
Matthew Schwartz

Lecture 11:
Wavepackets and dispersion

1 Wave packets
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is called a Gaussian. For a Gaussian, note that g(±σx) =
1

e
√ g(0) ≈ 0.6 g(0), so when x = ±σx,

the Gaussian has decreased to about 0.6 of its value at the top. Alternatively, the Gaussian is at
half its maximal value at x = ±1.1σx. Either way, σx indicates the width of the Gaussian. The
plot above has σx = 1. (You may recall that the power of a driven oscillator is given by a

Lorentzian function l(x) =
γ

x2+ γ2 , which has roughly similar shape to a Gaussian and decays to

half of its value at the top at x=±γ. Try not to get the functions confused.)
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This is also a Gaussian, but with width σk =
1

σx
. Thus, the narrower the Gaussian is in position

space (σx→ 0), the broader its Fourier transform is (σk→∞), and vice versa

When σ = ∞, the Gaussian is infinitely wide: it takes the same value at all x. Then g̃(k)
becomes a δ-function at k=0. That is, to construct a constant, one only needs the infinite wave-
length mode (recall λ =

2π

k
). To construct something narrower than a constant, one needs more

and more wavenumbers. To construct a very sharp Gaussian in x (σx→ 0) the Fourier transform
flattens out: one needs an infinite number of wavenumbers to get infinitely sharp features.

As you know, if we shift the Gaussian g(x + x0), then the Fourier transform rotates by a
phase. Conversely, if we shift the Fourier transform, the function rotates by a phase. Even with
these extra phases, the Fourier transform of a Gaussian is still a Gaussian:
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The Gaussian is called a wavepacket because of its Fourier transform: it is a packet of waves
with frequencies/wavenumbers clustered around a single value kc (the subscript “c” is for “car-
rier”, as we explain below).

2 Amplitude modulation

One of the most important applications of wavepackets is in communication. How do we encode
information in waves?
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The simplest way is just to play a single note. For example, we produce a simple sin wave,
sin(2πνct) for some νc, say 40 Hz for a low E. If this is all that ever happens, then no informa-
tion is actually being transferred from one point to another. To transmit a signal, we can start
and stop the note periodically. For example, suppose we modulate our note by turning it on and
off once a second (think whole notes). Then we would have something like

A(t)= f(t) sin(2πνct) (4)

where f(t) has a frequency of νm ∼ 1 Hz. So let’s say f(t) = sin(2πνmt). Since νm ≪ νc, the
curves will look like what we had for beats:

Figure 1. A note encoded with high frequency oscillations

We know that since these curves look like the beat curves, they are really the sum of Fourier
modes with ν = νc ± νm. In other words A(t) =

1

2
[cos(39 Hz× 2πt)− cos(41 Hz× 2πt)]. There is

still not any information carried in the signal. But by adding a few more frequencies, we can get
something more interesting. For example, consider

A(t)= cos(39t)− cos(41t)+ 0.5 cos(38t) + 2 cos(43t)− 2.5 cos(41.5t) (5)

(I didn’t write the 2πHz everywhere to avoid clutter). This looks like this

Figure 2. Combining frequencies close to the carrier frequency of 40Hz we can encode information in

the signal.

Note that this signal is constructed using only frequencies within 3Hz of the carrier fre-
quency of 40Hz.

Rather than combining particular frequencies, it’s somewhat easier to think about writing
the amplitude as in Eq. (4) with f(t) = F (t)sin(2πνmt) and the function F (t) having a constant
value which changes after each node of the modulated signal. For example, something like this

Figure 3. Varying a the amplitude at a frequency of νm=1Hz using a νc= 40Hz carrier frequency. This

is an amplitude-modulated signal.
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Finally, we observe that the we can separate the pulses quite cleanly if we construct them
with wavepackets, as long as the width of the packets is smaller than the distance between
them. For example, we can add Gaussians with different widths and amplitudes:

S(t)= 2f(t) + 3f(t− 100s)+ f(t− 150s) + 5f(t− 200s)=

Now, we would like to construct these pulses with a carrier of frequency νc. Think of this as
trying to draw little hills using a pen which wiggles up and down at a rate νc. The high-fre-
quency pen changes each packet from f(t) to
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−1

2

(

t

σt

)

2

cos(2πνct) =Re

[

e
−1

2

(

t

σt

)

2

e2πiνct

]

(6)

As long as the carrier frequency is larger than the width of the wavepacket, νc &
1

σt
, the wiggles

in the carrier will be imperceptible and the packet will be faithfully reconstructed. For example,
in S(t) above, the pulses are separated by 100s, so taking σt = 10s should do. The corre-

sponding width of the packets is then γ =
1

σ
= 0.1Hz. The following plots shows the amplitude

squared, centered around νc= 0.1Hz and νc=1Hz.

Figure 4. The Gaussian wave-packet (left) with γ =
1

σ

= 0.1Hz is well approximated by varying the

amplitude of a νc=1Hz signal (right). Using νc = 0.1Hz (middle) it’s not that well constructed.

This example shows that information can be conveyed in S(t) at the rate of νm =
1

100 s
=

0.01Hz using a carrier frequency of νc=1Hz.

More generally, this is how AM (Amplitude Modulated) radio works. In radios, the
information is conveyed at the information rate of νm∼Hz on the carrier frequency νc typi-
cally in the 100MHz range. For cell phones and wireless, GHz frequencies are used as carrier fre-
quencies.

In terms of time and frequency, Eq. (3) becomes

f(t) = e
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From this, we see that to construct a signal f(t) with width σt, we can use frequencies within a

range σω =
1

σt
centered around any ωc. The central frequency (the carrier frequency ωc) can be

anything. The key is that enough frequencies around ωc be included. More precisely, we need a
band of width σω =

1

σt
to construct pulses of width σt. The pulses should be separated by, at

minimum, σt. Thus the feature which limits how much information can be transmitted is the
bandwidth. To send more information (smaller distance ∼σt between pulses) a larger band-
width is needed.
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3 Dispersion relations

An extremely important concept in the study of waves and wave propagation is dispersion.
Recall the dispersion relation is defined as the relationship between the frequency and the
wavenumber: ω(k). For non-dispersive systems, like most of what we’ve covered so far, ω(k)= vk

is a linear relation between ω and k. An example of a dispersive system is a set of pendula cou-
pled by springs (see Problem Set 3), where the wave equation is modified to

∂2A(x, t)

∂t2
− E

µ

∂2A(x, t)

∂x2
+

g

L
A(x, t) = 0 (8)

The dispersion relation can be derived by plugging in A(x, t) = A0e
i (kx+ωt), leading to the rela-

tion ω=
E

µ
k2+

g

L

√

, with k=
∣

∣k~
∣

∣.

Here is a quick summary of some physical systems and their dispersion relations

• Deep water waves, ω = gk
√

, with g = 9.8
m

s2
the acceleration due to gravity. Here, the

phase and gorup velocity (see below) are vp =
gλ

2π

√

, vg =
1

2
vp and the longer wavelength

modes move faster. This regime applies if λ≫ d with d the depth of the water

• Shallow water waves ω= gd
√

k, where d is the depth of the water. This is a dispersionless

system with vp= vg= gd
√

.

• Surface waves (capillary waves), like ripples in a pond: ω2 = k3σρ, with σ the surface ten-

sion and ρ density. Thus, vp =
2πσ

ρλ

√

, vg =
3

2
vp and shorter wavelength modes move

faster. These involve surface tension so can be seen when the disturbance is small enough
not to break the water’s surface.

• Light propagation in a plasma: ω = ωp
2+ ck2

√

, with ωp the plasma frequency and c the

speed of light. This is the same functional form as for the pendula/spring system above.

• Light in a glass ω =
c

n
k. n is the index of refraction, which can be weakly dependent on

wavenumber. In most glass, it is well described by n2=1+
a

k0
2− k2

.

We’ll talk about the water waves in Lecture 12 and light waves in later lectures.

4 Time evolution of modes: phase velocity

Now we will understand the importance of dispersion relations (and their name) by studying the
time-evolution of propagating wavepackets.

To begin, let’s think about how to solve the wave equation in a dispersive system with initial
condition

A(x, t=0)= f(x) (9)

Think about setting up a pulse of this form in a medium like a string and then sending down
the string. For a non-dispersive wave, with ω(k) = vk, the solution is easy

A(x, t)= f(x± vt) (10)

with the sign determined by initial conditions.
Now say we want to solve the pendula/spring wave equation, Eq. (8) with A(x, 0) = f(x).

So far, we have only solved Eq. (8) for solutions with fixed k.

Ak(x, t)=A0e
i (kx− E

µ
k2+

g

L

√

t)
(11)

This is indeed of the form f(x− vt) for v =
E

µ
k2+

g

L

√

k
. However, since vp depends on k, this only

works for if only one k is present in the Fourier transform. But if A(x, 0) is not of the form of a
monochromatic (fixed frequency/wavenumber) plane wave, then this solution doesn’t apply and
we have to think a little harder.
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Before thinking harder, we note that a fixed k solution is possible with any dispersion rela-

tion, not just this one. For a dispersion relation ω(k) the amplitude A0exp
[

ik
(

x − ω(k)

k
t
)]

is a

solution to the corresponding wave equation. We call the speed of this particular solution the
phase velocity

phase velocity: vp(k)=
ω(k)

k
(12)

Thus A(x, t)=A0exp[ik(x− vp(k)t)] will always be a solution.

So what happens to A(x, t) when A(x, 0) =/ eikx for some k? The easiest way to solve the
wave equation is through Fourier analysis. We know we can write

A(x, t=0)= f(x) =

∫

dkeikxf̃(k) (13)

where
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1

2π

∫
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2π

∫

dxe−ikxA(x, 0) (14)

Eq. (13) writes the initial condition as a sum of plane wave (fixed k) modes. Then, since we
know that each mode evolves by replacing x→x− vp(k)t, we have

A(x, t)=

∫

dkeik(x−vp(k)t)f̃(k) =

∫

dkei (kx−ω(k)t)f̃ (k) (15)

It’s that simple. This is the exact solution to Eq. (8) with initial condition A(x, 0)= f(x).
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The boundary condition A(x, 0)= f(x) is also satisfied.

Another check is that in the special case of a dispersionless medium, where ω(k) = vk and so
vp(k)= v constant, the solution is exactly what we expect:

A(x, t)=

∫

eik(x−vt)f̃(k)dk= f(x− vt) (19)

which we already knew.

5 Time evolution of signals: group velocity

In this section, we take ω(k) to be arbitrary and take the initial signal shape to be our beautiful
Gaussian wavepacket constricted with a carrier wave of wavenumber kc. So

f(x) = e
−1

2

(

x−x0
σx

)

2

eikcx (20)

where k0= kc is the carrier wavenumber. Here, we let the signal be complex to efficiently encode
phase information. One can always take the real part at the end, as we have done before. We
again want to solve the general wave equation with dispersion relation ω(k) for A(x, t) with ini-
tial condition A(x, 0)= f(x).

The Fourier transform of this packet is

f̃(k)=
σx

2 π
√ e

−σx
2

2
(k−kc)2eix0(k−kc) (21)
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as in Eq. (3). In Fourier space, the time evolution is easy to compute:

A(x, t)=

∫

dkei (kx−ω(k)t)f̃(k) (22)

As noted above, it is impossible to solve this in general. But since in our case f̃(k) is exponen-
tially suppressed away from k= kc, we can Taylor expand the dispersion relation

ω(k)=ω(kc)+ (k− kc)ω
′(kc)+ ··· (23)

=kcvp+(k− kc)vg+ ··· (24)

vp= vp(kc) is the phase velocity at kc and vg= vg(kc) is called the group velocity

group velocity vg(k)=
dω(k)

dk
(25)

In general, both the phase and group velocities depend on k. Here, because of the Taylor expan-
sion, we are only interested in the special value vg= vg(kc).

If we truncate the Taylor expansion to order (k− kc), then the solution for A(x, t) is:

A(x, t) =

∫

dkei (kx−kcvpt−(k−kc)vgt)f̃(k) (26)

=e−ikct(vg−vp)

∫

dkeik (x−vgt)f̃(k) (27)

=e−ikct(vg−vp)f(x− vgt) (28)

Thus we have found that the wave-packet moves at the velocity vg.
Note that for a non-dispersive wave vp = vg and we get back our original solution. Also note

that in deriving this, we didn’t need to use the exact form of the wavepacket, just that it was
exponentially localized around kc.

Stating our results in terms of time dependence and frequency, we have found that

• A pulse can be constructed with a group of wavenumbers in a band kc− σk < k < kc+ σk

or equivalently with a group of frequencies in a band νc− σν <ν <νc+ σν.

• To send a pulse which lasts σt seconds using a carrier frequency νc, one needs frequencies

within σν =
1

σt
of νc.

• The pulse travels with the group velocity vg =
dω

dk

∣

∣

∣

k=kc

evaluated at the carrier

wavenumber/frequency.

Note that because σk ≪ kc (σν ≪ νc), the group velocity is roughly constant for all of the rele-
vant wavenumbers, kc −∆k < k < kc+∆k. But it may be very different from the phase velocity.
For example, if ω(k) = 5k4, then at kc = 100, vp = 5× 108 while vg = 20k3 = 2 × 107. Again, for
non-dispersive media, vg = vp. We will contrast group and phase velocity more in the next lec-
ture when we have some concrete examples of dispersive systems.

6 Dispersion

Now we come to where dispersion relations got their name.
We just saw that to the first approximation, a wave-packet moves with velocity vg. Of

course, in the first order approximation in the Taylor expansion, the dispersion relation might as
well be linear (non-dispersive). So let’s add the second term to see the dispersion. Then

ω(k) =ω(kc)+ (k− kc)ω
′(kc)+

1

2
(k− kc)

2ω ′′(kc)+ ··· (29)

=kcvp+(k− kc)vg+
1

2
(k− kc)

2Γ+ ··· (30)

where Γ=ω ′′(kc) is a new parameter. Note that if the wave is non-dispersive, so ω(k) = vk, then
ωp=ωg and Γ=0.
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With this expansion, let’s go back to our Gaussian. We start with

A(x, t=0)= f(x)= e
− 1

2σ2
(x−x0)2

eikc x (31)

Then,

f̃(k) =
σ

2 π
√ ee

−

σx
2

2
(k−kc)

2

eix0(k−kc) (32)

So

A(x, t) =
σ

2 π
√

∫

e
i (kx−

[

kcvp+(k−kc)vg+
1

2
(k−kc)2Γ

]

t)
e
−σx

2

2
(k−kc)2eix0(k−kc)dk (33)

If you stare at the exponent, you will see that it is still quadratic in k – still a Gaussian – so in
this special case we can actually perform the inverse Fourier transform. And of course, we will
get a new Gaussian. The result is

A(x, t) = exp

[

−1

2

(

x− (x0+ vg t)

σx
2− iΓt

√

)

2
]

eikcxe−ikct(vg−vp) (34)

This is the exact solution for the time dependence if ω(k) = kcvp + (k − kc)vg +
1

2
(k − kc)2Γ

exactly. It is helpful to also pull the i out of the denominator, writing the solution

A(x, t)= exp

[

−1

2

(

x− (x0+ vg t)

σ(t)

)

2
]

eiφ(x,t) (35)

where

σ(t)=σx 1+
Γ2

σx
4 t

2

√

(36)

and

φ(x, t) = kcx− kct(vg− vp)−
tΓ

t2Γ2+σx
4

(37)

How do we interpret this solution? It has a magnitude and a phase. The phase just causes
the real part to oscillate between −1 and 1, which is not that interesting. So let’s concentrate on
the magnitude. The magnitude of a Gaussian only has three parameters, its overall normaliza-
tion, its center and its width. We have written Eq. (35) in a way so that it is easy to read of
that at time t the packet is centered at (x0 + vgt). This is consistent with what we found above:
the center of the Gaussian moves with the group velocity. We can also read off from Eq. (35)
that the the width at time t is given by the functino σ(t) in Eq. (36). Notice that the width is
increasing with time. That is, the wave-packet is broadening. This is why we call it a disper-
sion relation. Recall that a non-dispersive wave has Γ=0, so with non-dispersive dispersion rela-
tions, wavepackets don’t disperse.

Here’s a comparison of a nondispersive pulse, with v = 1 to one with dispersion relation

ω(k) = k2+ 502
√

. We construct a wavepacket of width σx = 0.5 with a carrier wavenumber of
kc= 30.

Figure 5. Pulses at t=0 and t=10. Dispersive packet is on top. Note that the dispersive one is moving

at v= 0.5 and the non-dispersive one at v=1.
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For the non-dispersive pulse, the phase and group velocity are vp = vg = 1. Thus, after 5 sec-
onds at is at x = 5, consistent with the figure. For the dispersive pulse, the phase and group
velocities are

vp=
ω(kc)

kc
= 1.94, vg=ω ′(kc)= 0.51 (38)

One can see from the figure that at t = 5, the dispersive packet has gone half as far as the non-
dispersive one, which is consistent with it traveling at the group velocity of vg= 0.51.

At longer times, you can really see the pulse flatten out.

Figure 6. At t=20, the dispersive packet is significant broadened. The non-dispersive pulses is off the

plot, near x= 20. It has the same shape it did originally.

Dispersion in optical media are critical to modern optics and to telecommunications. For
example, high speed internet and long distance telephone communication are now done through
fiber optic cables. Fiber optic cable contains a glass core surrounded by a lower index-of-refrac-
tion cladding. This allows light to be transported along the cable via total internal reflection. A
key figure in telecommunication is the rate at which data can be communicated. In fiber optic
telecommunications, information is transmitted via optical wavepackets in a glass fiber. Due to
dispersion in the glass, pulses too close together begin to overlap, destroying the information.
This sets a fundamental limit to the speed internet communications. Luckily, silica-based glass
has very low dispersion (and absorption) in the near IR region (1.3-1.5 micron). This frequency
band, now known as the telecomm band, has seen extensive technological development in the
last 20 years due to its use for fiber optic communication. Fiber optics will be revisited when we
discuss light.

By the way, in quantum mechanics, an electron is often effectively treated as a wavepacket.
We will see that in Lecture 20 that non-relativistic dispersion relation for an electron is ω(k) =
~

2m
k~
2
. So vg = 2vp = ~

k

m
=

p

m
with p= ~k the momentum and Γ=

~

m
the width. Thus the width

becomes σ(t) = σx 1+
(

λcct

2πσx
2

)

2
√

with λc =
h

mc
= 2.42 × 10−12m called the Compton wavelength

of the electron. The phase becomes φ(x, t) = kc
(

x− p

m

)

+
λc ct

λc
2 c2 t2+ σx

4 . At late times σ(t) =
λc

2πσx
ct

and φ(x, t) = kc
(

x− p

m

)

. Thus the center moves with the velocity
p

m
, as expected, and the width

grows very rapidly: at the speed of light for an electron localized to within its Compton wave-
length. The more you try to pin down an electron (smaller σx), the faster the wavepacket grows!
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