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Abstract: Bacterial communities inhabiting non-calcified gorgonian corals 

(Octocorallia, Gorgoniidae) are apparently unique in taxonomic composition and may 

benefit their host by several means, including chemical defense and nutrient provision. 

However, in spite of their distinct phylogenetic diversity, the gorgonian symbiotic 

consortium has thus far been scarcely addressed, and thus the microbiota of several 

gorgonian hosts remains uncharted.  

This thesis describes the bacterial diversity found in the gorgonian host Eunicella labiata, 

determines its degree of uniqueness in comparison with the structure of the surrounding 

bacterioplankton and reveals the readily cultivatable fraction within this symbiotic 

consortium. To this end, a custom methodological approach was employed allowing 

direct comparison between the “total” and “cultivatable” bacterial community inhabiting 

E. labiata using massive Illumina sequencing of 16S rRNA gene amplicons. The 16S 

rRNA gene Operational Taxonomic Units (OTUs) were established at a cut-off of 97% 

gene similarity. Biodiversity indices such as the Shannon-Wiener were highest in the 

bacterial community obtained from seawater. A Tukey Honest Post Hoc test determined 

significant differences between biodiversity indices and sample categories. A closer look 

into taxonomic profiles and the relative abundances of dominant genera, clearly showed 

differences between microhabitats, with Candidatus Actinomarina dominating the 

seawater samples whereas within Ruegeria and Endozoicomonas represented the 

dominant fraction within E. labiata. The cultivatable community retrieved from E. 

labiata was close to the total community (62%) and speaks for a successful cultivation 

attempt of the E. labiata bacteriome. Unique OTUs within the gorgonian coral sum up to 

4% in contrast to the unique fraction of OTUs found in the seawater, accounting to 

31.1%. Finally, a Principle Coordinate Analysis and bootstrap values obtained from a 

hierarchical Cluster Analysis support the clear separation of the taxonomic community 

between the seawater and the gorgonian coral.  

Resumo: Embora os recifes de coral ocupem apenas até 2% do ambiente marinho, 

eles abrigam um terço de todas as espécies marinhas descritas. Através de sua estrutura 

tridimensional, eles suportam vários nichos e são freqüentemente usados como habitats 



de reprodução e exploração por várias espécies. Além disso, os invertebrados marinhos 

ganham cada vez mais interesse na indústria, abrigando um reservatório de enorme 

biodiversidade, promovendo interdependências de espécies complexas e um terreno fértil 

para compostos medicamente ativos. A informação ecológica sobre os corais moles de 

ambientes temperados é limitada quando comparada aos seus correspondentes tropicais 

calcificados, especialmente informações sobre diversidade bacteriana e cultivabilidade de 

seus microbiomas. As gorgonias representam um componente característico das 

comunidades bentônicas do fundo duro e são espécies engenherias de alta longevidade. A 

sua conservação é crucial para manter a biodiversidade das comunidades marinhas. As 

comunidades bacterianas que habitam corais gorgonianos não calcificados (Octocorallia, 

Gorgoniidae) são aparentemente únicas na composição taxonômica e podem beneficiar 

seu hospedeiro por vários meios, incluindo proteção química e provisão de nutrientes. No 

entanto, apesar da sua diversidade filogenética distinta, o consórcio simbiótico das 

gorgônias até agora não foi completamente abordado e, portanto, a microbiota de vários 

hospedeiros gorgonianos permanece desconhecida. Um coral é um holobionte complexo 

composto pelo animal e sua microbiota associada, interna e externa, composta por 

procariotas, eucariotas microbianos, fungos, protozoários e vírus. Muitas incertezas 

permanecem sobre os mecanismos de como a população microbiana associada aos corais 

nativos interfere com a nutrição dos corais, metamorfose larval e resistência a agentes 

patogênicos. 

Esta tese descreve a diversidade bacteriana encontrada no hospedeiro gorgônio Eunicella 

labiata (amostrado em Faro, Portugal, 2015), determina seu grau de singularidade em 

comparação com a estrutura do bacterioplâncton envolvente e revela a fração 

prontamente cultivável dentro desse consórcio simbiótico. Para este fim, empregou-se 

uma abordagem metodológica específica, permitindo uma comparação direta entre a 

comunidade bacteriana "total" e "cultivável" que habita E. labiata usando sequenciação 

maciça Illumina de amplicões de genes de ARNr 16S. As unidades taxonômicas 

operacionais (OTUs) do gene rRNA 16S foram estabelecidas em um corte de 97% de 

similaridade de genes. Uma curva de rarefação foi criada para investigar a integridade da 

comunidade bacteriana obtida a partir de cada categoria de amostra, nomeadamente: (i) 

tecido de E. labiata recolhido in situ, (2) a comunidade de bactérias cultiváveis de E. 



labiata obtida em meio Agar Marinho (“lavagem de placas”) e (3) água do mar . 

Considerando que as amostras de água do mar e de lavagem de placas quase atingiram 

um plateau, indicando que, com maior esforço de amostragem, não serão adicionadas 

muitas espécies, o aumento do esforço de amostragem em E. labiata ainda pode aumentar 

consideravelmente as espécies detectadas. As OTUs bacterianas dominaram o conjunto 

de sequências do rRNA 16S obtidas por sequenciação, enquanto as arqueias nunca 

ultrapassaram 4% das sequências totais em cada categoria de amostra. O gênero arqueano 

Nitrosopumilus foi detectado em  E. labiata (30 OTUs) e sabidamente contêm genes de 

oxidação de amônia utilizados para a nitrificação de amônia para nitrito, um mecanismo 

utilizado para a remoção de resíduos nitrogenados no holobiontecoralíneo. A riqueza 

procariótica (OTUS) observada, bem como a estimativa da riqueza procariótica total 

(índices Chao1 e ACE) e o índice de diversidade de Shannon foram calculados para 

descrever a biodiversidae bacteriana em cada categoria de amostra. Os índices de 

biodiversidade, como o índice Shannon-Wiener, apresentaram valores médios de 4,2 na 

água do mar, 3,4 em E. labiata e 2,8 nas amostras cultivadas. Para identificar se houve 

diferença significativa entre os valores obtidos para cada categoria de amostra, foi 

realizado um teste Tukey Post Hoc, após a obtenção de valores p significativos 

estatísticos de uma ANOVA. A água do mar é estatisticamente diferente nos quatro 

parâmetros de biodiversidade medidos quando comparada às OTUs obtidas de E. labiata 

tanto pelo método independente (in situ) como pelo método dependente (lavagem de 

placas) de cultivo, excepto para o índice de Shannon-Wiener onde diferenças 

significativas só puderam ser encontradas entre a categoria de água do mar e a lavagem 

de placas. A maior diversidade dentro de cada índice foi exibida na água do mar. O 

gráfico de barras empilhadas mostra a composição taxonômica em quatro níveis 

taxonômicos, a saber Classe, Ordem, Família e Gênero. Para uma ilustração clara dos 

gêneros dominantes em cada categoria de amostra, as OTUs com uma abundância 

relativa inferior a 2% foram filtradas e resumidas dentro de uma barra de pilha. Um olhar 

mais atento sobre os perfis taxonômicos e a abundância relativa de gêneros dominantes 

mostrou claramente diferenças entre microhábitats, com Candidatus Actinomarina 

dominando as amostras de água do mar enquanto Ruegeria e Endozoicomonas 

representavam a fração dominante em E. labiata. Ruegeria, Vibrio e Sphingorhabdus 



dominaram as amostras de lavagem da placa. O maior número de táxons raros (OTUs 

com abundâncias mais baixas do que 2%) foi encontrado nas amostras in situ de E. 

labiata. Cerca de 47,1% das 1092 OTUs obtidas neste estudo foram cultivadas com 

sucesso em Agar marinho semi-sólido (1/2) a baixas temperaturas ao longo de várias 

semanas. A comunidade cultivável recuperada de E. labiata foi próxima da comunidade 

total (62%) evidenciando uma tentativa de cultivo bem sucedida da comuidade bacteriana 

em E. labiata. As OTUs únicas dentro do coral gorgônio somam até 4% em contraste 

com a fração única de OTUs encontrada na água do mar, representando 31,1%. Uma 

Análise de Coordenadas Principais (PCoA) usando uma matriz de distância euclidiana, 

obtida para todas as amostras com base na sua composição de OTUs, foi realizada 

ilustrando as 20 OTUs mais abundantes do conjunto de dados no diagrama de ordenação 

de acordo com suas mudanças em abundância nas categorias de amostra estudadas. A 

estreita associação entre o gênero Endozoicomonas e as amostras de gorgônias in situ foi 

evidente pela sua proximidade no diagrama de ordenação e seu consequente 

distanciamento das amostras de água do mar.. Ruegeria foi posicionada entre E. labiata 

in situ e as amostras de lavagem de placas, refletindo a recuperação considerável de 

ambas as fontes. Shewanella, Sphingorhabdus e Vibrio também estavam claramente 

distantes das amostras de água do mar e mais próximas das amostras de lavagem das 

placas. Vária OTUs não classificáveis a nível de espécies ou gênero (p.ex. “non classified 

Surface1”, SAR86, Candidatus Actinomarina, ”non classified Marinimicrobia”, ”non 

classified Rhodobacteraceae” e “non classified Planktomarina”) foram agrupadas em 

conjunto com as amostras de água do mar. Finalmente, os valores de bootstrap obtidos a 

partir de uma Análise de Clusters hierárquica suportam a clara separação da comunidade 

taxonômica entre a água do mar e o coral gorgônico. O gênero Endozoicomonas não 

estava realmente presente na água do mar em torno do nosso coral. Vários estudos 

identificaram Endozoicomonas como uma bactéria dominante na comunidade 

procariótica associada aos corais. As descobertas deste estudo motivam investigações 

adicionais com a gorgônia E. labiata, especialmente devido aos resultados promissores 

relativamente ao cultivo de seu microbioma bacteriano, uma vez que a informação 

ecológica sobre a biodiversidade microbiana, obtida apenas a partir de estudos 

independentes de cultivo, é difícil de interpretar. 
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1. Introduction 

Coral reefs represent one of the most diverse ecosystems found in our oceans. Occupying 

only up to 2% of the marine environment, coral reefs harbor around one third of all 

described marine species (Veron et al. 2009). The three-dimensional landscapes created 

by corals, harbor a reservoir of enormous biodiversity promoting complex species 

interdependencies and a fertile ground for medically active compounds. Coral reefs are 

however increasingly threatened by direct human activities, indirect human activities and 

indirect global climate shifts (Kakonikos et al. 1999; Bellwood et al. 2004).  

Nowadays one-third of all coral species are at risk of extinction, while they support food 

production, tourism and emerging biotechnology development, providing coastal 

protection from natural disasters. The coral crisis is often related to global change and 

coastal urbanization, which is expanding disproportionally to human population growth 

and coastal coral reefs, like other marine coastal ecosystems are increasingly exposed to 

growing loads of nutrients, sediment and pollutants discharged from the land (Bourne et 

al. 2009; Wood et al. 2012; Erftemeijer et al. 2012; Sunagawa et al. 2009; Fabricius & 

Sea 2005).  

Recent studies support the importance of some types of bacteria that may exclude 

undesirable microorganisms through the production of secondary metabolites and 

antibiotics, highlighting one important component of coral microbe symbiosis (Littman et 

al. 2009). The bacterial community associated with the black band disease of the 

scleractinian corals Diploria strigose, Montastrea annularis and Colpophyllia natans 

support previous studies indicating the low bacterial similarity in respect to abundance 

and diversity between healthy and diseased individuals. Bacteria from the class Delta- 

and Epsilonproteobacteria were exclusively present within the diseased individuals, 

whereas Beta- and Gammaproteobacteria were identified in both, healthy and diseased 

individuals. Alphaproteobacteria dominated both samples, healthy and diseased corals 

(Frias-lopez et al. 2002; Cooney et al. 2002). A strain affiliated with the Roseobacter 

(Alphaproteobacteria) clade produces an antibiotic called tropodithietic adic, a 
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compound showing strong inhibiting properties in respect to marine bacteria of various 

taxa and marine algae (Brinkhoff et al. 2004).  

However, there are still many uncertainties about the mechanisms how the native coral-

associated microbial population influence coral nutrition, larval metamorphosis and 

resistance to pathogens. The first process to investigate bacteria typically starts with 

culturing them. Unfortunately, uncultured microorganisms still represent the majority of 

the microbial diversity and therefore culture-independent methods are crucial to 

understand genetic diversity, population structure and ecological roles (Riesenfeld et al. 

2004).  

Using DNA directly from an environment was initially suggested by Pace (1997) and 

first implemented by Schmidt et al. (1997), who described the phylogenetic diversity of 

an oligotrophic marine picoplankton community by analyzing the sequences of cloned 

ribosomal genes in the north central Pacific (Riesenfeld et al. 2004). Mixed population 

(i.e., “metagenomic”) DNA was cloned into the bacteriophage lambda and portions of the 

ribosomal RNA (rRNA) gene were amplified via polymerase chain reaction (PCR) and 

sequenced. The resulting sequences were compared with an established data base of 

rRNA sequences obtaining 15 unique eubacterial sequences including four from 

Cyanobacteria and eleven from Proteobacteria (Schmidt et al. 1991). 

Whereas associations between bacteria and eukaryotic hosts are common in the marine 

environment, known symbioses involving archaea are limited. Archaea have been 

generally characterized as microorganisms that inhabit relatively circumscribed niches, 

largely high-temperature anaerobic environments but molecular phylogenetic surveys 

indicate that the evolutionary and physiological diversity of archaea is far greater than 

previously supposed (Preston et al. 1996).  

Since sponges excrete ammonium, like many other marine invertebrates, as a waste 

product, microbial nitrifies are believed to use this substrate and play an important role in 

waste treatment (Bayer et al. 2008).  The ammonia-oxidizing marine archaeon 

Cenarchaeum symbiosum for example, has been found in association with several 
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different sponge species and is regarded as a typical sponge associate  (Preston et al. 

1996; Amils & Puentes 2002). Findings of Holmes & Blanch 2007 support that archaea 

have evolved closely with their sponge hosts when analyzing 23 poriferan species, where 

19 of them showed evidence of harboring archaeal communities. Most of the genes found 

in C. symbiosum from previously sequenced genomes are shared with its planktonic 

relatives. However, a considerable number of unique genes were found that might 

potentially be involved in archaeal-sponge symbiotic associations (Hallam et al. 2006). 

Therefore, management and prevention of coral disease will be difficult unless we can 

generate the data that allow us to understand the interaction between causative agents, 

corals and their environment combining culture dependent and culture independent 

techniques (Bourne et al. 2009). 

Corals 
 

Anatomy 

 

Corals belong to the phylum Cnidaria, which further includes the hydroids, jellyfishes, 

sea anemones and sea fans. Along with the Placozoa and Porifera the Cnidaria represent 

the most ancient form of multicellular organization. Cnidarian polyps and medusae are 

radial symmetric and their body architecture is diploblastic consisting of two germ layers, 

the ectoderm and the endoderm. The diagnostic feature within this group is the organelle-

like capsules with eversible tubules called Cnidae (Fig 1).  

These stinging cells mainly serve in prey capture and defense. Mechanical stimulation of 

these cell’s cnidocyil apparatus by prey or an offender leads to the explosive discharge of 
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the cnidocyst via bioelectrical signal transduction (Tardent 1995).

 

Figure 1- Schematic and microscopic illustration of a cnidocyte. (“http://www.jayreimer.com/TEXTBOOK/iText/products/0-13-

115516-4/ch26/ch26_s3_1.html,” https://en.wikipedia.org/wiki/Cnidocyte#/media/File:Nematocyst-discharged.png”) 

 

Corals are found within the class of the Anthozoa. All members of this class are 

exclusively polypoid and may be colonial, clonal or solitary, skeleton-less or with a 

mineralic and/or proteinaceous skeleton (Daly et al. 2003).  

Corals have only a limited degree of organ development and each polyp consists of three 

basic tissue layers namely an outer epidermis, an inner layer of cells lining the 

gastrovascular cavity which acts as an internal space for digestion and a layer called the 

mesoglea in between these layers (Fig.2). In general, all polyps share two structural 

features with other members of their phylum. The first one a gastrovascular cavity that 

opens at only one end and is often referred as the mouth, where food is consumed and 

waste products are expelled. Secondly, all corals possess a circle of tentacles, which are 

extensions of the body wall that surround the mouth. Corals and all other members of the 

Cnidaria are carnivores using the cnidocyle equipped tentacles to catch prey within the 

water column and transport it to the mouth and into its stomach for final digestion. The 

tentacles are furthermore used to clear away debris from the mouth and act as the 

animal’s primary means of defense.  

 

http://www.jayreimer.com/TEXTBOOK/iText/products/0-13-115516-4/ch26/ch26_s3_1.html
http://www.jayreimer.com/TEXTBOOK/iText/products/0-13-115516-4/ch26/ch26_s3_1.html
https://en.wikipedia.org/wiki/Cnidocyte#/media/File:Nematocyst-discharged.png
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The polyp of a hard coral is sitting within a cup-like structure. The walls surrounding this 

cup are called “theca” and the floor is referred to as the basal plate. Calcareous septa 

provide integrity and protection and an increased surface area for the polyp’s soft tissues, 

extend upward from the basal plate and radiate outward from its center. Additionally, 

each polyp is connected to its neighbor through a thin horizontal sheet of tissue called the 

coenosarc.  

 

The soft corals are anatomically similar to their hard coral counterparts, with a few 

exceptions such as they do not secrete calcium carbonate skeletons and are therefore 

missing the calyx, theca, tabulae, septae or a basal plate (Fig.2B) (Barnes 1987; National 

Oceanic and Atmosperic Administration 2014). 

 

 

Figure 2- A schematic illustration of a hard (A) - and soft coral (B) polyp. Cnidae equipped tentacles are used to catch 

organisms within the water column, transport it into the stomach, where extracellular enzymes digest the prey. 

(“http://www.peteducation.com/article.cfm?c=0&aid=2987“, 

”https://coralreef.noaa.gov/aboutcorals/coral101/anatomy/ “)   



6 

 

 

Modes of Reproduction 

 

Corals can reproduce in both ways, sexually and asexually. Within the asexual 

reproduction, new clonal polyps separate from the parent polyp and start forming new 

colonies. It is a process that continues throughout the animal’s life and appears once the 

parent polyp has reached a certain size (National Oceanic and Atmosperic Administration 

2014). 

 

Within the sexual reproduction, the phenomenon of broadcast spawners, where male and 

female individuals release massive numbers of eggs and sperm into the water to distribute 

their offspring’s over a broad geographic area is in many reefs a mass synchronized 

event, where all the coral species in an area release their eggs and sperm at about the 

same time. Eggs and sperm become free-floating, or planktonic larvae called planulae. 

Because male and female individuals cannot move into reproductive contact with each 

other, the timing of this event is very important and is triggered in response to multiple 

environmental cues (Veron 2000; National Oceanic and Atmosperic Administration 

2014). 

 

Planulae swim upwards toward the light being transported by the current and will return 

to the bottom again afterwards, where, if conditions are favorable, they will settle. After 

settling they metamorphose into polyps and form colonies (National Oceanic and 

Atmosperic Administration 2014). 

Taxonomy 

 

Our current taxonomic understanding of corals on a species level is still a challenge. As 

debates concerning taxonomic uncertainty refer to that coral species are broad and fuzzy 

entities, capable of interbreeding with distantly related forms and exhibiting wide 

morphological variability and large ecological and geographical ranges (Knowlton 2001).  

However, recent studies suggest, that corals are well defined reproductively and more 
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narrowly distributed and less variable than conventionally assumed. Montastraea 

annularis was thought to show a wide variability in colony morphology. This phenotypic 

plasticity has therefore been viewed as a largely phenotypic response to variation in 

environmental conditions. Weil & Knowlton (1989) redescribed this species through a 

multi-character analysis due to the coexistence of discrete colony morphologies at the 

same site, often with little evidence of intermediate forms, resulting in defining three 

broadly sympatric shallow-water species. This study indicates that at present, it might not 

be impossible to say how many coral “species” are in fact species complexes, since 

literature reports numerous forms or morphotypes that remain to be analyzed (Knowlton 

2001; Weil & Knowlton 1994).  

The approximately 7.500 extant species within the class Anthozoa are comprised of two 

monophyletic lineages, the Octocorallia and the Hexacorallia.  

The subclass Hexacorallia currently contains six orders: Actiniaria (sea anemones), 

Antipatharia (black corals), Ceriantharia (tube anemones), Scleractinia (stony corals), 

Corallimorpharia (corallimorpharians) and Zoanthidae (zoanthids) (Daly et al. 2003). 

Typical tropical coral reefs are formed from stony corals when each polyp secretes a 

skeleton of calcium carbonate (CaCO3) As mentioned before, not all corals are reef 

builders (hermatypic) as some do not produce enough CaCO3 or some being solitary and 

have single polyps (ahermatypic) (National Oceanic and Atmosperic Administration 

2014; Barnes 1987).  

 

Whereas most Hexacorallia own a hexamerous symmetry, the Octocorallia own eight 

tentacles and eight mesenteries of octocoral polyps that are invariant within the clade. 

The subclass Octocorallia  is subdivided into three orders namely the Alcyonacea (soft 

corals and sea fans), Pennatulacea (sea pen) and the Helioporacea (blue corals) (Fig.3), 

whereas the Alcyonacea (soft corals and sea fans) is further divided into six sub-ordinal 

groups (Table 1) (Mcfadden et al. 2006).  
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Table 1 - Current higher taxonomic classification to the anthozoan subclass Octocorallia. The order is represented 

with an “O.” and “N” represents the described numbers of families (from Williams, 1992).  

*One described family might not be valid. 

 
 

A molecular phylogenetic analysis of the Octocorallia based on mitochondrial protein-

coding sequences supports previous results that divide the subclass Octocorallia into two 

or three distinct clades, where one clade includes all members of the sea fan sub-order 

Holaxonia, a majority of the taxa belonging to the soft coral group Alcyoniina and most 

of the taxa in groups Scleraxonia and Stolonifera. The Second large clade includes all of 

the sea pens (Pennatulacea), blue corals (Helioporacea) and the sea fan sub-order 

Calcaxonia. The molecular data further do not support the phylogenetic distinction of the 

three sub-ordinal groups of the Alcyonacea namely the Alcyoniina, Scleraxonia and 

Stolonifera. These groups might represent grades of morphological construction that have 

likely evolved repeatedly during the history of Octocorallia. For instance, although the 

taxa included within the group Scleraxonia share a skeletal axis or axial-like layer 

containing sclerites, the details of skeletal construction differ substantially with multiple 

independent derivations of this type of axis  (Mcfadden et al. 2006). Taxonomy and 

phylogenetic relationships within the Octocorallia still remain poorly understood and 

need further research effort to clarify phylogenetic concordance. At present the subclass 

Octocorallia includes approximately 3.000 extant species (Daly et al. 2007; Bellwood et 

al. 2004).  

Taxonomic group N Defining characteristics

O. Pennatulacea [sea pens] 14 Axial polyp differentiated into basal peduncle and distal rachis

O. Helioporacea [blue coral] 2 Massive aragonite skeleton

O. Alcyonacea

              [soft corals - no skeletal axis]

                  Protoalcyonaria 2 * Solitary polyps

                  Stolonifera 5 Polyps united basally by simple stolons which may fuse to form ribbons

                  Alcyoniina 5 Polyps united within fleshy mass of coenenchyme 

              [sea fans  - with skeletal axis]

                  Scleraxonia 7 Inner axis (or axial-like layer) consisting predominantly of sclerites 

                  Holaxonia 4 Axis of scleroproteinous gorgonin, commonly with small amounts of embedded non-scleritic calcium 

carbonate; axis with hollow cross-chambered central core 

                  Calcaxonia 5 Axis of scleroproteinous gorgonin with large amounts of non-scleritic calcium carbonate as internodes or embedded 

in the gorgonin; axis without hollow cross-chambered central core
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Figure 3 – Illustration of one representative of each order of soft corals. A,Alyonacea; B, Pennatulacea; C, 

Helioporacea   (“http://coral.org/coral-reefs-101/coral-reef-ecology/soft-

corals/”,”http://mesosyn.com/unusualAnimals.html#SeaPen”,” http://ulithimarineconservation.ucsc.edu/blue-coral-

helioporacea/”) 

 

Gorgonian corals  

 

Despite their ahermatypic character gorgonians, (Alcyonacea) still make up an important 

part of the coral community composition within coral reefs. Analyzing three parallel 

submarine terraces along the southeast coast of Florida, 27 species of scleractinian corals 

and 39 species of gorgonians  defined a typical coral-reef community, with gorgonians 

reaching maximum diversity at  a depth of 15-20 meters, while scleractinians were most 

diverse within in shallower waters (Goldberg 1973). 

Besides their presence in coral reefs and deep waters, gorgonians represent a 

characteristic component of hard bottom benthic communities and contribute 

significantly to the biodiversity of these ecosystems (Ballesteros 2006). Gorgonians are 

long-lived engineering species and their conservation is crucial to maintain the 

biodiversity of marine communities. The slow dynamics displayed by these species make 

them especially vulnerable when faced with increasing disturbances (Benayahu & Loya 

1986). During the summers of 1999 and 2003, two mass mortality events affected the 

population of the slow-growing and long-lived Mediterranean gorgonian Paramuricea 

clavata living in the Gulf of La Spezia (Italy). Monitoring the population for three years 

after the mortality events, only a small increase in density of recruits and of older 

undamaged colonies was recorded, suggesting that the population recovers slowly 

(Cupido et al. 2008). Taylor et.al. (2011) reviewed mass mortalities involving 

http://coral.org/coral-reefs-101/coral-reef-ecology/soft-corals/
http://coral.org/coral-reefs-101/coral-reef-ecology/soft-corals/
http://mesosyn.com/unusualAnimals.html#SeaPen
http://ulithimarineconservation.ucsc.edu/blue-coral-helioporacea/
http://ulithimarineconservation.ucsc.edu/blue-coral-helioporacea/
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Mediterranean shallow water benthic communities caused by diseases attributed to 

factors such as toxic microalgae, mucilage, pathogenic agents, thermal stress and oxygen 

depletion. Although several species and groups of sessile organisms have been hit by 

mass mortalities in the Mediterranean Sea, diseased sea fans played a crucial part in 

altering the seascape of rocky bottoms, with the first recorded episode of gorgonian mass 

mortality described in 1984 mainly regarding Eunicella singularis and Corallium rubrum 

(Cerrano & Bavestrello 2008).  

Although gorgonians are ecologically similar to scleractinians, they possess a 

comparatively limited number of reproductive strategies, where the most common is 

gonochorism combined with brooding (Brazeau & Lasker 1990). 

Fertilization might occur internally or externally depending on the species. Sarcophyton 

glaucum is a dioecious species, where females attain maturity at a much larger colony 

size of at least 61 cm3 when compared to male colonies bearing testes at a colony size of 

11 cm3. S. glaucum has a brief annual spawning period which occurs in the majority of 

the population during a single night. Fertilization is external and larvae swim actively 

promoting a wide dispersal of the species (Benayahu & Loya 1986).  

In a reproductive study of a common Caribbean gorgonian coral, Briareum asbestinum, 

from the San Blas Islands (Panama), all colonies examined were either male or female 

during the height of the reproductive season since males could only be identified from 

April to August when spermaries were present.  Spawning in males is synchronous and 

occurs following the full moons of June and July, whereas in this species, fertilization is 

internal. Embryos are released from polyps very early in development and remain 

attached to the outside of the colony for three to five days (Brazeau & Lasker 1990). As 

with many long-lived marine species, detailed illustrations of life-histories are rare since 

data of those marine species are difficult to acquire over the large temporal scales of their 

long life spans (Hughes & Connell 1999).  

The family Gorgoniidae is found within the order Alcyonacea, which includes 30 

families of soft corals and gorgonians (octocorals with a supporting skeletal axis of 

scleroproteinous gorgonin and/or calcite). Seventeen genera and approximately 260 

species of gorgonians with retractile polyps and an axis of gorgonin surrounding a 
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narrow, hollow, cross-chambered central core are known within the family Gorgoniidae 

(Daly et al. 2007). A study in 2009/2010 investigated the distribution patterns of 

gorgonians in south Portugal, where the occurrence and abundance of gorgonian species 

in rocky bottoms were quantified over more than 25 km of coast down to 30 m depth. 

Most abundant gorgonian species along this study area were Eunicella labiata, Eunicella 

gazella, Eunicella verrucosa and Leptogorgia sarmentosa (Fig.4) (Curdia et al. 2013). In 

this study, one of the common and most abundant gorgonians present in the southern 

coast of Portugal was used, E. labiata. Figure five shows an overview of the global 

distribution of the genus Eunicella. 

 

 

 

Figure 4- Abundant gorgonians from the southern coast of Portugal. A, E. labiata; B, 

E. gazella; C, E. verrucosa; D, L. Sarmentosa 

(http://www.granadasubmarina.org/art.php?id=Eunicella%20labiata”,” 

http://www.marlin.ac.uk/species/detail/1121”,” 

http://www.marlin.ac.uk/species/detail/1121”,” 

https://www.asturnatura.com/fotografia/submarina-fotosub/gorgonia/7688.html”) 

 

http://www.granadasubmarina.org/art.php?id=Eunicella%20labiata
http://www.marlin.ac.uk/species/detail/1121
http://www.marlin.ac.uk/species/detail/1121
https://www.asturnatura.com/fotografia/submarina-fotosub/gorgonia/7688.html


12 

 

 

Figure 5- Global geographic distribution of the genus Eunicella. Warm colors represent high numbers of abundance 

whereas cold colors represent low levels of abundance 

(http://www.marinespecies.org/aphia.php?p=taxdetails&id=125301= 

 

Prokaryotic life within our oceans  

Studying the different life forms on our planet, microbiology was the last field to be 

established (Amann et al. 1995). Even after the first discovery of the microbial realm 

about 300 years ago, the right knowledge and biotechnological capacities were missing to 

fully investigate and understand prokaryotic life. Marine microbiology started gaining 

interest after the second half of the nineteenth century, when scientists were able to 

isolate ammonia- and nitrite-oxidizing bacteria from the Atlantic Ocean. Microorganisms 

are defined by their size (<150 µm) and include all three domains of life whereas 

prokaryotes include two domains, the bacteria and the archaea (Lutz-Arend 2005).   

For the continental shelf and the upper 200 meters of the open oceans, the microbial 

density is about 5 x 105 cells/ml, whereas a big portion of these cells are represented by 

the marine cyanobacteria and Prochlorococcus spp. reaching an average cellular density 

of 4 x 104 cells/ml. Additionally the world’s oceans comprise a rich diversity of microbial 

life with current estimates reaching over a million different species. From the 15 different 

phyla within the bacterial domain, the Proteobacteria, gram-positive bacteria ( mostly 

Actinobacteria) and Cyanobacteria are of particular importance in our oceans (Whitman 

et al. 1998).  

Generally marine bacteria are more psychrophilic than terrestrial species. Many marine 

bacteria have special requirements for inorganic ions such as Na+ for growth as seen in 
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some species for transporting substrates into the cells. Furthermore their combination of 

Mg++ and Ca++ exceeds that of most terrestrial species (Macleod 1965). 

Compared to Bacteria, Archaea show differences within cell walls, cytoplasmic 

membranes, transcription and translation mechanisms, structure of coenzymes and 

prosthetic groups as in the mechanisms regarding the autotrophic CO2 – fixation (Lutz-

Arend 2005). In the marine environment, archaeal habitats were believed to be limited to 

shallow or deep-sea anaerobic sediments, hot springs or deep-sea hydrothermal vents and 

highly saline land-locked seas. As reported by Delong (1992) archaea are not restricted to 

only anaerobic and harsh environments but also appear in oxygenated coastal surface 

waters in the east and west coasts of North America. Studying the abundances and 

distributions of prokaryotes in the western waters of the Antarctic Peninsula, during 

austral summer surface abundances of archaea were generally low accounting for about 

1% of the total picoplankton assemblage. The abundance of Archaea increase 

significantly with depth, comprising 9-39% of the total picoplankton abundance in meso- 

and bathypelagic circumpolar deep waters. During winter, archaea and bacteria were 

more evenly distributed throughout the water column, with archaeal abundances 

averaging 10% in surface waters and 13% in the circumpolar deep waters (Church et al. 

2003). Further studies suggest, that Archaea play a crucial role in the oceanic carbon 

cycle. Herndl et al. (2005) estimates that archaeal production in the mesopelagic and 

bathypelagic North Atlantic contributes between 13-27% to the total prokaryotic 

production in the oxygen minimum layer and 41-84% in the Labrador Sea Water, 

declining to 10-20% in the North Atlantic Deep Water.  

Microbial Culturing and Metagenomics 

Cultured species of Bacteria and Archaea represent only a minor fraction of the existing 

diversity. In several types of environments, more than 99% of organisms seen 

microscopically are not cultivated by routine techniques (Taga 1979). There are known 

species for which the applied cultivation conditions are just not suitable or which have 

entered a nonculturable state and unknown species that have never been cultured before 

where appropriate methods of cultivation are missing. Vibrio cholerae enters a 
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nonculturable state upon exposure to salt water, freshwater or low temperatures very 

quickly (Amann et al. 1995; Pace 1997). Ecological information on microbial 

biodiversity obtained from culture independent studies (such as metagenomics) is hard to 

interpret using only culture independent approaches (Fierer et al. 2007). Cultures of 

microbial organisms are crucial to dissect the functions and interactions of the 

prokaryotes with their environment (Smith & Bidochka 1998). Out of plenty of 

possibilities of information which can be retained from culturing, it can be used to 

investigate metabolic interactions between community members (Møller et al. 1998) or 

the effect of antibiotics on the bacterial colony.  A further important example of culturing 

is shown by Beaty et al. 1994 who investigated the pathogenesis caused by the bacterium 

Chlamydia trachomatis using a variety of cell culture model systems. Therefore, it is 

crucial to further improve culturing methods in order to isolate single bacterial colonies 

for physiological and ecological studies. Since the majority of bacteria are uncultivable 

(Li 2009), culture-independent methods can be used to complete the knowledge of 

microbial diversity found within an ecosystem in order have an idea, on how much of the 

complete prokaryotic assemblage is still not cultivated (Goodman et al. 2011).  

Metagenomic approaches analyze microbial communities in any given environment. 

Metagenomics describes the functional and sequence-based analysis of the collective 

microbial genomes contained in an environmental sample (Riesenfeld et al. 2004). The 

use of ribosomal RNA genes obtained from DNA isolated directly from the environment 

opened up new insights into microbial biodiversity. The highly-conserved nature of 

ribosomal RNA allows the use of universal PCR primers that can anneal to sequences 

conserved in the ribosomal RNA genes from all three phylogenetic domains, since each 

organism in an environment has its unique set of genes stored within its genome. 

Ribosomal RNA genes gathered from the environment are snapshots of organisms, which 

can be targeted for further characterization if they seem interesting and useful (Pace 

1997). Because most of the coral-associated bacteria are novel at the genus and species 

level (Rohwer et al. 2002; Garcia et al. 2013; Wegley et al. 2007; Thurber et al. 2009; 

Littman et al. 2011) this task is especially challenging.   
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Rohwer and colleagues (2002), identified 430 novel bacterial ribotypes associated with 

three coral species. Many of these bacteria appear to have symbiotic relationships with 

the animal suggesting that corals may harbor specific microbial communities that 

positively contribute to host fitness. Bacteria seem to form species-specific associations 

with corals that are maintained over space and time, reflecting phylogenetic relationships 

among coral species (Bourne & Munn 2005). 

Coral Holobiont 

As first described by Heinrich Anton de Bary in 1879 the expression symbiosis was 

referred as “the living together of unlike organisms”. Nowadays symbiosis commonly 

describes close and long-term interactions, including mutualistic, parasitic and 

commensal relationships, between different biological species (Li 2009). Growing 

evidence indicate that the microbial associates play essential roles in coral physiology 

and health. Several coral-associated bacteria have been shown to possess antibacterial 

activity, antibiofilm and anti-pathogenic properties (Porporato et al. 2013). Culture-

dependent and independent studies have shown remarkable microbial diversity of 

microbial communities associated with living marine sessile organisms (Egan et al. 

2008). The coral is a complex holobiont consisting of the animal and its associated suite 

of internal and external microbiota such as prokaryotes, microbial eukaryotes, fungi, 

protozoa and viruses (Wegley et al. 2007).  

 

Carbon fixing zooxanthellae are essential symbionts in most hermatypic corals and 

provide the animal with energy reserves that are used for constructing the skeleton and 

producing the mucus sheet. Loosing those symbionts as seen in coral bleaching events is 

fatal for coral communities and coral bleaching events represent one of the major threats 

in respect to global warming. This drastic example shows the direct need between host 

and microbes (Wegley et al. 2007). Besides the well-known symbiotic relationship 

between zooxanthellae and coral, other members of the holobiont include bacteria, 

archaea, viruses, fungi and endolithic algae, which provide mutualistic benefits. 

Disturbance or shifts in any of these partners can compromise the health of the whole 
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animal (Bourne et al. 2009). Affecting the holobiont fitness has been shown to influence 

the response of bacterial communities to thermal stress, which leads to susceptibility of 

the holobiont to bleaching, disease and colonization by opportunistic potential pathogens 

(Bourne et al. 2013).  

Typical prokaryotic groups present within a corals holobiont are Alphaproteobacteria, 

Gammaproteobacteria and Bacteroidetes, whereas Alphaproteobacteria are 

overrepresented (Pantos et al. 2015). Besides the well-studied members of the 

Hexacorallia, gorgonian corals are able to develop dense communities forming crucial 

three dimensional structures that act as nursing stations, shelter and creates microhabitats 

inhabited by several other species It is suggested that several members of gorgonians 

have a distinct prokaryotic profile that separates itself from the surrounding seawater 

(Bayer et al. 2013; Roberts et al. 2006; Gray et al. 2017). Roumagnac et al. (2013) 

highlighted that the bacterial community associated with the gorgonian coral 

Paramuricea clavata in the Mediterranean Sea is very different in its composition 

compared to the seawater.  surrounding the coral.  Shifts within the prokaryotic structure 

of those corals lead to higher susceptibility to pathogens and viruses (Vezzulli et al. 

2010).  Healthy members of the cold-water gorgonian coral Eunicella verrucosa seem to 

affiliate with the class Gammaproteobacteria (Ransome et al. 2017). Especially, one 

member of this class, the genus Endozoicomonas, showed high relative abundances (rel. 

abundances) within most healthy soft corals sometimes exceeding 50% of the total 

community make-up. Further, but less abundant genera found within the gorgonian coral 

Eunicella cavolini are Ruegeria, Aquamarina, Haliea, Roseovarius, Sphingopyxis and 

Methylobacterium (Ransome et al. 2017; Apprill et al. 2016; Woo et al. 2017; Bayer et al. 

2013). Because the genus Endozoicomonas can only be found in very low concentrations 

in the seawater, this taxon appears to be intimately associated with gorgonians 

(Bleijswijk et al. 2015; Roumagnac et al. 2013). A more comprehensive study confirms 

the presence and dominance of the genus Endozoicomonas within five sympatric 

gorgonians namely Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, 

Leptogorgia sarmentosa and Paramuricea clavata. Therefore, the concept of a core 

microbiome (operational taxonomic units consistently present in a species) is established. 
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Whereas species-specific prokaryotes assemble with certain taxa, the concept also takes 

in account locally variant members that might influence these local associations. For the 

three gorgonians E. cavolini, E. singularis and L. sarmentosa a core microbiome was 

established reaching from four to five core OTUs (Water et al. 2017).  

Aims 

Literature about the microbial taxonomic composition associated with Eunicella labiata 

is scarce if even not established until now. Until recently, research focused on the 

discovery of novel structures with potentially useful biological activity such as 

diterpenoids extracted from E. labiata (Berrue & Kerr 2009; Kakonikos et al. 1999). 

Long-lived species such as gorgonians, displaying slow growth, late maturity and low 

fecundity are among the most affected species considering anthropogenic threats and 

strong disturbances. Additionally, their presence is crucial to maintain the organization 

and diversity of the communities in which they live (Linares et al. 2008).  

This Master thesis will describe the bacterial diversity found in the gorgonian host E. 

labiata, determine its degree of uniqueness in comparison with the structure of the 

surrounding bacterioplankton, and reveal the readily cultivatable fraction within this 

symbiotic consortium. To this end, a custom methodological approach will be employed 

allowing direct comparison between the “total” and “cultivatable” bacterial community 

inhabiting E. labiata using massive Illumina sequencing of 16S rRNA gene amplicon.  

 

Materials and Methods 
 

Sampling and sample processing  
 

Sampling took place at Faro Island (Fig.6) in Southern Portugal (“Pedra da Greta”: Lat. 

36º 58' 47.2N, Long. 7º 59' 20.8W) on the 15th of March 2015. Sample processing, 

bacterial culturing and DNA extraction for sequencing analyses were performed by 

colleges and will hereby be discussed shortly. The water temperature on that day was 
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14°C, with a pH of 8.13 and a salinity of 36.30 psu (practical salinity units). In this study, 

we used the gorgonian coral E. labiata (Fig.4A).  

 

Figure 6- Location of the sampling area Faro, Portugal (“https://mapmaker.nationalgeographic.org/“). 

 

Three samples were taken from the coral E. labiata (EL01; EL02; EL 03) in 18 meters 

depth and four samples were taken from the surrounding sea water (SW05; SW06; 

SW07, SW08). Furthermore, semi-solid Marine Agar (1/2) was used for incubating and 

culturing bacterial symbionts at 18ºC over 4 weeks. The cultivated prokaryotic 

community was used as plate washes to be further analyzed. “Plate washing” involves 

extracting the total community DNA from washes of Marine Agar culture plates and is 

therefore a culture-dependent methodology for assessing the coral-associated microbiome 

without having to purify and singularize colonies (Hardoim et al. 2014). 

The DNA-extraction method and plate washing follows the protocol from Hardoim and 

colleges 2014 and will be reviewed shortly. The coral tissue was ground with a sterile 

mortar and pestle in seawater. The suspension was well mixed to reach a coral-derived 

homogenate, which was vortexed in a sterile polypropylene tube, centrifuged to decant 

https://mapmaker.nationalgeographic.org/
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coral cells and debris. After removing the supernatant into new polypropylene tubes, it 

was centrifuged a second time, resulting in the final microbial pellet, which was used for 

DNA extraction.   

For the plate washing method, aliquots of homogenates prepared as above, were serially 

diluted and plated onto Marine Agar. After four weeks of incubation at 18ºC, all grown 

colonies on a given plate were re-suspended in sterile artificial seawater and transferred 

into a sterile polypropylene tube. The suspension was thoroughly mixed and centrifuged, 

the supernatant was discarded and DNA extraction was performed. This cell pellet was 

then used as starting material resulting in three in situ plate wash samples (Pl.W.01, 

Pl.W.02, Pl.W.03). 

Sequencing was performed at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) 

on a MiSeq apparatus following the manufacturer’s guidelines, enabling high-throughput 

microbial ecology at the greatest coverage yet possible (Caporaso et al. 2012).  

Because the 16S rRNA gene is universally present across bacteria, highly conserved and 

can be easily amplified using universal primers, microbial analyses are often performed 

using 16S rRNA amplicon sequencing. The starting point of the typical pipeline for 16S 

amplicon analysis, the use of primers designed to amplify the hypervariable regions of 

the 16S rRNA gene. The derived sequences are then clustered to “Operational 

Taxonomic Units” (OTU) based on similarity. The similarity between a pair of sequences 

is computed as the percentage of sites that agree in a pairwise sequence alignment, where 

a common similarity threshold used is 97%. From each OTU, a single sequence is 

selected as a representative. This representative sequence is annotated and that annotation 

is applied to all remaining sequences within that OTU. Since 16S amplicon analysis 

might have millions of reads, the clustering into OTUs is beneficial since it may result in 

only thousands of OTUs, making downstream analysis become more tractable (Nguyen et 

al. 2016).  

http://www.mrdnalab.com/
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In this study, the 16S rRNA gene V4 variable region PCR primers 515/806 (Apprill et al. 

2015) were used in a single-step 30 cycle PCR using the HotStarTaq Plus Master Mix Kit 

(Qiagen, USA) under the following conditions: 

• 94°C for 3 minutes  

• Followed by 28 cycles (5 cycle used on PCR products) of 94°C for 30 seconds, 

53°C for 40 seconds and 72°C for 1 minute, after which a final elongation step at 

72°C for 5 minutes was performed.  

After amplification, PCR products were checked in 2% agarose gel to determine the 

success of amplification and the relative intensity of bands. Multiple samples were 

pooled together (e.g., 100 samples) in equal proportions based on their molecular weight 

and DNA concentrations. Pooled samples were then purified using calibrated Ampure XP 

beads. Then the pooled and purified PCR products were used to prepare a DNA library 

following Illumina TruSeq DNA library preparation protocol.  

Libraries were created out of each of the individual amplicons. MR DNA does not use 

long concatemer primers as part of illumina data to keep amplification bias to a 

minimum. Additionally, MrDNA started processing the received sequence data, which 

will be summarized next.  

After a q25 trimming of the ends, the reads were joined together. The inserted barcodes 

for identification were localized in the joined reads. The Q25 sequence data derived from 

the sequencing process was processed using a proprietary analysis pipeline. Sequences 

were depleted of barcodes and primers; then short sequences <200bp were removed, 

sequences with ambiguous base calls were removed and sequences with homopolymer 

runs exceeding 6 bp were also removed. The sequences were than denoised and 

Operational Taxonomic Units were defined clustering at 3% divergence (97% similarity) 

followed by the removal of singleton sequences and chimeras (Capone et al. 2011).The 

final OTUs were taxonomically classified using BLASTn against a curated database 

derived from Green Genes, RDPII and NCBI (www.ncbi.nlm.nih.gov, Desantis et al., 

http://www.ncbi.nlm.nih.gov/
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2006, http://rdp.cme.msu.edu) and compiled into each taxonomic level into both “counts” 

and “percentage”.  

Finally, 1911 OTUs were created from MR DNA and from this point on my part of the 

analysis started. The 1911 OTUs were used by MR DNA to classify the bacterial 

diversity blasting it against the Greengene database. We decided to re-do the 

classification using a more up-to date database, SILVA (https://www.arb-

silva.de/aligner/). This database is a comprehensive web resource for up to date, quality-

controlled databases of aligned ribosomal RNA gene sequences from bacteria, archaea 

and eukaryotes. We used SINA to compute the alignment. SINA is a reference-based 

alignment tool, designed to maintain high alignment accuracy while allowing for volume 

sequence processing (Quast et al. 2012). The file containing the representative sequence 

of each of the 1911 OTUs was split in two separate files, uploaded and aligned. The new 

classification replaced the classification done by MR DNA. Sequences corresponding to 

chloroplasts, mitochondria, eukaryotes, unclassified organisms and singletons were 

removed (Table 2).   

After cleaning procedure, the dataset shrinked from 1,911 OTUs and 362,384 reads down 

to 1,092 OTUs and 256,715 reads.  

Table 2- Number of operational taxonomic units (OTUs) and reads removed during the cleaning process. 

 

 

 

Alpha diversity  
 

Data Nº Reads Nº Otus

Raw Data 362.384 1911

Unclassified 55.089 516

Eukaryotes 6999 82

Chloroplasts 43.324 195

Mitochondria 237 6

Singletons 20 20

Cleaned-Data 256.715 1092

http://rdp.cme.msu.edu/
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Biodiversity aims to quantify the ecological status of different biotopes by known 

abundances of species. The term biological diversity dates back to the early 1980’s and 

was referred to as the number of species present (Lovejoy 1980).  

In this study, rarefaction curves were created using the package vegan within R with the 

function “rarecurve”, to compute rarefied species richness. The function draws a 

rarefaction curve for each row. Within rarefaction curves each sample category is 

randomly subsampled. The species accumulation point after each new sampling effort is 

saved and finally a smooth curve is drawn through the points. The system is perfectly 

sampled if the curve reaches an asymptote and no more new species are added.  

So-called biodiversity indices are based on species differences that are insensitive to 

abundance conditions (Izsak & Papp 2000). To describe alpha diversity in the samples, 

four parameters were used: the observed richness, Chao1, abundance-based coverage 

estimator (ACE) and the Shannon Wiener index.  

The observed species richness is the total of species observed in a sample or a set of 

samples.  

As a popular diversity index, the Shannon-Wiener Index intuitively depends on the 

number of species occurring and the evenness of the distribution of individuals among 

the species, and follows the formula 

 

Equation 1- Shannon Wiener Index 

− ∑ 𝑝𝑖 𝑙𝑜𝑔 𝑝𝑖

𝑠

𝑖=1

 

                                                    

(Hughes et al. 2001) 

Where s stands for the number of species and pi (i = 1,…, s) denotes the probability of an 

individual belonging to the ith species (Izsak & Papp 2000). 

The Chao1 (Chao 1984) estimator calculates the estimated true species diversity of a 

sample following the formula 
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Equation 2- Chao1 

𝑆1 =  𝑆𝑜𝑏𝑠 +  
𝐹1

2

2𝐹2
  

(Hughes et al. 2001) 

Where Sobs is the number of species in the sample, F1 is the number of singletons and F2 

is the number of doubletons. The estimator assumes that if rare species are still found, it 

might be likely, that not all species have been discovered.  

Compared to Chao1, the ACE estimator (Chao & Leen 1992) included data from all 

species with fewer than 10 individuals, when Chao1 just uses singletons and doubletons 

found within the dataset. The ACE-Estimator follows the formula  

Equation 3- ACE 

𝑆
𝑎𝑏𝑢𝑛𝑑+ 

𝑆𝑟𝑎𝑟𝑒
𝐶𝐴𝐶𝐸

 + 
𝐹1

𝐶𝐴𝐶𝐸
 𝛾𝐴𝐶𝐸

2  

(Hughes et al. 2001) 

Srare represents the number of rare samples (abundances equal or lower than 10) and Sabund 

is the number of abundant species (abundances higher than 10). 

Equation 4- ACE – CACE 

𝐶𝐴𝐶𝐸 = 1 −  
𝐹1

𝑁𝑟𝑎𝑟𝑒
 

(Hughes et al. 2001) 

CACE estimates the sample coverage, F1 being the number of species with i individuals 

and  

Equation 5- ACE – Nrare 

𝑁𝑟𝑎𝑟𝑒 =  ∑ 𝑖𝐹𝑖

10

𝑖=1
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(Hughes et al. 2001) 

γ2
ACE is estimating the coefficient of variation of the Fi’s with the formula 

Equation 6- ACE -γ2
ACE 

𝛾𝐴𝐶𝐸
2 = max [

𝑆𝑟𝑎𝑟𝑒  ∑ 𝑖(𝑖 − 1)𝐹𝑖
10
𝑖=1

𝐶𝐴𝐶𝐸(𝑁𝑟𝑎𝑟𝑒)(𝑁𝑟𝑎𝑟𝑒 − 1)
− 1] 

(Hughes et al. 2001) 

 

To even out the differences between the amount of reads in our samples, we decided to 

rarefy our dataset. The dataset with the lowest number of reads found between the sample 

categories was within the E. labiata in situ sample number one with 10,162 reads. The 

highest number of reads were found in the seawater sample number two (42,768). Using 

the function rarefy_even_depth in R, the program resamples an OTU table such that all 

samples have the same library size, which in our case referred to the smallest library size 

containing 10,162 reads. Rarefying is used to normalize microbiome counts that have 

resulted from libraries of widely-differing sizes and was first proposed by Howard L. 

Sanders, who recognized the problem that sample size increases and individuals are 

added at a constant arithmetic rate but species accumulate at a decreasing logarithmic rate 

when comparing samples of different sizes (Sanders 1968). 

 

Taxonomic stacked bar charts were completed using R in addition with the R-packages 

GGPlot2, dplyr and Phyloseq. For the stacked bar chart, we continued using the rarefied 

dataset. For a clear illustration, OTUs lower in their abundance than 2% were removed 

and placed into one stacked bar. The taxonomic composition was assessed for four 

taxonomic levels namely Class, Order, Family and Genus level. 

Statistical Analysis 

 

To investigate if there are any significant differences between the biodiversity indices 

obtained across the sample categories, four One-way ANOVA’s (Analysis of Variance) 
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were performed and assumptions of normality and homogeneity of variances have been 

tested.  

Normality over each independent variable (sample categories) in respect to the dependent 

variables (biodiversity indices) was tested performing the Shapiro and Wilk’s test for 

normality (Shapiro & Wilk 1965). The test uses a W-statistic and refers to the ratio of 

two estimates of the variance of a normal distribution based on a random sample of n 

observations. The numerator of W is proportional to the square of the best (minimum 

variance, unbiased) linear estimator of the standard deviation and the denominator is the 

sum of squares of the observations about the sample mean. W has a simple interpretation 

as an approximate measure of the straightness of the normal quantile-quantile probability 

plot (Royston 2013). The null hypothesis assumes that the values are normally 

distributed. Assuming a significance level of α = 0.05, a p-Value below this threshold 

will lead to a rejection of the null hypothesis.  

The Levene’s test was used to check the assumption that the variances in the populations 

are equal. To verify whether the populations have the same shapes, means, variances and 

that the dependent variable is indeed equal across all groups (seawater, E. labiata in situ 

samples, plate wash samples) the null hypothesis was tested in respect to a significance 

level of α = 0.05.  

Null-Hypothesis- Levene’s Test: 

Observed richness: H0: σ
2

Observed.Seawater= σ2
Observed.E.labiata.in.Situ = σ2

Observed.Plate.Wash 

Chao1:   H0 σ
2

Chao1.Seawater= σ2
Chao1.E.labiata.in.Situ = σ2

Chao1.Plate.Wash 

ACE:   H0: σ
2

ACE.Seawater= σ2
ACE.E.labiata.in.Situ = σ2

ACE.Plate.Wash 

Shannon-Wiener: H0: σ
2

Shannon.Seawater= σ2
Shannon.E.labiata.in.Situ = σ2

Shannon.Plate.Wash 

 

For the ANOVA the r-function “aov” of the package “car” was used, to test the null 

hypothesis which assumes that there are no significant differences between the means.  

Null-Hypothesis-One-way-ANOVA: 

Observed richness: H0: µObserved.Seawater= µObserved.E.labiata.in.Situ= µObserved.Plate.Wash 

Chao1:   H0: µChao1.Seawater= µChao1.E.labiata.in.Situ= µChao1.Plate.Wash 
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ACE:   H0: µACE.Seawater= µACE.E.labiata.in.Situ= µACE.Plate.Wash 

Shannon-Wiener: H0: µShannon.Seawater= µShannon.E.labiata.in.Situ= µShannon.Plate.Wash 

The null hypothesis will be rejected, when the p-Value is lower than the significance 

level α = 0.05.  

Because ANOVA only gives information if there is a difference between one or more 

pairs of groups, a Post Hoc Test was carried out to distinguish which sample categories 

differ from each other in respect to the biodiversity indices.  

Beta diversity 
 

Venn diagrams were created with the full dataset using the Venni 2.1 online tool 

(http://bioinfogp.cnb.csic.es/tools/venny/). The sum of all OTUs in each sample category 

was built and used to create the diagram. The diagram illustrates all shared and unique 

OTUs between the sample categories.  

To investigate further differences between the sample categories a Principal Coordinates 

Analysis (PCoA)  was performed (Gower 2015). Unconstrained ordinations are generally 

extremely useful for visualizing broad patterns across the entire data cloud, and allow the 

visualization of potential patterns of difference in the location or relative dispersion 

among groups (Zealand & Zealand 2003). The principal coordinate analysis was done 

with the R-packages “phyloseq” and “vegan”. We used the Hellinger transformation 

(Legendre & Gallagher 2001) to even out high differences between values of abundance. 

The transformation is well suited to species abundance data with low counts and many 

zeros. It is dividing each value in a data matrix by its row/column sums and taking the 

square root of the quotient. It is defined as 

Equation 7- Hellinger Transformation 

𝑦′𝑖𝑗 =  √
𝑦𝑖𝑗

𝑦𝑖
 

                                                       

(Legendre & Gallagher 2001) 

http://bioinfogp.cnb.csic.es/tools/venny/
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To see which OTUs play important roles in the PCoA, we included the 20 most abundant 

OTUs in the graph. Because our taxonomic classification was performed to the genus 

level, points belonging to the same genus were joined within the graph and therefore less 

than 20 OTUs are visible.  

To test if there is a significant difference between the samples and the different OTUs 

found within each sample category a permutation test was done. Within the R-package 

vegan the function “adonis” was used. Adonis is a function for the analysis and 

partitioning sums of squares using dissimilarities and is directly based on the algorithm 

from Anderson (2001). 

Finally, we performed a cluster analysis. This analysis is a statistical method, which aims 

to classify several objects into groups (clusters) according to similarities between them 

(Suzuki & Shimodaira 2006). To create a hierarchical clustering the R-package “pvclust” 

was used. P-values for the hierarchical clustering were calculated with the function 

“pvclust”. The function calculates p-values for hierarchical clustering via multiscale 

bootstrap re-sampling (1000 bootstrap replications were used). Two types of p-values are 

calculated: The approximately unbiased (AU) p-value and the bootstrap probability (BP). 

To calculate the AU-p-value, which has superiority in bias over BP value calculated by 

the ordinary bootstrap re-sampling, the multiscale bootstrap resampling is used 

(Shimodaira 2002).  

Results   

Alpha Diversity 
 

Figure seven shows the rarefaction curve drawn for each sample category. The vertical 

line marks the smallest library with 10,162 reads. The rarefied species richness can be 

found at the crossing point of each curve with the vertical line. The plate wash samples 

had the slowest slope, since not many species were added with each sample effort at an 

early stage. A higher slope was found within our E. labiata in situ samples indicating a 

less complete sampling effort compared to the plate washes. The E. labiata in situ sample 
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number one had the highest species richness within the accumulation curve. Together 

with the discrepancy of E. labiata sample number one having higher number of species 

than number two and three, this might indicate that the number of species still will 

increase significantly when increasing the sampling effort. Highest rarefied species 

richness is found for seawater samples reaching species richness values between 500 and 

650 after randomly subsampling the categories 10,162 times. Whereas seawater samples 

one to three were similar in terms of alpha diversity, sample four separated itself with 

higher species richness. However, it seems that the seawater samples did not differ a lot 

in their final plateau, resulting in the assumption that the sampling effort might already 

represent the bacterial community very well with only a few further species (OTUs) 

required to be sampled for complete coverage.   

 

Figure 7- Rarefaction curve of each sample category. The vertical line marks the smallest library size of 10.162 reads 

found in the E. labiata in situ sample number two. 
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The ACE values were highest in the seawater and lowest in the plate wash sample 

categories (Fig.8). Within the E. labiata in situ sample category the values were slightly 

higher compared to the plate wash category. Abundance-based coverage values decreased 

more than 50% when comparing the seawater categories with the two latter ones. 

Because of the removal of singletons, differences between the estimators Chao1 and ACE 

might have gone as the estimations of both equations are very similar. Observed richness 

was again highest in the seawater sample and decreased approximately 47% in the E. 

labiata in situ category. The lowest richness mean value again was found within the plate 

wash category. The Shannon Wiener Index continued with the trend of seawater category 

representing the highest value (4,2), followed by the E. labiata in situ category (3,4) and 

finishes with the plate wash category (2,7) with a mean value less than three.  

After retrieving significant p-values discriminating between sample categories for every 

biodiversity index, table three shows the significant groupings, obtained from the Tukey 

Honest Post Hoc test. Significant differences regarding the observed richness were found 

between the seawater and the E. labiata in situ sample category and the seawater and 

plate wash category. There was no significant difference between the plate wash and the 

E. labiata in situ sample. The same result was found for the comparisons of the Chao1 

and ACE biodiversity indices across sample categories. Referring to the Shannon Wiener 

Index, the only statistical significant result was found between the seawater and the plate 

wash sample categories. The alpha diversity measured with the Shannon Wiener Index 

was not significantly different between the coral itself and its surrounding seawater.  
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Figure 8- Alpha diversity indices used. The bar charts represent the mean of each sample category of each diversity 

parameter. The whiskers represent the standard errors and different letters indicate significant differences.  

 
 

 

Table 3- The p-values of each grouping received from the Tukey Honest Post Hoc Test with a 95% confidence interval. 

Statistical significant p-values are highlighted in red. 

 

 

Bacteria dominated the 16S rRNA gene dataset whereas archaea never exceeded 4% of 

the total reads within each sample category. Eighteen different OTUs were found within 

the archaeal domain Euryarchaeota and two distinct OTUs within the Thaumarchaeota 

(Table 5). From the twenty OTUs assigned as Archaea only one was taxonomically 

distinct, Halococcus belonging to Euryarchaeota. All other OTUs in this phylum were 

assigned as unclassified Marine Group II.  
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The highest diversity within the archaea was found in the seawater samples and 

decreased in the E. labiata in situ samples, being lowest in the plate wash samples.  

In the seawater sample category (total sum of all 4 seawater samples), highest counts of 

reads in the bacterial domain were found within the Proteobacteria, with 71,833 reads, 

followed by Actinobacteria (37,336 reads) and Bacteroidetes (23,415 reads) (Table 4).  

The 37,336 reads assigned to the phylum Actinobacteria corresponded to 60 different 

OTUs whereas the 23,415 reads assigned to the phylum Bacteroidetes corresponded to 

197 different OTUs. Highest number of OTUs were detected in Proteobacteria (633). 

Joining the three samples of the E. labiata in situ samples, highest number of reads 

within the bacterial domain was still represented by the Proteobacteria (26.339 reads), 

followed by Actinobacteria (2.064 reads) and Bacteroidetes (979 reads).  

Considering the sum of the plate wash samples a slight difference occurred. While 

Proteobacteria dominated the culturable community from E. labiata (81.123 reads), the 

phylum Firmicutes (337 reads) was the second most abundant, followed by 

Actinobacteria (273 reads) and Bacteroidetes (139 reads).  
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Table 4- Total bacterial OTUs and reads found within each sample category at Phylum level. 

 

Phyla Otus Sequences Otus Sequences Otus Sequences

Acidobacteria 6 15 7 66 1 1

Actinobacteria 60 37336 30 2064 29 273

Bacteroidetes 197 23415 71 979 44 139

Chlamydiae 0 0 1 8 0 0

Chlorobi 1 9 1 1 1 1

Chloroflexi 1 5 4 23 0 0

Cyanobacteria 9 1120 7 129 2 8

Euryarchaeota 18 4590 6 142 3 8

Fibrobacteres 2 6 0 0 0 0

Firmicutes 5 108 8 352 6 337

Fusobacteria 2 14 1 1 0 0

Gemmatimonadetes 7 31 2 8 3 3

Lentisphaerae 2 21 0 0 1 1

Marinimicrobia (SAR406 clade) 18 3850 11 273 7 28

Nitrospirae 0 0 1 13 0 0

Parcubacteria 3 10 2 18 0 0

Planctomycetes 24 886 11 146 6 10

Proteobacteria 633 71833 427 26339 403 81123

SBR1093 1 25 0 0 1 1

Thaumarchaeota 2 255 1 30 1 1

TM6 (Dependentiae) 1 3 0 0 0 0

Unclassified (Bacteria) 1 18 0 0 1 1

Verrucomicrobia 23 307 12 325 6 6

Total 1016 143.857 603 30.917 515 81.941

Seawater E.L. In Situ E.L. Plate Wash
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Table 5- Taxonomic and abundance overview of all archaeal OTUs found in all sample categories. Number within 

sample category columns represent the sum of the number of reads joined for each sample category. 

 
 

Figure nine shows the relative abundance (rel. abundance) distribution of bacterial classes 

across all samples, where OTUs with a rel. abundance lower than 2% were filtered and 

joined within a single stack, represented by an olive color. Whereas the relative 

taxonomic distribution remained similar over all four seawater samples, there was higher 

variability within each of the other two sampling environments (E. labiata in situ and E. 

labiata plate wash) especially in the within-sample variability in the in-situ sample. 

Alphaproteobacteria, Acidimicrobia and Gammaproteobacteria were the classes with the 

highest relative abundances within the four seawater samples. Moving on to the E. 

labiata in situ samples, sample “In.S.02” showed a clear difference regarding the 

abundance of Gammaproteobacteria, which dominated the sample. In all three E. labiata 

in situ samples the relative abundances of the Flavobacteria and of the 

Gammaproteobacteria decreased and increased, respectively, revealing one obvious 

difference in the taxonomic compositions of the seawater and E. labiata in situ samples. 

The first plate wash sample (PW.01) was dominated by Alphaproteobacteria. As seen for 

the E. labiata in situ samples, there was considerable degree of variability in taxonomic 

composition between replicates of the plate wash sample category, as in the second 

OTU Domain Phyla Class Order Family Genus Seawater E.L.In.S. Pl.W.In.S

OTU_1267 Archaea Euryarchaeota Halobacteria Halobacteriales Halobacteriaceae Halococcus 5 0 0

OTU_904 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 7 0 0

OTU_757 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 9 0 0

OTU_916 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 10 0 0

OTU_1327 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 11 0 0

OTU_808 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 12 0 0

OTU_973 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 12 0 0

OTU_758 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 14 0 0

OTU_1875 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 14 0 0

OTU_987 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 14 2 0

OTU_375 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 29 0 0

OTU_1137 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 61 0 0

OTU_1394 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 122 0 0

OTU_927 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 147 12 0

OTU_95 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 184 35 0

OTU_69 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 405 31 1

OTU_300 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 663 5 1

OTU_12 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group II Uncl. Marine Group II 2871 57 6

OTU_407 Archaea Thaumarchaeota Marine Group I Uncl. Marine Group I Uncl. Marine Group I Candidatus Nitrosopelagicus 55 0 1

OTU_102 Archaea Thaumarchaeota Marine Group I Uncl. Marine Group I Uncl. Marine Group I Candidatus Nitrosopumilus 200 30 0

Total 4845 172 9
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(PW.02) and the third sample (PW.03). Reads assigned to Gammaproteobacteria were 

well represented and sharing dominance with Alphaproteobacteria reads.  

 

Figure 9- Relative Taxonomic composition (Taxonoic level: Class) of each sample. OTUs less than 2% in their 

abundance were removed and placed within the olive colored stacked bar. 

 

Moving down the taxonomic hierarchy from the class to the order level, the overall 

similarity between each seawater sample remained high and constant (Fig. 10). No large 

differences were seen between each of the seawater samples. The highest relative 

abundance was found for the Acidimicrobiales, followed by SAR11 clade, Flavobacteria, 

Rhodobacteriales and Oceanospirillales. Lowest rel. abundances were shared between 

the Cellvibrionales, Thermoplasmatales, Sphingomonadales and Rickettsiales. The in-situ 

coral samples showed increased abundances of the order of Rhodobacterales, 

Oceanospirillales, Sphingomonadales and Alteromonadales when compared with 

seawater. However, variability between replicates could also be depicted. For instance, 

while the order Rhodobacterales was dominant in one sample, Oceanospirillales was the 

prevalent order in the remaining samples. Additionally, in situ sample one “In.S.01” 

showed a higher abundance of Vibrionales when compared to “In.S.02” and “In.S.03”.  

Flavobacteriales, Cellvibrionales and SAR11 clade showed decreased abundances in the 

coral in situ samples compared to the seawater samples. In all three plate wash samples 
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Rhodobacterales represented the dominant order, followed by Sphingomonadales in 

sample one. In plate wash sample number two, the second most abundant OTUs found 

corresponded to Vibrionales followed by Sphingomonadales in sample one. In contrast, 

Sphingomonadales represented the second most abundant order before the Vibrionales in 

our third sample. Furthermore, the third sample harbored a higher number of 

Alteromonadales than plate wash samples number one and two.  

 

 

Figure 10- Relative Taxonomic composition (Taxonoic level: Order) of each sample. OTUs less than 2% in their 

abundance were removed and placed within the olive colored stacked bar. 

 

At the family level, the similarity between each seawater sample decreased in comparison 

with those observed for higher taxonomic ranks (Fig. 11). While the OM1 clade 

dominated all four samples, sample two, three and four differed from the first sample 

considering the relative abundance of Hahellaceae, which was lower in the seawater 

sample number one. After the OM1 clade, Surface1 is second, followed by 

Rhodobacteraceae, SAR86 clade, SAR116 clade and Flavobacteriaceae. The lowest 

relative abundances within the seawater samples before reaching the 2% threshold of 

filtered OTUs were shared between the Cryomorphaceae, Marine Group II, NS9 Marine 

Group, and two unclassified OTUs belonging to the Oceanospirillales and 
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Marinimicrobia. Within the E. labiata samples the rel. abundance of Rhodobacteraceae, 

Hahellaceae and Marine Group II increased in comparison with seawater, whereas the 

families Flavobacteriaceae, NS9 Marine Group, OM1 clade, SAR86 clade, SAR116 clade 

and Surface1 decreased in abundance. Coral sample number two was dominated by 

Hahellaceae and differed in family composition from the in-situ E. labiata samples one 

and three. In the first coral sample, there was a higher relative abundance of Vibrionaceae 

compared to the E. labiata samples number two and three. The second coral sample also 

differed in the relative abundance of the Surface1 family which was higher in number one 

and three. Finally, E. labiata in situ sample number three differed from the coral samples 

with a higher rel. abundance in Rubritaleacaea. In all three plate wash samples 

Rhodobacteraceae were dominant (Fig. 11). The second most abundant family in the 

plate wash sample number one was Sphingomonadaceae, while plate wash samples 

number two and three both had higher relative abundances of Vibrionaceae than 

Sphingomonadaceae (Fig. 11). A further difference between this sampling environment 

was the high relative abundance of Shewanellaceae found within the third plate wash 

sample. Comparing all three sample categories (seawater, E. labiata in situ, plate wash in 

situ) the highest relative abundance of “filtered OTUs” (OTUs with rel. abundance lower 

than 2%) was found in the coral samples, decreasing in the seawater samples and being 

lowest in the plate wash samples.  
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Figure 11- Relative Taxonomic composition (Taxonoic level: Family) of each sample. OTUs less than 2% in their 

abundance were removed and placed within the olive colored stacked bar. 

 

Taxonomic composition at the genus level revealed large difference between every 

sample category and also slight variations within each sample category (Fig. 12). The two 

dominant genera within the seawater samples were Canidatus Actinomarina and the 

unclassified Surface1 (Alphaproteobacteria). Lower and more equally relative 

abundances were shared between unclassified SAR86 (Gammaproteobacteria), SAR116 

(Alphaproteobacteria), unclassified Rhodobacteraceae, unclassified NS7 Marine Group, 

and unclassified Marine Group 8 (Archaea). Seawater samples number two, three and 

four had higher relative abundances of Fluviicola, whereas number four, three and one 

had higher rel. abundances of unclassified Oceanospirillales compared to the seawater 

sample number two.  Moving on to the E.labiata in situ samples the dominant genus in 

sample number one and three was Ruegeria, whereas sample number two was dominated 

by Endozoicomonas. Besides Ruegeria and Endozoicomonas, high relative abundances 

were also observed for the genus Vibrio, unclassified Surface1 (Alphaproteobacteria) and 

Sphingorhabdus. E. labiata sample number three differed from other replicates in its 

higher rel. abundance of Labrenzia and Rubritalea. The rel. abundance of Candidatus 

Actinomarina decreased in corals in comparison with the seawater samples. Further 
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differences between sample categories were evident from the analysis of the plate wash 

samples. While Ruegeria dominated plate wash samples number one and two, 

Sphingorhabdus was nearly as abundant as Ruegeria in the plate wash sample number 

three. In sample one, the second most abundant “genus” was an unclassified 

Rhodobacteraceae taxon, followed by Sphingorhabdus and Labrenzia. The relative 

abundance of the genus Vibrio was highest in the plate wash sample number two, 

followed by Sphingorhabdus and Shewanella. The third plate wash sample showed a 

more even distribution. As mentioned, Ruegeria and Sphingorhabdus were the most 

dominant ones, followed by Vibrio, Shewanella, Roseovarius and unclassified 

Rhodobacteriaceae.  

 

 

Figure 12- Relative Taxonomic composition (Taxonoic level: Genus) of each sample. OTUs less than 2% in their 

abundance were removed and placed within the olive colored stacked bar. 

 
 

 

The two most dominant orders of the E. labiata coral microbiome (Oceanospirillales and 

Rhodobacterales) were subjected to more detailed investigation of their genus-level and 

approximate “species” (that is OUT)-level, taxonomic composition and abundance (total 
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number of reads) using heatmaps (Figs. 13 and 14). Concerning to the order 

Oceanospirillales (Fig. 13), after joining OTUs belonging to the same genus, six different 

genera could be identified and six more categories represented unclassified candidates. 

Differences in the abundances of the identified genera across sample categories were 

highest for the genus Endozoicomonas, and the unclassified groups (and putative 

candidate genera) ZD0405, candidates of Oceanospirillales (consisting of several genera) 

and SAR86. Endozoicomonas showed the highest abundances in the E. labiata in situ 

samples, being very dominant in sample “In.S.02”. The genus displayed lowest 

abundance in the plate wash samples. Reads of the unclassified OTUs in the SAR86 clade 

were most and least abundant in the seawater and the plate wash samples, respectively. 

Genera detected only in seawater were unclassified OM182 clade, Litoricola and 

Neptuniibacter. Abundant Oceanospirillales genera present in both between the E.labiata 

and the cultivated plate wash samples were Kangialla, Endozoicomonas, unclassified 

ZD0405, unclassified Oceanospirillales and unclassified SAR86 clade.    

 

 

Figure 13- Heatmap of the rarefied dataset from every sample only including the order Oceanospirillales. 
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A closer look into the genus-level abundances and taxonomic composition of the order 

Rhodobacterales is shown in Fig. 14. Compared to Oceanospirillales, most of the OTUs 

could be assigned to a certain genus. Only one of the heatmap represents the category 

unclassified Rhodobacteraceae. Ruegeria showed high abundances  in the E. labiata in 

situ, and the plate wash samples, displaying intermediate abundance in the seawater 

samples.  Roseovarius displayed a similar profile with the highest abundance in total 

number of reads within the E. labiata in situ samples, a slight decrease in abundance in 

the plate wash samples and lowest abundance in the seawater samples. Sedimentitalea 

displayed low abundance in the seawater and was found to be enriched in two out of three 

E. labiata in situ samples. Shimia was present in very low abundances in all three sample 

categories and only reached noticeable number of reads in one seawater (“SW.04”) and 

one E. labiata in situ sample (“In.S.03”). Planktomarina was detected in all ten samples, 

showing highest abundance in seawater and lower, but equivalent, abundances in the 

E.labiata-derived samples (in situ and plate wash). One genus showing increased 

abundance in the coral compared to seawater was Labrenzia. Its abundance was indeed 

lowest in seawater but increased in the gorgonian coral, showing similar numbers in all 

plate wash samples. A genus reaching higher abundances within our seawater and plate 

wash samples but a decrease in the E. labiata in situ samples was Ascidiaceihabitans. 

Whereas Ascidiaceihabitans was abundant in the seawater samples, it displayed low 

abundances in two in situ coral samples, whole it was consistently found in higher 

abundances in the plate wash samples. Unclassified Rhodobacteraceae OTUs were well 

presented in all samples.  
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Figure 14- Heatmap of the rarefied dataset from every sample only including the order Rhodobacterales. 

 

Beta Diversity 
 

Figure 15 shows the uniqueness of each sample category through a Venn diagram. Four 

percent of the E. labiata OTUs were unique to this category being only found within the 

in situ coral samples. OTUs shared between the coral and the seawater represented 49% 

of the total OTU diversity uncovered in this study. From all the 1092 OTUs present in 

our dataset, 47.1% were rediscovered in our plate wash samples. Operational Taxonomic 

Units shared between the culture dependent and culture independent approach (E. labiata 

in situ vs. plate wash samples), accounted for remarkable 62% including genera such as 

Ruegeria, Sphingorhabdus, Labrenzia, other unclassified Rhodobacteraceae. The highest 

unique diversity in terms of OTUs was found for the seawater sample category, with 350 

unique OTUs accounting for 32% of the total bacterial diversity observed across the data.  
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Figure 15- Venn-Diagram representing total number of OTUs found in each sample category using the non-rarefied 

dataset. Blue represents the seawater, yellow the E. labiata in-situ samples and green the plate wash in-situ samples.  

 

Fig 17 shows a Principle Correspondence analysis (PCoA) using an Euclidean distance 

matrix obtained for all samples based on their OTU composition, and plots the 20 most 

abundant OTUs (representing 12 bacterial genera) in the dataset in the ordination diagram 

according to their shifts in abundance across the studied sample categories. Thus, the 

graph represents the approximate contribution of the displayed OTUs in differentiating 

the taxonomic profiles of the sample categories analyzed. For instance, the genus 

Endozoicomonas clearly depicts its tight association with (and higher abundance in) the 

in situ gorgonian samples, being placed far apart from the seawater samples in the 

ordination diagram. Ruegeria was positioned between the E. labiata in situ and the plate 

wash samples, reflecting its considerable recovery from both sources. Shewanella, 

Spingorhabdus and Vibrio were also clearly distant from the seawater samples, being 

much closer to the plate wash samples. Clustered all close together with the seawater 

samples were unclassified Surface1, unclassified SAR86, Candidatus Actinomarina, 

unclassified Marinimicrobia, unclassified Rhodobacteraceae and Planktomarina OTUs. 

Table 6 shows the result of the permutational Analysis of Variance run for the distance 
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matrix with 999 permutations, supporting statistical differences between the samples with 

a p-value of 0.001.  

  

 

Figure 16 - Principal Coordinates Analysis (PCoA) using Hellinger transformed data on Euclidean distances 

calculated for each pair of samples based on their OTU community profiles. The 20 most abundant OTUs in the dataset 

are displayed in the ordination diagram reflecting the relative abundances across the three sample categories.  

 
 

Table 6 - Results of the Permutation test, testing the three different sample categories. 

 
 

Cluster analysis (Fig. 18) revealed that the seawater samples clearly separated from the E. 

labiata in situ and plate wash samples and the plate wash samples, with 100% bootstrap 

Permutational Multivariate Analysis of Variance Using Distance Matrices

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

Environment 3 3.15809672 1.052698907 6.832096019 0.773553 0.001

Residuals 6 0.924488389 0.154081398 0.226447

Total 9 4.082585109 1
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support. Comparing the E. labiata in situ samples with the plate wash samples, bootstrap 

values decreased considerably not clearly supporting the separation of these sample 

categories from each other, revealing that the plate wash cultured community, which 

originated from the E. labiata in situ community, represents to some extent the original 

symbiotic consortium. The first branching indicates that the microbial community of 

“In.S.01” and “In.S.02” separates from the other plate wash samples and the in situ 

“In.S.03”.  

 

Figure 17- Hierarchical cluster analysis of each sample using the Hellinger transformed dataset. Red values represent 

the approximately unbiased values (AU) and green ones represent the bootstrap probabilities (BP). 

 

Discussion  
 

Alpha Diversity  
 

The archaeal contribution to the total number of OTUs was about 1.8%, and most of the 

archaeal OTUs belonged to the unclassified Marine Group II.  Highest diversity within 

the archaeal genera were found in the seawater. Studies on archaeal associations with 
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gorgonians are scarce. It was only recently that some studies shed light on the roles of 

archaea in association with sessile marine invertebrates. A study on the microbial 

assemblages of a cold-water coral mount in the North Atlantic, identified archaeal 

communities on dead coral skeleton and in freshly produced mucus of living corals. 

Skeleton and mucus contained a substantial amount of Thaumarchaeota Marine Group 1 

of which the majority was unclassified at the genus level. The genus Nitrosopumilus 

made up 3% and Cenarchaeum 0.4% of the total prokaryotic community in the skeleton 

and 0.1% in the mucus (Bleijswijk et al. 2015). Within the sponge Axinella sp. 65% of 

the symbiotic community associated with the sponge was represented by a single archaeal 

16S rRNA gene sequence leading to conclusions of a true symbiotic association between 

archaeon and sponge (Riesenfeld et al. 2004). In the marine sponge Sarcotragus 

spinosulus, Nitrosopumilus (phylum Thaumarchaeota), known for its ability to oxidize 

ammonium into nitrite, was found to be the most dominant archaeal symbiont (Hardoim 

& Costa 2014). Archaea, such as Nitrosopumilus which were found within our coral 

samples (30 OTUs), have been found to contain ammonia oxidation genes used for 

nitrification of ammonia to nitrite, a hypothesized mechanism for removal of nitrogenous 

waste in the coral holobiont (Thurber et al. 2009). As proposed by Erwin et al. (2014), 

complex microbiota found within Octocorallia maintain dynamic microenvironments 

offering optimal conditions for different metabolic pathways such as chemical substrates 

(ammonia-rich host waste) and physical habitat for nitrification. Further investigations on 

archaeal relationships might reveal first symbiotic relationships between corals and 

archaea. Ammonia-oxidizing archaea have been consistently reported in associations with 

marine sponges in recent years (Steger et al. 2008; López-legentil et al. 2010). They are 

believed to contribute to host fitness by processing the highly toxic ammonium which is 

excreted by the animal host as metabolic waste, and similar processes may be mediated 

by coral-associated archaea. Symbionts of marine sponges have been in the nitrification 

step of the nitrogen cycle (conversion of ammonia to nitrite, and further from nitrite to 

nitrate) is well documented for marine sponges, and is likely that similar processes may 

be mediated by coral-associated archaea.  

Several papers point out the importance of archaea in deeper water layers, where the 
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archaeal community shifts from an Euryarchaeota-dominated surface population to a 

Crearchaeota-dominated deep-water population (Acinas et al. 1997).  

Within our dataset the seawater represented the highest diversity when referring to the 

Shannon-Wiener Index with an average value of 4.2. Although the observed and 

estimated richness decreased nearly 50% from the seawater to the E. labiata in samples, 

the Shannon-Wiener Index still corresponded to an average value of 3.4 for in situ E. 

labiata, still reflecting high bacterial diversity in these samples. Similar Shannon 

diversity values have been found in the gorgonian E. cavolini (Bayer et al. 2013). 

However, comparing the Shannon-Index between our samples and those retrieved from 

the gorgonian hosts E. singularis and Leptogorgia sarmentosa (Water et al. 2017), the E. 

labiata prokaryotic consortium depicted here showed higher biodiversity.  

From our three E. labiata in situ samples number one displays the highest diverse 

bacterial community including a Vibrio spp. Studies investigating corals and their 

bacterial diversity indicate, that non-diseased samples tend to host less diverse bacterial 

communities (Cooney et al. 2002; Moura et al. 2009). Comparisons between the bacterial 

diversity within the same species might be able to detect early infection stages of corals, 

when colonized by a microbial pathogen. Vibrio spp. are Gram-negative, curved, rod-

shaped bacteria belonging to the class Gammaproteobacteria and are regarded as the 

dominant culturable bacteria in the ocean (Vezzulli et al. 2012). The genus was not very 

well represented within our seawater samples, corroborating observations from another 

study where the bacterial diversity of the coral Mussismilia braziliensis was investigated 

(Moura et al. 2009). Members of the family Vibrionaceae are well known pathogenic 

agents infecting several marine organisms including gorgonians. Successful infections 

seem to be temperature-related since individuals from Eunicella verrucosa diseased at 

temperatures of about 20ºC whereas no infection has been observed in temperatures 

around 15ºC. E. labiata sample number one might not have been showing any 

morphological clues indicating a diseased state but might could still be on an early state 

of infection, since it is showing a higher rel. abundance of the genus Vibrio within its 

taxonomic profile.  However, it is still a problem detecting origins, symptoms and 

reservoirs for marine diseases caused from bacteria. Sources of potentially infectious 

pathogens might be aquaculture, ballast waters, gut microbiota from several seabirds or 
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marine organisms etc. and due to the lack of barriers to dispersal within some parts of our 

oceans, the potential for long-term survival of pathogens outside the host is supported 

(Harvell et al. 2004). In terms of infections and global warming, rising temperatures 

might cause higher mortality rates in the future due to higher successful infection rates 

achieved by several bacterial pathogens such as Vibrio spp.. Sea et al. (2000) reported an 

extensive mass mortality of gorgonians related to a sudden increase in seawater 

temperature along the Ligurian coast in 1999.  

It was shown that within the coral Oculina patagonica in the Mediterranean Sea, Vibrio 

shiloi seems to act as a causative agent of bleaching. Its unique survival strategy was 

described by Sussman et al. (2003). V. shiloi is not present in the coral during the winter. 

The fireworm Hermodice carunculata serves as a winter reservoir for V. shiloi and 

spring-summer vector for the coral-bleaching pathogen. After successful infection 

bacterial abundances increase, where Quorum Sensing (QS), a form of bacterial 

population density-dependent cell-cell communication, might play an important role. 

Several findings indicate that Quorum Sensing signals might be produced in free-living 

planktonic bacteria as well as in bacteria associated with marine organisms. During this 

process bacteria produce and excrete signals that accumulate to a threshold level within a 

diffusion limited environment as in corals and other organisms or environmentally 

available and more or less isolated areas. First QS signals from the marine environment 

were found in the symbiont Vibrio fischeri where the autoinducer synthesized by the 

luminous bacteria needs to reach a threshold to activate the synthesis of the bacterial 

luciferase. The bacteria are colonizing the light organ of the sepiolid squid Euprymna 

scolopes. High population densities of V. fischeri produce visible light in the light organ 

of the squid (Dobretsov et al. 2009; Dew et al. 1981). Vibrio sp. associated with the 

sponge Cymbastela concentrica produce Quorum sensing compounds, as well as isolated 

α- and γ-Proteobacteria from the sponges Mycale laxissima and Ircinia strobilina. 

Besides the coral sample number one, Vibrio spp. were well represented within plate 

wash samples number two and three (Pl.W.02, Pl.W.03). Previous studies indicate, that 

Vibrio spp. and their occurrence at a seasonal scale might be related to temperature since 

abundances dropped with temperatures below 18ºC increased when temperatures were 

equal or greater than 22ºC. Culturing at low temperatures as seen within this study shows 
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might prevent Vibrio spp. from dominating cultured samples (Vezzulli et al. 2010) but 

their enrichment on culture plates, in comparison with the in situ samples suggests, that 

these opportunistic species are already present at very low abundances in healthy coral 

tissue, and their proliferation in the coral-associated consortium might take place quickly 

once conditions favour. Vibrio spp. did not show high rel. abundances present within our 

seawater samples, which might be related to the low seawater temperatures of 14ºC in 

May, 2015.  

The stacked bar chart in figure 12 displays the differences in the rel. abundance between 

the three sample categories. With the exception of Sphingobacteria, the prokaryotic 

community found within our seawater samples was similar to those reposted in other 

studies, where mainly Alphaproteobacteria, Gammaproteobacteria, Sphingobacteria and 

Flavobacteria constitute the heterotrophic bacterioplankton communities (Giebel et al. 

2010), whereas in seawater Acidimicrobiia showed highest relative abundances. 

Within all the seawater samples, in terms of relative abundance of each genus, the single 

stacked bars showed a quite similar distribution of each genus. This indicates that the 

sampled seawater from 18 m depth is having a relatively constant relative bacterial 

composition. Acinas et al. (1997) also points out, that the homogeneity of picoplankton 

communities along a transect in different depth (above and below the deep-chlorophyll 

maximum), remains relatively constant and suggests that these assemblages were 

distributed fairly similar within the seawater. Candidatus Actinomarina is dominating 

within the seawater. Only a few groups of planktonic marine Actinobacteria have been 

described until today. Genomic analysis indicate that their photoheterotrophic lifestyle 

support a planktonic, free-living lifestyle (Mizuno et al. 2015). However, bacteria and 

phytoplankton dynamics are thought to be closely linked in coastal marine environments. 

It has been shown that the diversity, abundance and percentage of diatoms, for example, 

in the phytoplankton community account for a significant amount of the variability in the 

attached bacterial community composition (Giewat et al. 2005). Therefore, the microbial 

taxonomic diversity might change during the year in temperate marine ecosystems and 

our profile does not represent a fixed picture of diversity, when referred to the seawater 

surrounding corals or other marine sessile invertebrates. Future research shall shed light 

on the long-term fluctuations in the prokaryotic composition inhabiting gorgonians. 



49 

 

Hardoim & Costa Rodrigo (2014) showed in their model host, the sponge Sarcotragus 

spinosulus, that the prokaryotic symbionts displayed a state of dynamic stability over 

three successive years, where dominant and less dominant genera fluctuate over longer 

time periods without affecting the function of the sponge holobiont. Candidatus 

Actinomarina is dominating within the seawater. Only a few groups of planktonic marine 

Actinobacteria have been described until today. Genomic analysis indicate that their 

photoheterotrophic lifestyle support a planktonic, free-living lifestyle (Mizuno et al. 

2015). 

Referring to our E. labiata samples, the total number of dominant phyla compared to 

other studies of corals and their prokaryotic profile, result in similar findings with 

Actinobacteria, Bacteroidetes and Proteobacteria representing most dominant phyla 

(Harder et al. 2003; Yokouchi et al. 2006). However, contrasting findings were also 

observed as dominant bacteria found by Littman et. al (2011) in the coral Acropora 

millepora were Cyanobacteria, Proteobacteria, Firmicutes, Actinobacteria, 

Bacteroidetes and Chlorobi. When comparing these results with other marine 

invertebrates inhabiting similar habitats, differences occur within the bacterial profile and 

the rel. abundance of genera. The sponge Scarcotragus spinosulus and its bacterial 

community composition includes Actinobacteria, Acidobacteria, Proteobacteria, 

Poribateria, Chloroflexi, Bacteroidetes. (Hardoim & Costa 2014) already indicating host-

specific differences on a very rough taxonomic scale.  

Gammaproteobacteria represent the most abundant phylum in E. labiata. This group was 

also found to be dominant in other corals, such as in Porites astreoides (Wegley et al. 

2007). The presence of photosynthetic symbionts seem to influence the two most 

dominant classes found within the prokaryotic community of the coral holobiont. 

Gammaproteobacteria seem to dominate when photosynthetic symbionts are presented 

whereas if no photosynthetic symbionts are present the dominating class is 

Alphaproteobacteria (Bourne et al. 2013). 

Compared to the surrounding seawater, Alphaproteobacteria do not represent the 

dominate fraction of bacteria in our E. labiata in situ samples. As a sessile marine 

invertebrate, corals have a direct contact with the surrounding water column, but due to 
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the differences within the taxonomic profiling, corals might take up, exchange or stay in 

contact with their surrounding sediments as well since they are attached to a substrate 

close to the sea floor.  Depending on living depth of a coral and turbulences within the 

water column, sediments might constantly get resuspended releasing prokaryotes 

inhabiting the upper layers of the sediments. Li et al. (2009) showed within a study using 

16S ribosomal DNA clone library analysis that within the surface sediment γ-

Proteobacteria represented nearly 50% and were dominating surface sediments from the 

Pacific Arctic Ocean.  

From our cultured samples Alphaproteobacteria clearly dominate the rel. abundance, 

which is especially seen in the plate wash sample number one. Members of marine 

Alphaproteobacteria have been cultured readily on low-nutrient marine agar from coastal 

seawaters, showing similar dominant results in rel. abundance, using 16S rDNA 

sequences, accounting for 40% of the colonies isolated (Gonza & Moran 1997). Acinas et 

al. (1999) indicate that most bacterial cells living in the ocean cannot be cultivated on 

standard marine media. Nevertheless, they point out that particular cultured strains of 

marine bacteria may represent significant fractions of the bacterial biomass in seawater.  

Coral Holobiont  

 

Oceanospirillales & Rhodobacterales  

 

The order Oceanospirillales belongs the class Gammaproteobacteria. Within the order 

Oceanospirillales, the genus Endozoicomonas is a widely distributed member of the 

bacterial communities associated with gorgonians (Bleijswijk et al. 2015; Roumagnac et 

al. 2013; Bayer et al. 2013; Ransome et al. 2017). Endozoicomonas contain aerobic and 

halophilic members reported to be associated with corals and studies show that both the 

mucus tissue of corals and the skeleton represent habitats for Endozoicomonas 

(Bleijswijk et al. 2015). In the Mediterranean coral Eunicella cavolini, Endozoicomonas 

account for 10 to 60% of the sequence reads (Bayer et al. 2013; Yang et al. 2010). While 

Endozoicomonas are known to be parasites in Bathymodiolus mussels, they seem to form 

symbiotic associations in all other documented cases (Bayer et al. 2013; Woo et al. 
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2017). The genera Endozoicomonas showed clear presence only within the E. labiata in 

situ samples, especially dominating sample number two, and was not abundant in 

seawater nor in cultivated samples. The genus was shown to be capable of metabolizing 

dimethylsulfoniopropionate (DMSP) that is produced by photosynthetic algae (Bayer et 

al. 2013; Raina et al. 2009). To explain associations of Endozoicomonas with corals that 

are not inhabited by photosynthetic symbionts, it has been suggested that members of the 

Oceanospirillales clade are able to degrade various organic substrates. This might 

indicate a symbiotic potential in terms of  providing nutrients to the host (Roumagnac et 

al. 2013), as Gammaproteobacteria were associated with the gastrodermis tissue layer in 

the corals Acropora aspera and Stylophora pistillata (Ainsworth 2009). Besides 

Endozoicomonas, two unclassified members of the class Oceanospirillales were well 

represented in seawater and have been successfully cultured via the plate washing 

approach.  

 

Members of the order Rhodobacterales (Garrity et al. 2015) are within the most dominant 

and ubiquitous primary surface colonizers in temperate coastal waters of the world, and 

estimates suggest that this order, especially members of the Roseobacter clade (Luo & 

Moran 2014), can comprise 25% of total marine bacterioplankton (Dang et al. 2008; 

Buchan & Moran 2005). Rhodobacterales spp. are found in diverse marine systems and a 

showed remarkable diversity in the subarctic waters of the North Atlantic, suggesting that 

different bacterial species in this group are able to adapt to cold environments (Fu et al. 

2010). A further aspect of their distributional success  is due to a tremendous diversity of 

metabolic capabilities (Luo & Moran 2014). Exposing the scleractinian coral Fungia 

granulosa to a hypersaline environment for a short term, the coral samples were 

dominated by bacteria from the family Rhodobacteraceae (Till et al. 2016)..  

Several individuals within this order already have been shown to be related to coral 

diseases such as the white-plague disease. In the Caribbean coral Montastraea faveolata 

significant differences were found in the orders Rhodobacterales, Campylobacterales, 

Planctomycetales and Clostridiales when investigating healthy and white-plague diseased 
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individuals. The orders of Rhodobacterales and Clostridiales were significantly more 

abundant in diseased samples (Bourne et al. 2009).   

The order consists of one family, namely Rhodobacteraceae (Garrity et al. 2015), that is 

generally present in aquatic ecosystems and comprise mainly aerobic photo- and 

chemoheterotrophs but also purple non-sulfur bacteria which perform photosynthesis in 

anaerobic environments. Currently 100 hundred genera are recognized as members of the 

family, although the Stappia group, Ahrensia, Agaricicola and Rhodothalassium do not 

belong phylogenetically to the family (Pujalte & Lucena 2014). 

Members of the marine Roseobacter clade are major participants in global carbon and 

sulfur cycles. Members of this lineage encode metabolic potentials such as quorum 

sensing and type VI secretion systems enabling them to effectively interact with host and 

other bacteria (Zhang et al. 2016). A study with the largest Roseobacter group, the RCA 

(Roseobacter clade affiliated), showed positive correlation with phaeopigments, 

chlorophyll, dissolved and particulate organic carbon, turnover rates of dissolved free 

amino acids, temperature, and negative correlation with salinity (Giebel et al. 2010).  

Ruegeria, a member of the Roseobacter clade, was well documented in the E. labiata and 

the plate wash samples. Moura et al. (2009) also finds Ruegeria as one of the dominant 

bacterial clusters in the coral mucus of Mussismilia braziliensis and its surrounding 

seawater.   

Recent research congruently suggests that shifts in bacterial community structure, results 

in a lower coral host fitness and higher susceptibility to pathogens, highlighting the 

importance of the coral associated microbiome to holobiont health and functioning (Ben-

haim et al. 2003; Bourne et al. 2009). Current research focuses on the microbiota of 

healthy corals, to aid our understanding of this multispecies mutualisms and will help to 

identify which species play a key role in maintaining coral health.  

An example of bacterial community changes within the coral holobiont and their 

relationship with host disease was portrayed by Cooney et al. (2002) who investigated the 

bacterial consortium associated with the black band disease (BBD) within the 

scleractinian corals Diplora strigose, Montastrea annularis and Colpophyllia natans. 
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Whereas Beta- and Gammaproteobacteria were only found within non diseased corals, 

Delta- and Epsilonproteobacteria were only present in diseased samples. Because many 

pathogens have a wide host range coral disease outbreaks for example by generalist 

pathogens can infect a high number of different marine invertebrates. (Harvell et al. 

2004; Green & Bruckner 2000). 

Several members from the coral holobiont (in particular Symbiodinium dinoflagellates) 

influence microbial structure through the release of complex carbon-containing exudates 

including dimethylsulfoniopropionate (DMSP), which can be degraded to 

demethylsulphide, a central molecule in the global sulfur cycle which diffuses from the 

ocean into the atmosphere where it influences cloud formation, with consequences for 

atmospheric chemistry, local climate and water temperature. DMSP has been the focus of 

considerable attention because of its fundamental role as carbon and sulfur sources for 

bacteria. Coral reefs are one of the largest producers of DMSP with the source thought to 

be derived from marine invertebrates harboring symbiotic dinoflagellates. In the marine 

environment, the concentrations of DMSP are highest in reef-building coral reefs 

indicating one example on how coral reefs can effectively alter microbial structure and 

even influence environmental parameters. Endozoicomonas and several other members of 

the Gammaproteobacteria are able to metabolize DMSP and might form symbiotic 

relationships with DMSP-producing corals. Besides DMSP, photo symbionts seem to 

structure microbial communities in their hosts through the release of many other organic 

exudates (Bourne et al., 2013, Bourne et al., 2009).  

A change in the microbiome of the zooxanthellae inhabiting coral Acropora millepora 

represented shifts from a system driven by autotrophy to heterotrophy after a bleaching 

event in 2001/2002 in the Great Barrier Reef (Littman et al. 2011). Carbohydrate, sulfur, 

phosphorous and fatty acid metabolism increased by two- to six-fold in the bleached 

libraries. Since 20-40% of the daily net photosynthetates are released as exudates from 

their symbionts in the coral mucus that is used as a substrate by many of the microbial 

associates, microbial communities potentially shifted towards other forms of nutrients 

acquisition. Within the Proteobacteria phylum the proportions of Gammaproteobacteria 

increased by 60% and Alphaproteobacteria decreased by 30%. Bacterial communities 
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switched from predominately Pseudomonas species to Vibrio species. It was proposed 

that pathogenic Vibrio spp. were capable of hydrolyzing the phospholipids within the 

membrane of the coral itself during heat stress. Additional studies indicated possible 

central roles for Vibrios associated with coral diseases in a variety of coral groups 

(Littman, Willis, & Bourne, 2011, Burdett et al., 2010,  Sunagawa et al., 2009).  

Thurber et. al. (2009) propose that stressed corals contain more disease-associated Fungi 

and Bacteria and therefore shifts from a mutualistic and/or commensal community to one 

that is pathogenic and opportunistic take place under stress. Furthermore, he suggests that 

environmental stressors caused the coral P. compressa to incorporate more genes 

encoding virulence pathways, affecting the communities of microorganisms present in 

the coral holobiont. Differences in the microbial communities have also been shown in 

white-plague affected corals. A study on Mussismilia braziliensis suggests that white 

plague in those corals is a polymicrobial disease. Diseased corals show elevated 

abundances of Alphaproteobacteria in the order, Rickettsiales, which seems to be 

involved in the acroporid white band disease (Garcia et al. 2013). 

 

Beta Diversity 

Figure 15 displays the uniqueness of OTUs found within each sample category. Four 

percent of the OTUs found in the in situ E. labiata samples were exclusive to this sample 

category. We point out, that in our sample the bacterial community of E. labiata is less 

diverse and distinct. April et al. (2013) investigated the bacterial diversity associated with 

the Mediterranean gorgonian coral Eunicella cavolini. To figure out if the coral provides 

a stable environment to the bacteria, they took three samples from three different depths. 

The bacterial community did not vary according to depth, suggesting that depth is not a 

driving force in structuring bacterial community composition in gorgonian corals. 

Comparing the culture dependent and culture independent method, 62% of the total E. 

labiata microbiome was including the genera Ruegeria, Vibrio, Shewanella, unclassified 

Oceanospirillales, unclassified Rhodobacteraceae, Roseovarius and Sulfitobacter 

(excluding OTUs with rel. abundances lower than 2%). The low medium agar, low 

temperatures and slightly longer cultivation period we accomplished a good deal for the 
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bacterial microbiome of E. labiata. In comparison with bacteria retrieved from terrestrial 

samples such as soil, growth rate tend to be higher, when compared with marine 

prokaryotes. Longer cultivation periods therefore might enhance the chance of detecting 

more diversity. Low temperatures also prevent some bacteria from dominating the 

cultivation samples, such as Vibrio spp. are positively correlated with temperature. A low 

nutrient medium might favor prokaryotes, that are used to live in nutrient poor conditions 

and are more efficient in nutrient uptake. Besides the remarkable culturing effort, we 

observe some within variability in our E. labiata in situ samples. Endozoicomonas and 

Ruegeria seem to be a member of the core microbiome in E. labiata. In what extent 

genera such as Shewanella, Labrenzia or Rubritalea vary between individuals, is still a 

matter of future investigation. When comparing the microbial communities of the sponge 

Callyspongia sp. with samples taken from Hong Kong and the sponge Callyspongia 

plicifera from the Bahamas, the two congeneric sponge species from different 

biogeographic regions were shown to have different bacterial associates. The diversity 

was higher in sponge samples from Hong Kong, indicating that besides species specific 

microbial associations the biogeographic distribution and its regional abiotic and biotic 

parameters further influence the prokaryotic communities associated with these species 

(Li 2009). Similar findings were reported by R. A. Littman et.Al. (2009), who 

investigated bacterial communities associated with three species of Acropora that were 

compared at two locations of the Great Barrier Reef. All three species microbiomes 

revealed specific microbiota that were also conserved among all three species of 

Acropora within each location, leading to the conclusion that related corals of the same 

genus harbor similar bacterial types. However, when profiling the prokaryotic community 

from different and further distanced members of Acropora, taxonomic community 

composition was different reinforcing the assumptions suggestions by Li, 2009. 

Taxonomic profiles grouped according to location rather than coral species indicate that 

certain bacterial groups associated specifically with corals, but the dominant bacterial 

genera still differ between geographically-spaced corals (Littman et al. 2009). Pantos et 

al. (2015) came to similar conclusions stating that habitat is the overall controlling factor 

of the coral microbiome, and not other members of the holobiont. It might make more 

sense in defining the core microbiome not necessarily in terms of taxonomic diversity but 
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rather in terms of functions and metabolic pathways within the microbiome (Krediet et al. 

2013). Water et al. (2017) rather delineated the core microbiome of five gorgonian 

species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, Leptogorgia 

sarmentosa and Paramuricea clavata) as resulting from few species-specific associations 

between coral and prokaryotes, while several other microbial genera followed a less strict 

relationship. Locally stable OTUs differed in abundance between different locations, 

leading to differences within the prokaryotic assemblages due to different geographical 

distributions, but with Endozoicomonas being dominant in all five gorgonian species 

(Water et al. 2017). A further study performed on Pocillopora damicornis supports the 

hypothesis of conserved coral-microbial consortia. Analyzing the coral mucus and the 

coral tissue, the coral mucus resembled a bacterial fingerprint of the water column rather 

than the coral tissue and was thus more closely associated with the water. A rarefaction 

analysis indicated higher levels of total diversity assessed for the coral tissue libraries, 

reaching clear asymptotes, as opposed to both the mucus and water libraries. Therefore, 

the mucus reflected a different coral microenvironment in comparison with the coral 

tissue (Bourne & Munn 2005).  

Future perspective 

Nowadays most of the symbiotic microorganisms remain unidentified and the potential 

roles of coral-associated bacteria are still unknown (Li 2009). A single coral colony 

clearly harbors much higher prokaryotic diversity than of zooxanthellae. Taxa occurring 

in multiple colonies offer the best hints to elucidate metabolic importance. Many coral-

associated bacterial ribotypes are most closely related to known nitrogen fixers and 

antibiotic producers (Rohwer et al. 2002). Besides the insights into the diversity and 

biogeography of coral associated microbes, one next challenge is to discover metabolic 

contributions of these microbes to the functioning of the coral holobiont (Wegley et al. 

2007). To fully assess a prokaryotic species, culture independent methods are not enough. 

For physiological studies and manipulations, it is still necessary to culture and isolate the 

microorganisms. To more successfully culture symbiotic microorganisms from corals or 

sponges, media might be enriched with sponge or coral extracts. Enriching cultures with 

minimal amounts of host tissue, co-occurring symbionts or long-term incubation 
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experiments would be valuable for characterizing symbionts (Dubilier et al. 2008). As 

several bacteria metabolize DMSP, as Endozoicomonas which was not cultivated in this 

work, studies indicate that growth of laboratory cultures could be enhanced with 

methionine and DMSP. Due to recent recognition in terms of the importance of the coral 

holobiont and its effects on coral well-being, Sunagawa et al. showed in 2009 that they 

could distinguish between healthy and diseased corals using the PhyloChip application. 

This application is suitable to detect the presence of sequenced 16S rDNA clones. Based 

on hybridization signal profiles and enriched 16S rDNA sequences, they were able to 

detect the presence of sequenced 16S rDNA clones categorizing more than 70% of the 

clones. 

Also mentioning a more commercial and industrial approach of research, many host-

associated microorganisms are relevant from a biotechnological perspective through the 

production of toxins, signaling molecules and other secondary metabolites for effective 

competition and defense strategies. Thus they represent a reservoir for the discovery of 

new drugs, therapeutic agents and bioactive molecules, with applications across medical, 

industrial and environmental settings (Egan et al. 2008). Porporato et al. (2013) points 

out, that soft corals, rather than hard corals, can produce antibiotic substances as 

prevention against fouling organisms or defense against microbes, which are often the 

causes of coral diseases. 

Furthermore, little is known about symbiont transmission, which describes how hosts 

acquire their symbionts. Two strategies for symbiont transmission are typical among 

marine invertebrates. In vertical transmission, the symbionts are passed from one 

generation to the next through direct transmission of symbionts from the parent to the egg 

or embryo, whereas in the horizontal transmission, the symbionts are either taken up from 

the environment or from the co-occurring hosts (Dubilier et al. 2008). The genus 

Endozoicomonas shows only very low abundances within the seawater. Nevertheless, this 

genus is highly associated with gorgonian corals and yet it is not known how the coral 

transmits the bacteria from one individual or generation to another.   
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Conclusion  
 

Gorgonian corals are found over a wide range of marine ecosystems starting from coastal 

regions neighboring hermatypic corals in tropical coral reefs all the way down to the dark 

deep sea. They play essential roles in structuring hard bottom habitats and dense 

communities harbor a high diversity of species (Ballesteros 2006). Recently publications 

investigating soft corals and their unique microbial associates indicate that these 

symbionts play essential roles in coral physiology and health (Porporato et al. 2013). 

Eunicella labiata, one of the most abundant gorgonians found in the Southern Portuguese 

coast is clearly separating itself in its prokaryotic profile compared to its surrounding 

seawater. With our study, a first step was given, revealing the bacterial diversity and 

taxonomic composition hosted by E. labiata. Supporting previous studies, the genus 

Endozoicomonas seems to play and essential role in the E. labiata holobiont as reported 

for other corals. Members of this genus are usually not present in the water column or 

sediments surrounding the coral. It is suggested that Endozoicomonas metabolizes DMSP 

and supports coral health (Ransome et al. 2017). Culturing efforts at low temperatures 

over several weeks resulted in successful representatives of unclassified 

Rhodobacteraceae within our plate wash samples. The remarkable findings of the 

successful cultivation attempt in this study, accounting to a high cultivability of the E. 

labiata microbiome,  fosters future research experiments to investigate microbial 

assemblages with gorgonian corals. Several unclassified candidates (unclassified 

Rhodobacteraceae, unclassified Oceanospirillales) were cultured and can be addressed in 

future research for isolation and taxonomic descriptions. Ecological studies can give 

further information on symbiotic importance in manipulation studies and the detection of 

new molecules such as antibiotics will enhance industrial evolution. 
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Annex – General R script for the ecological and statistical 

analysis 

##install packages## 

 

install.packages('jsonlite', dependencies=TRUE, repos='http://cran.rstudio.com/') 

detach("package:phyloseq", unload=TRUE) 

install.packages("vegan") 

install.packages("GUniFrac") 

install.packages("RAM") 

install.packages("genefilter") 

install.packages("FSA") 
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install.packages("asbio") 

install.packages("BiodiversityR") 

install.packages(ReacTr) 

 

library("phyloseq", lib.loc="~/R/win-library/3.3") 

library(vegan) 

library(GUniFrac) 

library(RAM) 

library(ggplot2) 

library(dplyr) 

library(scales) 

library(grid) 

library(reshape2) 

library(FSA) 

library(asbio) 

library (BiodiversityR) 

library(car) 

 

 

##Import OTU table and taxa table and edit into the correct matrix############### 

 

Phyla_OTU <- read.csv("~/University/Master Thesis/E labiata 16S Amplicon 

Sequencing Data/R - Programming/Phylo_OTU.csv") 

 

Phyla_OTU_Matrix<-as.matrix(Phyla_OTU[,2:11]) 

 

Phyla_OTU_row_names<-Phyla_OTU[,1] 

 

rownames(Phyla_OTU_Matrix, do.NULL = TRUE, prefix = "row") 
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rownames(Phyla_OTU_Matrix) <- Phyla_OTU_row_names 

 

 

Phyla_Taxa <- read.csv("~/University/Master Thesis/E labiata 16S Amplicon Sequencing 

Data/R - Programming/Phylo_Taxa.csv") 

 

Phyla_Taxa_Matrix<-as.matrix(Phyla_Taxa[,2:7]) 

 

Phyla_Taxa_row_names<-Phyla_Taxa[,1] 

 

rownames(Phyla_Taxa_Matrix, do.NULL = TRUE, prefix = "row") 

 

rownames(Phyla_Taxa_Matrix)<-Phyla_Taxa_row_names 

########################################################################

#### 

### Now we tell phyloseq to include both matrixes into a phyloseq-object#### 

 

OTU = otu_table(Phyla_OTU_Matrix, taxa_are_rows = TRUE) 

TAX = tax_table(Phyla_Taxa_Matrix) 

Physeq<-phyloseq(OTU,TAX) 

Physeq 

 

#################Rarefy samples to equal depth############################ 

 

Number_Reads<-sample_sums(Physeq) ###Check lowest number of Reads 

Physeq.rare = rarefy_even_depth(Physeq, sample.size = 10162, rngseed = TRUE) 

##Rarefy 
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#####################Extract the OTU - Talbe from Phyloseq Object########### 

 

Rare.OTU.Table = as(otu_table(Physeq.rare), "matrix") 

write.csv(Rare.OTU.Table, "Rare.OTU.Table") 

 

Rare.Tax.Table = as(tax_table(Physeq.rare), "matrix") 

write.csv(Rare.Tax.Table, "Rare.Tax.Table") 

#### Rarefaction curve ####### 

Data_Rarecurve<-as.data.frame(t(Phyla_OTU_Matrix))   ##### Change rows to column 

in OTU table ### 

Rare_curve<-rarecurve(Data_Rarecurve, MARGIN = 1) 

 

############## Alpha Diversity ############### 

### calculate richness parameters##### 

Alpha_Div_Values<-estimate_richness(Physeq.rare, split = TRUE, measures = 

c("Observed", "Chao1", "ACE", "Shannon")) 

### import newly organized richness estimators into R again##### 

Boxplot_Alpha_Div <- read_excel("~/University/Master Thesis/E labiata 16S Amplicon 

Sequencing Data/R - Programming/Boxplot_Alpha_Div.xlsx") 

#### calculate counts, standard deviation, standard error of the mean and confidence 

interval ## 

Summary_Alpha_Div<-summarySE(Boxplot_Alpha_Div, measurevar = "Values", 

groupvars = c("Samples", "Variable")) 

####Plotting the alpha diversity values with standarderrors######## 

Barchart_Alpha<-ggplot(data = Summary_Alpha_Div, aes(x=Samples, y=Values)) +  

  geom_col() + facet_wrap(~Variable,ncol = 4, scales = "free") 

 

Barchart_Alpha<-ggplot(data = Summary_Alpha_Div, aes(x=Samples, y=Values)) +  

  geom_col(position = position_dodge()) + facet_wrap(~Variable,ncol = 4, scales = 

"free") + 
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  geom_errorbar(aes(ymin=Values-se, ymax=Values+se)) 

 

Barchart_Alpha + ggtitle("Barchart of Alphadiversity Measures")+theme(plot.title = 

element_text(hjust = 0.5)) 

 

#### ANOVA for each biodiversity index sperately comparing the three means of 

seawater, E. labiata in situ & Plate wash against each sample category######## 

#### Test for normality – Shapiro wilk ####### 

 

View(Alpha_Div_Values) 

 

### for seawater ### 

 

Observed_SW<-Alpha_Div_Values[1:4,1] 

Chao1_SW<-Alpha_Div_Values[1:4,2] 

ACE_SW<-Alpha_Div_Values[1:4,4] 

Shannon_SW<-Alpha_Div_Values[1:4,6] 

 

Shapiro_Observed_SW<-shapiro.test(Observed_SW) 

Shapiro_Observed_SW 

Shapiro_Chao1_SW<-shapiro.test(Chao1_SW) 

Shapiro_Chao1_SW 

Shapiro_ACE_SW<-shapiro.test(ACE_SW) 

Shapiro_ACE_SW 

Shapiro_Shannon_SW<-shapiro.test(Shannon_SW) 

Shapiro_ACE_SW 

 

### for Eunicella labiata in situ#### 
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Observed_E_l<-Alpha_Div_Values[5:7,1] 

Chao1_E_l<-Alpha_Div_Values[5:7,2] 

ACE_E_l<-Alpha_Div_Values[5:7,4] 

Shannon_E_l<-Alpha_Div_Values[5:7,6] 

 

Shapiro_Observed_E_l<-shapiro.test(Observed_E_l) 

Shapiro_Observed_E_l 

Shapiro_Chao1_E_l<-shapiro.test(Chao1_E_l) 

Shapiro_Chao1_E_l 

Shapiro_ACE_E_l<-shapiro.test(ACE_E_l) 

Shapiro_ACE_E_l 

Shapiro_Shannon_E_l<-shapiro.test(Shannon_E_l) 

Shapiro_Shannon_E_l 

 

#### for in situ plate wash#### 

 

Observed_P_W<-Alpha_Div_Values[8:10,1] 

Chao1_P_W<-Alpha_Div_Values[8:10,2] 

ACE_P_W<-Alpha_Div_Values[8:10,4] 

Shannon_P_W<-Alpha_Div_Values[8:10,6] 

 

Shapiro_Observed_P_W<-shapiro.test(Observed_P_W) 

Shapiro_Observed_P_W 

Shapiro_Chao1_P_W<-shapiro.test(Chao1_P_W) 

Shapiro_Chao1_P_W 

Shapiro_ACE_P_W<-shapiro.test(ACE_P_W) 

Shapiro_ACE_P_W 

Shapiro_Shannon_P_W<-shapiro.test(Shannon_P_W) 
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Shapiro_Shannon_P_W 

 

### Normality test overall sample categories referring to each index ##### 

 

Observed_All<-Alpha_Div_Values[,1] 

Chao1_All<-Alpha_Div_Values[,2] 

ACE_All<-Alpha_Div_Values[,4] 

Shannon_All<-Alpha_Div_Values[,6] 

 

 

Shapiro_Observed_All<-shapiro.test(Observed_All) 

Shapiro_Observed_All 

Shapiro_Chao1_All<-shapiro.test(Chao1_All) 

Shapiro_Chao1_All 

Shapiro_ACE_All<-shapiro.test(ACE_All) 

Shapiro_ACE_All 

Shapiro_Shannon_All<-shapiro.test(Shannon_All) 

Shapiro_Shannon_All 

 

#### ANOVA and homogeneity of variances ##### 

####Observed##### 

#### check homogeneity of variances#### 

Values_observed_anova<-Boxplot_Alpha_Div[1:10,-2] 

ANOVA_observed<-aov(Values~as.factor(Samples), data = Values_observed_anova) 

 

### plot residuals ##### 

res_observed<-ANOVA_observed$residuals 

hist(res_observed,main = "Histogram of residuals - Observed", xlab = "Residuals") 
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### test homogeneity of variances and extract levene test table to word #### 

 

capture.output(leveneTest(Values~as.factor(Samples),data = Values_observed_anova), 

file = "Levene_observed.csv") 

summary(ANOVA_observed) 

 

### extract ANOVA table to word #### 

capture.output(summary(ANOVA_observed), file = "ANOVA_observed.csv") 

 

###### Chao1 ###### 

 

Values_chao1_anova<-Boxplot_Alpha_Div[11:20,-2] 

ANOVA_chao1<-aov(Values~as.factor(Samples), data = Values_chao1_anova) 

 

### plot residuals ##### 

res_chao1<-ANOVA_chao1$residuals 

hist(res_chao1,main = "Histogram of residuals - Chao1", xlab = "Residuals") 

 

### test homogeneity of variances and extract levene test table to word #### 

 

capture.output(leveneTest(Values~as.factor(Samples),data = Values_chao1_anova), file 

= "Levene_chao1.csv") 

summary(ANOVA_chao1) 

 

### extract ANOVA table to word #### 

capture.output(summary(ANOVA_chao1), file = "ANOVA_chao1.csv") 

 

###### Shannon ###### 
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Values_shannon_anova<-Boxplot_Alpha_Div[31:40,-2] 

ANOVA_shannon<-aov(Values~as.factor(Samples), data = Values_shannon_anova) 

 

### plot residuals ##### 

res_shannon<-ANOVA_shannon$residuals 

hist(res_shannon,main = "Histogram of residuals - Shannon", xlab = "Residuals") 

 

### test homogeneity of variances and extract levene test table to word #### 

capture.output(leveneTest(Values~as.factor(Samples),data = Values_shannon_anova), 

file = "Levene_shannon.csv") 

 

summary(ANOVA_shannon) 

 

### extract ANOVA table to word #### 

capture.output(summary(ANOVA_shannon), file = "ANOVA_Shannon.csv") 

 

###### ACE ###### 

 

Values_ACE_anova<-Boxplot_Alpha_Div[21:30,-2] 

ANOVA_ACE<-aov(Values~as.factor(Samples), data = Values_ACE_anova) 

 

### plot residuals ##### 

res_ACE<-ANOVA_ACE$residuals 

hist(res_ACE,main = "Histogram of residuals - ACE", xlab = "Residuals") 

 

### test homogeneity of variances and extract levene test table to word #### 

 

capture.output(leveneTest(Values~as.factor(Samples),data = Values_ACE_anova), file = 

"Levene_ACE.csv") 
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summary(ANOVA_ACE) 

 

### extract ANOVA table to word #### 

capture.output(summary(ANOVA_ACE), file = "ANOVA_ACE.csv") 

 

############ Tukey Honest Post-HOc-Test ########## 

 

###Observed#### 

 

TukeyHSD(ANOVA_observed) 

capture.output(TukeyHSD(ANOVA_observed), file = "Tukey_observed.csv") 

 

####Chao1##### 

 

TukeyHSD(ANOVA_chao1) 

capture.output(TukeyHSD(ANOVA_chao1), file = "Tukey_chao1.csv") 

 

####ACE##### 

 

TukeyHSD(ANOVA_ACE) 

capture.output(TukeyHSD(ANOVA_ACE), file = "Tukey_ACE.csv") 

 

####Shannon Wiener##### 

 

TukeyHSD(ANOVA_shannon) 

capture.output(TukeyHSD(ANOVA_shannon), file = "Tukey_shannon.csv") 
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##############Taxonomic profiles – Stacked bar charts########## 

##############Tax_glom - Count taxa in each taxonomic rank################## 

 

colnames(tax_table(Physeq)) 

tax_domain<-tax_glom(Physeq, taxrank = "Domain") 

 

tax_phyla<-tax_glom(Physeq, taxrank = "Phyla") 

tax_class<-tax_glom(Physeq, taxrank = "Class") 

tax_order<-tax_glom(Physeq, taxrank = "Order") 

tax_family<-tax_glom(Physeq, taxrank = "Family") 

tax_genus<-tax_glom(Physeq, taxrank = "Genus") 

 

tax_domain 

otu_table(tax_domain) 

tax_phyla 

otu_table(tax_phyla) 

tax_class 

otu_table(tax_class) 

tax_order 

otu_table(tax_order) 

tax_family 

otu_table(tax_family) 

tax_genus 

otu_table(tax_genus) 

######################## Stacked Bar Charts 

#################################### 

####### The Plotting - Stacked bar charts - Phyla 

################################## 
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library(ggplot2) 

library(dplyr) 

 

physeq_Phyla <- Physeq.rare %>% 

  tax_glom(taxrank = "Phyla") %>%                     # agglomerate at taxa level 

  transform_sample_counts(function(x) {x/sum(x)} ) %>% # Transform to rel. abundance 

  psmelt() %>%                                         # Melt to long format 

  filter(Abundance > 0.02) %>%                         # Filter out low abundance taxa 

  arrange(Phyla)   

 

# Set colors for plotting 

Phyla_colors <- c( 

  "#CBD588", "#5F7FC7", "orange","#DA5724", "#508578","#CD9BCD") 

   

##Reordering the x-axis 

 

physeq_Phyla$Sample<-as.character(physeq_Phyla$Sample) 

physeq_Phyla$Sample<-factor(physeq_Phyla$Sample, levels = c("SW.01", 

"SW.02","SW.03","SW.04", "In.S.01", "In.S.02", "In.S.03","PW.01", "PW.02", 

"PW.03")) 

 

##Plotting ###### 

 

ggplot(physeq_Phyla, aes(x = Sample, y = Abundance, fill = Phyla)) + 

  geom_bar(stat = "identity", position = "fill") + 

  scale_fill_manual(values = Phyla_colors)+ggtitle("Relavtive Phylum-Composition") + 

theme(plot.title = element_text(hjust = 0.5)) 

 

####### The Plotting - Stacked bar charts - Class 

################################## 
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physeq_Class <- Physeq.rare %>% 

  tax_glom(taxrank = "Class") %>%                     # agglomerate at taxa level 

  transform_sample_counts(function(x) {x/sum(x)} ) %>% # Transform to rel. abundance 

  psmelt() %>%                                         # Melt to long format 

  filter(Abundance > 0.02) %>%                         # Filter out low abundance taxa 

  arrange(Class)   

 

# Set colors for plotting 

class_colors <- c( 

  "#CBD588", "#5F7FC7", "orange","#DA5724", "#508578","#CD9BCD", 

  "#AD6F3B") 

 

##Reordering the x-axis 

 

physeq_Class$Sample<-as.character(physeq_Class$Sample) 

physeq_Class$Sample<-factor(physeq_Class$Sample, levels = c("SW.01", 

"SW.02","SW.03","SW.04", "In.S.01", "In.S.02", "In.S.03","PW.01", "PW.02", 

"PW.03")) 

 

##Plotting ###### 

 

ggplot(physeq_Class, aes(x = Sample, y = Abundance, fill = Class)) + 

  geom_bar(stat = "identity") + 

  scale_fill_manual(values = class_colors)+ggtitle("Relative Class-

Composition")+theme(plot.title = element_text(hjust = 0.5), legend.text = 

element_text(size = 8), legend.key.size = unit(0.5, "cm"))  

 

####### The Plotting - Stacked bar charts - Order 

################################## 
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physeq_Order <- Physeq.rare %>% 

  tax_glom(taxrank = "Order") %>%                     # agglomerate at taxa level 

  transform_sample_counts(function(x) {x/sum(x)} ) %>% # Transform to rel. abundance 

  psmelt() %>%                                         # Melt to long format 

  filter(Abundance > 0.02) %>%                         # Filter out low abundance taxa 

  arrange(Order)   

 

# Set colors for plotting 

order_colors <- c( 

  "#CBD588", "#5F7FC7", "orange","#DA5724", "#508578","#CD9BCD", 

  "#AD6F3B", "#673770","#D14285", "#652926", "#C84248",  

  "#8569D5", "#5E738F") 

 

##Reordering the x-axis 

 

physeq_Order$Sample<-as.character(physeq_Order$Sample) 

physeq_Order$Sample<-factor(physeq_Order$Sample, levels = c("SW.01", 

"SW.02","SW.03","SW.04", "In.S.01", "In.S.02", "In.S.03","PW.01", "PW.02", 

"PW.03")) 

 

###Plotting 

 

ggplot(physeq_Order, aes(x = Sample, y = Abundance, fill = Order)) + 

  geom_bar(stat = "identity") + 

  scale_fill_manual(values = order_colors)+ggtitle("Relative Order-

Composition")+theme(plot.title = element_text(hjust = 0.5),legend.text = 

element_text(size = 8), legend.key.size = unit(0.5, "cm"))  
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####### The Plotting - Stacked bar charts - Family 

################################## 

 

physeq_Family <- Physeq.rare %>% 

  tax_glom(taxrank = "Family") %>%                     # agglomerate at taxa level 

  transform_sample_counts(function(x) {x/sum(x)} ) %>% # Transform to rel. abundance 

  psmelt() %>%                                         # Melt to long format 

 filter(Abundance > 0.02) %>%                         # Filter out low abundance taxa 

  arrange(Family)   

 

# Set colors for plotting 

family_colors <- c( 

  "#CBD588", "#5F7FC7", "orange","#DA5724", "#508578","#CD9BCD", 

  "#AD6F3B", "#673770","#D14285", "#652926", "#C84248",  

  "#8569D5", "#5E738F","#D1A33D","forestgreen","firebrick", "dodgerblue") 

 

physeq_Family$Sample<-as.character(physeq_Family$Sample) 

physeq_Family$Sample<-factor(physeq_Family$Sample, levels = c("SW.01", 

"SW.02","SW.03","SW.04", "In.S.01", "In.S.02", "In.S.03","PW.01", "PW.02", 

"PW.03")) 

 

###Plotting 

 

ggplot(physeq_Family, aes(x = Sample, y = Abundance, fill = Family)) + 

  geom_bar(stat = "identity") + 

  scale_fill_manual(values = family_colors)+ggtitle("Relative Family-

Composition")+theme(plot.title = element_text(hjust = 0.5),legend.text = 

element_text(size = 8), legend.key.size = unit(0.5, "cm"))   
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  ####### The Plotting - Stacked bar charts - Genus 

################################## 

   

  physeq_Genus <- Physeq.rare %>% 

    tax_glom(taxrank = "Genus") %>%                     # agglomerate at taxa level 

    transform_sample_counts(function(x) {x/sum(x)} ) %>% # Transform to rel. 

abundance 

    psmelt() %>%                                         # Melt to long format 

    filter(Abundance > 0.02) %>%                         # Filter out low abundance taxa 

    arrange(Genus)   

   

  # Set colors for plotting 

  genus_colors <- c( 

    "#CBD588", "#5F7FC7", "orange","#DA5724", "#508578","#CD9BCD", 

    "#AD6F3B", "#673770","#D14285", "#652926", "#C84248",  

    "#8569D5", 

"#5E738F","#D1A33D","darkmagenta","darkred","darkseagreen4","gray1","yellow","gre

en","red") 

   

  ### put the x-axis in the correct order 

  physeq_Genus$Sample<-as.character(physeq_Genus$Sample) 

  physeq_Genus$Sample<-factor(physeq_Genus$Sample, levels = c("SW.01", 

"SW.02","SW.03","SW.04", "In.S.01", "In.S.02", "In.S.03","PW.01", "PW.02", 

"PW.03")) 

   

  ###Plotting 

   

  ggplot(physeq_Genus, aes(x = Sample, y = Abundance, fill = Genus)) + 

    geom_bar(stat = "identity") + 
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    scale_fill_manual(values = genus_colors)+ggtitle("Relative Genus-

Composition")+theme(plot.title = element_text(hjust = 0.5),legend.text = 

element_text(size = 8), legend.key.size = unit(0.5, "cm")) 

   

  ggplot(physeq_Genus, aes(x = Sample, y = Abundance, fill = Genus)) + 

    geom_bar(stat = "identity") + 

    scale_fill_manual(values = genus_colors)+ggtitle("Relative Genus-Composition") + 

guides(fill=guide_legend(ncol=1))+theme(plot.title = element_text(hjust = 

0.5),legend.text = element_text(size = 8), legend.key.size = unit(0.5, "cm")) 

 

#### Creating the heatmaps ####### 

### Subset Order Oceanospirillales & Rhodobacterales for heatmap and plot####### 

 

Heat_Oceanospirillales_Joined<-tax_glom(Heat_Oceanospirillales, taxrank = "Genus") 

plot_heatmap(Heat_Oceanospirillales,low="white", high="#FF3300",method = "Null", 

taxa.label = "Genus", sample.order = sample_names(Physeq.rare), na.value = "white", 

title = "Heatmap - Oceanospirillales") + theme(plot.title = element_text(hjust = 0.5)) 

Heatmap_Oceanospirillales<-plot_heatmap(Heat_Oceanospirillales_Joined,low="white", 

high="#FF3300",method = "Null", taxa.label = "Genus", sample.order = 

sample_names(Physeq.rare), na.value = "white", title = "Heatmap - Oceanospirillales") + 

theme(plot.title = element_text(hjust = 0.5)) 

Heatmap_Oceanospirillales + theme(axis.text.y = element_text(size = 7)) + 

scale_y_discrete(name="Genus", labels = c("uncl. OM182 

clade","Litoricola","Balneatrix","uncl. SAR86 clade","Neptuniibacter","uncl. 

Oceanospirillales","uncl. SS1-B-06-26","uncl. CrystalBog021C3","uncl. 

ZD0405","Endozoicomonas","Pseudohongiells","Kangialla")) 

 

Heat_Rhodobacterales<-subset_taxa(Physeq.rare, Order=="Rhodobacterales") 

plot_heatmap(Heat_Rhodobacterales,low="white", high="#FF3300",method = "Null", 

taxa.label = "Genus", sample.order = sample_names(Physeq.rare), na.value = "white", 

title = "Heatmap - Oceanospirillales") + theme(plot.title = element_text(hjust = 0.5)) 

 

Heat_Rhodobacterales_Joined<-tax_glom(Heat_Rhodobacterales, taxrank = "Genus") 
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Heatmap_Rhodobacterales<-plot_heatmap(Heat_Rhodobacterales_Joined,low="white", 

high="#FF3300",method = "Null", taxa.label = "Genus", sample.order = 

sample_names(Physeq.rare), na.value = "white", title = "Heatmap - Rhodobacterales") + 

theme(plot.title = element_text(hjust = 0.5)) 

 

Heatmap_Rhodobacterales + scale_y_discrete(name="Genus", labels = c("uncl. 

Rhodobacteraceae", 

"Ascidiaceihabitans","Amylibacter","Breoghania","Labrenzia","Planktomarina","Shimia"

,"Ruegeria","Sedimentitalea","Sulfitobacter","Roseovarius","Pseudohaeobacter","Halocy

nthiibacter")) 

 

########################## Ordination ##################### 

#####Hellinger Transformation########## 

 

Rare_OTU <- read_csv("~/University/Master Thesis/E labiata 16S Amplicon Sequencing 

Data/R - Programming/Rare.OTU.Table") 

Rare_OTU<-as.data.frame(Rare_OTU) 

x<-Rare_OTU[,1] 

Rare_OTU<-Rare_OTU[,-1] 

rownames(Rare_OTU)<-x 

remove(x) 

Hellinger<-decostand(Rare_OTU,"hellinger", MARGIN = 2) 

write.csv(Hellinger, "Hellinger_Trans") 

 

### Now create a new Phyloseq object including the hellinger transformed data 

### and then plot the distance matrix below 

 

OTU1 = otu_table(Hellinger, taxa_are_rows = TRUE) 

TAX = tax_table(Phyla_Taxa_Matrix) 

 

##### Create the Sample Matrix for Phyloseq############# 
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SampleData_Phyloseqxlsx <- read_excel("~/University/Master Thesis/E labiata 16S 

Amplicon Sequencing Data/R - Programming/SampleData_Phyloseqxlsx.xlsx") 

SampleData<-as.data.frame(SampleData_Phyloseqxlsx) 

SampleDataRow<-SampleData[,-1] 

row.names(SampleData)<-SampleDataRow 

Sampl=sample_data(SampleData) 

 

#### Create the phyloseq object#############3 

 

Physeq_Hellinger<-phyloseq(OTU1,TAX, Sampl) 

 

### #####Plot the SampleID, Uniplot ################### 

 

or<-ordinate(Physeq_Hellinger, "euclidean", method = "PCoA") 

Ordination_SampleID<-plot_ordination(Physeq_Hellinger, or, label = "SampleID", title 

= "Principle Coordinates Analysis") 

Ordination_SampleID + theme(plot.title = element_text(hjust = 0.5)) 

 

#### Distinguish the samples, because points are too close together to read them 

 

Ordination_SampleID<-plot_ordination(Physeq_Hellinger, or, title = "Principle 

Coordinates Analysis", shape = "SampleID") 

 

shapes <-c(1,2,3,4,5,6,7,8,9,10) ### we set 10 different shapes to distinguish the samples 

and retrieve the correct SampleID 

 

Ordination_SampleID + theme(plot.title = element_text(hjust = 0.5)) + 

scale_shape_manual(values = shapes) 
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##### Include the 20 most abundant taxa from the whole sample  

 

 

################## Non Rarefied################## 

 

 

######## Set colors new ############### 

 

ordination_colors<- c( 

  "black", "orange","#DA5724", "#508578","#CD9BCD", 

  "#AD6F3B", "#673770","#D14285", "#652926", "#C84248",  

  "#8569D5", "#5E738F","#D1A33D","forestgreen","firebrick", 

"dodgerblue","yellow","gray1","darkblue","green","red") 

 

 

 

Table_Otu<-otu_table(Physeq) 

Hellinger<-decostand(Table_Otu, "hellinger", MARGIN = 2) 

OTU1 = otu_table(Hellinger, taxa_are_rows = TRUE) 

TAX = tax_table(Phyla_Taxa_Matrix) 

Physeq_Hellinger<-phyloseq(OTU1,TAX, Sampl) 

taxa_pruned_20<-prune_taxa(names(sort(taxa_sums(Physeq_Hellinger),TRUE)[1:20]), 

Physeq_Hellinger)  

Ordination_20<-plot_ordination(taxa_pruned_20, or, type = "biplot",color = "Genus", 

label = "SampleID", title = "PCoA: Euclidean Distance") 

Ordination_20 + theme(plot.title = element_text(hjust = 0.5)) + 

scale_color_manual(values = ordination_colors) + theme_classic() 

 

 

#############Final Plot of Ordination ######################### 
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Ordination_20<-plot_ordination(taxa_pruned_20, or, type = "biplot",color = "Genus", 

title = "PCoA: Euclidean Distance") 

 

Ordination_20 + theme_classic()+ theme(plot.title = element_text(hjust = 0.5), axis.text = 

element_text(size=12, colour = "black"), legend.text = element_text(size = 

3),legend.position = "none") + scale_color_manual(values = ordination_colors)  

########################Permutation Test############################# 

 

## create distance matrix - euclidean  

 

Dist_Samples<-distance(Physeq_Hellinger, method = "euclidean", type = "samples") 

 

### Create a matrix of the Distance matrix to export in excel 

Dist_Samples_Matrix<-as.matrix(distance(Physeq_Hellinger, method = "euclidean", type 

= "samples")) 

write.csv(Dist_Samples_Matrix, file = "Distance_Matrix_Euclidean") 

 

## turn sample_data into a dataframe 

 

df = data.frame(sample_data(Physeq_Hellinger)) 

Distance_Matrix<-as.data.frame(Dist_Samples) 

Permutation_Result<-adonis(Dist_Samples ~ Environment, data = df) 

 

### extract for excel 

 

Permutation_Test<-Permutation_Result$aov.tab 

write.csv(Permutation_Test, "Permutation_Test") 
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#### Clustering  

 

Cluster_Dis<-hclust(Dist_Samples, method = "average") 

plot(Cluster_Dis) 

 

 

### clustering with pvclust######### 

install.packages("pvclust") 

 

library(pvclust) 

library(phyloseq) 

 

pvclust_matrix<-as.data.frame(otu_table(Physeq_Hellinger)) 

pvclust_matrix<-as.matrix(pvclust_matrix) 

pvc_result<-pvclust(pvclust_matrix, method.hclust = "average",method.dist = 

"euclidean") 

plot(pvc_result, title(""), main = "Cluster dendrogram with AU/BP values (%)") 


