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1. Introduction 
With the growth of data volumes in data analytics and machine learning applications, the 

importance of a balanced compute and memory system performance is becoming increasingly 

critical. With more powerful processors, the memory technology has evolved both in bandwidth 

and capacity through designing with higher IO speed as well as 3D stacked HBM cube with 

wider internal data path to relieve the access penalty across the memory-wall. However as 

Dennard scaling has reached its limit, other solutions exploit new memory media, such as 3D 

Xpoint and NVDIMM-P, to expand system memory on existing DIMM slots. Even though many 

of these efforts have failed to become mainstream, they highlighted the urgent need to increase 

host system memory and a new interface to address a new class of memory that is coherent 

with system memory but also has lower latency and better read/write performance over 

traditional SSD block devices. 

To serve these requirements, several heterogeneous and disaggregated interfaces have been 

proposed, such as Gen-Z, CCIX, OpenCAPI, and the most recent addition, CXL (Compute 

Express Link). CXL (Compute Express Link) is a new interconnect standard for device 

connectivity that is open and endorsed by CPU and memory vendors across the industry. It is a 

cache coherent interface using the PCIe technology and enables memory expansion and 

heterogeneous memory for disaggregated computing platforms. CXL operates across the 

standard PCIe 5.0 physical layer and consists of three distinct protocols: CXL.io, CXL.cache, 

and CXL.memory. 

 
CXL.io is responsible for discovery, configuration, register access, and interrupt handling. 
CXL.cache allows device access to processor memory and CXL.memory enables processor 
access to device attached memory. These three protocols are dynamically interleaved on a 
fixed flit format at data link layer to ensure the lowest latency access. There are three different 
types of CXL devices that vary based on the use of these protocols. 
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Type 1 CXL devices are those without host-managed device memory, such as NICs, which use 
CXL.io and CXL.cache. Type 2 devices are CXL devices with host-managed device memory, 
such as GPUs or external computing units, which utilize all three protocols. Finally, Type 3 CXL 
devices only have host-managed device memory and only use CXL.memory. This type of 
memory device is mapped to host physical address space and host accesses data using 
load/store semantics the same way as it accesses to host DRAM. This is a big advantage over 
PCIe 4KB page transfer when addressing 64B cache line granularity.  
 

Within the Type 3 device, the memory media access protocol is decoupled from the CXL 
interface. This opens up total cost of ownership (TCO) optimization opportunities for device 
vendors. For example, this device can use DDR5 memory for best performance or solid-state 
driver (SSD) for capacity and power efficiency. As long as it supports CXL.io and CXL.mem, this 
Type 3 device can seamlessly work in the host system memory coherence domain as a memory 
expansion.  

At system level, having a PCIe ecosystem means PCIe connectors, cable and cooling designs 
can be readily leveraged. This also includes the flexibility to choose from a wide range of form 
factors for different device and system configurations.  

As a case study, we present an evaluation of the Samsung CXL Memory Expander device on 
real SAP HANA application. This is the result of a research collaboration between Samsung 
Memory Solution Lab and SAP lab Korea. It helps us understand the benefit of system memory 
expansion for IMDBMS. The remainder of this paper will be organized as the following: Section 
2 discusses memory expansion in IMDBMSs. Section 3 introduces CXL memory expansion 
devices. The performance evaluation is addressed in Section 4. Section 5 represents the 
related work and Section 6 concludes the paper.  

   

2. Memory Expansion for IMDBMS 

One of the fast growing applications in today’s data economy is databases. It is not only the 
fundamental infrastructure of our daily online transactions and queries, but also a platform to 
turn data into intelligence through data analytics and machine learning. In order to achieve 
lowest latency, the powerful in-memory database stores and operates from host DRAM. 
Therefore it is particularly sensitive to system memory capacity ceiling because the entire 
database will come to a halt when it runs out of memory. System vendors have to overprovision 
DRAM capacity for the “worst case scenario” to keep up with future demands for on premise 
deployment. This increases total cost of ownership (TCO) for IMDBMS servers and still cannot 
guarantee successful operation. Emerging technologies like NVMe and RDMA provide a flexible 
and integrated memory view larger than the physical memory. But this usually incurs longer 
latency and most importantly needs application level changes. To overcome these limitations on 
physical memory expansion, heterogeneous and disaggregated computing platforms, such as 
Gen-Z [2], CCIX [4], OpenCAPI [1], and most recently CXL (Compute Express Link) [5], have 
emerged. CXL, in particular, has garnered wide industry adoption and is the most promising 
solution for mitigating memory overprovisioning issues. These new interfaces provide a more 
flexible and cost effective way for physical memory expansion in IMDBMS without incurring 
significant performance penalties. 
 



 
 

Figure 1: CXL Prototype Diagram 

Hybrid transactional and analytical processing (HTAP) is widely supported by in-memory 
database management systems (IMDBMSs) [16]. These two types of workload have different 
memory access characteristics. Transactional processing tends to have small, random patterns 
while analytical processing often sequential and read dominant. In this study, SAP HANA in-
memory database platform [10] is used as a base platform. It leverages the columnar storage 
[15], which stores each column in the read-optimized main storage while maintaining separate 
delta storage for optimized writes. Furthermore, a portion of memory is allocated for the 
operational data to hold intermediate results while processing a query. 

To enable memory expansion in our IMDBMS using CXL memory devices, there are two 
options available. In the first option, the CXL device’s additional memory space could be 
uniformly integrated with the host memory space, allowing for both operational memory and 
main storage to be allocated in CXL memory. However, this may degrade overall performance, 
especially transactional processing, due to the longer access latency compared to host DRAMs 
when accessing operational memory randomly.  The second option involves using the CXL 
memory device only for the main storage while delta storage and the operational data are stored 
in the host DRAMs. Similar to this approach used in the persistent memory [9], a prefetching 
scheme can effectively hide the longer latency of the CXL device when the main storage is 
sequentially accessed. In this study, we use the second option in our IMDBMS to take 
advantage of the prefetch.           
   

3. CXL Memory Expander 

  
This section introduces a prototype of CXL type 3 memory expansion devices in E3.S form 
factor. It implements CXL.mem and CXL.io commands defined in CXL1.1 specification, carrying 
128G DRAM as media and supporting a theoretical bandwidth of 16GB/s with PCIe Gen4x8 as 
the bottleneck. As shown in Fig. 1, the proto-type consists of a custom FPGA board and a 
single-channel-based DDR3 DIMM DIMM. The FPGA is composed of CXL PHY link supporting 
the connection to CPU, CXL protocol engine managing CXL.mem and CXL.io, and memory 
controller for the DIMM module. DDR3 DIMM can be replaced with DDR4 or DDR5 DIMMs 
supporting multiple channels within a single CXL memory device in the future. On the FPGA, 
the SerDes technology in our prototype runs at 16 Gbps, same as PCIe Gen4 speed. It can be 
upgraded to 32 Gbps, PCIe Gen5 speed, with ASIC implementation. Because CXL and PCIe 
share the same physical layer, this memory device conveniently plugs into existing PCIe slots. 

Our CXL device is recognized as a memory-only NUMA node or a DAX device. When CXL 
memory appears on the system memory map along with the host DRAMs, CPUs can directly 
load/store from and to the device memory through the host CXL interface without ever touching 
the host memory. To highlight CXL.mem protocol benefit of low latency, the translation logic 
between CXL protocols to DRAM media is kept to a minimum. CXL physical and link layers 



perform configuration and link negotiation with the PCIe root complex. CXL protocol layer 
unpacks CXL flits into command, address, and data fields for the internal data path. In this 
prototype, host physical addresses are directly mapped onto the device memory space, 
removing the need for translation. CXL read and write commands are handled by CXL protocol 
engine and the memory controller performs 64B read and write transactions to DRAM. Because 
the target throughput is 16GB/s, a single DDR channel is sufficient to match the performance. 
However, to get the best throughput, multiple outstanding transactions are required to mitigate 
the latency to and from the DDR interface. To maximize device memory bandwidth, CXL.mem 
read and write are arbitrated fairly in the first-come first-server order. Writes are completed 
when data is written into DDR memory. Responses for read and write are returned to the host in 
the same order of their completion.  
 

4. Performance Evaluation  

  

4.1 System Configuration 
The evaluation was done on Intel’s Sapphire Rapids (SPR) customer reference board with C0 
stepping CPUs. For all configurations except CXL emulation in the single-node test and the 
scale-out configuration, we enable one socket per node. For CXL emulation and the scale-up 
configurations, we enable two sockets. Each socket has 512 GB DDR5 4800 MHz memory, one 
64 GB DIMM per channel. CXL memory extensions are set up as DAX devices because 
the current release of our IMDBMS does not support the memory-only NUMA node yet. Thus, 
the memory space is recognized with persistent memory features [9] and the main storage is 
moved to CXL memory. The persistent memory features do not add any overhead when reading 
the main storage because there is no additional instruction required. 
 
As the IMDBMS used for our experiments accepts only one DAX path per socket due to the 
limitation of the test version, we stripe multiple CXL memory devices using the device mapper 
[6 ] to see the impact of increased bandwidth beyond the current 16GB/s limit. We use TPC-C 
with 100 warehouses for OLTP workloads, increasing the number of client connections to 
maximize the performance. The number of client connections is set to 176, 352, and 704, which are 
respectively 4, 8, and 16 times of 44 physical cores of a single CPU in the system. We also use 
TPC-DS with SF=100 for OLAP workloads, increasing the number of parallel requests up to 32 in the 
client to see the performance scalability. 
 
 
 

(a) Baseline (b) 1 CXL (c) 2 CXL (d) CXL Emulation
 

Figure 2: System Configuration for a Single-Node Test 

 

4.2 Evaluation of CXL memory Device 
 

Single-node Test. We test a single-socket machine to evaluate the performance of CXL memory 
expansion. In this experiment, we have 4 configurations as shown in Fig. 2: (1) the baseline 



without CXL memory expansion, (2) with 1 CXL device, (3) with 2 CXL devices striped, and (4) 
CXL emulation in SPR by setting up the main storage in the memory of the remote socket as a 
DAX device after CPU affinity is set to CPU0 only, assuming that the access latency to the 
remote memory through UPI is similar to the future CXL memory expansion. The baseline 
allocates the main storage in the host DRAM, while the other configurations with CXL memory 
devices have it in the CXL memory expansion area. CXL emulation allocates the main storage 
in the remote memory. 

 

(a) TPC-C (b)TPC-DS
 

 
Figure 3: Benchmark Performance for a Single-Node Test 

 
Fig. 3 shows the normalized throughput to the maximum among all configurations. TPC-C has 
nearly no performance difference be- tween the baseline and the other CXL configurations. As 
mentioned in Section 2, the latency of sequential accesses to the main storage is completely 
hidden by the prefetching scheme. Profile results using Intel® VTuneTM Profiler [7] show low 
memory bandwidth bound in TPC-C. Thus, CXL memory expansion has no performance 
degradation in OLTP workloads. However, the average throughput degradation in TPC-DS is 
27% in 1CXL, 18% in 2CXL, and 8% in CXL emulation. Larger performance degradation is 
mainly caused by the limited bandwidth of the current CXL prototype with PCIe Gen4x8.  
 
 

(a) Scale-up (b) Scale-up+2CXL (c) Scale-up+4CXL (d) Scale-out
 

 
Figure 4: System Configuration for Scale-up and Scale-out 

 
However, we expect that the degradation in TPC-DS would be less than 8% in the future CXL 
product as CXL memory bandwidth is increased with PCIe Gen5x16 (64 GB/s), which is more 
than UPI connections in CXL emulation. 

 



Comparison between scale-up and scale-out. To study further benefits of CXL memory 
expansion, we compare the performance of a scale-up with 2 CPUs and a 2-node scale-out 
system as shown in Fig. 4. First, the scale-up baseline has no CXL memory expansion. Second, 
scale-up+2CXL has two CXL memory devices, one per socket. Third, scale-up+4CXL has four 
CXL memory devices, two per socket with striping to increase the bandwidth. The scale-up 
baseline has the main storage in the host DRAM, while the scale-up with the CXL memory has it 
in the CXL memory. We use the default NUMA-aware location to achieve balanced memory 
usage across NUMA nodes in the scale-up configurations. In the scale-out, we prepare two 
nodes enabled with 1 CPU in each node to make a fair comparison. Then, we connect them 
with 10G Ethernet. We use hash partitioning on the first columns of the primary keys in all 
tables, which are used in all the join conditions.   
 

(a) TPC-C (b) TPC-DS
 

Figure 5: Performance Comparison between Scale-up and Scale-out 

As shown in Fig. 5, TPC-C has no significant performance difference between the scale-up 
baseline and the scale-up CXL configurations because of low memory bandwidth bound. 
Comparing the performance between the scale-up and the scale-out, the scale-up 
configurations outperform the scale-out before 704 connections (16 * 44 physical cores). We 
observe that the performance of the scale-up decreases for 704 connections due to the 
overhead caused by too many client connections in a single machine. The average throughput 
degradation for TPC-DS compared to the scale-up base- line is 39% in scale-up+2CXL and 
16% in scale-up+4CXL due to the bandwidth limitation of the prototype. However, scale-
up+4CXL shows slightly better throughput than the scale-out. Once CXL memory bandwidth is 
increased with PCIe Gen5, the scale-up with CXL memory is expected to have much better 
performance that the scale-out. Therefore, CXL memory expansion is a good solution to 
increasing the memory capacity with lower TCO, if the system provides sufficient computing 
resources.  

5. Related Work 

Overcoming the capacity limitations by providing a flexible and integrated memory view larger 
than the physical memory is a crucial topic in IMDBMSs. To address this challenge, several 
solutions have been proposed in the literature. Guz et. al. [11] propose NVMe-SSD 
disaggregation using NVMf (NVMe-over-fabrics) [3]. Koh et. al. [12] introduce a disaggregated 
memory system integrated with the hypervisor for cloud computing, where the 
memory management in the KVM hypervisor is enhanced to reduce the overhead of remote 
direct memory accesses (RDMA). Korolija et. al. [13] propose Farview, a disaggregated and 



network-attached memory using an FPGA-based smart NIC. Taranov et. al. [17] propose 

CoRM, an RDMA-accelerated shared memory system.   

Several technical standards for cache coherent interconnects have been developed to provide 
more flexible solutions for the heterogeneous and disaggregated computing platform. CCIX 
(cache coherent interconnect for accelerators) [4] is a protocol to enable coherent interconnects 
widely used in ARM-based System-on-Chips, while OpenCAPI [1] is an open standard for 
Cache Accelerator Processor Interface developed for IBM Power CPUs. Gen-Z [2] was an open 
system interconnect to provide cache coherent memory accesses, and now it is merged to CXL. 
NVLink [8] is also a cache coherent interconnect mainly for NVidia GPUs. It is also supported in 
IBM Power CPUs. Lutz et. al. [14] shows that fast interconnects like NVLink 2.0 can overcome 
the limits of the current GPUs, such as on-board memory capacity and interconnect bandwidth, 
thus resulting in better performance in CPU-GPU hash joins with a larger data size than the 
amount of GPU memory. 

6. CONCLUSION      

We studied a case of using Samsung memory expander to lower TCO in an IMDBMS without 
significant loss of overall performance. The current FPGA implementation carries longer latency 
because it only operates at PCIe Gen4 speed and uses DDR3 as back media.  Nevertheless, 
the evaluation results using common database benchmark tests proved the feasibility of CXL 
memory expansion in an IMDBMS. OLTP workloads have nearly no through-put degradation 
with CXL memory devices. Even though OLAP workloads have a certain amount of throughput 
degradation, its performance on the real CXL product can be dramatically improved once CXL 
devices are operating at PCIe Gen5 speed.  

Being able to use the insights of data processing pipeline and to separate latency sensitive and 
throughput oriented workload is one important learning from this PoC. CXL memory is a new 
class of memory that is further away from the host complex and inherently will have longer 
latency. But if the application can take advantage of throughput at fine granularity and its flexible 
capacity, it can benefit overall performance and TCO optimization. 

Decoupling the media management to CXL protocol, enables more opportunity in next 
generation memory device solutions. As the leader in both DRAM and NAND Flash SSD, 
Samsung is committed to develop the best solutions to help our customers tackling the memory 
expansion challenges. 

7. References 
 
[1] 2014. OpenCAPI Consortium. https://opencapi.org/ 
[2] 2016. Gen-Z Consortium. https://genzconsortium.org/ 
[3] 2016. NVM Express over Fabric 1.0. https://nvmexpress.org/ 
[4] 2017. CCIX Consortium. https://www.ccixconsortium.com/ 
[5] 2019. Compute Express Link. https://www.computeexpresslink.org/ 
[6] 2021. Device Mapper. https://www.kernel.org/doc/html/latest/admin-guide/ 
device-mapper/index.html 
[7] 2021. Intel® VTune™ Profiler. https://www.intel.com/content/www/us/en/ 
developer/tools/oneapi/vtune-profiler.html 
[8] 2022. NVLink. https://www.nvidia.com/en-us/data-center/nvlink/ 



[9] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze, Carsten 
Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian 
Seifert, Surendra Vishnoi, et al . 2017. SAP HANA adoption of non-volatile 
memory. Proceedings of the VLDB Endowment 10, 12 (2017), 1754–1765. 
[10] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes 
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database–An Architecture 
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33. 
[11] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balakrishnan. 2017. NVMe- 
over-fabrics performance characterization and the path to low-overhead flash 
disaggregation. In Proceedings of the 10th ACM International Systems and Storage 
Conference. 1–9. 
[12] Kwangwon Koh, Kangho Kim, Seunghyub Jeon, and Jaehyuk Huh. 2018. Disag- 
gregated cloud memory with elastic block management. IEEE Trans. Comput. 68, 
1 (2018), 39–52. 
[13] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov, 
Dejan Milojičić, and Gustavo Alonso. 2021. Farview: Disaggregated memory 
with operator off-loading for database engines. arXiv preprint arXiv:2106.07102 
14] Minseon Ahn et al. “Enabling CXL Memory Expansion for In-Memory Database 
Management Systems”, DaMoN’22, June 13, 2022, Philadelphia, PA, USA 
 
    

 

 


