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15 Abstract

16 The Antarctic Zone, the southernmost belt of the Antarctic Circumpolar Current, plays 

17 an important role in the control of atmospheric carbon dioxide concentrations. In the last 

18 decade, a number of studies have highlighted the importance of diatom assemblage 

19 composition in influencing the magnitude of the organic carbon and biogenic silica fluxes 

20 exported out of the mixed layer in Southern Ocean ecosystems. Here we investigate the 

21 relationship between the makeup of the diatom assemblage, organic carbon and biogenic 

22 silica export and several significant environmental parameters using sediment trap 

23 records deployed in different sectors of the Antarctic Zone. The study is divided in two 

24 parts. We first present unpublished diatom species flux data collected by a sediment trap 

25 in the offshore waters of Prydz Bay (Station PZB-1) over a year. The results of this study 

26 revealed a major export peak of diatom valves in Austral summer and two small 

27 unexpected secondary flux pulses during full winter conditions. The summer diatom 

28 sinking assemblages were largely composed of small and rapidly dividing species such 

29 as Fragilariopsis cylindrus, Fragilariopsis curta and Pseudo-nitzschia lineola, while 
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30 winter assemblages were dominated by Fragilariopsis kerguelensis most reflecting its 

31 persistent strategy and selective preservation. 

32 In the second part of the study, we compare the annual diatom assemblage composition 

33 and biogeochemical fluxes of Station PZB-1 with flux data documented in previous 

34 sediment trap studies conducted in other sectors of the Antarctic Zone in order to 

35 investigate how diatom floristics influence the composition and magnitude of particle 

36 fluxes in the Antarctic Zone. The lack of correlation between the annual diatom valve, 

37 organic carbon and biogenic silica fluxes across stations indicates that other factors aside 

38 from diatom abundance play a major role in the carbon and silica export in AZ. Among 

39 these factors, the composition of the diatom assemblage appears to be critical, as 

40 suggested by the strong and significant correlation between Bio-SiO2 and the valve fluxes 

41 of F. kerguelensis alone, that this species is the main Bio-SiO2 vector from the surface 

42 layer to the deep ocean in the AZ waters, regardless of its relative abundance. Lastly, the 

43 good correlation between the annual fluxes of the group of small Fragilariopsis species 

44 with satellite-derived chlorophyll-a concentration estimates over the study stations, 

45 suggest that high abundances of these species in the Southern Ocean paleorecords could 

46 be used as a proxy of high algal biomass accumulation.

47

48 1. Introduction

49 1. Southern Ocean phytoplankton

50 The Southern Ocean is a crucial component of the global overturning circulation and 

51 regulates the climate system through the uptake of heat, freshwater and atmospheric CO2 

52 (Sarmiento et al., 2004). Despite its relatively small size, it accounts for about 20% (0.47 

53 GtCyr-1) of the ocean CO2 uptake flux (Takahashi et al., 2002). A significant fraction of 

54 the CO2 drawdown in the Southern Ocean waters is driven by phytoplankton (Siegel et 

55 al., 2014)

56 Phytoplankton productivity is not sustained at its full capacity in the Southern Ocean in 

57 spite of the fact that concentrations of most macronutrients remain ubiquitously high, 

58 making the Southern Ocean the largest high-nutrient low-chlorophyll (HNLC) area of the 

59 global ocean. Numerous studies have conclusively demonstrated that Fe-limitation plays 

60 a critical role in restricting phytoplankton biomass and production within HNLC regions 
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61 of the Southern Ocean (Boyd and Law, 2001; Boyd et al., 2004; Coale et al., 2004 , among 

62 others). Indeed, it is likely that iron availability had played an important role in the 

63 variations of the atmospheric carbon dioxide levels over glacial cycles (Martínez‐Garcia 

64 et al., 2009). Diatoms are the major primary producers in the Southern Ocean and are 

65 often reported dominating high-productivity events in the Polar Frontal Zone, Antarctic 

66 Zone (AZ) and coastal systems of Antarctica (e.g. Wilson et al., 1986; Bathmann et al., 

67 1997; Arrigo et al., 1999; Selph et al., 2001; Landry et al., 2002). Diatom blooms account 

68 for a large fraction of the particulate organic carbon (POC) flux and for almost all of the 

69 biogenic silica export out of the mixed layer. This export can be direct through the 

70 formation of rapidly sinking aggregates of entangled cells and chains with fast sinking 

71 rates (Boyd and Newton, 1999; Smetacek et al., 2012) or indirect via the production of 

72 faecal material by zooplankton grazing of diatoms (Rembauville et al., 2014; Manno et 

73 al., 2015; Belcher et al., 2016). The large accumulation of siliceous diatom remains in the 

74 deep sea sediments between the winter sea ice edge and the Antarctic Polar Front is 

75 responsible for the formation of a circumpolar Diatom Ooze Belt in the Southern Ocean 

76 deep sea sediments (Burckle and Cirilli, 1987) that represents one of the most important 

77 silica sinks in the world ocean (Tréguer, 2014). 

78 As a more complete understanding of Southern Ocean ecosystems is developed, 

79 it is becoming increasingly evident that the species composition of the plankton 

80 communities plays a critical role in the regulation of ocean nutrient stoichiometry at 

81 regional and global levels (e.g. Arrigo et al., 1999; Salter et al., 2014). More specifically, 

82 recent studies provided conclusive evidence that the ecological traits and strategies of 

83 different polar diatom species contribute to the regulation of the efficiency of the 

84 biological pump and the degree of coupling of the carbon and silicon in the particles 

85 sinking to the interior layers of the Southern Ocean (e.g. Salter et al., 2012; Assmy et al., 

86 2013; Rembauville et al., 2014; Rigual-Hernández et al., 2015b). Although ocean colour 

87 satellites provide a circumpolar view of biological activity and some insights into the 

88 fractional contribution of major phytoplankton functional groups (e.g. coccolithophores, 

89 Phaeocystis-like, diatoms) to algal biomass accumulation (Alvain et al., 2008), they are 

90 unable to resolve the species composition of phytoplankton communities and seasonal 

91 species succession. In situ and year-round observations are therefore needed to refine the 

92 interpretations based on satellite data, to relate surface chlorophyll to column-integrated 

93 production and export and to determine the specific role of phytoplankton species in the 
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94 Southern Ocean ecosystems. Sediment trap mooring deployments are one direct method 

95 of characterizing and quantifying the biogeochemical composition of particle fluxes and 

96 allows for the determination of composition and seasonality of diatom sinking 

97 assemblages. This technology is particularly useful in remote regions of the Southern 

98 Ocean, such as those of AZ, which are often seasonally covered by sea ice.

99 The main goal of this study is to investigate the relationship between the diatom 

100 species flux assemblage, the POC and opal fluxes, and several significant environmental 

101 parameters across key regions of the AZ of the Eastern Antarctic and Western Pacific 

102 sectors of the Southern Ocean. The study is divided into two parts: firstly, we present 

103 unpublished data on the diatom species fluxes intercepted by a sediment trap over a year 

104 in the offshore waters of Prydz Bay. An improved understanding of the seasonality and 

105 environmental preferences of diatom species captured by the trap will allow for better 

106 interpretation of the paleorecords of the study region. Secondly, we compare the diatom 

107 flux assemblage and biogeochemical fluxes of Station PZB-1 with already published 

108 sediment trap data from other regions of the AZ. This comparison provides insight into 

109 how diatom floristics influence the composition and magnitude of particle fluxes across 

110 different sectors of the AZ. 

111

112 1.2 The Antarctic Zone 

113 The Southern Ocean is divided into a series of zonal systems characterized by 

114 relatively uniform chemical and physical properties. These zonal systems are separated 

115 by fronts that carry most of the transport of the Antarctic Circumpolar Current (ACC) 

116 (Nowlin and Clifford, 1982). The AZ represents the southernmost zonal system of the 

117 Antarctic Circumpolar Current and is delimited to the north by the Polar Front (PF) and 

118 to the south by the Southern Boundary (SBDY; Fig. 1). South of Kerguelen, the AZ is at 

119 its largest extent, while in other sectors it is only a few degrees wide (Fig. 1b). The AZ is 

120 characterized by a well-mixed surface layer (down to 150 m in winter) of cold Winter 

121 Water (WW) which is overlain by warmer and less saline Antarctic Surface Water 

122 (AASW) in the summer (Orsi et al., 1995; Chaigneau et al., 2004). The Southern 

123 Boundary of Upper Circumpolar Deepwater (SBDY or the Antarctic Divergence) 

124 represents the southern limit of the AZ where the atmospheric wind regime reverses into 

125 strong westerlies that drive a northward Ekman transport of deep, relatively warm and 
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126 nutrient-rich waters that upwell south of the APF (Speer et al., 2000; Pollard et al., 2006). 

127 The AZ can be broadly subdivided into a permanent ice-free zone (Permanently Open 

128 Ocean Zone, or POOZ) and a Seasonal Ice Zone (SIZ). The SIZ is limited in the north by 

129 the northern winter limit of the pack-ice and in the south by the northern summer limit of 

130 the pack-ice. The retreating sea ice edge during the summer exhibits one of the highest 

131 rates of primary production in the Southern Ocean (Arrigo et al., 2008) and accounts for 

132 an annual primary production of 86.7 ± 12.6 Tg C yr-1. Diatom production and export to 

133 the deep sea is thought to be largely responsible for the Si concentration gradient across 

134 the AZ (Dugdale and Wilkerson, 2001; Assmy et al., 2013), from ~60 µmol kg-1 in the 

135 southern AZ due to the upwelling of Circumpolar Deep Waters, to < 10 µmol kg-1 north 

136 the Antarctic Polar Front (Coale et al., 2004; Bostock et al., 2013).

137

138 Figure 1. a Chlorophyll-a composite map (1997 to 2012) from Sea-viewing Wide Field-

139 of-View Sensor (SeaWiFS) of the Southern Ocean.  b. Area-Averaged of Percentage sea 

140 ice cover monthly between 1997 and 2012 from the Giovanni NASA portal. Location of 

141 the sediment trap moorings in the AZ discussed in this article: PZB-1, BO-1, 61°S, MS-

142 4 and MS-5 stations (inverted triangles). Abbreviations: STF – Subtropical Front, SAZ – 
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143 Subantarctic Zone, SAF – Subantarctic Front, PFZ – Polar Frontal Zone, PF – Polar Front, 

144 AZ – Antarctic Zone, Southern ACC Front – SACCF, Southern Boundary of Upper 

145 Circumpolar Deepwater – SBDY. Oceanic fronts after Orsi et al. (1995).

146

147

148 2. Material and Methods

149 2.1 Field programs  

150 2.1.1 Offshore Prydz Bay trap experiment

151 As part of a field research collaboration between the US and China polar research 

152 programs, a mooring equipped with three sediment traps (1400, 2400 and 3400 m depth) 

153 was deployed at 62°29’S; 72°59’E in the seasonal ice zone of the AZ north of Prydz Bay 

154 (station PZB-1) from December 1998 to December 1999 (Pilskaln et al., 2004; Fig. 1). 

155 All the sediment traps were McLane, Inc. time-series traps, with a 0.5 m2 diameter 

156 opening and equipped with 13 cups (Honjo and Doherty, 1988). Due to a timer failure, 

157 no samples beyond cup 2 were collected by the 2400 m PZB-1 trap. Additionally, the 

158 material mass collected in the 3400 m PZB-1 trap cups was too small to allow for diatom 

159 counts after the priority geochemical analyses were completed (see Pilskaln et al. 2004 

160 for details). Therefore, only data from the 1400 m is discussed here. 

161 The sample cups were filled prior to the deployment with a 4% density-adjusted formalin 

162 solution in filtered seawater buffered to a pH of 7.8-8.1 (Honjo et al., 2000; Pilskaln et 

163 al., 2004). Cup rotation and collection intervals were established based on anticipated 

164 mass fluxes. The sampling intervals ranged from 17 days in austral spring and summer to 

165 a maximum collection interval of 41 days during the winter ice-cover month.  A 

166 presentation and discussion of the geochemical fluxes and major planktonic contributions 

167 to settling particles at several trap depths in the offshore Prydz Bay region can be found 

168 in Pilskaln et al. (2004). Annual export fluxes at 1400 m were dominated by Bio-SiO2 

169 that represented 73% of the annual mass export. A detailed description of the diatom 

170 species analysis of the 1400 m time-series trap samples is provided in section 3.2.

171 2.1.2 Other sediment trap experiments in the AZ between 0-180 E°
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172 In the second part of the paper, biogeochemical and diatom species flux data from Station 

173 PZB-1 are compared with already published datasets from four sediment trap 

174 deployments (Table 1) in distinct settings of the AZ of the Southern Ocean (Fischer et al., 

175 2002; Grigorov et al., 2014; Rigual-Hernández et al., 2015a). Next, we summarize the 

176 field experiments and the environmental conditions at each of the stations compared. 

177 Station BO-1 (54° 20´S; 3° 23’E) was located in the eastern Atlantic Sector of the 

178 Southern Ocean, close to the northernmost winter sea-ice edge and about 4° north of the 

179 ACC-Weddell Gyre Boundary. The surface waters around station BO are characterized 

180 by high macronutrient concentrations (Fischer et al., 2002), low iron levels (Loscher et 

181 al., 1997) and low algal accumulation (Antoine et al., 1996; Arrigo et al., 2008). A 

182 mooring line equipped with two sediment traps, placed at ~500 and 2200 m below the 

183 surface (water column of 2700 m), was deployed over five almost consecutive years 

184 (1990-95). Fischer et al. (2002) reported biogeochemical data for the five deployments 

185 but diatom composition was only documented for year 1991. Bio-SiO2 dominated the 

186 mass fluxes year-round, representing 64% of the annual total mass flux. Station BO-1 

187 was under the influence of sea ice for about three months, from August to October 1991. 

188 Station 61°S (60° 44.43´S; 139° 53.97´E) was located in the Australian sector of the 

189 southern AZ north of the Seasonal Ice Zone (Massom et al., 2013). Despite the high 

190 macronutrient concentrations (silicate, nitrate and phosphate), the waters in this region 

191 exhibit very low algal concentrations year-round (< 0.5 µg l-1; Popp et al., 1999; Parslow 

192 et al., 2001; Trull et al., 2001) most likely due to the very low iron concentrations (0.1-

193 0.2 nM; Boyd et al., 2000). Station 61°S was equipped for a year (November 2001 to 

194 September 2002) with a mooring line with three sediment traps placed at 1000, 2000 and 

195 3700 m below the surface in a water column of 4393 m. Due to equipment malfunction 

196 no samples were recovered from the 1000 m trap.  Since the rest of the sediment traps 

197 compared here were deployed at shallower depths, only data from the shallowest trap 

198 (2000 m) are discussed here. Export fluxes were largely dominated by Bio-SiO2 that 

199 accounted for 76% of the annual mass flux at 2000 m. A detailed description of the diatom 

200 valve and biogeochemical fluxes can be found in Rigual-Hernández et al. (2015a).  

201 As part of the US-JGOFS Antarctic Environmental Southern Ocean Process Study 

202 (AESOPS; Smith Jr et al., 2000) and array of sediment traps was deployed along the 

203 170°W parallel, in the western Pacific sector of the Southern Ocean (Honjo et al., 2000). 

204 Two sediment trap mooring lines with sediment traps placed at ~1000 and 2000 m depth 
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205 were deployed during a year at Stations MS-4 (63° 09´S; 169° 54´W) and MS-5 (66° 

206 10´S; 169° 40´W), located south of the Antarctic Polar Front within the AZ. Because 

207 diatom species flux data were only available for the 1000 m traps, only data from these 

208 traps are discussed here. Station MS-4 was located south of the ACC while MS-5 was 

209 placed within the north of Ross Sea Gyre. The pelagic waters south of the Antarctic Polar 

210 Front in this region are characterized by high nutrient concentrations year-round and by 

211 the highest annual primary production values of the pelagic province of the Southern 

212 Ocean (Arrigo et al., 2008). Station MS-4 was under the influence of sea ice during about 

213 three months in winter, while the MS-5 mooring line was covered by ice during most of 

214 the year, except during three months in summer (Honjo et al., 2000).  The episodic release 

215 of iron from the melting sea ice has been suggested as an important mechanism 

216 stimulating algal growth (predominantly diatoms) in the waters around Stations MS-4 and 

217 MS-5 (Sedwick and DiTullio, 1997; Grigorov et al., 2014).  Detailed information on the 

218 biogeochemical and diatom flux data measured at the Stations MS-4 and MS-5 can be 

219 found in Honjo et al. (2000) and Grigorov et al. (2014), respectively. Annual export fluxes 

220 were dominated by Bio-SiO2 at both Stations, accounting for 69% and 58% of the annual 

221 total mass flux at MS-4 and MS-5, respectively.

222

223

224 Table 1. Summary of mooring deployment locations, sediment trap depths and anchor 

225 depths. 

226 2.2 Sample processing for diatom analysis 

227 A detailed explanation of the sample preparation for diatom analysis for the PFZ-1 

228 is provided next, together with brief summary of the sample processing used in the other 

229 sediment trap experiments. One quantitative wet-split fraction from each of the 1400 m 

230 trap cups was designated for diatom analysis.  The sample aliquot was gently rinsed and 

231 filtered with distilled water to remove salt and formalin and then treated with potassium 
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232 permanganate and hydrochloric acid for the removal of organic and calcareous material 

233 according to the procedures detailed in Schrader and Gersonde (1978) and Romero 

234 (1998).  A 150-300 µl drop of the remaining suspended siliceous material was placed on 

235 a coverslip in a settling chamber, using the random settling technique described in Moore 

236 (1973).  Once dry, the coverslips were mounted on glass slides using a high refractive 

237 index mountant (Naphrax) for light microscopy counts and identification of diatoms. The 

238 total flux of diatoms to each cup in valves m-2 day-1 was calculated by multiplying the 

239 valve count by the area counted as a fraction of the total area and the dilution volume, all 

240 multiplied by the split and then divided by the collection period in days and the trap 

241 collection surface area (Sancetta and Calvert, 1988). The diatom species fluxes of the 

242 most abundant diatom species at PZB-1 are listed in Table 2 and plotted in Figure 2. 

243

244 Table 2: Diatom species fluxes of the most abundant diatom species for the deployment 

245 PZB-1 (1400 m trap).

246

247 Sample processing and diatom species examination for the Station BO-1 are described in 

248 detail in Fischer et al. (2002). In short, samples were prepared according to the 

249 methodology described in Gersonde and Zielinski (2000) and glass slides were counted 

250 following the recommendations described by Schrader and Gersonde (1978). Sediment 

251 trap samples from Station 61°S were acid-cleaned following the methodology of Romero 

252 et al. (1999, 2000). Microscopic slides were prepared following the random-settling 

253 decantation method described in Flores and Sierro (1997). The recommendations of 

254 Schrader and Gersonde (1978) were followed for counting diatom valves. 

255 Samples from the Stations MS-4 and MS-5 were cleaned using sequential hydrogen 

256 peroxide digestions (Grigorov et al., 2014). Then, slides were prepared following the 
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257 method described by Sancetta (1992) and counted according to established conventions 

258 (Fenner, 1991; Schrader and Gersonde, 1978)

259 2.3 Estimation of annual diatom species contribution to total diatom valve flux

260 Annual relative contribution of diatom species for all stations (Table 3 and Fig. 3) were 

261 estimated calculating the integrated flux of each species for a 365-day period. Then, the 

262 annual relative contribution of each species was estimated as the ratio of the annual valve 

263 flux of a given species and the total diatom valve flux multiplied by one hundred. Due to 

264 differences in the sampling duration of the five sediment trap experiments analyzed here, 

265 some adjustments of the data sets were made to enable comparison between stations. The 

266 PZB-1 sediment trap collected particles for a total of 365 days, therefore no corrections 

267 were needed for this trap. Since the collection period for the BO-1 sediment trap was 368 

268 days, the proportional flux of 3 days of the last cup was removed for our calculations. For 

269 Station 61ºS, the collection was shorter (309 days) than a calendar year, therefore annual 

270 estimates were calculated. These annual estimates take into consideration that the 

271 unsampled days occurred during winter when particle fluxes were low. The valve fluxes 

272 of the last winter cup were used to represent mean daily fluxes during the unobserved 

273 period (see Rigual-Hernández et al. 2015a for more details). Since MS-4 and MS-5 

274 sediment traps sampled a total of 425 days, the data set was reduced to 365 days to enable 

275 comparison with the rest of the stations. 

276 2.4 Environmental parameters

277 The monthly products of total chlorophyll-a concentration and contribution of major 

278 functional phytoplankton types to total chlorophyll-a for the five study stations for the 

279 period 1998 and 2015 were obtained from the NASA Ocean Biogeochemical model 

280 (NOBM) (accessed at https://giovanni.gsfc.nasa.gov/giovanni/). The data were extracted 

281 for a half degree area around each mooring location. Primary productivity values (mg C 

282 m-2 d-1) for all stations were extracted from the Ocean Productivity website (accessed at 

283 www.science.oregonstate.edu/ocean.productivity/index.php/), which provides estimates 

284 of net primary productivity derived by applying the standard vertically generalized 

285 production model (VGPM; Behrenfeld and Falkowski, 1997) and the Eppley-VGPM 

286 productivity models to SeaWiFS chlorophyll-a data.

287

https://giovanni.gsfc.nasa.gov/giovanni/
http://www.science.oregonstate.edu/ocean.productivity/index.php/
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288 2.5 Correlation analysis

289 In order to investigate the relationship between satellite and environmental parameters 

290 (i.e. sea ice cover, chlorophyll-a and primary productivity estimates) and annual 

291 biogeochemical and diatom fluxes measured by the traps, a correlation matrix was 

292 calculated. However, given the fact that no satellite information was available for the 

293 collection period of some experiments, some assumptions had to be made for this analysis 

294 as detailed next. 

295 The BO-1 sediment trap was deployed before Sea-WIFS satellite began scientific 

296 operations (September 1997). Moreover, the majority of the sampling intervals of MS-4 

297 and MS-5 traps took place before the commencement of the Sea WIFS Chlorophyll-a 

298 data record. Therefore, no chlorophyll-a data was available for the collection intervals of 

299 these three stations. Nonetheless, the coefficient of variation - i.e., the standard deviation 

300 of the mean divided by the mean in percentage - of chlorophyll-a concentration for the 

301 17 years analyzed here (from 1998 until 2015) indicates little inter-annual variability for 

302 the three stations: 13%, 6% and 8% for the BO-1, MS-4 and MS-5, respectively. 

303 Therefore, interannual average for these stations was considered representative of the 

304 sediment-trap deployment years and used in the correlation analysis. Since the sediment 

305 trap deployments of stations PZB-1 and 61°S took place after 1997, the annual average 

306 chlorophyll-a concentration for the collection year (from September to September) was 

307 used in the correlation analysis. 

308 Since primary productivity data is only available from 1997, a similar approach than that 

309 followed for the chlorophyll-a concentration was followed. In this case, the coefficient of 

310 variation of Eppley model for Stations BO-1, MS-4 and MS-5 was 18%, 16% and 42%, 

311 respectively. For the VGMP model, the coefficient of variation for Stations BO-1, MS-4 

312 and MS-5 was 21%, 20%, and 42%. Given the high interannual variability of both primary 

313 productivity models, the interannual average was not considered representative of the 

314 collection interval and therefore, unacceptable for the correlation analysis. 

315 Sea-ice data over the sediment trap deployment locations was obtained from Pilskaln et 

316 al. (2004) for Station PZB-1, Fischer et al. (2002) for Station BO-1, Rigual-Hernández et 

317 al. (2015a) for Station 61°S and Grigorov et al. (2014) for Stations MS-4 and MS-5. 

318 Given the low sample size (five stations) and large differences in the magnitude of 

319 variables compared, correlations were considered significant at p-value < 0.1.
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320

321 3. Results

322 3.1 PZB-1 diatom fluxes

323 The seasonality of diatom valve export at 1400 m at Station PFZ-1 closely 

324 followed the temporal variability of total mass fluxes (Pilskaln et al., 2004) exhibiting 

325 two distinct periods of enhanced diatom valve export (Fig. 2). The first and major peak 

326 (up to 2.8 108 valves m-2 d-1) occurred between late December 1998 and early February 

327 1999, i.e. during the austral summer. Additionally, the sediment trap recorded two 

328 unexpected peaks of particle export increase during the austral winter (August; up to 3.3 

329 x 107 valves m-2 d-1) and spring (November; up to 2.4 x 107 valves m-2 d-1) when the 

330 mooring location was covered by seasonal sea ice (Fig. 2). 

331 A total of 60 diatom species and subspecies were identified (Table 3). At 1400 m, 

332 five species accounted for 75% of the annual diatom assemblage which was co-dominated 

333 by Fragilariopsis cylindrus (25%) and Fragilariopsis kerguelensis (24%), followed by 

334 Pseudo-nitzchia lineola (10%), Fragilariopsis curta (9%) and Fragilariopsis rhombica 

335 (7%). 

336 Most of the diatom species fluxes at 1400 m broadly followed similar seasonal 

337 trends with the highest annual fluxes during the peak of the summer bloom period (late 

338 December and January) and low or negligible fluxes during the remainder of the year 

339 with the exception of the two short export pulses in August and November 1999 (Fig. 2b 

340 and c). Nonetheless, some important differences can be seen among species. During the 

341 early period of the summer bloom (January 1999), small-sized species of the genus 

342 Fragilariopsis, such as F. cylindrus, F. pseudonana and F. rhombica, F. curta together 

343 with Pseudo-nitzchia lineola rapidly increased their fluxes (three-fold, five-fold, three-

344 fold, two-fold and three-fold, respectively) dominating the sinking diatom assemblage. 

345 The small Fragilariopsis species mentioned above represented 74% of the sinking diatom 

346 assemblage by the end of January (Fig. 2d). The relative abundance of this group rapidly 

347 decreased in the later stages of the summer bloom, representing 34% of the assemblage 

348 by late February. Fragilariospsis kerguelensis, that has larger and more heavily silicified 

349 valves than the rest of the members of the genus Fragilariopsis, with major contributions 

350 identified in this study, was also an important contributor to the summer bloom. However, 

351 its development during the bloom differed from that of former group of species in that 



13

352 the contribution of F. kerguelensis to the sinking assemblage collected by the trap 

353 increased steadily during the bloom, from ~10% in January to 40% by late February.  

354 The two diatom valve export pulses documented in August and November 

355 exhibited a different diatom assemblage composition than that of the summer bloom. The 

356 winter peak (August) was mainly caused by an increased flux of F. kerguelensis that 

357 represented 63% of the sinking diatom assemblage, followed by Fragilariopsis 

358 separanda (8%) and the two varieties of Thalassiosira gracilis: T. gracilis var. expecta 

359 (7%) and T. gracilis var. gracilis (5%) (plotted in Figure 2 as Thalassiosira gracilis 

360 group). The main constituent of the November peak was also F. kerguelensis (46%), but, 

361 interestingly the secondary components of the flux were mainly composed by the small 

362 F. cylindrus (13%) and F. curta (9%), Thalassiosira lentiginosa (7%), F. separanda (6%) 

363 and T. gracilis var. expecta (5%).

364 3.2 Correlation analysis 

365 The results of the correlation matrix are presented in Table 4. Total chlorophyll-a is 

366 positively correlated with annual total diatom (r = 0.891) and small Fragilariopsis group 

367 fluxes (r = 0.994). Both annual F. kerguelensis and Bio-SiO2 fluxes are negatively 

368 correlated with the annual percentage of sea-ice coverage (r = -0.960 and -0.958, 

369 respectively). Lastly, annual F. kerguelensis flux shows a positive correlation with annual 

370 Bio-SiO2 export (r = 0.869). 

371

372

373  
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374

375 Figure 2. a. Satellite observations at PZB-1 location: monthly averaged chlorophyll-a 

376 concentration and  photosynthetically available radiation (PAR) derived from Giovanni 

377 NASA website and daily percentage of sea ice cover over the trap (modified from Pilskaln 

378 et al., 2004) for the period November 1998 to February 1999. b. Annual variability of the 

379 total diatom, biogenic silica and POC fluxes at PZB-1, 1400 m (from Pilskaln et al., 

380 2004). The dashed box represents the winter period, which is shown magnified in Figure 

381 2c. c. Annual variability of the total diatom, biogenic silica and POC fluxes plotted for 

382 June-December at PZB-1, 1400 m (from Pilskaln et al., 2004). d. Seasonal variability of 

383 the relative abundance of the main diatom taxa at PZB-1, 1400 m.

384

385 Table 3.  List of diatom species and their annual relative contribution to total diatom flux 

386 recorded from time-series sediment trap studies in the AZ of the East Antarctic Southern 

387 Ocean: PZB-1 at 1400 m (this study), 61°S at 2000 m (Rigual-Hernández et al., 2015a), 

388 MS-4 at 1030 m, MS-5 at 930 m (Grigorov et al., 2014) and BO1 at 450 m (Fischer et al., 
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389 2002). Relative abundances < 0.1 are represented by an asterisk (*), whereas the absence 

390 of a taxon in a given station is represented by an empty circle (○). Only major species 

391 (nine) are shown for station BO1.
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392  

393
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394

395 Table 4. Correlation matrix (r) for the main environmental parameters, diatom and 

396 biogeochemical fluxes measured at the study stations. Correlation in red are significant 

397 at p < 0.1. 

398

399

400 5. Discussion

401 5.1 Seasonal drivers of diatom community development and valve fluxes at PZB-1 

402 Increasing irradiance and air temperature in springtime, along with sea ice melting 

403 processes, resulted in a moderate increase in the algal biomass, as inferred from the 

404 satellite derived chlorophyll-a concentration (Fig. 2a). As sea ice melts, it releases 

405 nutrients and dust particles intercepted during ice formation that stimulate phytoplankton 

406 growth (Sedwick and DiTullio, 1997; van der Merwe et al., 2011). Partitioning of the 

407 chlorophyll-a signal between major phytoplankton groups by the NASA Ocean 

408 Biogeochemical Model (NOBM) suggests that diatoms largely dominate the 

409 phytoplankton communities at the study station, accounting for > 99% of the chlorophyll-

410 a production (Fig. 4). The high contribution of diatoms to the total chlorophyll-a 

411 concentration at PZB-1 station most likely represents an overestimation of their real 

412 abundance as a result of the NOBM limitations (Hirata et al., 2011; Rousseaux and Gregg, 

413 2012). Nonetheless, these results reinforce the idea that diatoms dominate the 

414 phytoplankton assemblages in the PZB-1 region and are consistent in situ observations of 

415 phytoplankton community composition in pelagic Southern Ocean systems under the 

416 influence of recent sea ice melt (e.g. DiTullio and Smith, 1996; Kang et al., 2001) where 

417 mix layers are often shallow and stratified. These conditions favor the development of 
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418 diatoms over Phaeocystis antarctica, a colonial haptophyte known to regularly develop 

419 large blooms in seasonal ice zones and coastal Antarctic waters with deep mixed layer 

420 due to its ability to sustain near-maximal photosynthetic rates at much lower solar 

421 irradiance levels than do diatoms (Arrigo et al., 1999; Kropuenske et al., 2010; Mills et 

422 al., 2010). 

423 Diatom export at PZB-1 1400 m basically followed the seasonal trend of 

424 chlorophyll-a concentrations in the surface layer as documented by monthly composites 

425 of SeaWifs data from the study region and summarized in Pilskaln et al. (2004).  

426 About two thirds of the annual diatom valve export occurred during a short 

427 interval of 36 days (Dec. 30 - Feb. 4; Pilskaln et al., 2004). The pronounced diatom valve 

428 export was coupled with a strong pulse of organic carbon and biogenic silica that 

429 accounted for about half of the annual carbon and silica export at 1400 m(Pilskaln et al., 

430 2004) . This pronounced and short-lived pulse of diatom production and export is a 

431 common feature in the circumpolar AZ (Fischer et al., 2002; Grigorov et al., 2014; 

432 Rigual-Hernández et al., 2015a) and likely the primary driver of atmospheric CO2 

433 sequestration in this zonal region of the Southern Ocean.

434

435 5.2 Diatom species succession at 1400 m at PZB-1 

436 Ice melting processes in SIZ systems have been suggested to seed the surface 

437 waters with phytoplankton cells accumulated in the sea ice that grow in the stable surface 

438 waters after their release (Mangoni et al., 2009; Riaux-Gobin et al., 2011). This situation 

439 seems to be the case for the PFZ-1 system as suggested by the large contribution of 

440 Fragilariopsis cylindrus and Fragilariopsis curta to the summer bloom, as both species 

441 have been reported to thrive abundantly in the waters adjacent to the ice and in the ice 

442 itself (Kang and Fryxell, 1992; Scott et al., 1994; Leventer, 1998; Kang et al., 2001; 

443 Riaux-Gobin et al., 2011). Despite the large contribution of sea-ice affiliated species to 

444 the annual bloom, the strong contribution of open ocean species (mainly represented by 

445 F. kerguelensis, Pseudo-nitzschia lineola and Thalassiosira gracilis group) also suggests 

446 a significant input of pelagic phytoplankton communities over station PZB-1.

447  Regardless of their sea-ice preference, most of the diatom species contributing to 

448 the peak in valve flux at PZB-1 are characterized by a boom-and-bust life strategy (i.e. r-
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449 selected strategists). This group of diatoms, mainly represented by small Fragilariopsis 

450 species and Pseudo-nitzschia lineola, posses a suite of functional traits such as small cell 

451 sizes, weakly silicified frustules and high rates of nutrient acquisition, growth and 

452 reproduction (Assmy et al., 2007; Durkin et al., 2012) that favor their rapid development 

453 at the initial stages of the diatom bloom (Quéguiner, 2013). The high abundance of the 

454 needle-shaped Pseudo-nitzchia lineola in the PZB-1 traps is consistent with previous 

455 studies that reported species of this genus as one of the major components of diatom 

456 blooms in the pelagic waters of the ACC (Hasle and Syvertsen, 1997; Kopczynska et al., 

457 2001; Smetacek et al., 2002; Assmy et al., 2007). Moreover, Pseudo-nitzchia species 

458 represent important vectors of both carbon and silica flux to the deep ocean since they 

459 have been reported to reach meso- and bathypelagic depths of the water column with a 

460 significant fraction of their cellular organic content intact (Smetacek et al., 2012; 

461 Rembauville et al., 2014). 

462 The three- to four-fold increase in F. cylindrus, F. rhombica and F. pseudonana 

463 fluxes during the growth phase of the bloom (i.e. from cup 1 to 2) and rapid decline in 

464 their relative contribution from cup 3 are in contrast with the less pronounced two-fold 

465 flux increase of F. kerguelensis but gradual increase in its relative abundance from mid- 

466 summer throughout autumn (Fig. 2). The distinct seasonal trend of F. kerguelensis flux 

467 suggests an ecological strategy different than the rest of the main components of the 

468 diatom bloom. Fragilariopsis kerguelensis life strategy has been described as “persistent” 

469 by Assmy et al. (2013) based on the lower growth rates of this species compared to that 

470 of other major components of the bloom and its strong mechanical protection (Hamm et 

471 al., 2003) against the heavy zooplankton grazing in the ACC (Pollard et al., 2002; 

472 McLeod et al., 2010).

473 The two small flux peaks measured by the traps occurring in August and October-

474 November were unexpected given the fact that sea ice coverage started to build-up in 

475 May, covering the mooring location completely from June until November (Fig. 2a). 

476 Based on the large contribution of F. kerguelensis in the first peak, Pilskaln et al. (2004) 

477 attributed the August pulse to an injection of material advected laterally into the trap from 

478 an area of open, ice-free water. Indeed, NOAA Advanced Very High Resolution 

479 Radiometer (AVHRR) imagery suggests the incursion of winds from mid-latitudes over 

480 the study region between the 15th and 19th of August (supplementary Figure 1a). These 

481 winds could have helped to propel warmer surface water masses towards the Station PZB-
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482 1. Additionally, SSM/I ice concentration images from the National Snow and Ice Data 

483 Center (supplementary Figure 1b) support this interpretation indicating the reduction of 

484 sea ice concentration over the Station PZB-1 during a period of 12 days in mid-August, 

485 probably as a result of the southward injection of warmer waters from this major 

486 atmospheric event. This idea is further supported by the rest of the diatom assemblage 

487 collected by the trap that is mainly composed of open ocean species, such as the 

488 Thalassiosira gracilis group (12%), considered a cool open ocean taxon with peak 

489 abundances within the maximum winter sea-ice edge (Crosta et al., 2005), and 

490 Fragilariopsis separanda (8%) reported to display a similar distribution to F. 

491 kerguelensis in the Indian Ocean (Mohan et al., 2006).  Based on this evidence, we 

492 speculate that first winter export peak could have been the result of the transport of an 

493 ice-free water masses by a major atmospheric event over the mooring location.

494 The secondary export pulse in all components measured in late October through 

495 late November likely had a different origin than the August peak. The onset of the sea-

496 ice retreat around the PZB-1 trap in November together with the increase in light levels 

497 resulted in the initiation of the phytoplankton bloom as suggested by the increase in 

498 chlorophyll-a concentration (Fig. 2). The development of a diatom bloom under sea-ice 

499 conditions is consistent with previous investigations that have reported large under-ice 

500 phytoplankton blooms in polar environments (e.g. Arrigo et al., 2012; Lowry et al., 2018; 

501 Nomura et al., 2018) The high contribution of the sea-ice affiliated species F. cylindrus 

502 and F. curta (13% and 9%, respectively) during the November supports the idea of an 

503 early initiation of the phytoplankton bloom triggered by the receding sea ice as previously 

504 suggested by Pilskaln et al. (2004). 

505

506 5.3 Distribution of diatom species across different sectors of the Antarctic Zone

507

508 Diatom assemblages at all stations were overwhelmingly dominated by species of 

509 the genus Fragilariopsis with secondary contribution by Pseudo-nitzschia lineola/cf. 

510 lineola (Fig. 3). Despite the fact that these species are often important contributors to the 

511 living diatom assemblages in the surface layer in the AZ, they are most likely 

512 overrepresented in the sediment traps due to selective dissolution in the upper water 

513 column and mechanical breakage by zooplankton of weakly silicified species that can 
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514 cause profound modifications in the original diatom assemblage (McMinn, 1995; Jordan 

515 and Stickley, 2010; Rigual-Hernández et al., 2016). The variations in the composition of 

516 the diatom sinking assemblages across the stations seem to be largely determined by the 

517 influence of sea ice cover, a critical factor determining the distribution of diatom 

518 assemblages in the modern sediments of the Southern Ocean (Zielinski and Gersonde, 

519 1997; Armand et al., 2005). Maximum annual fluxes and relative contribution of F. 

520 kerguelensis are observed at Station 61°S, the only station not affected by sea ice, while 

521 minimum fluxes and relative contribution of this species are displayed at the MS-5 

522 station, characterized by the highest annual sea ice cover of all stations (Figs. 3 and 4). 

523 The negative effect of sea ice on F. kerguelensis distribution is supported by the negative 

524 and significant correlation between both variables (Table 4). Our observation on sediment 

525 trap fluxes is consistent with many previous reports on diatom assemblages from 

526 Southern Ocean sediments that described high abundance of this species as a proxy for 

527 the iron limited waters of the ACC (Burckle and Cirilli, 1987; Taylor et al., 1997; Crosta 

528 et al., 2005; Pike et al., 2008, among others).  

529

530

531

532 Figure 3. Annual relative contribution of the major diatom species recorded in AZ 

533 sediment traps of the East Antarctic Southern Ocean. 

534
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535 In contrast, Fragilariopsis curta and Fragilariopsis cylindrus display peak 

536 relative abundances at those stations under the seasonal influence of sea ice cover (Fig. 3 

537 and 4). The sea-ice affinity of these species is consistent with their biogeographical 

538 distribution in the modern Southern Ocean where they are often found in high numbers 

539 in the surface waters near the marginal ice-edge zones (e.g. Kang and Fryxell, 1992; Kang 

540 et al., 2001), as part of sea ice communities (Scott et al., 1994; Ugalde et al., 2016) and 

541 in the surface sediments in regions under the influence of sea ice (Zielinski and Gersonde, 

542 1997; Armand et al., 2005). Fragilariopsis pseudonana exhibited its highest relative 

543 contribution at MS-4, a station also characterized by peak diatom biomass accumulation 

544 and diatom valve fluxes of all stations. Although F. pseudonana is often reported as an 

545 important contributor to the phytoplankton communities in the Southern Ocean waters 

546 (Kang and Lee, 1995; Villafañe et al., 1995; Kopczynska et al., 2001; Kopczyńska et al., 

547 2007; Cefarelli et al., 2010), it is often not preserved in the sedimentary record (Grigorov 

548 et al., 2014) most likely due to its weak silicification. High diatom biomass accumulation 

549 is known to facilitate mass aggregation, increase sinking rates and promote  the deep-

550 water delivery of diatom frustules (Alldredge and Goltschalk, 1989; Passow et al., 2003). 

551 Therefore, it is possible that the relatively high abundance of F. pseudonana at MS-4 trap 

552 was due to high diatom biomass accumulation in the upper surface waters with subsequent 

553 aggregation and sinking, thus increasing the probability of F. pseudonana transiting 

554 through the mixed layer and reaching the sediment trap depth intact. Lastly, it is important 

555 to note that annual fluxes of the small Fragilariopsis species group - composed by F. 

556 curta, F. cylindrus, F. rhombica and F. separanda – display a robust and significant 

557 correlation with total chlorophyll-a concentration (r = 0.944, p = 0.016) which highlights 

558 the potential of this group species as a proxy of high algal biomass accumulation in 

559 Southern Ocean paleorecords. Nonetheless, we acknowledge that caution should be taken 

560 in the interpretation of the results of our correlation matrix because low sample size of 

561 the current study limits ability to make strong statistical statements.

562

563 The genus Pseudo-nitzchia is cosmopolitan in the Southern Ocean waters but their 

564 frustules are often not represented in the sedimentary record presumably due to 

565 dissolution at the sediment-water interface and in the uppermost bottom sediments 

566 (Rigual-Hernández et al., 2016). Nonetheless, despite their poor preservation Pseudo-

567 nitzchia species have been reported in the surface sediments of the Pacific and Prydz Bay 
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568 sectors of the AZ (Taylor et al., 1997; Grigorov et al., 2014) which coincide with stations 

569 displaying peak relative abundance of species of this genus (i.e. MS-4, MS-5 and PZB-1; 

570 Fig. 3). 

571

572  

573

574 Figure 4. Antarctic Zone station comparisons: BO1, PZB-1, 61°S, MS-4 and MS-5.  a. 

575 Annual average total chlorophyll-a concentration, diatom chlorophyll-a concentration, 

576 two model estimates of primary productivity (VGPM and Eppley), and percent sea ice 

577 cover for the 5 stations obtained from the NOBM model. b. Annual fluxes of total diatom 

578 valves, major diatom species (F. kerguelensis and small Fragilariospsis group*), 

579 biogenic silicate, POC at sediment trap depths (BO-1, 450 m; PZB-1, 1400 m; 61°S, 2000 

580 m; MS-4, 1031 m; MS-5, 937) and 2000 m-normalized POC (after Honjo et al., 2008). 

581 *Small Fragilariopsis group includes F. curta, F. cylindrus, F. rhombica and F. 

582 separanda.

583

584 5.4 Variations in annual biogenic particle export between sectors of the Antarctic 

585 Zone particle composition and their relationship with diatom assemblages 

586
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587 All the sediment traps discussed in this study (Table 1) were deployed far below 

588 the ventilation depths of the AZ (approximately 100 m; Trull et al., 2001), thereby 

589 providing a direct measurement of the annual extraction of carbon from the atmosphere 

590 by biological processes. In order to objectively compare the AZ trap data sets from 

591 different mesopelagic depths, annual POC fluxes were normalized to 2 km after the Honjo 

592 et al. (2008) study using the Berelson (2001) empirical POC flux reduction formula with 

593 a power constant of 0.87 (Figure 4). Taking into account that the majority of biogenic 

594 silicate dissolution occurs in the upper water column with minimal dissolution loss in the 

595 mesopelagic zone (Ragueneau et al., 2002; Rigual-Hernández et al., 2015a; Rigual-

596 Hernández et al., 2016), diatom valve and biogenic silicate fluxes were not normalized.  

597 Annual Bio-SiO2 fluxes at mesopelagic depths at the five AZ stations were 

598 between 2 to 9 times higher than the mean opal export fluxes at the 2 km 

599 mesopelagic/bathypelagic boundary in the global ocean of 6.9 g SiO2 m-2 yr-1 reported in 

600 Honjo et al. (2008). The peak Bio-SiO2 fluxes measured in the Australian and New 

601 Zealand sectors of the AZ (i.e. 61°S and MS-4 stations, respectively) represent two of the 

602 largest annual opal exports ever measured in the global ocean (Honjo et al., 2008; Rigual-

603 Hernández et al., 2015b) rivalled only by the North Pacific Boreal Gyres (48 g SiO2 m-2 

604 yr-1 at the Aleutian-Bering Station; Takahashi et al., 2000). The large Bio-SiO2 export 

605 fluxes in the pelagic AZ are linked to the vicinity of the Antarctic Divergence where the 

606 upwelling of deep nutrient-rich waters (Pollard et al., 2006) enhance diatom growth and 

607 facilitate opal preservation in underlying sediments. Given the fact that diatoms are by 

608 far the main biogenic silica exporters in the AZ waters (Grigorov et al., 2014; Rigual-

609 Hernández et al., 2015a), the weak and non-significant correlation between annual diatom 

610 valve and Bio-SiO2 fluxes (r = 0.379, p = 0.529) is somewhat surprising. This poor 

611 correlation is most likely due to the large differences in biogenic silica (BSi) content per 

612 cell of the dominant diatom species at each location. Particularly important is the 

613 pronounced difference in BSi content between the different species of the genus 

614 Fragilariopsis that dominated the sinking assemblages at all stations. While diatom 

615 assemblages at Station 61°S were mainly composed of the relatively large and heavily 

616 silicified Fragilariopsis kerguelensis (80% of the annual diatom export), MS-4 and MS-

617 5 assemblages were dominated by Fragilariopsis curta (19% and 35%, respectively) and 

618 Fragilariopsis cylindrus (37% and 47% at both stations) characterized by smaller cell 

619 sizes and weak silicification. Indeed, when comparing Bio-SiO2 and valve fluxes of F. 
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620 kerguelensis alone, they yield a much stronger correlation (r = 0.869, p = 0.056) 

621 suggesting that F. kerguelensis is the main vector of BSi to the deep ocean at all the study 

622 stations regardless its relative contribution to the total assemblage. This result highlights, 

623 once again, the critical role of F. kerguelensis in the silica cycle of the Southern Ocean, 

624 particularly in the AZ where it is the main species responsible for the formation of the 

625 silica-rich deposits that encircle Antarctica between the winter sea ice edge and the 

626 Antarctic Polar Front (Burckle and Cirilli, 1987; Crosta et al., 2005).

627 POC export fluxes at 2000 m varied across the AZ stations with values about two-fold 

628 lower in the Eastern Atlantic (Station BO 1) and offshore Prydz Bay (Station PZB-1) than 

629 to those observed in the Western Pacific sector, where station MS-4 displayed the highest 

630 POC fluxes of all stations (1.4 g C m-2 yr-1; Fig. 4). The high POC export fluxes at the 

631 MS-4 coincide with the highest chlorophyll-a concentration and primary productivity 

632 estimates of all stations. These results are in agreement with Arrigo et al. (2008) who 

633 described the Ross Sea sector as the most productive region of the Southern Ocean and 

634 with Nelson et al. (2002) who documented high algal accumulation and high POC export 

635 fluxes around the MS-4 deployment site. The temporal variations between the POC, Bio-

636 SiO2 and diatom fluxes were strongly correlated at all stations (Fischer et al., 2002; 

637 Grigorov et al., 2014; Rigual-Hernández et al., 2015a and this study). However, when the 

638 magnitude of the annual fluxes of these three parameters is compared (Fig. 4), the 

639 correlation between them is not significant (Table 4), indicating that the amount of 

640 organic carbon sequestered to the ocean interior across the AZ is not directly proportional 

641 to the amount of opal or diatom cells sinking out the mixed layer. These results suggest 

642 that although diatoms represent a major vector of organic carbon to the ocean interior in 

643 the AZ, other factors aside from the ballast effect of biogenic silica and diatom abundance 

644 must play a major role in the efficiency by which POC is transported to the deep sea in 

645 AZ ecosystems. Many factors including ecosystem structure and composition, as well as 

646 physical (e.g. insolation, water column stability, annual sea ice cover, etc.) and chemical 

647 parameters (e.g. availability of macro- and micronutrients, etc.) are known to influence 

648 the magnitude and composition of the particles sinking to the deep ocean (e.g. Wassmann, 

649 1998; Honjo et al., 2008; Ebersbach et al., 2011; Laurenceau-Cornec et al., 2015). Among 

650 them, the makeup of the diatom community (i.e., diatom floristics) has been suggested to 

651 be one of the main factors responsible for setting the different degree of coupling between 

652 carbon and silicon in the particles sinking in the AZ (Assmy et al., 2013; Boyd, 2013). 



26

653 The poor correlation between diatom valve and POC fluxes recorded in the traps is known 

654 to be largely determined by the pronounced differences in organic carbon content between 

655 diatom species and differences in the full cell: empty cell ratios of the diatom cells 

656 reaching the trap depths. Indeed, previous sediment trap studies in other Southern Ocean 

657 settings have demonstrated that the ratio of full to empty diatoms cells largely vary 

658 between species, representing a first-order control in the BSi : POC export stoichiometry 

659 of a given ecosystem. For example, Salter et al. (2012), Rembauville et al. (2014) and 

660 Rembauville et al. (2016) highlighted the important role of resting stages from Eucampia 

661 antarctica var. antarctica, Chaetoceros and Thalassiosira antarctica in the export of 

662 organic carbon from the surface to the deep ocean. Moreover, organisms of higher trophic 

663 levels are known to exert a significant influence in the efficiency of the transfer of organic 

664 matter from the euphotic zone into the deep layers of the water column either through the 

665 formation of faecal pellets (e.g. Lampitt et al., 2009; Ebersbach et al., 2011; Rembauville 

666 et al., 2014; Manno et al., 2015; Belcher et al., 2017) or by vertical migrations (e.g. 

667 Jackson and Burd, 2001; Davison et al., 2013). Thus, different zooplankton composition 

668 at each of the studied stations may also account for part of the POC variability export 

669 across regions of the AZ. 

670 Lastly, the importance of heterotrophic bacteria in determining the degradation depths of 

671 POC is becoming increasingly evident. A recent study by Edwards et al. (2015) 

672 demonstrated how carbon-rich diatom aggregates sinking out the surface layer can be hot 

673 spots for production of polyunsaturated aldehydes (PUAs), highly bioactive molecules 

674 that can stimulate bacteria respiration at adequate concentrations. The stimulation of the 

675 metabolism of the heterotrophic bacteria by the PUAs results in the faster 

676 remineralization of phytoplankton-derived sinking organic matter leading to the shoaling 

677 of remineralization depths of carbon and other nutrients. Taking into that the diatom 

678 species dominating each of the sectors of the AZ exhibit significantly different life 

679 strategies and metabolisms, variations in PUAs production between different polar 

680 diatom species is likely, and therefore it could potentially play an important role in the 

681 export efficiency in diatom dominated ecosystems such as the ones compared here. 

682

683 Conclusions 

684
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685 In this study we analyzed diatom floristics, POC, Bio-SiO2 fluxes, and environmental 

686 parameters across key regions of the AZ. In the first part of the study we documented the 

687 seasonal variability of diatom species and its relationship with biogeochemical fluxes 

688 intercepted by a sediment trap over a year in the offshore waters of Prydz Bay. A short 

689 and pronounced diatom valve export period during the summer season co-occurred with 

690 the highest annual POC fluxes at the PZB-1 station, suggesting that diatoms represent the 

691 main organic carbon vectors to ocean interior in this region. Two peaks of enhanced 

692 export were recorded during winter and autumn, a period characterized by extensive sea 

693 ice cover. Taxonomic analysis of the diatom assemblages of these two export events 

694 suggest different origins of the materials collected by the trap: the August peak seems to 

695 be caused by lateral advection event while the November maximum seems to be the result 

696 of the initiation of the sea-ice retreat and consequent onset of the spring phytoplankton 

697 bloom. 

698 In the second part of the study, five sediment trap experiments reporting diatom 

699 assemblage composition and biogeochemical fluxes conducted in different regions of the 

700 AZ were compared. The relative abundance of F. kerguelensis at all the study stations 

701 seems to be largely influenced by the presence of sea ice, with maximum abundance of 

702 this species in the only station not affected by sea ice and minima in the southernmost site 

703 of the Ross Sea sector, characterized by the highest annual sea ice cover of all stations. 

704 Annual fluxes of the small Fragilariopsis species group exhibited a strong and significant 

705 correlation with total chlorophyll-a concentration across stations. This observation 

706 highlights the potential of these species as a proxy of high algal biomass accumulation in 

707 Southern Ocean paleorecords. Despite the fact that diatoms are the main Bio-SiO2 

708 producer at all stations, the annual biogenic silica and diatom valve export fluxes did not 

709 covary across sites. This is most likely due to the pronounced differences in biogenic 

710 silica content per cell of the dominant diatom species at each study station. Interestingly, 

711 annual Bio-SiO2 and F. kerguelensis fluxes alone exhibited a much stronger correlation 

712 which underscores, once again, the major role of this species for selective silicon export 

713 into the ocean interior of the AZ. 

714 Supplementary material
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715

716 Supplementary Figure 1: a. NOAA Advanced Very High Resolution Radiometer 

717 Channel 4 mosaic (thermal IR) between 15th -19th of August 1999, 4 km resolution for 

718 the study region. b. Daily ice concentration maps for the study region during July 15, 

719 1999 (typical winter conditions) and August 18, 1999 (showing small open water areas 

720 in the sea-ice around the sediment trap location). Yellow triangle shows the position of 

721 the sediment trap PZB-1.

722 Supplement II. Diatom species flux data of PZB-1 (excel file).
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Water column Sampling interval Sampling interval

depth (m)  start  end

BO-1 54° 20´S 3° 23’E 2734 450 28/12/1990 01/04/1992

PZB-1 62°29’S 72°59’E 4000 1400 30/12/1998 13/12/1999

61°S 60° 44´S 139° 54´E 4393 2000 30/11/2001 29/09/2002

MS-4 63° 09´S 169° 54´W 2885 1031 28/11/1996 24/12/1997

MS-5 66° 10´S 169° 40´W 3015 937 28/11/1996 24/12/1997

Station  Latitude Longitude Trap depth (m)



Fischer et al. (2002)

Pilskaln et al (2004) and this study

Rigual-Hernández et al. (2015)

Honjo et al. (2000) and Grigorov et al. (2014)

Honjo et al. (2000) and Grigorov et al. (2014)
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Cup 
number 

Mid-point 
date

Collection 
days 

Total diatom 
flux

Fragilariopsis 
curta

Fragilariopsis 
cylindrus

Fragilariopsis 
kerguelensis

Fragilariopsis 
pseudonana

Fragilariopsis 
rhombica

Pseudo-nitzschia 
lineola

Thalassisora gracilis 
var. expecta

Thalassiosira 
lentiginosa

(days) (106 x valves m-2 d-1) (106 x valves m-2 d-1) (106 x valves m-2 d-1) (106 x valves m-2 d-1) (106 x valves m-2 d-1) (106 x valves m-2 d-1) (106 x valves m-2 d-1) (106 x valves m-2 d-1) (106 x valves m-2 d-1)

1 07/01/1999 17.0 128.6 15.8 35.5 16.6 3.7 8.3 14.6 4.9 0.9
2 25/01/1999 19.0 284.6 28.2 101.6 30.1 16.9 23.8 41.1 12.5 0.6
3 12/02/1999 17.0 37.2 2.6 9.0 9.0 0.7 3.6 2.5 2.5 0.2
4 01/03/1999 17.0 23.4 2.2 2.2 9.3 0.3 1.8 1.5 2.5 0.5
5 18/03/1999 17.0 1.5 0.1 0.0 0.9 0.0 0.1 0.0 0.1 0.1
6 16/04/1999 40.0 1.5 0.1 0.0 0.8 0.0 0.1 0.0 0.2 0.0
7 26/05/1999 41.0 1.4 0.1 0.0 0.6 0.0 0.1 0.0 0.2 0.0
8 06/07/1999 41.0 2.9 0.2 0.0 1.5 0.0 0.1 0.0 0.4 0.0
9 16/08/1999 41.0 33.5 1.0 0.1 21.2 0.0 1.1 0.0 2.3 0.4

10 26/09/1999 41.0 5.1 0.0 0.0 3.3 0.0 0.1 0.0 0.3 0.2
11 06/11/1999 40.0 24.2 2.2 3.2 11.1 0.2 0.4 0.1 1.3 1.7
12 04/12/1999 17.0 2.8 0.4 0.3 1.1 0.0 0.1 0.0 0.2 0.2
13 21/12/1999 17.0 3.9 0.3 0.2 2.1 0.0 0.1 0.0 0.1 0.4



Species BO1 PZB-1 61°S MS-4 MS-5 Species BO1 PZB-1 61°S MS-4 MS-5

Actinocyclus actinochilus  (Ehrenberg) Simonsen 0.12 * * * P. truncata  (G.Karsten) Nöthig et Ligowski * ○ ○ ○

Actinocyclus curvatulus  Janisch * ○ * ○ Proboscia spp. * ○ ○ ○

Actinocyclus exiguus Fryxell et Semina ○ ○ ○ ○ Psammodiction panduriforme (Gregory) Mann ○ ○ ○ ○

Actinocyclus octonarius Ehrenberg ○ ○ * ○ Pseudo-nitzschia cf. lineola ○ 0.4 ○ ○

Actinocyclus spp. ○ * * * P-n. lineola  (Cleve) Hasle 9.57 ○ 2.30 3.18

Alveus marinus (Grunow) Kaczmarska et Fryxell ○ ○ ○ ○ P-n. turgiduloides  (Hasle) Hasle 1.58 ○ ○ ○

Asteromphalus hookeri  Ehrenberg 0.21 0.2 0.16 1.11 P-n. prolongatoides  (Hasle) Hasle 0.22 ○ ○ ○

A. hyalinus  Karsten * 0.2 * ○ P-n. heimii Manguin ○ * ○ ○

A. parvulus  Karsten 0.34 0.2 * * Pseudo-nitzschia spp. * 0.1 ○ 0.13

Asteromphalus  spp. ○ * ○ ○ Rhizosolenia antennata (Ehrenberg) Brown f. antennata * ○ ○ ○

Azpeitia tabularis (Grunow) Fryxell et Sims 0.33 * 0.7 0.15 * R. antennata  (Ehrenberg) Brown f. semispina  Sundström 0.70 ○ ○ ○

Banquisia belgicae (Van Heurck) Paddock 0.38 ○ ○ ○ R. bergonii  Peragallo ○ ○ ○ ○

Chaetoceros aequatorialis  var. antarcticus  Manguin ○ * ○ ○ Rhizosolenia cf. costata ○ ○ ○ ○

C. atlanticus  Cleve 0.95 0.2 0.19 * Rhizosolenia cf. chunii 0.23 ○ ○ ○

C. criophilus Castracane ○ ○ * * R. curvata  Zacharias ○ ○ ○ ○

C. diadema  Ehrenberg ○ ○ ○ * R. polydactyla  Castracane f. polydactyla ○ ○ ○ ○

C. dichaeta  Ehrenberg * 0.1 ○ ○ R. polydactyla Castracane f. squamosa * ○ ○ ○

C. peruvianus  Brightwell * ○ ○ ○ R. simplex Karsten ○ ○ * ○

Chaetoceros  subgenus Hyalochaete  spp. 0.2 R. sima Castracane ○ ○ ○ *

Chaetoceros subgenus Phaeoceros  spp. 0.2 R. styliformis Brightwell ○ ○ * ○

Chaetoceros  resting spores 2.59 0.1 ○ ○ Rhizosolenia  sp. f. 1A sensu  Armand et Zielinski * * ○ ○

Cocconeis  spp. ○ ○ ○ ○ Rhizosolenia spp. ○ 0.1 ○ ○

Corethron sp. 0.25 * * * Roperia tesselata  (Roper) Grunow ○ ○ ○ ○

Coscinodiscus asteromphalus  Ehrenberg * ○ ○ ○ Stellarima stellaris  (Roper) Hasle et Sims ○ ○ ○ ○

Cyclotella  spp. ○ ○ ○ ○ Synedropsis sp. * ○ ○ ○

Dactyliosolen antarcticus  Castracane ○ ○ ○ ○ Thalassionema nitzschioides  var. capitulata  (Castracane) Moreno-Ruiz ○ 0.1 ○ ○

Diploneis bombus (Ehrenberg) Ehrenberg ○ ○ ○ ○ T. nitzschioides  var. lanceolata  (Grunow) Pergallo et Pergallo ○ 0.1 * ○

Eucampia antarctica  (Castracane) Mangin (summer form) ○ ○ T. nitzschioides  var. parvum Moreno-Ruiz ○ ○ ○ ○

E. antarctica  (Castracane) Mangin (winter form) 0.1 ○ T. nitzschioides var. 1 sensu  Zielinski et Gersonde 3.45 ○ ○ * 0.16

Fragilariopsis curta  (Van Heurck) Hustedt 37.05 9.05 0.6 18.70 35.21 Thalassiosira antarctica  Comber * ○ * 0.09

F. cylindrus (Grunow) Krieger 3.04 24.83 0.2 36.52 47.04 T. decipiens (Grunow ex Van Heurck) Jørgensen ○ ○ ○ 0.17

F. doliolus (Wallich) Medlin et Sims ○ ○ ○ ○ T. eccentrica  (Ehrenberg) Cleve ○ 0.2 ○ ○

F. kerguelensis  (O’Meara) Hustedt 28.63 24.29 79.9 13.83 4.13 T. ferelineata Hasle et Fryxell ○ ○ ○ ○

F. obliquecostata  (van Heurck) Heiden * * * 0.16 T. gracilis var. expecta  (Van Landingham) Frxyell et Hasle 5.20 0.4 ○

F. pseudonana  (Hasle) Hasle 3.55 2 12.05 2.96 T. gracilis  var. gracilis (Karsten) Hustedt 1.40 3.6 ○

F. rhombica (O’Meara) Hustedt 1.47 6.67 0.9 1.43 0.79 T. gracilis  group ○ 4.1 ○ 1.67

F. ritscherii Hustedt 0.94 0.1 0.73 1.33 T. gravida Cleve 6.97 0.43 * 0.14 0.12

F. separanda Hustedt 2.72 1.76 2.1 4.53 0.18 T. lentiginosa  (Janisch) Fryxell 2.79 1.26 5 0.81 0.27

Fragilariopsis sublinearis  (Van Heurck) Heiden et Kolbe 0.57 ○ ○ ○ T. leptopus  (Grunow ex Van Heurck) Hasle et Fryxell ○ * ○ ○

F.  cf. sublineata  (Van Heurck) Heiden ○ * ○ ○ T. lineata  Jousé ○ ○ ○ ○

Fragilariopsis vanheurckii  (Peragallo) Hustedt 0.26 ○ ○ ○ T. maculata Fryxell et Johans ○ * ○ ○

Fragilariopsis spp. ○ ○ ○ ○ T. oestrupii (Ostenfeld) Hasle var. oestrupii  Fryxell et Hasle * 0.02

Guinardia spp. ○ ○ ○ * T. oestrupii  (Ostenfeld) Hasle var. venrickae  Fryxell et Hasle ○ ○

Gyrosigma  spp. ○ ○ ○ ○ T. oliveriana (O’Meara) Makarova et Nikolaev * 0.7 ○ 0.07

Haslea trompii  (Cleve) Simonsen 0.16 * ○ ○ T. symmetrica Fryxell et Hasle ○ ○ ○ ○

Hemidiscus cuneiformis Wallich ○ ○ ○ ○ T. trifulta Fryxell 0.11 ○ ○ ○

Manguinea  spp. * ○ ○ ○ T. tumida (Janisch) Hasle * 0.1 ○ ○

Membraneis  spp. 0.33 ○ ○ ○ Thalassiosira sp. 1 ○ * ○ ○

Navicula directa ( Smith) Ralfs in Pritchard 0.23 0.3 ○ ○ Thalassiosira  sp. 2 ○ ○ ○ ○

Navicula spp. * ○ 0.55 0.55 Thalassiosira sp. 3 ○ ○ ○ ○

Nitzschia bicapitata  Cleve ○ ○ ○ ○ Thalassiosira eccentric group ○ ○ ○ ○

N. braarudii (Hasle) ○ ○ ○ ○ Thalassiosira. linear group ○ 0.1 ○ ○

N. kolaczeckii Grunow ○ ○ ○ ○ T. trifulta  group ○ ○ ○ ○

N. sicula  (Castracane) Hustedt var. bicuneata  Grunow ○ 0.1 ○ ○ Thalassiosira  spp. ˂ 20 µm ○ 0.4 ○

N. sicula  (Castracane) Hustedt var. rostrata  Hustedt 0.10 ○ ○ ○ Thalassiosira  spp. > 20 µm ○ * ○

Nitzschia  spp. ○ ○ ○ ○ Thalassiothrix antarctica Schimper ex Karsten ○ 0.2 0.20 0.23

Paralia spp. 0.04 ○ ○ ○ Thalassiothrix longissima + antarctica 0.46 ○ ○ ○

Pleurosigma  spp. ○ * 0.01 ○ Trachyneis aspera (Ehrenberg) Cleve ○ ○ ○ ○

Pleurosigma  directum 0.03 ○ ○ ○ Trichotoxon reinboldii  (Van Heurck) Reid et Round * ○ * 0.10

Porosira pseudodenticulata  (Hustedt) Jousé ○ * ○ ○ Tropidoneis  group ○ * ○ ○

Proboscia alata  (Brightwell) Sundström * ○ ○ ○ Other centrics * * ○ ○

P. inermis  (Castracane) Jordan et Ligowski * ○ ○ ○ Other pennates * 0.1 ○ ○

*

0.49 * 0.13

* *

7.09

* 0.13



Table 4.

Total Chl-a 
concentration

Sea ice 
cover

Total diatom 
flux

F. kerguelensis 
flux

Small Fragilariopsis 
group flux

Biogenic Silica 
flux

POC 
flux

POC flux normalized 
at 2000m

1.000
p= ---
-0.029 1.000
p=.964 p= ---
0.891 -0.433 1.000

p=.043 p=.467 p= ---
0.218 -0.960 0.588 1.000

p=.724 p=.010 p=.297 p= ---
0.944 -0.235 0.977 0.409 1.000

p=.016 p=.703 p=.004 p=.494 p= ---
-0.056 -0.958 0.379 0.869 0.199 1.000
p=.929 p=.010 p=.529 p=.056 p=.749 p= ---
0.236 -0.055 0.381 -0.008 0.433 0.297 1.000

p=.702 p=.930 p=.527 p=.990 p=.466 p=.627 p= ---
0.419 -0.637 0.730 0.787 0.650 0.588 0.244 1.000

p=.482 p=.247 p=.162 p=.114 p=.236 p=.297 p=.692 p= ---

Biogenic Silica flux

POC flux

POC flux normalized 
at 2000m

Total Chl-a 
concentration

Sea ice cover

Total diatom flux

F. kerguelensis  flux

Small Fragilariopsis 
group flux
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