Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada)

NOEMÍ GUIL ${ }^{1 *}$, ASLAK JØRGENSEN ${ }^{2}$, GONZALO GIRIBET FLS ${ }^{3}$ and REINHARDT MØBJERG KRISTENSEN ${ }^{2}$
${ }^{1}$ Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales de Madrid (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
${ }^{2}$ Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
${ }^{3}$ Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA

Received 21 November 2012; revised 2 September 2013; accepted for publication 9 September 2013

Abstract

Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ornamentation as a phylogenetic character within Echiniscus. To do this, DNA was extracted from single individuals for multiple Echiniscus species, and 18 S and 28 S rRNA gene fragments were sequenced. Each specimen was photographed, and published in an open database prior to DNA extraction, to make morphological evidence available for future inquiries. An updated phylogeny of the class Heterotardigrada is provided, and conflict between the obtained molecular trees and the distribution of dorsal plates among echiniscid genera is highlighted. The monophyly of Echiniscus was corroborated by the data, with the recent genus Diploechiniscus inferred as its sister group, and Testechiniscus as the sister group of this assemblage. Three groups that closely correspond to specific types of cuticular design in Echiniscus have been found with a parsimony network constructed with 18 S rRNA data.

© 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013
doi: 10.1111/zoj. 12090
ADDITIONAL KEYWORDS: 18S rRNA - 28S rRNA - Bayesian - cladistics - DNA taxonomy - Echiniscidae - morphology - parsimony network.

INTRODUCTION

Tardigrades are among the smallest metazoans and one of the least understood animal phyla - from a phylogenetic perspective. However, few studies have compared explicitly results from morphology-based phylogenies with those of molecular-based trees (Møbjerg et al., 2007; Cesari et al., 2009, 2011a, b; Guil \& Giribet, 2009; Bertolani et al., 2010, 2011;

[^0]Jørgensen, Møbjerg \& Kristensen, 2011; Guil, Machordom \& Guidetti, 2013). In addition, and due to their diminutive size, molecular phylogenies of tardigrades have often been based on DNA extractions from pooled individuals (e.g. Garey et al., 1996, 1999; Møbjerg et al., 2007; Jørgensen et al., 2010, 2011).

Classifications based solely on morphological characters have been corroborated by molecular analyses in many groups of organisms, but disagreement also exists (see Funk \& Omland, 2003; Rheindt et al., 2011). DNA-based taxonomy can complement traditional (morphological) taxonomy, aiding in the
discovery and characterization of cryptic species as well as in identifying phenotypic plasticity. Morphological and molecular conflict in phylogenies can be explained by uninformative molecular markers, homogeneous morphologies, and/or homoplasy (Funk \& Omland, 2003). Even in well-studied animal groups such as vertebrates, lack of congruence between morphological and molecular data is not uncommon (e.g. Near, 2009; Losos, Hillis \& Greene, 2012), and such conflict can be rampant in lesser-known organisms. Approaches attempting to reconcile the conflict between molecular and morphological characters in tardigrades are scarce, to put it mildly.
Echiniscus (Heterotardigrada, Echiniscoidea, Echiniscidae) is the second most diverse genus of tardigrades, after Macrobiotus (Eutardigrada, Macrobiotidae), including almost 15% of the total tardigrade species diversity (Guidetti \& Bertolani, 2005; Degma \& Guidetti, 2007; Degma, Bertolani \& Guidetti, 2013). Echiniscus species are recognized morphologically on the basis of differentiation in cuticle design and shape and distribution of cuticular 'appendages' (Ramazzotti \& Maucci, 1983; Kristensen, 1987). However, the pattern and number of lateral body appendages, as traditionally used for species differentiation within the Echiniscus blumi-canadensis complex, have been shown to conflict with molecular hypotheses (Guil \& Giribet, 2009). Conflict between molecules and morphology has also been reported at higher taxonomic levels when comparing genera within Echiniscidae (Jørgensen et al., 2011).

The objectives of this study are thus: (1) to provide an updated phylogeny of Heterotardigrada to have a well-established framework for the study of the genus Echiniscus; (2) to test the monophyly of Echiniscus; and (3) to evaluate internal relationships within Echiniscus and the validity of the traditional species groups based on cuticular characters.

MATERIAL AND METHODS

SAMPLING

Specimens for this study were obtained from the Reinhardt M. Kristensen collection of mosses housed in the Natural History Museum of Denmark (University of Copenhagen). Dry moss samples were soaked in water overnight, washed, squeezed and filtered through a $32-\mu \mathrm{m}$ mesh-size sieve. The filtered product was transferred to a Petri dish for examination under a stereomicroscope. Each specimen was then isolated, and mounted in temporary microscopy slides.
To date, few studies focusing on tardigrades have generated molecular and morphological data for the same specimens (but see Cesari et al., 2011b, 2013). In all cases, no parts from the extracted specimen
remain, as the small size of tardigrades makes it necessary to use the whole animal for DNA extraction, although in some cases the egg cases are left as vouchers (Cesari et al., 2011a). Photographing the specimens prior to DNA extraction becomes the only feasible solution to link genetic and anatomical data, as done by Cesari et al. (2011b, 2013). While many authors provide identifications of each individual used for DNA extraction, especially when multiple species coexist in a sample (Cesari et al., 2009; Guil \& Giribet, 2009, 2012; Bertolani et al., 2010, 2011), photographs of specimens preceding DNA extraction become the only unequivocal link between DNA sequences and morphology. For this study each specimen was mounted in a temporary slide in distilled water and identified by light microscopy at the highest possible magnification ($100 \times$ objective) using phase contrast and following current taxonomic standards (Guidetti \& Bertolani, 2005; Marley, McInnes \& Sands, 2011). In addition, taxonomically relevant structures (cuticle, claws, buccopharyngeal apparatus, etc.; Ramazzotti \& Maucci, 1983; Guidetti \& Bertolani, 2005) from each specimen were photographed, recorded, and stored for future morphological queries (to avoid misidentification problems, as previously reported by Guil \& Giribet, 2009). MorphoBank (http://www.morphobank.org/) (O'Leary \& Kaufman, 2012) is a public database that stores images related to taxonomy and phylogeny, where each image receives an accession number that can then be linked to publications and to the specific sequence data stored in GenBank. Photographic data for each sequenced Echiniscus specimen (as well as for other echiniscoidean specimens) in the present study have been deposited in MorphoBank with accession numbers M148490-M148655 (Project number 785).

The temporary slide mounts were dismantled under a stereoscope in clean conditions after identification, and individuals - usually broken due to slide cover pressure - as well as free disaggregated cells were recovered with a clean glass pipette, and transferred into a sterile tube for subsequent DNA extraction. Whenever possible, more than one individual (Tables 1 and 2) was extracted and sequenced per species, on different days, to avoid crosscontamination. If available, multiple specimens were sequenced for species not previously studied molecularly, and from multiple localities, to reflect some of the variability of the species.

The Echiniscus sequences studied included up to 11 species (newly sequenced and from GenBank; Table 1), collected in localities around the world, and including five types of cuticle traditionally used to cluster Echiniscus species (Ramazzotti \& Maucci, 1983; Peluffo, Moly de Peluffo \& Rocha, 2002;
Table 1. Species (newly sequenced specimens in bold) of the genus Echiniscus and their localities, when available, analysed in the present study

	Species	Code	Locality	Date	Coordinates		18 S rRNA	28 S rRNA	REFs.
1	Echiniscus bigranulatus Richters, 1907	Tar728	Milodon Cave, Patagonia, Chile	Nov. 2004	S51 ${ }^{\circ} 34^{\prime}$	W72 ${ }^{\circ} 37^{\prime}$	JX114897	JX114853	New
		Tar729	Milodon Cave, Patagonia, Chile	Nov. 2004	S51 ${ }^{\circ} 34^{\prime}$	W72 ${ }^{\circ} 37{ }^{\prime}$	JX114898	JX114854	New
		Tar747	Milodon Cave, Patagonia, Chile	Nov. 2004	S51 ${ }^{\circ} 34^{\prime}$	W72 ${ }^{\circ} 37{ }^{\prime}$	JX114899	JX114855	New
		Tar756	Milodon Cave, Patagonia, Chile	Nov. 2004	S51 ${ }^{\circ} 34^{\prime}$	W72 ${ }^{\circ} 37^{\prime}$	-	JX114856	New
		-	Milodon Cave, Patagonia, Chile	-	-	-	HM193373	HM193389	*1 +
2	Echiniscus blumi Richters, 1903	Tar726	Milodon Cave, Patagonia, Chile	Nov. 2004	S51 ${ }^{\circ} 34^{\prime}$	W72 ${ }^{\circ} 37^{\prime}$	JX114891	JX114848	New
		Tar727	Milodon Cave, Patagonia, Chile	Nov. 2004	S51 ${ }^{\circ} 34^{\prime}$	W72 ${ }^{\circ} 7^{\prime}$	JX114892	JX114847	New
		Tar730	Milodon Cave, Patagonia, Chile	Nov. 2004	S51 ${ }^{\circ} 34^{\prime}$	W72 ${ }^{\circ} 7^{\prime}$	JX114893	JX114850	New
		Tar748	Milodon Cave, Patagonia, Chile	Nov. 2004	S51 ${ }^{\circ} 34^{\prime}$	W72 ${ }^{\circ} 7^{\prime}$	JX114894	JX114851	New
		Tar765	Disko Island, Greenland	April 2009	N69 ${ }^{\circ} 19^{\prime}$	W54 ${ }^{\circ}{ }^{\prime}$	JX114895	-	New
		Tar777	Røen Sø, Greenland	April 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 31^{\prime}$	-	JX114849	New
		-	Milodon Cave, Patagonia, Chile	-	-	-	HM193374	HM193390	*1 +
		-	Godhavn, Greenland	-	-	-	HM193375	HM193391	* $1+$
	Echiniscus canadensis Murray, 1910	Tar103	Madrid, Spain	-	-	-	FJ435715	FJ435786	*2
		Tar105	Madrid, Spain	-	-	-	FJ435714	FJ435784	*2
		Tar14	Madrid, Spain	-	-	-	FJ435713	FJ435785	*2
	Echiniscus granulatus (Doyére, 1840)	-	Germany	-	-	-	DQ839606		*3
	Echiniscus trisetosus Cuénot, 1932	Tar102	Madrid, Spain	-	-	-	FJ435716	FJ435781	*2
		Tar612	Madrid, Spain	-		-	FJ435717	FJ435782	*2
		Tar635	Madrid, Spain			-	FJ435718	FJ435783	*2
		Tar764	Arctic Station, Greenland	April 2009	$\mathrm{N} 69^{\circ} 19^{\prime}$	$\text { W54 }{ }^{\circ} 04^{\prime}$	JX114896	JX114852	New
3		Tar395	Madrid, Spain				FJ435719	FJ435787	$*_{2}$
	Richters, 1904	Tar761	Disko Island, Greenland	$\text { April } 2009$	$\mathrm{N} 69^{\circ} 19^{\prime}$	$\mathbf{W}^{5} 4^{\circ} 04^{\prime}$	JX114907	$J X 114864$	New
		Tar762	Disko Island, Greenland	April 2009	$\mathrm{N} 69^{\circ} 19^{\prime}$	$\mathbf{W}^{5} 4^{\circ} 04^{\prime}$	JX114908	JX114865	New
		Tar770	Disko Island, Greenland	$\text { April } 2005$	$\mathrm{N} 69^{\circ} 19^{\prime}$	$\mathbf{W 5 4}^{\circ} 04^{\prime}$		JX114863	New
	Echiniscus merokensis suecicus Thulin, 1911	Tar759	Disko Island, Greenland	$\text { April } 2005$	$\mathrm{N} 69^{\circ} 19^{\prime}$	$\text { W54 }{ }^{\circ} 04^{\prime}$	JX114906	JX114866	New
	Echiniscus spiniger Richters, 1904	Tar731	Resmo, Øland, Sweden	July 2007	$\mathbf{N} 56^{\circ} 39^{\prime}$	E16 ${ }^{\circ} 38^{\prime}$	JX114900	JX114857	New
		Tar732	Resmo, Øland, Sweden	July 2007	$\mathbf{N} 56^{\circ} 39^{\prime}$	$\mathbf{E 1 6}^{\circ} 38^{\prime}$	JX114901	JX114858	New
		Tar733	Resmo, Øland, Sweden	July 2007	$\mathbf{N} 56^{\circ} 39^{\prime}$	$\mathbf{E 1 6}^{\circ} 38^{\prime}$	JX114902	JX114859	New
		Tar750	Resmo, Øland, Sweden	July 2007	$\mathbf{N} 56^{\circ} 39^{\prime}$	$\mathbf{E 1 6}^{\circ} 38^{\prime}$	JX114903	JX114860	New
			Øland, Sweden				HM193376	HM193392	$*_{1}+$
	Echiniscus testudo (Doyére, 1840)		Nivå, Denmark				GQ849022	GQ849043	*4
		-	France	-	-	-	DQ839607	-	*3
		-	France	-	-	-	EF632459	-	$* 5$
		-	France	-	-	-	EF632460	-	*5
		-	France		-	-	EF632461	-	$* 5$
			France	-		-	EF632462	-	$* 5$
			France	-	-		EF632464		*5
		$-$	France	-			EF632466		$* 5$
		Tar734	Samaria Gorge, Crete, Greece	Oct. 2004	$\mathrm{N} 35^{\circ} 17^{\prime}$	$\mathbf{E} 23^{\circ} 57^{\prime}$	JX114905	JX114861	New
			Samaria Gorge, Crete, Greece	Oct. 2004	$\mathrm{N} 35^{\circ} 17^{\prime}$	$\mathbf{E} 23^{\circ} 57^{\prime}$	JX114904	JX114862	

Table 1. Continued

	Species	Code	Locality	Date	Coordinates		18S rRNA	28 S rRNA	REFs.
4	Echiniscus jenningsi Dastych, 1984	-	-	-	-	-	EU26696	-	*6
	Echiniscus wendti Richters, 1903	Tar781	Røen Sø, Greenland	April 2005	N69 ${ }^{\circ} 15{ }^{\prime}$	W53 ${ }^{\circ} 31^{\prime}$	-	JX114867	New
		Tar784	Røen Sø, Greenland	April 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 31^{\prime}$	JX114909	JX114868	New
5	Echiniscus viridissimus Péterfi, 1956	-	-	-	-	-	AF056024	HM193393	*7, *1 +
	Echiniscus sp.	-	Antarctic islands	-	-	-	EF632453	-	*5
	Echiniscus sp.	-	Antarctic islands	-	-	-	EF632454	-	*5
	Echiniscus sp.	-	Antarctic islands	-	-	-	EF632455	-	*5
	Echiniscus sp.	-	Antarctic islands	-	-	-	EF632456	-	*5
	Echiniscus sp.	-	Antarctic islands	-	-	-	EF632457	-	*5
	Echiniscus sp.	-	Antarctic islands	-	-	-	EF632458	-	*5
	Echiniscus sp.	-	-	-	-	-	EU266964	-	*6
	Echiniscus sp.	-	-	-	-	-	EU266971	-	*6
	Echiniscus sp.	-	-	-	-	-	EU266972	-	*6
	Echiniscus sp.	-	-	-	-	-	EU266973	-	*6
	Echiniscus sp.	-	-	-	-	-	EU266974	-	*6
	Echiniscus sp.	-	-	-	-	-	EU266975	-	*6
	Echiniscus sp.	-	-	-	-	-	EU266976	-	*6
	Echiniscus sp.	-	-	-	-	-	EU266977	-	*6

 *3, Schill \& Steinbrück (2007); *4, Jørgensen et al. (2010); *5, Sands et al. (2008a); *6, Sands et al. (2008b); *7, Garey et al. (1999).
Table 2. Heterotardigrades from the order Echiniscoidea used in the analyses

Species	Code	Locality	Date	Coordinates		18S rRNA	28S rRNA	REFs.
Echiniscoides sigismundi (M. Schultze, 1865)	-	-	-	-	-	GQ849021	GQ849042	* $1+$
	-	-	-	-	-	EU266960	-	*2
	Tar735	Lynæs, Seeland, Denmark	Sept. 2005	N55 ${ }^{\circ} 56^{\prime}$	E11 ${ }^{\circ} 51^{\prime}$	JX114926	JX114889	New
	Tar736	Lynæs, Seeland, Denmark	Sept. 2005	N55 ${ }^{\circ} 6^{\prime}$	E11 ${ }^{\circ} 51^{\prime}$	JX114927	JX114888	New
	Tar737	Lynæs, Seeland, Denmark	Sept. 2005	N55 ${ }^{\circ} 56^{\prime}$	E11 ${ }^{\circ}$ 11'	JX114928	JX114890	New
	Tar751	Lynæs, Seeland, Denmark	Sept. 2005	N55 ${ }^{\circ} 56^{\prime}$	E11 ${ }^{\circ} 51{ }^{\prime}$	JX114929	JX114887	New
Oreella mollis Murray, 1910	-	Antarctica	_	-	-	EU266962	-	*2
Antechiniscus lateromamillatus (Ramazzotti, 1964)	-	Angol, Chile	-	-	-	HM193370	HM193386	*3 +
Bryochoerus intermedius	Tar798	Røen Sø, Greenland	April 2005	N69 ${ }^{\circ} 15{ }^{\prime}$	W53 ${ }^{\circ} 31^{\prime}$	JX114920	JX114886	New
(Murray, 1910)	Tar800	Røen Sø, Greenland	April 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 31^{\prime}$	JX114921	JX114888	New
Bryodelphax parvulus Thulin, 1928	-	Øland, Sweden	-	-	-	HM193371	HM193387	*3 +
Bryodelphax sp.	-	Antarctic islands	-	-	-	EF632435	-	*4
	-	Antarctic islands	-	-	-	EF632434	-	*4
	-	Antarctic islands	-	-	-	EF632433	-	*4
	-	Antarctic islands	-	-	-	EU266963	-	*2
Cornechiniscus lobatus (Ramazzotti, 1943)	-	-	-	-	-	EU038077	-	*5
	-	-	-	-	-	EU038079	-	*5
	-	Sinai, Egypt	-	-	-	HM193372	HM193388	*3+
Diploechiniscus oihonnae (Richters, 1903)	Tar791	Bergen, Norway	Aug. 2009	N60 ${ }^{\circ} 3^{\prime}$	E5 ${ }^{\circ} 19^{\prime}$	JX114910	JX114869	New
Hypechiniscus exarmatus (Murray, 1907)	-	Mt. Amigasa, Japan	A	-	-	HM193377	HM193394	*3+
Hypechiniscus gladiator (Murray, 1905)	-	Mt. Amigasa, Japan	-	-	-	HM193378	HM193395	*3+
Mopsechiniscus granulosus Mihelčič, 1967	-	Angol, Chile	-	-	-	HM193379	HM193396	*3 +
Parechinicscus chitonides Cuénot, 1926	-	Øland, Sweden	-	-	-	HM193380	HM193397	*3 +
Proechiniscus hanneae (Petersen, 1951)	Tar738	Disko Island, Greenland	April, 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 34^{\prime}$	JX114922	JX114882	New
	Tar739	Disko Island, Greenland	April, 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 34^{\prime}$	JX114924	JX114883	New
	Tar740	Disko Island, Greenland	April, 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 34^{\prime}$	-	JX114884	New
	Tar749	Disko Island, Greenland	April, 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 34^{\prime}$	JX114923	JX114881	New
	Tar753	Disko Island, Greenland	April, 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 34^{\prime}$	JX114925	JX114879	New
	Tar796	Røen Sø, Greenland	April, 2005	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 31^{\prime}$	-	JX114880	New
	-	Godhavn, Greenland	-	-	-	HM193381	HM193398	*3 +
Pseudechinicus facettalis	-	Zackenberg, Greenland	_	_	-	HM193382	HM193399	*3+
Petersen, 1951	Tar695	Madrid, Spain	-	-	-	FJ435720	FJ435788	*6
	Tar696	Madrid, Spain	-	-	-	FJ435721	FJ435789	*6
	Tar743	Zackenberg, Sydkæret, Greenland	June 2004	N74 ${ }^{\circ} 0^{\prime}$	W20 ${ }^{\circ} 30^{\prime}$	JX114914	JX114874	New
	Tar744	Zackenberg, Sydkæret, Greenland	June 2004	N74 ${ }^{\circ} 30^{\prime}$	W20 ${ }^{\circ} 30^{\prime}$	JX114915	-	New
	Tar754	Zackenberg, Sydkæret, Greenland	June 2004	N74 ${ }^{\circ} 30^{\prime}$	W20 ${ }^{\circ} 30^{\prime}$	JX114916	JX114873	New
Pseudechiniscus islandicus (Richters, 1904)	Tar742	Vadhorn, Eyturoy, Faroe Islands	Nov. 2003	N62 ${ }^{\circ} 01^{\prime}$	W6 ${ }^{\circ} 49^{\prime}$	-	JX114877	New
	Tar755	Vadhorn, Eyturoy, Faroe Islands	Nov. 2003	N62 ${ }^{\circ} 01^{\prime}$	W6 ${ }^{\circ} 49^{\prime}$	JX114919	JX114878	New
	-	Tingvala, Iceland	-	-	-	HM193383	HM193400	*3+
	-	Eyturoy, Faroe islands	-	-	-	AY582119	GQ849044-1	*7, *1
Pseudechiniscus novaezeelandiae (Richters, 1908)Pseudechiniscus sp.	-	Chillan, Chile	-	-	-	HM193384	HM193401	*3+
	-	,	-	-	-	EU266965	-	*2
Pseudechiniscus suillus (Ehrenberg, 1853) Testechiniscus spitzbergensis (Scourfield, 1897)	Tar790	Bergen, Norway	August 2009	N60 ${ }^{\circ} 3^{\prime}$	E5 ${ }^{\circ} 19{ }^{\prime}$	JX114917	JX114875	New
	Tar792	Bergen, Norway	August 2009	N60 ${ }^{\circ} 3^{\prime}$	E5 ${ }^{\circ} 19{ }^{\prime}$	JX114918	JX114876	New
	-	-	-	-	-	EU266967	-	*2
	-	-	-	-	-	EU266968	-	*2
	-	Godhavn, Greenland	-	-	-	HM193385	HM1933402	*3 +
	Tar782	Østerlien, Disko; Greenland	March 2004	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 31^{\prime}$	JX114913	JX114871	New
	Tar768	Østerlien, Disko; Greenland	March 2004	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 31{ }^{\prime}$	JX114911	JX114870	New
	Tar769	Østerlien, Disko; Greenland	March 2004	N69 ${ }^{\circ} 15^{\prime}$	W53 ${ }^{\circ} 31{ }^{\prime}$	JX114912	JX114872	New

 Sands et al. (2008a); *3, Jørgensen et al. (2011); *4, Sands et al. (2008b); *5, Guidetti et al. (2009); *6, Guil \& Giribet (2012); *7, Jørgensen \& Kristensen (2004).

Figure 1. The five types of cuticular designs traditionally used to group Echiniscus species and the recently described genus Diploechiniscus (Ramazzotti \& Maucci, 1983; Peluffo et al., 2002; Pilato et al., 2007, 2008): A, bigranulatus; B, blumi-canadensis; C, merokensis; D, arctomys; E , viridis; F, D. oihonnae. A to D and F were made using phase contrast. E was made using differential interference contrast. Scale bars: $10 \mu \mathrm{~m}$.

Pilato, Fontoura \& Lisi, 2007; Pilato et al., 2008) (Table 1; Fig. 1): bigranulatus (Fig. 1A) (Echiniscus bigranulatus Richters, 1907 - supporting Fig. S1), blumi-canadensis (Fig. 1B) (E. blumi Richters, 1903 Fig. S2 - E. trisetosus Cuénot, 1932, E. canadensis Murrray, 1910, E. granulatus (Doyére, 1840)), merokensis (Fig. 1C) (E.merokensis merokensis Richters, 1904 - Fig. S3 - E. merokensis suecicus Thulin, 1911, E. testudo (Doyére, 1840) - Fig. S4 -
E. spiniger Richters, 1904 - Fig. S5), arctomys (Fig. 1D) (E.wendti Richters, 1903 - Fig. S6 E.jenningsi Dastych, 1984) and viridis (Fig. 1E) (E. viridissimus Péterfi, 1956). Diploechiniscus oihonnae (Richters, 1903) (Fig. S7) has been recently transferred from Echiniscus to a newly described genus, Diploechiniscus (Vicente et al., 2013). Diploechiniscus oihonnae was not formerly placed within any of these groups, as it had a particular kind
'of sculpture design on the cuticle surface (Fig. 1F) only shared with E. multispinosus da Cunha, 1944 (Ramazzotti \& Maucci, 1983: p. 424; now a synonymy of D. oihonnae; Vicente et al., 2013). In addition, we analysed other echiniscoids (based on GenBank and newly sequenced specimens), including Echiniscoides, Bryochoerus, Proechiniscus, Pseudechiniscus, and Testechiniscus (Table 2), as well as some arthrotardigrades (Table 3). Eutardigrades (Table 3) were included to test the monophyly of Heterotardigrada. Non-tardigrade outgroups are those previously employed by Guil \& Giribet (2012).

SEQUENCES

The two nuclear ribosomal genes 18 S rRNA and 28 S rRNA were chosen because they have proven informative for tardigrade phylogeny in previous analyses (Sands et al., 2008a; Jørgensen et al., 2011; Marley et al., 2011; Guil \& Giribet, 2012). DNA was extracted from 46 individuals (Tables 1 and 2) with the DNeasy Tissue Kit (Qiagen) following the manufacturer's protocol (including 10 min of incubation at $72^{\circ} \mathrm{C}$ after adding buffer AL), and re-suspended in $100 \mu \mathrm{~L}$ double distilled $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{ddH}_{2} \mathrm{O}\right)$, as described by Guil \& Giribet (2009).

A fragment from the nuclear ribosomal 18 S rRNA (663-706 bp depending on the species), which showed most of the genetic variation in previous tardigrade analyses, was amplified using the universal primer pair 18S a2.0 (5'-ATGGTTGCAAAGCTGAAAC-3'; Whiting et al., 1997) and 18S 9R (5'-GATCCTTCC GCAGGTTCACCTAC-3'; Giribet et al., 1996). Amplifications were performed in a $22-\mu \mathrm{L}$ volume of a solution containing $14 \mu \mathrm{~L} \mathrm{ddH}_{2} \mathrm{O}, 1 \mu \mathrm{~L}$ of $10 \times$ PCR buffer, $2 \mu \mathrm{~L}$ of dNTP mix (10 mM), $1.0 \mu \mathrm{~L}$ of each primer $(100 \mu \mathrm{M})$, $0.1 \mu \mathrm{~L}$ of AmpliTaq DNA polymerase (Applied Biosystems) and $3.0 \mu \mathrm{~L}$ of DNA template. The PCR protocol developed to amplify the 18 S rRNA fragments consists of an initial denaturing step at $94{ }^{\circ} \mathrm{C}$ for 5 min , 35 amplification cycles $\left(94^{\circ} \mathrm{C}\right.$ for $10 \mathrm{~s}, 42-$ $45^{\circ} \mathrm{C}$ - depending on taxon - for 30 s and $72^{\circ} \mathrm{C}$ for 30 s), a final elongation step of 7 min at $72^{\circ} \mathrm{C}$, and a rapid thermal ramp to $4{ }^{\circ} \mathrm{C}$. A fragment of the nuclear ribosomal 28 S rRNA (1344-1446 bp depending on the species) was amplified using two pairs of universal primers: 28Sa (5 '-GACCCGTCTTGAAACA CGGA-3'; Whiting et al., 1997) and 28Srd5b (5'-C CACAGCGCCAGTTCTGCTTAC-3'; Schwendinger \& Giribet, 2005), and 28Srd4.8a (5'-ACCTATTCT CAAACTTTAAATGG-3'; Schwendinger \& Giribet, 2005) and 28Srd7b1 (5'-GACTTCCCTTACCTACAT-3'; Schwendinger \& Giribet, 2005). Amplifications were performed as for $18 S$ rRNA. All PCR products were checked for the presence of amplicons of the expected size on a 1.0% agarose gel electrophoresis. PCR pro-
ducts were purified with the QIAquick PCR Purification Kit (Qiagen) using the manufacturer's protocols.

Cycle sequencing with AmpliTaq DNA polymerase was as described by Guil \& Giribet (2012). Cyclesequenced products were cleaned using a standard protocol with ethanol, sodium acetate, and formamide. The BigDye-labelled products were directly sequenced using an automated ABI PRISM 310 Genetic Analyzer. Chromatograms obtained from the sequencer were read, and contigs assembled using the sequence editing software SEQUENCHER version 4.1.4 (Gene Codes Corp.). Assembled sequences were edited with BioEdit version 2007 (Hall, 1999), to identify fragments based on internal primers and conserved regions, as in a previous work (Guil \& Giribet, 2012). All new sequences have been deposited in GenBank under accession numbers JX114891-JX114929 for 18 S rRNA, and JX114847-JX114890 for 28 S rRNA (Tables 1 and 2).

ANALYSES

Three sets of analyses were conducted to determine the variability of each genetic marker at different taxonomic levels: (1) 18 S rRNA only, (2) 28 S rRNA only, and (3) combined analyses of 18 S rRNA and 28 S rRNA.

A direct optimization approach, which facilitates the analysis of sequences of unequal length without prior alignment (Wheeler, 1996), using parsimony as an optimality criterion, was conducted with the program POY 4.1 (Varón, Sy Vinh \& Wheeler, 2010). The 18 S rRNA amplicon was divided into three fragments, and the 28 S rRNA sequence into ten fragments (Guil \& Giribet, 2012), according to internal primers and to accommodate the length heterogeneity of the sequence fragments generated by different authors utilizing different sets of primers. The definition of predefined fragments in this fashion allowed us to treat entire missing fragments as missing data without the need of using random numbers of N 's as placeholders (see Wheeler et al., 2005: 111). Homology assignment and tree generation were performed simultaneously ('dynamic homology'; Wheeler et al., 2005) under a parameter set with indel opening cost of 3 , base transformations cost of 2 , and indel extensions cost of 1 (parameter set 3221; De Laet, 2005). Different data sets (described above as 1-3) were analysed using the 'max_time' command (24 h), which implements a default search strategy that combines Wagner addition with tree bisection-andreconnection (TBR) branch swapping, parsimony ratchet (Nixon, 1999), and tree fusing (Goloboff, 1999). The best trees were used for subsequent analyses with 'max_time' command (24 h), changing costs parameters with an indel opening cost of 3, elongation
Table 3. Eutardigrade and arthrotardigrade outgroups used in the analyses

Class, order, superfamily/family	Species	Code	18S	28S	Refs.
Outgroups					
ARTHROPODA,Chelicerata, Xyphosura	Limulus polyphemus Linnaeus, 1758	-	U91490	AF212167	-
ARTHROPODA, Mandibulata, Myriapoda	Dendrothereua homa (Chanmberlin, 1942)	-	FJ660705	FJ660746	-
ARTHROPODA, Mandibulata, Pancrustacea	Allacma fusca (Linnaeus, 1758)	-	EU368610	EU376054	-
PRIAPULIDA	Priapulus caudatus Lamarck, 1816	-	AF025927	AY210840	-
Tardigrada					
EUTARDIGRADA, Parachela, Isohypsibioidea	Eremobiotus alicatai (Binda, 1969)	Tar191	FJ435722	FJ435766	*1
	Halobiotus crispae Kristensen, 1982	-	EF620402	EF620409	*2
EUTARDIGRADA, Parachela, Hypsibioidea	Astatumen trinacriae (Arcidiacono, 1962)	Tar718	FJ435731	FJ435773	*1
	Diphascon (Diphascon) pingue (Marcus, 1936)	Tar698	FJ435736	FJ435776	*1
	Ramazzottius oberhaeuseri (Doyére, 1840)	Tar398	FJ435728	FJ435768	*1
EUTARDIGRADA, Parachela, Eohypsibioidea	Bertolanius nebulosus (Dastych, 1983)	-	GQ849023-5	GQ849046-5	*3
EUTARDIGRADA, Parachela, Macrobiotidea	Dactylobiotus octavi Guidetti, et al., 2006	-	GQ849025-5	GQ849049-5	*3
	Macrobiotus hufelandi group	Tar71	FJ435740	FJ435751	*1
	Macrobiotus hufelandi C.A.S. Schultze, 1834	-	GQ849024-5	GQ849047-5	*3
	Minibiotus gumersindoi Guil \& Guidetti, 2005	Tar710	FJ435748	FJ435761	*1
	Murrayon pullari (Murray, 1907)	-	-	GQ849050-5	*3
	Murrayon dianeae (Kristensen, 1982)	Tar711	FJ435737	FJ435762	*1
	Paramacrobiotus richtersi group	Tar708	FJ435743	FJ435757	*1
EUTARDIGRADA, Apochela, Milnesiidae	Milnesium cf. tardigradum	Tar235	FJ435749	FJ435779	*1
		-	AY582120	-	*4
		Tar220	FJ435750	FJ435780	*1
HETEROTARDIGRADA, Arthrotardigrada, Batillipedidae	Batillipes mirus Richters, 1909	-	GQ849016	GQ849027	*3
	Batillipes pennaki Marcus, 1946	-	-	GQ849028	*3+
	Batillipes similis Schulz, 1955	-	-	GQ849029	*3+
	Batillipes tubernatis Pollock, 1971	-	-	GQ849030	*3+
HETEROTARDIGRADA, Arthrotardigrada, Halechiniscidae	Archechiniscus sp.	-	-	GQ849031	*3
	Dipodarctus sp.	-	-	GQ849032	*3+
	Florarctus sp.	-	GQ849017	GQ849034	*3+
	Florarctus sp2.	-	-	GQ849033	*4
	Halechiniscus perfectus Schulz, 1955	-	GQ849018	GQ849035	*3 +
	Halechiniscus remanei Schulz, 1955	-	AY582118	-	*4
	Orzeliscus sp.	-	-	GQ849036	*3+
	Raiarctus colurus Renaud-Mornant, 1981	-	-	GQ849037	*3+
	Styraconyx sp.	-	-	GQ849038	*3+
	Tanarctus dendriticus Renaud-Mornant, 1980	-	-	GQ849040	*3+
Stygarctidae HETEROTARDIGRADA, Arthrotardigrada,	Stygarctus sp.	-	-	GQ849041	*3+

Refs., references where the GenBank sequences were published. -, Information not available. +, DNA extraction from more than one individual. References for GenBank sequences: *1, Guil \& Giribet (2012); *2, Møbjerg et al. (2007); *3, Jørgensen et al. (2010); *4, Jørgensen \& Kristensen (2004).
cost of 1 , and a transversion/transition ratio of $2: 1$ (parameter set 3211). A subsequent round of analyses, using the previous trees as input, was performed to check the stability of tree length. Nodal support was assessed via 100 bootstrap replicates (dynamic homology; and hence the 13 fragments were used for resampling), based on Wagner tree search with random sequence addition of terminals, and local searches using TBR.

The implied alignments (Wheeler, 2003; Giribet, 2005) obtained under the direct optimization parsimony analyses were used to conduct a Bayesian inference (BI) analysis (Huelsenbeck et al., 2001). Prior to Bayesian analysis, MrModeltest version 3.7 (Posada \& Crandall, 1998) was executed to choose the best-fit model of nucleotide substitution for each of the 18 S rRNA, 28 S rRNA, and combined matrices under the Akaike information criterion (AIC). In all cases, a General Time Reversible (GTR) model with corrections for invariants and a gamma distribution of site heterogeneity (GTR + $\Gamma+\mathrm{I}$) was selected as the bestfit model. Bayesian analyses were performed with MrBayes version 3.1.2 (Huelsenbeck \& Ronquist, 2001; Ronquist \& Huelsenbeck, 2003). Burn-in times were assessed by first running shorter analyses, and graphing the Bayesian log likelihoods (lnL); these burn-in times were subsequently confirmed by comparison to the complete log likelihood graphs of all analyses after 10000000 generations; around 25000 trees were discarded as burn-in after analyses of likelihoods of the samples using Tracer version 1.5. Support for nodes is expressed as posterior probabilities, calculated as a 50% majority rule consensus and reported on a maximum clade credibility tree of the post-burn-in sample.

The implied alignments were also used for a maximum-likelihood (ML) search, as in the Bayesian analysis. Models obtained with Modeltest version 3.7 (Posada \& Crandall, 1998) for likelihood analyses coincided with those models obtained with MrModeltest for Bayesian approaches for the different data sets studied. ML analyses were conducted in RAxML 7.2.6 (Stamatakis, 2006). The closest substitution model available in RAxML, GTR $+\Gamma+I$ (Yang, 1996), was thus selected, using a common model to all partitions (as both genes are part of the same locus, and the best-fit model obtained with Modeltest both for the individual and for the combined partitions was GTR $+\Gamma+$ I). A tree search with 20 replicates was conducted, nodal support consisting of 100 bootstrap replicates. The same analyses (likelihood and Bayesian) were run with the data aligned using MUSCLE (Edgar, 2004) and with the divergent regions trimmed with GBlocks (Castresana, 2000), to compare the effect of different homology statements (implied alignment vs. multiple sequence alignment) on the results.

Relationships among Echiniscus 18S and 28S rRNA haplotypes were analysed using a statistical parsimony network estimated with TCS version 1.21 (Clement, Posada \& Crandall, 2000). This method estimates the unrooted tree and provides a 95% plausible set of all sequence type linkages within the unrooted network. An analysis of molecular variance (AMOVA) was conducted with ARLEQUIN 3.11 to examine hierarchical population structure by pooling Echiniscus species based on their cuticular design. A total of 16000 permutations were run to guarantee having less than 1% difference with the exact probability in 99% of cases (Guo \& Thompson, 1992). Following Srivathsan \& Meier (2012), we differentiated species using uncorrected p-values generated by PAUP* (Swofford, 1998) instead of Kimura's twoparameter model.

RESULTS

We sequenced 46 heterotardigrade specimens (Tables 1 and 2), 23 of which belong to Echiniscus. Genera from six of the 11 heterotardigrade families, and 14 of 17 genera of Echiniscoidea (Table 4) were analysed. Fragments from 663 to 706 bp (depending on the species) for 18 S rRNA and from 1344 to 1446 bp for 28 S rRNA were sequenced per specimen. Images for all the specimens newly sequenced are provided (Figs S1-S8; and photographs deposited in MorphoBank: project number 785, accession numbers M148490-M148655).

UpDATING THE SYSTEMATIC KNOWLEDGE OF HETEROTARDIGRADES

Phylogenetic analyses performed with BI and ML yielded similar topologies and support values, but differed from the parsimony result (Fig. 2). This is not unexpected, as the two probabilistic approaches were based on similar evolutionary models, even though all analyses use the same homology scheme. Results from analyses performed with the two homology schemes (POY, Fig. 2, and MUSCLE+GBlocks, Fig 3; additional MUSCLE+GBlocks results are available in Figs S9 and S10) were largely congruent, and thus throughout the paper we refer to the results obtained with the POY analyses and the probabilistic analyses obtained from the implied alignments, except when otherwise indicated. Monophyly of both tardigrade classes, Heterotardigrada and Eutardigrada, was supported in all analyses. Monophyly of the heterotardigrade orders (Figs 2, $3,6)$ was not supported, however. The families and subfamilies of Arthrotardigrada were polyphyletic due to the position of certain genera (e.g. Tanarctus, Styraconyx). Monophyly of the order Echiniscoidea

Table 4. Current accepted classification of Heterotardigrada (orders, families, subfamilies and genera) following Guidetti \& Bertolani (2005), and Vicente et al., (2013).

Order	Family	Subfamily	Genera
ARTHROTARDIGRADA	Batillipedidae Coronarctidae		Batillipes
			Coronarctus
			Trogloarctus
	Halechiniscidae	Archechiniscinae Dipodarctinae Euclavarctinae	Archechiniscus
			Dipodarctus
			Clavarctus
			Euclavarctus
			Exoclavarctus
			Moebjergarctus
			Parmursa
			Proclavarctus
		Florarctinae	Florarctus
			Ligiarctus
			Wingstrandarctus
		Halechiniscinae	Chrysoarctus
			Halechiniscus
			Paradoxipus
		Orzeliscinae	Orzeliscus
			Opydorscus
		Styraconyxinae	Angursa
			Bathyechiniscus
			Lepoarctus
			Paratanarctus
			Pleocola
			Raiarctus
			Rhomboarctus
			Styraconyx
			Tetrakentron
			Tholoarctus
		Tanarctinae	Actinarctus
			Tanarctus
			Zioella
	Neoarctidae		Neoarctus
	Neostygarctidae		Neostygarctus
	Renaudarctidae		Renaudarctus
	Stygarctidae	Megastygarctidinae Stygarctinae	Megastygarctides
			Faroestygarctus
			Parastygarctus
			Prostygarctus
			Pseudostygarctus
			Stygarctus
ECHINISCOIDEA	Echiniscoididae		Anisonyches
			Echiniscoides
	Carphaniidae		Carphania
	Oreellidae		Oreella
	Echiniscidae		Antechiniscus
			Bryochoerus
			Bryodelphax
			Cornechiniscus
			Diploechiniscus
			Echiniscus
			Hypechiniscus
			Mopsechiniscus
			Novechiniscus
			Parechiniscus
			Proechiniscus
			Pseudechiniscus
			Testechiniscus

Genera included in the present study are in bold type.
was confirmed, with Echiniscoides in a basal position. Monophyly of Echiniscidae was rejected due to the inclusion of Oreella mollis (Oreellidae is currently included within the order Echiniscoidea; Table 4) (Fig. 2). Relationships among arthrotardigrades received low support in general.

All genera of Echiniscidae were monophyletic with the exception of Pseudechiniscus, as P.islandicus (Richters, 1904) (from Iceland and the Faroe islands; Table 2) did not group with the other Pseudechiniscus species analysed (P. facettalis Petersen, 1951, P. suillus (Ehrenberg, 1853) and P. novaezeelandiae (Richters, 1908)). Three major groups can be found within the clade including the Echiniscidae genera plus Oreella. Parechiniscus, and the clade including Bryodelphax-Bryochoerus appear as two unresolved lineages, the rest of the species clustering together in a poorly supported clade (Fig. 2). Oreella (only with 18 S rRNA data) and Mopsechiniscus were related in the Bayesian and ML analyses but support is negligible (Fig. 2), and they appeared in a more basal position in the parsimony analysis (tree not shown). A clade of Proechiniscus, Antechiniscus, Cornechiniscus, and Pseudechiniscus islandicus was obtained in all analyses and received high support. A clade consisting of the other Pseudechiniscus species (P.facettalis, P. novaezeelandiae, and P. suillus) together with an Echiniscus sp. from GenBank labelled as EU266964 is moderately supported. Pseudechiniscus facettalis was not monophyletic, although the Greenlandic P. facettalis individuals formed a clade, while the Spanish specimens clustered with a Norwegian P. suillus (Table 2). Lastly, Hypechiniscus formed a clade with Testechiniscus, Diploechiniscus, and Echiniscus, with Echiniscus being monophyletic in all analyses, and the sister group of Diploechiniscus. The latter two together constituted the sister group of Testechiniscus (Fig. 2).

Relationships within Echiniscus

Deep phylogenetic structure within Echiniscus is missing for the most part, but a sister group relationship to D. oihonnae was well supported in all analyses. The majority of species or complexes of species (all but E. bigranulatus) were supported but with different data sets: the blumi-canadensis complex, E. granulatus, E. spiniger, and E. testudo with 18 S rRNA information (Fig. 4A), and E. merokensis, E. wendti, E. spiniger, and E. testudo with 28 S rRNA data (Fig. 4B). Instead, the parsimony network constructed with the 18 S rRNA data revealed three groups based on cuticular design that had statistical support (AMOVA: $F_{\mathrm{ST}}=0.944, P<0.001$, genetic variation explained: 52.3% among cuticular design groups, 42.2% among populations within
cuticular design groups, and 5.5% within populations). These three groups (Fig. 5) are composed of: (1) blumicanadensis; (2) viridissimus, spiniger, testudo, bigranulatus, jenningsi, and wendti; and (3) trisetosus Tar612 and 635, granulatus and merokensis. By contrast, other classical groups based also on cuticle designs (presented in Table 1 and Fig. 1: bigranulatus, blumi-canadensis, merokensis, arctomys, and viridis; Ramazzotti \& Maucci, 1983; Peluffo et al., 2002; Pilato et al., 2007, 2008) did not find statistical or phylogenetic support from any of the genetic markers used, whether analysed individually or in combination. The parsimony network constructed with the 28 S rRNA data or combining 18 S and 28 S rRNA sequences (networks not shown) did not yield any interpretable groups as specimens appeared mixed, and with no statistical (AMOVA) support ($P>0.05$) in any case.

When considering uncorrected pairwise p-distances (Table 5), differences within each Echiniscus species were up to 0.3% for 18 S rRNA and up to 0.8% for 28 S rRNA. Comparing uncorrected P-values among Echiniscus species, differences for 18 S rRNA were $0.5-1.7 \%$ and for 28S rRNA 0.5-4.3\%. Diploechiniscus oihonnae (sister group of Echinsicus) had differences between 2.6 and 3.5% for 18 S rRNA with respect to the Echiniscus species, and for 28 S rRNA were 1.7-5.0\%.

The sequence fragment delimited by primer pair 28 Sa to 28 S 7 b 1 presented problems because the majority of the sequences were incomplete. A shorter fragment between primers 28 Sa and 28 S 5 b was complete in the majority of taxa and had enough differences to discriminate among species (a gap was present between within- and among-species differences; Table 5): within Echiniscus species genetic differences were $0.0-0.8 \%$, and among Echiniscus species, $1.0-3.7 \%$, this range being $2.4-4.1 \%$ for the sister group of Echiniscus, D. oihonnae, with respect to the Echiniscus species. In comparison, differences between Echiniscus species and Testechiniscus species were 1.8-4.1\% for 18S rRNA and 2.8-4.5\% for 28 S rRNA fragment a-5b. Differences among other Heterotardigrada genera (from the same order) were $4.4-8.7 \%$ for 18 S rRNA and $4.3-10.4 \%$ for 28 S (a-5b) rRNA, and in Eutardigrada genera were 3.1-8.1\% for 18 S rRNA and $4.6-7.8 \%$ for 28 S (a-5b) rRNA.

DISCUSSION

Heterotardigrade relationships

From the two heterotardigrade groups, arthrotardigrade relationships and their branching with respect to the echiniscoidean genera remain poorly resolved (Fig. 2), as also concluded in previous studies (Jørgensen et al., 2010, 2011). Following Jørgensen

© 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013
VGVYOIOYVLO甘GLAH

Figure 2. Bayesian phylogram obtained with 18 S and 28 S rRNA information combined, using all taxa considered in the present study (i.e. outgroups and eutardigrades from Table 3, heterotardigrades from Table 2, and Echiniscus species from Table 1). Above branches are posterior probabilities obtained in the
 analysis. A dash indicates absence of data for a given branch and analysis that had support in other analyses. Tardigrade classes (Heterotardigrada, Eutardigrada), orders (Apochela, Parachela, Arthrotardigrada, Echiniscoidea), and the family Echiniscidae are indicated.

© 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013

(B)

Figure 4. Bayesian phylogram obtained from the analysis of 18 S rRNA (A) and 28 S rRNA (B) information for Echiniscus species and Diploechiniscus oihonnae, using Testechiniscus spitzbergensis as outgroup. Values above branches indicate posterior probabilities obtained with the Bayesian analysis. Bootstrap support values from ML analysis are provided below branches.

Figure 5. Parsimony network obtained with TCS for the 18 S rRNA information from Echiniscus species. A photo with the cuticular design for each species is provided. E. merokensis SP, Spanish Echiniscus merokensis merokensis. E. merokensis Tar759 SUE, subspecies Echiniscus merokensis suecicus. The three supported groups found among the Echiniscus species, based on cuticle design, are identified with dotted squares, and named as I, II, and III.
et al. (2010), the position of Tanarctus at the base of Echiniscoidea is questioned due to the short and atypical 28 S rRNA sequence, which was conserved in the other heterotardigrades as well as in eutardigrades. Likewise, the positions of Archechiniscus and Orzeliscus could be questionable based on their 28 S rRNA sequences.

Echiniscoidean relationships, the focus of this paper, were better resolved. The sister group of Echiniscidae (including Oreella) was Echiniscoides, as shown by Jørgensen et al. (2010). Oreella appears within Echiniscidae (Figs 2, 6) while traditionally it has been given its own monogeneric family, Oreellidae, separated from Carphania (Kristensen, 1987). The morphology of Oreella clearly distinguishes it from the rest of the echiniscid genera, because it has a series of 'cuticular folds'(and lacks dorsal plates) that divide the body in segments, as dorsal plates do for the echiniscid genera (Kristensen, 1987). Moreover, this genus has been traditionally considered the sister group of Echiniscidae (Kristensen, 1987; Binda \& Kristensen, 1986; see also the molecular analysis of Jørgensen et al., 2011).

Phenotypic differentiation of Echiniscidae based on the distribution of the dorsal plates (Kristensen, 1987) is used in current classifications, but this system conflicts with molecular phylogenies based on 18 S and 28 S rRNA (Figs 2, 6), as shown by other authors (Jørgensen, 2000; Jørgensen et al., 2011). The phylogenetic lineages proposed based
on the presence or absence of the pseudosegmental plate IV' $^{\prime}$ (Kristensen, 1987) - the Pseudechinisusline (with Pseudechiniscus, Mopsechiniscus, Proechiniscus, Cornechiniscus, and Antechiniscus) and the Echiniscus-line (with Echiniscus, Bryodelphax, Bryochoerus, Testechiniscus, and Hypechiniscus) were not corroborated by the present analyses. As in morphological and molecular phylogenetic analyses (Kristensen, 1987; Jørgensen, 2000; Jørgensen et al., 2011), Parechiniscus, with its weakly sclerotized dorsal plates, appears at the base of Echiniscidae (Figs 2, 6). However, Bryodelphax and Bryochoerus, as in the morphological phylogeny of Jørgensen (2000), appear in a basal polytomy, together with Oreella and Mopsechiniscus (Fig. 6). While Parechiniscus, Oreella, and Mopsechiniscus have morphological features that clearly distinguish them from other genera (weakly sclerotized dorsal plates in Parechiniscus; 'cuticular folds' in Oreella; absence of cirri, long spine shape of cirri A, and thorn-shaped scapular plate in Mopsechiniscus), Bryodelphax and Bryochoerus share with other echiniscid genera the presence of dorsal plates and a similar distribution of sensory organs. The taxonomic validity of Bryochoerus has thus been questioned (Kristensen, 1987), as it only differs from Bryodelphax in having divided third intersegmental median plates (m3), and not having ventral plates, both morphological characteristics being homoplastic (Kristensen, 1987; Jørgensen, 2000; Jørgensen et al., 2011). This may

Table 5. Percentage uncorrected p-distances obtained with PAUP* for 18 S and 28 S rRNA gene sequences within Echiniscus species (bold type), between species (bold type) and genera within Tardigrada

Taxonomic level		18S rRNA (\%)	28 S rRNA (\%)		
		a-7b1	a-5b		
Within species					
Within Echiniscus spe			0.0-0.3	0.1-0.6	0.0-0.8
Within Testechiniscus		0.0-1.2	-	0.0-0.2	
Within Bryodelphax sp		0.9	-	-	
Within Pseudechiniscu		0.0-1.3	1.9	0.0-1.9	
Within Milnesium cf.	adum	0.0-0.6	0.5	0.5	
Among species					
Among Echiniscus spe		0.5-1.7	0.5-3.0/4.3*	1.0-3.7	
Among Hypechiniscus		1.3	3.7	3.9	
P.facettalis Spain	vs. P.facettalis Greenland	1.3-1.6	-	1.5	
	vs. P.suillus Norway	0.7-1.4	0.4	0.0	
	vs. P.islandicus	8.9-9.9	4.6	6.3	
P.facettalis Greenland	vs. P.suillus Norway	1.7-3.3	-	1.5	
	vs. P.islandicus	8.6-9.2	-	5.7	
P.novaezeelandiae	vs. P.facettalis	0.5-0.6	4.1-6.3	4.6-5.0	
	vs. P.islandicus	-	6.3	7.4	
P.suillus Norway	vs. P.novaezeelandiae	-	4.1	4.6	
	vs. P.islandicus	9.7-13.6	4.9	6.3	
Among genera within the same order					
Bryodelphax	vs. Bryochoerus	0.8-1.0	-	-	
Echiniscus	vs. Testechiniscus	1.8-4.1	2.9-5.3	2.8-4.5	
	vs. Diploechiniscus	2.6-3.5	1.7-3.3/5.0*	2.4-4.1	
	vs. Pseudechiniscus	5.7-8.7	6.0-9.7	5.1-10.4	
	vs. Cornechiniscus	4.7-6.5	3.8-6.3	4.5-5.1	
	vs. Parechinicus	5.0-6.1	5.4-7.8	6.3-8.3	
	vs. Mopsechiniscus	5.4-6.8	6.0-9.2	6.8-9.0	
	vs. Echiniscoides	11.0-13.5	12.6-14.7	12.6-15.2	
Testechiniscus	vs. Pseudechiniscus	5.7-8.7	6.3-8.3	4.6-9.6	
	vs. Cornechiniscus	4.4-6.1	3.6-4.3	4.3-4.5	
	vs. Parechinicus	4.5-5.3	5.4-6.5	6.4-6.6	
	vs. Mopsechiniscus	5.2-5.5	5.9-6.8	6.8-7.1	
	vs. Echiniscoides	12.0-13.7	12.4-13.1	12.9-13.6	
Macrobiotus	vs. Paramacrobiotus	3.1-3.3	4.8-5.5	4.7-5.6	
	vs. Minibiotus	3.1-3.2	5.9	4.5-5.9	
	vs. Halobiotus	7.8-8.1	11.6	11.5	
	vs. Diphascon	5.4-5.6	7.7	6.9-7.8	
Ramazzottius	vs. Diphascon	4.5	7.4	5.0	
	vs. Astatumen	3.7	7.1	4.6	
Halobiotus	vs. Eremobiotus	1.2	6.5	7.5	
Among genera from different orders					
Florarctus	vs. Echiniscus	12.8-14.6	12.0-19.4	11.1-20.1	
Milnesium	vs. Macrobiotus	8.0-8.2	12.6-12.8	11.6-13.0	
	vs. Paramacrobiotus	6.7-7.0	11.9	11.9	
	vs. Bertolanius	7.1	12.6	12.7	
	vs. Eremobiotus	9.0-9.5	13.3	12.7-12.9	

*With respect to E.testudo GQ849043, comparisons were not possible because no complete sequences were available in any of the specimens sequenced.

Figure 6. Summary of phylogenetic relationships of heterotardigrade genera obtained in the present study. Values above branches indicate posterior probabilities obtained with Bayesian analysis. Bootstrap support from ML analysis is provided below branches. Tardigrade classes (Heterotardigrada, Eutardigrada), heterotardigrade orders (Arthrotardigrada, Echiniscoidea), and the polyphyletic genus Pseudechiniscus are indicated.
thus be the reason why Bryochoerus and Bryodelphax appear in the same clade, but testing the monophyly of each genus is required before taxonomic changes are proposed.
Another lineage obtained within Echiniscidae comprises all Pseudechiniscus species except for P. islandicus (Fig. 6 and Fig. S8). The polyphyly of Pseudechiniscus is hard to explain morphologically following the current classification system for Pseudechiniscus (Ramazzotti \& Maucci, 1983). Within the clade including the other Pseudechiniscus species,
four lineages were found: one for the misidentified Echiniscus sp. EU266964 (see Sands et al., 2008b; Guil \& Giribet, 2012), and three lineages for Pseudechiniscus belonging to the suillus group. Pseudechiniscus novaezeelandiae can be distinguished morphologically by the transversally divided intersegmental median plates 1 and 2 (m1, m2). A notched terminal plate (IV) in P. facettalis differentiates it from P. suillus (Ramazzotti \& Maucci, 1983), so no morphological explanation can be provided for the P.facettalis differentiation. Further investigation
is needed to clarify if the Spanish P. facettalis specimens were misidentified, as no morphological voucher is available for these GenBank sequences. This is precisely why we emphasize the necessity to keep a photographic record of the extracted animals for public access, as proposed here. An alternative could be that 18 S and 28 S rRNAs are not suitable markers to solve phylogenetic relationships among these closely related species - although it works well in many other groups of panarthropods (see, for example, Bisset et al., 2005; Okamoto, Urushima \& Hasegawa, 2009; Zhi-Huan et al., 2011), or these constitute cryptic species.
Another clade within Echiniscidae comprises Proechiniscus, Pseudechinicus islandicus, Cornechiniscus, and Antechiniscus (Fig.6) as in Jørgensen et al. (2011). This clade resembles Kristensen's (1987) Pseudechiniscus-line, composed of Pseudechiniscus, Mopsechiniscus, Cornechiniscus, and Antechiniscus. As discussed above, the morphology of Mopsechiniscus, especially for sensory organs, is quite different from that of other Echiniscidae, which could explain its basal position within the family (Fig. 6). Proechiniscus, Cornechiniscus, and Antechiniscus share the presence of pseudosegmental plates II^{\prime} and III' and paired segmental plates II and III (Kristensen, 1987). However, the well-supported inclusion of P.islandicus and exclusion of other Pseudechiniscus species (Figs 2, 6) remain morphologically challenging. Finally, a clade including Hypechiniscus, Testechiniscus, Diploechiniscus, and Echiniscus (Fig. 6) resembles Kristensen's (1987) Echiniscus-line, but excludes Bryodelphax and Bryochoerus. These four genera (Hypechiniscus, Testechiniscus, Diploechiniscus, and Echiniscus) share: subdivided (in Diploechiniscus) or undivided (Hypechiniscus, Testechiniscus, and Echiniscus) intersegmental median plates m 1 and m 2 , an undivided m 3 for the four genera, and the absence of pseudosegmental plates (I^{\prime}, II^{\prime}, III', and IV^{\prime}). Hypechiniscus branches early in this clade, with Testechiniscus as sister group to the clade comprising Diploechiniscus and Echiniscus (as in Jørgensen, 2000; Jørgensen et al., 2011; Vicente et al., 2013), contrary to the hypotheses in which Pseudechiniscus was the sister group of Echiniscus (Jørgensen et al., 2010), or formed part of a clade including also Bryodelphax and Bryochoerus (Kristensen, 1987). The monophyly of Echiniscus is thus corroborated (as in Jørgensen et al., 2011; Vicente et al., 2013).

Evolutionary importance of cuticular design in Echiniscus

Contrary to the conflict found among the dorsal plate configuration in echiniscid genera, and molecular
phylogenetic data (using 18S rRNA and 28S rRNA), cuticular design seems to contain evolutionary signal within Echiniscus. However, the traditional cuticular design groups (see Ramazzotti \& Maucci, 1983; Peluffo et al., 2002; Pilato et al., 2007, 2008), i.e. bigranulatus, blumi-canadensis, merokensis, arctomys, and viridis (Fig. 1 and Figs S1-7), did not coincide with the groups found in our parsimony network (Fig. 5). The three groups of Echiniscus, supported by the AMOVA (named I, II, and III; Fig. 5), show different types of cuticular design. One group (group I, Fig. 5) is for the E. blumi-canadensis group, with the typical polygonal sculpture of blumicanadensis. Another group (group II) includes species with granulation in their cuticles, from the large, roundish, densely distributed granulation of E. viridissimus to E. spiniger and E. testudo with small roundish pores of different sizes, regularly but not densely distributed, E. jenningsi and E. wendti with similar cuticular designs of very minute granulation regularly and densely distributed (Dastych, 1984), and finally E. bigranulatus, with mixed large and fine granulation evenly distributed. In the third group (group III), we include two E. blumicanadensis, which could be a case of misidentification (Guil \& Giribet, 2009), E. granulatus (pores structured in polygonal areas; Ramazzotti \& Maucci, 1983) and E. merokensis, which shows a cuticle with pores of various sizes and shapes and smooth cuticle between pores (Fig. 5). In contrast to the evolutionary signal in cuticular design, we found little biogeographical signal in our data even at broad geographical scale: for example, E. blumi from Chile and Greenland share 18 S rRNA and/or 28 S rRNA haplotypes; this is also the case of E. merokensis from Spain and Greenland, and of E. testudo from Greece, France, and Denmark. This may support the idea that microscopic animals can achieve broad distributions mediated by long-distance passive dispersal (Fenchel \& Finlay, 2004).

Monophyly of the different Echiniscus species analysed is phylogenetically supported (Fig. 4), but with different data sets, depending on the species: 28 S rRNA supports monophyly of four Echiniscus species (E. merokensis, E. wendti, E. spiniger, and E. testudo) while 18 S rRNA confirms monophyly of three species (E. granulatus, E. spiniger, and E. testudo), and one complex of species (Echiniscus blumi-canadensis). Two species or complexes of species remain problematic. Echiniscus bigranulatus is monophyletic except for specimen Tar756 (GenBank accession number: JX114856; Fig. 3 and Fig. S1). The Echiniscus blumi-canadensis complex (comprising E. blumi, E. canadensis, E. mediantus Marcus, 1930, E. trisetosus, E. dearmatus Bartoš, 1935, and probably E. marleyi Li, 2007) has not been supported by 28 S rRNA data, as opposed to the rest of the

Echiniscus species complexes studied (Fig. 4B). In contrast, the blumi-canadensis complex finds 18 S rRNA support (Fig. 4A). However, this complex of species has been problematic for a long time, due to high morphological variability (Guil, 2008) not reflected in the molecular information (at least for COI data; Guil \& Giribet, 2009), and apparently supported by the present study (morphospecies of the complex, E. blumi, E. canadensis, and E. trisetosus are not phylogenetically differentiated either by 18 S rRNA data or 28 S rRNA). Two specimens of the blumi-canadensis complex had different sequences (coded as Tar612 and Tar635; GenBank accession numbers: FJ435717, FJ435782, FJ435718, and FJ435783; Table 1) when compared with the rest of the blumi-canadensis individuals. These two specimens (Tar612 and Tar635) were closely related to E. granulatus, indicating a possible misidentification (for these GenBank sequences there is no morphological voucher).

With the current sampling two clear trends are noted: (1) the distribution of plates within the family Echiniscidae is in conflict with the phylogenetic information derived from 18 S and 28 S rRNA sequence data; and (2) the cuticular design contains evolutionary signal congruent with the 18 S rRNA information within Echiniscus. Together with morphological and any other source of information, this would contribute towards a more integrative taxonomic approach within this group of minute animals. We also emphasize the importance of generating and making available morphological information for the study of these tiny animals, as argued previously by Pleijel et al. (2008).

ACKNOWLEDGEMENTS

N.G. was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (MAIE.ST-Project Number: 219773; FP7-PEOPLE-2007-2-1-IEF) in the Natural History Museum of the University of Copenhagen (Denmark); she currently holds a postdoctoral contract under the JAE-DOC programme of the Consejo Superior de Investigaciones Científicas (CSIC), in the National Museum of Natural History in Madrid (Spain). The reviewers and editor are thanked for their careful editing and extensive comments that helped to improve upon earlier versions of the manuscript. This project was partially supported by a Marie Curie Reintegration fellowship (PERG07-GA-2010-268289, FP7-PEOPLE-2010-RG).

REFERENCES

Bertolani R, Biserov V, Rebecchi L, Cesari M. 2011.
Taxonomy and biogeography of tardigrades using an inte-
grated approach: new results on species of the Macrobiotus hufelandi group. Invertebrate Zoology 8: 23-36.
Bertolani R, Rebecchi L, Cesari M. 2010. A model study for tardigrade identification. In: Nimis PL, Vignes Lebbe R, eds. Tools for identifying biodiversity: progress and problems. Trieste: EUT Edizioni Università di Trieste, 333-339.
Binda MG, Kristensen RM. 1986. Notes on the genus Oreella (Oreellidae) and the systematic position of Carphania fluviatilis Binda, 1978 (Carphanidae fam nov., Heterotardigrada). Animalia 131: 9-20.
Bissett A, Gibson JAE, Jarman SN, Swadling KM, Cromer L. 2005. Isolation, amplification, and identification of ancient copepod DNA from lake sediments. Limnology and Oceanography: Methods 3: 533-542.
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540-552.
Cesari M, Bertolani R, Rebecchi L, Guidetti R. 2009. DNA barcoding in Tardigrada: the first case study on Macrobiotus macrocalix Bertolani and Rebecchi 1993 (Eutardigrada, Macrobiotidae). Molecular Ecology Resources 9: 699-706.
Cesari M, Giovannini I, Bertolani R, Rebecchi L. 2011a. An example of problems associated with DNA barcoding in tardigrades: a novel method for obtaining voucher specimens. Zootaxa 3104: 42-51.
Cesari M, Giovannini I, Bertolani R, Rebecchi L. 2011 b. DNA barcoding an integrative taxonomy of Macrobiotus hufelandi C.A.S. Schultze 1834, the first tardigrade species to be described, and some related species. Zootaxa 2997: 19-36.
Cesari M, Guidetti R, Rebecchi L, Giovannini I, Bertolani R. 2013. A DNA barcoding approach in the study of tardigrades. Journal of Limnology 72: 182-198.
Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657-1659.
Dastych H. 1984. Tardigrada from Antarctic with description of several new species. Acta Zoologica Cracoviensia 27: 377-436.
De Laet JE. 2005. Parsimony and the problem of inapplicables in sequence data. In: Albert VA, ed. Parsimony, phylogeny, and genomics. Oxford: Oxford University Press, 81-116.
Degma P, Bertolani R, Guidetti R. 2013. Actual checklist of Tardigrada species (2009-2013, Ver. 23: 15-07-2013). Available at: http://www.tardigrada.modena.unimo.it/ miscellanea/Actual\%20checklist\%20of\%20Tardigrada.pdf
Degma P, Guidetti R. 2007. Notes on current checklist of Tardigrada. Zootaxa 1579: 41-53.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.
Fenchel T, Finlay BJ. 2004. The ubiquity of small species: patterns of local and global diversity. Bioscience 54: 777784.

Funk DJ, Omland KE. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with
insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics 34: 397-423.
Garey JR, Krotec M, Nelson DR, Brooks J. 1996. Molecular analysis supports a tardigrade arthropod association. Invertebrate Biology 115: 79-88.
Garey JR, Nelson DR, Mackey LJ, Li J. 1999. Tardigrade phylogeny: congruency of morphological and molecular evidence. Zoologischer Anzeiger 238: 205-210.
Giribet G. 2005. Generating implied alignments under direct optimization using POY. Cladistics 21: 396-402.
Giribet G, Carranza S, Baguñà J, Riutort M, Ribera C. 1996. First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13: 76-84.
Goloboff P. 1999. Analyzing large datasets in reasonable times: solutions for composite optima. Cladistics 15: 415428.

Guidetti R, Bertolani R. 2005. Tardigrade taxonomy: an updated check list of the taxa and a list of characters for their identification. Zootaxa 845: 1-46.
Guidetti R, Schill RO, Bertolani R, Dankekar T, Wolf M. 2009. New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov. Journal of Zoological Systematics and Evolutionary Research 47: 315-332.
Guil N. 2008. New records and within-species variability of Iberian tardigrades (Tardigrada), with comments on the species from the Echiniscus blumi-canadensis series. Zootaxa 1757: 1-30.
Guil N, Giribet G. 2009. Fine scale population structure in the Echiniscus blumi-canadensis series (Heterotardigrada, Tardigrada) in an Iberian mountain range - when morphology fails to explain genetic structure. Molecular Phylogenetics and Evolution 51: 606-613.
Guil N, Giribet G. 2012. A comprehensive molecular phylogeny of tardigrades: adding genes and taxa to a poorly resolved phylum-level phylogeny. Cladistics 28: 21-49.
Guil N, Machordom A, Guidetti R. 2013. High level of phenotypic homoplasy amongst eutardigrades (Tardigrada) based on morphological and total evidence phylogenetic analyses. Zoological Journal of the Linnean Society 169: 1-26.
Guo SW, Thompson EA. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361-372.
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series 41: 95-98.
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics Applications Note 17: 754-755.
Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314.
Jørgensen A. 2000. Cladistic analysis of the Echiniscidae Thulin, 1928 (Tardigrada: Heterotardigrada: Echiniscoidea). Steenstrupia 25: 11-23.
Jørgensen A, Faurby S, Hansen JG, Møbjerg N, Kristensen RM. 2010. Molecular phylogeny of

Arthrotardigrada (Tardigrada). Molecular Phylogenetics and Evolution 54: 1006-1015.
Jørgensen A, Kristensen RM. 2004. Molecular phylogeny of Tardigrada - investigation of the monophyly of Heterotardigrada. Molecular Phylogenetics and Evolution 32: 666-670.
Jørgensen A, Møbjerg N, Kristensen RM. 2011. Phylogeny and evolution of the Echiniscidae (Echiniscoidea, Tardigrada) - an investigation of the congruence between molecules and morphology. Journal of Zoological Systematics and Evolutionary Research 49: 6-16.
Kristensen RM. 1987. Generic revision of the Echiniscidae (Hetrotardigrada), with a discussion of the origin of the family. Selected Symposia and Monograph U. Z. I. 1: 261335.

Losos JB, Hillis DM, Greene HW. 2012. Evolution. Who speaks with a forked tongue? Science 338: 1428-1429.
Marley NJ, McInnes SJ, Sands CJ. 2011. Phylum Tardigrada: a re-evaluation of the Parachela. Zootaxa 2819: 51-64.
Møbjerg N, Jorgensen A, Eibye-Jacobsen J, Halberg KA, Persson D, Kristensen RM. 2007. New records on cyclomorphosis in the marine eutardigrade Halobiotus crispae (Eutardigrada: Hypsibiidae). Journal of Limnology 66 (Suppl. 1): 132-140.
Near TJ. 2009. Conflict and resolution between phylogenies inferred from molecular and phenotypic data sets for hagfish, lampreys, and gnathostomes. Journal of Experimental Zoology 312B: 749-761.
Nixon KC. 1999. The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407-414.
O’Leary MA, Kaufman SG. 2012. MorphoBank 3.0: web application for morphological phylogenetics and taxonomy. Available at: http://www.morphobank.org
Okamoto M, Urushima H, Hasegawa H. 2009. Phylogenetic relationships of rodent pinworms (genus Syphacia) in Japan inferred from 28S rDNA sequences. Parasitology International 58: 330-333.
Peluffo J, Moly de Peluffo MC, Rocha AM. 2002. Rediscovery of Echiniscus rufoviridis du Bois-Marcus 1944 (Heterotardigrada, Echiniscidae). New contributions to the knowledge of its morphology, bioecology and distribution. Gayana 66: 97-101.
Pilato G, Fontoura P, Lisi O. 2007. Remarks on the Echiniscus viridis group, with the description of a new species (Tardigrada, Echiniscidae). Journal of Limnology 66 (Suppl. 1): 33-39.
Pilato G, Fontoura P, Lisi O, Beasley C. 2008. New description of Echiniscus scabrospinosus Fontoura, 1982, and description of a new species of Echiniscus (Heterotardigrada) from China. Zootaxa 1856: 41-54.
Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M. 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48: 369-371.
Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.

Ramazzotti G, Maucci W. 1983. Il phylum Tardigrada. III edizione riveduta e aggiornata. Memorie dell''stituto Italiano di Idrobiologia 'Dott. Marco de Marchi' 41: 11012.

Rheindt FE, Székely T, Edwards SV, Lee PLM, Burke T, Kennerley PR, Bakewell DN, Alrashidi M, Kozstolányi A, Weston MA, Liu WT, Llei WP, Shigeta Y, Javed S, Zefania S, Küpper C. 2011. Conflict between genetic and phenotypic differentiation: the evolutionary history of a 'lost and rediscovered' shorebird. PLoS ONE 6: e26995.
Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Sands CJ, Convey P, Linse K, McInnes SJ. 2008a. Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecology 8: 7.
Sands CJ, McInnes SJ, Marley N, Goodall-Copestake WP, Convey P, Linse K. 2008b. Phylum Tardigrada: an 'individual' approach. Cladistics 24: 1-11.
Schill RO, Steinbrück G. 2007. Identification and differentiation of Heterotardigrada and Eutardigrada species by riboprinting. Journal of Zoological Systematics and Evolutionary Research 45: 184-190.
Schwendinger PJ, Giribet G. 2005. The systematics of the southeast Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19: 297-323.
Srivathsan A, Meier R. 2012. On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNAbarcoding literature. Cladistics 28: 190-194.
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
Swofford DL. 1998. PAUP*: phylogenetic analysis using
parsimony and other methods. Sunderland, MA: Sinauer Associates.
Varón A, Sy Vinh L, Wheeler WC. 2010. POY version 4: phylogenetic analysis using dynamic homologies. Cladistics 26: 72-85.
Vicente F, Fontoura P, Cesari M, Rebecchi L, Guidetti R, Serrano A, Bertonali R. 2013. Integrative taxonomy allows identification of synonymous species and the erection of a new genus of Echiniscidae (Tardigrada, Heterotardigrada). Zootaxa 3613: 557-572.
Wheeler WC. 1996. Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12: 1-9.
Wheeler WC. 2003. Implied alignment: a synapomorphybased multiple-sequence alignment method and its use in cladogram search. Cladistics 19: 261-268.
Wheeler WC, Aagesen L, Arango CP, Faivovich J, Grant T, D'Haese CA, Janies D, Smith WL, Varón A, Giribet G. 2005. Dynamic homology and phylogenetic systematics: a unified approach using POY. New York: American Museum of Natural History.
Whiting MF, Carpenter JM, Wheeler QD, Wheeler WC. 1997. The Strepsiptera problem: phylogeny of the holometaboloous insect orders inferred from 18S and 28 S ribosomal DNA sequences and morphology. Systematics Biology 46: 1-68.
Yang Z. 1996. Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology and Evolution 11: 367-372.
Zhi-Huan X, Xiao-Dong J, Gui-Zhong W, Jian-Feng H, Ming-Hong C, Li-Sheng W, Jie-Lan J, Xue-Lei C. 2011. DNA extraction, amplification and analysis of the 28 S rRNA portion in sediment-buried copepod DNA in the Great Wall Bay and Xihu Lake, Antarctica. Journal of Plankton Research 33: 917-925.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:
Figure S1. Light micrographs of Echiniscus bigranulatus (coded as Tar756; accession number: JX114856): A, habitus; B, buccal tube; C, cuticle in head and sensory organs; D, cuticle in posterior side; E, dental collar and claws in PIV.
Figure S2. Light micrographs of Echiniscus blumi (coded as Tar730; accession numbers: JX114893 \& JX114850): A, habitus; B, buccal tube; C, dental collar and claws in PIV; D, cuticle in posterior side.
Figure S3. Light micrographs of Echiniscus merokensis merokensis (coded as Tar761; accession numbers: JX114907 \& JX114864): A, habitus; B, buccal tube; C, cuticle in head; D, dental collar and claws in PIV.
Figure S4. Light micrographs of Echiniscus testudo (coded as Tar752; accession numbers: JX114904 \& JX114862): A, habitus; B, cuticle in head; C, cuticle in posterior side.
Figure S5. Light micrographs of Echiniscus spiniger: A, habitus (coded as Tar750; accession numbers: JX114903 \& JX114860); B, cuticle in head (coded as Tar750; JX114903 \& JX114860); C, cuticle in posterior side (coded as Tar750; JX114903 \& JX114860); D, cuticle in posterior side (coded as Tar733; JX114902 \& JX114859). Figure S6. Light micrographs of Echiniscus wendti (coded as Tar781; accession number: JX114867): A, habitus; B, cuticle posterior side; C, cuticle in head; D, dental collar and claws in PIV.
Figure S7. Light micrographs of Diploechiniscus oihonnae (coded as Tar791; accession numbers: JX114910 \& JX114869): A, habitus; B, buccal tube; C, cuticle in posterior side; D, cuticle in head.

Figure S8. Light micrographs of Pseudechiniscus islandicus (coded as Tar755; accession numbers: JX114919 \& JX114878): A, habitus; B, cuticle in head and sensory organs; C, cuticle in mid-body; D, posterior side, segmental plate IV.
Figure S9. Bayesian phylogram obtained with 18 S rRNA information combined and aligned with MUSCLE and trimmed with GBlocks, using all taxa considered in the present study (i.e. outgroups and eutardigrades from Table 3, heterotardigrades from Table 2, and Echiniscus species from Table 1). Above branches are posterior probabilities obtained in the Bayesian analysis. Below branches are bootstrap support values from the ML analysis.
Figure S10. Bayesian phylogram obtained with 28 s rRNA (between primers 28 Sa and 28 Srd 5 b) information combined and aligned with MUSCLE and trimmed with GBlocks, using all taxa considered in the present study (i.e. outgroups and eutardigrades from Table 3, heterotardigrades from Table 2, and Echiniscus species from Table 1). Above branches are posterior probabilities obtained in the Bayesian analysis. Below branches are bootstrap support values from the ML analysis.

[^0]: *Corresponding author. E-mail: nguillopez@gmail.com; nguillopez@mncn.csic.es

