# A new subfamily of fossorial colubroid snakes from the Western Ghats of peninsular India 

V. Deepak, Sara Ruane \& David J. Gower

To cite this article: V. Deepak, Sara Ruane \& David J. Gower (2018) A new subfamily of fossorial colubroid snakes from the Western Ghats of peninsular India, Journal of Natural History, 52:45-46, 2919-2934, DOI: 10.1080/00222933.2018.1557756

To link to this article: https://doi.org/10.1080/00222933.2018.1557756

View supplementary material

Published online: 18 Jan 2019.

Submit your article to this journal

Article views: 107


View Crossmark data $\nearrow$

# A new subfamily of fossorial colubroid snakes from the Western Ghats of peninsular India 

V. Deepak (1) ${ }^{\text {a,b }}$, Sara Ruane ( ${ }^{\text {c }}$ and David J. Gower ( ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Department of Life Sciences, The Natural History Museum, London, UK; ${ }^{\text {b }}$ Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India; ‘Department of Biological Sciences, Rutgers UniversityNewark, Newark, NJ, USA


#### Abstract

We report molecular phylogenetic and dating analyses of snakes that include new mitochondrial and nuclear DNA sequence data for three species of the peninsular Indian endemic Xylophis. The results provide the first molecular genetic test of and support for the monophyly of Xylophis. Our phylogenetic results support the findings of a previous, taxonomically restricted phylogenomic analysis of ultraconserved nuclear sequences in recovering the fossorial Xylophis as the sister taxon of a clade comprising all three recognised extant genera of the molluscivoran and typically arboreal pareids. The split between Xylophis and 'pareids' is estimated to have occurred on a similar timescale to that between most (sub)families of extant snakes. Based on phylogenetic relationships, depth of molecular genetic and estimated temporal divergence, and on the external morphological and ecological distinctiveness of the two lineages, we classify Xylophis in a newly erected subfamily (Xylophiinae subfam. nov.) within Pareidae. urn:Isid:zoobank.org:pub:43BDE72C-6823-4D6A-8601-482862556D78 urn:Isid:zoobank.org:act:AD3486DF-D874-4CFD-8EAE-14FF3E403AF9


## ARTICLE HISTORY

Received 25 October 2018
Accepted 26 November 2018
KEYWORDS
Asia; classification; Pareidae; Pareinae; phylogenetics; Xylophis; taxonomy

## Introduction

The caenophidian snake genus Xylophis Beddome, 1878 contains three currently recognised species of small fossorial snakes endemic to the southern part of the Western Ghats of peninsular India (Gower and Winkler 2007; Srinivasulu et al. 2014; Wallach et al. 2014). Morphological systematists have not settled on the phylogenetic relationships of Xylophis or of its corresponding suprageneric classification. For example, Underwood (1967) included Xylophis in his concept of Dipsadidae, a group comprising xenodermines, pareines, calamarines, sibynophiines, lycodontines, xenodontines and some then enigmatic Asian natricines (including the Sri Lankan Aspidura - to which at least superficial similarities to Xylophis were noted by Gans and Fetcho 1982; Dowling and Pinou 2003; Gower and Winkler 2007; Simões et al. 2016). Since Underwood's (1967) work, Xylophis has been considered to be a xenodermid (or xenodermatid/xenodematine/ xenodermine depending on authority) (McDowell 1987; Wallach 1998; Zaher 1999;

[^0](4) Supplemental material for this article can be accessed here
© 2019 Informa UK Limited, trading as Taylor \& Francis Group

Vidal 2002; Lawson et al. 2005; Cundall and Irish 2008, p. 556, 573; Zaher et al. 2009; Pyron et al. 2013; Dowling and Pinou 2003, see also Underwood 1967, p. 98), an elapoid incertae sedis (Wallach et al. 2014), and a colubrine (Cundall and Irish 2008, p. 645).

Until recently, there were no molecular systematic data available for Xylophis. Simões et al. (2016) published sequences of three visual opsin genes for $X$. captaini. Although noted as not being neutral phylogenetic markers, Simões et al. (2016) reported various phylogenetic results for $X$. captaini for each of these three genes in isolation: for locus rh1, $X$. captaini was recovered as sister to the pareid Pareas monticola, with this clade being sister to all other sampled non-viperid colubroids; for locus sws1, X. captaini was recovered as sister to all other sampled colubroids ( $P$. monticola was not sampled for this gene); for locus Iws, X. captaini was recovered as sister to Amphiesma stolata within natricine colubrids (again, $P$. monticola was not sampled for this gene). Although the sister relationships with P. monticola (for rh1) and with A. stolata (for Iws) were well supported, most of the deeper internal branches throughout these trees were not well resolved.

Ruane and Austin (2017) sampled one historical museum specimen of Xylophis stenorhynchus in an application of ultraconserved element loci in snake phylogenomics, combining their historical sampling with modern snake sample data from Streicher and Wiens (2016). Ruane and Austin's sampling was sparse (17 species of caenophidians, including one xenodermid and no natricines) but $X$. stenorhynchus was recovered as the well-supported sister taxon to the single sampled pareid, Pareas hamptoni, and the number of ultraconserved elements generated for $X$. stenorhynchus ( 2546 loci) was on par with modern samples (see Table 1, Ruane and Austin 2017). As currently conceived, pareids comprise ca. 20 nocturnal, molluscivorous, non-fossorial species (classified in three genera: Pareas Wagler, 1830; Aplopeltura Duméril, 1853; Asthenodipsas Peters, 1864) restricted to east and south-east Asia, with two species (P. monticola (Cantor, 1839) and P. margaritophorus (Jan, 1866)) extending into north-east India (Whitaker and Captain 2004; Uetz et al. 2018). Commenting on their somewhat unexpected phylogenetic result for Xylophis, Ruane and Austin (2017, p. 5) suggested that the phylogenetic relationships of this genus could be investigated more thoroughly by analysing a wider sample of snakes, including more species of Xylophis.

Here we report sequence data for 'standard' mitochondrial (mt) and nuclear (nu) phylogenetic markers for snakes for three species of Xylophis and include them in broadly taxonomically sampled phylogenetic analyses of extant snakes. These analyses provide the first molecular test of the monophyly of the genus, and the results support classification of Xylophis in a newly erected subfamily within Pareidae.

## Material and methods

## Classification and institutional abbreviations

We followed the family and subfamily classification used by Uetz et al. (2018), including the recently described subfamilies Ahaetuliinae Figueroa et al., 2016 (within Colubridae) and Cyclocorinae Weinell and Brown, 2018 (within Lamprophiidae). Xylophis tissues were sampled from vouchers deposited in the Bombay Natural History Society, Mumbai, India (BNHS), California Academy of Sciences, San Francisco, CA, USA (CAS), and Centre for Ecological Sciences, IISc, Bengaluru, India (CES).
Table 1. GenBank accession and voucher numbers for gene sequences used in molecular dating analysis.

|  | Species | Family (subfamily) | cytb | 16s | nd4 | cmos | bdnf | rag1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Acrochordus javanicus | Acrochordidae | - | AF512745 | HM234055 | HM234058 | AY988036 | HM234061 |
| 2 | Afrotyphlops punctatus | Typhlopidae (Afrotyphlopinae) |  |  |  | - | GU902395 |  |
| 3 | Agkistrodon contortrix | Viperidae (Crotalinae) | EU483383 | AF156566 | AF156577 |  | EU402623 | EU402833 |
| 4 | Ahaetulla pulverulenta | Colubridae (Ahaetuliinae) | KC347454 | KC347339 | KC347512 | KC347378 |  | KC347416 |
| 5 | Anilius scytale | Aniliidae | U69738 | FJ755180 | FJ755180 | AF544722 | EU402625 | AY988072 |
| 6 | Anomochilus leonardi | Cylindrophiidae+Anomochiliidae |  | AY953431 |  |  | - | - |
| 7 | Aparallactus capensis | Lamprophiidae (Aparallactinae) | AY188006 | AY188045 | FJ404331 | AY187967 |  |  |
| 8 | Aplopeltura boa | Pareidae (Pareinae) | JF827673 | AF544787 | JF827650 | JF827696 | FJ433984 |  |
| 9 | Aspidura ceylonensis | Colubridae (Natricinae) | KC347477 | KC347361 | KC347527 | KC347400 | - | KC347438 |
| 10 | Asthenodipsas malaccanus | Pareidae (Pareinae) | KX660469 | KX660197 | KX660597 | KX660336 |  |  |
| 11 | Azemiops feae | Viperidae (Azemiopinae) | AY352747 | AF057234 | AY352808 | AF544695 | EU402628 | EU402836 |
| 12 | Bitis nasicornis | Viperidae (Viperinae) | DQ305457 | AY188048 | DQ305475 | AY187970 |  | KC330012 |
| 13 | Boa constrictor | Boidae | AB177354 | AB177354 | AB177354 | AF544676 | KC330044 | KC347423 |
| 14 | Boaedon fuliginosus | Lamprophiidae (Lamprophiinae) | AF471060 | AY188079 | FJ404365 | FJ404270 | EU402646 | EU402849 |
| 15 | Bothrolycus ater | Lamprophiidae (Lamprophiinae) | AY612041 | AY611859 | AY611950 | FJ404347 | - | - |
| 16 | Brachyophidium rhodogaster | Uropeltidae |  | AY701023 | - |  | - | - |
| 17 | Buhoma depressiceps | Lamprophiidae incertae sedis | AY612042 | AY611860 |  | AY611951 | _ | _ |
| 18 | Buhoma procterae | Lamprophiidae incertae sedis | AY612001 | AY611818 | DQ486328 | AY611910 |  | - |
| 19 | Bungarus fasciatus | Elapidae | EU579523 | EU579523 | EU579523 | AY058924 | FJ433989 |  |
| 20 | Calabaria reinhardtii | Calabariidae | AY099985 | Z46494 | - | AF544682 | EU402631 | EU402839 |
| 21 | Calamaria pavimentata | Colubridae (Calamariinae) | AF471081 | KX694624 | - | AF471103 | FJ434005 |  |
| 22 | Candoia carinata | Candoiidae | AY099984 | EU419850 |  | AY099961 | FJ433974 | AY988065 |
| 23 | Cantoria violacea | Homalopsidae | EF395897 | KX694627 | EF395922 |  |  |  |
| 24 | Casarea dussumieri | Bolyeridae | U69755 | AF544827 |  | AF544731 | EU402632 | EU402840 |
| 25 | Charina bottae | Charinidae (Charininae) | AY099986 | AF544816 | AF302959 | AY099971 | FJ433978 | AY988076 |
| 26 | Chilabothrus striatus | Boidae |  |  | KC329966 | KC329991 | KC330056 | KC330027 |
| 27 | Contia tenuis | Colubridae (Dipsadinae) | GU112384 | AY577030 | GU112419 | AF471134 | GU112346 |  |
| 28 | Corallus annulatus | Boidae | KC750012 | _ | KC750018 | KC750007 | JX576167 | KC750047 |
| 29 | Cyclocorus nuchalis | Lamprophiidae (Cyclocorinae) | MG458754 | - | - | MG458764 | - | - |
| 30 | Cyclocorus lineatus | Lamprophiidae (Cyclocorinae) | MG458750 |  |  | MG458759 | - |  |
| 31 | Cylindrophis maculatus | Cylindrophiidae+Anomochilidae | KC347460 | KC347355 | KC347494 | KC347395 | - | KC347433 |

Table 1. (Continued).

|  | Species | Family (subfamily) | cytb | 16s | nd4 | cmos | bdnf | rag1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | Cylindrophis ruffus | Cylindrophiidae+Anomochilidae | AB179619 | AB179619 | AB179619 | AF471133 | AY988037 | AY988071 |
| 33 | Daboia russellii | Viperidae (Viperinae) | EU913478 | EU913478 | EU913478 | AF471156 | EU402636 | EU402843 |
| 34 | Ditypophis sp. | Lamprophiidae |  | - |  |  | JQ073079 | JQ073200 |
| 35 | Epicrates cenchria | Boidae | HQ399501 |  | KC329975 | KC330008 | KC330073 |  |
| 36 | Eryx colubrinus | Erycidae | U69811 | AF544819 |  | AF544716 | EU402639 | DQ465571 |
| 37 | Eryx conicus | Erycidae | GQ225658 | AF512743 | GQ225672 |  |  | AY988074 |
| 38 | Eunectes notaeus | Boidae | HQ399499 | AM236347 | KC329978 | HQ399536 | KC330076 | HQ399516 |
| 39 | Farancia abacura | Colubridae (Dipsadinae) | U69832 | Z46491 | U49307 | AF471141 |  | KR814740 |
| 40 | Gerrhopilus mirus | Gerrhopilidae | AM236345 | AM236345 | AM236345 |  | GU902394 | - |
| 41 | Grayia ornata | Colubridae (Grayiinae) |  | AF158503 | AF544663 | AF544684 | FJ434002 | - |
| 42 | Grayia smythii | Colubridae (Grayiinae) | DQ112077 | _ | DQ112080 |  | - | - |
| 43 | Hologerrhum philippinum | Lamprophiidae (Cyclocorinae) | MG458758 |  |  | MG458766 |  | - |
| 44 | Homoroselaps lacteus | Lamprophiidae (Atractaspidinae) | AY611992 | AY611809 | FJ404338 | AY611901 | JQ599029 | - |
| 45 | Indotyphlops braminus | Typhlopidae (Asiatyphlopinae II) | DQ343649 |  | - | AF544717 | FJ433959 | - |
| 46 | Liasis mackloti | Pythonidae | U69839 | EF545051 | - | AF544726 | FJ433970 | - |
| 47 | Liopholidophis sexlineatus | Lamprophiidae (Pseudoxyrhophiinae) | DQ979985 | AY188063 | FJ404373 | AY187985 |  |  |
| 48 | Liotyphlops albirostris | Anomalepididae | AF544672 | AF366762 | - | AF544727 | EU402650 | EU402853 |
| 49 | Loxocemus bicolor | Loxocemidae | AY099993 | AF544828 | - | AY444035 | EU402651 |  |
| 50 | Madatyphlops andasibensis | Typhlopidae (Madatyphlopinae) |  |  | - |  | GU902453 | JQ073249 |
| 51 | Malayopython reticulatus | Pythonidae | U69860 | EF545062 | - | AF544675 | FJ433969 | EU624119 |
| 52 | Melanophidium punctatum | Uropeltidae |  | AY701024 | - |  | - | - |
| 53 | Micrelaps bicoloratus | Lamprophiidae (Aparallactinae) | DQ486349 |  | - | DQ486173 |  | _ |
| 54 | Mimophis mahfalensis | Lamprophiidae (Psammophiinae) | DQ486461 | AY188070 | - | AY187992 | JQ073081 | - |
| 55 | Morelia viridis | Pythonidae | EF545098 | EF545048 |  |  |  |  |
| 56 | Naja kaouthia | Elapidae | FR693728 | GQ359757 | EU624209 | AY058938 | EU402654 | EU402857 |
| 57 | Namibiana occidentalis | Leptotyphlopidae (Leptotyphlopinae) |  | GQ469251 |  | GQ469074 | GQ469189 |  |
| 58 | Oligodon arnensis | Colubridae (Colubrinae) | KC347464 | KC347365 | KC347504 | KC347404 | - | KC347442 |
| 59 | Oxyrhabdium leporinum | Lamprophiidae (Cyclocorinae) | AF471029 |  |  | DQ112081 | - | - |
| 60 | Oxyuranus scutellatus | Elapidae | EU547051 | EU547149 | EF210827 | EU546916 |  | - |
| 61 | Pareas carinatus | Pareidae (Pareinae) | JF827677 | AF544802 | JF827653 | JF827702 | FJ433985 | - |

Table 1. (Continued)

|  | Species | Family (subfamily) | cytb | 16 s | nd4 | cmos | bdnf | rag1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 62 | Prosymna janii | Lamprophiidae (Prosymninae) | FJ404319 | FJ404222 | FJ404389 | FJ404293 | - | - |
| 63 | Prosymna visseri | Lamprophiidae (Prosymninae) | AY188033 | AY188072 |  | AY187994 |  |  |
| 64 | Pseudaspis cana | Lamprophiidae (Pseudaspidinae) | AY612080 | AY611898 | DQ486319 | DQ486167 |  |  |
| 65 | Pseudoxenodon karlschmidti | Colubridae (Pseudoxenodontinae) | AF471080 | JF697330 | - | AF471102 | JQ599045 | - |
| 66 | Python bivittatus | Pythonidae | JX401131 | KF010492 |  | AF435016 | XM7433022 |  |
| 67 | Rena humilis | Leptotyphlopidae (Epictinae) | AY099991 | AB079597 | AB079597 | AY099979 |  | - |
| 68 | Rhinophis drummondhayi | Uropeltidae | AF544673 | AY701028 | _ | AF544719 | FJ433966 |  |
| 69 | Sanzinia madagascariensis | Sanziniidae | U69866 | AY336066 |  | EU403580 | AY988033 | AY988067 |
| 70 | Sibynophis subpunctatus | Colubridae (Sibynophiinae) | KC347471 | KC347373 | KC347516 | KC347411 |  | KC347449 |
| 71 | Tropidophis feicki | Tropidophiidae | KF811124 | AF512733 | - | KF811110 | KF811074 |  |
| 72 | Typhlops jamaicensis | Typhlopidae (Typhlopinae) | KF993259 | AF366764 | - | AF544733 | EU402664 | EU402866 |
| 73 | Ungaliophis continentalis | Charinidae (Ungaliophiinae) | U69870 | AF544833 |  | AF544724 | EU402665 | EU402867 |
| 74 | Xenodermus javanicus | Xenodermidae |  | AF544810 | U49320 | AF544711 | EU402667 | EU402869 |
| 75 | Xenopeltis unicolor | Xenopeltidae | AB179620 | AB179620 | AB179620 | AF544689 | EU402668 | DQ465564 |
| 76 | Xenophidion schaeferi | Xenophidiidae | AY574279 | _ | _ | - |  | - |
| 77 | Xenotyphlops grandidieri | Xenotyphlopidae | KF770844 | - | - | - | GU902457 | - |
| 78 | Xerotyphlops vermicularis | Typhlopidae (Asiatyphlopinae I) | JQ910544 |  |  |  | GU902397 |  |
| 79 | Xylophis perroteti | Pareidae (Xylophiinae subfam. nov.) |  | MK340908* | MK340910* | MK344193* | MK344197* | MK340913* |
| 80 | Xylophis stenorhynchus | Pareidae (Xylophiinae subfam. nov.) | MK340915 | MK340907 | MK340911 | MK344194 | MK344198 | - |
| 81 | Xylophis captaini | Pareidae (Xylophiinae subfam. nov.) | MK340914* | MK340909* | MK340912 | MK344195 | MK344196 | - |

[^1]
## Molecular data and phylogenetic analysis

We generated DNA sequence data for two specimens from freshly collected tissue, a Xylophis perroteti from the Nilgiris (CESG 2016b) and a X. captaini from the type locality Kannam, Kottayam District (BNHS 3376). Genomic DNA was extracted from liver tissue samples stored in absolute ethanol at $-20^{\circ} \mathrm{C}$. DNeasy (Qiagen ${ }^{\text {TM }}$, Valencia, California, USA) blood and tissue kits were used to extract DNA. We amplified partial sequences of three mitochondrial (mt) genes and three nuclear (nu) genes. The mt genes are 16S rRNA (16s), cytochrome b (cytb) and NADH dehydrogenase subunit 4 (nd4), and the nu markers are the recombination activating gene 1 (rag1), oocyte maturation factor (cmos), and brainderived neurotrophic factor (bdnf). DNA PCR amplification and Sanger sequencing used previously reported primers (Palumbi et al. 1991; Arévalo et al. 1994; Palumbi 1996; Parkinson et al. 2000; Noonan and Chippindale 2006; Wiens et al. 2008).

We attempted to extract homologous sequences for our phylogenetic markers from the unfiltered, unassembled, raw sequence reads that were generated during targeted sequencing of ultra-conserved elements (UCEs) for a historical specimen (CAS 17199) of Xylophis stenorhynchus from Ruane and Austin (2017). These data comprised 32,236,948 reads each for read 1 and read 2. Although none of the loci used in this study was targeted by the UCE probe kit (MYbaits tetrapod 5K kit, which targets 5060 UCEs from amniotes: Faircloth et al. 2012) used by Ruane and Austin (2017), we considered it possible that the loci of interest were sequenced as 'bycatch' during the highthroughput sequencing, particularly for mtDNA genes due to the high number of copies of these loci in genomic DNA.

Using the program Geneious (Kearse et al. 2012) Ruane and Austin's (2017) unfiltered reads for $X$. stenorhynchus were mapped to each of the newly generated $X$. captaini and $X$. perroteti Sanger sequences for $16 \mathrm{~s}, \mathrm{cytb}, \mathrm{nd} 4, \mathrm{cmos}$, rag1 and bdnf (see Table 1). This was done using the Geneious align/assemble option 'map to reference', with the modern sample serving as the reference for the unfiltered $X$. stenorhynchus reads; sensitivity was set to medium-low with up to five iterations. Where successful, the resulting mapped reads of $X$. stenorhynchus were combined into consensus sequences for each marker to be included in subsequent analyses.

We constructed a molecular dataset for 507 leaves ( 500 snakes +7 non-snake squamates; $493+7$ species, respectively) including 14 of the 20 currently recognised species of pareids. Data coverage for each of the genes in the dataset are as follows: cytb $80.9 \%$, 16 s 68.1\%, nd4 $58.8 \%$, cmos $71.6 \%$, bdnf $30.4 \%$ and rag1 13.6\%. GenBank accession numbers for all sequences included in our phylogenetic and dating analyses are presented in Table S1. Alignments per gene were carried out in MEGA 5 (Tamura et al. 2011) using the ClustalW algorithm with default parameters and are available online from the Natural History Museum data portal (http://data.nhm.ac.uk/dataset/ deepak-xylophis). Uncorrected p-distances and Kimura 2-parameter (Kimura 1980) distances were calculated using MEGA 5. Phylogenetic analysis was implemented in the program RAxML v7.4.2 GUI (Stamatakis 2006; Silvestro and Michalak 2012) with the six gene concatenated dataset. This dataset was 4557 bp long and was partitioned by gene and by codon, a total of 11 partitions (see Table S2), determined as the best-fit scheme using ParitionFinder 1.2 (Lanfear et al. 2012). We used GTRGAMMA model in RAxML which is recommended over the GTR +G+I because the 25 rate categories account for
potentially invariant sites (Stamatakis 2006), as was also implemented in other largescale snake molecular phylogenetic analyses (Pyron et al. 2011; Zaher et al. 2012; Figueroa et al. 2016).

Divergence times were estimated using a subset of taxa for the same genes, with a dataset containing 81 snake species including representatives of all extant subfamilies of alethinophidian snakes and all extant families of scolecophidians (Table 1). These data were newly aligned (using the methods outlined above, alignment available at: http:// data.nhm.ac.uk/dataset/deepak-xylophis), producing a dataset 4504 bp. PartitionFinder 1.2 (Lanfear et al. 2012) was used to identify the best-fitting partition scheme and model(s) of sequence evolution according to the Bayesian information criterion (BIC) using the default greedy algorithm with linked branch lengths (see Table S3 for partitions and models). We explored the sensitivity of our phylogenetic results to our selected (ClustalW) alignment method by alternatively aligning the 16s data also with MUSCLE (Edgar 2004), as well as using Gblocks v0.91b (Castresana 2000) to identify and remove ambiguously aligned sites from the ClustalW alignment using the 'less stringent' option. These alternative approaches to the 16 s data did not notably change the topology or support values in optimal RAxML (data partitioned by gene and by codon) trees for the concatenated data (Figure S1).

Divergence times were estimated using a Bayesian relaxed uncorrelated lognormal clock model implemented in BEAST 1.8.2 (Drummond et al. 2012). We used fossil calibrations recommended by Head (2015) and Head et al. (2016) to date minimum ages of five divergences: (1) oldest divergence within crown Alethinophidia based on Haasiophis terrasanctus Tchernov et al. 2000; minimum age 93.9 Ma , soft maximum 100.5 Ma ; (2) oldest divergence between non-xenodermid colubroids and their closest living relative (Xenodermidae in our tree), based on Procerophis sahnii Rage et al. 2008; minimum 50.5 Ma , soft maximum 72.1 Ma ; (3) divergence between Boinae and its sister taxon (Erycinae + Candoiinae in our tree) based on Titanoboa cerrejonensis Head et al. 2009; minimum 58 Ma , soft maximum 64 Ma (4) divergence between Viperinae and Crotalinae based on Vipera aspis complex (Szyndlar and Rage 1999); minimum 20.0 Ma , soft maximum 23.8 Ma ; and (5) oldest divergence within elapids based on Naja romani (Hoffstetter, 1939); minimum age 17 Ma , soft maximum 60 Ma (see Table S 4 for exact values applied to each calibration prior). Analyses used random starting trees, with clock and tree models linked across partitions. Two independent analyses were run for 600,000,000 generations sampling every 5000 trees, the effective sample size (ESS) values were evaluated using Tracer 1.6 (Rambaut et al. 2014). The prior distribution for all fossil calibrations was set to lognormal.

## Results

## Phylogenetic inference

Mapping the Sanger sequencing data for Xylophis captaini and $X$. perroteti against the unfiltered $X$. stenorhynchus high-throughput sequence reads resulted in potentially homologous consensus sequences for the latter for 16 s ( $441 \mathrm{bp} ; 103$ reads assembled), cytb ( $513 \mathrm{bp} ; 60$ reads), nd4 ( $328 \mathrm{bp} ; 61$ reads), cmos ( $169 \mathrm{bp} ; 6$ reads), and bdnf ( $91 \mathrm{bp} ; 4$ reads). These consensus sequences are reported in Table 1. These sequences were similar to
those of $X$. perroteti (uncorrected p-distances 0.078 for $16 s ; 0.204$ for nd4; 0.037 for cmos; 0.045 for bdnf) and $X$. captaini (uncorrected p-distances 0.114 for $16 \mathrm{~s} ; 0.221$ for cytb).

Our ML phylogenetic analysis provides strong support for the monophyly of Xylophis and for the sister group relationship between Xylophis and a clade comprising the pareids Pareas, Aplopeltura and Asthenodipsas (Figures 1 and S2). Within the latter clade, Pareas and Asthenodipsas are strongly supported as monophyletic, with the former being sister to the monotypic Aplopeltura. The Xylophis, Pareas, Aplopeltura and Asthenodipsas clade (here considered to comprise Pareidae) is recovered as a member of a lineage comprising all colubroids except Xenodermidae. Although there is strong signal for pareids lying outside a group comprising most other colubroids, the relationships among Pareidae, Viperidae and all other non-xenodermid colubroids are not clearly resolved by our analyses. Uncorrected p-distances between Xylophis and the other three pareid genera for the sampled genes are $0.07-0.12$ (16s), 0.27-0.38 (cytb), 0.21-0.25 (nd4), 0.03-0.1 (cmos) and 0.03 (bdnf). Pairwise distances between recognised colubroid families and between intrafamilial subfamilies for cmos and bdnf (reported in Tables $\mathrm{S5}-\mathrm{S} 8$ ) are summarised in Figure 2. The molecular dating analysis recovers an estimated minimum divergence of 55-35 Ma between Xylophis and its sister taxon (Pareas, Aplopeltura and Asthenodipsas) (Figure 3). Rerunning the dating analysis but excluding third codon positions of the mitochondrial genes cytb and nd4 did not notably alter the results for most divergences (including that for Xylophis versus its sister) in terms of relative ages (Figure S3), with estimated divergence dates for the two analytical treatments being strongly correlated (Figure S4).

## Systematics

Based on the well-supported inferred phylogenetic relationships of Xylophis and divergence from its extant sister lineage, we refer the genus to the family Pareidae, and re-define the latter phylogenetically as all snakes more closely related to Pareas carinatus Wagler, 1830 than to Xenodermus javanicus Rheinhardt, 1836, Vipera aspis (Linnaeus, 1758) or Homalopsis buccatus (Linnaeus, 1758). Given the molecular genetic and phenotypic distinctiveness of the two lineages comprising the basal split within Pareidae, we classify Pareas, Aplopeltura and Asthenodipsas within the subfamily Pareinae (defined phylogenetically as all snakes more closely related to Pareas carinatus Wagler, 1830 than to Xylophis perroteti Duméril, Bibron and Duméril, 1854) and we erect a new subfamily for Xylophis:

DIAPSIDA Osborn, 1903
Superorder LEPIDOSAURIA Haeckel, 1866 Order SQUAMATA Oppel, 1811 Suborder SERPENTES Linnaeus, 1758 Infraorder CAENOPHIDIA Hoffstetter, 1939 Superfamily COLUBROIDEA Oppel, 1811 Family PAREIDAE Romer, 1956 Subfamily Xylophiinae subfam. nov.

## Type genus

Xylophis Beddome, 1878

## Content

A single genus with three currently recognised species: $X$. stenorhynchus (Günther, 1875); X. perroteti Duméril, Bibron and Duméril, 1854; X. captaini Gower and Winkler, 2007. Xylophis indicus Beddome, 1878 has been considered a synonym of $X$. stenorhynchus (e.g. Smith 1943; Wallach et al. 2014) but might also be valid (Gower and Winkler 2007). Xylophis perroteti includes the synonyms Rhabdosoma microcephalum Günther, 1858 (e.g. Smith 1943; Wallach et al. 2014).


Figure 1. Pruned ML tree showing bootstrap support for the relationships of species in the family Pareidae. See Appendix 4 for the complete ML phylogeny including 507 taxa ( 493 species of snakes and seven non-snake squamates).


Figure 2. Ranges of uncorrected p-distances (black and grey) and K2P distances (dark blue and light blue) for between-family (dark bars) and within-family (light bars) comparisons of snakes in the superfamily Colubroidea. Pareidae here includes Pareinae and Xylophiinae subfam. nov. Numbers on the $x$-axis denotes sample size of subfamilies under each family.


Figure 3. BEAST chronogram generated using concatenated-gene for all families and subfamilies of snakes. Numbers at internal branches indicate posterior probabilities. Error bars indicate $95 \%$ highest posterior densities for node ages. Nodes C1-C5 are the five calibrated nodes.

## Phylogenetic definition

All snakes more closely related to Xylophis perroteti than to Pareas carinatus Wagler, 1830.

## Diagnosis

Colubroid snakes with first (anteriormost) three pairs of infralabial shields reduced to narrow strips, together much smaller than large pair of anterior chin (genial) shields.

## Distribution

The Western Ghats region of peninsular India. Xylophis is thus far known only from the southern part of the Western Ghats, in the states of Kerala and Tamil Nadu (Figure 4). Species of the genus have been recorded from close to sea level (Xylophis captaini: Gower and Winkler 2007) to at least 2000 m (X. perroteti: Srinivasulu et al. 2014).

## Discussion

Age of divergence (whether absolute or relative) between sister lineages has sometimes been applied as a secondary criterion in recognition of suprageneric taxa (e.g. Wilkinson et al. 2011), including the formal naming of new families (e.g. Kamei et al. 2012). Although the general application of such a criterion has been cautioned against (e.g. Vences et al. 2013; Frost 2017: see 'comments on taxonomy related to version 5.6 '), we see some merit in using estimated divergence age cautiously as an additional guide alongside phylogenetic relationships and extent of phenotypic and raw molecular genetic divergence. In this case, we take some comfort in naming a new subfamily given that the estimated age of divergence of Xylophiinae from Pareinae is comparable to that between sister pairs of other snake (sub)families (Figures 3 and S3).

Although xylophiines and pareines are phenotypically disparate superficially, the anatomy and anatomical diversity of these two lineages (and of other major lineages of colubroids) is insufficiently known to yet rule out the identification of unambiguous synapomorphies for Pareidae. Although classifying Xylophis as a xenodermine on the basis of skull, head muscle and hemipenis features, McDowell (1987, p. 35-36) also drew attention between at least $X$. perroteti and pareines (and calamariines) in terms of posteriorly extensive kidneys and a distinct rectal caecum. The morphology of Xylophis is poorly studied and further work in the light of the renewed interest in its phylogenetic relationships seems warranted.

The evolutionary divergence between xylophiines and pareines resulted in sister clades with markedly differing distributions, morphologies and ecologies. Although both lineages comprise small to moderately sized predators of invertebrates, xylophiines are small-headed, small-eyed, fossorial, relative generalist or opportunistic predators (Kumar and Kannan 2017) restricted to the southern part of the Western Ghats of peninsular India, while pareines are relatively larger-headed (head greater in girth than anterior of body), large-eyed, surface dwelling (often arboreal) specialist molluscivores (Cundall and Greene 2000) restricted almost entirely to east and south-east Asia (also extending into north-east India; Figure 4). Given that the Indian subcontinent (part of Gondwana) did not accrete with the rest of Asia until ca. 55 Ma (Patriat and Achache 1984), our estimated divergence between xylophiines and pareines ( $55-35 \mathrm{Ma}$ ) is consistent with dispersal of either a peninsular Indian ancestor into east/south-east Asia or vice versa. This hypothesis is a little more parsimonious than one invoking a widespread ancestral pareid lineage followed by spatially exclusive extinctions of xylophiines (in east and south-east Asia) and pareines (in peninsular India). However, that Pareidae, Xenodermidae and Acrochordidae are all Asian and that they might comprise a paraphyletic assemblage lying successively outside of a clade (= Endoglyptodonta of Zaher et al. 2009) comprising Viperidae, Elapidae, Colubridae, and Lamprophiidae (e.g. Vidal et al. 2007; Zaher et al. 2009; Grazziotin et al. 2012; Pyron et al. 2013; Figueroa et al. 2016) is more supportive of an Asian (rather than Gondwanan) origin of Pareidae, and thus of a dispersal of the ancestor of the Xylophiinae lineage into peninsular India from east or south-east Asia rather than vice versa. Resolution of the phylogenetic position of the north-east Indian Pareas moniticola and P. margaritophorus might usefully inform the question of the historical biogeography of Pareidae (or at least of Pareinae).


Figure 4. (a) Geographic distribution of Xylophiinae subfam. nov. (green) and approximate distribution of subfamily Pareinae (blue). Photographs show representative taxa of the two subfamilies within Pareidae: (b) Xylophis perroteti from Nilgiris, Tamil Nadu, India (Photo: Achyuthan N. Srikanthan); (c) Pareas monticola from Barail, Assam, India (Photo: V. Deepak). Approximate distribution drawn based on locations provided in Srinivasulu et al. (2014) and Wallach et al. (2014).

## Acknowledgements

In addition to people acknowledged by Gower and Winkler (2007), we thank Srihari Ananthakrishna and Krishna Chaitanya for their support during fieldwork. Chinta Sidharthan is thanked for help with some of the lab work, and Mark Wilkinson and Natalie Cooper for help with some of the analyses. VD thanks Achyuthan Srikanthan for sharing Xylophis perroteti photos. We also further thank those acknowledged in Ruane and Austin (2017), especially Jens Vindum (California Academy of Sciences) for the loan of Xylophis stenorhynchus and Jeff Streicher for sharing the dataset from Streicher and Wiens (2016). Part of this project was made possible from

NSF DEB-1146033 to C.C. Austin. VD's contribution was support, in part, by Marie SkłodowskaCurie Fellowship EU project 751567.

## Disclosure statement

No potential conflict of interest was reported by the authors.

## Funding

This work was supported by the Marie Skłodowska-Curie Fellowship [EU project 751567].

## Geolocation Information

Study Area (box): $8.65000^{\circ} \mathrm{N}, 76.95000^{\circ} \mathrm{E}$ to $11.31198^{\circ} \mathrm{N}, 76.58653^{\circ} \mathrm{E}$

## ORCID

V. Deepak (D) http://orcid.org/0000-0002-8826-9367

Sara Ruane © http://orcid.org/0000-0002-9543-1297
David J. Gower (iD) http://orcid.org/0000-0002-1725-8863

## References

Arévalo E, Davis SK, Sites JW. 1994. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus Complex (Phrynosomatidae) in Central Mexico. Syst Biol. 43:387-418.
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17:540-552.
Cundall D, Greene HW. 2000. Feeding in snakes. In: Schwenk K, editor. Feeding form, function, and evolution in tetrapod vertebrates. San Diego (CA): Academic Press; p. 293-333.
Cundall D, Irish FJ. 2008. The snake skull. In: Gans C, Gaunt AS, Adler K, editors. Biology of the Reptilia, v. 20 (Morphology H: The Skull of Lepidosauria). Ithaca (NY): Society for the Study of Amphibians and Reptiles; p. 349-692.
Dowling HG, Pinou T. 2003. Xenodermatid snakes in America. Herpetol Rev. 34:20-23.
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 29:1969-1973.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797.
Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Sys Biol. 61:717-726.
Figueroa A, McKelvy AD, Grismer LL, Bell CD, Lailvaux SP. 2016. A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. Plos One. 11(9):e0161070.
Frost DR. 2017. Amphibian Species of the World: an Online Reference. Version 6.0 (Date of access). New York (USA): American Museum of Natural History. http://research.amnh.org/herpetology/ amphibia/index.html.
Gans C, Fetcho JR. 1982. The Sri Lankan genus Aspidura (Serpentes, Reptilia, Colubridae). Carnegie Mus Nat Hist. 51:271-316.
Gower DJ, Winkler JD. 2007. Taxonomy of the Indian snake Xylophis Beddome (Serpentes: Caenophidia), with description of a new species. Hamadryad. 31:315-329.

Grazziotin FG, Zaher H, Murphy RW, Scrocchi G, Benavides MA, Zhang YP, Bonatto SL. 2012. Molecular phylogeny of the new world Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics. 28:437-459.
Günther A. 1858. Catalogue of Colubrine snakes of the British Museum. London.
Head JJ. 2015. Fossil calibration dates for molecular phylogenetic analysis of snakes 1: serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontol Electron. 18:1-17.
Head JJ, Mahlow K, Müller J. 2016. Fossil calibration dates for molecular phylogenetic analysis of snakes 2: caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontol Electron. 19:1-21.
Kamei RG, San Mauro D, Gower DJ, Van Bocxlaer I, Sherratt E, Thomas A, Babu S, Bossuyt F, Wilkinson M, Biju SD. 2012. Discovery of a new family of amphibians from northeast India with ancient links to Africa. Proc R Soc Lond [Biol]. 279:2396-2401.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647-1649.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16:111-120.
Kumar PS, Kannan P. 2017. Striped narrow-headed snake: diet of the endemic Xylophis perroteti in Nilgiris. Reptile Rap. 32:22-23.
Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 29:1695-1701.
Lawson R, Slowinski JB, Crother BI, Burbrink FT. 2005. Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol. 37:581-601.
McDowell SB. 1987. Systematics. In: Seigel RA, Collins JT, Novak SS, editors. Snakes: ecology and evolutionary biology. New York: Macmillan Publishing; p. 3-50.
Noonan BP, Chippindale PT. 2006. Dispersal and vicariance: the complex evolutionary history of boid snakes. Mol Phylogenet Evol. 40:347-358.
Palumbi SR. 1996. The polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK, editors. Molecular systematics. 2nd ed. Massachusetts: Sinauer Associates; p. 205-247.
Palumbi SR, Martin AP, Romano SL, McMillan WO, Stice L, Grabowski G. 1991. The Simple Fool's Guide to PCR ver. 2. Honolulu: University of Hawaii.
Parkinson CL, Zamudio KR, Greene HW. 2000. Phylogeography of the pitviper clade Agkistrodon: historical ecology, species status, and conservation of cantils. Mol Ecol. 9:411-420.
Patriat P, Achache J. 1984. India-Asia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature. 311:615-621.
Pyron RA, Burbrink FT, Colli GR,de Oca ANM, Vitt LJ, Kuczynski CA, Wiens JJ. 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol. 58:329-342.
Pyron RA, Burbrink FT, Wiens JJ. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol. 13:93.
Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1. 6. [accessed 2014 Jul 27]. http:// beast.bio.ed.ac.uk.Tracer
Ruane S, Austin CC. 2017. Phylogenomics using formalin fixed and 100+ year old intractable natural history specimens. Mol Ecol Resour. 17:1003-1008.
Silvestro D, Michalak I. 2012. RAxML GUI: a graphical front-end for RAxML. Org Divers Evol. 12:335-337.
Simões BF, Sampaio FL, Douglas RH, Kodandaramaiah U, Casewell NR, Harrison RA, Hart NS, Partridge JC, Hunt DM, Gower DJ. 2016. Visual pigments, ocular filters and the evolution of snake vision. Mol Biol Evol. 33:2483-2495.
Smith MA. 1943. The fauna of British India, Ceylon and Burma including the whole of the IndoChinese sub-region. Reptilia and Amphibia. Volume III. Serpentes. London: Taylor and Francis.
Srinivasulu C, Srinivasulu B, Molur S. 2014. The status and distribution of reptiles in the Western Ghats, India. Conservation Assessment and Management Plan (CAMP). Wildlife Information Laision Development Society, Coimbatore (Tamil Nadu).

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22:2688-2690.
Streicher JW, Wiens JJ. 2016. Phylogenomic analyses reveal novel relationships among snake families. Mol Phylogenet Evol. 100:160-169.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28:2731-2739.
Uetz P, Freed P, Hošek J (Eds.). 2018. The Reptile Database. [accessed 2018 Nov 14]. http://www. reptile-database.org.
Underwood G. 1967. A Contribution to the Classification of Snakes. London: British Museum (Natural History).
Vences M, Guayasamin JM, Miralles A, De La Riva I. 2013. To name or not to name: criteria to promote economy of change in Linnaean classification schemes. Zootaxa. 3636:201-244.
Vidal N. 2002. Colubroid systematics: evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J Toxicol Toxin Rev. 21:21-41.
Vidal N, Delmas AS, David P, Cruaud C, Couloux A, Hedges SB. 2007. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C R Biol. 330:182-187.
Wallach V. 1998. The lungs of snakes. In: Gans C, Gaunt AS editors. Biology of the Reptilia, v. 19 (Morphology G: Visceral Organs). Ithaca (NY): Society for the Study of Amphibians and Reptiles; p. 93-295.

Wallach V, Williams KL, Boundy J. 2014. Snakes of the world a catalogue of living and extinct species. Boco Raton, FL: CRC Press, Taylor \& Francis Group.
Whitaker R, Captain A. 2004. Snakes of India: the Field Guide. Chennai: Draco Books.
Wiens JJ, Kuczynski CA, Smith SA, Mulcahy DG, Sites JW, Townsend TM, Tod W. 2008. Branch Lengths, Support, and Congruence: testing the Phylogenomic Approach with 20 Nuclear Loci in Snakes. Sys Biol. 57:420-431.
Wilkinson M, San Mauro D, Sherratt E, Gower DJ. 2011. A nine-family classification of caecilians (Amphibia: Gymnophiona). Zootaxa. 2874:41-64.
Zaher H. 1999. Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bull Am Mus Nat Hist. 240:1-168.
Zaher H, Grazziotin FG, Cadle JE, Murphy RW, Moura-Leite JCD, Bonatto SL. 2009. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Pap Avulsos Zool. 49:115-153.
Zaher H, Grazziotin FG, Graboski R, Fuentes RG, Sánchez-Martinez P, Montingelli GG, Zhang Y-P, Murphy RW. 2012. Phylogenetic relationships of the genus sibynophis (Serpentes: Colubroidea). Pap Avulsos Zool. (São Paulo). 52:141-149.


[^0]:    CONTACT V. Deepak veerappandeepak@gmail.com

[^1]:    *indicates data used in the 'map to reference' analyses to identify homologous sequences from UCE data for the historical sample of $X$. stenorhynchus.

