor habitat connectivity and a busy used road network between intact habitat patches. Mostly minor current negative ecological impacts, with some major impacts and a few signs of minor past disturbance. Moderate rehabilitation potential.
Low	Small (> 1 ha but < 5 ha) area. Almost no habitat connectivity but migrations still possible across some modified or degraded natural habitat and a very busy used road network surrounds the area. Low rehabilitation potential. Several minor and major current negative ecological impacts.
Very Low	Very small (< 1 ha) area. No habitat connectivity except for flying species or flora with wind-dispersed seeds.

Several major current negative ecological impacts.

BI can be derived from a simple matrix of CI and FI as provided in Table 2-3.

Table 2-3Matrix used to derive Biodiversity Importance (BI) from Functional Integrity (FI)
and Conservation Importance (CI)

Biodiversity Importance (BI)		Conservation Importance (CI)				
		Very high	High	Medium	Low	Very low
ity	Very high	Very high	Very high	High	Medium	Low
ntegri	High	Very high	High	Medium	Medium	Low
nal Ir (FI)	Medium	High	Medium	Medium	Low	Very low
Functional Integrity (FI)	Low	Medium	Medium	Low	Low	Very low
n L	Very low	Medium	Low	Very low	Very low	Very low

The fulfilling criteria to evaluate RR are based on the estimated recovery time required to restore an appreciable portion of functionality to the receptor, as summarised in Table 2-4.

Table 2-4 Summary of Resource Resilience (RR
--

Resilience	Fulfilling Criteria
Very High	Habitat that can recover rapidly (~ less than 5 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a very high likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.
High	Habitat that can recover relatively quickly (~ 5–10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a high likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.
Medium	Will recover slowly (~ more than 10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a moderate likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.
Low	Habitat that is unlikely to be able to recover fully after a relatively long period: > 15 years required to restore ~ less than 50% of the original species composition and functionality of the receptor functionality, or species that have a low likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.
Very Low	Habitat that is unable to recover from major impacts, or species that are unlikely to: (i) remain at a site even when a disturbance or impact is occurring, or (ii) return to a site once the disturbance or impact has been removed.

Subsequent to the determination of the BI and RR, the SEI can be ascertained using the matrix as provided in Table 2-5.

Table 2-5Matrix used to derive Site Ecological Importance (SEI) from Receptor Resilience
(RR) and Biodiversity Importance (BI)

Site Ecological Importance (SEI)		Biodiversity Importance (BI)					
		Very high	High	Medium	Low	Very low	
e	Very Low	Very high	Very high	High	Medium	Low	
illiene	Low	Very high	Very high	High	Medium	Very low	
or Re: (RR)	Medium	Very high	High	Medium	Low	Very low	
Receptor Resilience (RR)	High	High	Medium	Low	Very low	Very low	
Re	Very High	Medium	Low	Very low	Very low	Very low	

Interpretation of the SEI in the context of the proposed project is provided in Table 2-6.

Table 2-6Guidelines for interpreting Site Ecological Importance (SEI) in the context of the
proposed development activities

Site Ecological Importance (SEI)	Interpretation in relation to proposed development activities
Very High	Avoidance mitigation – no destructive development activities should be considered. Offset mitigation not acceptable/not possible (i.e., last remaining populations of species, last remaining good condition patches of ecosystems/unique species assemblages). Destructive impacts for species/ecosystems where persistence target remains.
High	Avoidance mitigation wherever possible. Minimisation mitigation – changes to project infrastructure design to limit the amount of habitat impacted, limited development activities of low impact acceptable. Offset mitigation may be required for high impact activities.
Medium	Minimisation and restoration mitigation – development activities of medium impact acceptable followed by appropriate restoration activities.
Low	Minimisation and restoration mitigation – development activities of medium to high impact acceptable followed by appropriate restoration activities.
Very Low	Minimisation mitigation – development activities of medium to high impact acceptable and restoration activities may not be required.

The SEI evaluated for each taxon can be combined into a single multi-taxon evaluation of SEI for the assessment area. Either a combination of the maximum SEI for each receptor should be applied, or the SEI may be evaluated only once per receptor but for all necessary taxa simultaneously. For the latter, justification of the SEI for each receptor is based on the criteria that conforms to the highest CI and FI, and the lowest RR across all taxa.

Letsoai Solar PV Project

3 Results & Discussion

3.1 Desktop Baseline

3.1.1 Spatially Relevent Legislative Boundaries

Due to the scope of planned infrastructure, the proposed project is relevant to both the Strategic Transmission Corridors (EGI) and Renewable Energy Development Zones (REDZs) legislation. As presented in Figure 3-1 and Figure 3-2 below, the PAOI overlaps with both the 'Northern' EGI corridor, as well as the phase 1 Springbok Wind REDZ.

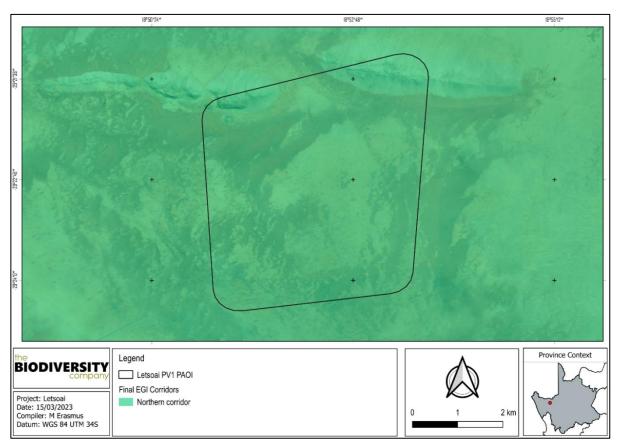


Figure 3-1 Map illustrating the Strategic Transmission Corridors (EGI) dataset relevance

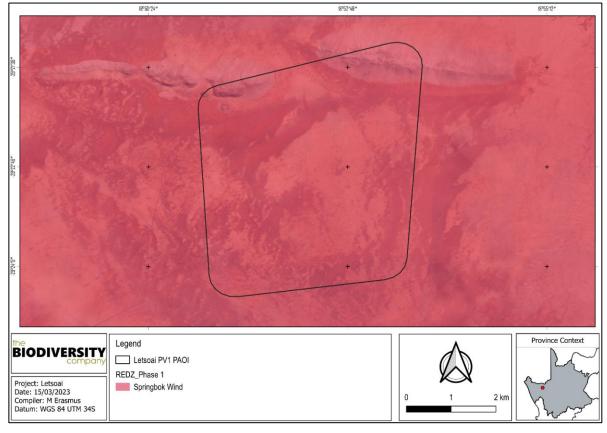


Figure 3-2 Map showing the Renewable Energy Development Zones (REDZs) dataset relevance

3.1.2 Ecologically Important Landscape Features

The GIS analysis pertaining to the relevance of the proposed project to ecologically important landscape features are summarised in Table 3-1.

Desktop Information Considered	Relevant/Irrelevant	Section
Ecosystem Threat Status	Relevant - Overlaps with a Least Concern Ecosystem.	3.2.1.1
Ecosystem Protection Level	Relevant – Overlaps with a Not Protected Ecosystem.	3.2.1.2
National Protected Areas Expansion	Relevant – Falls within a 'Priority Focus Area'	3213

Table 3-1	Summary of relevance of the PAOI to ecologically important landscape features.
-----------	--

Ecosystem Protection Level	Relevant – Overlaps with a Not Protected Ecosystem.	3.2.1.2
National Protected Areas Expansion Strategy	Relevant – Falls within a 'Priority Focus Area'	3.2.1.3
Critical Biodiversity Area	Relevant –Falls within an ESA and CBA2	3.2.1.4
Renewable Energy EIA Application Database (REEA)	Relevant – Overlaps with 'Approved' Areas	3.2.1.5
National Freshwater Priority Area	Irrelevant – The project area does not overlap with any NFEPA's	-
South African Inventory of Inland Aquatic Ecosystems	Irrelevant – The PAOI does not overlap with any SAIIAE	-
Strategic Water Source Areas	Irrelevant – The PAOI does not overlap with any SWSAs	-
Protected Areas	Irrelevant – The nearest protected area is the 'Gamsberg Nature Reserve' situated ~11.5 km north-east of the PAOI	-

3.1.2.1 Ecosystem Threat Status

The Ecosystem Threat Status is an indicator of an ecosystem's wellbeing, based on the level of change in structure, function or composition. Ecosystem types are categorised as Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT) or Least Concern (LC), based on the

BIODIVERSITY company

proportion of the original extent of each ecosystem type that remains in good ecological condition. According to the spatial dataset the proposed PAOI overlaps with a LC ecosystem (Figure 3-3).

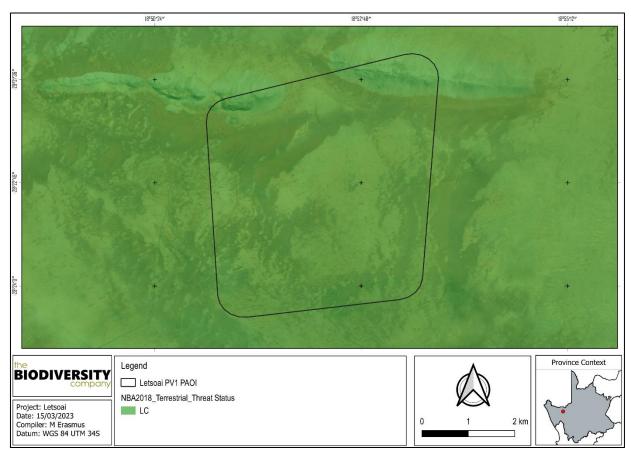
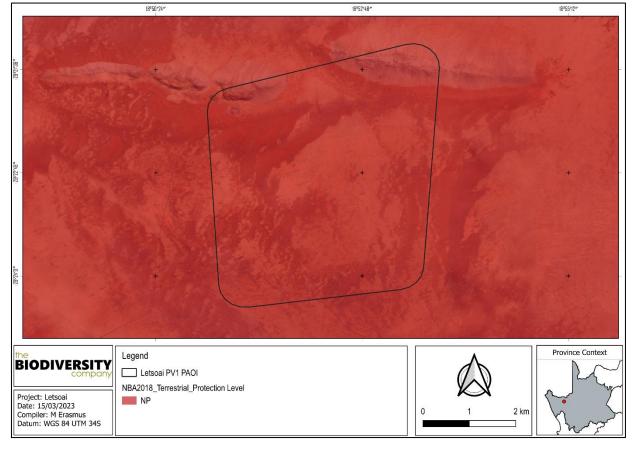


Figure 3-3 Map illustrating the ecosystem threat status associated with the study area.

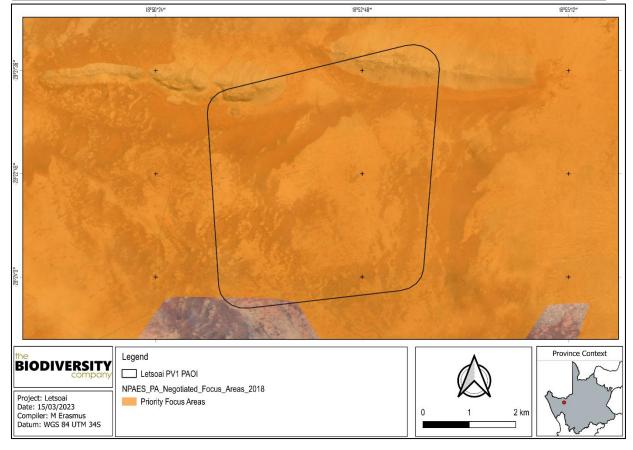

3.1.2.2 Ecosystem Protection Level

This is an indicator of the extent to which ecosystems are adequately protected or under-protected. Ecosystem types are categorised as Well Protected (WP), Moderately Protected (MP), Poorly Protected (PP), or Not Protected (NP), based on the proportion of the biodiversity target for each ecosystem type that is included within one or more protected areas. NP, PP or MP ecosystem types are collectively referred to as under-protected ecosystems. The PAOI overlaps with a NP ecosystem (Figure 3-4).

Letsoai Solar PV Project

Figure 3-4 Map illustrating the ecosystem protection level associated with the study area

3.1.2.3 National Protected Area Expansion Strategy


National Protected Area Expansion Strategy 2016 (NPAES) areas were identified through a systematic biodiversity planning process. They present the best opportunities for meeting the ecosystem-specific protected area targets set in the NPAES and were designed with a strong emphasis on climate change resilience and requirements for protecting freshwater ecosystems. These areas should not be seen as future boundaries of protected areas, as in many cases only a portion of a particular focus area would be required to meet the protected area targets set in the NPAES. They are also not a replacement for fine-scale planning which may identify a range of different priority sites based on local requirements, constraints and opportunities (NPAES, 2016).

The PAOI overlaps with a priority focus area (Figure 3-5).

Letsoai Solar PV Project

Figure 3-5 The project area in relation to the National Protected Area Expansion Strategy

3.1.2.4 Critical Biodiversity Areas and Ecological Support Areas

Critical Biodiversity Areas (CBAs) are terrestrial and aquatic areas of the landscape that need to be maintained in a natural or near-natural state to ensure the continued existence and functioning of species and ecosystems and the delivery of ecosystem services. Thus, if these areas are not maintained in a natural or near natural state then biodiversity targets cannot be met.

Figure 3-6 shows the PAOI superimposed on the Northern Cape Conservation Plan. The project area overlaps with an ESA and a CBA2.

Letsoai Solar PV Project

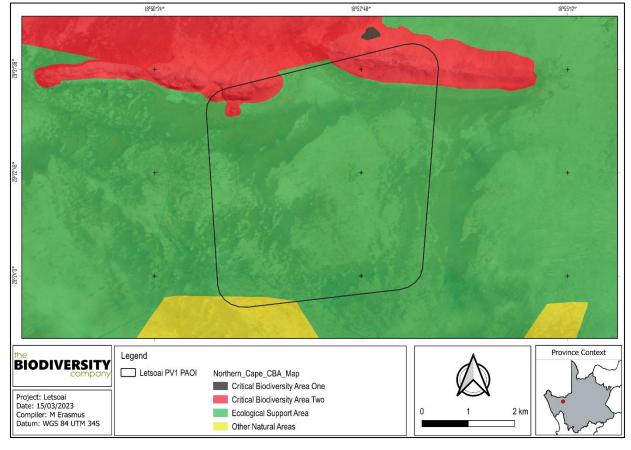


Figure 3-6 The PAOI superimposed on the Northern Cape Conservation Plan.

3.1.2.5 Renewable Energy EIA Application Database

The Renewable Energy Database (<u>http://egis.environment.gov.za/</u>), shows that there several other projects in the near vicinity (Figure 3-7). This increases the overall impact on the habitats in the area. Several "approved" projects occur in the vicinity of the PAOI.

Letsoai Solar PV Project

Figure 3-7 The project area in relation to the renewable energy database projects in the area

3.1.3 Flora Baseline

This section is divided into a description of the vegetation type expected to occur under natural conditions and the expected flora species.

3.1.3.1 Vegetation Type

The project area falls within the Nama Karoo and Succulent Karoo Biomes.

The Nama Karoo biome is found in the central plateau of the western half of South Africa. The geology underlying the biome is varied, as the distribution of this biome is determined primarily by rainfall. The rain falls in summer and varies between 100 and 520 mm per year. This also determines the predominant soil type - over 80% of the area is covered by a lime-rich, weakly developed soil over rock. Although less than 5% of rain reaches the rivers, the high erodibility of soils poses a major problem where overgrazing occurs (SANBI, 2019).

The dominant vegetation is a grassy, dwarf shrubland. Grasses tend to be more common in depressions and on sandy soils, and less abundant on clayey soils. Grazing rapidly increases the relative abundance of shrubs. Most of the grasses are of the C4 type and, like the shrubs, are deciduous in response to rainfall events (SANBI, 2019).

Most of the Succulent Karoo biome covers a flat to gently undulating plain, with some hilly and "broken" veld, mostly situated to the west and south of the escarpment, and north of the Cape Fold Belt. The altitude is mostly below 800 m, but in the east it may reach 1 500 m (SANBI, 2019).

The Succulent Karoo Biome is primarily determined by the presence of low winter rainfall and extreme summer aridity. Rainfall varies between 20 and 290 mm per year. Because the rains are cyclonic, and not due to thunderstorms, the erosive power is far less than of the summer rainfall biomes. During

Letsoai Solar PV Project

summer, temperatures in excess of 40°C are common, while fog is common nearer to the coast (SANBI, 2019).

The vegetation is dominated by dwarf, succulent shrubs, of which the Vygies (Mesembryanthemaceae) and Stonecrops (Crassulaceae) are particularly prominent. Mass flowering displays of annuals (mainly Daisies Asteraceae) occur in spring, often on degraded or fallow lands. Grasses are rare, except in some sandy areas, and are of the C3 type. The number of plant species mostly succulents - is very high and unparalleled elsewhere in the world for an arid area of this size (SANBI, 2019).

On a fine-scale vegetation type, the project area overlaps with the Bushmanland Arid Grassland (Nama Karoo) and the Bushmanland Inselberg Shrubland (Succulent Karoo) vegetation types (Figure 3-8).

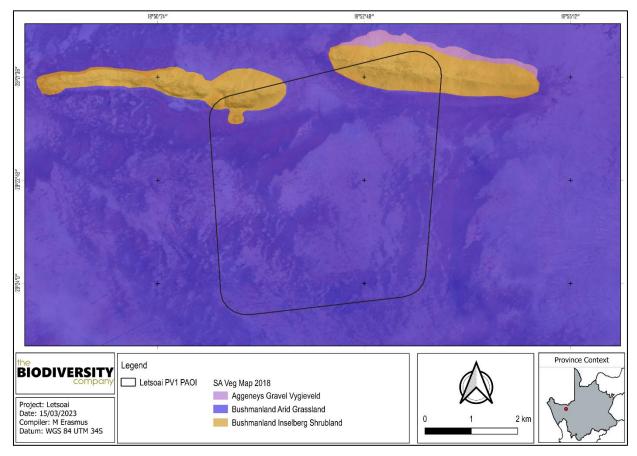


Figure 3-8 Map illustrating the vegetation types associated with the project area

3.1.3.1.1 Bushmanland Arid Grassland

The Bushmanland Arid Grassland consists of extensive to irregular plains on a slightly sloping plateau. It is sparsely vegetated by grasslands, mainly dominated by white grasses (*Stipagrostis* species) giving this vegetation type the character of semidesert 'steppe'. In places low shrubs of *Salsola* change the vegetation structure. In years of abundant rainfall rich displays of annual herbs can be expected.

Important Taxa (^{WW}estern and ^EEastern regions of the unit only)

Graminoids: Aristida adscensionis (d), A. congesta (d), Enneapogon desvauxii (d), Eragrostis nindensis (d), Schmidtia kalahariensis (d), Stipagrostis ciliata (d), S. obtusa (d), Cenchrus ciliaris, Enneapogon scaber, Eragrostis annulata^E, E. porosa^E, E. procumbens, Panicum Ianipes^E, Setaria verticillata^E, Sporobolus nervosus, Stipagrostis brevifolia^W, S. uniplumis, Tragus berteronianus, T. racemosus^E.

Small Trees: Senegalia mellifera subsp. detinens^E, Boscia foetida subsp. foetida.

Tall Shrubs: Lycium cinereum (d), Rhigozum trichotomum (d), Cadaba aphylla, Parkinsonia africana.

Letsoai Solar PV Project

Low Shrubs: Aptosimum spinescens (d), Hermannia spinosa (d), Pentzia spinescens (d), Aizoon asbestinum^E, A. schellenbergii^E, Aptosimum elongatum, A. lineare^E, A. marlothii^E, Barleria rigida, Berkheya annectens, Blepharis mitrata, Eriocephalus ambiguus, E. spinescens, Limeum aethiopicum, Lophiocarpus polystachyus, Monechma incanum, M. spartioides, Pentzia pinnatisecta, Phaeoptilum spinosum^E, Polygala seminuda, Pteronia leucoclada, P. mucronata, P. sordida, Rosenia humilis, Senecio niveus, Sericocoma avolans, Solanum capense, Talinum arnotii^E, Tetragonia arbuscula, Zygophyllum microphyllum.

Succulent Shrubs: Kleinia longiflora, Lycium bosciifolium, Salsola tuberculata, S. glabrescens.

Herbs: Acanthopsis hoffmannseggiana, Aizoon canariense, Amaranthus praetermissus, Barleria lichtensteiniana^E, Chamaesyce inaequilatera, Dicoma capensis, Indigastrum argyraeum, Lotononis platycarpa, Sesamum capense, Tribulus pterophorus, T. terrestris, Vahlia capensis.

Succulent Herbs: Gisekia pharnacioides^E, Psilocaulon coriarium, Trianthema parvifolia.

Geophytic Herb: Moraea venenata.

Biogeographically Important Taxon (Bushmanland endemic)

Succulent Herb: Tridentea dwequensis.

Endemic Taxa

Succulent Shrubs: Dinteranthus pole-evansii, Larryleachia dinteri, L. marlothii, Ruschia kenhardtensis.

Herbs: Lotononis oligocephala, Nemesia maxii.

Conservation Status

According to Mucina and Rutherford (2006), this vegetation type is classified as least Threatened. The national target for conservation protection for this vegetation types is 21%, with only small patches statutorily conserved in Augrabies Falls National Park and Goegab Nature Reserve. Very little of the area has been transformed. The risk of erosion in this vegetation type is very low (60%) and low (33%).

3.1.3.1.2 Bushmanland Inselberg Shrubland

The Bushmanland Inselberg Shrubland is comprised of a group of prominent solitary mountain (inselbergs) and smaller koppies. These overshadow the surrounding flat plains in northern Bushmanland in the Aggeneys and Pofadder regions. The unit is made up of shrubland with both succulent and nonsucculent elements, with sparse grassy undergrowth on the steep slopes (Mucina & Rutherford, 2006).

Important Taxa

Succulent Shrubs: Adromischus diabolicus (d), Euphorbia gregaria (d), Ihlenfeldtia vanzy!ii (d), Ruschia divaricata (d), Schwantesia pillansii (d), Tylecodon sulphureus (d), Euphorbia gariepina, Kleinia longiflora, Othonna euphorbioides, Psilocau/on subnodosum, Tetragonia reduplicata, Tylecodon rubrovenosus.

Tall Shrub: Boscia foetida.

Low Shrubs: Eriocephalus pauperrimus (d), Pteronia unguiculata.

Woody Succulent Climber: Sarcostemma viminale (d).

Herb: Acanthopsis hoffmannseggiana.

Succulent Herbs: Anacampseros baeseckei (d), A. karasmontana (d), Avonia ruschii (d), Conophytum fulleri (d), Avonia quinarian subsp. alstonii, Conophytum marginatum var. haramoepense.

Graminoids: Aristida adscensionis (d), Eragrostis annulata, Stipagrostis obtusa.

Biogeographically Important Taxa (^{NQ}Namaqualand endemic, ^GGariep endemic)

Succulent Shrubs: (d), Ceraria fruticulosa^G, Cheiridopsis pillansi^F.

Geophytic Herb: Whiteheadia bifolia^{NQ}.

Succulent Shrub: *Hoodia alstonii*^G.

Endemic Taxon

Succulent Herb: Huernia barbata subsp. ingeae.

Conservation Status

According to Mucina & Rutherford (2006) this vegetation type is classified as threatened. The national target for conservation protection is 34%, with none of the unit conserved in statutory conservation areas. Erosion is very low.

3.1.3.2 Expected Flora Species

The POSA database indicates that 534 species of indigenous plants are expected to occur within the project area (Appendic A). Ten (10) SCCs based on their conservation status could be expected to occur within the project area and are provided in Table 3-2 below. Numerous provincially and nationally (National Forest Act (Act No. 84 of 1998)) protected species could be expected to occur, including all species from the families Aizoaceae, Amaryllidaceae and Crassulaceae, and the nationally protected tree species, *Boscia albitrunca, Euclea pseudebenus* and *Vachellia erioloba*.

Family	Taxon	Author	IUCN	Ecology
Aizoaceae	Conophytum limpidum	S.A.Hammer	NT	Indigenous; Endemic
Aizoaceae	Conophytum achabense	S.A.Hammer	VU	Indigenous; Endemic
Aizoaceae	Lithops olivacea	L.Bolus	VU	Indigenous; Endemic
Amaryllidaceae	Strumaria massoniella	(D.MullDoblies & U.MullDoblies) Snijman	VU	Indigenous; Endemic
Anacampserotaceae	Anacampseros recurvata	Schonland	DDD	Indigenous; Endemic
Asphodelaceae	Bulbine ophiophylla	G.Will.	EN	Indigenous
Asteraceae	Helichrysum marmarolepis	S.Moore	NT	Indigenous; Endemic
Crassulaceae	Crassula decumbens	Thunb.	NT	Indigenous; Endemic
Fabaceae	Crotalaria pearsonii	Baker f.	VU	Indigenous; Endemic
Scrophulariaceae	Microdon capitatus	(P.J.Bergius) Levyns	EN	Indigenous; Endemic

Table 3-2Threatened flora species that may occur within the project area

3.1.4 Faunal Baseline

3.1.4.1 Amphibians

Based on the IUCN Red List Spatial Data and FrogMap, nine (9) amphibian species are expected to occur within the project area (Appendix B). No amphibian SCC are expected to occur within the project area.

3.1.4.2 Reptiles

Based on the IUCN Red List Spatial Data and the ReptileMAP database, 60 reptile species are expected to occur within the area (Appendic C). One (1) species is regarded as a SCC (Table 3-3).

Table 3-3	Threatened reptile species that are expected to occur within the project area
-----------	---

Species	Common Nama	Conservatio	Likelihood of	
Species	Common Name	Regional	Global	Occurrence
Psammobates tentorius verroxii	Verrox's Tent Tortoise	NT	LC	Moderate

Psammobates tentorius veroxii (Tent Tortoise) is categorised as NT locally. This species can be found in low densities in the Karoo and semi-desert areas of South Africa and Namibia. It is threatened because of the pet trade and destruction of its habitat. The likelihood of occurrence in the project area is rated as moderate due to the presence of suitable habitat and climate.

3.1.4.3 Mammals

The IUCN Red List Spatial Data and MammalMap lists 71 mammal species that could be expected to occur within the area (Appendix D). This list excludes large mammal species that are normally restricted to protected areas. Seven (7) of these expected species are regarded as threatened (Table 3-4). Of these seven SCCs, six have been assigned a low likelihood of occurrence based on the lack of suitable habitat in the project area. One (1) species has been assigned a moderate likelihood of occurrence.

Species	Common Name	Conservat	ion Status	Likelihood
Species	Common Name	Regional	Global	of occurrence
Cistugo seabrae	Angolan Wing-gland Bat	VU	Unlisted	Low
Eidolon helvum	African Straw-colored Fruit Bat	LC	NT	Low
Felis nigripes	Black-footed Cat	VU	VU	Low
Graphiurus rupicola	Stone Dormouse	NT	LC	Moderate
Panthera pardus	Leopard	VU	VU	Low
Parotomys littledalei	Littledale's Whistling Rat	NT	LC	Low
Thallomys shortridgei	Shortridge's Rat	DD	DD	Low

Table 3-4Threatened mammal species that are expected to occur within the project area

Graphiurus rupicola (Stone Dormouse) is categorised as near threatened on a regional scale. This species occurs in a narrow belt predominantly along the escarpment of Namibia and marginally into northwestern South Africa. The reason for their decline is said to be mainly range restriction. The likelihood of occurrence in the project area is listed as moderate due to the presence of suitable habitat in the form of rocky areas situated near the project area.

3.1.5 DEA Screening Tool

• Theme sensitivity is Very High for the PAOI (Figure 3-9);

Plant Species Theme sensitivity is Medium for the PAOI, with the possibility of multiple medium and low sensitivity plant According to the Screening Tool Report generated (Regulation 16(1)(v) of the Environmental Impact Assessment Regulations 2014, as amended), the following sensitivity classifications were gathered from the National Web-based Environmental Screening Tool:

- o Terrestrial Biodiversity species being present (Figure 3-10); and
- Animal Species Theme sensitivity is High for the PAOI, with the possibility of multiple medium sensitivity species being present (Figure 3-11);

Legend: Very High High Medium			Sources EST, HERE, Ga	me USG4 biennes Rickels	diff) a dachr 21 Mathrela
Wery High		5 Klassiser	Sources, ESH, HERE, Ga Esh Japan, METI, Esh C NGCC, Isi OpenStreet A	min USGS: highwas, WERRA nina (-est) kongte 331 Mickas E an com Jonese, hannes etist te	N
Very High se	25	5 Kierwers High sensitivity	Sources EST. HERE. Ga EST Japan, METL EST CT NGCC TO COM Street A	mm USGet bleamer, MCREA man-off Kenni det Kenni de an contrinsiese, succine statilite	utici) A vitectur inf (Hechanda e chinanning J
Very High se	ensitivity	5	~		N
Very High Service Sensitivity F	ensitivity	High sensitivity	~		N
Very High se x Sensitivity F	ensitivity eatures:	High sensitivity	~		N
High Medium Low	ensitivity eatures: Feature Low Sensi	High sensitivity	~		N

Figure 3-9 Relative terrestrial biodiversity theme sensitivity for the project area

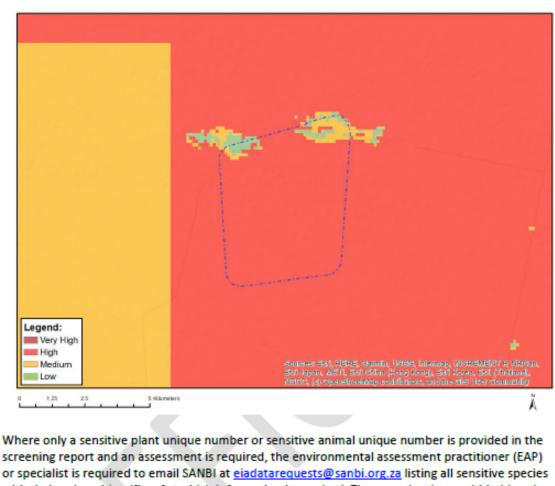

MAP OF R	ELATIVE	E PLANT S	SPECIE	S THEME SENSITIV	ITY
					and the second second second second
				and a second	
			- (°		
				1	영상 이 집에 있는 것은 것이 같이 같이 했다.
			1	and the second secon	
Legend:					
Very Hig	ph -				
High Medium				Sources: Esri, HERE, Ga	min, USGS. Internap, INCREMENT P NRCan.
Low				Esri Japan, METI, Esri G	hina (Hong Kong), Esh Korea, Esri (Thaland) ap contributors, and the GIS User Community
0 1.25	25	5 Kiameters			Ă
					~
Where only	- consitivo	n lant uniou	io numb	or or consitius animal un	ique number is provided in the
					l assessment practitioner (EAP)
					org.za listing all sensitive species
					name has been withheld as the
					SANBI will release the actual
species nam	e after the	details of t	he EAP o	r specialist have been d	ocumented.
Very High se	nsitivity	High sen	sitivity	Medium sensitivity	Low sensitivity
				X	
Sensitivity F	eaturec				
Schaldwidy P	catures.				
Sensitivity	Feature	(s)	1		
Low	Low Sensi		1		
Medium	Sensitive	species 425]		
Medium		species 119	4		
Medium	Sensitive	species 144	J		

Figure 3-10 Relative plant species theme sensitivity for the project area

MAP OF RELATIVE ANIMAL SPECIES THEME SENSITIVITY

with their unique identifiers for which information is required. The name has been withheld as the species may be prone to illegal harvesting and must be protected. SANBI will release the actual species name after the details of the EAP or specialist have been documented.

Very High sensitivity	High sensitivity	Medium sensitivity	Low sensitivity
	x		

Sensitivity Features:

Sensitivity	Feature(s)
High	Aves-Calendulauda burra
Low	Subject to confirmation
Medium	Aves-Neotis ludwigii
Medium	Aves-Sagittarius serpentarius
Medium	Aves-Aquila verreauxii

Figure 3-11 Relative animal species theme sensitivity for the project area

Letsoai Solar PV Project

3.2 Field Assessment

The following sections provide the results from the field survey for the proposed development that was undertaken.

the

BIODIVERS

company

3.2.1 Flora Assessment

This section is divided into two sections:

- Indigenous flora; and
- Invasive Alien Plants (IAPs).

3.2.1.1 Indigenous Flora

The vegetation assessment was conducted throughout the extent of the study area. A total of 27 tree, shrub and herbaceous plant species were recorded in the study area during the field assessment. Notably, this is not a complete list of indigenous flora recorded within the survey area, but only species that were able to be recorded within the survey within the time and accessibility constraints (Table 3-5). Some of the plant species recorded can be seen in Figure 3-12.

The list of plant species recorded is by no means comprehensive, and repeated surveys during different phenological periods not covered, may likely yield up to 30% additional flora species for the project area. However, floristic analysis conducted to date is regarded as a sound representation of the local flora for the project area

Family	Scientific Name	Conservation Status	Endemism
Acanthaceae	Acanthopsis hoffmannseggiana	DDT	-
Aizoaceae	Aizoon africanum	LC	-
Amaranthaceae	Hermbstaedtia glauca	LC	-
Asphodelaceae	Aloidendron dichotomum	VU	-
Asteraceae	Kleinia longiflora	LC	-
Asteraceae	Pentzia pinnatisecta	LC	-
Asteraceae	Pentzia spinescens	LC	-
Asteraceae	Pteronia mucronata	LC	-
Bignoniaceae	Rhigozum brevispinosum	LC	-
Bignoniaceae	Rhigozum trichotomum	LC	-
Brassicaceae	Boscia foetida subsp. foetida	LC	-
Crassulaceae	Crassula sericea	LC	-
Euphorbiaceae	Euphorbia spinea	LC	-
Fabaceae	Parkinsonia africana	LC	-
Geraniaceae	Monsonia cf. crassicaulis	LC	-
Loasaceae	Kissenia capensis	LC	-
Pedaliaceae	Rogeria longiflora	LC	-
Poaceae	Aristida adscensionis	LC	-
Poaceae	Enneapogon scaber	LC	-
Poaceae	Schmidtia kalahariensis	LC	-
Poaceae	Schmidtia pappophoroides	LC	-
Poaceae	Stipagrostis ciliata	LC	-

 Table 3-5
 Trees, shrub and herbaceous plant species recorded in the project area.

Letsoai Solar PV Project

Poaceae	Stipagrostis obtusa	LC	-
Poaceae	Tragus sp.	-	-
Scrophulariaceae	Aptosimum spinescens	LC	-
Solanaceae	Lycium cinereum	LC	-
Zygophyllaceae	Zygophyllum dregeanum	LC	-

One of the flora species recorded within the PAOI during the field survey period is regarded as a SCC (Table 3-6).

Table 3-6Summary of flora Species of Conservation Concern recorded within the Project
Area of Influence (PAOI) during the field survey period

Scientific Name	Conservation Status and Criteria	Ecology and Threats
Aloidendron dichotomum	VU A3ce	"On north-facing rocky slopes (particularly dolomite) in the south of its range. Any slopes and sandy flats in the central and northern parts of range" (Foden, W. 2018) "Climate change models project a 36% decline in range in 100 years, assuming dispersal into newly suitable areas. Patterns of modelled declines have been supported by field and repeat photo studies. However, no colonization of newly suitable areas has yet happened. Without dispersal, the models predict a 73% decline in 100 years, qualifying the species as EN" (Foden, W. 2018)

Biodiversity Impact Assessment Letsoai Solar PV Project

Figure 3-12 Photographs illustrating some of the flora recorded within the assessment area: A) Hermbstaedtia glauca, B) Aptosimum spinescens, C) Acanthopsis hoffmannseggiana, D) Kleinia longiflora, E) Boscia foetida subsp. foetida and F) Parkinsonia africana.

3.2.1.2 Invasive Alien Plants

Invasive Alien Plants (IAPs) tend to dominate or replace indigenous flora, thereby transforming the structure, composition and functioning of ecosystems. Therefore, it is important that these plants are controlled by means of an eradication and monitoring programme. Some invader plants may also degrade ecosystems through superior competitive capabilities to exclude native plant species.

NEMBA is the most recent legislation pertaining to alien invasive plant species. In August 2014, the list of Alien Invasive Species was published in terms of the NEMBA. The Alien and Invasive Species Regulations were published in the Government Gazette No. 43726, 18 September 2020. The legislation calls for the removal and / or control of AIP species (Category 1 species). In addition, unless authorised thereto in terms of the NWA, no land user shall allow Category 2 plants to occur within 30 meters of the 1:50 year flood line of a river, stream, spring, natural channel in which water flows regularly or intermittently, lake, dam or wetland. Category 3 plants are also prohibited from occurring within proximity to a watercourse. Below is a brief explanation of the three categories in terms of the NEMBA:

- *Category 1a*: Invasive species requiring compulsory control. Remove and destroy. Any specimens of Category 1a listed species need, by law, to be eradicated from the environment. No permits will be issued.
- *Category 1b*: Invasive species requiring compulsory control as part of an invasive species control programme. Remove and destroy. These plants are deemed to have such a high invasive potential that infestations can qualify to be placed under a government sponsored invasive species management programme. No permits will be issued.
- *Category 2*: Invasive species regulated by area. A demarcation permit is required to import, possess, grow, breed, move, sell, buy or accept as a gift any plants listed as Category 2 plants. No permits will be issued for Category 2 plants to exist in riparian zones.
- *Category 3*: Invasive species regulated by activity. An individual plant permit is required to undertake any of the following restricted activities (import, possess, grow, breed, move, sell, buy or accept as a gift) involving a Category 3 species. No permits will be issued for Category 3 plants to exist in riparian zones.

Note that according to the Alien and Invasive Species Regulations, a person who has under his or her control a category 1b listed invasive species must immediately:

- Notify the competent authority in writing
- Take steps to manage the listed invasive species in compliance with:
 - Section 75 of the NEMBA;
 - The relevant invasive species management programme developed in terms of regulation
 4; and
 - Any directive issued in terms of section 73(3) of the NEMBA.

No IAP species were recorded within the PAOI. These species are listed under the Alien and Invasive Species List 2020, Government Gazette No. GN1003 as Category 1b. These IAP species must be controlled by implementing an IAP Management Programme, in compliance of section 75 of the NEMBA, as stated above.

3.2.2 Faunal Assessment

Herpetofauna and mammal observations and recordings fall under this section. A separate avifaunal report was compiled for this project.

3.2.2.1 Amphibians and Reptiles

Four (4) species of reptile and no amphibian species were recorded within the study area during the survey period (Table 3-7, Figure 3-13). However, there is the possibility of more species being present,

as certain reptile species are secretive and require long-term surveys to ensure capture. None of the species recorded are regarded as threatened.

Family	Scientific Name	Common Name	Conservation Status	
Family	Scientific Name	Common Name	Regional	Global
Agamidae	Agama aculeata	Ground Agama	LC	LC
Gekkonidae	Chondrodactylus bibronii	Bibron's Thick-toed Gecko	LC	LC
Lacertidae	Pedioplanis inornata	Plain Sand Lizard	LC	LC
Lacertidae	Pedioplanis lineoocellata subsp. pulchella	Spotted Sand Lizard	LC	LC
Psammophiidae	Psammophis leightoni	Cape Sand Snake	LC	LC
Scincidae	Trachylepis occidentalis	Western Three-striped Skink	LC	LC
Scincidae	Trachylepis variegata	Variegated Skink	LC	LC
Viperidae	Bitis caudalis	Horned Adder	LC	LC

Table 3-7Summary of herpetofauna species recorded within the study area.

Letsoai Solar PV Project

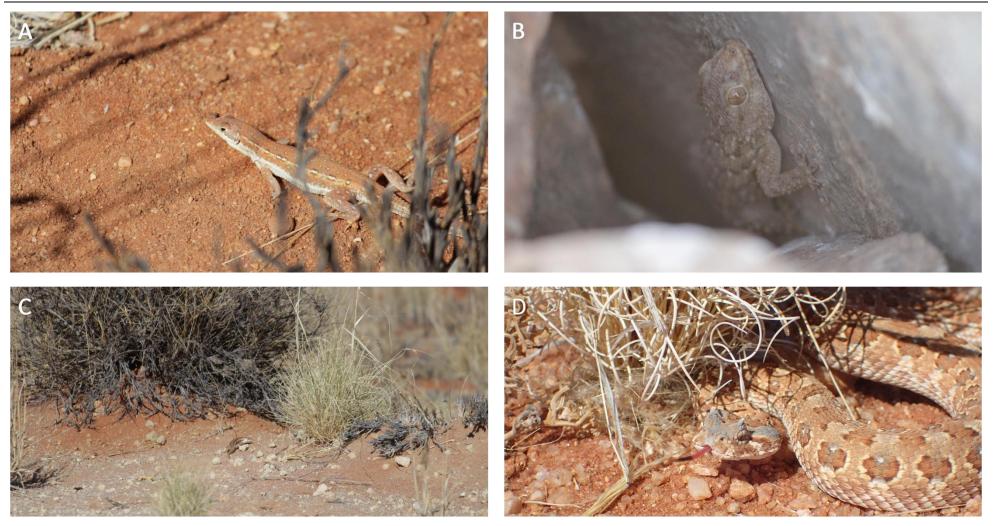


Figure 3-13 Photographs illustrating the reptile species recorded within the assessment area associated with the project area during the survey period: A) Pedioplanis lineoocellata subsp. pulchella, B) Chondrodactylus bibronii, C) Trachylepis occidentalis and, D) Bitis caudalis

www.thebiodiversitycompany.com

3.2.2.2 Mammals

Thirteen (13) mammal species were observed during the survey of the study area (Table 3-8) based on either direct observation or the presence of visual tracks and signs (Figure 3-14).

The species *Orycteropus afer afer* (Southern Aardvark) is regarded as a keystone species within the Nama Karoo biome. The burrows they create are also utilised as shelter by an array of faunal species, which is pertinent in the thermally variable and semi-arid environment of the PAOI and surrounding landscape. In addition, they are ecosystem engineers as their foraging behaviour plays a role in vegetation dynamics. *Orycteropus afer afer* feed on the Formicidae species, *Messor capensis*, which is a major seed predator within the Karoo bioregion. During foraging by *O.afer afer*, the nests are damaged but usually not destroyed, and the seed stores are frequently distributed with the mound soils over a larger area. The seeds are usually buried within the mound soil and germinate during favourable conditions. A portion of the seeds may also be ingested by *O. afer afer* while feeding on the ants and these are distributed with the faeces. Consequently, the species inadvertently also plays a role in seed dispersal and germination.

Orycteropus afer afer (Southern Aardvark), *Pedetes capensis* (Southern Springhare) and *Geosciurus inauris* (South African Ground Squirrel) are ecosystem engineers within the region. The former species is also regarded as a keystone species within the Nama Karoo biome. The burrows they create are also utilised as shelter by an array of faunal species, which is pertinent in the climatically variable and semi-arid environment of the PAOI and surrounding landscape (Whittington-Jones, Bernard, & Parker, 2011)

Family	Scientific Name	Common Name	Conservation Status	
Family	Scientific Name	Common Name	Regional	Global
Bovidae	Antidorcas marsupialis subsp. hofmeyri	Kalahari Springbok	LC	LC
Bovidae	Raphicerus campestris subsp. campestris	Southern Steenbok	LC	LC
Canidae	Lupulella mesomelas subsp. mesomelas	Southern Black-backed Jackal	LC	LC
Canidae	Otocyon megalotis subsp. megalotis	Southern Bat-eared Fox	LC	LC
Herpestidae	Herpestes pulverulentus	Cape Grey Mongoose	LC	LC
Muridae	Gerbillurus paeba	Hairy-footed Gerbil	LC	LC
Orycteropodidae	Orycteropus afer subsp. afer	Southern Aardvark	LC	LC
Pedetidae	Pedetes capensis	Southern Springhare	LC	LC
Sciuridae	Geosciurus inauris	South African Ground Squirrel	LC	LC

Table 3-8 Summary of mammal species recorded within the study area .

Letsoai Solar PV Project

Figure 3-14 Photographs illustrating the mammal species recorded within the study area during the survey period. A) Gerbillurus paeba (Hairyfooted Gerbil), B) Chlorocebus pygerythrus, C) Otocyon megalotis subsp. Megalotis (Southern Bat-eared Fox) and D) Antidorcas marsupialis subsp. Hofmeyri (Kalahari Springbok)

www.thebiodiversitycompany.com

4 Site Sensitivity Verification

4.1 Site Ecological Importance (SEI)

Three (3) main terrestrial habitat types were delineated within the PAOI, including one set of Inselberg habitats (varying slopes) as a whole is discussed in Table 4-1, whereas a photo illustration can be seen in Figure 4-1.

Based on the criteria provided in Section 2.3 of this report, all habitats within the assessment area of the proposed project were allocated a sensitivity category. The sensitivities of the habitat types delineated are illustrated in Figure 4-2,

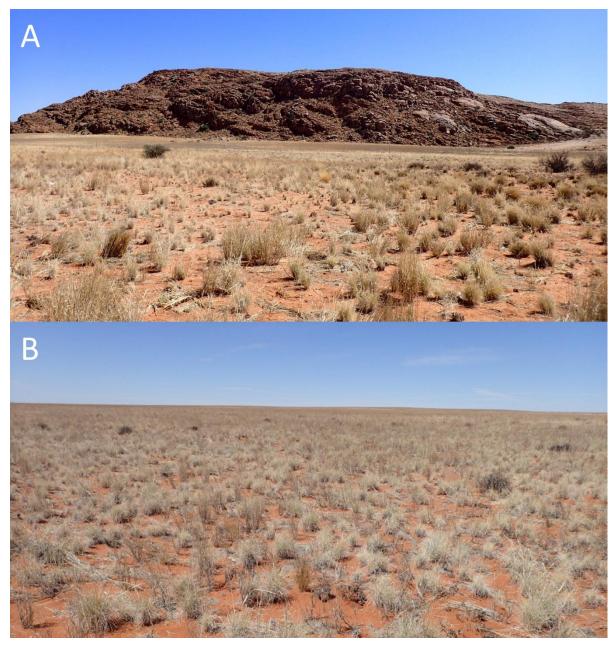
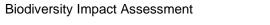


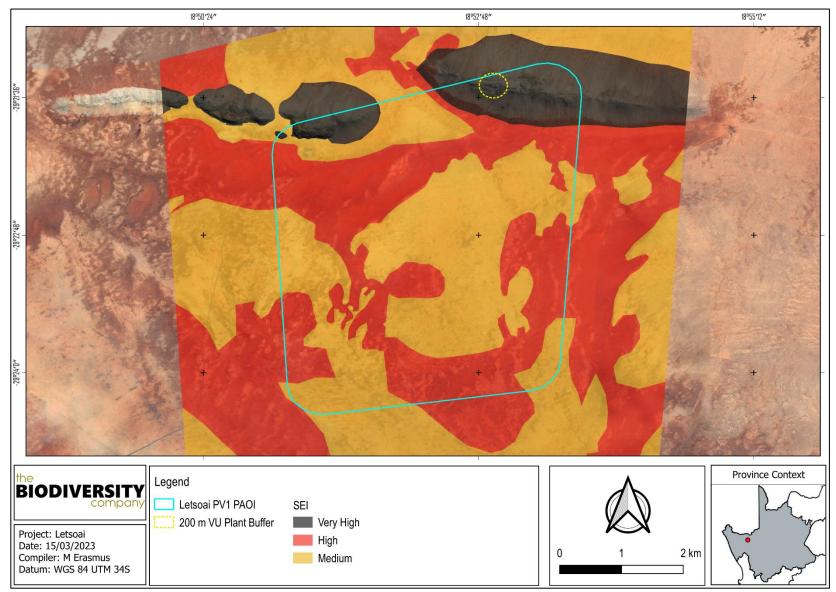
Figure 4-1 Photographs illustrating the habitat types delineated within the Project Area of Influence (PAOI): A) Gravel Grassland in the foreground with inselberg in the background, B) Sandy Grassland.

 Table 4-1
 Summary of habitat types delineated within field assessment area of project area.

Habitat Type	Description	Ecosystem Processes and Services	Conservation Importance (CI)	Functional Integrity (FI)	Biodiversity Importance (BI)	Receptor Resilience (RR)	Site Ecological Importance (SEI) Guidelines for interpreting SEI in the context of the proposed development activities
Inselberg Shrubland	Steep to moderately steep slopes with shallow soils. Distinct and unique habitat features within the relatively homogeneous Nama Karoo region.	Capture and filter precipitation and run-off. Provides unique habitat for numerous species. Provides greater heterogeneity in regional habitat and microclimate.	<u>High</u> Intact CBA 2	High Large (> 20 ha but < 100 ha) intact area for any conservation status of ecosystem type. Good habitat connectivity with potentially functional ecological corridors and a regularly used road network between intact habitat patches. Only minor current negative ecological impacts with no signs of major past disturbance and good rehabilitation potential.	High	Very Low Habitat that is unable to recover from major impacts, or species that are unlikely to remain at a site even when a disturbance or impact is occurring.	Very High Avoidance mitigation – no destructive development activities should be considered. Applicable buffer may be added to the habitats.
Sandy Grassland	Terrain consists of a dune slope with deep red soils. Variable in the presence or absence of grass species and shrub density.	Provides grazing and foraging resources for indigenous fauna and livestock. Aids in the filtration of water permeating through the soil into the drainage lines. Important corridor for fauna dispersion within the landscape.	Medium > 50% of receptor contains natural habitat with potential to support SCC.	High Large (> 20 ha but < 100 ha) intact area for any conservation status of ecosystem type. Good habitat connectivity with potentially functional ecological corridors and a regularly used road network between intact habitat patches. Only minor current negative ecological impacts with no signs of major past disturbance and good rehabilitation potential.	Medium	Low Habitat that is unlikely to be able to recover fully after a relatively long period: > 15 years required to restore ~ less than 50% of the original species composition and functionality of the receptor functionality.	High Avoidance mitigation wherever possible. Minimisation mitigation – changes to project infrastructure design to limit the amount of habitat impacted, limited development activities of low impact acceptable. Offset mitigation may be required for high impact activities. The nature of specific impacts to the topsoil is key in Karoo habitats. Mitigations such as retaining vegetation and topsoil layers is applicable, as well as avoiding certain areas and planning infrastructure layouts accordingly.


www.thebiodiversitycompany.com

Letsoai Solar PV Project



Habitat Type	Description	Ecosystem Processes and Services	Conservation Importance (CI)	Functional Integrity (FI)	Biodiversity Importance (BI)	Receptor Resilience (RR)	Site Ecological Importance (SEI) Guidelines for interpreting SEI in the context of the proposed development activities
Gravel Grassland	Terrain consists of a low to zero slope with gravely soils. Variable in the presence or absence of grass species and shrub density.	Provides grazing and foraging resources for indigenous fauna and livestock. Important corridor for fauna dispersion within the landscape.	Medium > 50% of receptor contains natural habitat with potential to support SCC.	High Large (> 20 ha but < 100 ha) intact area for any conservation status of ecosystem type. Good habitat connectivity with potentially functional ecological corridors and a regularly used road network between intact habitat patches. Only minor current negative ecological impacts with no signs of major past disturbance and good rehabilitation potential	Medium	Medium Will recover slowly (~ more than 10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a moderate likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.	Medium

www.thebiodiversitycompany.com

4.2 Ecosystem Processes

The Northern Harvester Termite (Hodotermitidae) species (Figure 4-1, A) affect soil properties on a landscape scale and create diversity within the landscape. The termite burrows influence the hydrological characteristics and aid in the filtration of water permeating through the soil.

The Formicidae species *Messor striatifrons* (Figure 4-1, B) influences soil characteristics and plant growth via its tunnelling activity. The major physical change to the soils is the drier mound than intermound spaces, as although they permit greater water infiltration, they dry out faster due to less compaction and higher organic content. The chemical properties between mounds and intermound spaces also differ significantly, with mounds containing approximately 50% more phosphorous, potassium and nitrogen. This spatial discrepancy in soil physico-chemical properties therefore influences vegetation heterogeneity.

The inselberg habitat within the area captures and filters and directs precipitation and run-off, which is essential within most habitats, especially arid habitats. The role of inselbergs and how they contribute to the distribution of nutrients to surrounding more low laying areas is considered essential to maintain functioning ecosystems and landscapes. It is an important aspect to be considered in conservation, development or resource planning, as these habitats could serve as sources of nutrients as well as seeds (Burke, A, 2002)

Mounds are also not static, with new mounds being developed around replacement entrances after disturbance by rainfall or feeding *O. afer afer*, thereby affecting wide areas. As aforementioned, the foraging activity of *O. afer afer* inadvertently distributes the nest seed stores with mound soil and considering that the mound soil possesses elevated nutrient content, it is likely to provide an improved germination material.

Figure 4-1 A) Photograph illustrating individuals of Northern Harvester Termite within the PAOI and B) Messor capensis

5 Impact Risk Assessment

5.1 Biodiversity: Risk Assessment Method

The assessment of the significance of direct, indirect and cumulative impacts was undertaken using the method as developed by Savannah. The assessment of the impact considers the following, the:

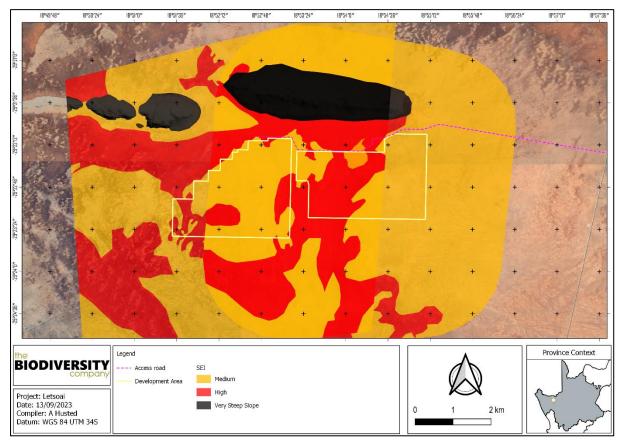
- Nature of the impact, which shall include a description of what causes the effect, what will be affected, and how it will be affected;
- Extent of the impact, indicating whether the impact will be local or regional;
- Duration of the impact, very short-term duration (0-1 year), short-term duration (2-5 years), medium-term (5-15 years), long-term (> 15 years) or permanent;
- Probability of the impact, describing the likelihood of the impact actually occurring, indicated as improbable, probable, highly probable or definite;
- Severity/beneficial scale, indicating whether the impact will be very severe/beneficial (a
 permanent change which cannot be mitigated/permanent and significant benefit with no real
 alternative to achieving this benefit); severe/beneficial (long-term impact that could be
 mitigated/long-term benefit); moderately severe/beneficial (medium- to long-term impact that
 could be mitigated/ medium- to long-term benefit); slight; or have no effect;
- Significance, which shall be determined through a synthesis of the characteristics described above and can be assessed as low medium or high;
- Status, which will be described as either positive, negative or neutral;
- Degree to which the impact can be reversed;
- Degree to which the impact may cause irreplaceable loss of resources; and
- Degree to which the impact can be mitigated.

5.1.1 Present Impacts to Biodiversity

Considering the anthropogenic activities and influences within the landscape, limited negative impacts to biodiversity were observed within the study area. These include:

- Historical cattle grazing land-use and associated infrastructure;
- Roads and associated vehicle traffic and road kills; and
- Fences.

Letsoai Solar PV Project


Figure 5-1 Photographs illustrating impacts to biodiversity A) Fencing and Roads, B) Surface infrastructure

5.1.2 Alternatives Considered

5.1.2.1 Development Alternatives

Figure 5-2 presents a map of the PV development area for both project facilities. Following the screening assessment, consideration of the total PV area was adapted to avoid the Very High SEI areas, and minimise (as much is feasible) the extent of the Sandy Grassland habitat. The layout in relation to the SEI can be seen in Figure 5-2. In addition, commitment was made towards the preservation of the remainder of the site, where no development is proposed. Overall, there is clear effort to achieve as much avoidance of the Sandy Grassland area for both development, as much is feasible.

Figure 5-2 Map illustrating the revised development areas.

Considering the abovementioned, the following was avoided:

- All Very High SEI areas;
- Of the total 2407 ha PV area for both projects was considered, with 1812.5 ha of Sandy Grassland delineated;
- The (above) revised development areas overlay a total of 602.8 ha of Sandy Grassland;
- The revised layout will reduce the extent of Sandy Grassland lost by approximately 76%; and
- The maintenance of vegetation beneath the panels will achieve further avoidance and will achieve a further reduction on the extent (%) of Sandy Grassland lost.

5.1.2.2 Design Alternatives

The preparation of the substrate beneath solar arrays depends on the panel technology alternative that is implemented. The developer will retain vegetative ground cover with no clearing for the PV footprint,

Letsoai Solar PV Project

most likely Monofacial panel technology instead of Bifacial panels which often removes vegetation and place white gravel underneath panels. The PV technology chosen will avoid total clearance for the PV footprint. It is proposed that vegetation clearance will only be conducted under the following circumstances:

- The excavation for and installation of subterranean equipment such as the earth mat; electrical cables and ducting from the solar PV module installation to the power stations (inverters, transformers & switchgear) and from the power stations to the substation; and required stormwater infrastructure;
- The casting of foundations and clearing of footprints for permanent buildings, laydown areas, power station plinths and the substation;
- The footprints of foundations or piles of the site fencing posts and solar mounting structures; and
- The footprints of internal- and access roads.

5.1.3 Identification of Additional Potential Impacts

The potential impacts during the construction and operation phases of the project are presented in Table 5-1.

	Project activities that can cause loss/impacts to	
Main Impact	habitat (especially with regard to the proposed infrastructure areas):	Secondary impacts anticipated
	Physical removal of vegetation, including protected species.	Displacement/loss of flora & faun (including possible SCC)
	Access roads and servitudes	Increased potential for soil erosion
1. Destruction, fragmentation and degradation of habitats and	Soil dust precipitation	Habitat fragmentation
ecosystems	Dumping of waste products	Increased potential for establishment of alien & invasive vegetation
	Random events such as fire (cooking fires or cigarettes)	Erosion
Main Impact	Project activities that can cause the spread and/or establishment of alien and/or invasive species	Secondary impacts anticipated
	Vegetation removal	Habitat loss for native flora & faunt (including SCC)
2. Spread and/or establishment of	Vehicles potentially spreading seed	Spreading of potentially dangerou diseases due to invasive and pes species
alien and/or invasive species	Unsanitary conditions surrounding infrastructure promoting the establishment of alien and/or invasive rodents	Alteration of fauna assemblage due to habitat modification
	Creation of infrastructure suitable for breeding activities of alien and/or invasive birds	
Main Impact	Project activities that can cause direct mortality of fauna	Secondary impacts anticipated
	Clearing of vegetation	Loss of habitat
		Loss of ecosystem services
3. Direct mortality of fauna	Roadkill due to vehicle collision	
-	Pollution of water resources due to dust effects, chemical spills, etc.	Increase in rodent populations and associated disease risk
	Intentional killing of fauna for food (hunting)	

 Table 5-1
 Potential impacts to biodiversity associated with the proposed activity

Letsoai Solar PV Project

Main Impact	Project activities that can cause reduced dispersal/migration of fauna	Secondary impacts anticipated
4. Reduced dispersal/migration of	Loss of landscape used as corridor	Reduced dispersal/migration of fauna Loss of ecosystem services
fauna	Compacted roads	Reduced plant seed dispersal
	Removal of vegetation	Reduced plant seed dispersal
Main Impact	Project activities that can cause pollution in watercourses and the surrounding environment	Secondary impacts anticipated
	Chemical (organic/inorganic) spills	Pollution in watercourses and the surrounding environment
5. Environmental pollution due to water runoff, spills from vehicles		Faunal mortality (direct and indirectly)
and erosion	Erosion	Groundwater pollution
		Loss of ecosystem services
Main Impact	Project activities that can cause disruption/alteration of ecological life cycles due to sensory disturbance.	Secondary impacts anticipated
	Operation of machinery (Large earth moving machinery,	Disruption/alteration of ecological life cycles due to noise
6.Disruption/alteration of	vehicles)	Loss of ecosystem services
ecological life cycles (breeding, migration, feeding) due to noise, dust and light pollution.	Project activities that can cause disruption/alteration of ecological life cycles due to dust	Secondary impacts associated with disruption/alteration of ecological life cycles due to dust
	Vehicles	Loss of ecosystem services
Main Impact	Project activities that can cause staff to interact directly with potentially dangerous fauna	Secondary impacts anticipated
8. Staff and others interacting directly with fauna (potentially dangerous) or poaching of animals	All unregulated/supervised activities outdoors	Loss of SCCs

5.1.4 Assessment of Impact Significance

The assessment of impact significance was undertaken in accordance with the method developed by Savannah. The various identified impacts are assessed below for the different phases of the development. The impacts assessed are considered for all alternatives as they are considered to have negligible impact significance differences.

5.1.4.1 Construction Phase

The following potential main impacts on the biodiversity (based on the framework above) were considered for the construction phase of the proposed development. This phase refers to the period during construction when the proposed features are constructed; and is considered to have the largest direct impact on biodiversity. The following potential impacts to terrestrial biodiversity were considered:

- Destruction, further loss and fragmentation of the of habitats, ecosystems and vegetation community (Table 5-2),
- Introduction of alien and invasive species, especially plants (Table 5-3; and
- Displacement of faunal community due to habitat loss, direct mortalities and disturbance (road collisions, noise, dust, vibration and poaching) (Table 5-4).

Table 5-2Impacts to biodiversity associated with the proposed construction phase.

Impact Nature: Loss of vegetation within development footprint

Destruction, further loss and fragmentat	ion of the of habitats, ecosystems and	vegetation community	
	Without mitigation	With mitigation	
Extent	Moderate (3)	Very low (1)	
Duration	Permanent (5)	Short term (2)	
Magnitude	Moderate (6)	Low (4)	
Probability	Highly probable (4)	Probable (3)	
Significance	Medium (56)	Low (21)	
Status (positive or negative)	Negative	Negative	
Reversibility	Low	Moderate	
Irreplaceable loss of resources?	No	No	
Can impacts be mitigated?	Yes, although this impact cannot be well mitigated as the loss of vegetation is unavoidable.		
Mitigation:	*		

Mitigation:

- All 'Very High' SEI habitats (inselberg) and associated buffer zones (SCC plant) are to be avoided.
- Avoid the disturbance or destruction of Sandy Grassland (High SEI areas), as far as possible. Offset mitigation may be required for high impact activities within these areas.
- Demarcate work areas during the construction phase to avoid affecting outside areas. Use physical barriers e.g., safety tape, not painted lines, and use signage
- Do not clear areas of indigenous vegetation outside of the direct project footprint
- Minimise vegetation clearing to the minimum required
- Consult a fire expert and compile and implement a fire management plan to minimise the risk of veld fires around the project site
- Compile and implement a rehabilitation plan from the onset of the project;
- Dust-reducing mitigation measures must be put in place and must be strictly adhered to, for all roads and bare (unvegetated) areas.
 - Reduce the dust generated by operational vehicles and earth moving machinery, through wetting the soil surface (with "dirty water") and putting up signs to enforce speed limits to enforce reduced speeds.
 - No non-environmentally friendly suppressants may be used as this could result in pollution of water sources.
- Rehabilitate areas as soon as they are no longer impacted by construction
 - The rehabilitated areas must be revegetated with indigenous vegetation
- Progressive rehabilitation will enable topsoil to be returned more rapidly, thus ensuring more recruitment from the existing seedbank. Surplus rehabilitation material can be applied to other others in need of stabilisation and vegetation cover
- Indigenous vegetation to be maintained under the solar panels to ensure biodiversity is maintained and to prevent soil erosion (Beatty et al, 2017; Sinha et al, 2018).
- Environmental Officer (EO) to provide supervision and oversight of vegetation clearing activities.

Residual Impacts:

0

The loss of currently intact vegetation is an unavoidable consequence of the project and cannot be entirely mitigated. The residual impact would however be low.

Table 5-3Impacts to biodiversity associated with the proposed construction phase.

Impact Nature: Introduction of alien and invasive species, especially plants				
Degradation and loss of surrounding natural vegetation, persecution of indigenous fauna species				
Without mitigation With mitigation				
Extent	Moderate (3)	Low (2)		
Duration	Long term (4)	Short term (2)		
Magnitude Moderate (6)		Minor (2)		
Probability Highly probable (4) Improbable (2)				

Impact Nature: Introduction of alien and invasive species, especially plants			
Degradation and loss of surrounding natural vegetation, persecution of indigenous fauna species			
Significance	Medium (36)	Low (12)	
Status (positive or negative)	Negative	Negative	
Reversibility	Moderate	High	
Irreplaceable loss of resources?	No	No	
an impacts be mitigated? Yes			
Midaatian	•		

Mitigation:

- Compile and implement an alien vegetation management plan from the onset of construction. The plan must identify
 areas for action (if any) and prescribe the necessary removal methods and frequencies to be applied. This plan must be
 also prescribing a monitoring plan and be updated as/when new data is collated;
- Implementation of a waste management plan, this plan must be also prescribe a monitoring plan and be updated as/when
 new data is collated. Waste management must be a priority and all waste must be collected, stored and disposed of
 adequately. It is recommended that all waste be removed from site on a weekly basis (as a minimum) to prevent rodents
 and pests entering the site.
- Refuse bins will be emptied and secured.
- Temporary storage of domestic waste shall be in covered waste skips.
- Maximum domestic waste storage period will be 7 days.
- A pest control plan must be put in place and implemented; it is imperative that poisons not be used.

Residual Impacts:

Long-term broad scale. IAP infestation if not mitigated.

Table 5-4Impacts to biodiversity associated with the proposed construction phase.

Impact Nature: Displacement of faunal community due to habitat loss, direct mortalities and disturbance						
Construction activity will likely lead to direct mortality of fauna due to earthworks, vehicle collisions, accidental hazardous chemical spills and persecution. Disturbance due to dust and noise pollution and vibration may disrupt behaviour.						
	Without mitigation	Without mitigation With mitigation				
Extent	Moderate (3)	Very low (1)				
Duration	Moderate term (3)	Short term (2)				
Magnitude	Moderate (6) Minor (2)					
Probability	Highly probable (4) Improbable (2)					
Significance	Medium (48)	Low (10)				
Status (positive or negative)	Negative	Negative				
Reversibility	Moderate	High				
Irreplaceable loss of resources?	No No					
Can impacts be mitigated?	Yes, to some extent. Noise and disturbance cannot be well mitigated, impacts on fauna due to human presence, such as vehicle collisions, poaching, and persecution can be mitigated.					
Mitigation:						

Mitigation:

- Demarcate work areas during the construction phase to avoid affecting outside areas. Use physical barriers e.g., safety tape, not painted lines, and use signage.
- Prior to vegetation clearing activities, the area to be cleared should be walked on foot by 1-2 individuals to create a
 disturbance in order for fauna to move off. Sites should be disturbed only prior to the area having to be cleared, not more
 than 1 day in advance.
- Any fauna threatened by the construction activities should be removed safely by an appropriately qualified environmental officer or removal specialist.

- All construction vehicles should adhere to a speed limit of maximum 40 km/h to avoid collisions. Appropriate speed control
 measures and signs must be erected.
- Wildlife-permeable fencing with holes large enough for mongoose and other smaller mammals should be installed, the holes must not be placed in the fence where it is next to a major road as this will increase road killings in the area
- Minimise vegetation clearing to the minimum required. Areas should be cleared and disturbed on a needs basis only, as
 opposed to clearing and disturbing a number of sites simultaneously.
- Provide All personnel and contractors to undergo Environmental Awareness Training to all personnel and contractors. A signed register of attendance must be kept for proof. Discussions The training must include.
- The timing between clearing of an area and subsequent development must be minimized to avoid fauna from re-entering the site to be disturbed.
- Any holes/deep excavations must done in a progressive manner on a needs basis only. No holes/excavations may be left
 open overnight. In the event holes/excavations are required to remain open overnight, these areas must be covered to
 prevent fauna falling into these areas and subsequently inspected prior to backfilling
- Where possible, work should be restricted to one area at a time and be systematic. This is to reduce the number and extent of on-site activities, allowing fauna to move off as the Project progresses. This will give the smaller birds, mammals and reptiles a chance to weather the disturbance in an undisturbed zone close to their natural territories.
- Considering that many of the mammal fauna recorded within the project area are nocturnal, no construction activity is to occur at night.

Residual Impacts:

It is probable that some individuals of susceptible species will be lost to construction-related activities despite mitigation. However, this is not likely to impact the viability of the local population of any fauna species.

5.1.4.2 Operation Phase

The operational phase of the impact of daily activities is anticipated to further spread the IAP, as well as the deterioration of the habitats due to the increase of dust and edge effect impacts. Dust reduces the ability of plants to photosynthesize and thus leads to degradation/retrogression of the veld. Moving maintenance vehicles don't only cause sensory disturbances to fauna, affecting their life cycles and movement, but will lead to direct mortalities due to collisions.

The following potential impacts were considered:

- Continued fragmentation and degradation of habitats and ecosystems (Table 5-5);
- Spread of alien and/or invasive species (Table 5-6);
- Ongoing displacement and direct mortalities of faunal community (including SCC) due to disturbance (road collisions, noise, light, dust, vibration) (Table 5-7).

Table 5-5 Impacts to biodiversity associated with the proposed operational phase

Impact Nature: Continued fragmentation and degradation of habitats and ecosystems					
Disturbance created during the construction phase will leave the project area vulnerable to erosion and IAP encroachment.					
	Without Mitigation With Mitigation				
Extent	Low (2)	Low (2)			
Duration	Long term (4)	Short term (2)			
Magnitude	Moderate (6)	Minor (2)			
Probability	Highly probable (4)	Improbable (2)			
Significance	Medium (48) Low (12)				
Status (positive or negative)	Negative	Negative			
Reversibility	Moderate	High			
Irreplaceable loss of resources?	Yes	No			
Can impacts be mitigated?	Yes, with proper management and avoidance, this impact can be mitigated to a low level.				

Impact Nature: Continued fragmentation and degradation of habitats and ecosystems

Disturbance created during the construction phase will leave the project area vulnerable to erosion and IAP encroachment.

Mitigation:

- All 'Very High' SEI habitats (inselberg) and associated buffer zones (SCC plant) are to be avoided.
- Avoid the further disturbance or destruction of Sandy Grassland (High SEI areas), as far as possible.
- It should be made an offence for any staff to /take bring any plant species into/out of any portion of the PAOI. No plant
 species whether indigenous or exotic should be brought into/taken from the PAOI, to prevent the spread of exotic or
 invasive species or the illegal collection of plants.
- A Rehabilitation Plan must be written for the development area and ensured that it be adhered to.
- Access roads should have run-off control features which redirect water flow and dissipate any energy in the water which may
 pose an erosion risk.
- All erosion observed should be rectified as soon as possible, using the appropriate erosion control structures and revegetation techniques.
- There should be follow-up rehabilitation and re-vegetation of any remaining denuded areas with local indigenous perennial grass, shrubs and trees.

Residual Impacts

There is still the potential some potential for erosion and IAP encroachment even with the implementation of control measures but would have a low impact.

Table 5-6 Impacts to biodiversity associated with the proposed operational phase.

Impact Nature: Spread of alien and/or invasive species					
Degradation and loss of surrounding natural vegetation, persecution of indigenous fauna species					
	Without mitigation With mitigation				
Extent	Moderate (3)	Low (2)			
Duration	Long term (4)	Short term (2)			
Magnitude	Moderate (6)	Minor (2)			
Probability	Highly probable (4)	Improbable (2)			
Significance	Medium (52)	Low (12)			
Status (positive or negative)	Negative	Negative			
Reversibility	Moderate	High			
Irreplaceable loss of resources?	No	No			
Can impacts be mitigated?	Yes	Yes			

Mitigation:

- Implementation of an alien vegetation management plan.
 - Regular monitoring for IAP encroachment during the operation phase to ensure that no alien invasion problems have developed as result of the disturbance. This should be every 3 months during the first two years of the operation phase and every six months for the life of the project.
 - All IAP species must be removed/controlled using the appropriate techniques as indicated in the IAP management plan
- Compile and implement a Solid Waste Management Plan. Waste management must be a priority and all waste must be collected, stored and disposed of adequately. It is recommended that all waste be removed from site on a weekly basis as a minimum.
- A pest control plan must be implemented; it is imperative that poisons not be used.

Residual Impacts:

Long term broad scale IAP infestation if not mitigated.

Table 5-7 Impacts to biodiversity associated with the proposed operational phase

-	e proposed development may lead to	mortality, disturbance or persecution of fauna in the vicinity			
of the development.					
	Without Mitigation With Mitigation				
Extent	Low (2)	Very low (1)			
Duration	Long term (4)	Short term (2)			
Magnitude	Moderate (6)	Minor (2)			
Probability	Probable (3)	Improbable (2)			
Significance	Medium (48)	Low (10)			
Status (positive or negative)	Negative	Negative			
Reversibility	Moderate	High			
Irreplaceable loss of resources?	No	No			
Can impacts be mitigated?	Yes				

Mitigation:

- Outside lighting should be designed and limited to minimize impacts on fauna. Lighting fixtures should be fitted with baffles, hoods or louvres and directed downward. Outside lighting should be directed away from highly sensitive areas such as the wetlands. Fluorescent and mercury vapor lighting should be avoided and sodium vapor (yellow) lights should be used wherever possible;
- Where feasible, motion detection lighting must be used to minimise the unnecessary illumination of areas
- No vehicle traffic nor the use of vehicle lights should be permitted during the night.
- Noise must be kept to a minimum from dusk to dawn to minimize all possible disturbances to amphibian species and nocturnal mammals
- Latest technology solar panels with an anti-reflective coating must be used. This will also improve the light transmittance and therefore increases the overall efficiency.
- If panels do not possess anti-reflective coatings, then non-polarising white tape can be used around and/or across panels to
 minimise reflection (Bennun *et al*, 2021).
- All personnel and contractors must undergo Environmental Awareness Training and must include awareness about not harming or collecting species.
- Any fauna threatened by the maintenance and operational activities should be removed to a safe location by an appropriate individual.
- All vehicles accessing the site should adhere to a max 40 km/h max to avoid collisions. Appropriate signs must be erected.
- If any excavations are to be dug these must not be left open for more than a few hours without ramps for trapped fauna to leave and must be filled at night.

Residual Impacts

Disturbance from maintenance activities will occur albeit at a low and infrequent level.

5.1.4.3 Cumulative Impacts

The impacts of projects are often assessed by comparing the post-project situation to a pre-existing baseline. Where projects can be considered in isolation this provides a good method of assessing a project's impact. However, in areas where baselines have already been affected, or where future development will continue to add to the impacts pre-existing in an area or region, it is appropriate to consider the cumulative effects of development or disturbance activities. This is similar to the concept of shifting baselines, which describes how the environmental baseline at a specific point in time may actually represent a significant change from the original state of the system. This section describes the potential cumulative impacts of the project on local fauna and flora specifically.

Cumulative impacts are assessed within the context of the extent of the proposed project area, other similar developments and activities in the area (existing and in-process), and general habitat loss and

transformation resulting from any other activities in the area. Localised cumulative impacts include those from operations that are close enough (within 30 km) to potentially cause additive effects on the local environment or any sensitive receptors (relevant operations include nearby large road networks, other solar PV facilities, and power infrastructure). Relevant impacts include the overall reduction of foraging and habitat where reproduction takes place, dust deposition, noise and vibration, disruption of functional corridors of habitat important for movement and migration, disruption of waterways, groundwater drawdown, increase risk of collisions; and groundwater and surface water quality depletion.

Long-term cumulative impacts associated with the site development activities can lead to the loss of endemic and threatened species, including natural habitat and vegetation types, and these impacts can even lead to the degradation of conserved areas such as the adjacent game parks and reserves. In order to spatially quantify the cumulative effects of the proposed development, the project in isolation is compared with the overall effects of surrounding development (including total transformation and transformation as a result of new and proposed developments of a similar type, i.e., solar).

The total area within the 30 km buffer around the PV development area amounts to 322061,46 ha, but when considering the transformation (1151.36 ha) that has taken place within this radius, 320910,10 ha of intact habitat remains according to the 2018 National Biodiversity Assessment. Therefore, the area within 30 km of the project has experienced approximately 0.36% loss in natural habitat. Considering this context, the PV development footprint for is 1243.5 ha (as provided) and similar projects exists (which includes the project area) in the 30 km region measuring a maximum of 94631.92 ha (as per the latest South African Renewable Energy EIA Application Database) which means that the total amount of remaining habitat lost as a result of the solar project amounts to 29.49% (PV developments as a percentage of the total remaining habitat). Table 5-8 outlines the calculation procedure for the spatial assessment of cumulative impacts.

	Total Habitat (ha)	Total Loss (ha)	Tot. Remaining Habitat (ha) (Remnants)	Total Historical Loss	PV Development Similar Projects including Project	Tot. Remaining Habitat (ha)	Cumulative Habitat Lost
Approximate Solar development cumulative effects (Spatial)	322061,46	1151.36	320910,10	0.36%	94631.92	226278.18	29.49%

Table 5-8 Loss of habitat within a 30 km radius of the project

The overall cumulative impact assessment is presented in Table 5-9 and Figure 5-3 and below. Note that this also accounts for the relative importance of the habitats within and adjacent to the development area, in the context of the value of the regional habitat. Approximately 0.36% of the habitat has already been lost, and as discussed above the proposed solar developments will result in a cumulative loss of approximately 29.49 % from the development in the area. The expected cumulative impact of PV development as a whole is expected to be of a 'Moderate-High' significance, however, the contribution of the project development footprint itself (1243.5 ha) is calculated at 1.31% of the total (PV Development Projects), with overall low significance when considering the contribution in isolation.

Letsoai Solar PV Project

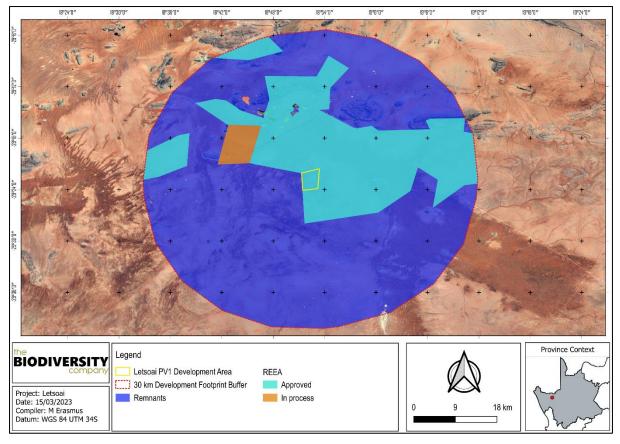


Figure 5-3 Map illustrating the additional renewable energy developments within the landscape overlaid onto the remnant vegetation types

Table 5-9	Cumulative impact assessment of the project
-----------	---

Impact Nature: Cumulative habitat loss within the region The development of the proposed infrastructure will contribute to cumulative habitat loss and thereby impact the ecological processes				
in the region.				
	Overall impact of the proposed development considered in isolation	Cumulative impact of the project and other projects in the area		
Extent	Very low (1)	High (4)		
Duration	Moderate term (3)	Long term (4)		
Magnitude	Low (4) Moderate (6)			
Probability	Probable (3) Definite (5)			
Significance	Low	Moderately-High		
Status (positive or negative)	Negative	Negative		
Reversibility	Moderate	Low		
Irreplaceable loss of resources?	No	Yes		
Can impacts be mitigated	To some degree, but most of the impact results from the presence of the various facilities which cannot be well mitigated.			
Mitigation:				

for each development and are effectively implemented.

6 Management Outcomes

6.1 Biodiversity

The aim of the management outcomes is to present the mitigations in such a way that the can be incorporated into the Environmental Management Programme (EMPr), allowing for more successful implementation and auditing of the mitigations and monitoring guidelines. Table 6-1 presents the recommended mitigation measures and the respective timeframes, targets and performance indicators for the terrestrial study.

The focus of mitigation measures is to reduce the significance of potential impacts associated with the development and thereby to:

- Prevent the further loss and fragmentation of vegetation communities and the CBA areas in the vicinity of the project area;
- Prevent the direct and indirect loss and disturbance of faunal species and community (including potentially occurring species of conservation concern); and
- Follow the guidelines for interpreting Site Ecological Importance (SEI).

Table 6-1 Mitigation measures including requirements for timeframes, roles and responsibilities for this report

OBJECTIVE: Prevent the further loss and fragmentation of vegetation communities and the CBA areas in the vicinity of the project area;

	Project component/s	PV Footprint, laydown areas and road creation
Potential Impact Destruction, further loss and fragmentation of the of habitats, ecosystems and vegetation community		Destruction, further loss and fragmentation of the of habitats, ecosystems and vegetation community
Activity/risk source Land clearing, fire and dust.		Land clearing, fire and dust.
Mitigation: Target/Objective Avoidance / minimisation of the disturbance and degradation of vegetation and ecosystems		Avoidance / minimisation of the disturbance and degradation of vegetation and ecosystems

Mitigation: Action/control	Responsibility	Timeframe
 All 'Very High' SEI habitats (inselberg) and associated buffer zones (SCC plant) are to be avoided. Avoid the disturbance or destruction of Sandy Grassland (High SEI areas), as far as possible. Offset mitigation may be required for high impact activities within these areas. Demarcate work areas during the construction phase to avoid affecting outside areas. Use physical barriers e.g., safety tape, not painted lines, and use signage Where possible, existing access routes and walking paths must be made use of. Do not clear areas of indigenous vegetation outside of the direct project footprint Minimise vegetation clearing to the minimum required Consult a fire expert and compile and implement a fire management plan to minimise the risk of veld fires around the project site Compile and implement a rehabilitation plan from the onset of the project; Dust-reducing mitigation measures must be put in place and must be strictly adhered to, for all roads and bare (unvegetated) areas. Reduce the dust generated by operational vehicles and earth moving machinery, through wetting the soil surface (with "dirty water") and putting up signs to enforce speed limits to enforce reduced speeds. No non-environmentally friendly suppressants may be used as this could result in pollution of water sources. Rehabilitate areas as soon as they are no longer impacted by construction o The rehabilitation will enable topsoil to be returned more rapidly, thus ensuring more recruitment from the existing seedbank. Surplus rehabilitation material can be applied to other others in need of stabilisation and vegetation cover 	Project manager, Environmental Officer	Planning and Construction phase

www.thebiodiversitycompany.com

is maintained and to prevent so	intained under the solar panels to ensure biodiversity il erosion (Beatty et al, 2017; Sinha et al, 2018). provide supervision and oversight of vegetation		
Performance Indicator Clearing restricted to 'allowable' areas, dust generate		, limited unplanned fires, rehabilitation.	
Monitoring Daily during the construction phase			

OBJECTIVE: Prevent the further loss and fragmentation of vegetation communities and the CBA areas in the vicinity of the project area;

Project component/s	Project Area	
Potential Impact	Introduction of alien and invasive species, especially plants	
Activity/risk source	Land clearing, fire and dust.	
Mitigation: Target/Objective	Avoidance / minimisation of the disturbance and degradation of vegetation and ecosystems	

Mitigation: Action/control	Responsibility	Timeframe
 Do not clear areas of indigenous vegetation outside of the direct project footprint Minimise vegetation clearing to the minimum required Consult a fire expert and compile and implement a fire management plan to minimise the risk of veld fires around the project site Compile and implement a rehabilitation plan from the onset of the project; Dust-reducing mitigation measures must be put in place and must be strictly adhered to, for all roads and bare (unvegetated) areas. Reduce the dust generated by operational vehicles and earth moving machinery, through wetting the soil surface (with "dirty water") and putting up signs to enforce speed limits to enforce reduced speeds. No non-environmentally friendly suppressants may be used as this could result in pollution of water sources. Rehabilitate areas as soon as they are no longer impacted by construction The rehabilitated areas must be revegetated with indigenous vegetation Progressive rehabilitation will enable topsoil to be returned more rapidly, thus ensuring more recruitment from the existing seedbank. Surplus rehabilitation material can be applied to other others in need of stabilisation and vegetation cover Indigenous vegetation to be maintained under the solar panels to ensure biodiversity is maintained and to prevent soil erosion (Beatty et al, 2017; Sinha et al, 2018). 	Project manager, Environmental Officer	Planning and Construction phase

Environmental Officer (EO) to p clearing activities.	provide supervision and oversight of vegetation	
Performance Indicator	Clearing restricted to 'allowable' areas, dust generated, limited unplanned fires, rehabilitation.	
Monitoring	Daily during the construction phase for all mitigation	

OBJECTIVE: Prevent the direct and indirect loss and disturbance of faunal species and community (including potential SCCs)

Project component/s	PV Footprint, laydown areas and road creation
Potential Impact	Displacement of faunal community due to habitat loss, direct mortalities and disturbance (road collisions, noise, dust, vibration and poaching)
Activity/risk source	Land clearing, Fire and human presence as well as roads.
Mitigation: Target/Objective	Avoidance / minimisation of the disturbance and mortality of fauna

Mitigation: Action/control	Responsibility	Timeframe
 Demarcate work areas during the construction phase to avoid affecting outside areas. Use physical barriers e.g., safety tape, not painted lines, and use signage. Prior to vegetation clearing activities, the area to be cleared should be walked on foot by 1-2 individuals to create a disturbance in order for fauna to move off. Sites should be disturbed only prior to the area having to be cleared, not more than 1 day in advance. Any fauna threatened by the construction activities should be removed safely by an appropriately qualified environmental officer or removal specialist. All construction vehicles should adhere to a speed limit of maximum 40 km/h to avoid collisions. Appropriate speed control measures and signs must be erected. Wildlife-permeable fencing with holes large enough for mongoose and other smaller mammals should be installed, the holes must not be placed in the fence where it is next to a major road as this will increase road killings in the area Minimise vegetation clearing to the minimum required. Areas should be cleared and disturbed on a needs basis only, as opposed to clearing and disturbing a number of sites simultaneously. Provide All personnel and contractors to undergo Environmental Awareness Training to all personnel and contractors. A signed register of attendance must be kept for proof. 	Project manager, Environmental Officer	Planning and Construction phase

 minimized to avoid fauna from fauna from fauna from fauna from fauna fauna	
Performance Indicator	Amount of observable fauna mortalities, Sequence ,direction and timing of land clearing. Speed limits adhered to
Monitoring	Daily during the construction phase for all mitigation

OBJECTIVE: Prevent the further loss and fragmentation of vegetation communities and the CBA areas in the vicinity of the project area;

Project component/s	Operational Area, PV as well as roads.	
Potential Impact	Continued fragmentation and degradation of habitats and ecosystems	
Activity/risk source	Dust, unregulated clearing, IAP plant proliferation and edge effects	
Mitigation: Target/Objective	Avoidance / minimisation of the disturbance and degradation of vegetation and ecosystems	

Mitigation: Action/control	Responsibility	Timeframe
 All 'Very High' SEI habitats (inselberg) and associated buffer zones (SCC plant) are to be avoided. Avoid the further disturbance or destruction of Sandy Grassland (High SEI areas), as 		
 far as possible. It should be made an offence for any staff to /take bring any plant species into/out of any portion of the PAOI. No plant species whether indigenous or exotic should be 	Project manager, Environmental Officer	Operational phase

F

the **BIODIVERSITY** company

 or the illegal collection of pla A Rehabilitation Plan must l adhered to. Access roads should have dissipate any energy in the All erosion observed should erosion control structures an There should be follow-up r 	e written for the development area and ensured that it be run-off control features which redirect water flow and vater which may pose an erosion risk. be rectified as soon as possible, using the appropriate		
Performance Indicator	ormance Indicator Clearing restricted to 'allowable' areas, dust generated, limited unplanned fires, rehabilitation.		
Monitoring	itoring Daily during the operational phase for all mitigation		

OBJECTIVE: Prevent the further loss and fragmentation of vegetation communities and the CBA areas in the vicinity of the project area;

Project component/s	Project Area	
Potential Impact	Spread of alien and/or invasive species	
Activity/risk source	Cleared Areas, laydown areas, fire and dust.	
Mitigation: Target/Objective	Avoidance / minimisation of the disturbance and degradation of vegetation and ecosystems	

Mitigation: Action/control		Responsibility	Timeframe
 ensure that no alien disturbance. This sh the operation phase All IAP species must techniques as indica Compile and implem management must b and disposed of ade 	etation management plan. for IAP encroachment during the operation phase to invasion problems have developed as result of the ould be every 3 months during the first two years of and every six months for the life of the project. t be removed/controlled using the appropriate ted in the IAP management plan uent a Solid Waste Management Plan. Waste the a priority and all waste must be collected, stored quately. It is recommended that all waste be removed y basis as a minimum.	Project manager, Environmental Officer	Operational phase
Performance Indicator	Clearing restricted to 'allowable' areas, dust generated	I, limited unplanned fires, rehabilitation.	
Monitoring Daily during the construction phase for all mitigation			

OBJECTIVE: Prevent the direct and indirect loss and disturbance of faunal species and community (including potentially/occurring SCCs)

Project component/s	Operations Area (PV Footprint, laydown areas and roads)
Potential Impact	Ongoing displacement and direct mortalities of faunal community (including SCC) due to disturbance (road collisions, noise, light, dust, vibration)
Activity/risk source	Moving vehicles, Fire and human presence and activites
Mitigation: Target/Objective	Avoidance / minimisation of the disturbance and degradation of vegetation.

Mitigation: Action/control		Responsibility	Timeframe
Lighting fixtures should be fitted downward. Outside lighting sho as the wetlands. Fluorescent at sodium vapor (yellow) lights sh Where feasible, motion detection illumination of areas Minimise traffic and the use of w Noise must be kept to a minimu disturbances to amphibian spec Latest technology solar panels also improve the light transmitte If panels do not possess anti-re used around and/or across pan All personnel and contractors of must include awareness about Any fauna threatened by the removed to a safe location by a All vehicles accessing the site s Appropriate signs must be erect	with an anti-reflective coating must be used. This will ance and therefore increases the overall efficiency. effective coatings, then non-polarising white tape can be hels to minimise reflection (Bennun <i>et al</i> , 2021). must undergo Environmental Awareness Training and not harming or collecting species. The maintenance and operational activities should be an appropriate individual. should adhere to a max 40 km/h max to avoid collisions.	Project manager, Environmental Officer	Operational phase
Performance Indicator Amount of observable fauna mortalities, Speed limits adhered to			
Monitoring	Daily during the construction phase for all mitigation		

7 Conclusion and Impact Statement

7.1 Conclusion

The PAOI has been altered, albeit limited, both currently and historically. Historically, grazing from livestock and mismanagement has led to (limited) deterioration of the area. Most areas can be regarded as important, not only within the local landscape, but also regionally; as they are used for habitat, foraging and movement corridors for fauna within a landscape fragmented by development. This is especially true regarding the water resource habitats. The habitat sensitivity of these habitats is regarded as High to Very High, and the following aspects support this classification:

- Functions as CBA 2 and ESA as per the Northern Cape Critical Biodiversity Areas spatial database;
- A priority focus area as per the NPAES; and
- Support various organisms and may play an important role in the ecosystem, if left to recover from the superficial impacts.

The ecological integrity, importance and functioning of these terrestrial biodiversity areas provide a variety of ecological services considered beneficial, with one key service being the maintenance of biodiversity. The preservation of these systems is the most important aspect to consider for the proposed project.

The habitat physiognomy within the PAOI is diverse and, based on the fauna components recorded within the PAOI and proximal landscape, the area provides important ecosystem services, particularly with regards to the maintenance of dynamic soil properties and pollination services. The SEI of the PAOI was determined to vary from 'Medium' to 'Very High', the extent of the area considered and its connectivity to natural areas within the landscape, and the low resilience of the habitat/vegetation type.

7.2 Impact Statement

The main expected impacts of the proposed infrastructure will include the following:

- Habitat loss and fragmentation as well as degradation of surrounding habitat;
- Disturbance and displacement caused during the construction and maintenance phases; and
- Direct mortality during the construction phase.

The primary expected impacts of the proposed project will be the loss of habitat and emigration of fauna. Based on the outcomes of the SEI determination, there are areas within the PAOI that possess a 'Very High' SEI. This denotes that avoidance mitigation is the only appropriate option for these areas and no destructive development activities should be considered. There are areas within the PAOI that possess a 'High' SEI. This denotes that avoidance mitigation wherever possible must be implemented. This includes changes to project infrastructure design to limit the amount of habitat impacted. If avoidance is not possible, the potential to offset does exist.

Referring to the mitigation hierarchy, the project will achieve avoidance by means of revised and reduced spatial planning, suggested seasonal constraints for construction to prioritise the dry season period and also the 'avoidance' of vegetation clearing beneath the panels. The overall residual impacts are expected to be low, and this will be achieved though reduced durations for selected aspects, minimised footprint areas and supporting measures to reduce the expected impact intensities.

Note that based on the outcomes of this assessment the project developer has updated the project layout to avoid sensitive and no-go areas identified on the project site in line with prescribed specialist mitigation measures. Thus, mitigating potential negative impacts associated with the project site.

The main items are as follows:

- Onsite 132 kV substation, each site will have one;
- The 400 kV collector SS has move west to avoid a drainage feature;
- A 132 kV line will run between on-site SSs and the collector SS (route has not changed); and
- BESS on each site near respective SSs.

Considering that this area has been identified as being of significance for biodiversity maintenance and ecological processes (CBAs and ESAs), development may proceed but with caution and only with the implementation of mitigation measures. Considering the above-mentioned information, no fatal flaws are evident for the proposed project. It is the opinion of the specialists that the project may be favourably considered, on condition that all prescribed mitigation measures and supporting recommendations are implemented.

8 References

Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J., Alexander, G.J & de Villiers, M.S. (Eds). 2014. Atlas and Red List of Reptiles of South Africa, Lesotho and Swaziland. Suricata 1. South African Biodiversity Institute, Pretoria.

BGIS (Biodiversity GIS). (2017). http://bgis.sanbi.org/

Beatty, B., Macknick, J., McCall, J. and Braus, G. 2017. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center. National Renewable Energy Laboratory. Technical Report No: NREL/TP-1900-66218

Bennun, L., van Bochove, J., Ng, C., Fletcher, C., Wilson, D., Phair, N., Carbone, G. 2021. Mitigating biodiversity impacts associated with solar and wind energy development. Guidelines for project developers. Gland, Switzerland: IUCN and Cambridge, UK: The Biodiversity Consultancy.

BODATSA-POSA. (2020). Plants of South Africa - an online checklist. POSA ver. 3.0. http://newposa.sanbi.org/.

Boycott, R. and Bourquin, R. 2000. The Southern African Tortoise Book – A Guide to Southern African Tortoises, Terrapins and Turtles. Revised Edition. Hilton. 228 pages.

Branch, W.R. (1998). Field Guide to Snakes and Other Reptiles of Southern Africa. Struik, Cape Town.

Bromilow, C. (2010). Problem plants and alien weeds of South Africa. Briza Publications, Pretoria, RSA.

Burke, Antje. (2002). Properties of soil pockets on arid Nama Karoo inselbergs — The effect of geology and derived landforms. Journal of Arid Environments - J ARID ENVIRON. 50. 219-234. 10.1006/jare.2001.0907.

CITES. UNEP-WCMC (Comps.) 2021. Checklist of CITES species. CITES Secretariat, Geneva, Switzerland and UNEP-WCMC, Cambridge, United Kingdom. Accessed: Mar 2022.

CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). (1973). www.cites.org.

Du Preez, L. & Carruthers, V. (2009) A Complete Guide to the Frogs of Southern Africa. Struik Nature, Cape Town.

Fish, L., Mashau, A.C., Moeaha, M.J. & Nembudani, M.T. (2015). Identification Guide to Southern African Grasses: An Identification Manual with Keys, Descriptions, and Distributions. SANBI, Pretoria.

FitzPatrick Institute of African Ornithology. 2021a. FrogMAP Virtual Museum. Accessed at <u>http://vmus.adu.org.za/?vm=FrogMAP</u>

FitzPatrick Institute of African Ornithology. 2021b. ReptileMAP Virtual Museum. Accessed at http://www.adu.org.za/?vm=ReptileMAP

FitzPatrick Institute of African Ornithology. 2021b. MammalMAP Virtual Museum. Accessed at http://vmus.adu.org.za/?vm=MammalMAP

Foden, W. 2018. Aloidendron dichotomum (Masson) Klopper & Gideon.F.Sm. National Assessment: Red List of South African Plants version 2020.1. Accessed on 2023/03/15

Marais, J. 2004. A Complete Guide to the Snakes of Southern Africa. Struik Nature, Cape Town.

Mucina, L. & Rutherford, M.C. (Eds.). 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelizia 19. South African National Biodiversity Institute, Pretoria, South African.

Mucina, L., Rutherford, M.C. & Powrie, L.W. (Eds.). 2007. Vegetation map of South Africa, Lesotho and Swaziland. 1:1 000 000 scale sheet maps. 2nd ed. South African National Biodiversity Institute, Pretoria.

Nel JL, Murray KM, Maherry AM, Petersen CP, Roux DJ, Driver A, Hill L, Van Deventer H, Funke N, Swartz ER, Smith-Adao LB, Mbona N, Downsborough L and Nienaber S. 2011. Technical Report for the National Freshwater Ecosystem Priority Areas project. WRC Report No. K5/1801.

Raimonde, D. (2009). Red list of South African Plants. SANBI, Pretoria.

SADAP (South Africa Protected Areas Database) and SACAD (South Africa Conservation Areas Database) (2023). http://egis.environment.gov.za

SANBI (South African National Biodiversity Institute). 2016a.Northern Cape Department of Environment and Nature Conservation. 2016 Northern Cape Critical Biodiversity. Available from the Biodiversity GIS website.

SANBI (South African National Biodiversity Institute). 2016. Red List of South African Plants version 2020. Redlist.sanbi.org

SANBI-BGIS. 2017. Technical guidelines for CBA Maps: Guidelines for developing a map of Critical Biodiversity Areas & Ecological Support Areas using systematic biodiversity planning.

Sinha, P., Hoffman, B., Sakers, J. & Althouse, L. 2018. Best practices in responsible land use for improving biodiversity at a utility-scale solar facility. Case Studies in the Environment 2(1): 1–12. https://doi.org/10.1525/cse.2018.001123

Skinner, J.D. & Chimimba, C.T. (2005). The Mammals of the Southern African Subregion (New Edition). Cambridge University Press, South Africa.

Skowno, A.L., Raimondo, D.C., Poole, C.J., Fizzotti, B. & Slingsby, J.A. (eds.). 2019. South African National Biodiversity Assessment 2018 Technical Report Volume 1: Terrestrial Realm. South African National Biodiversity Institute, Pretoria.

Smith, G.F., Chesselet, P., van Jaarsveld, E.J., Hartmann, H., Hammer, S., van Wyk, B., Burgoyne, P., Klak, C. & Kurzweil, H. (1998). Mesembs of the world. Briza Publishers, Pretoria.

Stuart, C and Stuart, M. A. 2013. Field guide to the tracks & signs of Southern, Central & East African Wildlife. Penguin Random House, Cape Town.

Van Deventer, H., Smith-Adao, L., Collins, N.B., Grenfell, M., Grundling, A., Grundling, P-L., Impson, D., Job, N., Lötter, M., Ollis, D., Petersen, C., Scherman, P., Sieben, E., Snaddon, K., Tererai, F. and Van der Colff D. 2019. *South African National Biodiversity Assessment 2018: Technical Report.* Volume 2b: Inland Aquatic (Freshwater) Realm. CSIR report number CSIR/NRE/ECOS/IR/2019/0004/A. South African National Biodiversity Institute, Pretoria. http://hdl.handle.net/20.500.12143/6230.

Van Deventer, H., Smith-Adao, L., Mbona, N., Petersen, C., Skowno, A., Collins, N.B., Grenfell, M., Job, N., Lötter, M., Ollis, D., Scherman, P., Sieben, E. & Snaddon, K. 2018. South African National Biodiversity Assessment 2018: Technical Report. Volume 2a: South African Inventory of Inland Aquatic Ecosystems (SAIIAE). Version 3, final released on 3 October 2019. Council for Scientific and Industrial Research (CSIR) and South African National Biodiversity Institute (SANBI): Pretoria, South Africa.

van Rooyen, N & van Rooyen, G. 2019. Flowering Plants of the Southern Kalahari. Novus Print, Somerset West

Van Wyk, B-E., Van Oudtshoorn, B. & Gericke, N. (2013). Medicinal Plants of South Africa. Briza Publications, Pretoria.

Van Wyk, B-E. & Smith, G.F. (2014). Guide to the Aloes of South Africa. Briza Publishers, Pretoria.

Whittington-Jones, G. M., Bernard, R. T., & Parker, D. M. (2011). Aardvark burrows: a potential resource for animals in arid and semi-arid environments. African Zoology, 46, 362-370. Retrieved from https://doi.org/10.1080/15627020.2011.11407509

the BIODIVERSITY company

9 Appendix Items

9.1 Appendix A – Flora species expected to occur in the project area.

Family	Taxon	Genus	Species	Author	Conser vation Status
Acanthaceae	Barleria rigida	Barleria	rigida	Willd. ex Nees	
Acanthaceae	Justicia incana	Justicia	incana	(Nees) T.Anderson	
Acanthaceae	Justicia spartioides	Justicia	spartioides	T.Anderson	
Acanthaceae	Barleria rigida	Barleria	rigida	Willd. ex Nees	
Acanthaceae	Acanthopsis hoffmannseggiana	Acanthopsis	hoffmannsegg iana	(Nees) C.B.Clarke	DDT
Acanthaceae	Blepharis mitrata	Blepharis	mitrata	C.B.Clarke	LC
Acanthaceae	Barleria rigida	Barleria	rigida	Willd. ex Nees	LC
Acanthaceae	Blepharis macra	Blepharis	macra	(Nees) Vollesen	LC
Acanthaceae	Petalidium setosum	Petalidium	setosum	C.B.Clarke ex Schinz	LC
Acanthaceae	Justicia thymifolia	Justicia	thymifolia	(Nees) C.B.Clarke	LC
Aizoaceae	Mesembryanthemum nucifer	Mesembryanthe mum	nucifer	(Ihlenf. & Bittrich) Klak	
Aizoaceae	Mesembryanthemum tetragonum	Mesembryanthe mum	tetragonum	Thunb.	
Aizoaceae	Mesembryanthemum coriarium	Mesembryanthe mum	coriarium	Burch. ex N.E.Br.	
Aizoaceae	Mesembryanthemum arenosum	Mesembryanthe mum	arenosum	Schinz	
Aizoaceae	Mesembryanthemum oculatum	Mesembryanthe mum	oculatum	N.E.Br.	
Aizoaceae	Conophytum angelicae	Conophytum	angelicae	(Dinter & Schwantes) N.E.Br.	
Aizoaceae	Mesembryanthemum lignescens	Mesembryanthe mum	lignescens	(L.Bolus) Klak	
Aizoaceae	Mesembryanthemum subnodosum	Mesembryanthe mum	subnodosum	A.Berger	
Aizoaceae	Mesembryanthemum schenckii	Mesembryanthe mum	schenckii	Schinz	
Aizoaceae	Mesembryanthemum articulatum	Mesembryanthe mum	articulatum	Thunb.	
Aizoaceae	Mesembryanthemum noctiflorum	Mesembryanthe mum	noctiflorum	L.	
Aizoaceae	Trianthema parvifolia	Trianthema	parvifolia	E.Mey. ex Sond.	
Aizoaceae	Galenia secunda	Galenia	secunda	(L.f.) Sond.	LC
Aizoaceae	Ruschia divaricata	Ruschia	divaricata	L.Bolus	LC
Aizoaceae	Galenia crystallina	Galenia	crystallina	(Eckl. & Zeyh.) Fenzl ex Harv. & Sond.	LC
Aizoaceae	Tetragonia arbuscula	Tetragonia	arbuscula	Fenzl	LC
Aizoaceae	Drosanthemum hispidum	Drosanthemum	hispidum	(L.) Schwantes	LC
Aizoaceae	Conophytum friedrichiae	Conophytum	friedrichiae	(Dinter) Schwantes	LC
Aizoaceae	Galenia sarcophylla	Galenia	sarcophylla	Fenzl ex Sond.	LC
Aizoaceae	Drosanthemum albens	Drosanthemum	albens	L.Bolus	LC
Aizoaceae	Mesembryanthemum nodiflorum	Mesembryanthe mum	nodiflorum	L.	LC
Aizoaceae	Conophytum maughanii	Conophytum	maughanii	N.E.Br.	LC
Aizoaceae	Tetragonia reduplicata	Tetragonia	reduplicata	Welw. ex Oliv.	LC

Aizoaceae	Schwantesia ruedebuschii	Schwantesia	ruedebuschii	Dinter	LC
Aizoaceae	Trianthema parvifolia	Trianthema	parvifolia	E.Mey. ex Sond.	LC
Aizoaceae	Mesembryanthemum guerichianum	Mesembryanthe mum	guerichianum	Pax	LC
Aizoaceae	Trichodiadema littlewoodii	Trichodiadema	littlewoodii	L.Bolus	LC
Aizoaceae	Hereroa hesperantha	Hereroa	hesperantha	(Dinter & A.Berger) Dinter & Schwantes	LC
Aizoaceae	Galenia fruticosa	Galenia	fruticosa	(L.f.) Sond.	LC
Aizoaceae	Trianthema parvifolia	Trianthema	parvifolia	E.Mey. ex Sond.	LC
Aizoaceae	Galenia papulosa	Galenia	papulosa	(Eckl. & Zeyh.) Sond.	LC
Aizoaceae	Mesembryanthemum crystallinum	Mesembryanthe mum	crystallinum	L.	LC
Aizoaceae	Amphibolia rupis-arcuatae	Amphibolia	rupis-arcuatae	(Dinter) H.E.K.Hartmann	LC
Aizoaceae	Galenia squamulosa	Galenia	squamulosa	(Eckl. & Zeyh.) Fenzl	LC
Aizoaceae	Ruschia spinosa	Ruschia	spinosa	(L.) Dehn	LC
Aizoaceae	Galenia africana	Galenia	africana	L.	LC
Aizoaceae	Lapidaria margaretae	Lapidaria	margaretae	(Schwantes) Dinter & Schwantes	LC
Aizoaceae	Ebracteola fulleri	Ebracteola	fulleri	(L.Bolus) Glen	LC
Aizoaceae	Ruschia muricata	Ruschia	muricata	L.Bolus	LC
Aizoaceae	Drosanthemum luederitzii	Drosanthemum	luederitzii	(Engl.) Schwantes	LC
Aizoaceae	Mesembryanthemum amplectens	Mesembryanthe mum	amplectens	L.Bolus	
Aizoaceae	Ruschia cradockensis	Ruschia	cradockensis	(Kuntze) H.E.K.Hartmann & Stuber	
Aizoaceae	Mesembryanthemum quartziticola	Mesembryanthe mum	quartziticola	Klak	
Aizoaceae	Schlechteranthus stylosus	Schlechteranthu s	stylosus	(L.Bolus) R.F.Powell	
Aizoaceae	Mesembryanthemum latipetalum	Mesembryanthe mum	latipetalum	(L.Bolus) Klak	
Aizoaceae	Mesembryanthemum nitidum	Mesembryanthe mum	nitidum	Haw.	
Aizoaceae	Drosanthemum godmaniae	Drosanthemum	godmaniae	L.Bolus	DDT
Aizoaceae	Trichodiadema obliquum	Trichodiadema	obliquum	L.Bolus	DDT
Aizoaceae	Drosanthemum breve	Drosanthemum	breve	L.Bolus	DDT
Aizoaceae	Trichodiadema setuliferum	Trichodiadema	setuliferum	(N.E.Br.) Schwantes	LC
Aizoaceae	Conophytum subfenestratum	Conophytum	subfenestratu m	Schwantes	LC
Aizoaceae	Schwantesia triebneri	Schwantesia	triebneri	L.Bolus	LC
Aizoaceae	Conicosia elongata	Conicosia	elongata	(Haw.) N.E.Br.	LC
Aizoaceae	Galenia collina	Galenia	collina	(Eckl. & Zeyh.) Walp.	LC
Aizoaceae	Ruschia cradockensis	Ruschia	cradockensis	(Kuntze) H.E.K.Hartmann & Stuber	LC
Aizoaceae	Ruschia kenhardtensis	Ruschia	kenhardtensis	L.Bolus	LC
Aizoaceae	Drosanthemum schoenlandianum	Drosanthemum	schoenlandia num	(Schltr.) L.Bolus	LC
Aizoaceae	Conophytum calculus	Conophytum	calculus	(A.Berger) N.E.Br.	LC
Aizoaceae	Ruschia cradockensis	Ruschia	cradockensis	(Kuntze) H.E.K.Hartmann & Stuber	LC
Aizoaceae	Cephalophyllum staminodiosum	Cephalophyllum	staminodiosu m	L.Bolus	LC

			-		
Aizoaceae	Hereroa pallens	Hereroa	pallens	L.Bolus	LC
Aizoaceae	Ruschia uncinata	Ruschia	uncinata	(L.) Schwantes	LC
Aizoaceae	Antimima nordenstamii	Antimima	nordenstamii	(L.Bolus) H.E.K.Hartmann	LC
Aizoaceae	Ruschia centrocapsula	Ruschia	centrocapsula	H.E.K.Hartmann & Stuber	LC
Aizoaceae	Schwantesia marlothii	Schwantesia	marlothii	L.Bolus	LC
Aizoaceae	Malephora lutea	Malephora	lutea	(Haw.) Schwantes	LC
Aizoaceae	Drosanthemum subcompressum	Drosanthemum	subcompress um	(Haw.) Schwantes	LC
Aizoaceae	Conophytum fulleri	Conophytum	fulleri	L.Bolus	LC
Aizoaceae	Schwantesia pillansii	Schwantesia	pillansii	L.Bolus	LC
Aizoaceae	Ihlenfeldtia vanzylii	Ihlenfeldtia	vanzylii	(L.Bolus) H.E.K.Hartmann	LC
Aizoaceae	Tetragonia acanthocarpa	Tetragonia	acanthocarpa	Adamson	LC
Aizoaceae	Leipoldtia schultzei	Leipoldtia	schultzei	(Schltr. & Diels) Friedrich	LC
Aizoaceae	Ihlenfeldtia excavata	Ihlenfeldtia	excavata	(L.Bolus) H.E.K.Hartmann	LC
Aizoaceae	Cheiridopsis schlechteri	Cheiridopsis	schlechteri	Tischer	LC
Aizoaceae	Conophytum marginatum	Conophytum	marginatum	Lavis	LC
Aizoaceae	Cephalophyllum fulleri	Cephalophyllum	fulleri	L.Bolus	LC
Aizoaceae	Ruschia robusta	Ruschia	robusta	L.Bolus	LC
Aizoaceae	Antimima vanzylii	Antimima	vanzylii	(L.Bolus) H.E.K.Hartmann	LC
Aizoaceae	Drosanthemum intermedium	Drosanthemum	intermedium	(L.Bolus) L.Bolus	LC
Aizoaceae	Dinteranthus puberulus	Dinteranthus	puberulus	N.E.Br.	LC
Aizoaceae	Stomatium fulleri	Stomatium	fulleri	L.Bolus	LC
Aizoaceae	Drosanthemum karrooense	Drosanthemum	karrooense	L.Bolus	LC
Aizoaceae	Conophytum limpidum	Conophytum	limpidum	S.A.Hammer	NT
Aizoaceae	Conophytum achabense	Conophytum	achabense	S.A.Hammer	VU
Aizoaceae	Lithops olivacea	Lithops	olivacea	L.Bolus	VU
Amaranthacea e	Sericocoma avolans	Sericocoma	avolans	Fenzl	LC
Amaranthacea e	Hermbstaedtia glauca	Hermbstaedtia	glauca	(J.C.Wendl.) Rchb. ex Steud.	LC
Amaranthacea e	Salsola columnaris	Salsola	columnaris	Botsch.	LC
Amaranthacea e	Salsola barbata	Salsola	barbata	Aellen	LC
Amaranthacea e	Sericocoma pungens	Sericocoma	pungens	Fenzl	LC
Amaranthacea e	Salsola rabieana	Salsola	rabieana	I.Verd.	LC
Amaranthacea e	Salsola esterhuyseniae	Salsola	esterhuysenia e	Botsch.	LC
Amaranthacea e	Salsola kalaharica	Salsola	kalaharica	Botsch.	LC
Amaranthacea e	Salsola kali	Salsola	kali	L.	
e Amaranthacea e	Chenopodiastrum murale	Chenopodiastru m	murale	(L.) S.Fuentes, Uotila & Borsch	
e Amaryllidacea e	Hessea speciosa	Hessea	speciosa	Snijman	LC
Amaryllidacea	Brunsvigia namaquana	Brunsvigia	namaquana	D.MullDoblies & U.MullDoblies	LC
е					

Amaryllidacea e	Brunsvigia bosmaniae	Brunsvigia	bosmaniae	F.M.Leight.	LC
Amaryllidacea e	Hessea stenosiphon	Hessea	stenosiphon	(Snijman) D.MullDoblies & U.MullDoblies	LC
Amaryllidacea	Brunsvigia comptonii	Brunsvigia	comptonii	W.F.Barker	LC
Amaryllidacea e	Strumaria massoniella	Strumaria	massoniella	(D.MullDoblies & U.Mull Doblies) Snijman	VU
Anacampserot	Anacampseros filamentosa	Anacampseros	filamentosa	(Haw.) Sims	
aceae Anacampserot	Anacampseros papyracea	Anacampseros	papyracea	E.Mey. ex Fenzl	LC
aceae Anacampserot	Anacampseros albissima			Marloth	LC
aceae Anacampserot		Anacampseros	albissima		
aceae Anacampserot	Anacampseros baeseckei	Anacampseros	baeseckei	Dinter ex Poelln.	LC
aceae	Anacampseros papyracea	Anacampseros	papyracea	E.Mey. ex Fenzl	LC
Anacampserot aceae	Anacampseros quinaria	Anacampseros	quinaria	E.Mey. ex Fenzl	LC
Anacampserot aceae	Anacampseros recurvata	Anacampseros	recurvata	Schonland	DDD
Anacampserot aceae	Anacampseros recurvata	Anacampseros	recurvata	Schonland	LC
Anacardiaceae	Ozoroa dispar	Ozoroa	dispar	(C.Presl) R.Fern. & A.Fern.	LC
Anacardiaceae	Searsia undulata	Searsia	undulata	(Jacq.) T.S.Yi, A.J.Mill. & J.Wen	LC
Anacardiaceae	Searsia populifolia	Searsia	populifolia	(E.Mey. ex Sond.) Moffett	LC
Anacardiaceae	Searsia burchellii	Searsia	burchellii	(Sond. ex Engl.) Moffett	LC
Apocynaceae	Fockea comaru	Fockea	comaru	(E.Mey.) N.E.Br.	LC
Apocynaceae	Larryleachia picta	Larryleachia	picta	(N.E.Br.) Plowes	LC
Apocynaceae	Huernia barbata	Huernia	barbata	(Masson) Haw.	LC
Apocynaceae	Cryptolepis decidua	Cryptolepis	decidua	(Planch. ex Benth.) N.E.Br.	LC
Apocynaceae	Gomphocarpus filiformis	Gomphocarpus	filiformis	(E.Mey.) D.Dietr.	LC
Apocynaceae	Stapelia similis	Stapelia	similis	N.E.Br.	LC
Apocynaceae	Tridentea pachyrrhiza	Tridentea	pachyrrhiza	(Dinter) L.C.Leach	LC
Apocynaceae	Pachypodium namaquanum	Pachypodium	namaquanum	(Wyley ex Harv.) Welw.	LC
Apocynaceae	Hoodia alstonii	Hoodia	alstonii	(N.E.Br.) Plowes	LC
Apocynaceae	Microloma incanum	Microloma	incanum	Decne.	LC
Apocynaceae	Microloma sagittatum	Microloma	sagittatum	(L.) R.Br.	LC
Apocynaceae	Huernia barbata	Huernia	barbata	(Masson) Haw.	LC
Asparagaceae	Asparagus suaveolens	Asparagus	suaveolens	Burch.	LC
Asparagaceae Asphodelacea	Asparagus exuvialis	Asparagus	exuvialis	Burch.	NE
е	Haworthiopsis tessellata	Haworthiopsis	tessellata	(Haw.) G.D.Rowley	
Asphodelacea e	Bulbine ophiophylla	Bulbine	ophiophylla	G.Will.	EN
Asphodelacea e	Aloe gariepensis	Aloe	gariepensis	Pillans	LC
Asphodelacea e	Aloe microstigma	Aloe	microstigma	Salm-Dyck	LC
Asphodelacea e	Trachyandra laxa	Trachyandra	laxa	(N.E.Br.) Oberm.	LC
Asphodelacea	Trachyandra jacquiniana	Trachyandra	jacquiniana	(Schult. & Schult.f.) Oberm.	LC
е		•			

AspleniaceaeBulbine striataBulbinestriataBaijnath & Van Jaarsv.AspleniaceaeAsplenium cordatumAspleniumcordatum(Thunb.) Sw.AsteraceaeHelichrysum pumilioHelichrysumpumilio(O.Hoffm.) Hilliard & B.L.BurttAsteraceaeDimorphotheca pinnataDimorphothecapinnata(Thunb.) Harv.	LC
Asteraceae Helichrysum pumilio Helichrysum pumilio (O.Hoffm.) Hilliard & B.L.Burtt	LU
Asteraceae Dimorphotheca pinnata Dimorphotheca pinnata (Thunb.) Harv.	
Asteraceae Felicia clavipilosa Felicia clavipilosa Grau	
AsteraceaeCurio pinguifoliusCuriopinguifolius(DC.) P.V.Heath	DDT
Asteraceae Orbivestus cinerascens Orbivestus cinerascens (Sch.Bip.) H.Rob.	LC
Asteraceae Osteospermum sinuatum Osteospermum sinuatum (DC.) Norl.	LC
Asteraceae Senecio niveus Senecio niveus (Thunb.) Willd.	LC
Asteraceae Chrysocoma microphylla Chrysocoma microphylla Thunb.	LC
Asteraceae Berkheya annectens Berkheya annectens Harv.	LC
Asteraceae Hirpicium echinus Hirpicium echinus Less.	LC
Asteraceae Senecio bulbinifolius Senecio bulbinifolius DC.	LC
Asteraceae Ursinia nana Ursinia nana DC.	LC
Asteraceae Helichrysum argyrosphaer DC.	LC
AsteraceaeBerkheya canescensBerkheyacanescensDC.	LC
Asteraceae Lopholaena cneorifolia Lopholaena cneorifolia (DC.) S.Moore	LC
Asteraceae Didelta carnosa Didelta carnosa (L.f.) Aiton	LC
Asteraceae Osteospermum muricatum Osteospermum muricatum E.Mey. ex DC.	LC
Asteraceae Pteronia glabrata Pteronia glabrata L.f.	LC
Asteraceae Arctotis venusta Arctotis venusta Norl.	LC
Asteraceae Pentatrichia petrosa Pentatrichia petrosa Klatt	LC
Asteraceae Dicoma capensis Dicoma capensis Less.	LC
Asteraceae Geigeria pectidea Geigeria pectidea (DC.) Harv.	LC
Asteraceae Berkheya chamaepeuce Berkheya chamaepeuce (S.Moore) Roessler	LC
Asteraceae Pteronia leucoclada Pteronia leucoclada Turcz.	LC
Asteraceae Foveolina dichotoma Foveolina dichotoma (DC.) Kallersjo	LC
Asteraceae Dimorphotheca sinuata Dimorphotheca sinuata DC.	LC
Asteraceae Pteronia unguiculata Pteronia unguiculata S.Moore	LC
Asteraceae Helichrysum gariepinum Helichrysum gariepinum DC.	LC
Asteraceae Cineraria canescens Cineraria canescens J.C.Wendl. ex Link	LC
Asteraceae Pentzia argentea Pentzia argentea Hutch.	LC
Asteraceae Felicia hirsuta Felicia hirsuta DC.	LC
Asteraceae Pteronia mucronata Pteronia mucronata DC.	LC
Asteraceae Euryops dregeanus Euryops dregeanus Sch.Bip.	LC
Asteraceae Amphiglossa triflora Amphiglossa triflora DC.	LC
Asteraceae Pentzia lanata Pentzia lanata Hutch.	LC
Asteraceae Pentzia globosa Pentzia globosa Less.	LC
Asteraceae Gazania lichtensteinii Gazania lichtensteinii Less.	LC

			-		
Asteraceae	Pteronia ciliata	Pteronia	ciliata	Thunb.	LC
Asteraceae	Othonna cyclophylla	Othonna	cyclophylla	Merxm.	LC
Asteraceae	Geigeria vigintisquamea	Geigeria	vigintisquame a	O.Hoffm.	LC
Asteraceae	Felicia namaquana	Felicia	namaquana	(Harv.) Merxm.	LC
Asteraceae	Doellia cafra	Doellia	cafra	(DC.) Anderb.	LC
Asteraceae	Osteospermum armatum	Osteospermum	armatum	Norl.	LC
Asteraceae	Pteronia scariosa	Pteronia	scariosa	L.f.	LC
Asteraceae	Dimorphotheca polyptera	Dimorphotheca	polyptera	DC.	LC
Asteraceae	Berkheya spinosissima	Berkheya	spinosissima	(Thunb.) Willd.	LC
Asteraceae	Osteospermum karrooicum	Osteospermum	karrooicum	(Bolus) Norl.	LC
Asteraceae	Pteronia lucilioides	Pteronia	lucilioides	DC.	LC
Asteraceae	Gorteria corymbosa	Gorteria	corymbosa	DC.	LC
Asteraceae	Senecio piptocoma	Senecio	piptocoma	O.Hoffm.	LC
Asteraceae	Crassothonna sedifolia	Crassothonna	sedifolia	(DC.) B.Nord.	LC
Asteraceae	Kleinia cephalophora	Kleinia	cephalophora	Compton	LC
Asteraceae	Eriocephalus ambiguus	Eriocephalus	ambiguus	(DC.) M.A.N.Mull.	LC
Asteraceae	lfloga molluginoides	lfloga	molluginoides	(DC.) Hilliard	LC
Asteraceae	Athanasia minuta	Athanasia	minuta	(L.f.) Kallersjo	LC
Asteraceae	Arctotis leiocarpa	Arctotis	leiocarpa	Harv.	LC
Asteraceae	Nidorella resedifolia	Nidorella	resedifolia	DC.	LC
Asteraceae	Helichrysum herniarioides	Helichrysum	herniarioides	DC.	LC
Asteraceae	Leysera tenella	Leysera	tenella	DC.	LC
Asteraceae	Othonna furcata	Othonna	furcata	(Lindl.) Druce	LC
Asteraceae	Oncosiphon pilulifer	Oncosiphon	pilulifer	(L.f.) Kallersjo	LC
Asteraceae	Helichrysum micropoides	Helichrysum	micropoides	DC.	LC
Asteraceae	Amphiglossa tomentosa	Amphiglossa	tomentosa	(Thunb.) Harv.	LC
Asteraceae	Senecio eenii	Senecio	eenii	(S.Moore) Merxm.	LC
Asteraceae	Osteospermum microcarpum	Osteospermum	microcarpum	(Harv.) Norl.	LC
Asteraceae	Kleinia longiflora	Kleinia	longiflora	DC.	LC
Asteraceae	Ursinia speciosa	Ursinia	speciosa	DC.	LC
Asteraceae	Helichrysum zeyheri	Helichrysum	zeyheri	Less.	LC
Asteraceae	Pteronia glauca	Pteronia	glauca	Thunb.	LC
Asteraceae	Amellus tridactylus	Amellus	tridactylus	DC.	LC
Asteraceae	Helichrysum tomentosulum	Helichrysum	tomentosulum	(Klatt) Merxm.	LC
Asteraceae	Senecio sisymbriifolius	Senecio	sisymbriifolius	DC.	LC
Asteraceae	Eriocephalus scariosus	Eriocephalus	scariosus	DC.	LC
Asteraceae	Felicia muricata	Felicia	muricata	(Thunb.) Nees	LC
Asteraceae	Felicia clavipilosa	Felicia	clavipilosa	Grau	LC
Asteraceae	Euryops subcarnosus	Euryops	subcarnosus	DC.	LC

• ·				· · · · · · · · · · · · · · · · · · ·	
Asteraceae	Pegolettia retrofracta	Pegolettia	retrofracta	(Thunb.) Kies	LC
Asteraceae	Gorteria integrifolia	Gorteria	integrifolia	Thunb.	
Asteraceae	Gorteria alienata	Gorteria	alienata	(Thunb.) Stangb. & Anderb.	
Asteraceae	Helichrysum pulchellum	Helichrysum	pulchellum	DC.	LC
Asteraceae	Gymnodiscus linearifolia	Gymnodiscus	linearifolia	DC.	LC
Asteraceae	Gazania jurineifolia	Gazania	jurineifolia	DC.	LC
Asteraceae	Eriocephalus microphyllus	Eriocephalus	microphyllus	DC.	LC
Asteraceae	Helichrysum pumilio	Helichrysum	pumilio	(O.Hoffm.) Hilliard & B.L.Burtt	LC
Asteraceae	Othonna daucifolia	Othonna	daucifolia	J.C.Manning & Goldblatt	LC
Asteraceae	Arctotis dimorphocarpa	Arctotis	dimorphocarp a	R.J.Mckenzie	LC
Asteraceae	Eriocephalus africanus	Eriocephalus	africanus	L.	LC
Asteraceae	Ursinia cakilefolia	Ursinia	cakilefolia	DC.	LC
Asteraceae	Eriocephalus spinescens	Eriocephalus	spinescens	Burch.	LC
Asteraceae	Chrysocoma longifolia	Chrysocoma	longifolia	DC.	LC
Asteraceae	Arctotis hirsuta	Arctotis	hirsuta	(Harv.) Beauverd	LC
Asteraceae	Othonna quercifolia	Othonna	quercifolia	DC.	LC
Asteraceae	Chrysocoma sparsifolia	Chrysocoma	sparsifolia	Hutch.	LC
Asteraceae	Othonna arbuscula	Othonna	arbuscula	(Thunb.) Sch.Bip.	LC
Asteraceae	Euryops multifidus	Euryops	multifidus	(Thunb.) DC.	LC
Asteraceae	Helichrysum marmarolepis	Helichrysum	marmarolepis	S.Moore	NT
Aytoniaceae	Plagiochasma rupestre	Plagiochasma	rupestre	(J.R.Forst. & G.Forst.) Steph.	
Bartramiaceae	Philonotis dregeana	Philonotis	dregeana	(Mull.Hal.) A.Jaeger	
Bignoniaceae	Rhigozum trichotomum	Rhigozum	trichotomum	Burch.	LC
Boraginaceae	Codon royenii	Codon	royenii	L.	LC
Boraginaceae	Heliotropium tubulosum	Heliotropium	tubulosum	E.Mey. ex A.DC.	LC
Boraginaceae	Wellstedia dinteri	Wellstedia	dinteri	Pilg.	LC
Boraginaceae	Trichodesma africanum	Trichodesma	africanum	(L.) Lehm.	LC
Boraginaceae	Heliotropium ciliatum	Heliotropium	ciliatum	Kaplan	LC
Brassicaceae	Lepidium englerianum	Lepidium	englerianum	(Muschl.) Al-Shehbaz	
Brassicaceae	Heliophila deserticola	Heliophila	deserticola	Schltr.	LC
Brassicaceae	Heliophila trifurca	Heliophila	trifurca	Burch. ex DC.	LC
Brassicaceae	Heliophila lactea	Heliophila	lactea	Schltr.	LC
Brassicaceae	Lepidium trifurcum	Lepidium	trifurcum	Sond.	LC
Brassicaceae	Heliophila deserticola	Heliophila	deserticola	Schltr.	LC
Brassicaceae	Heliophila carnosa	Heliophila	carnosa	(Thunb.) Steud.	LC
Brassicaceae	Heliophila minima	Heliophila	minima	(Stephens) Marais	LC
Bryaceae	Bryum argenteum	Bryum	argenteum	Hedw.	
Burseraceae	Commiphora gracilifrondosa	Commiphora	gracilifrondos a	Dinter ex J.J.A.van der Walt	LC
Campanulacea e	Wahlenbergia prostrata	Wahlenbergia	prostrata	A.DC.	LC

Campanulacea e	Wahlenbergia campanuloides	Wahlenbergia	campanuloide s	(Delile) Vatke	LC
Campanulacea e	Wahlenbergia annularis	Wahlenbergia	annularis	A.DC.	LC
Campanulacea e	Wahlenbergia meyeri	Wahlenbergia	meyeri	A.DC.	LC
Capparaceae	Boscia foetida	Boscia	foetida	Schinz	
Capparaceae	Boscia foetida	Boscia	foetida	Schinz	LC
Capparaceae	Boscia albitrunca	Boscia	albitrunca	(Burch.) Gilg & Gilg-Ben.	LC
Caryophyllace ae	Dianthus namaensis	Dianthus	namaensis	Schinz	
Caryophyllace ae	Dianthus micropetalus	Dianthus	micropetalus	Ser.	LC
Caryophyllace ae	Dianthus namaensis	Dianthus	namaensis	Schinz	LC
Celastraceae	Gymnosporia heterophylla	Gymnosporia	heterophylla	(Eckl. & Zeyh.) Loes.	LC
Cleomaceae	Cleome oxyphylla	Cleome	oxyphylla	Burch.	LC
Cleomaceae	Cleome foliosa	Cleome	foliosa	Hook.f.	LC
Cleomaceae	Cleome paxii	Cleome	paxii	(Schinz) Gilg & Gilg-Ben.	LC
Colchicaceae	Ornithoglossum dinteri	Ornithoglossum	dinteri	K.Krause	LC
Colchicaceae	Ornithoglossum vulgare	Ornithoglossum	vulgare	B.Nord.	LC
Crassulaceae	Tylecodon reticulatus	Tylecodon	reticulatus	(L.f.) Toelken	
Crassulaceae	Crassula garibina	Crassula	garibina	Marloth & Schonland	
Crassulaceae	Cotyledon orbiculata	Cotyledon	orbiculata	L.	LC
Crassulaceae	Tylecodon rubrovenosus	Tylecodon	rubrovenosus	(Dinter) Toelken	LC
Crassulaceae	Crassula tenuipedicellata	Crassula	tenuipedicellat a	Schonland & Baker f.	LC
Crassulaceae	Crassula garibina	Crassula	garibina	Marloth & Schonland	LC
Crassulaceae	Crassula tabularis	Crassula	tabularis	Dinter	LC
Crassulaceae	Crassula elegans	Crassula	elegans	Schonland & Baker f.	LC
Crassulaceae	Crassula campestris	Crassula	campestris	(Eckl. & Zeyh.) Endl. ex Walp.	LC
Crassulaceae	Crassula corallina	Crassula	corallina	Thunb.	LC
Crassulaceae	Crassula tomentosa	Crassula	tomentosa	Thunb.	LC
Crassulaceae	Crassula exilis	Crassula	exilis	Harv.	LC
Crassulaceae	Crassula brevifolia	Crassula	brevifolia	Harv.	LC
Crassulaceae	Crassula subaphylla	Crassula	subaphylla	(Eckl. & Zeyh.) Harv.	LC
Crassulaceae	Crassula deltoidea	Crassula	deltoidea	Thunb.	LC
Crassulaceae	Tylecodon reticulatus	Tylecodon	reticulatus	(L.f.) Toelken	LC
Crassulaceae	Crassula cotyledonis	Crassula	cotyledonis	Thunb.	LC
Crassulaceae	Tylecodon reticulatus	Tylecodon	reticulatus	(L.f.) Toelken	LC
Crassulaceae	Crassula grisea	Crassula	grisea	Schonland	LC
Crassulaceae	Crassula macowaniana	Crassula	macowaniana	Schonland & Baker f.	LC
Crassulaceae	Crassula columnaris	Crassula	columnaris	Thunb.	LC
Crassulaceae	Crassula muscosa	Crassula	muscosa	L.	NE
Crassulaceae	Crassula sericea	Crassula	sericea	Schonland	NE

Crassulaceae	Crassula sericea	Crassula	sericea	Schonland	NE
Crassulaceae	Tylecodon sulphureus	Tylecodon	sulphureus	(Toelken) Toelken	
Crassulaceae	Adromischus diabolicus	Adromischus	diabolicus	Toelken	DDT
Crassulaceae	Adromischus nanus	Adromischus	nanus	(N.E.Br.) Poelln.	LC
Crassulaceae	Crassula exilis	Crassula	exilis	Harv.	LC
Crassulaceae	Tylecodon sulphureus	Tylecodon	sulphureus	(Toelken) Toelken	LC
Crassulaceae	Crassula decumbens	Crassula	decumbens	Thunb.	NT
Cucurbitaceae	Cucumis rigidus	Cucumis	rigidus	E.Mey. ex Sond.	LC
Cucurbitaceae	Corallocarpus dissectus	Corallocarpus	dissectus	Cogn.	LC
Cucurbitaceae	Cucumis africanus	Cucumis	africanus	L.f.	LC
Cucurbitaceae	Coccinia rehmannii	Coccinia	rehmannii	Cogn.	LC
Cucurbitaceae	Trochomeria debilis	Trochomeria	debilis	(Sond.) Hook.f.	LC
Cyperaceae	Isolepis hemiuncialis	Isolepis	hemiuncialis	(C.B.Clarke) J.Raynal	LC
Cyperaceae	Cyperus indecorus	Cyperus	indecorus	Kunth	NE
Didiereaceae	Portulacaria fruticulosa	Portulacaria	fruticulosa	(H.Pearson & Stephens) Bruyns & Klak	LC
Didiereaceae	Portulacaria namaquensis	Portulacaria	namaquensis	Sond.	LC
Ebenaceae	Diospyros ramulosa	Diospyros	ramulosa	(E.Mey. ex A.DC.) De Winter	LC
Ebenaceae	Diospyros acocksii	Diospyros	acocksii	(De Winter) De Winter	LC
Ebenaceae	Euclea pseudebenus	Euclea	pseudebenus	E.Mey. ex A.DC.	LC
Ebenaceae	Euclea undulata	Euclea	undulata	Thunb.	LC
Euphorbiacea e	Euphorbia gariepina	Euphorbia	gariepina	Boiss.	
Euphorbiacea e	Euphorbia gregaria	Euphorbia	gregaria	Marloth	LC
Euphorbiacea e	Jatropha orangeana	Jatropha	orangeana	Dinter ex P.G.Mey.	LC
Euphorbiacea e	Euphorbia ephedroides	Euphorbia	ephedroides	E.Mey. ex Boiss.	LC
Euphorbiacea e	Euphorbia spinea	Euphorbia	spinea	N.E.Br.	LC
Euphorbiacea e	Euphorbia mauritanica	Euphorbia	mauritanica	L.	LC
Euphorbiacea	Euphorbia dregeana	Euphorbia	dregeana	E.Mey. ex Boiss.	LC
Euphorbiacea e	Euphorbia gariepina	Euphorbia	gariepina	Boiss.	LC
Fabaceae	Indigofera heterotricha	Indigofera	heterotricha	DC.	
Fabaceae	Indigastrum niveum	Indigastrum	niveum	(Willd. ex Spreng.) Schrire & Callm.	
Fabaceae	Calobota angustifolia	Calobota	angustifolia	(E.Mey.) Boatwr. & BE.van Wyk	LC
Fabaceae	Indigofera pungens	Indigofera	pungens	E.Mey.	LC
Fabaceae	Crotalaria meyeriana	Crotalaria	meyeriana	Steud.	LC
Fabaceae	Melolobium candicans	Melolobium	candicans	(E.Mey.) Eckl. & Zeyh.	LC
Fabaceae	Leobordea platycarpa	Leobordea	platycarpa	(Viv.) BE.van Wyk & Boatwr.	LC
Fabaceae	Melolobium canescens	Melolobium	canescens	Benth.	LC
Fabaceae	Tephrosia dregeana	Tephrosia	dregeana	E.Mey.	LC
Fabaceae	Rhynchosia totta	Rhynchosia	totta	(Thunb.) DC.	LC

		-			
Fabaceae	Melolobium microphyllum	Melolobium	microphyllum	(L.f.) Eckl. & Zeyh.	LC
Fabaceae	Lotononis rabenaviana	Lotononis	rabenaviana	Dinter & Harms	LC
Fabaceae	Vachellia erioloba	Vachellia	erioloba	(E.Mey.) P.J.H.Hurter	LC
Fabaceae	Indigofera heterotricha	Indigofera	heterotricha	DC.	LC
Fabaceae	Tephrosia limpopoensis	Tephrosia	limpopoensis	J.B.Gillett	LC
Fabaceae	Crotalaria virgultalis	Crotalaria	virgultalis	Burch. ex DC.	LC
Fabaceae	Lotononis falcata	Lotononis	falcata	(E.Mey.) Benth.	LC
Fabaceae	Adenolobus garipensis	Adenolobus	garipensis	(E.Mey.) Torre & Hillc.	LC
Fabaceae	Indigofera evansiana	Indigofera	evansiana	Burtt Davy	LC
Fabaceae	Lessertia depressa	Lessertia	depressa	Harv.	LC
Fabaceae	Indigofera sordida	Indigofera	sordida	Benth. ex Harv.	LC
Fabaceae	Parkinsonia africana	Parkinsonia	africana	Sond.	LC
Fabaceae	Indigastrum argyroides	Indigastrum	argyroides	(E.Mey.) Schrire	LC
Fabaceae	Pomaria lactea	Pomaria	lactea	(Schinz) B.B.Simpson & G.P.Lewis	LC
Fabaceae	Requienia sphaerosperma	Requienia	sphaerosperm a	DC.	LC
Fabaceae	Lotononis parviflora	Lotononis	parviflora	(P.J.Bergius) D.Dietr.	LC
Fabaceae	Crotalaria pearsonii	Crotalaria	pearsonii	Baker f.	VU
Fabaceae	Prosopis glandulosa	Prosopis	glandulosa	Torr.	NE
Fabaceae	Prosopis velutina	Prosopis	velutina	Wooton	NE
Funariaceae	Goniomitrium africanum	Goniomitrium	africanum	(Mull.Hal.) Broth.	
Funariaceae	Funaria clavata	Funaria	clavata	(Mitt.) Magill	
Geraniaceae	Pelargonium spinosum	Pelargonium	spinosum	Willd.	LC
Geraniaceae	Monsonia parvifolia	Monsonia	parvifolia	Schinz	LC
Geraniaceae	Pelargonium xerophyton	Pelargonium	xerophyton	Schltr. ex R.Knuth	LC
Geraniaceae	Pelargonium carnosum	Pelargonium	carnosum	(L.) L'Her.	LC
Geraniaceae	Pelargonium crithmifolium	Pelargonium	crithmifolium	Sm.	LC
Geraniaceae	Monsonia glauca	Monsonia	glauca	R.Knuth	LC
Geraniaceae	Monsonia crassicaulis	Monsonia	crassicaulis	(Rehm) F.Albers	LC
Geraniaceae	Monsonia ciliata	Monsonia	ciliata	(Moffett) F.Albers	LC
Gigaspermace ae	Chamaebryum pottioides	Chamaebryum	pottioides	Ther. & Dixon	
Gisekiaceae	Gisekia africana	Gisekia	africana	(Lour.) Kuntze	LC
Hyacinthaceae	Lachenalia giessii	Lachenalia	giessii	W.F.Barker	
Hyacinthaceae	Drimia toxicaria	Drimia	toxicaria	(C.Archer & R.H.Archer) J.C.Manning & Goldblatt	
Hyacinthaceae	Albuca namaquensis	Albuca	namaquensis	Baker	LC
Hyacinthaceae	Massonia bifolia	Massonia	bifolia	(Jacq.) J.C.Manning & Goldblatt	LC
Hyacinthaceae	Dipcadi gracillimum	Dipcadi	gracillimum	Baker	LC
Hyacinthaceae	Albuca glandulifera	Albuca	glandulifera	J.C.Manning & Goldblatt	LC
Hyacinthaceae	Ledebouria undulata	Ledebouria	undulata	(Jacq.) Jessop ex Willd.	LC
Hyacinthaceae	Ornithogalum pruinosum	Ornithogalum	pruinosum	F.M.Leight.	LC

Hyacinthaceae	Bowiea volubilis	Bowiea	volubilis	Harv. ex Hook.f.	LC
Hyacinthaceae	Drimia intricata	Drimia	intricata	(Baker) J.C.Manning & Goldblatt	LC
Hyacinthaceae	Ornithogalum nanodes	Ornithogalum	nanodes	F.M.Leight.	LC
Hyacinthaceae	Albuca setosa	Albuca	setosa	Jacq.	LC
Hyacinthaceae	Lachenalia polypodantha	Lachenalia	polypodantha	Schltr. ex W.F.Barker	
Hyacinthaceae	Ornithogalum bicornutum	Ornithogalum	bicornutum	F.M.Leight.	LC
Hyacinthaceae	Ornithogalum dubium	Ornithogalum	dubium	Houtt.	LC
Hyacinthaceae	Lachenalia xerophila	Lachenalia	xerophila	Schltr. ex G.D.Duncan	LC
Hyacinthaceae	Daubenya namaquensis	Daubenya	namaquensis	(Schltr.) J.C.Manning & Goldblatt	LC
Hyacinthaceae	Albuca spiralis	Albuca	spiralis	L.f.	LC
Hyacinthaceae	Lachenalia undulata	Lachenalia	undulata	Masson ex Baker	LC
Hydnoraceae	Hydnora africana	Hydnora	africana	Thunb.	LC
Hypoxidaceae	Pauridia scullyi	Pauridia	scullyi	(Baker) Snijman & Kocyan	LC
Iridaceae	Lapeirousia plicata	Lapeirousia	plicata	(Jacq.) Diels	
Iridaceae	Lapeirousia littoralis	Lapeirousia	littoralis	Baker	
Iridaceae	Gladiolus saccatus	Gladiolus	saccatus	(Klatt) Goldblatt & M.P.de Vos	LC
Iridaceae	Gladiolus orchidiflorus	Gladiolus	orchidiflorus	Andrews	LC
Iridaceae	Lapeirousia littoralis	Lapeirousia	littoralis	Baker	LC
Iridaceae	Hesperantha rupicola	Hesperantha	rupicola	Goldblatt	LC
Iridaceae	Ferraria variabilis	Ferraria	variabilis	Goldblatt & J.C.Manning	LC
Iridaceae	Tritonia karooica	Tritonia	karooica	M.P.de Vos	LC
Kewaceae	Kewa salsoloides	Kewa	salsoloides	(Burch.) Christenh.	LC
Lamiaceae	Acrotome pallescens	Acrotome	pallescens	Benth.	LC
Lamiaceae	Salvia garipensis	Salvia	garipensis	E.Mey. ex Benth.	LC
Lamiaceae	Stachys linearis	Stachys	linearis	Burch. ex Benth.	LC
Lamiaceae	Stachys rugosa	Stachys	rugosa	Aiton	LC
Lamiaceae	Stachys flavescens	Stachys	flavescens	Benth.	LC
Limeaceae	Limeum africanum	Limeum	africanum	L.	
Limeaceae	Limeum myosotis	Limeum	myosotis	H.Walter	LC
Limeaceae	Limeum aethiopicum	Limeum	aethiopicum	Burm.f.	LC
Limeaceae	Limeum arenicolum	Limeum	arenicolum	G.Schellenb.	LC
Limeaceae	Limeum aethiopicum	Limeum	aethiopicum	Burm.f.	NE
Loasaceae	Kissenia capensis	Kissenia	capensis	Endl.	LC
Lophiocarpace ae	Lophiocarpus polystachyus	Lophiocarpus	polystachyus	Turcz.	LC
Malvaceae	Hermannia stricta	Hermannia	stricta	(E.Mey. ex Turcz.) Harv.	LC
Malvaceae	Hermannia bicolor	Hermannia	bicolor	Engl. & Dinter	LC
Malvaceae	Hermannia minutiflora	Hermannia	minutiflora	Engl.	LC
Malvaceae	Hermannia spinosa	Hermannia	spinosa	E.Mey. ex Harv.	LC
Malvaceae	Hermannia cernua	Hermannia	cernua	Thunb.	LC
Malvaceae	Hermannia burchellii	Hermannia	burchellii	(Sweet) I.Verd.	LC

Malvaceae	Hermannia tomentosa	Hermannia	tomentosa	(Turcz.) Schinz ex Engl.	LC
Malvaceae	Hermannia disermifolia	Hermannia	disermifolia	Jacq.	LC
Malvaceae	Hermannia affinis	Hermannia	affinis	K.Schum.	LC
Malvaceae	Hermannia paucifolia	Hermannia	paucifolia	Turcz.	LC
Malvaceae	Radyera urens	Radyera	urens	(L.f.) Bullock	LC
Malvaceae	Hibiscus elliottiae	Hibiscus	elliottiae	Harv.	LC
Malvaceae	Abutilon pycnodon	Abutilon	pycnodon	Hochr.	LC
Malvaceae	Hermannia gariepina	Hermannia	gariepina	Eckl. & Zeyh.	LC
Malvaceae	Hermannia confusa	Hermannia	confusa	T.M.Salter	LC
Menispermace ae	Antizoma miersiana	Antizoma	miersiana	Harv.	LC
Molluginaceae	Pharnaceum croceum	Pharnaceum	croceum	E.Mey. ex Fenzl	LC
Molluginaceae	Suessenguthiella scleranthoides	Suessenguthiell a	scleranthoide s	(Sond.) Friedrich	LC
Molluginaceae	Adenogramma glomerata	Adenogramma	glomerata	(L.f.) Druce	LC
Molluginaceae	Pharnaceum viride	Pharnaceum	viride	Adamson	LC
Montiniaceae	Montinia caryophyllacea	Montinia	caryophyllace a	Thunb.	LC
Moraceae	Ficus cordata	Ficus	cordata	Thunb.	
Moraceae	Ficus cordata	Ficus	cordata	Thunb.	LC
Moraceae	Ficus ilicina	Ficus	ilicina	(Sond.) Miq.	LC
Neuradaceae	Grielum sinuatum	Grielum	sinuatum	Licht. ex Burch.	LC
Neuradaceae	Grielum humifusum	Grielum	humifusum	Thunb.	LC
Oleaceae	Menodora juncea	Menodora	juncea	Harv.	LC
Orobanchacea e	Hyobanche rubra	Hyobanche	rubra	N.E.Br.	LC
Oxalidaceae	Oxalis annae	Oxalis	annae	F.Bolus	LC
Passifloraceae	Adenia repanda	Adenia	repanda	(Burch.) Engl.	LC
Plumbaginace ae	Dyerophytum africanum	Dyerophytum	africanum	(Lam.) Kuntze	LC
Poaceae	Eragrostis rotifer	Eragrostis	rotifer	Rendle	LC
Poaceae	Stipagrostis hochstetteriana	Stipagrostis	hochstetterian a	(Beck ex Hack.) De Winter	LC
Poaceae	Schmidtia kalahariensis	Schmidtia	kalahariensis	Stent	LC
Poaceae	Aristida adscensionis	Aristida	adscensionis	L.	LC
Poaceae	Cladoraphis spinosa	Cladoraphis	spinosa	(L.f.) S.M.Phillips	LC
Poaceae	Tricholaena monachne	Tricholaena	monachne	(Trin.) Stapf & C.E.Hubb.	LC
Poaceae	Cenchrus ciliaris	Cenchrus	ciliaris	L.	LC
Poaceae	Stipagrostis hochstetteriana	Stipagrostis	hochstetterian a	(Beck ex Hack.) De Winter	LC
Poaceae	Eragrostis nindensis	Eragrostis	nindensis	Ficalho & Hiern	LC
Poaceae	Ehrharta pusilla	Ehrharta	pusilla	Nees ex Trin.	LC
Poaceae	Danthoniopsis ramosa	Danthoniopsis	ramosa	(Stapf) Clayton	LC
Poaceae	Eragrostis lehmanniana	Eragrostis	lehmanniana	Nees	LC
Poaceae	Triraphis ramosissima	Triraphis	ramosissima	Hack.	LC

Poaceae	Digitaria eriantha	Digitaria	eriantha	Steud.	LC
Poaceae	Enneapogon cenchroides	Enneapogon	cenchroides	(Licht. ex Roem. & Schult.) C.E.Hubb.	LC
Poaceae	Stipagrostis uniplumis	Stipagrostis	uniplumis	(Licht.) De Winter	LC
Poaceae	Enneapogon desvauxii	Enneapogon	desvauxii	P.Beauv.	LC
Poaceae	Stipagrostis anomala	Stipagrostis	anomala	De Winter	LC
Poaceae	Ehrharta calycina	Ehrharta	calycina	Sm.	LC
Poaceae	Stipagrostis ciliata	Stipagrostis	ciliata	(Desf.) De Winter	LC
Poaceae	Aristida engleri	Aristida	engleri	Mez	LC
Poaceae	Schmidtia pappophoroides	Schmidtia	pappophoroid es	Steud.	LC
Poaceae	Aristida congesta	Aristida	congesta	Roem. & Schult.	LC
Poaceae	Tricholaena capensis	Tricholaena	capensis	(Licht. ex Roem. & Schult.) Nees	LC
Poaceae	Brachiaria glomerata	Brachiaria	glomerata	(Hack.) A.Camus	LC
Poaceae	Leucophrys mesocoma	Leucophrys	mesocoma	(Nees) Rendle	LC
Poaceae	Stipagrostis obtusa	Stipagrostis	obtusa	(Delile) Nees	LC
Poaceae	Stipagrostis brevifolia	Stipagrostis	brevifolia	(Nees) De Winter	LC
Poaceae	Schismus barbatus	Schismus	barbatus	(Loefl. ex L.) Thell.	LC
Poaceae	Enneapogon scaber	Enneapogon	scaber	Lehm.	LC
Poaceae	Tragus berteronianus	Tragus	berteronianus	Schult.	LC
Poaceae	Stipagrostis amabilis	Stipagrostis	amabilis	(Schweick.) De Winter	LC
Poaceae	Fingerhuthia africana	Fingerhuthia	africana	Lehm.	LC
Poaceae	Panicum arbusculum	Panicum	arbusculum	Mez	LC
Poaceae	Polypogon monspeliensis	Polypogon	monspeliensis	(L.) Desf.	NE
Polygalaceae	Polygala leptophylla	Polygala	leptophylla	Burch.	
Polygalaceae	Polygala leptophylla	Polygala	leptophylla	Burch.	LC
Polygalaceae	Polygala seminuda	Polygala	seminuda	Harv.	LC
Portulacaceae	Portulaca kermesina	Portulaca	kermesina	N.E.Br.	LC
Portulacaceae	Portulaca pilosa	Portulaca	pilosa	L.	LC
Pottiaceae	Syntrichia ammonsiana	Syntrichia	ammonsiana	(H.A.Crum & L.E.Anderson) Ochyra	
Pottiaceae	Pseudocrossidium crinitum	Pseudocrossidi um	crinitum	(Schultz) R.H.Zander	
Pottiaceae	Tortula atrovirens	Tortula	atrovirens	(Sm.) Lindb.	
Pottiaceae	Trichostomum brachydontium	Trichostomum	brachydontiu m	Bruch	
Pteridaceae	Cheilanthes deltoidea	Cheilanthes	deltoidea	Kunze	LC
Ptychomitriac eae	Ptychomitriopsis aloinoides	Ptychomitriopsis	aloinoides	Magill	
Rubiaceae	Plocama crocyllis	Plocama	crocyllis	(Sond.) M.Backlund & Thulin	LC
Rubiaceae	Kohautia caespitosa	Kohautia	caespitosa	Schnizl.	LC
Rubiaceae	Anthospermum spathulatum	Anthospermum	spathulatum	Spreng.	LC
Ruscaceae	Eriospermum bakerianum	Eriospermum	bakerianum	Schinz	LC
Ruscaceae	Eriospermum pusillum	Eriospermum	pusillum	P.L.Perry	LC

Salvadoraceae	Azima tetracantha	Azima	tetracantha	Lam.	LC
Santalaceae	Lacomucinaea lineata	Lacomucinaea	lineata	(L.f.) Nickrent & M.A.Garcia	
Santalaceae	Viscum rotundifolium	Viscum	rotundifolium	L.f.	LC
Sapindaceae	Pappea capensis	Pappea	capensis	Eckl. & Zeyh.	LC
Scrophulariac eae	Peliostomum junceum	Peliostomum	junceum	(Hiern) Kolberg & Van Slageren	
Scrophulariac eae	Aptosimum spinescens	Aptosimum	spinescens	(Thunb.) Emil Weber	LC
Scrophulariac eae	Aptosimum albomarginatum	Aptosimum	albomarginatu m	Marloth & Engl.	LC
Scrophulariac eae	Aptosimum tragacanthoides	Aptosimum	tragacanthoid es	E.Mey. ex Benth.	LC
Scrophulariac eae	Peliostomum leucorrhizum	Peliostomum	leucorrhizum	E.Mey. ex Benth.	LC
Scrophulariac eae	Aptosimum indivisum	Aptosimum	indivisum	Burch. ex Benth.	LC
Scrophulariac eae	Zaluzianskya diandra	Zaluzianskya	diandra	Diels	LC
Scrophulariac eae	Jamesbrittenia aridicola	Jamesbrittenia	aridicola	Hilliard	LC
Scrophulariac eae	Hebenstretia parviflora	Hebenstretia	parviflora	E.Mey.	LC
Scrophulariac eae	Lyperia tristis	Lyperia	tristis	(L.f.) Benth.	LC
Scrophulariac eae	Jamesbrittenia ramosissima	Jamesbrittenia	ramosissima	(Hiern) Hilliard	LC
Scrophulariac eae	Jamesbrittenia integerrima	Jamesbrittenia	integerrima	(Benth.) Hilliard	LC
Scrophulariac eae	Antherothamnus pearsonii	Antherothamnu s	pearsonii	N.E.Br.	LC
Scrophulariac eae	Nemesia anisocarpa	Nemesia	anisocarpa	E.Mey. ex Benth.	LC
Scrophulariac eae	Manulea gariepina	Manulea	gariepina	Benth.	LC
Scrophulariac eae	Jamesbrittenia maxii	Jamesbrittenia	maxii	(Hiern) Hilliard	LC
Scrophulariac eae	Selago divaricata	Selago	divaricata	L.f.	LC
Scrophulariac eae	Aptosimum procumbens	Aptosimum	procumbens	(Lehm.) Steud.	LC
Scrophulariac eae	Microdon capitatus	Microdon	capitatus	(P.J.Bergius) Levyns	EN
Scrophulariac eae	Nemesia cheiranthus	Nemesia	cheiranthus	E.Mey. ex Benth.	LC
Scrophulariac eae	Manulea nervosa	Manulea	nervosa	E.Mey. ex Benth.	LC
Scrophulariac eae	Zaluzianskya affinis	Zaluzianskya	affinis	Hilliard	LC
Scrophulariac eae	Zaluzianskya sanorum	Zaluzianskya	sanorum	Hilliard	LC
Scrophulariac eae	Nemesia maxii	Nemesia	maxii	Hiern	LC
Solanaceae	Solanum tomentosum	Solanum	tomentosum	L.	
Solanaceae	Solanum humile	Solanum	humile	Lam.	
Solanaceae	Lycium horridum	Lycium	horridum	Thunb.	LC
Solanaceae	Solanum capense	Solanum	capense	L.	LC
Solanaceae	Solanum burchellii	Solanum	burchellii	Dunal	LC
Urticaceae	Forsskaolea candida	Forsskaolea	candida	L.f.	LC
Verbenaceae	Chascanum garipense	Chascanum	garipense	E.Mey.	LC

Zygophyllacea e	Tetraena simplex	Tetraena	simplex	(L.) Beier & Thulin	
Zygophyllacea e	Tetraena retrofracta	Tetraena	retrofracta	(Thunb.) Beier & Thulin	
Zygophyllacea e	Zygophyllum dregeanum	Zygophyllum	dregeanum	Sond.	LC
Zygophyllacea e	Augea capensis	Augea	capensis	Thunb.	LC
Zygophyllacea e	Sisyndite spartea	Sisyndite	spartea	E.Mey. ex Sond.	LC
Zygophyllacea e	Tribulus terrestris	Tribulus	terrestris	L.	LC
Zygophyllacea e	Tribulus pterophorus	Tribulus	pterophorus	C.Presl	LC
Zygophyllacea e	Tribulus zeyheri	Tribulus	zeyheri	Sond.	LC

9.2 Appendix B – Amphibian species expected to occur in the project area

FAMILY	TAXON	Conservat	Conservation Status	
		Local	Global	
Pyxicephalidae	Amietia fuscigula	LC	Unlisted	
Pyxicephalidae	Cacosternum namaquense	LC	LC	
Microhylidae	Phrynomantis annectens	LC	LC	
Pyxicephalidae	Strongylopus grayii	LC	LC	
Pyxicephalidae	Tomopterna delalandii	LC	LC	
Bufonidae	Vandijkophrynus gariepensis gariepensis	Not listed	Not listed	
Bufonidae	Vandijkophrynus robinsoni	LC	LC	
Pipidae	Xenopus laevis	LC	LC	

9.3 Appendix C – Reptile species expected to occur in the project area

		Conservation Status		
FAMILY	TAXON	Local	Global	
Scincidae	Acontias lineatus	LC	LC	
Scincidae	Acontias namaquensis	LC	LC	
Scincidae	Acontias tristis	LC	LC	
Agamidae	Agama aculeata aculeata	LC	Unlisted	
Agamidae	Agama atra	LC	LC	
Agamidae	Agama hispida	LC	LC	
Agamidae	Agama knobeli	LC	LC	
Elapidae	Aspidelaps lubricus lubricus	LC	Unlisted	
Viperidae	Bitis arietans arietans	LC	Unlisted	
Lamprophiidae	Boaedon capensis	LC	LC	
Lamprophiidae	Boaedon mentalis	LC	Unlisted	
Chamaeleonidae	Chamaeleo namaquensis	LC	LC	
Testudinidae	Chersina angulata	LC	LC	
Testudinidae	Chersobius signatus	EN	EN	
Gekkonidae	Chondrodactylus angulifer	LC	LC	
Gekkonidae	Chondrodactylus bibronii	LC	Unlisted	
Gekkonidae	Chondrodactylus laevigatus	Unlisted	LC	
Gerrhosauridae	Cordylosaurus subtessellatus	LC	LC	
Colubridae	Dasypeltis scabra	LC	LC	
Colubridae	Dipsina multimaculata	LC	Unlisted	
Gekkonidae	Goggia lineata	LC	LC	
Gekkonidae	Goggia rupicola	LC	LC	
Cordylidae	Karusasaurus polyzonus	LC	LC	
Lamprophiidae	Lamprophis fiskii	Unlisted	LC	
Lamprophiidae	Lamprophis guttatus	LC	LC	
Lacertidae	Meroles knoxii	LC	LC	
Lacertidae	Meroles suborbitalis	LC	Unlisted	
Elapidae	Naja nigricincta woodi	LC	Unlisted	
Elapidae	Naja nivea	LC	Unlisted	
Cordylidae	Namazonurus peersi	LC	LC	
Lacertidae	Nucras tessellata	LC	Unlisted	
Gekkonidae	Pachydactylus atorquatus	Unlisted	LC	
Gekkonidae	Pachydactylus capensis	LC	Unlisted	
Gekkonidae	Pachydactylus latirostris	LC	Unlisted	
Gekkonidae	Pachydactylus montanus	LC	LC	
Gekkonidae	Pachydactylus namaquensis	LC	LC	
Gekkonidae	Pachydactylus rugosus	LC	Unlisted	

Gekkonidae	Pachydactylus weberi	LC	LC
Lacertidae	Pedioplanis inornata	LC	Unlisted
Lacertidae	Pedioplanis lineoocellata lineoocellata	LC	Unlisted
Lacertidae	Pedioplanis lineoocellata pulchella	LC	LC
Lacertidae	Pedioplanis namaquensis	LC	Unlisted
Colubridae	Philothamnus semivariegatus	LC	Unlisted
Cordylidae	Platysaurus capensis	LC	LC
Lamprophiidae	Prosymna bivittata	LC	Unlisted
Lamprophiidae	Prosymna frontalis	LC	Unlisted
Testudinidae	Psammobates tentorius verroxii	NT	LC
Lamprophiidae	Psammophis leightoni	LC	LC
Lamprophiidae	Psammophis notostictus	LC	Unlisted
Lamprophiidae	Pseudaspis cana	LC	Unlisted
Gekkonidae	Ptenopus garrulus maculatus	LC	Unlisted
Typhlopidae	Rhinotyphlops lalandei	LC	Unlisted
Typhlopidae	Rhinotyphlops schinzi	LC	Unlisted
Colubridae	Telescopus beetzi	LC	LC
Colubridae	Telescopus semiannulatus polystictus	LC	Unlisted
Scincidae	Trachylepis occidentalis	LC	Unlisted
Scincidae	Trachylepis sulcata	LC	Unlisted
Scincidae	Trachylepis sulcata sulcata	LC	Unlisted
Scincidae	Trachylepis variegata	LC	Unlisted

9.4 Appendix D – Mammal species expected to occur within the project area

FAMILY		Conservat	Conservation Status	
	TAXON	Local	Global	
Muridae	Aethomys namaquensis	LC	LC	
Bovidae	Antidorcas marsupialis	LC	LC	
Canidae	Canis mesomelas	LC	LC	
Felidae	Caracal caracal	LC	LC	
Chrysochloridae	Chrysochloris (Chrysochloris) asiatica	LC	LC	
Chrysochloridae	Chrysochloris sp.	LC	LC	
Vespertilionidae	Cistugo seabrae	LC	NT	
Soricidae	Crocidura cyanea	LC	LC	
Bathyergidae	Cryptomys hottentotus	LC	LC	
Herpestidae	Cynictis penicillata	LC	LC	
Muridae	Desmodillus auricularis	LC	LC	
Pteropodidae	Eidolon helvum	LC	NT	
Macroscelididae	Elephantulus edwardii	LC	LC	
Macroscelididae	Elephantulus rupestris	LC	LC	
Vespertilionidae	Eptesicus hottentotus	LC	LC	
Felidae	Felis nigripes	VU	VU	
Felidae	Felis silvestris	LC	LC	
Viverridae	Genetta genetta	LC	LC	
Muridae	Gerbilliscus brantsii	LC	LC	
Muridae	Gerbilliscus paeba	LC	LC	
Muridae	Gerbillurus paeba	LC	Unlisted	
Muridae	Gerbillurus vallinus	LC	Unlisted	
Gliridae	Graphiurus (Graphiurus) ocularis	LC	LC	
Gliridae	Graphiurus rupicola	NT	LC	
Herpestidae	Herpestes pulverulentus	LC	LC	
Hystricidae	Hystrix africaeaustralis	LC	LC	
Mustelidae	Ictonyx striatus	LC	LC	
Leporidae	Lepus capensis	LC	LC	
Leporidae	Lepus saxatilis	LC	LC	
Macroscelididae	Macroscelides proboscideus	LC	LC	
Nesomyidae	Malacothrix typica	LC	LC	
Mustelidae	Mellivora capensis	LC	LC	
Muridae	Mus (Nannomys) minutoides	LC	LC	
Muridae	Mus musculus	Unlisted	LC	
Muridae	Mus musculus musculus	Unlisted	LC	
Soricidae	Myosorex varius	LC	LC	
Vespertilionidae	Neoromicia capensis	LC	LC	

Nycteridae	Nycteris thebaica	LC	LC
Bovidae	Oreotragus oreotragus	LC	LC
Orycteropodidae	Orycteropus afer	LC	LC
Canidae	Otocyon megalotis	LC	LC
Muridae	Otomys unisulcatus	LC	LC
Felidae	Panthera pardus	VU	VU
Cercopithecidae	Papio ursinus	LC	LC
Muridae	Parotomys brantsii	LC	LC
Muridae	Parotomys littledalei	NT	LC
Pedetidae	Pedetes capensis	LC	LC
Petromuridae	Petromus typicus	LC	LC
Nesomyidae	Petromyscus barbouri	LC	LC
Nesomyidae	Petromyscus collinus	LC	LC
Nesomyidae	Petromyscus monticularis	LC	LC
Procaviidae	Procavia capensis	LC	LC
Procaviidae	Procavia capensis capensis	LC	LC
Leporidae	Pronolagus crassicaudatus	LC	LC
Leporidae	Pronolagus rupestris	LC	LC
Hyaenidae	Proteles cristata	LC	LC
Muridae	Rhabdomys pumilio	LC	LC
Rhinolophidae	Rhinolophus capensis	LC	LC
Rhinolophidae	Rhinolophus clivosus	LC	LC
Rhinolophidae	Rhinolophus damarensis	LC	LC
Rhinolophidae	Rhinolophus darlingi	LC	LC
Molossidae	Sauromys petrophilus	LC	LC
Soricidae	Suncus varilla	LC	LC
Herpestidae	Suricata suricatta	LC	LC
Bovidae	Sylvicapra grimmia	LC	LC
Molossidae	Tadarida aegyptiaca	LC	LC
Muridae	Thallomys paedulcus	LC	LC
Muridae	Thallomys shortridgei	DD	DD
Canidae	Vulpes chama	LC	LC
Sciuridae	Xerus inauris	LC	LC