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Abstract

This paper proposes a tractable framework to analyze fiscal space and the dynamics

of government debt, with a possibly binding zero lower bound (ZLB) constraint. With-

out the ZLB, a greater primary deficit unambiguously raises debt. However, debt need

not explode: When R < G − φ, where φ is the sensitivity of R − G to debt, a modest

permanent increase in the deficit can be sustained forever—a “free lunch” policy. With

the ZLB, the relationship between deficit and debt can become non-monotone. Both

high and low deficits can increase debt, as the latter weaken demand and reduce nom-

inal growth at the ZLB. A rise in income inequality expands fiscal space outside the

ZLB, but contracts it at the ZLB. Calibrating the model, we find little space for “free

lunch” policies for the United States in 2019, but significant space for Japan.
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1 Introduction

Advanced economies in recent years have been characterized by very low interest rates, also
known as “secular stagnation” (Summers 2014). This has led economists and policymakers
to challenge the textbook view on the relationship between public debt and (primary)
deficits; raising current deficits may no longer have to be offset by lowering future deficits
and raising taxes. Instead, when the interest rate R lies below the growth rate G, there
may be a “free lunch” (Blanchard 2019), according to which deficits can be increased
permanently without causing explosive debt dynamics; and higher debt levels can be
sustained without reduced deficits. In other words, when R lies below G, the fiscal cost of
increased debt may be zero or even negative.

This paper systematically studies the fiscal cost of borrowing and the joint dynamics of
public debt and primary deficits. Our starting point is a tractable model with two main
ingredients. First, R can lie below G, and R increases in government debt. We model this
simply by assuming government debt provides convenience benefits (e.g., Krishnamurthy
and Vissing-Jorgensen 2012, Greenwood, Hanson and Stein 2015) but also show that our
results carry over to other microfoundations. The second ingredient is a zero lower bound
(ZLB) constraint on the nominal interest rate R, which allows for the possibility that weak
demand reduces output and inflation, and thus also the nominal growth rate G of the
economy.

Building on the model, our paper makes four contributions. First, we show that the
correct condition for the existence of a free lunch policy is not R < G; instead, it is a tighter
condition, R < G − φ, where φ is the sensitivity of R − G to the logarithm of public debt to
GDP. As a consequence, even for countries in which R < G, borrowing more may not be
free. The intuition for why R < G − φ is the free lunch condition is the following. Suppose
that R < G. The government decides to borrow one additional percent of GDP and plans
to roll it over forever. This fiscal choice will have two opposing effects on the government’s
budget constraint. On the one hand, the rolling over of the additional debt produces a
positive cash flow for the government equal to G − R. On the other hand, however, the
additional debt also tightens the budget constraint because of its impact on the interest rate
on all infra-marginal outstanding units of debt. This latter effect is precisely captured by φ

and combining the two effects gives us R < G − φ as the free lunch condition.
Our second contribution is to characterize the dynamics of debt and deficits at or near

the ZLB. This is important, as many economies with low R today are close to the ZLB.
There, deficits are important instruments to increase aggregate demand (Blanchard and
Tashiro 2019, Furman and Summers 2020). We show that this aggregate-demand channel
may “invert” the textbook view on deficits and debt at the ZLB: Greater deficits may
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reduce, rather than increase, debt. This is because greater deficits raise aggregate demand
and inflation; higher inflation translates into higher nominal growth rates; this pushes
debt down, as it increases the speed at which debt is “inflated away”. This indirect effect
through the nominal growth rate can be sufficiently strong to overwhelm the direct effect
of greater deficits on debt.

The third contribution of our paper is to study the role of inequality and tax progressivity.
Inequality matters for government debt since as much as 69% of U.S. government debt
held by U.S. households is directly or indirectly held by households in the top 10% of the
U.S. wealth distribution (Mian, Straub and Sufi 2020). To evaluate the role of inequality in
our framework, we allow for saver and spender households, as in Campbell and Mankiw
(1989), Mankiw (2000), Galı́, López-Salido and Vallés (2007), and Bilbiie (2008). Using these
two types of households, we show that increased inequality, modeled as a greater share of
income earned by savers, increases fiscal space and increases the availability of free lunch
policies outside the ZLB. We believe that this finding is interesting as it points to a potential
conflict between reducing inequality (e.g. via progressive taxation) on the one hand, and
funding large deficits on the other.

The fourth contribution of our paper is the development of a quantitative version of
our model. We calibrate our model first to the pre-Covid United States, and then Japan
in order to illustrate how our model can be used in practice to evaluate fiscal space. Our
results suggest that the United States was just inside the free lunch region before Covid,
and could sustain a maximum permanent primary deficit of just over 2% of GDP at a stable
debt-to-GDP ratio of about 120%. A naive R < G rule might suggest that the U.S. had
considerable additional fiscal space prior to Covid, but since empirical estimates of φ for
the U.S. are around 2 pp, the true constraint faced by the United States is significantly
tighter. Thus higher deficits beyond the free lunch limit of 120% have to be paid for either
through higher future taxes or reduced spending.

In contrast to the United States, our calibration for Japan as of December 2019 shows
significant room for free lunch policies. In fact, we find that Japan is in the “inverted”
regime, in which a modest increase in deficits would reduce debt levels, precisely due to
the effect on aggregate demand and inflation.We also provide direct empirical evidence to
show that Japanese output and inflation respond sufficiently aggressively to government
spending shocks during the Japanese ZLB episode in order to “invert” the relationship
between fiscal deficit and government debt.

We make our four contributions by analyzing our model in an intuitive “deficit-debt
diagram”, in which a locus characterizes the feasible set of steady state combinations of the
primary deficit and debt. The deficit-debt locus is hump-shaped: steady state deficits are

3



zero both for zero debt and when debt is sufficiently large that R = G. In between, deficits
are positive, consistent with the idea that R < G allows an economy to permanently run
positive deficits. The locus characterizes where a free lunch policy is available, namely
exactly on the left branch of the locus, to the left of its peak. It also explains how, at the ZLB,
the inverted relationship between deficits and debt levels occurs because of a “backward-
bending” shape of the deficit-debt locus. While we focus on our tractable model for the
most part in our paper, we plot the deficit-debt diagram also for a number of alternative
models, to illustrate how our results generalize.

We provide two extensions to our basic framework in the main body of our paper, and
several more in the appendix. The first extension is the introduction of aggregate risk
into our model, building on the framework of Mehrotra and Sergeyev (2020). We prove
that, even with aggregate risk, our free lunch condition remains informative. The second
extension adds capital to the production function, and allows government debt to crowd
out capital, as in Blanchard and Weil (2001). Interestingly, we show that greater crowding
out of capital increases fiscal space and makes a free lunch policy more likely to exist as it
reduces the sensitivity of the interest rate to the level of government debt.

Related Literature. This study is part of a growing body of theoretical work inspired
by two key facts. First, the nominal interest rate on government debt is lower than the
nominal growth rate on average, i.e. R < G.1 Second, the demand curve for government
debt slopes down empirically, i.e. φ > 0, as the interest rate on government debt rises
when the government issues more debt (Engen and Hubbard 2004, Laubach 2009, Krishna-
murthy and Vissing-Jorgensen 2012, Greenwood, Hanson and Stein 2015, Presbitero and
Wiriadinata 2020).2

The literature has explored several ways to explain one or both of these facts. Bohn
(1995) and Barro (2020) suggest that R < G can naturally occur in complete markets
economies with aggregate risk. Due to Ricardian equivalence (Barro 1974), the model
suggests that government debt neither affects R, nor can the government run a permanent
deficit in each state of the world. According to Jiang, Lustig, Van Nieuwerburgh and
Xiaolan (2019), this approach cannot explain the valuation of U.S. government debt.

The perhaps largest literature on R < G is based on OLG models, going back to
Samuelson (1958) and Diamond (1965). One branch of this literature studies when R < G
is a sign of dynamic inefficiency (Abel, Mankiw, Summers and Zeckhauser 1989, Blanchard

1See Feldstein (1976), Bohn (1991), Ball, Elmendorf and Mankiw (1998), Blanchard (2019), Mehrotra and
Sergeyev (2020) for more recent papers documenting the historical patterns of R vs. G.

2For recent work estimating the convenience yield of central bank reserves, see Lopez-Salido and Vissing-
Jorgensen (2023).
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and Weil 2001, Ball and Mankiw 2021); another branch evaluates the welfare implications
of increased debt levels (Ball, Elmendorf and Mankiw 1998, Blanchard 2019, Brumm, Feng,
Kotlikoff and Kubler 2021a,b, Brumm and Hußmann 2023); the most relevant branch of
the OLG literature for us is the one concerned with the possibility of “free lunch” policies
(Blanchard and Weil 2001, Blanchard 2019). These papers show that, when R < G, a debt-
rollover policy is more likely to succeed when the economy is inefficient and production
is linear in capital, but no general condition is developed.3 Our paper develops a precise
condition for a free lunch to exist in a deterministic model, R < G− φ, which is significantly
stricter than R < G. We show that the condition still has bite with aggregate risk, and even
holds in the Blanchard (2019) model itself. Interestingly, in recent work, Aguiar, Amador
and Arellano (2021) find that a similar condition is indicative of the possibility of robust
welfare improvements.

The above facts have also been approached using liquidity premia. Woodford (1990)
illustrates how liquidity demand by producers or consumers can lead to R < G. Angeletos,
Collard and Dellas (2020) microfound a convenience yield function based on liquidity
needs to revisit the optimality of the Barro (1979) tax smoothing results.4 Bayer, Born and
Luetticke (2021) estimate the response of the liquidity premium to fiscal policy shocks
empirically and model it with an estimated two-asset HANK model. Domeij and Ellingsen
(2018) obtain R < G in a Bewley-Aiyagari model. The closest paper to ours among this class
of models is Reis (2021). The paper microfounds liquidity and safety premia of government
debt and shows that a “bubble premium” emerges on public debt, which can be used to
sustain permanent primary deficits. Different from Reis (2021), we focus on the dynamics
of debt and deficits, both with and without the ZLB, and show when a free lunch exists.5

Angeletos, Lian and Wolf (2023) ask whether “deficits can finance themselves” without
increases in tax rates. Their self-financing policies are typically financed by increased tax
revenue, however, coming from a booming economy and an increased tax base. The free
lunch policies we study are, instead, policies which do not rely on increased tax revenue
(or reduced government spending) at any point in time.

Mehrotra and Sergeyev (2020) share with our paper the assumption of a convenience
utility function v(b) over government debt, which they employ in a model with aggregate
risk and a specific deficit rule that yields a particularly tractable law of motion of debt-to-

3There is also a long literature on the private production of assets when the return on non-government
assets is also below the growth rate, see, e.g., Tirole (1985), Kocherlakota (2009), Farhi and Tirole (2012),
Hirano and Yanagawa (2016), and Martin and Ventura (2018).

4See also Canzoneri, Cumby and Diba (2016), Bhandari, Evans, Golosov and Sargent (2017), Azzimonti
and Yared (2019).

5In Appendix D, we show that the economy in Reis (2021) can also be represented in a deficit-debt
diagram.
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GDP. They use it to show that slower trend growth and higher output risk can increase
debt-to-GDP.6 By comparison, our paper focuses on free lunch policies and the possibility
of a binding ZLB. Kocherlakota (2021) microfounds a linear utility from holding bonds with
a small probability disaster shock and shows how this allows the government to improve
welfare by increasing debt. Michau (2020) presents a model with net wealth in the utility
and a ZLB constraint and uses it to study fiscal policy plans that lead the economy away
from the ZLB (see also Michau, Ono and Schlegl 2023). Guerrieri, Lorenzoni and Rognlie
(2021) argue that a potentially binding ZLB constraint in the future can be a rationale for
preserving fiscal space.

Our model is based on the assumption that monetary policy is active in stabilizing
inflation whenever it is not constraint by the ZLB. A recent branch of the literature explores
deviations from this assumption. Kaplan, Nikolakoudis and Violante (2023) study fiscal
dominance in heterogeneous-agent and bonds-in-utility models.7 Brunnermeier, Merkel
and Sannikov (2020a,b) derive a Laffer curve for the rate of inflation in a model with
liquidity needs among producers. Sims (2019) argues that fiscal policy should, in general,
use this “inflation tax” to generate seignorage-like revenue and reduce distortionary taxes
(different from Chari and Kehoe 1999). The deficit-debt schedule that we derive, and on
which our phase diagram is based, may seem similar to the inflation Laffer curve, but is
quite distinct (see Section 3.4 and Appendix C).

This study is also closely related to the burgeoning literature on the sources and impli-
cations of safe asset demand (e.g., Caballero, Farhi and Gourinchas 2008, Caballero and
Farhi 2018a, and Farhi and Maggiori 2018). In their model of the international monetary
system, Farhi and Maggiori (2018) explore an equilibrium in which there is large demand
for debt issued by a hegemon government. When this is met by too much issuance, default
risk emerges. When there is too little issuance, the ZLB may bind. This pattern resembles
our deficit-debt diagram with a potentially binding ZLB, albeit it emerges in our case as the
steady state locus of a dynamic model, rather than as a one-shot choice of the government
as in Farhi and Maggiori (2018).

Finally, the notion of a free lunch formalizes an intuition that is often associated with
“Modern Monetary Theory” (MMT). However, unlike common renditions of MMT (see
Bisin 2020, Leeper 2022 for critical reviews), our model spells out the exact conditions under
which a free lunch policy works or does not work. In line with intuition by Lerner (1943),
we find that a free lunch policy always exists if an economy faces a persistent demand
shortage at the ZLB.

6See also Kaldorf and Roettger (2023) for a model with convenience yield and default risk.
7See also the recent work by Bassetto and Cui (2018) and Bianchi and Melosi (2019). See Bassetto and

Sargent (2020) for an excellent survey.
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2 Model

We begin with a stylized model that we extend in later sections. The model runs in
continuous time and is deterministic.8 It consists of a government, a household side
with savers and spenders, and a monetary authority. The government issues government
debt, spends, and raises lump-sum taxes. Spenders and savers consume and savers draw
convenience benefits from holding government debt. The monetary authority targets
inflation.

Throughout, we denote by Rt the net nominal interest rate on government debt and
by Gt ≡ γ + πt the net nominal growth rate, which is equal to real trend growth γ plus
inflation πt. G∗ ≡ γ + π∗ corresponds to nominal trend growth, when inflation is at its
target π∗.

To save on notation, we will conduct our analysis entirely in the context of a model
that is de-trended with the nominal growth rate. Potential output y∗ in the de-trended
model is constant and we normalize it to one, y∗ ≡ 1. Any quantities, such as the level of
government debt bt are to be understood as government debt relative to potential GDP.
Moreover, we refer to Rt − Gt as the “de-trended rate of return” on government debt, as
it is the return Rt net of the re-investment that is necessary to keep a constant ratio of
government debt to potential GDP. We abstract from capital in our baseline model, but
discuss it at length in Sections 6 and 7.

Households. The economy is populated by a unit mass of savers and a unit mass of
spenders, as in Campbell and Mankiw (1989) and Mankiw (2000). Savers choose paths of
consumption ct and government debt holdings bt in order to maximize

max
{ct,bt}

∫ ∞

0
e−ρt {log ct + v (bt)} dt (1)

subject to the consolidated budget constraint

ct + ḃt ≤ (Rt − Gt) bt + (1 − µ)wtnt − τt. (2)

The objective (1) involves flow utility from consumption log ct and a utility v(bt) from hold-
ing government debt (relative to potential GDP). The latter captures safety and liquidity
benefits that have been used extensively and are well documented in the literature (e.g.
Krishnamurthy and Vissing-Jorgensen 2012). In line with this literature, we assume that the

8We separately study aggregate risk in Section 5.
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utility over government debt is twice differentiable, increasing and concave, v′ ≥ 0, v′′ ≤ 0.9

Flow utility is discounted at rate ρ.
Each saver has a labor endowment of 1 − µ, where µ ∈ [0, 1) captures the income share

of spenders. Savers sell a fraction nt ≤ 1 of their endowments at real wage wt each instant.
nt can lie strictly below 1 if there is rationing (see below). Savers pay lump-sum taxes τt.

Spenders are hand-to-mouth.10 Each spender has a labor endowment of µ, and also
sells a fraction nt of it at real wage wt. Spenders pay lump-sum taxes τ̃t. Thus, their
consumption is equal to

c̃t = µntwt − τ̃t. (3)

Representative firm. We assume that labor is used by a representative firm with linear
production technology yt = nt. The firm sets flexible prices, pinning down the real wage to
1 at all times, wt = 1. In contrast, we assume that nominal wages are downwardly rigid.
Similar to Schmitt-Grohé and Uribe (2016), the path of nominal wages Wt satisfies

Ẇt

Wt
≥ π∗ − κ(1 − nt). (4)

This implies that, whenever labor demand is falling short of the labor endowments, wage
inflation will fall short of π∗. The lower labor demand is, the lower wage inflation will
be, just like in a standard Phillips curve. κ > 0 parameterizes the slope of the Phillips
curve. Price inflation πt in our de-trended model is equal to wage inflation and therefore
determined by (4). Observe that potential output, with nt = 1, is indeed equal to one,
y∗ = 1. The term 1 − nt in (4) is therefore simply equal to the output gap, (y∗ − yt) /y∗.

Government. The government sets fiscal and monetary policy. Fiscal policy consists of
paths {x, bt, τt, τ̃t} of government spending x, government debt bt and taxes τt, τ̃t, subject
to the flow budget constraint

x + (Rt − Gt) bt = ḃt + τt + τ̃t. (5)

The primary deficit is given by
zt ≡ x − τt − τ̃t. (6)

9We also assume that v is defined over some domain (b, ∞) with b ≤ 0, with Inada conditions
limb→b v′(b) = ∞, limb→∞ v′(b) = 0. Moreover, we assume that v′′ < 0 whenever v′ > 0.

10One can easily microfound this behavior by assuming that spenders do not enjoy any convenience
benefits from holding government bonds and are unable to borrow.
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We assume taxes adjust to ensure that zt follows a given fiscal rule zt = Z(bt). Our baseline
assumption is that taxes on spenders are zero τ̃ = 0 and taxes on savers τt adjust. We
consider the case where τ̃ ̸= 0 in Section 3.5. Typically, Z(b) is downward-sloping in debt
b, corresponding to a lower deficit, or greater surplus, when the level of debt is higher.

Government debt bt is short-term and real in our baseline model. We study long-term
debt in Appendix B.2 and a general asset market structure in Appendix B.3. Government
spending x ≥ 0 is assumed to be constant for now. Our analysis below is similar to one in
which government spending is allowed to vary while taxes are kept fixed.

Monetary policy is “dominant” in our model, that is, it successfully implements the
natural allocation whenever feasible. In particular, we denote by {R∗

t } the path of the
nominal natural interest rate, which is consistent with full employment, nt = 1, at all dates
t. We assume that the actual nominal interest rate then follows a Taylor rule with an infinite
slope coefficient, subject to the ZLB:

Rt = 0 if πt < π∗, Rt ∈ [0, ∞) if πt = π∗, Rt = ∞ if πt > π∗ (7)

This rule ensures that, whenever the interest rate is positive, it tracks the flexible-price
(natural) interest rate R∗

t ; in that case, the economy is at potential yt = nt = 1 and inflation
is at its target πt = π∗. When the natural rate is negative, however, Rt is constrained to be
equal to zero by the ZLB. In that case, we will find that the economy falls below potential,
yt = nt < 1. Labor endowments are rationed, equally across the two types of agents.11

Equilibrium. We define equilibrium in our model as follows.

Definition 1. Given an initial level of debt b0 and a fiscal rule Z(·), a (competitive) equilib-
rium consists of a tuple {ct, c̃t, yt, nt, bt, Rt, Gt, πt, τt, τ̃t, zt, wt}, such that: (a) {ct, bt} maxi-
mizes savers’ objective (1) subject to (2), and c̃t satisfies (3); (b) the deficit {zt} follows the
fiscal rule Z and taxes are in line with (6); (c) debt evolves in line with the flow budget
constraint (5) and remains bounded; (d) monetary policy sets the nominal rate Rt in line
with the rule (7) and the nominal rate Rt is always finite; (e) inflation πt is determined by
the Phillips curve (4); (f) output yt is given by yt = nt and the real wage is wt = 1; (g) the
goods market clears ct + c̃t + x = yt. A steady state equilibrium is an equilibrium in which
all quantities, real prices, and inflation are constant.

Interpretation of v(b). There are two ways to interpret the convenience utility v(b), either
as coming from the asset supply or the asset demand side.

11This is similar to the rationing equilibria in Barro and Grossman (1971), Malinvaud (1977), and Benassy
(1986).
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v(b) as coming from asset supply. According to this view, government debt offers asset-
specific benefits, due to liquidity, safety, regulatory requirements, or international insti-
tutional demands. These benefits, or some subset of them, are often grouped together as
“convenience benefits”, and collectively explain why certain government bonds may have
a particularly low yield relative to seemingly similar other assets (Krishnamurthy and
Vissing-Jorgensen 2012, Caballero, Farhi and Gourinchas 2017, Jiang, Lustig, Van Nieuwer-
burgh and Xiaolan 2020b, Koijen and Yogo 2020, Mota 2020). In Appendix B.1 we offer
a simple microfoundation for our convenience utility v(b) based on a low-probability
disaster shock (as in Barro 2020), after which a government may default on its debt.

v(b) as coming from asset demand. According to this view, savers require higher yields
in order to hold greater amounts of government debt. This can be microfounded with
life-cycle (as in Diamond 1965, Blanchard 2019) or precautionary saving motives (as in
Aiyagari and McGrattan 1998). These models will be part of our quantitative investigation
in Section 7. We find that the results are similar to those we find with our v(b) utility.

3 Fiscal space without the ZLB

In this section, we focus on the case without a ZLB constraint, so that Rt = R∗
t in all periods,

effectively implementing the full employment allocation. We study the role of the ZLB in
Section 4. We begin our analysis by characterizing steady state equilibria.

3.1 Steady state equilibria

Our model admits a set of steady state equilibria, indexed by the level of steady state debt
b ≥ 0. For each b, one can find a primary deficit z such that ḃ = 0 and the economy remains
steady at that level of debt b. The interest rate is equal to the natural rate, Rt = R∗

t , output
and employment are at potential, yt = nt = 1, inflation is at its target, πt = π∗, and the
nominal growth rate is equal to nominal trend growth, Gt = G∗.

To see how the natural rate is determined, consider the savers’ Euler equation

ċt

ct
= R∗

t − G∗ − ρ + v′(bt)ct. (8)

Here, v′(bt) enters as it is the marginal convenience utility from saving one more unit in
government bonds. It enters with the opposite sign as the discount rate ρ and therefore
effectively makes the household more patient when saving in government bonds.

In a steady state, savers’ consumption is constant and equal to 1 − x − µ by goods
market clearing, where x is government spending and µ consumption of spenders. This
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Figure 1: Interest rate, growth rate, and deficits. Case without ZLB.

(a) Interest rate and growth rate (b) Deficit-debt diagram

Note. Panel a plots the nominal interest rate R and nominal growth rate G as functions of real debt (relative
to potential GDP). Panel b plots the steady-state primary deficit as a function of the steady-state debt level.

lets us solve (8) for the natural interest rate,

R∗(b) = ρ + G∗ − v′(b) · (1 − x − µ)︸ ︷︷ ︸
convenience yield

. (9)

This expression for the natural interest rate on government debt is intuitive. The natural
rate is equal to ρ + G∗, which would be the steady state return on any non-convenience-
bearing assets, minus the steady state convenience yield v′(b) · (1 − x − µ). The expression
already suggests how R∗ moves with debt. As v is a concave utility function, R∗ weakly
increases in government debt b.

3.2 Steady state deficits and deficit-debt diagram

It is useful to represent R∗(b) and G∗ in a diagram, Figure 1a. The threshold for R = G
is determined by v′(b)(1 − x − µ) = ρ. It is positive, b > 0, if v′(0) (1 − x − µ) > ρ.12 For
any given level of debt b, the primary deficit in (5) that keeps debt constant at b is

z(b) = (G∗ − R∗(b)) b. (10)

We plot z(b) in Figure 1b. We refer to this diagram as the deficit-debt diagram and we will
use it extensively in this paper. Each point (b, z) on the locus corresponds to a steady state
equilibrium with constant debt level b and constant primary deficit z. The locus is naturally
hump-shaped. If R∗(0) is finite, the steady state primary deficit is zero when debt is zero,

12Different from the discussion in Reis (2021), the bound b here can be unboundedly large relative to GDP
as ρ → 0.
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as well as when R = G. Between 0 and b, the primary deficit is positive.
The deficit-debt diagram is an intuitive description of an economy’s “fiscal space”: for

any given initial level of debt, it exactly shows what the maximum primary deficit is for
which debt does not increase.

To characterize the shape further, we define the semi-elasticity of the convenience yield

φ (b) ≡ ∂ (R∗(b)− G∗)

∂ log b
− (1 − x − µ)

∂v′(b)
∂ log b

= −(1 − x − µ)v′′(b)b.

φ is effectively the inverse (semi-)elasticity of savers’ demand for government debt. With φ

at hand, we then have the following result.

Proposition 1. If z(b) has a local maximum at some b∗ ∈ (0, b), we have that

R∗(b∗) = G∗ − φ(b∗). (11)

If, in addition, φ(b) is weakly increasing in b, then b∗ is the unique local (and global) maximum,
with primary deficit z∗ ≡ φ(b∗)b∗.13

3.3 The free lunch condition R < G − φ

One idea that has garnered considerable attention in the literature surrounding R < G (see,
e.g., Blanchard 2019) is that the condition seemingly allows economies to run larger deficits
temporarily, and then simply “grow out” of the resulting increased debt levels without
a need to raise taxes. We refer to this idea as the “free lunch” property of higher deficits.
Formally, a steady state with deficit z0 and debt b0 admits a free lunch if there exists an
equilibrium (with bounded debt levels) in which deficits weakly dominate z0 in all periods,
zt ≥ z0, with strict inequality on some time interval.

A free lunch can easily be derived from the government budget constraint (5), under
the assumption of a constant interest rate R and a constant growth rate G > R. Then,

ḃt = − (G − R) bt + z (12)

describes a stable differential equation for debt b. This implies that temporary increases in
deficits of arbitrary magnitude, leading to greater debt levels, can always be grown out
of over time. Also, a permanent increase in deficits by some ∆z simply raises steady state

13The fact that the maximum is in the interior of [0, b] echoes a similar finding in Bassetto and Sargent
(2020) in an OLG setting.
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Figure 2: Transitions when changing the deficit

(a) Model with exogenous R < G (b) Model with endogenous R∗(b)

Note. Panel a shows a deficit-debt diagram with exogenous R < G. Any increase in deficits induces a stable
trajectory of debt, and thus, represents a free lunch. Panel b shows a deficit-debt diagram like ours in which
R is endogenous to the debt level. Here, a free lunch is only feasible left of the peak and only for modest
increases in deficits.

debt levels by ∆z/(G − R), with no need for a reduction in deficits, i.e. an increase in taxes,
at any point.

We next investigate when our model, in which R is endogenous to the debt level, admits
a free lunch. Since savers’ consumption remains constant at 1 − x − µ along transitions, the
natural rate R∗(bt) is still given by (9) in our model. Therefore, the dynamics of the debt
level simply follow

ḃt = − (G∗ − R∗(bt)) bt + zt (13)

for an exogenous path of deficits zt.14

Representing transitions in the deficit-debt diagram. The effects of temporary or perma-
nent changes in deficits can be studied in the deficit-debt diagram. In Figure 2 we indicate
with arrows the direction the economy travels in when deficits are moved above or below
the steady state locus.

As the figure shows, when deficits are raised above the steady state locus, debt grows,
until either the steady state locus is hit, or until, at some point in the future, the deficit is
reduced again down to the steady state locus. When deficits are reduced below the steady
state locus, debt falls over time. Mathematically, this follows immediately from (13).

Figure 2a plots the evolution of debt in a model with exogenous R and G. As one can see,
in this case, any increase in deficits is stable. A free lunch policy is always available. This

14If deficits followed a fiscal rule zt = Z(bt) instead, one would simply have to replace zt in (13). The
dynamics of debt are perfectly backward looking because savers’ consumption is constant at 1 − x − µ even
along transitions.

13



would be the outcome of a model with a linear convenience utility v(b), and is analyzed in
Kocherlakota (2021), who microfounds a linear utility over bonds by allowing for a small
probability disaster state with high and constant marginal utility of wealth. This is also
why the debt rollover experiments in Blanchard and Weil (2001) and Blanchard (2019) are
stable with linear technology.

The free lunch region in our model. By contrast, Figure 2b allows us to see the region
of the state space in which the government can obtain a “free lunch” in our model, with
endogenous R. Indeed, any steady state on the increasing part to the left of the peak at b∗

allows for some form of a free lunch. For example, starting at any of these steady states,
a permanent increase in the deficit to any value below or equal to z∗ can be sustained
indefinitely. If the deficit increase is temporary, it can exceed z∗, as long as it is reduced
back to z∗ or below in time. We show an example transition along these lines in Figure 2b.

While the diagram in Figure 2b illustrates how a “free lunch” policy is indeed possible,
it also makes the limits of such a policy very clear. Even starting left of b∗, if deficits are
increased by too much or for too long, a free lunch cannot be obtained. There is also no free
lunch right of b∗, on the downward-sloping branch of the deficit-debt locus in Figure 2b.15

In this case, any deficit increase must ultimately be met by reduced deficits. Crucially, this
logic applies even if the economy displays R < G throughout.

How is this possible? As the debt level increases, so does the interest cost on all (infra-
marginal) outstanding debt positions. This can undo the positive effect of a greater debt
position on the government budget constraint when R < G that we highlighted at the
beginning of this section. In fact, as Figure 2b illustrates, this precisely happens for debt
levels greater than b∗. In this region, the economics behind the financing of fiscal deficits
are entirely conventional: greater debt must be repaid by raising taxes. Whether R < G or
R > G is totally irrelevant for this question. As summarized in the following corollary, the
correct threshold for R is not G, but G − φ.

Corollary 1. Assume the deficit-debt diagram z(b) is single-peaked. Then, there is a free-lunch
policy available at a steady state with debt level b0 > 0 if and only if R∗(b0) < G∗ − φ(b0).

3.4 Discussion

Is a free lunch policy always Pareto-improving? We largely refrain from making welfare
statements in this paper, partly because different microfoundations for the convenience

15Strictly speaking, there could be multiple local maxima of z(b) in our model. The condition for the
absence of a free lunch policy is that there can be no steady state with a greater debt level and a greater or
equal deficit z.

14



utility v(b) exist, and they carry different welfare implications.
If the model in Section 2 is taken literally, then a free lunch policy always constitutes a

Pareto improvement. It is easy to see why: consumption of both agents remains unchanged
in all periods, while debt increases. Since debt enters the utility of savers, welfare increases.
In fact, by a similar logic, increases in the debt level even beyond the upper bound b∗ of
the free lunch region can be welfare improving.

This becomes a bit more nuanced if one assumes that both agents are paying taxes,
e.g. for simplicity τt = τ̃t with both taxes adjusting in response to the policy. Now, a free
lunch policy is still a Pareto-improvement since it is associated with tax reductions for both
agents, and higher interest rates for savers. However, raising debt beyond b∗ is no longer
Pareto improving, echoing results in Aguiar, Amador and Arellano (2021).

Transversality condition. The transversality condition of the saver associated with utility
maximization problem (1) is given by e−ρtc−1

t bt → 0. This is clearly satisfied in the
equilibria described above, as ct = 1 − x and bt always converges to a finite value. The
transversality condition rules out paths along which debt levels explode.

Present value vs. flow budget constraint. Our analysis illustrates the usefulness of
working with the government’s flow budget constraint. We have found the present value
budget constraint of the government to be somewhat less practical. To see why, let us
discount the flow budget constraint (5) at some arbitrary rate θt. We obtain

∫ T

0
e−
∫ t

0 θuduztdt + b0 = e−
∫ T

0 θudubT −
∫ T

0
e−
∫ t

0 θudu (R(bt)− G∗ − θt) btdt (14)

(14) is equivalent to the flow budget constraint (5). However, (14) is less useful than
typical present value budget constraints. This is because in (5), the interest rate R(bt) is a
function of the stock of debt bt. Irrespective of how θt is chosen, the path of debt bt cannot
be eliminated from (14), defeating one of the main purposes of writing a present value
constraint. If θt is chosen to be entirely unrelated to R(bt)− G∗, e.g. equal to the household
discount rate ρ, the dependence on bt enters in the final term in (14); if, instead, θt is chosen
to be equal to R(bt)− G∗, the final term in (14) disappears but the dependence on bt enters
in (14) through θt. Moreover, if θt < 0, one cannot take the limit T → ∞ in (14). This is why
we prefer to work with the flow budget constraint (5) instead.

If one had to work with (14), a natural choice for θt is the marginal cost of borrowing,
θt = R(bt)− G∗ + φ(bt), which includes φ(bt). Locally around a steady state with debt bss,
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interest rate Rss = R(bss) and φ = φ(bss), we then find a present value constraint∫ ∞

0
e−(Rss−G+φ)tztdt + bss =

φ

Rss − G + φ
bss. (15)

(15) is well-defined whenever there is no free lunch, that is, Rss > G − φ. Relative to
a standard present value condition, it includes an extra term (one may call this a “debt
revenue term” as in Reis 2021) on the right hand side of (15), capturing additional fiscal
space afforded by the convenience utility. The fact that discounting includes φ means
that this condition is well defined even if Rss < Gss, so long as there is no free lunch,
Rss > Gss − φ. If there is a free lunch, (15) is not well-defined as, locally, there are no
constraints on deficits zt around a free lunch steady state.

Comparison with a Sidrauski (1967) money-in-the-utility model. Our model is related
to money-in-the-utility (MiU) models in that a real asset enters the utility function directly.
As we show in Appendix C, a straightforward money-in-the-utility version of our model
would give a steady state first order condition ρ + G∗ = v′(M/P) · (1 − x − µ) where M
is money supply and P is the price level. Despite the similarities between this equation
and our steady state condition (9), transitions differ significantly in the two models. In
our model, as shown in Corollary 1, higher deficits raise debt levels, and a free lunch
is available left of the peak, that is, when R < G − φ. In the baseline MiU model with
perfectly flexible prices, one can always jump to the peak directly, without any transition,
simply by choice of the optimal growth rate of money supply. In that sense, a free lunch is
available left and right of the peak.

In Appendix C, we study MiU models with a small amount of nominal rigidity, prevent-
ing the price level from jumping. We show that this implies a free lunch is only available
right of the peak—the opposite of our results. To get an intuition, observe that, in MiU
models, the nominal interest rate on money is zero, Rt = 0, implying a real interest rate
that falls with greater deficits. In our analysis above, by contrast, the real rate rises with
greater deficits. Thus, MiU models with minimal amounts of nominal rigidity predict
similar steady states but very different free lunch policies.16

16An alternative way to prevent the price level from jumping is to simply assume that the government
cannot enact any policies that lead to sudden changes in the price level, known as a “honest government
constraint” (Auernheimer 1974). Such a constraint can rule out transitions from right of the peak since those
then require the government to reduce money supply by running surpluses in the short run. The “honest
government constraint” is no longer a constraint in an economy with mild nominal rigidities, like the one we
analyze in Appendix C.
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Figure 3: What determines fiscal space?

(a) Discount rate ρ (b) Income inequality 1 − µ

Note. Panel a illustrates how an increase in the household discount rate ρ, capturing an increase in private
demand, raises fiscal space. Panel b illustrates how greater inequality expands fiscal space.

3.5 What determines fiscal space?

What does the size and shape of the deficit-debt locus depend on? This section investigates
the role of four factors: discount rates, trend growth, income inequality, and tax policy.

Discount rates. A greater discount rate, which can capture an increase in aggregate
demand, makes savers more impatient, pushing up R∗. Figure 3a sketches the deficit-
debt diagram, for two values of ρ. For higher ρ, we see that fiscal space shrinks, as R∗ is
increased and G∗ − R∗ falls. We confirm this in the following result.

Corollary 2. An increase in the discount rate ρ strictly reduces fiscal space.

Trend growth. A reduction in nominal trend growth G∗—whether caused by a produc-
tivity growth slowdown, falling inflation expectations, or declining population growth—
seems like it may tighten fiscal space by moving G∗ closer to R. But this is not obvious as
slower growth rates lead to a greater desire for saving by households, pushing R∗ down
alongside G∗. With log preferences over consumption as in (1), R∗ falls one for one with G∗,
as in (9), leaving G∗ − R∗ unchanged.17 This is why, without a ZLB in our model, growth
does not affect steady state deficits. We revisit this comparative static in Sections 4.3 and 7
with a potentially binding ZLB.

17For an analysis of changing growth rates with intertemporal elasticities different from one, see Mehrotra
and Sergeyev (2020).
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Income inequality. Inequality is relevant for fiscal sustainability, as it is mainly richer
households that, directly or indirectly, own government debt. The top 10% of the wealth
distribution in the United States hold 69% of the outstanding government debt held by
the U.S. household sector. The bottom 50% of the wealth distribution hold almost no
government debt at all (Mian, Straub and Sufi 2020). The willingness and ability of richer
households to save may thus be a primary factor in the determination of interest rates on
government debt. We formalize this as a shift in the income share of spenders µ.

Corollary 3. Absent a ZLB constraint, greater inequality, µ ↓, expands fiscal space z(b) in (10).

Greater income inequality unambiguously expands fiscal space without ZLB. Savers
in our model have a greater propensity to save out of an increase in permanent income
compared to spenders, so that any increase in inequality reduces R∗ and thus increases
fiscal space as z = (G∗ − R∗)b. Figure 3b illustrates these findings.

The model provides intuition behind the observation that rising income inequality has
been accompanied by rising fiscal deficits and government debt levels in many advanced
economies. Rising income inequality allows governments to borrow more cheaply from
savers. Appendix H confirms this prediction empirically for the U.S., finding suggestive
evidence that greater inequality reduced convenience yields in the regression used by
Krishnamurthy and Vissing-Jorgensen (2012).

Tax policy. Similar to changes in the income distribution, tax policy also affects fiscal
space. To see how, allow for nonzero taxes (or transfers) on spenders, τ̃ ̸= 0, as well as
consumption taxes τc paid by both types of agents and capital income taxes τb. The budget
constraint of savers is then given by

(1 + τc) ct + ḃt ≤
((

1 − τb
t

)
Rpre

t − Gt

)
bt + (1 − µ)wtnt − τt

where we use Rpre
t as the pre-tax interest rate. We use Rt and R∗

t to denote post-tax interest
rates. This changes the Euler equation of savers, leading to an updated equation for the
(post-tax) natural interest rate,

R∗(bt) = ρ + G∗ − v′(bt) ((1 + τc) (1 − x)− µ + τ̃) . (16)

The relationship between R∗ and τc, τ̃ then gives us the following result.

Corollary 4. Absent a ZLB constraint, increased regressive income taxes τ̃ and consumption taxes
τc expand fiscal space. Increased capital income taxes τb leave fiscal space unchanged.
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Increased taxes τ̃, τc, τb are, by construction, met by a reduction in lump-sum taxes
on savers τ. Raising taxes τ̃ on spenders is thus regressive, akin to an increase in income
inequality, expanding fiscal space. Consumption taxes τc have a similar effect on fiscal
space, even though both agents pay them. This is because savers trade off consuming
and saving in their Euler equation, and their desire to save is partly due to convenience
benefits. Increased capital income taxes τb are irrelevant here as the before-tax return on
government debt immediately adjusts to keep the after-tax return R∗(b) constant.18

These results have two important implications. First, they suggest a potential dilemma.
Large redistributive programs may reduce fiscal space, potentially limiting the extent to
which such programs can be deficit-financed. Second, regressive taxation is able to finance
a greater level of government debt than progressive taxation, holding fixed the overall tax
burden. Governments with sufficiently large debt levels and interest rates R near or above
G may thus be forced to resort to such regressive taxation.

4 Fiscal space near the ZLB

We are now ready to re-introduce the ZLB constraint. As evidenced by the extended period
of time many advanced economies have spent at the ZLB (or a similar effective lower
bound) over the past decade or more, this is an important constraint that needs to be
analyzed jointly with fiscal policy. Along the existing deficit-debt locus, R∗(b) hits the ZLB
precisely when b = bZLB with v′(bZLB) = ρ+G∗

1−x−µ and deficit zZLB = z(bZLB).

4.1 Deficit-debt diagram with ZLB

When the ZLB is binding, monetary policy is passive, as R = 0 no longer adjusts to achieve
full employment. This means that output is determined by aggregate demand,

yt = ct + c̃t + x (17)

and inflation will fall short of its target. This reduces nominal growth G, thus raising
the de-trended interest rate R − G = −G∗ + κ(1 − yt). Savers respond by reducing their

18Two caveats: First, with longer-duration debt or large surprise taxes at date t = 0, there is some initial
expropriation from capital income taxes, which can be used to reduce government debt. Second, if other
types of capital income were present in the model, the capital income tax would become more similar to a tax
on savers’ income.
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Figure 4: Fiscal space with ZLB constraint

(a) Interest rate and growth rate, case (A) (b) Deficit-debt diagram, all three cases

Note. Panel a plots nominal interest rate R and nominal growth rate G as function of real debt (relative to
potential GDP), for case (A). Panel b compares the three different shapes of the deficit-debt diagram.

consumption in line with their Euler equation

ċt

ct
= Rt − Gt − ρ + v′(bt)ct. (18)

This feedback between low demand on the one hand and increased R − G on the other
crucially depends on the slope of the Phillips curve, κ. A steeper Phillips curve implies
a stronger feedback mechanism. As it turns out, an important threshold for κ is given by
κ̂ ≡ 1−µ

1−x−µ (ρ + G∗). The following result characterizes ZLB steady states.

Proposition 2. (b, z) is a steady state at the ZLB with positive primary deficit z > 0 if:

(A) for κ < κ̂, b < bZLB and z(b) = G(b)b, where nominal growth is equal to

G(b) = G∗ − κ

v′(b) (1 − µ)− κ
(−R∗(b)). (19)

(B) for κ = κ̂, b = bZLB and z < zZLB.

(C) for κ > κ̂, b > bZLB and z(b) = G(b)b, where G(b) is as in (19).

To get an intuition for these results, consider case (A). In this case, for debt levels
below bZLB, the aforementioned feedback loop kicks in, and nominal growth is reduced
(Figure 4a). This squeezes the gap between G and R, reducing fiscal space at the ZLB
(Figure 4b).
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To understand case (B), it is useful to write the government budget constraint as

ḃt = zt︸︷︷︸
direct effect

− (Gt − Rt) bt︸ ︷︷ ︸
indirect effect

. (20)

Imagine starting at point (bZLB, zZLB), just outside the ZLB, where R = R∗ = 0. Any
reduction in the primary deficit clearly has a negative direct effect on the evolution of
government debt. In case (A), as well as in the absence of the ZLB, this direct effect is
sufficient to reduce government debt, ḃt < 0.

In addition to this direct effect, there is also an indirect effect, operating through aggre-
gate demand and growth rates. At the ZLB, a reduced primary deficit lowers aggregate
demand and nominal growth rates. In case (B), when κ = κ̂, this indirect effect is precisely
strong enough to offset the direct effect. The deficit-debt locus becomes vertical in Figure 4b.
When κ > κ̂, in case (C), the indirect effect is, in fact, sufficiently strong for debt levels to
rise with lower primary deficits. This leads to a “backward-bending” deficit-debt locus,
shown in Figure 4b.

One way to tell in practice in which of the three cases an economy is in, is, in fact, to
gauge whether the indirect effect of a fiscal policy change will dominate the direct effect. If
a permanent deficit expansion ∆z raises output by ∆y and inflation by κ∆y, the indirect
effect dominates precisely when

κ
∆y
∆z

b > 1.

This “sufficient statistic” condition is more likely to hold when κ, the multiplier ∆y
∆z , and

the initial debt level b are large. For realistic κ’s in the range 0.1 to 0.3, and a debt level as
large as Japan’s (238%), this is already satisfied for multipliers ∆y

∆z the range 1.5 − 2. In our
quantitative model in Section 7, this condition is satisfied for Japan, but not for the U.S.

4.2 Free lunch at the ZLB

We next revisit the question of when free lunch policies exist. To do so, we study transitional
dynamics. Different from the analysis in Section 3, consumption is now no longer constant
along the transition. Instead, the economy is governed by a system of two differential
equations, the Euler equation (18),

ċt

ct
= κ

(
1 − x + ct

1 − µ

)
− G∗ − ρ + v′(bt)ct (21)
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in addition to the government budget constraint

ḃt =

(
κ

(
1 − x + ct

1 − µ

)
− G∗

)
bt + zt. (22)

It is hard to characterize dynamics and prove uniqueness in full generality, for arbitrary
paths of zt and functional forms for v′(·). Our next proposition shows that, under some
assumptions on v′(·) and the fiscal rule, we can make progress.

Proposition 3. Assume the fiscal rule zt = ξbt, where ξ ∈ (0, G∗), and assume that v′(b)b is
strictly increasing in b, with a well-behaved positive limit as b → 0. Then, for any initial debt level
b0 > 0, there exists a unique equilibrium. The sign of ḃt is exactly determined by the position of
(bt, zt) in the deficit-diagram in Figure 4, at all time periods, that is: ḃt < 0 iff zt lies strictly below
the locus (cases (A), (B)), or if zt lies strictly between z(b) and the ZLB locus G(b)b for bt > bZLB

(case (C)).

This proposition establishes that there are still well-behaved dynamics at the ZLB and
the phase diagram in Figure 4b can still be used to study them. Importantly, the result
implies that there is always a free lunch at the ZLB.19

Corollary 5. Under the assumptions of Proposition 3, there exists a free lunch policy at the ZLB.

To see this for case (A), notice that the ZLB region in Figure 4 is always on the left
branch of the hump-shaped deficit-debt locus. An increase in the primary deficit, say, to
the level zZLB right at the border of the ZLB region, ensures both a free lunch and an exit
out of the liquidity trap. For cases (B) and (C), it is even simpler. A second non-ZLB steady
state exists, with the same debt level but a greater deficit. With the fiscal rule described in
Proposition 3, one can ensure a free lunch simply by setting ξ = zZLB

bZLB .

4.3 What determines fiscal space near the ZLB?

Next, we revisit the role of some of the drivers of fiscal space, only now allowing for a
potentially binding ZLB constraint. For simplicity, we focus on the non-backward-bending
case (A), that is, κ < κ̂. The other cases behave similarly.

Growth slowdown. A slowdown in trend growth G∗ does not have an effect on fiscal
space outside the ZLB since the interest rate R shifts down one for one with G∗, leaving the

19If an economy is not literally in a steady state with a binding ZLB constraint, this result is to be understood
as: The closer an economy is to the ZLB, and the more frequently it hits it, the more likely it becomes that a
permanent deficit expansion is possible.
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Figure 5: Drivers of fiscal space at the ZLB

(a) Increasing inequality can reduce fiscal space (b) Stimulus checks can reduce debt / GDP

Note. Panel a shows how greater inequality can reduce fiscal space at the ZLB. Panel b illustrates how
stimulus checks can reduce debt to GDP at the ZLB.

gap G∗ − R∗ unchanged. Yet, at the ZLB, R is stuck at zero, so that a growth slowdown
reduces G − R and fiscal space.

Corollary 6. With a binding ZLB constraint, a reduction in trend growth G∗ reduces fiscal space:
z(b) = (G(b)− R(b))b falls with lower G∗.

Income inequality. Rising income inequality (falling µ) unambiguously increases fiscal
space without the ZLB (Section 3.5). At the ZLB, we have the opposite result.

Proposition 4. At the ZLB with debt level b, increased inequality locally reduces fiscal space z(b).

Income inequality can reduce fiscal space at the ZLB as it weighs down on aggregate
demand, pulling down nominal growth G relative to a fixed interest rate R = 0. This
reduces fiscal space.

Tax policy. An immediate implication of this result is that, at the ZLB, more progressive
taxation (which here is identical to redistribution) increases fiscal space.

Corollary 7. At the ZLB, redistribution raises fiscal space z(b) if κ > 0.

In particular, this result implies that greater redistribution at the ZLB reduces the debt
level. It turns out that even deficit-financed stimulus checks may ultimately reduce the
debt, by way of increased nominal growth. We spell this out in the next result.

Proposition 5. Starting from a ZLB steady state, a permanent increase in transfers to spenders,
τ̃ < 0, without change in taxes on savers τ, reduces the debt level in the long run if κ >
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(1 − µ) v′(b)/ (v′(b)b + 1). A necessary and sufficient condition for this to hold for some b <

bZLB is κ > κ̂/
(
v′(bZLB)bZLB + 1

)
.

This result is a close cousin of case (C) in Figure 4b. In that figure, the locus bent
backwards because deficit-financed transfers to savers at the ZLB can ultimately lower the
debt level. We showed that this happens when κ > κ̂.

Proposition 5 highlights that deficit-financed transfers to spenders can also reduce the
debt level. In fact, this happens under a looser condition on κ. Figure 5b reveals that this
is because a transfer to spenders increases fiscal space at the ZLB and thus makes it more
likely that the debt level falls, even if the economy is in case (A) where κ < κ̂.

5 Fiscal space under aggregate risk

So far, we have analyzed a purely deterministic economy. We now introduce aggregate risk
and study the implications for fiscal space and the viability of free lunch policies. To keep
things tractable, we omit the ZLB in this section. Our model with aggregate risk builds on
the representative-agent model of Mehrotra and Sergeyev (2020). We provide details on
model derivations in Appendix A.12.

5.1 Introducing aggregate shocks

Instead of constant (de-trended) potential output, we now assume that potential output y∗t
is risky and follows a geometric Brownian motion,

d log y∗t = γdt + σdZt (23)

where we explicitly allow for productivity growth γ and aggregate risk with volatility
σ > 0. Zt is a standard Brownian motion. We assume government spending is a fixed share
of y∗t , xy∗t . Furthermore, we allow agents to have an intertemporal elasticity of substitution
different from 1, denoted by ν−1 > 0. Savers thus maximize expected utility

max
{Ct,Bt}

E0

∫ ∞

0
e−ρt

{
C1−ν

t
1 − ν

+ (y∗t )
1−ν v

(
Bt

y∗t

)}
dt (24)

Here, Ct denotes real consumption, and Bt denotes real, riskless debt. We continue to use
ct = Ct/y∗t and bt = Bt/y∗t for normalized consumption and debt. While Bt is riskless, bt

is not. We define the growth-adjusted discount rate to be ρ̂ ≡ ρ + (ν − 1) γ and assume it
is positive. The utility function in (24) is set up to be scale invariant, as in Mehrotra and
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Sergeyev (2020). The budget constraint is

dBt = ((Rt − π∗) Bt + (1 − µ)wtnt − Tt − Ct) dt (25)

where Rt − π∗ is the riskless real interest rate earned on bonds Bt, and Tt are unnormalized
taxes on savers. We note that EtdBt = dBt, so Bt is predictable.20 We continue to use
τt ≡ Tt/y∗t . Normalized consumption ct in this economy follows the Euler equation

ν
dct

ct
=

(
Rt − G∗ − ρ̂ +

1
2

ν2 (σct + σ)2 dt + ν
1
2

σ2
ctdt + cν

t v′(bt)

)
dt + σcdZt (26)

where σct denotes the instantaneous volatility of dct
ct

. In equilibrium, ct = 1 − x − µ as
before, and σct = 0, which determines the interest rate as21

Rt = R(bt) = G∗ + ρ̂ − 1
2

ν2σ2 − (1 − x − µ)ν v′(bt). (27)

Aside from the adjusted discount rate ρ̂, the new term in (27) relative to (9) is −1
2 ν2σ2.

It captures the role of aggregate risk, which, all else equal, reduces the interest rate on
government debt due to a precautionary motive. Since the new term is constant, R(bt) has
the same functional form as (9).

We denote the primary deficit to GDP ratio by zt = x − τt. The normalized government
budget constraint is then

dbt = ztdt +
(

R(bt)− G∗ +
1
2

σ2
)

btdt − btσdZt. (28)

Finally, the transversality condition for savers in this economy is E0
[
e−ρtC−ν

t Bt
]
→ 0. A

sufficient condition for it to hold is that there is an ϵ > 0 such that for large t,

R(bt)− G∗ +
zt

bt
+

1
2

ν2σ2 < ρ̂ − ϵ. (29)

5.2 Deficit-debt diagram and free lunch

Just like before, we can plot the locus z(b) ≡ (G∗ − R(b)) b. Given that R(bt) has the same
functional form, this locus looks like that we plotted in Figure 1b. The interpretation is

20EtdBt = dBt is the continuous-time version of the measurability constraint imposed by Aiyagari, Marcet,
Sargent and Seppälä (2002) on the present value of future surpluses. For recent papers exploring the “asset
pricing” approach on government debt, see e.g. Jiang, Lustig, Van Nieuwerburgh and Xiaolan (2019, 2020a).
For reasons explained in Section 3.4, we cannot simply adopt this approach in our analysis.

21Here, the real growth rate γ of the economy not only enters via G∗ = γ + π∗, but also via the adjusted
discount rate ρ̂ = ρ + (ν − 1) γ.
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different, however. Before, sitting on the locus zt = z(bt) ensured a steady state equilibrium.
Here, zt = z(bt) only ensures that log government debt remains unchanged in expectation,
Et [d log bt] = 0. In that sense, the locus here corresponds to a “risky steady state” in the
spirit of Coeurdacier, Rey and Winant (2011). Just like before, when the economy is above
the locus, zt > z(bt), log debt rises on average. As in Bohn (1998), a fiscal rule is necessary
here to avoid violating the transversality condition (29). We write it as zt = Z(bt).

To study the analogue of a “free lunch” in this economy, we fix a fiscal rule that is
consistent with (29) and leads to a well-defined stationary distribution of debt to GDP levels.
Fix an initial debt level b0 and denote the stochastic process of primary deficits implied by
the fiscal rule by zt. We construct the following counterfactual path of government debt b∆

t :
It starts at an increased initial debt level b∆

0 = b0 + ∆, where ∆ > 0, but otherwise follows
the exact same deficit path,

db∆
t = ztdt +

(
R(b∆

t )− G∗ +
σ2

2

)
b∆

t dt − b∆
t σdZt.

In other words, b∆
t is the path of government debt that arises when the government runs

a one-time deficit ∆ at date 0, but otherwise keeps its deficit unchanged. We refer to the
probability that the shifted path b∆

t converges back to the original debt level bt, P(b∆
t → bt),

as the success probability of a free lunch policy. While before, any free lunch had a success
probability of 1, this is no longer the case with aggregate risk.

Despite these differences, our condition R < G − φ is still relevant with aggregate
risk. To show this in a formal result, we focus on a common linear parametrization of the
convenience yield (e.g. Krishnamurthy and Vissing-Jorgensen 2012)

v′(b) (1 − µ − x) = v′(b0) (1 − µ − x)− φ
b − b0

b0
(30)

for some parameters b0, φ > 0.22 Our formal result is then as follows.

Proposition 6. Denote by F (b) the cdf of the stationary distribution of debt to GDP in the model
with aggregate risk. Assume the convenience yield is of the form (30). Denote by R ≡

∫
R(b)F (db)

the average interest rate and by φ the average semi-elasticity φ ≡
∫ ∂(R−G)

∂ log b F (db). The success
probability of a free lunch policy of size ∆ approaches 1 for small ∆, lim∆→0 P(b∆

t → bt) = 1, if

R < G∗ − φ.

By contrast, P(b∆
t → bt) = 0 for any ∆ if R > G∗ − φ.

22We set v′(b) = 0 for any b sufficiently large to cause the right hand side to move below zero.
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Figure 6: Success probabilities of running a free lunch with aggregate risk

(a) Size ∆ = 0.001% of GDP (b) Size ∆ = 20% of GDP (c) Size ∆ = 50% of GDP

Note. The probabilities are computed by simulating 1,000 sample paths for each b0. Convergence criterion:
|b∆

t − bt| < 0.01% at any point t < 10, 000. The vertical dash-dotted line is the threshold for b0 under which
the deterministic model allows for a free lunch of size ∆, see footnote 24.

The result generalizes our condition for a free lunch policy from Section 3. Instead of
R < G∗ − φ being the relevant condition, evaluated at a given initial level of debt, it is the
average of the condition that matters. Precisely when R < G∗ − φ, a free lunch success
probability arbitrarily close to 1 can be ensured by choosing a suitable ∆.

Going from current R < G∗ − φ to average R < G∗ − φ can make a meaningful
difference. In practice, the latter condition requires an assessment of the long run average
interest rate a government is paying on its debt, the long run average growth rate, as well
as the long run average sensitivity φ. Especially during periods with unusually low interest
rates, the average condition can be quite a bit tighter than the current one.

Proposition 6 can be expanded to allow for an upper bound b beyond which the
government switches back to the original deficit rule zt = Z(bt). The result then holds in a
slightly modified way, lim∆→0 limb→∞ P(b∆

t → bt) = 1.

5.3 Evaluating the stochastic free lunch condition

We next evaluate Proposition 6 numerically. For the purposes of the simulation here, three
calibration targets suffice: the initial debt to GDP ratio (assumed to be 100%), the initial
interest rate growth rate differential R0 − G∗ (assumed to be -2%) and the sensitivity of
R − G to debt (assumed to be 1.7%). All three choices are discussed in Section 7.2.23

Figure 6 illustrates the result in Proposition 6 for this parameterization. It plots free
lunch success probabilities as a function of the initial debt level b0. For each b0, we choose a
simple fiscal rule Z(b) = 0.1 · (b0 − b). We vary the standard deviation of aggregate risk σ

23The individual values of R0, G∗, ν, ρ, µ, x are irrelevant for the simulation in this section. We have
verified numerically that the transversality condition (29) holds for ν−1 = 1 and values of ρ above 3%.

27



from a small value of 0.001 to 0.025, the standard deviation of post-WWII U.S. GDP growth.
The panels vary the size of the one-time deficit ∆. Panel a shows success probabilities

for a very small value of ∆. As can be seen, success probabilities are essentially a step
function: 100% to the left of the threshold R < G − φ, and 0% to the right. This is a
numerical confirmation of Proposition 6. With greater ∆, there is no longer a clean step
function. However, across σ, the success probabilities still line up closely with the vertical
dash-dotted blue line, which is the deterministic free lunch threshold for that ∆.24

The applicability of the condition R < G∗ − φ is not limited to the model here. In
Appendix D.3 (e.g. Figure A.8), we show that it works just as well in the Blanchard (2019)
model. We conclude that, both theoretically and numerically, the condition R < G − φ

generalizes to an economy with aggregate risk.

6 Crowding out of capital

There is no privately issued asset in our baseline model. Next, we extend our model to
include capital. To keep things simple, we assume there is no ZLB constraint, as in Section 3.
We let (potential) output now be a Cobb-Douglas aggregate of capital k and labor n, which
is still equal to n = 1 without the ZLB. Thus, yt = kα

t after de-trending, letting α ∈ [0, 1]
be the capital share. We let δk ≥ 0 denote the depreciation rate of capital and assume
that government spending is a share x of potential output as yt may now differ from 1.
Following Ball and Mankiw (2021), we allow for an exogenous markup m ≥ 1; pure profits
are earned by savers.

Whether capital is affected by the debt level in our model is not obvious. If capital does
not carry a convenience yield, it is entirely unaffected by the debt level.25 In the literature,
capital is often influenced by the debt level as both are treated as substitutable (see e.g. the
alternative models in Section 7). In our model, this can be captured by including capital in
the convenience utility,

max
{ct,bt}

∫ ∞

0
e−ρt

{
log ct + v

(
bt + kt

yt

)}
dt. (31)

We now also divide bt + kt by (potential) output yt explicitly. Before, this was unnecessary
as potential output was equal to 1. The budget constraint of savers now includes capital

24This threshold is simply computed as the value of b0 for which b0 + ∆ just converges back to b0 holding
the deficit constant at z(b0). In other words, b0 satisfies z(b0) = z(b0 + ∆).

25This is for instance the case in the microfoundation proposed in Appendix B.1.
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and pure profits,

ct + ḃt + k̇t ≤ (Rt − Gt) bt +
(

rk
t − γ

)
kt + (1 − µ)wtnt − τt +

(
1 − m−1

)
yt

where rk
t ≡ αkα−1

t − δk denotes the real net return on capital. By no arbitrage, Rt = rk
t + π∗.

Two first order conditions jointly pin down the capital stock k and interest rate R∗ as a
function of debt,26

R∗ = ρ + G∗ − (1 − x − µ) v′
(

b + k
y

)
R∗ − G∗ = m−1αkα−1 − δk − γ. (32)

Expanding both conditions to first order, we find the sensitivity of capital to debt

d (k/y)
d (b/y)

= −

φno K
(

b+k
y

)
rk+δk

1 + k/b

(
1 +

φno K
(

b+k
y

)
rk+δk

) (33)

and the sensitivity of R − G to debt

d (R − G)

d log (b/y)
= φno K

(
b + k

y

)
· 1

1 + k/b

(
1 +

φno K
(

b+k
y

)
R−G+γ+δk

) . (34)

Here, φno K denotes the sensitivity of R − G to debt in an economy without capital,
φno K(a) = −(1 − x − µ)v′′(a)a.

Equation (33) gives us the extent of “crowding out” of capital. Crowding out happens
when (a) there is positive capital, k/b > 0, requiring that α > 0; and (b) the interest rate
is sensitive to wealth, φno K > 0. Equation (34) shows that the sensitivity of R − G to b/y
is smaller with positive capital. This implies an extended region in which a free lunch is
available.

Proposition 7. Crowding out of capital unambiguously increases the free lunch region. The
condition for a free lunch is now given by

R < G − φno K
(

b + k
y

)
· 1

1 + k/b

(
1 +

φno K
(

b+k
y

)
R−G+γ+δk

) . (35)

26Observe that even if R∗ < G∗, we may have dynamic efficiency here, that is, αkα−1 > δk + γ, for m
sufficiently above 1.
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Figure 7: Fiscal space with crowding out of capital

Note. Black line = baseline model without capital. Blue line = calibration of model with capital such that
k/y = 2 in the initial steady state, with δk = 0.08 and productivity growth of γ = 2%. See Section 5.3 for the
other calibration targets needed to pin down these graphs.

This result may seem surprising at first: Isn’t it the case that crowding out of capital
increases the marginal product of capital, and hence the interest rate more quickly?

The answer is no. More crowding out due to a higher capital stock k/y, by definition,
implies that household wealth b/y+ k/y increases less quickly with government debt. This,
by (32), leads to a weaker interest rate response. This is why k/y reduces the elasticity of
R − G to debt in (34). We illustrate this in Figure 7 using the Section 5.3 parameterization.

Note also that the modified free lunch condition (35) is independent of the markup
m. While m matters for welfare, as it determines whether the economy is dynamically
inefficient or not when R < G, m is irrelevant for whether there exists a free lunch or not
(conditional on k/b).

7 Quantitative exploration

So far, we have studied fiscal space in relatively stylized models, both with regard to
the household side as well as the production side. Next, we explore the quantitative
predictions in richer versions of our model. These versions feature one of four different
household sides, a production function with capital subject to adjustment costs, as well
as a forward-looking wage Phillips curve. We keep our model description brief here, and
focus directly on the de-trended economy but provide all details in Appendix G.

7.1 Quantitative model

As before, the economy consists of a government, a household side with savers and
spenders, and a monetary authority. Different from before, time is discrete. The models are
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solved in the sequence space (Auclert, Bardóczy, Rognlie and Straub, 2021).

Spenders. A unit mass of spenders are hand-to-mouth, just like before, consuming their
after-tax income, c̃t = µ (1 − χt)wtnt. Here, µ is the labor income share of spenders, χt is a
proportional income tax, and wt the pre-tax wage. As we describe below, labor supply nt is
chosen by unions, and identical across households.

Savers: Overview. A continuum [0, 1] of savers consume cit and save bit in government
bonds as well as k̃it in physical capital, via a capital accumulation firm. Government bonds
pay a (de-trended) return of (1 + Rt−1) / (1 + Gt) at date t; physical capital pays a return 1+
rt to be specified below. Saver i earns post-tax labor income (1 − µ) (1 − χt)wteitnt as well
as per-capita profit income dteit. Both are multiplied by eit, an idiosyncratic productivity
shifter.27 eit is equal to 1 except for our heterogeneous-agent savers below. Saver i’s budget
constraint is given by

cit + bit + k̃it ≤
1 + Rt−1

1 + Gt
bi,t−1 + (1 + rt) k̃i,t−1 + (1 − µ) (1 − χt)wteitnt + dteit. (36)

bit and k̃it are restricted to be non-negative. Aggregate consumption is given by ct =
∫

citdi,
aggregate bonds by bt =

∫
bitdi, and capital investments by k̃t =

∫
k̃itdi.

Savers solve one of three utility maximization problems. These three approaches will
ultimately lead to four different calibrated household sides, as explained below.

Savers: Bonds-in-utility (BU). In this version of the model, all savers are identical, with
eit = 1, maximizing, subject to (36), the discrete-time analog of objective (1),

max
{ct,bt,k̃t}

∞

∑
t=0

e−ρt {log ct + v
(
bt + k̃t

)
− h(nt)

}
. (37)

Savers: Overlapping generations (OLG). This version follows Blanchard (1985) and
Yaari (1965). A mass 1 − ζ > 0 of savers is born each instant with zero assets and survives
each period with probability ζ. A saver i, born at date t0 without bonds or capital, solves

max
{cit,ait}

∞

∑
t=t0

(
ζe−ρ

)t−t0 {log cit − h (nt)} (38)

27To avoid too strong a response of spending to dividends, we follow Debortoli and Galı́ (2017) in assuming
that dividends are not paid out lump-sum and instead are proportional to other kinds of income or wealth.
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subject to (36). Since agents have access to the standard annuities market (Blanchard,
1985), the returns on bonds and capital in this economy are ζ−1 1+Rt−1

1+Gt
and ζ−1 (1 + rt)

respectively. There are no idiosyncratic productivities, eit = 1.

Savers: Heterogeneous agents with idiosyncratic risk. In this version, savers are hit by
idiosyncratic productivity shocks as in Aiyagari (1994) and Aiyagari and McGrattan (1998),
with saver i ∈ [0, 1] solving

max
{cit,ait}

∞

∑
t=0

e−ρt


(

cite−h(nt)
)1−ν

1 − ν

 (39)

subject to (36).28 Here, eit follows a Markov process that is iid across savers i. We allow for
a non-unitary elasticity of intertemporal substitution ν−1 as in King, Plosser and Rebelo
(1988). Since bonds and capital are perfect substitutes in the steady state of the model, we
assume that they are held in equal proportions across savers i.29

Production. Final goods yt are a CES aggregate over a continuum of symmetric interme-
diate goods. Intermediate goods producers operate a Cobb-Douglas technology in capital
and labor and compete monopolistically. Since the math is standard, we relegate it to
Appendix G. There, we show that production of final goods can be described as

yt = kα
t−1n1−α

t − y (40)

where α ∈ (0, 1) is the capital share, y ≥ 0 are fixed costs. In the de-trended economy
introduced here, there is no productivity growth. We allow for productivity growth at
some rate γ > 0 in Appendix G.

Capital kt−1 is rented in a spot market from investors (described below) at rental rate
rK

t . This gives the usual first order conditions,

m−1 (1 − α)
yt + y

nt
= wt (41)

m−1α
yt + y
kt−1

= rk
t (42)

where m > 1 is the monopoly markup charged by intermediate goods producers. Profits

28See Domeij and Ellingsen (2018) and Bayer, Born and Luetticke (2021) for more recent models of this sort.
29One way this can be implemented is via a mutual fund that holds all bonds and capital.
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are given by
dt =

(
1 − m−1

)
(yt + y)− y. (43)

Investors. There is a representative investor that takes household funds k̃t−1 at the end
of period t − 1 to purchase physical capital kt−1 at price qt−1, that is, qt−1kt−1 = k̃t−1. It
then earns return rk

t kt−1 in period t, invests it, and pays an adjustment cost. At the end of
period t, the investor sells kt units of capital at price qt. Altogether, the investor solves

max
kt−1,kt

1
1 + rt

(
qtkt − it − Φ (kt/kt−1) kt−1 + rk

t kt−1

)
− qt−1kt−1 (44)

subject to the growth-adjusted law of motion of capital,

(1 + γ) kt = it + (1 − δ) kt−1.

Φ(x) = 1
2ϵIδ x2 is a standard quadratic adjustment cost function where ϵI > 0 is the

sensitivity of gross investment to Tobin’s Q.

Nominal rigidity. We follow Erceg, Henderson and Levin (2000) and Auclert, Rognlie
and Straub (2018, 2020) in assuming that a mass of labor unions exists in our economy,
allocating a given amount of labor demand nt equally among households. The disutility of

labor that we assume is h(nt) = h̃ 1
1+ϕ−1 n1+ϕ−1

t with ϕ being the Frisch elasticity of labor
supply. Unions set nominal wages subject to Rotemberg (1982) adjustment costs and index
to trend inflation πw∗, giving rise to a Phillips curve for nominal wage inflation πw

t ,

(πw
t − πw∗) (1 + πw

t − πw∗)

= κ · 1 − ζe−ρ

h̃ (1 + ϕ−1)

(
nth′(nt)−

(1 − χt) ntwt

ct + c̃t

)
+ ζe−ρ

(
πw

t+1 − πw∗) (1 + πw
t+1 − πw∗) .

(45)

The first term on the right hand side scales with the gap in the first-order condition for
labor of the average worker in the economy. If this gap is positive, the average worker
is less willing to work, and unions negotiate nominal wage gains. The opposite happens
if the gap is negative. The first term is scaled by 1−ζe−ρ

h̃(1+ϕ−1)
such that a 1% permanent

increase in employment nt generates κ percent inflation from increasing the disutility
h′(nt). This makes κ roughly comparable to empirical estimates, e.g. those in Hazell,
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Herreno, Nakamura and Steinsson (2020). Goods inflation is given by

1 + πt =
1 + πw

t
(1 + γ)wt/wt−1

(46)

with trend inflation 1 + π∗ = 1+πw∗
1+γ . Nominal growth is 1 + Gt = (1 + γ) (1 + πt).

Government. The government chooses fiscal policy consisting of the paths {xt, bt, χt}
subject to the de-trended flow budget constraint

xt +
1 + Rt−1

1 + Gt
bt−1 = bt + χtwtnt (47)

The primary deficit is given by
zt = xt − χtwtnt.

Just like in (7), monetary policy targets inflation wherever feasible,

Rt = 0 if πw
t < πw∗, Rt ∈ [0, ∞) if πw

t = πw∗, Rt = ∞ if πw
t > πw∗. (48)

It is conceptually more natural to have monetary policy target wage inflation in this
economy as that will be a better measure of economic slack than price inflation. Our results
are similar if price inflation is targeted.

Equilibrium. We define equilibrium in this model in Definition 3 in Appendix G.2.

7.2 Calibration

We calibrate four versions of this model. The four versions only differ in their household
sides; every other aspect is identical, e.g. the production function or fiscal policy. The
BU-quad model has a bonds-in-utility household side (37) with quadratic convenience
utility v(a) and thus a linear convenience yield similar to (30), v′(a) = v′(ass)− φ̃ a−ass

ass
for

some φ̃ > 0; assdenotes the steady state wealth-to-GDP ratio. The BU-log model also has a
bonds-in-utility household side (37), but with logarithmic v(a) so that v′(a) = φ̃ass/a for
some φ̃ > 0. The OLG model has savers with overlapping generations (38). The HA model
has heterogeneous-agent savers (39). We calibrate each of the four models to Japan and to
the U.S. in 2019. One period equals one year.
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Calibration to the U.S. For the U.S. calibration, we set trend inflation π∗ = 2%, target the
nominal interest rate R = 1.5% (in line with nominal interest rates in December 2019)30

and set trend productivity growth γ to 1.5%, equal to the average peak-to-peak growth
rate from 2008 through 2019. We choose a (private) capital-output ratio k/y of 2.0 and a
rate of depreciation of 8%. The capital adjustment cost parameter is set to ϵI = 4, as in
Auclert, Rognlie and Straub (2018). The markup is set equal to m = 1.3, well within recent
markup estimates, with a fixed cost of y = 0.3. We target initial government debt to be
equal to 100% of GDP and government spending to be equal to 14% of GDP (in line with
their values in 2019 Q4). Taxes are set as a residual to balance the government’s budget.
This gives a labor tax rate of χ = 12%. The Phillips curve slope κ is assumed to be 0.20, in
the middle of the range of estimates in Hazell, Herreno, Nakamura and Steinsson (2020).31

U.S. savers are calibrated to achieve two targets. First, they need to be willing to hold
all assets in equilibrium; second, an exogenous permanent expansion of government debt
by some small d log b needs to increase R∗ − G by φd log b, with φ = 0.017. As we describe
at great length in Appendix F, we view this number as a midpoint estimate of the effect of
government debt on R − G.

For BU-quad savers, there are three variables to calibrate: the discount rate ρ, v′(ass)

and φ̃. We use two of the variables to hit the two targets, as well as the third to ensure that
savers’ consumption-wealth ratio is unaffected by changes in wages or profits. We view
this as a baseline that makes the BU-quad model comparable to the other models, which
all share this property. The BU-log model only has two degrees of freedom, ρ and φ̃, and
we choose them to hit both targets. Similarly, the OLG model is calibrated using ρ and ζ;
and the HA model is calibrated using ρ and ν−1. We assume savers are the top 10% of the
U.S. income distribution. We set their share of 1 − µ to 45.7%, in line with evidence on
the top 10% national income share from the world inequality database (Piketty, Saez and
Zucman, 2018). The process for eit is a standard one, an AR(1) with persistence ρe = 0.90
and cross-sectional standard deviation σe = 0.92. We assume a standard Frisch elasticity of
ϕ = 0.2. Finally, we choose h̃ to normalize n = 1 in the initial steady state. The parameters
of our U.S. calibration are summarized in Table A.3.

Calibration to Japan. For the Japanese economy, the calibration strategy is similar. We
also set trend inflation to π∗ = 2%. The economy is at the ZLB, R = 0, and had a peak-to-
peak nominal growth rate of 0.6% from 2008 through 2019. During this time, inflation in
Japan was 1.7% below the target of 2%. We therefore set real trend growth to γ = 0.3%. We

30The effective federal funds rate was 1.55%, the 5-year Treasury yield was 1.68%, the 10-year yield just
above that. The implied 5-year 5-year forward rate was 2.04%.

31See Table I in their paper. Our κ is scaled to roughly correspond to their ψ estimates.
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Figure 8: Deficit-debt diagrams in the U.S. and Japan

(a) U.S. (b) Japan

Note. Panel a shows the deficit-debt diagram implied by the U.S. calibration of our quantitative model.
Panel b shows the diagram for the Japanese calibration. The loci shown correspond to possible steady states
of the model.

match Japanese government debt to GDP of 238% (2019 value) and government spending
of 20% of GDP (2019 value). Taxes are set as a residual to balance the government budget,
giving χ = 18.6%. We keep parameters δ, ϵI , m, y as in the U.S. to facilitate the comparison.
We calibrate the household sides using the exact same strategy as before. The top 10%
income share 1 − µ in Japan is set to 44.2% based on estimates of the top 10% national
income share from the World Inequality Database.

The only remaining parameter to calibrate for Japan is the slope of the Phillips curve,
κ. We pick κ so as to match evidence on the inflationary effects of Japanese government
spending shocks at the ZLB in Miyamoto, Nguyen and Sergeyev (2018). We provide the
details of this approach in Appendix G.4. We find a value of κ equal to 0.43, somewhat above
the value we use for the U.S. economy. Table A.4 summarizes the Japanese calibration.

7.3 Deficit-debt diagrams

Figure 8 plots the levels of deficits and debt in units of our calibrated GDP across steady
states of the model.

The left panel of Figure 8 shows the U.S. deficit-debt diagram across the four models.
As is evident, the four models make relatively similar predictions for U.S. fiscal space
before the pandemic. Locally around the calibrated steady state, this is by construction,
as the slope φ is a calibration target. But even further away from the calibrated steady
state, fiscal space looks similar across models. All models predict that the peak sustainable
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primary deficit is around 2% of GDP, obtained for a debt level around 120% of GDP. The
models also imply that the interest rate R lies above the growth rate G for debt levels until
around 200% of GDP. Finally, all models imply that a small ZLB region exists.

The right panel of Figure 8 shows the Japanese deficit-debt diagram across the models.
Again, the models, despite their differences, make relatively similar predictions for Japanese
fiscal space. First, all models imply that the calibrated steady state is at the ZLB, in the
backward-bending part of the deficit-debt locus. This means that, according to all four
models, a modest permanent fiscal expansion lowers debt levels in the long run (see
section 7.4). The peak sustainable primary deficit is equal to around 2.5% of GDP, and
obtained for debt levels around 180% of GDP.

A seemingly puzzling finding here is that Japan, with its very high debt level, seems to
have access to greater fiscal space, including a greater peak sustainable deficit, than the U.S.
For the most part, this is the result of a very low calibrated discount rate ρ (see Table A.4
in Appendix G.3), which is necessary to explain the very low interest rate in Japan before
Covid despite the high debt levels.

Higher primary deficits are sustainable in Japan not despite the high debt level, but
because of it. Higher deficits generate inflation, and inflation lowers real interest rates at the
zero lower bound. As explained in Section 4.1, this effect, ceteris paribus, pushes for lower
debt levels, especially with a high initial debt level. This explains why Japan, an economy
with very high initial debt level that still finds itself at the zero lower bound, has such large
fiscal space.

7.4 Free lunch in the quantitative model

We illustrate next how both economies, according to our calibration, were in the free lunch
region before the Covid pandemic. To do so, we shock the primary deficit zt,

zt − z = ∆zperm + ∆ztrans · ρt
z, where ∆zperm, ∆ztrans > 0 (49)

in the U.S. and Japan. ∆zperm is a permanent deficit increase and ∆ztrans a transitory one.
Panel a in Figure 9 shows the deficit, debt and output in the U.S. economy in response

to a small positive deficit increase (∆zperm = 0.01%, ∆ztrans = 0.5%, ρz = 0.9). As shown,
both the deficit and debt levels increase permanently, but debt does not diverge, just like
explained in Section 3.3. All four models behave similarly in response to the shock. A
similar deficit shock is fed into our model of the Japanese economy in Panel b. As Japan is
in the backward bending part of its deficit-debt locus (see Figure 8), debt actually falls in
response to the shock, because of greater inflation.
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To show that a free lunch is contingent on the magnitude of the deficit increase, Panel c
of Figure 9 simulates the deficit shock again, for the U.S. economy, but with larger ∆zperm,
∆ztrans. Now, debt starts to explode which is why the deficit ultimately needs to be reduced.
Such a large deficit shock is not a free lunch.

Finally, Panel d of Figure 9 simulates the response of a Sidrauski (1967) style economy
with a nominal debt growth policy to a sudden increase in nominal debt growth (see
Appendix C for details). On impact, the deficit increases and the debt level shrinks, akin to
the dynamics in the Japanese economy at the zero lower bound (Panel b). However, here,
as the debt level falls, deficits start falling below their original level. This is because, as
illustrated in Figure A.5 in Appendix C, a free lunch policy in such an economy is only
attainable to the right of the peak sustainable deficit, the opposite of our baseline setting.

7.5 Role of inequality and growth for fiscal space

We end this section by revisiting two crucial comparative statics regarding the roles of
inequality and growth in shaping fiscal space. For simplicity, we conduct these comparative
statics in the BU-quad model.

Panel a of Figure 10 shows two deficit-debt diagrams, one for the U.S. in 1980, with
a top 10% income share of 1 − µ = 33.9%, and one for the U.S. in 2019, with a top 10%
income share of 1 − µ = 45.7%. On the one hand, the figure clearly shows that the increase
in inequality significantly increased fiscal space. On the other, it also shows how some of
that increased fiscal space was necessary to avoid getting stuck at the zero lower bound. In
other words, had the U.S. government not expanded its deficits, not only would the zero
lower bound have started to bind earlier than it did, but debt levels would have increased
anyway, driven by inflation below target and higher real interest rates.

Panel b of Figure 10 shows two deficit-debt diagrams of the Japanese economy, one with
a hypothetical real growth rate of γ = 4.5%—its average real growth rate 1980–1990—and
one with a growth rate of γ = 0.3%—its average real growth rate 2008–2019. The growth
decline did not expand fiscal space, despite lowering interest rates, as both R and G fell.
However, it made the zero lower bound more likely to bind, which, just like for the U.S.,
forced the Japanese government to expand its debt and deficit.
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Figure 9: Free lunch in the U.S. and Japan

(a) Free lunch in the U.S.

(b) Free lunch in Japan

(c) No free lunch for large shock in the U.S.

(d) No free lunch with nominal-debt-growth rule in the U.S.

Note. Panels a and b show free lunch policies for small deficit increases in the U.S. and Japan, respectively.
A large deficit surge in the U.S. economy is no longer a free lunch (Panel c). Panel d illustrates what
would happen with a nominal debt growth rule. The parameters used here are the following. Panel a:
∆zperm = 0.01%, ∆ztrans = 0.5%, ρz = 0.9. Panel b: ∆zperm = 0.1%, ∆ztrans = 0.5%, ρz = 0.9. Panel c:
∆zperm = 0.5%, ∆ztrans = 3%, ρz = 0.9 with additional term −0.018 (bt − b) in (49) to bring the deficit back
down to a steady state. Panel d uses fiscal rule zt =

( z
b − 0.023

)
bt that induces constant nominal debt growth.

Panel d assumes little price rigidity, κ = 1, in line with our discussion in Appendix C.39



Figure 10: The making of fiscal space: Rising inequality and declining growth

(a) Effect of rising inequality in the U.S. (b) Effect of slowing growth in Japan

Note. Panel a compares the deficit-debt diagram of the U.S. economy in 2019, with high inequality, to the one
in 1980, with low inequality, illustrating how much more fiscal space rising income inequality has caused.
Panel b compares the deficit-debt diagram of the Japanese economy in the 2010s, with slow growth, to the
one in the 1980s, with fast growth, illustrating how slowing growth made the ZLB region more binding,
causing the backward-bending shape of the diagram.

8 Conclusion

The textbook view of debt and deficits is that raising deficits leads to an explosive path for
government debt unless, at some point, deficits are reduced below their original level. In
this paper, we argued that debt may not explode if R < G − φ and the increase in deficits
is modest (“free lunch”); and that debt may not even rise at all if the economy is at the ZLB
and the nominal growth rate is sufficiently responsive to increased deficits. We further
illustrated how inequality increases fiscal space outside the ZLB, but may reduce it at the
ZLB. In the United States we found very little room for free lunch policies in 2019; but
significant room for free lunch policies in Japan.

We have mostly focused on characterizing long-run dynamics in our paper. Our
modeling approach, however, is very much amenable to being integrated in richer dynamic
models of the short-run, including models with additional adjustment frictions, such as
habits, inertial inflation, and other countries. We believe that such models can usefully
connect short-run effects of fiscal deficits to the long-run effects we characterize here.
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A Goldilocks Theory of Fiscal Deficits
— Online Appendix —

Atif Mian Ludwig Straub Amir Sufi

A Additional proofs and model details

A.1 Proof of Proposition 1

From (10) we see that z′(b) = G∗ − R∗(b)− R∗′(b)b. Substituting (9) into z′(b) yields that
z′(b∗) = 0 holds precisely when (11). If φ(b) = R∗′(b)b is weakly increasing, z′(b) is strictly
decreasing and hence b∗ is the unique global maximum.

A.2 Proof of Corollary 1

If z(b) is single peaked, the unique global maximum b∗ is also the unique local maximum.
All points b0 < b∗ are then necessarily characterized by z′(b0) > 0, or equivalently,
R∗(b0) < G∗ − φ(b0). For any such point, a permanent deficit increase by ∆z ≡ z(b1)−
z(b0) > 0, for some b1 ∈ (b0, b∗) is a free lunch policy. Any point b0 ≥ b∗ does not allow
for a free lunch as z′(b0) ≤ 0 there.

A.3 Proof of Corollary 2

The result follows directly by substituting out the interest rate (9) in the equation for the
primary deficit (10),

z(b) =
(
v′(b) (1 − x − µ)− ρ

)
b. (A.1)

The locus z(b) shifts down with higher ρ. In fact, if ρ rises above v′(0) (1 − x − µ), the
government has to run a primary surplus at any positive level of debt.

A.4 Proof of Corollary 3

See (A.1) above.

A.5 Proof of Corollary 4

The post-tax interest rate R∗(b) in (16) is the correct one to use in the government budget
constraint. From (16), we see that for any b, R∗(b) falls in τc, τ̃, and is independent of τb.
Substituting (16) into (10) then proves the statements.
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A.6 Proof of Proposition 2

A steady state at the ZLB satisfies the following set of equations:

• the Euler equation of savers (18) at a steady state with Rt = 0

0 =
ċt

ct
= −G − ρ + v′(b)c (A.2)

• the goods market clearing condition (17)

y = c + c̃ + x (A.3)

• spenders’ budget constraint (3) with τ̃t = 0

c̃ = µy (A.4)

• the Phillips curve (4), expressed in terms of nominal growth rates,

G = G∗ − κ (1 − y) (A.5)

• the government budget constraint (5)

z + (0 − G) b = 0 (A.6)

Combining (A.3), (A.4), (A.5), we obtain

G = G∗ − κ

(
1 − c + x

1 − µ

)
(A.7)

Solving the Euler equation (A.2) for c and substituting it into (A.7), we ultimately find

(G∗ − G)
(
(1 − µ) v′(b)− κ

)
= −κR∗(b) (A.8)

where the natural rate R∗(b) is as in (9). We define b̂ as the debt level which satisfies

v′(b̂) =
κ

1 − µ
.
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Case (A). Now consider the case κ < κ̂ = 1−µ
1−x−µ (ρ + G∗) (case (A) of Proposition 2). In

that case, for any b < bZLB, we have

v′(b) > v′(bZLB) =
ρ + G∗

1 − x − µ
=

κ̂

1 − µ
>

κ

1 − µ
.

This allows us to solve (A.8),

G(b) = G∗ − κ

v′(b) (1 − µ)− κ
(−R∗(b))

confirming (19). It only remains to be shown that there cannot be a steady state with a
binding ZLB and b ≥ bZLB. b = bZLB cannot be a steady state, as there R∗(b) = 0 and thus,
by (A.8), G = G∗ and y = y∗ = 1. The ZLB is not binding there. If b > bZLB, R∗(b) > 0, so
the only way for G < G∗ as part of a steady state is that b > b̂ and (1 − µ) v′(b) < κ. In this
case, we can write G(b) as

G(b) = G∗ −
ρ+G∗

1−x−µ − κ
1−µ

1 − κ−1 (1 − µ) v′(b)
− κ

1 − µ
(A.9)

which is clearly increasing in b for b > b̂. The highest it gets is for b → ∞, where v′(b) → 0
and

G(b) → G∗ − ρ + G∗

1 − x − µ
< 0

This implies that the primary deficit z implied by (A.6) would have to be negative, which
we ruled out in Proposition 2.

Case (B). If κ = κ̂, then we can write steady state G as (A.9) whenever κ−1 (1 − µ) v′(b) ̸=
1. In that case, (A.9) reads

G(b) = G∗ − κ

1 − µ
= G∗ − ρ + G∗

1 − x − µ
< 0

and is ruled out for the same argument as above. If κ−1 (1 − µ) v′(b) = 1, then this implies
b = bZLB for κ = κ̂. In that case, (A.8) is precisely satisfied since both sides of the equation
are zero. The ZLB is binding precisely when z < zZLB or else (A.6) would imply G ≥ G∗.

Case (C). If κ > κ̂, then for any b > bZLB,

v′(b) (1 − µ) < v′(bZLB) (1 − µ) = κ̂ < κ
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Thus, (19) is well defined there. It remains to be shown that no ZLB steady state exists with
positive deficits and b < bZLB. In that range, R∗(b) < 0, so by virtue of (A.8) the only way
for a ZLB steady state to exist is (1 − µ) v′(b) > κ, i.e. b < b̂. Rearranging (A.9) as

G(b) = G∗ −
κ

1−µ − ρ+G∗

1−x−µ

κ−1 (1 − µ) v′(b)− 1
− κ

1 − µ

the largest growth rate is obtained if v′(b) → ∞, in which case

G(b) → G∗ − κ

1 − µ
< G∗ − ρ + G∗

1 − x − µ
< 0

Thus, in this region, steady states at the ZLB must have a positive primary surplus, which
we don’t focus on here. This shows that with κ > κ̂, the only feasible positive-deficit steady
states are in set {(b, z) : b > bZLB, z(b) = G(b)b}.

A.7 Proof of Proposition 3

The dynamic equations characterizing equilibrium are (21) and (22). We first derive the
associated phase diagram, showing that there are exactly two possible steady states for
any given value of ξ ∈ (0, G∗). We then argue that an equilibrium exists where ḃt < 0 in
between the steady states, and ḃt > 0 left and right of the steady states. This will allow us
to prove Proposition 3.

The dynamic equations can be written as

ċt

ct
= −ρ − G∗ + κ

(
1 − ct + x

1 − µ

)
+ v′(bt)ct

ḃt =

(
−G∗ + κ

(
1 − ct + x

1 − µ

)
+ ξ

)
bt

whenever ct < 1 − µ − x. When ct = 1 − µ − x, they are instead given by

ċt = Rt − G∗ − ρ + v′(bt)ct = 0

and
ḃt = (Rt − G∗) bt + ξbt.

Variable transformation. In a first step, we transform the system of ODEs into new
variables. The new variables are ct ≡ ct/bt and bt. ct captures the ratio of consumption to
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Figure A.1: Phase diagram with an occasionally binding ZLB

(a) Case A: κ > 1−µ
1−µ−x (G

∗ − ξ) (b) Case B: κ ≤ 1−µ
1−µ−x (G

∗ − ξ)

bonds and turns out to be a very useful object to study. It is straightforward to derive that

ċt

ct
= v′(bt)btct − ξ − ρ

and
ḃt

bt
=

−G∗ + κ
(

1 − btct+x
1−µ

)
+ ξ btct < 1 − µ − x

ρ − v′(bt) (1 − µ − x) + ξ btct = 1 − µ − x

Loci. The ċ = 0 locus is given by

c =
ξ + ρ

v′(b)b

and the ḃ = 0 locus is given by

c =
1
b
(1 − µ − x)

(
1 − 1 − µ

1 − µ − x
G∗ − ξ

κ

)
.

We plot the two loci in Figure A.1. Under the assumption that v′(b)b is increasing, the
ċ = 0 locus is downward-sloping, starting from a finite and positive value at b = 0. We
distinguish two cases.

Case A: κ > 1−µ
1−µ−x (G

∗ − ξ). In this case, there are points in the locus of ḃ = 0 in the first
quadrant (with c, b > 0). This is shown in Figure A.1a. There exist two steady states, one at
the ZLB and one outside. The ZLB steady state is given by

v′
(

b∗ZLB
)
=

ξ + ρ

1 − µ − x
· κ

κ − 1−µ
1−µ−x (G

∗ − ξ)
. (A.10)

A5



and
c∗ZLB =

ξ + ρ

v′ (b∗ZLB) b∗ZLB .

The steady state outside the ZLB is given by

v′
(

b∗noZLB
)
=

ξ + ρ

1 − µ − x
(A.11)

and
c∗noZLB =

1 − µ − x
b∗ZLB .

In this case, as the phase diagram in Figure A.1a shows, there is a unique stable arm along
which the economy converges to the ZLB steady state. On the right, the stable arm begins
at one point (c∗∗, b∗∗) on the line of full employment, where bc = 1 − µ − x. Further down
along the line is the no-ZLB steady state. As long as the economy has not reached (c∗∗, b∗∗),
it must remain on the line of full employment. On that, the arrows point away from the
no-ZLB steady state.

These arguments show that, in this case A, where κ > 1−µ
1−µ−x (G

∗ − ξ), we have that
ḃt < 0 precisely in between the two steady states, and ḃt ≥ 0 elsewhere. It is straightforward
to see that the area between the two steady states precisely corresponds to the one described
in Proposition 3.

Case B: κ ≤ 1−µ
1−µ−x (G

∗ − ξ). In this case, there does not exist a ZLB steady state with
b, c > 0. Instead, the economy converges to a boundary steady state, where

bboundary = 0

and
cboundary =

ξ + ρ

limb→0 v′(b)b
.

There is still a unique stable arm that leads to this boundary steady state. The transversality
condition holds along the trajectory, as the discounted marginal-utility weighted value of
bonds converges to zero,

e−ρtbt/ct = e−ρt 1
ct

→ 0.

This follows directly from ct → cboundary. Here, ḃt < 0 anywhere left of the no ZLB steady
state, and ḃt ≥ 0 right of it. It is straightforward to see that the area left of the steady state
in this case precisely corresponds to the one described in Proposition 3.
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A.8 Proof of Corollary 5

We prove that, starting from the ZLB steady state associated with some fiscal rule zt = ξbt,
ξ = (0, G∗), we can always find a fiscal rule zt = ξ̃bt for some ξ̃ > ξ, that leads to an
increase in primary deficits at all points in time.

We distinguish three cases, in line with the numbering introduced by Proposition 2.

Case (A): κ < κ̂. In this case, we can choose ξ̃ = G∗. With that fiscal rule, there is exactly
a single steady state, as

κ

κ − 1−µ
1−µ−x (G

∗ − ξ)
= 1

so that the expressions in (A.10) and in (A.11) coincide. This steady state is exactly
the steady state at the border of the ZLB region, whose deficit-debt ratio is given by
zZLB/bZLB = G∗ = ξ.

What happens to the deficit as we move from ξ to ξ̃? Certainly ξ < ξ̃ and debt bt is slow-
moving, so that primary deficits are bound to rise on impact. They also rise permanently
as any ZLB steady state in this case has a debt level below bZLB (see Figure 4).

Case (B): κ = κ̂. The argument in this case is identical, except that any ZLB steady state
has a debt level equal to bZLB (see Figure 4).

Case (C): κ > κ̂. In this case, for any ZLB steady state (z∗ZLB, b∗ZLB), there is a non-ZLB
steady state at the same debt level and with greater deficits z(b∗ZLB) > z∗ZLB. Choosing
ξ̃ = z(b∗ZLB)/b∗ZLB ensures that deficits rise permanently.

A.9 Proof of Corollary 6

This follows from the fact that z(b) = G(b)b at the ZLB. Differentiating (19) we find
∂G(b)/∂G∗ = v′(b) (1 − µ) /(v′(b) (1 − µ)− κ) > 0.

A.10 Proof of Proposition 4

Differentiating (19) with respect to µ, we see that

∂G
∂µ

= − κv′(b)

(v′(b) (1 − µ)− κ)2 (−R∗(b)) +
κ

v′(b) (1 − µ)− κ
v′(b).
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After some algebra, and using κ > 0, ∂G/∂µ > 0 is equivalent to v′(b)x > κ − ρ − G∗. For
any b < bZLB, this is implied if v′(bZLB)x > κ − ρ − G∗. Using v′(bZLB) = ρ+G∗

1−x−µ , this is
equivalent to κ < κ̂, which we assume here. Thus, ∂G/∂µ > 0. From z(b) = G(b)b we see
that inequality reduces fiscal space.

A.11 Proof of Proposition 5

A small transfer of dτ̃ < 0 with an associated increase in the primary deficit of dz =

−dτ̃ > 0 leads to a reduction in debt if dḃ = −dz + bdG > 0. Here, dG is the change
in nominal growth, dG = κv′(b)/ (v′(b) (1 − µ)− κ) dz, which follows by substituting
R∗(bt) = ρ + G∗ − v′(bt) (1 − x − µ + τ̃) (a special case of (16)) into (19). So, dḃ > 0
iff b · dG/dz > 1, which is equivalent to κ > v′(b)

v′(b)b+1 (1 − µ). This condition is loosest
among all debt levels with a binding ZLB when b = bZLB, for which case we note that
v′(bZLB)(1 − µ) = κ̂. This proves the results in the proposition.

A.12 Details on the model with aggregate risk

A.12.1 Derivation of (26)

From the geometric Brownian motion for y∗t , (23), we see that y∗t follows the process

dy∗t = delog y∗t = y∗t

(
γ +

1
2

σ2
)

dt + y∗t σdZt. (A.12)

The saver solves (24) subject to (25). Denote by λt the costate of Bt. This implies a first
order condition of

λt = C−ν
t

and a law of motion of λt of

Et [dλt] = λt (ρ + π∗ − Rt) dt − (y∗t )
−ν v′(bt)dt (A.13)

Denoting by σλt the instantaneous volatility of λ−1
t dλt, we move from dλt to d log λt

d log λt =
dλt

λt
− 1

2
σ2

λtdt. (A.14)

Now define normalized consumption as ct ≡ Ct/y∗t so that λt = (cty∗t )
−ν, or in logs,

log λt = −ν log ct − ν log y∗t .
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With σct being the instantaneous volatility of c−1
t dct, we have

d log ct =
dct

ct
− 1

2
σ2

ctdt

so that
d log λt = −ν

dct

ct
+ ν

1
2

σ2
ctdt − νγdt − νσdZt (A.15)

which implies that σλt = −νσct − νσ. Substituting (A.13) and (A.15) into (A.14), we find

−νEt
dct

ct
+ ν

1
2

σ2
ctdt − νγdt = Et

dλt

λt
− 1

2
σ2

λtdt

or simplified,

νE

[
dct

ct

]
= (Rt − ρ − π∗ − νγ) dt + cν

t v′(bt)dt +
1
2

ν2 (σct + σ)2 dt + ν
1
2

σ2
ctdt (A.16)

Defining the growth-adjusted discount rate ρ̂ by ρ̂ ≡ ρ + (ν − 1) γ and using G∗ = γ + π∗

as before, we arrive at (26).

A.12.2 Derivation of R(bt) in (27) with aggregate risk

In equilibrium, ct = 1 − x − µ is a constant by goods market clearing. This also means that
σct = 0. Substituting into (A.16), we find

Rt = R(bt) = G∗ + (ν − 1) γ + ρ︸ ︷︷ ︸
=ρ̂

−1
2

ν2σ2 − (1 − x − µ)ν v′(bt).

A.12.3 Derivation of normalized government budget constraint (28)

To derive (28), observe that the usual budget constraint still holds,

dBt = (R(bt)− π∗) Btdt + (xy∗t − Tt) dt (A.17)

Therefore, using (A.12), the evolution of bt ≡ Bt/y∗t is given by

dbt = ztdt +
(

R(bt)− G∗ +
1
2

σ2
)

btdt − btσdZt
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where the 1
2 σ2 = σ2 − 1

2 σ2 term is the Ito correction σ2 coming from the volatility of y∗t
minus 1

2 σ2 from (A.12). Observe that the law of motion for log bt does not have a correction,

d log bt =
zt

bt
dt + (R(bt)− G∗) dt − σdZt

confirming that Et [d log bt] = 0 if zt = (G∗ − R(bt)) bt.

A.12.4 Derivation of sufficiency of (29) for the transversality condition

The transversality condition for the saver maximizing (24) is demanding that, at the
optimum, the expected present shadow value of bonds at date t go to zero as t → ∞,

lim
t→∞

e−ρtE0 [λtBt] = 0.

To prove that this indeed holds under condition (29), we define ht = e−ρtλtBt. Building on
(A.13) and (A.17), ht evolves as

dht = −ρhtdt + ht
dλt

λt
+ ht

dBt

Bt
,

or, substituting out dλt and dBt,

dht = −ρhtdt + ht
1
2

ν2σ2dt − νσhtdZt + (R(bt)− π∗ − νγ) htdt +
zt

bt
htdt.

If condition (29) holds, we can bound ht above by process h̃t, which evolves as

dh̃t = −ϵh̃tdt − νσh̃tdZt

at all times t > T where T is chosen such that (29) holds thereafter. h̃t is a standard
geometric Brownian motion whose expectation E0h̃t converges to zero. Thus, E0ht ≤ E0h̃t

must converge to zero as well.

A.12.5 Proof of Proposition 6

The evolution of debt bt without the increase in debt by ∆ is given by

dbt = ztdt +
(

R(bt)− G∗ +
σ2

2

)
btdt − btσdZt.
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The evolution of debt b∆
t after increasing debt by ∆ > 0 at date 0 is

db∆
t = ztdt +

(
R(b∆

t )− G∗ +
σ2

2

)
b∆

t dt − b∆
t σdZt.

Given the convenience yield is affine-linear, as in (30), the interest rate schedule R(b) has a
constant slope ϕ ≡ R′(b). In the notation of (30), ϕ = φ/b0. Here, we use φ(b) to denote
the local semi-elasticity of R to debt around an arbitrary debt level b, φ(b) = ∂R(b)

∂ log b = ϕb.
Of course, around b0, φ(b0) is exactly equal to the φ in (30).

We denote the difference between the two by ∆bt ≡ b∆
t − bt. It satisfies the SDE

d (∆bt) =

[
R(bt)− G∗ + φ(bt) +

σ2

2
+ ϕ∆bt

]
∆btdt − ∆bt · σdZt. (A.18)

Our goal is to show that lim∆→0 P(∆bt → 0) = 1. We do so by first analyzing a simpler
process, ∆̃bt, defined by

d
(

∆̃bt

)
=

[
R(bt)− G∗ + φ(bt) +

σ2

2

]
∆̃btdt − ∆̃bt · σdZt (A.19)

with same initial condition ∆̃b0 = ∆b0 = ∆.

Characterizing the process ∆̃bt. The SDE for log ∆̃bt is given by

d log ∆̃bt = [R(bt)− G∗ + φ(bt)] dt − σdZt (A.20)

We can integrate (A.20),

log ∆̃bT − log ∆ =
∫ T

0
(R(bt)− G∗ + φ(bt)) dt − σZT

We note here that ∆̃bT scales with ∆.
Since bt follows a stationary Markov process, the strong law of large numbers (Ergodic

Theorem) holds,
1
T

∫ T

0
btdt →

∫
bF (db) a.s.

By linearity of R, φ, it follows that

1
T

∫ T

0
(R(bt)− G∗ + φ(bt)) dt → R − G∗ + φ a.s. (A.21)
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with R, φ as defined in the text of Proposition 6. Moreover, another application of the
strong law of large numbers givesA1

1
T

ZT → 0 a.s. (A.22)

Together, (A.21) and (A.22) imply that

1
T

(
log ∆̃bT − log ∆

)
→ R − G∗ + φ a.s.

We now distinguish two cases, depending on the sign of R − G∗ + φ. Suppose first that
R − G∗ + φ < 0. Pick some δ > 0 such that R − G∗ + φ + δ < 0. For almost any sample
path of ∆̃bT, we can find a time T, such that for any T > T,

1
T

(
log ∆̃bT − log ∆

)
≤ R − G∗ + φ + δ.

This implies
∆̃bT ≤ ∆ · exp

{(
R − G∗ + φ + δ

)
T
}

.

Given R − G∗ + φ + δ < 0, this establishes that ∆̃bT → 0 along almost any sample path,
and hence ∆̃bT → 0 almost surely. In addition, it establishes that ∆̃bT is integrable along
almost any sample path, that is, ∫ ∞

0
∆̃bTdT < ∞ a.s.

Now consider the case R − G∗ + φ > 0 and chose δ such that R − G∗ + φ − δ > 0. Then,
for almost any sample path of ∆̃bT, we can find a time T, such that for any T > T,

1
T

(
log ∆̃bT − log ∆

)
≥ R − G∗ + φ − δ

and therefore
∆̃bT ≥ ∆ · exp

{(
R − G∗ + φ + δ

)
T
}

.

Given R − G∗ + φ − δ > 0, this establishes that in this case, ∆̃bT → ∞ along almost any
sample path, and hence ∆̃bT → ∞ almost surely.

Having investigated the properties of ∆̃bt, we now return to ∆bt.

A1See e.g. https://www.stat.berkeley.edu/~pitman/s205s03/lecture15.pdf, Example 15.6 for a
proof.
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Characterizing the process ∆bt. ∆bt differs from ∆̃bt as the former has an additional
nonlinear term, ϕ (∆bt)

2, in its SDE (A.18). We therefore clearly have that ∆bt ≥ ∆̃bt. This
already gives us our first result, namely that R−G∗+ φ > 0 implies almost sure divergence
of ∆bt, or in other words, P(b∆

t → bt) = 0.
Accordingly, we focus on the case R − G∗ + φ < 0 hereafter. We can formally study

the difference between ∆bt and ∆̃bt by characterizing the SDE of ∆̃bt/∆bt (which must lie
between 0 and 1). After some algebra combining (A.18) and (A.19), we find

d

(
∆̃bt

∆bt

)
= −ϕ∆̃btdt.

This SDE has the solution
∆̃bT

∆bT
− 1 = −

∫ T

0
ϕ∆̃btdt

or, equivalently,

∆bT =
∆̃bT

1 −
∫ ∞

0 ϕ∆̃btdt

which is well defined for any sample path with
∫ T

0 ϕ∆̃btdt < 1. Since we showed above
that (a) for T → ∞,

∫ T
0 ∆̃btdt is finite almost surely and (b) ∆̃bt scales in ∆, it follows that

for any ∆ for which
∫ ∞

0 ϕ∆̃btdt < 1,

lim
T→∞

∆bT =
limT→∞ ∆̃bT

1 −
∫ ∞

0 ϕ∆̃btdt
= 0.

Thus,

P (∆bT → 0) ≥ P
(∫ ∞

0
ϕ∆̃btdt < 1

)
but the latter probability approaches 1 as we take ∆ → 0, since ∆̃bt scales in ∆. Therefore,

lim
∆→0

P (∆bT → 0) = 1

which is what we set out to prove.

A13



A.13 Details on the model with capital

We begin with the household optimization problem (31). The Euler equation for bonds is
given by

ċt

ct
= Rt − Gt − ρ +

ct

yt
v′
(

bt + kt

yt

)
. (A.23)

The Euler equation for capital is given by

ċt

ct
= rk

t − γ − ρ +
ct

yt
v′
(

bt + kt

yt

)
. (A.24)

We characterize the steady state. Then, subtracting (A.23) from (A.24), we find

R∗ − G∗ = rk − γ = m−1αkα−1 − δk − γ = m−1α
y
k
− δk − γ.

Moreover, in a steady state, (A.23) looks as usual

R∗ = ρ + G∗ − (1 − x − µ) v′
(

b + k
y

)
.

This completes our derivation of (32). Linearizing the two equations in (32), we obtain

dR = φ

(
b + k

y

)(
d

b
y
+ d

k
y

)
and dR = − (k/y)−1 dR

R − G∗ + δk + γ

Combining these two equations, yields (33), (34), and Proposition 7.

B Additional model details and extensions

B.1 Microfoundation of the convenience utility

In the main body of the paper, we have taken the convenience yield v(b) as given, deriving
implications for fiscal space. We next propose a microfoundation for the convenience yield
v(b) that is fully consistent with our previous analysis.

Convenience benefits are typically thought of as either liquidity or safety premia. Many
microfoundations exist for liquidity (e.g. Lagos and Wright 2005), and some have been
shown to reduce to a v(b) function (Angeletos, Collard and Dellas 2020). In this section,
instead, we propose a model of safety premia, interpreting bonds as being safe if they are
likely to pay out even after a big disaster.A2

A2We describe in Appendix D a number of alternative models and show that they numerically have similar
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Consider an economy like the one in Section 2, with two changes. First, there is no
ad-hoc convenience utility function v. Second, there is a flow probability λ > 0 with
which a disaster occurs. Conditional on the disaster occurring, it reduces potential output
y∗ from 1, our normalized pre-disaster value, to δ ∈ (0, 1), with probability f (δ), where∫ 1

0 f (δ)dδ = 1. The only friction that we assume in this model is that the government can
only raise tax revenue τt from savers up to some fraction τ + x of output.A3 For simplicity,
it cannot tax spenders, τ̃ = 0. If debt service requires greater taxes, we assume that the
government defaults. We assume that default entails default costs (in the form of transfers
to households, not resource costs) that are sufficiently large so that all bond wealth is lost.A4

We analyze this model in two steps. First, we focus on the economy after a disaster of
size δ happened. Then, we study the economy before the disaster shock, and argue that it
is isomorphic to our model in Section 2.A5

When a disaster of size δ materializes, the interest rate rises to R = G∗ + ρ, as bonds lose
their “specialness”. This requires the economy to run a primary surplus of ρb/δ relative to
GDP. Given the upper bound on taxes of τ + x, default occurs when output after the shock
δ falls below δ ≡ ρb/τ. We denote by Ṽt(b; δ) the utility of an individual saver with bond
position b after shock δ realizes.

Before the disaster occurs, savers now maximize utility

ρVt(b) ≡ max
c

log c + λ
∫ 1

0
f (δ)

(
Ṽt (b; δ)− Vt(b)

)
dδ + V̇t(b) + V′

t (b)ḃt (A.25)

where ḃt is given by the budget constraint (2). Combining the first order condition for c
and the Envelope theorem for Vt(b), this formulation can be shown to imply a natural rate
before the disaster that depends on b and is given by

R∗(b) = ρ + G∗ − λF
(

ρb
τ

)
(A.26)

where we defined

F(δ) ≡
∫ 1

δ
f (δ)δ−1dδ − 1. (A.27)

F(δ) determines the insurance value of a bond that pays off whenever the shock is better

implications to our reduced-form convenience-yield model of Section 2.
A3We include the share of government spending x here so that the government can always finance its

spending. This is equivalent to a cap on the primary surplus of τ.
A4This is equivalent to the government defaulting on all its debt. The case with partial default is very

similar to the analysis below.
A5This is again similar to the “risky steady state” in Coeurdacier, Rey and Winant (2011), and to the Poisson

shocks in Caballero and Farhi (2018b) and Caballero, Farhi and Gourinchas (2016).
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than δ. If F(δ) < 0, this implies that the bond, on net, is risky, which will be the case for δ

close to 1. If F(δ) > 0, which will be the case for δ closer to zero, the bond is, on net, safe.
In that case, λF

(
ρb
τ

)
corresponds to the convenience yield, analogous to v′(b)(1 − x) in

(9). As before, the convenience yield falls in b.
The definition of F in (A.27) illustrates exactly the premium for “safety”: bonds that

pay out in very adverse states of the world, with low δ, carry a higher convenience yield.
In the special case where the density is equal to f (δ) = 2δ and F(δ) = 1 − 2δ, we find that
the convenience yield is given by

λF
(

ρb
τ

)
= λ − 2

ρλ

τ
b

microfounding our affine-linear specification (30).
Observe that this model here has the same deficit-debt locus as one in which savers

have preferences (1) with convenience utility

v(b) =
1

1 − x
· λ
∫ b

0
F
(

ρb̃
τ

)
db̃.

B.2 Maturity structure and fiscal space

We begin by introducing long-term debt into the model. We denote by bST
t short-term debt

and by bLT
t long-term debt (relative to potential GDP). We assume that long-term debt also

carriers convenience benefits for savers, albeit less than short -term debt. Thus, we assume
a convenience utility of

v
(

bST
t + αbLT

t

)
where α ∈ (0, 1). This specification implies that the natural interest rate on short-term debt,
which we continue to denote by R∗

t , is given by

R∗
t = ρ + G∗ − v′(bST

t + αbLT
t ) (1 − x − µ) .

The ZLB binds whenever R∗
t < 0 so that Rt = max{R∗

t , 0}. The interest rate on long-term
debt, which we denote by RLT

t , is then

RLT
t = Rt + (1 − α) v′(bST

t + αbLT
t ) (1 − x − µ) .

In particular, RLT
t is strictly greater than Rt, and the spread between the two shrinks in

bST
t + αbLT

t .
To see how this affects the deficit-debt diagram, we denote the share of LT debt issued

A16



Figure A.2: Fiscal space with various shares ϑ of long-term debt

0 % 100 % 200 %
0 %

2 %
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short-term interest rate

long-term interest rate

Government debt b + bLT

A. Interest rates (red) and growth rate (blue)

0 % 100 % 200 %
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0 %
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Government debt b + bLT

B. Deficit-debt diagram

ϑ = 0.5
ϑ = 0.8
ϑ = 0.1

Note. Plot uses α = 0.7. Left panel: ϑ = 0.5. Right panel: ϑ ∈ {0.1, 0.5, 0.8}. This figure is only illustrative. It
uses a κ of κ = 0.075 and otherwise follows the parameterization in Section 5.3.

by the government by ϑ. The government budget constraint is then

d
dt

(
bST

t + bLT
t

)
=
(

Rt − Gt
) (

bST
t + bLT

t

)
+ zt

where Rt = (1 − ϑ) Rt + ϑRLT
t and Gt is equal to G∗ outside the ZLB and (19) at the ZLB,

as before.
Figure A.2(A) plots Rt, RLT

t , and Gt as function of total debt bST + bLT, illustrating the
positive spread between Rt and RLT

t , which shrinks at higher debt levels. Figure A.2(B)
plots the deficit-debt locus z

(
bST + bLT), as function of total debt bST + bLT, for various

shares of long-term debt ϑ. Two observations are noteworthy. First, with greater shares of
long-term debt ϑ, there is less fiscal space at small debt levels; the ZLB region is greater; and
the boundary of the free lunch region b∗ generally shifts to the left. Second, with greater ϑ,
there is generally more fiscal space at higher debt levels. This is a direct consequence of the
fact that long-term debt has smaller convenience benefits, so both interest rates Rt and RLT

t

increase less rapidly in long-term debt.
A stylized way to think of large scale purchases of long-term government debt (one

type of quantitative easing, QE) is that it changes the maturity composition of government
liabilities towards short-term debt, effectively lowering ϑ. As Figure A.2(B) shows, this
can help an economy escape the ZLB (as in Gertler and Karadi 2018, Caballero and Farhi
2018b, and Cui and Sterk forthcoming), and gives it greater fiscal space at low debt levels.
However, it also highlights that QE may reduce fiscal space at higher debt levels.
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B.3 Fiscal space with general asset market structure

We next show how the example of the previous subsection can be generalized to allow for
a general asset market structure. For simplicity, we focus here on an economy without ZLB.
We assume here that there are N distinct asset classes, labeled by n = 1, . . . , N. Households
have a general convenience utility

v(b1t, . . . , bNt). (A.28)

If bnt > 0, the government is indebted in asset class n to households; if bnt < 0 the
government is a saver in asset class n. Note that any constraints on assets (e.g. limits
on borrowing or saving in a particular asset n) can be incorporated into v. The previous
subsection is a special case of this setup where N = 2, b1t = bST

t , b2t = bLT
t , and v(b1, b2) =

v(b1 + αb2).
We denote the interest rate on asset n by Rnt. With the general convenience utility

(A.28), the saver’s Euler equation with respect to additional saving in asset class n implies

Rnt = Rn (b1t, . . . , bNt) = ρ + G∗ − (1 − x − µ)
∂v
∂bn

(b1t, . . . , bNt) .

The government budget constraint then reads

N

∑
n=1

ḃnt =
N

∑
n=1

(Rnt − G∗) bnt + zt.

We define the asset specific sensitivity φn as

φn (b1, . . . , bN) ≡
N

∑
m=1

bm
∂Rm

∂bn
(b1, . . . , bN).

φn captures the impact on total borrowing cost of the government from the increase in
interest rates caused by an additional unit of debt in asset class n.

We define the minimum weighted average interest rate by

R (b) ≡ min
∑ bn=b

N

∑
n=1

Rn (b1, . . . , bN)
bn

b
. (A.29)

We assume that a minimum exists. R (b) is the interest rate the government pays if it
chooses the optimal portfolio across asset classes, holding total debt fixed at b. We define
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total sensitivity as

φ (b) ≡ b
∂R
∂b

(b).

At the minimum in (A.29), we have to have that the marginal cost of borrowing in asset
class n, Rn + φn, is the same across asset classes; in that case, it is precisely equal to
R(b) + φ(b).

We define the deficit-debt locus in this economy as

z(b) ≡
(
G∗ − R(b)

)
b.

It is easy to see that an economy whose total debt is b, whose primary deficit is z(b), and
whose portfolio minimize the average interest rate as in (A.29) is in a steady state with
ḃnt = 0 across asset classes.

We have the following result on free lunch policies in this environment.

Proposition 8. Assume z(b) is single-peaked. A free lunch policy exists in the economy with
general asset classes with initial steady state debt b0 and primary deficit z0 if and only if either
z0 < z(b0) or

R(b0) < G − φ(b0). (A.30)

Proof. If z0 < z(b0) then, by definition of R in (A.29), we can find a portfolio with the same
initial total debt b0 that allows for a greater primary deficit z(b0). Hence, there is a free
lunch. The rest of the proof is exactly analogous to that of Corollary 1. If z0 = z(b0) and
(A.30), the argument exactly follows by raising deficits to some level between z0 and the
peak of z(b). Vice versa, if z0 = z(b0) and (A.30) does not hold, total debt cannot fall, and
hence primary deficits cannot persistently rise, without first cutting deficits below z0.

Proposition 8 shows that there are now two ways in which a free lunch can materialize
based on some initial steady state with total debt b0 and deficit z0. First, it can be that the
steady state has a suboptimal portfolio, one that does not minimize the interest rate as
in (A.29). In this case, the steady state will lie strictly below the deficit-debt locus. A free
lunch here is simply given by moving up to the locus by way of adjusting the portfolio.
Second, if the steady state lies on the deficit-debt locus already, a free lunch exists precisely
under the same condition as before, R < G − φ.

Example: Government can save in asset without convenience yield. We illustrate
Proposition 8 with the following example with N = 2. Imagine asset class 1 is the usual
debt with convenience yield coming from utility v(b1); asset class 2 instead allows the
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Figure A.3: Deficit-debt diagram with additional asset class

Note. This figure compares our baseline deficit-debt diagram (Section 3) with one in which the government
has the opportunity to save up to an amount B at interest rate ρ + G∗. This saving opportunity shifts up the
deficit-debt locus to the solid line.

government to save at the interest rate ρ + G∗ up to some limit B > 0, that is, b2 ∈ [−B, 0].
This interest rate is the one paid on investments that do not carry any convenience benefits.

Figure A.3 shows the deficit-debt diagram in this economy. In contrast to the deficit-
debt diagram in Section A.3 without saving opportunity (dashed line), we now have a
strictly higher deficit-debt locus (solid line). This makes sense as there now exists a region
for total debt b to the left of some debt level b̃ where it is optimal for the government to
take advantage of the higher-return saving opportunity while borrowing in a lower return
asset class.

This automatically implies that any initial steady state left of b̃ in which the government
does not use the opportunity, b2 = 0, despite it being optimal to do so, now admits a free
lunch policy. This can occur even if the initial steady state was to the right of the peak of
the (dashed) deficit-debt locus without saving opportunity.

However, if the economy already starts with a steady state in which the saving oppor-
tunity is optimally used, then it is less likely that the economy admits a free lunch, as the
peak of the deficit-debt locus shifts to the left with the saving opportunity.

C Comparison of our model with “money in utility” models

Next, we study a model that is inspired by recent models studying R < G in a flexible price
money demand model setting a la Sidrauski (1967). Models of this sort have recently been
studied by Brunnermeier, Merkel and Sannikov (2020a,b) as well as Kaplan, Nikolakoudis
and Violante (2023). As we explain in detail in this section, the key distinction between our
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work and these papers is that we assume that the central bank uses its nominal interest
rate to target inflation whenever it can, whereas these papers allow the price level to jump.

C.1 A modified model

We take our model from Section 2 and make five modifications:

1. We assume µ = 0, i.e. the economy is only populated by savers.

2. We assume away the zero lower bound.

3. We assume a symmetric (rather than only downward) nominal wage rigidity,

πt =
Ẇt

Wt
= π∗ − κ (1 − nt) (A.31)

with slope κ > 0. We denote the price level by Pt.

4. We assume the central bank targets inflation according to a Taylor rule

Rt = R∗ + ϕ (πt − π∗) (A.32)

with coefficient ϕ ≥ 0.

5. We assume a general affine-linear fiscal rule,

zt = z∗ + ξ (bt − b∗) (A.33)

where ξ ∈ R captures the responsiveness of the primary deficit to public debt.

This setup captures the essence of three different models:

1. Our model in Section 3 can be regarded as the limit ϕ → ∞ with a constant primary
deficit, ξ = 0.

2. A money-in-utility (MiU) model à la Sidrauski (1967) is a model in which the govern-
ment liability bt represents real money balances, rather than the real value of bonds.
This implies a constant nominal interest rate on money (typically assumed to be zero),
and thus ϕ = 0 in (A.32). Typical MiU models are analyzed with a constant money
growth rule. Here, such a rule corresponds to constant growth in nominal debt Bt.
We can nest this rule in (A.33) by assuming z∗ = b∗ = 0. In that case, the nominal
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government budget constraint is

Ḃt = Ptzt + (R∗ − γ) Bt = (ξ + R∗ − γ) Bt.

Thus, by choice of ξ, any arbitrary growth rate of nominal bonds can be implemented.
If prices in this economy are assumed to be flexible, the limit κ → ∞ is to be taken.

3. A fiscal theory of the price level (FTPL) model as in Kaplan, Nikolakoudis and
Violante (2023), with a constant primary deficit, ξ = 0, a passive monetary policy
rule, ϕ = 0, and flexible prices, κ → ∞.

We focus on models 1 and 2 here, leaving a discussion of the FTPL model to Kaplan,
Nikolakoudis and Violante (2023).

C.2 Laws of motion

This modified model can easily be seen to follow a system of two ordinary differential
equations. The first equation, the Euler equation, is given by

ċt

ct
= R∗ − G∗ + κ (ϕ − 1) (x + ct − 1)︸ ︷︷ ︸

Rt−Gt

−ρ + v′(bt)ct. (A.34)

Here, we substituted the Taylor rule (A.32) in for Rt, and the Phillips curve (A.31) (with
x+ ct = nt) in for Gt = γ+πt. Equation (A.34) describes the law of motion of consumption
as a function of consumption ct and real debt bt.

The second equation is the law of motion of real debt bt, which is given by

ḃt = z∗ + ξ (bt − b∗) + (R∗ − G∗ + κ (ϕ − 1) (x + ct − 1)) bt. (A.35)

We arrive at this expression by substituting the fiscal rule (A.33) and the expression for
Rt − Gt in (A.34) into the government budget constraint (5). Together, (A.34) and (A.35)
are necessary equilibrium conditions.

C.3 Steady state result

Our first result concerns the steady states of this system of differential equations.

Proposition 9. Assume ϕ ̸= 1. Then, in the limit of flexible prices, κ → ∞, the primary deficit z
and debt b in any steady state satisfy

z =
(
v′(b) (1 − x)− ρ

)
b. (A.36)
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In particular, this relationship is independent of trend inflation π∗, the Taylor rule coefficient ϕ

other than ϕ ̸= 1, and the parameters of the fiscal rule ξ, z∗, b∗. The same relationship holds when κ

remains finite but ϕ → ∞.

Proof. The proposition is proved by imposing ḃt = ċt = 0 in (A.34) and (A.35). Doing so,
we find the following two equations:

R∗ − G∗ + (ϕ − 1) κ (x + c − 1)− ρ + v′(b)c = 0 (A.37)

and
z + (R∗ − G∗ + κ (ϕ − 1) (x + c − 1)) b = 0. (A.38)

Substituting one into the other, we arrive at

z =
(
v′(b)c − ρ

)
b.

Finally, solving for c in (A.37) and applying κ (ϕ − 1) → ∞ or −∞, we find c = 1 − x,
establishing (A.36).

Proposition 9 is useful as it shows that irrespective of monetary and fiscal policy rules,
steady states always lie on the same steady state locus (A.36), equal to the one we solved for
in Section 3.2. In particular, the three economies mentioned above—our Section 3 economy,
the MiU economy and the FTPL economy—all share the same steady state locus.

In the following, we focus on the case where the steady state locus (A.36) is single-
peaked, e.g., as depicted in Figure 1b. Just as before, steady states in the increasing part of
the steady state locus are then characterized by R − G < φ, where φ is still defined as the
derivative of steady state R − G—which by (A.37) is equal to ρ − v′(b) (1 − x) in the limit
κ (ϕ − 1) → ∞—with respect to log b,

φ = −(1 − x)v′′(b)b. (A.39)

Vice versa, steady states in the decreasing part of the steady state locus are characterized
by R − G > φ.

We next show that, different from the steady states, the dynamics of the model are, in
fact, very much affected by monetary and fiscal policy rules, even in the limit of flexible
prices κ → ∞.
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Figure A.4: Section 3 economy: Phase diagram and deficit-debt locus

(a) c-b phase diagram (b) Deficit-debt locus

C.4 Dynamics in the Section 3 economy

Figure A.4 shows the phase diagram and deficit-debt locus in the Section 3 economy, for
z∗ > 0 and for large κ (ϕ − 1). The ċ = 0 locus is given by

c =
G∗ − R∗ + ρ + (ϕ − 1) κ (1 − x)

v′(b) + (ϕ − 1) κ
. (A.40)

For large (ϕ − 1) κ, this is an increasing function, which ultimately converges to 1 − x as
(ϕ − 1) κ → ∞. The ḃ = 0 locus is given by

c =
1

(ϕ − 1) κ

(
G∗ − R∗ − z∗

b

)
+ 1 − x.

This is also increasing for large (ϕ − 1) κ, and also converges to 1 − x as (ϕ − 1) κ → ∞.
The two loci intersect exactly twice for the two steady states with deficit z∗. As the saddle
path shows in Figure A.4a, the left steady state is stable, while the right one is not.

When is there a free lunch in this economy? As shown with the dashed line, a modestly
higher deficit z∗ leads to a stable transition to a new steady state that still lies to the left
of the peak in Figure A.4b, where R < G − φ, analogous to our result in Corollary 1. We
formalize this in the following proposition.

Proposition 10. Assume the Section 3 economy, with ξ = 0 and large (ϕ − 1) κ. Any steady state
with R < G − φ has exactly one stable and one unstable root; any steady state with R > G − φ as
two unstable roots. A free lunch policy is available when R < G − φ.

Proof. Begin with a steady state for c, b. We denote with a “hat” linear deviations from the
steady state. The linearized laws of motion can be derived to be

˙̂ct

c
=
(
(ϕ − 1) κ + v′(b)

)
ĉt + v′′(b)cb̂t

A24



and
˙̂b = κ (ϕ − 1) bĉt −

z∗

b
b̂t,

or in matrix notation,(
˙̂ct
˙̂bt

)
=

(
(ϕ − 1) κ + v′(b) v′′(bt)c

κ (ϕ − 1) b − z∗
b

)(
ĉt

b̂t

)
.

Any eigenvalue λ of this system is a zero of the characteristic polynomial

P(λ) = λ2 −
(
(ϕ − 1) κ + v′(b)− z∗

b

)
λ − z∗

b
(
(ϕ − 1) κ + v′(b)

)
− v′′(b)cκ (ϕ − 1) b = 0.

We can rewrite the polynomial as

P(λ) = λ2 − κ (ϕ − 1)
(
λ +

((
v′′(b)b + v′(b)

)
(1 − x)− ρ

))
−
(

v′(b)− z∗

b

)
λ − v′(b)

z∗

b
.

We see that, as κ (ϕ − 1) → ∞, one root converges to +∞, while the other converges to

λ = ρ −
(
v′′(b)b + v′(b)

)
(1 − x) = R − G − φ.

Exactly when R < G − φ, λ is negative and we have a saddle path stable equilibrium.
When, instead, R > G − φ, λ is positive, and booth roots are explosive.

A free lunch in this economy exists precisely when a permanent increase in the deficit
z∗ is consistent with a stable evolution of the debt level. This is the case around the
saddle-path stable steady state, where R < G − φ. This proves the result.

C.5 Dynamics in the MiU economy

Figure A.5 shows the phase diagram and the deficit-debt locus for the MiU economy. Here,
the ḃ = 0 locus is a horizontal line,

c =
1
κ
(ξ − G∗ + R∗) + 1 − x.

The ċ = 0 locus is again given by (A.40). There is a single steady state with positive debt
for every choice of nominal debt growth, i.e. every choice of ξ. The steady state is stable.

When is there a free lunch in this economy? The dashed shifted line shows what
happens when nominal debt growth, that is ξ, is shifted up. The deficit jumps up, then
comes down. It settles below the original deficit precisely when R < G − φ, and above the
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Figure A.5: MiU economy: Phase diagram and deficit-debt locus

(a) c-b phase diagram (b) Deficit-debt locus

original deficit when R > G − φ. This is exactly the flip-side of the result in the Section 3
economy. We formalize this as follows.

Proposition 11. In the MiU economy, with ϕ = 0 and z∗ = b∗ = 0, there is a unique steady state
with positive debt. The steady state is saddle-path stable.

Proof. Under the MiU assumptions, the steady state equations are then (A.36) together
with the fiscal rule z = ξb. This implies that any positive-debt steady state needs to satisfy

v′(b)c = ξ + ρ (A.41)

Furthermore, (A.38), when substituting in the MiU fiscal rule, leads to

ξ + R∗ − G∗ + κ (−1) (x + c − 1) = 0

and thus c = 1 − x + (ξ − (G∗ − R∗)) /κ. The unique positive steady state level of debt b
is therefore pinned down by

v′(b)
(

1 − x +
ξ − (G∗ − R∗)

κ

)
= ξ + ρ. (A.42)

To show that the steady state is indeed saddle path stable, we linearize the system of
ODEs again, noting that the linearized law of motion of debt (A.35) is now given by

˙̂bt = −κĉtb

In matrix notation, we then have(
˙̂ct
˙̂bt

)
=

(
−κ + v′(b) v′′(b)c

−κb 0

)(
ĉt

b̂t

)
.
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The characteristic polynomial is

P(λ) = λ2 −
(
−κ + v′(b)

)
λ + v′′(b)cκb = 0

which, due to P(0) < 0 but P′′(λ) > 0 always has exactly two roots, one negative and one
positive and is thus saddle-path stable.

Contrary to our discussion in the proof of Proposition 10, saddle-path stability here
does not imply the availability of a free lunch policy. A free lunch policy is available if
an increase in deficits can be sustained indefinitely. Fiscal policy is parameterized here
with ξ, which shifts the rate of nominal debt growth. A free lunch exists when (a) one can
increase ξ permanently, leading to higher deficits in the short run, and (b) this leads to
higher debt levels in the long run. We next show that in the MiU economy, this is exactly
flipped relative to the result in Proposition 10.

Corollary 8. In the MiU economy, in the limit κ → ∞, a free lunch exists when R > G − φ and
does not if R < G − φ.

Proof. Starting at some steady state (c, b), contemplate a small increase in ξ, by some ξ̂.
This modifies the ODEs to be(

˙̂ct
˙̂bt

)
=

(
−κ + v′(b) v′′(bt)c

−κb 0

)(
ĉt

b̂t

)
+

(
0
ξ̂b

)
(A.43)

A free lunch exists if this leads to a permanently elevated path of deficits,

ẑt = ξ̂b + ξ b̂t > 0. (A.44)

A first necessary condition for a free lunch is that ẑ0 > 0. As b̂t is slow-moving, this is
equivalent to ξ̂ > 0.

From (A.42) we can derive the long run effect of an increase in ξ on debt,

b̂∞ =
1

v′′(b)c
ξ̂

(
1 − v′(b)

κ

)
. (A.45)

A second necessary condition for a free lunch is that ẑ∞ > 0, which, combining (A.44) and
(A.45), is equivalent to

1 + ξ
1

v′′(b)bc

(
1 − v′(b)

κ

)
> 0.
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As κ → ∞, this condition is equivalent to

v′′(b)bc + ξ > 0.

Based on (A.41), this can be rewritten as

v′′(b)b + v′(b)− ρ > 0

which by (A.39) and the discussion around it, is precisely equivalent to R > G − φ.
This argument shows that R > G − φ is necessary for a free lunch. It is also sufficient,

as convergence of b̂t to b̂∞ must be monotone: The system of ODEs (A.43) is saddle-path
stable, implying that there exists a unique trajectory to the steady state for any initial level
of debt.

This result may seem surprising: How come R > G − φ, a condition seemingly charac-
terizing steady states with a high interest rate relative to the growth rate, and/or a high
interest rate sensitivity to debt, is the right one for a free lunch in the MiU economy?

It comes down to the monetary policy rule assumed: In our Section 3 economy, monetary
policy is active, ϕ > 1, so that higher deficits lead to greater real interest rates, increasing
the real debt of the economy. Vice versa, in the MiU economy, the nominal interest rate
is fixed. Higher deficits then reduce real interest rates by raising inflation, thus lowering,
not raising, debt levels. Precisely when interest rates are high and very sensitive to debt,
permanently higher deficits leading to lower debt levels become a possibility.

The flip-side of this result may seem equally surprising: When R < G − φ and (real)
debt is low, how come we cannot simply push debt up in this economy and enjoy a free
lunch like we did before? Can’t we run very high deficits for a short instant, effectively
amounting to an upwards jump in the debt level? This is infeasible, because, as mentioned,
higher deficits do not increase real debt in this economy! By raising inflation they instead,
inflate debt away. To see this mathematically, observe that b̂t starts at zero at t = 0 and then
falls to b̂∞ < 0 (see (A.45) for κ → ∞). b̂t is negative in between. The only way to raise real
debt in this economy is, paradoxically, to lower deficits and inflation, and wait for debt to
build up.

Our analysis of the ZLB constraint in Section 4 points towards a direction to see how
“MiU-like” behavior can emerge in an economy at a binding ZLB. There, too, we saw that
for a sufficiently flexible Phillips curve, greater deficits can potentially have a stronger
negative effect on debt than positive effect. But within limits, as too high a deficit will pull
the economy out of the ZLB, precipitating rising real interest rates and real debt levels.
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D The deficit-debt diagram in other models

In this section, we derive the interest rate and growth rate schedules R(b) and G(b) in a
variety of models, and compute the deficit-debt locus z(b) ≡ (G(b)− R(b)) b.

D.1 Model inspired by Reis (2021)

Here, we sketch a version of the two-agent model in Reis (2021) and use it to derive the
corresponding functions for R(b) and G(b).

There are two types of agents, entrepreneurs E and financiers F. Each instant t, an
agent i is randomly allocated to be either E or F, with probabilities α and 1 − α for E and F.
Agents solve

max E0

[∫ ∞

0
e−ρt log ci

tdt
]

subject to the budget constraint

dai
t =

(
Rtbi

t + rl
tl

i
t + ri

tk
i
t − τt − ci

t

)
dt (A.46)

where ai
t = bi

t + li
t + ki

t is agent i’s total wealth, and subject to the constraint

bi
t ≥ 0, ki

t ≥ 0.

Here, bi
t is agent i’s holdings of bonds, li

t agent i’s lending (or if negative, borrowing), and
ki

t agent i’s holding of capital. τt is a lump-sum tax. Thus, each agent can invest in three
different assets each instant: government bonds bi

t paying rate Rt, loans li
t paying rate rl

t

and capital paying rate ri.
The return on capital ri crucially differs by type. If i is type E, then ri

t is constant, and
equal to ri

t = A − δ ≡ m > 0. If i is type F, ri
t is subject to idiosyncratic investment risk and

given by
ri

t = η(A − δ)− σdzi
t

where η ∈ (0, 1) captures reduced capital quality in the hands of type F agents. We simplify
the model here and set η → 0. This essentially assumes that type F agents do not invest in
capital.A6

To avoid too much investment on the side of type E agents, we also impose a borrowing
constraint

−rl
tl

i
t ≤ γri

tk
i
t

A6The case with η > 0 is similar, it just requires a case distinction.

A29



for some γ > 0. For type F agents, the borrowing constraint is simply assumed to be li
t ≥ 0.

In equilibrium, aggregate bonds outstanding Bt have to equal the sum of all individual
positions,

Bt =
∫

bi
tdi

and the market for loans has to clear,

0 =
∫

li
tdi.

Our goal is to use this description of the household side to solve for both the steady
state interest rate R and the steady state growth rate G as a function of the overall supply
of steady state bonds B.

Given the iid type switching, we can split total wealth at into wealth held by E’s,
aE

t = αat and wealth held by F’s, aF
t = (1 − α) at. E’s always borrow to their maximum.

Further, we assume that γ is sufficiently high so that E’s do not hold any government
bonds. Then, from (A.46) and the fact that agents always consume ci

t = ρai
t , E’s wealth

evolves as

ȧE
t =

(1 − γ)mrl
t

rl
t − γm

aE
t − ρaE

t

with positions in capital and lending markets given by

aE
t = kE

t − γ
mkE

R
.

Given capital kE
t , output is simply

yt = AkE
t . (A.47)

F’s hold all government bonds, and lend, so that rl
t = Rt. Their wealth then evolves as

ȧF
t = (Rt − ρ) aE

t

and is given by

aF
t = γ

mkE
t

Rt
+ Bt. (A.48)

In a steady state, total wealth evolves according to

ȧt

at
= α

(1 − γ)mRt

Rt − γm
+ (1 − α)Rt − ρ (A.49)
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Figure A.6: R(b), G(b) and deficits in the Reis (2021) model
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and is given by
at = kE

t + Bt. (A.50)

We denote by bt ≡ Bt/yt government debt relative to GDP.
This gives us all the equations we need. Assuming that b is constant, we combine (A.47),

(A.49) and (A.50) to find a steady state growth rate G of the economy of

G = α
(1 − γ)mR

R − γm
+ (1 − α)R − ρ. (A.51)

The interest rate R is itself determined by the amount of lending in equilibrium, using
(A.48), (A.50) and the fact that aF

t = (1 − α) at,

γ
mkE

R
+ B = (1 − α)

(
kE + B

)
.

Solving for R we find
R(b) =

γm
1 − α − αAb

. (A.52)

Together with (A.51), we can solve for G as function of b as well,

G(b) =
(1 − γ)m
1 + Ab

+ (1 − α)
γm

1 − α − αAb
− ρ.

We sketch the two schedules in Figure A.6 and the implied deficit-debt diagram.A7

A7We calibrate the model exactly as above, matching R0 = 1.5%, G0 = 3.5%, φ = 1.7%, b0 = 1. This yields
δ = 0.04, ρ = 0.03, γ = 0.033, A = 0.12, α = 0.74.

A31



D.2 Model inspired by Diamond (1965)

We sketch the well-known Cobb-Douglas version of the Diamond (1965) model and show
that it implies a simple closed-form deficit schedule z(b), and derive the conditions under
which there is a free lunch.

The model operates in discrete time and consists of two-period-lived overlapping
generations. The generation born at date t has Gt members, where G > 1. Each maximizes
preferences

(1 − β) log cyt + β log cot+1

over consumption when young cyt and when old cot+1, subject to the budget constraints

cyt + at ≤ wt (1 − τt) cot+1 = Rt+1at.

We have β ∈ (0, 1), τt is an income tax. The policy function is then

at = βwt (1 − τt) . (A.53)

The per capita saving at of generation t finances capital for t + 1 and bonds maturing in
t + 1. Normalizing the latter two in terms of the population size at t + 1, we have an asset
market clearing condition

G−1at = kt+1 + Bt+1. (A.54)

Production in period t is neoclassical with aggregate output per capita

yt = kα
t l1−α

t

where lt is the labor endowment of each member of generation t, which we normalize
to 1. Thus, the wage is wt = (1 − α) kα

t and, with a depreciation rate of 1, the return is
Rt+1 = αkα−1

t+1 + 1 − δ. With (A.53) and (A.54), the law of motion for capital is then

kt+1 = G−1β (1 − α) (1 − τ) kα
t − Bt+1 (A.55)

The government’s budget constraint is simply given by

GBt+1 = RtBt − τtwt + Xt

where Xt denotes government spending per capita.
Next, we focus on steady states, at which all prices and per capita quantities are constant.

Moreover, we normalize government debt and spending by output y = kα. We denote
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b ≡ B/y as before and x = X/y. Then, (A.55) becomes

k1−α = G−1β (1 − α) (1 − τ)− b

and we can rearrange it to obtain an expression for the interest rate

R(b) =
αG

β (1 − α) (1 − τ)− Gb
.

The normalize government budget constraint can be written as usual

z(b) = (G − R(b)) b

where we defined the primary deficit relative to GDP as z(b) ≡ x − τ (1 − α). Different
from our model in Section 2, it turns out that for this analysis, it is somewhat more tractable
to fix the tax rate τ and instead vary government spending x if z(b) changes.

We can analyze the deficit schedule z(b) just like before. In particular, we can ask when
higher debt levels allow for a greater primary deficit z(b), which in this model is equivalent
to dynamic inefficiency. The condition for this is

R(b) < G − b · R′(b) (A.56)

where φ = b · R′(b). Observe that the standard condition for dynamic inefficiency that is
usually taught in this model is R < G, or in terms of primitives, α

1−α < β (1 − τ). Yet, as
(A.56) highlights this condition is only accurate for levels of government debt around zero,
where φ = 0. When b > 0, φ > 0, and the relevant condition becomes R < G − φ. In terms
of primitives, this corresponds to

b <
β (1 − α) (1 − τ)

G
− 1

G

√
α · β (1 − α) (1 − τ) ≡ b∗

where b∗ is, as before, the deficit-maximizing level of debt. The deficit associated with b∗ is
given by

z∗ =
(√

β (1 − α) (1 − τ)−
√

α

)2

.

We thus find that OLG models based on Diamond (1965) admit a similar interest rate
schedule as the one we derived in Section 3, and the relevant condition for a free lunch is
given by R < G − φ, which only in the case without debt reduces to R < G.A8

A8Note that, in the Diamond (1965) model without markups, the dynamic inefficiency condition is still
given by R < G.
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D.3 The Blanchard model

Here, we compute the deficit-debt locus of the (Cobb-Douglas) model in Blanchard (2019).
The model is a stochastic version of the model in the previous section, which we briefly re-
cap here. The model operates in discrete time and consists of two-period-lived overlapping
generations. Each period corresponds to N = 25 years. There is no population growth,
G = 0, so all returns have to be considered de-trended. Households solve

max log cy,t + β
1

1 − γ
log Et

[
c1−γ

o,t+1

]
over consumption when young cyt and when old cot+1, subject to the budget constraints

cyt + kt + bt ≤ wt (1 − τt) cot+1 = Rt+1kt + R f
t+1bt.

Here, agents can choose between a risk-free bond, paying the risk free rate R f
t+1, and risky

capital, paying Rt+1. As before, production is Cobb-Douglas per head of generation t

yt = Atkα
t−1l1−α

t

where lt is the labor endowment of each member of generation t, which we normalize to
1. Thus, the wage is wt = (1 − α) Atkα

t−1 and the return on capital is Rt+1 = αAt+1kα−1
t .

log At ∼ N (µ, σ2) is iid stochastic technology.
The government’s budget constraint is still given by

bt = R f
t bt−1 − τtwt + xt.

We look for a “risky steady state”, characterizing the steady state of the path along
which log At continues to realize at its mean µ. For this exercise, we set government
spending to zero (as done by Blanchard 2019), xt = 0. For a given (end of period) debt
per capita b, the risky steady state is described by the following four equations: The two
budget constraints

cy = (1 − α) eµkα +
(

1 − R f
)

b co(A) = αAkα + R f b

and two Euler equations

1
cy

=
β

1 − γ

1
EA [co(A)1−γ]

EA

[
co(A)−γαAkα−1

]
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EA

[
co(A)−γαAkα−1

]
= R f EA

[
co(A)−γ

]
Together, the equations pin down k, R f , cy, co(A) for any given b. By normalizing by output
y = eµkα (all normalized variables are denoted with a hat), we can simplify this:

ĉy = 1 − α +
(

1 − R f
)

b̂ ĉo(A) = αAe−µ + R f b̂

The risk free rate R f = R f (b̂) then solves the risk-free Euler equation

1
ĉy

= β
1

EA [ĉo(A)1−γ]
R f EA

[
ĉo(A)−γ

]
and the capital output ratio can then be computed from

k
y
=

α

R f
EA [ĉo(A)−γ Ae−µ]

EA [ĉo(A)−γ]

The expected return on capital is then equal to

ER =
α

k/y
EA
[
Ae−µ

]
We compare three different calibrations of the model. The first is a calibration inspired

by the Cobb-Douglas calibration of Blanchard (2019). With zero initial debt, we choose
α = 1/3, a period length of 25 years, σ = 0.2, and calibrate γ and β to match jointly a
riskless rate R f equal to −1% annual (i.e. one percent below G∗) and an expected return
on capital ER equal to +2% annual, (i.e. two percent above G∗). This yields γ = 18.7 and
β = 0.31 (not annualized).

The second calibration, instead, targets a riskless rate R f equal to −2% annual (i.e. two
percent below G∗), and an expected return on capital ER = 1%, but keeps a zero initial
debt position. This yields γ = 18.8 and β = 0.40.

The third calibration is like the second, except that we start the economy with an initial
debt position of 100% of annual GDP. This yields γ = 21.7 and β = 0.45.

Figure A.7(A) shows the implied nominal annual risk-free rates across the three cali-
brations, once we add G∗ = 3.5% of nominal trend growth to ease comparability with our
own analysis in this paper. All three calibrations imply that interest rates increase with
debt. Figure A.7(B) shows the annualized deficit-debt schedule implied by the calibrations,
constructed as

z(b̂) =
(

1 −
(

R f (b̂)
)1/N

)
· Nb̂.
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Figure A.7: Interest rates and deficit-debt schedule in the risky steady state of the Blanchard (2019) model

Interestingly, the Blanchard (2019) implies a very small maximum sustainable deficit that
can be run, while our calibration implies a much greater one. This difference is directly
caused by the assumption of a zero initial debt level and a higher initial nominal interest
rate in Blanchard (2019).

Simulating the model. To simulate the Blanchard (2019) model forward, we begin with
initial values k−1, b−1, R f

−1, a sequence of deficits zt, and draw a random sequence of
productivity shocks {At}.

At each step t, we compute output as

yt = Atkα
t−1

We evolve debt forward with
bt = R f

t−1bt−1 + zt

We use this to write consumption of the currently young generation as

cyt = (1 − α) yt + zt cot+1(A′, R f
t ) = αA′kα

t + R f
t bt

We solve for the unknown kt and R f
t by solving

1
cyt

= β
1

EA′

[
cot+1(A′, R f

t )
1−γ
]EA′

[
cot+1(A′, R f

t )
−γαA′kt

α−1
]

EA′

[
cot+1(A′, R f

t )
−γαA′k′α−1

]
= R f

t EA′

[
cot+1(A′, R f

t )
−γ
]

To construct Figure A.8, we first simulate the economy for a steady state k−1 = kss, b−1 =

bss associated with a given initial debt-to-GDP level b̂ss. We assume a deficit rule that avoids
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Figure A.8: Success probabilities of running a free lunch of 1% of GDP in the Blanchard (2019) model

Note. The probabilities are computed by simulating 50 sample paths for each b0. Convergence criterion:
|b∆

t − bt| < 0.01% at any point t < 1, 000.

explosive debt levels,

zt = zss − 0.08 · N ·
(

R f
t−1bt−1 − R f

ssbss

)
Then, for every b̂ss, we simulate the same economy again, for the same shocks {At},

except that (a) the initial debt level b−1 is now increased by 1% of initial GDP; and (b) the
deficit path zt is unchanged, taken directly from the economy without the initial 1% debt
shift.

Free lunch in the Blanchard (2019) model. We next compute the probability of a free
lunch succeeding in the Blanchard (2019) model. We use the recalibrated model with 100%
initial debt and R f = −2% as explained above. Figure A.8 plots the success probabilities of
a free lunch policy that raises initial debt by 1% across different levels of initial debt. As
in Section 5.3, we keep the path of deficits unchanged. The threshold R = G − φ clearly
matters for the viability of a free lunch policy in the Blanchard (2019) model.A9

D.4 Model with indebted demand and convenience yield

The model in Section 2 can easily be extended to allow for “indebted demand” as in Mian,
Straub and Sufi (2021).A10 To do so, we include a term in savers’ preferences that captures

A9Here, R = G − φ corresponds to the peak of the “risky steady state” locus z(b) shown in Figure A.7(B).
A10We ignore the ZLB in this section.
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their average saving motive, not specific to bonds,

max
{ct,bt}

∫ ∞

0
e−ρt {log ct + v (bt) + v̂(bt + dt + ht)} dt (A.57)

Here, v̂(b + d + h) is a utility over total wealth, bonds b as well as private debt d. For
tractability, we include human capital h in total wealth. We denote the return on assets
other than government bonds by R̂t. Rt continuous to denote the return on government
debt.

Then, human wealth is equal to

(
R̂t − G∗) ht = (1 − µ)wtnt − τt + ḣt

and the budget constraint can be written as

ct + ḃt + ḋt ≤ (Rt − G∗) bt +
(

R̂t − G∗) dt + (1 − µ)wtnt − τt. (A.58)

At the steady state, the first order conditions for bonds and other assets pin down R
and R̂,

R̂ = G∗ +
ρ

1 + v̂′(b + d + h) (b + d + h)

R = R̂ − v′(b)
(
1 − x − µ +

(
R̂ − G∗) d

)
The first equation is like the one in Mian, Straub and Sufi (2021): Increased total wealth
of savers means a reduced return on wealth R̂. Despite this, interest rates on government
debt behave in a more nuanced way. R unambiguously falls when other wealth (e.g. d)
increases, since that increases savers incomes and their desired saving. But R can rise when
savers’ holdings of government debt increase, as it diminishes the convenience yield R̂ − R
on government debt, in line with the analysis in this paper.

E General free lunch result

For the most part, our paper considers a two-agent model in which government debt enters
the the savers’ utility function directly. We chose this setup as it gave us a tractable way
to have an upward-sloping household demand curve for government debt. It allowed us,
among other things, to derive our free lunch result in Section 3, namely that the government
can run a free lunch precisely when R < G − φ, where φ was the response of R − G to a
1% expansion in government debt. In this short section, we sketch out an argument that
suggests that our condition is much more general than the specific model we consider. To
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do this, we build on recent advances in macroeconomics in the sequence space, see Auclert,
Rognlie and Straub (2018); Auclert, Bardóczy, Rognlie and Straub (2021); Auclert, Rognlie
and Straub (2023). We leave a formalization of the arguments presented here for future
research.

Consider the following abstract model in discrete time. Households, in aggregate,
demand government debt as a function of the paths of de-trended interest rates rt ≡
1+Rt−1

1+Gt
− 1, aggregate income, and taxes. We can write their demand of bonds at date t as

At ({rs, ys, τs}) .

As shown in Auclert, Rognlie and Straub (2018), many models of household consumption
and saving behavior, even those with rich household heterogeneity, can be aggregated in
such a form. Market clearing then becomes, period by period,

bt = At ({rs, ys, τs}) . (A.59)

We write the government budget constraint in discrete time as in (47),

xt + (1 + rt) bt−1 = bt + τt (A.60)

where we use rt for the de-trended interest rate again, to simplify notation. For this more
general model, a single interest rate sensitivity φ is no longer appropriate. Instead, we
define φj as the response of interest rates in period t + j to a 1% expansion of debt in period
t, for a far-out period t → ∞. We introduce φj mathematically below.

Now consider the following thought experiment. Imagine the government chooses to
raise deficits zt = xt − τt by some small amount dzt ≥ 0 in period t. For simplicity, we
assume in this section that the increased deficits are used to financed government con-
sumption, dxt = dzt (the case of lower taxes is similar). We ask: Under what assumptions
on household behavior, encapsulated by A, does the implied evolution of debt dbt not
explode and instead remain finite? Whenever dbt remains finite, we have found a free
lunch; whenever dbt does not remain finite, the deficit expansion violates equilibrium—a
free lunch was not found.

To analyze this question, we collect all derivatives of household asset demand in an
infinite matrix A—known as a sequence-space Jacobian (Auclert, Bardóczy, Rognlie and
Straub, 2021)—with elements

At,s ≡
∂At

∂rs
.

As Auclert, Rognlie and Straub (2018) argue, A commonly has a very specific structure,

A39



namely that of a quasi-Toeplitz matrix. Quasi-Toeplitz matrices have entries that eventually
start repeating as one goes down along the diagonal, that is,

aj ≡ lim
t→∞

At+j,t

is well-defined. As explained in Auclert, Rognlie and Straub (2023), quasi-Toeplitz matrices
are generically invertible whenever the graph of the complex function z 7→ ∑j∈Z ajzj has a
winding number of 0. A typically has a winding number of zero and is thus generically
invertible.

From (A.59), we see that the evolution of interest rates drt in response to the deficit
expansion needs to satisfy

db = Adr.

Inverting A, this becomes
dr = A−1db. (A.61)

The interest rate sensitivities φj mentioned above are then defined as the asymptotic
behavior of A−1 along the diagonal,

φj ≡ b lim
t→∞

[
A−1

]
t+j,t

.

Finally, linearizing (A.60), we find

db = dz + bdr + (1 + r) Ldb

where L denotes the lag matrix, Lt,s = 1 if t = s + 1, and 0 else. Substituting in (A.61), we
find (

I − bA−1 − (1 + r) L
)

db = dz. (A.62)

Equation (A.62) precisely determines the path of debt db. If (A.62) can be solved for a finite
path db, there is a free lunch. If (A.62) cannot be solved for db, because I− bA−1 − (1 + r) L
is not invertible, there is no free lunch. Using the tools spelled out in Auclert, Rognlie and
Straub (2023), we can see that I − bA−1 − (1 + r) L is generically invertible precisely when
the complex function

z 7→ 1 − ∑
j∈Z

φjzj − (1 + r) z

has a winding number of zero. A sufficient condition for this is that

1 + r + ∑
j∈Z

|φj| < 1
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which can be rewritten as
R < G − ∑

j∈Z

|φj|. (A.63)

We thus find that a very similar condition to our R < G − φ condition from Section 3 still
determines the availability of a free lunch policy. The key difference is, however, that here
it is the entire time profile φj of interest rate sensitivities to a one-time debt expansion that
matters, not just the contemporaneous response of interest rates.

F Details on the calibration of φ

There are different ways to estimate the elasticity φ that are equivalent within the context
of the model. Observe that the intercept v′(b0) (1 − x − µ) in the linear specification (30)
is determined by the initial steady state, for which the Euler equation pins down the
convenience yield v′(b0) (1 − x − µ) as

v′(b0) (1 − x − µ) = ρ + G∗ − R0. (A.64)

Thus, the convenience yield is nothing other than ρ + G − R. Since ρ is independent of b,
we can write

φ = −∂ (ρ + G − R)
∂ log b

= −b0
∂ (ρ + G − R)

∂b
= −∂ (G − R)

∂ log b
= −b0

∂ (G − R)
∂b

. (A.65)

As all expressions in (A.65) are valid ways to obtain φ, we will compare estimates across
these specifications. Note, however, that the latter two specifications in (A.65) are slightly
more robust, as they do not hinge on a convenience-yield interpretation of R∗(b) and apply
equally well to the alternative models in Appendix D.

The derivatives in equation (A.65) have been estimated in the literature, and we sum-
marize these estimates in Table A.1.A11 For equation (A.65), Krishnamurthy and Vissing-
Jorgensen (2012) focus on estimates of ∂(ρ+G−R)

∂ log b . This derivative measures how the dif-
ference between the rate of return on government debt R and the return on other assets
ρ + G varies with a change in the log government debt to GDP ratio. Krishnamurthy and
Vissing-Jorgensen (2012) use the yield spread difference between corporate bonds rated
Baa and 10-year Treasuries as the measure of ρ + G − R, and they show a semi-elasticity of
-1.3% to -1.7%, depending on the sample. This implies that a 10 percent increase in debt

A11A detailed explanation of the exact specifications used from the existing literature to construct Table
A.1 is below. We thank Sam Hanson, Andrea Presbitero, Quentin Vandeweyer, and Ursula Wiriadinata for
helpful discussions.
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to GDP leads to a 13 to 17 basis point decline in the convenience yield. Alternatively, one
can use the Krishnamurthy and Vissing-Jorgensen (2012) estimates to measure b0

∂(ρ+G−R)
∂b ,

which gives estimates between -1.1% and -1.8% when using the average debt to GDP
ratio over the relevant sample period for b0.A12 Finally, Jiang, Lustig, Van Nieuwerburgh
and Xiaolan (2020b) provide estimates of the effect of government debt to GDP ratios on
convenience yields for Eurozone countries from 2002 to 2020. The implied estimate of
b0

∂(ρ+G−R)
∂b from their main specification is -0.8%.

There is also a literature estimating b0
∂(G−R)

∂b . In particular, the recent study by Pres-
bitero and Wiriadinata (2020) estimate this derivative in a sample of 56 countries from
1950 to 2019. They provide estimates of ∂(G−R)

∂b for 17 advanced economies and for the full
sample. After multiplying these estimates by b0, which is the average debt to GDP ratio in
each of the respective samples, the implied estimates of b0

∂(G−R)
∂b are -1.4%. For this study,

we replicated the Presbitero and Wiriadinata (2020) results for the 17 advanced economies
and also for the Group of 7 (G7) countries, and the coefficient estimate ranges are also
reported in Table A.1. We show the full results from the regressions in Appendix F.2 below.
The estimates of interest are robust to the inclusion of both time and country fixed effects.
Overall, most of the estimates across the different samples and the two different objects fit
between -1.0% and -2.5%.

An alternative technique to estimate ∂(G−R)
∂ log b is an analysis of the 2021 Georgia Senate

run-off elections that took place on January 5th in the United States. Ex-ante, there was
about an even probability of the two Democrat candidates winning their elections as there
was that at least one of the two winning candidates was Republican. In the event of a
Democrat win, Democrats would obtain the Senate majority, and would likely pass the
$1.9 trillion deficit-financed stimulus package already proposed by President-elect Biden.
This was unlikely to happen otherwise. As shown in Figure A.9 in Appendix F.3 below,
the wins by both Democrats in Georgia led to a significant persistent increase in real 10
year Treasury yields of about 8 basis points. The effect is concentrated right after the
election. It is unlikely that the election was associated with a change in long-term growth
prospects; as a result, we interpret the evidence as suggesting that the prospect of the $1.9
trillion stimulus package, approximately corresponding to 7.4% of outstanding debt, led to
a persistent 8 basis point reduction in G − R. As this the Democrat win was anticipated
with 50% likelihood, this gives ∂(G−R)

∂ log b = −2.2%. The natural experiment yields an effect
of government debt on G − R that is in the same range as the estimates from the existing

A12Two other studies in the literature use short-term T-bills and more high frequency data. Greenwood,
Hanson and Stein (2015) find estimates for b0

∂(ρ+G−R)
∂b in this range, around -1.4%, whereas Vandeweyer

(2019) finds an estimate of -0.4%. The estimates in these two studies should be regarded as a lower bound as
they are based on a local estimate of the demand for T-bills as opposed to demand for all government debt.
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literature. We provide details on this calculation in Appendix F.3.
Finally, Laubach (2009) and Engen and Hubbard (2004) estimate the effect of government

debt to GDP on real interest rates, finding effects in the range 3% to 4.4%. The average level
of government debt (total federal debt) to GDP over their sample period was about 50%.
Together, this gives an estimate of φ of b0

∂(G−R)
∂b ≈ −1.5% to −2.2% under the assumption

that the real growth rate is unaffected by government debt.
Overall, while there is some variation, most of the implied elasticity estimates φ lie in

the range 1.1% – 2.5%. We pick the average estimate φ = 1.7% for both countries as our
baseline parameter but explore robustness to φ = 1.2% and φ = 2.2%.

F.1 Further discussion of estimates from the literature

The estimates of ∂(ρ+G−R)
∂ log b from Krishnamurthy and Vissing-Jorgensen (2012) reported in

Table A.1 above come from their Table 1, columns 4 and 5. The measure of the spread is the
Baa corporate yield minus the Treasury bond yield, which they prefer because “Aaa bonds
offer some convenience services of Treasuries and thus the Baa-Treasury spread is more
appropriate for capturing the full effect of Treasury supply on the Treasury convenience
yield.” For the estimates of b0

∂(ρ+G−R)
∂b , we collected the same data as in Krishnamurthy

and Vissing-Jorgensen (2012) and regressed the Baa minus Treasury spread on the level
of the debt to GDP ratio. We multiply this coefficient ∂(ρ+G−R)

∂b (which is -0.027 and -0.048
for the long and short time periods, respectively) by the average level of the debt to GDP
ratio b0 (which is 0.42 and 0.36 for the long and short timer periods, respectively) to get the
estimate.

The Greenwood, Hanson and Stein (2015) estimate is from column 1 of Panel B of
their Table 1. The measure of the spread is the difference between the actual yield on an
2-week Treasury bill and the 2-week fitted yield, based on the fitted Treasury yield curve
in Gürkaynak, Sack and Swanson (2007). The derivative is with respect to the amount
of Treasury bills outstanding scaled by GDP. The implied estimate of ∂(ρ+G−R)

∂b is -0.167,
which we then multiply by the average Treasury bill to GDP ratio b0 (which is 0.084) to get
the estimate. We use the estimate from Panel B which goes only through 2007 because of
the endogeneity issues discussed by Greenwood, Hanson and Stein (2015) surrounding
the Great Recession and financial crisis (see the last full paragraph on page 1689 of their
article). The Vandeweyer (2019) regression estimate comes from column 2 of Table 4 of his
study. The measure of the spread is the 3-month T-bill rate minus the 3-month General
Collateral Repo rate, and this is regressed on the ratio of outstanding T-bills to GDP. The
implied estimate of ∂(ρ+G−R)

∂b is -0.040, which we then multiply by the average Treasury
bill to GDP ratio b0 (which is 0.010) to get the estimate. We use column 2 of Table 4, as

A44



this regression controls for the Federal Funds rate as suggested by Nagel (2016). The
Vandeweyer (2019) natural experiment involves the 2016 money market reform which led
to a large rise in demand for T-bills by money market funds. Money market funds increased
their holdings of T-bills by $400 billion, which was about 20% of the stock outstanding.
Vandeweyer (2019) uses a model-based counter-factual to show that this shock led to an 18
basis point reduction in yields on government debt, which gives ∂(ρ+G−R)

∂ log b = 0.009. The
estimate from Takaoka (2018) comes from Table 4, and the estimate from Jiang, Lustig,
Van Nieuwerburgh and Xiaolan (2020b) comes from Table 5, panel A, column 2. For the
Jiang, Lustig, Van Nieuwerburgh and Xiaolan (2020b) estimate of -0.01, we multiply by the
average government debt to GDP ratio in their sample to get the final estimate of -0.008.

The estimates of b0
∂(G−R)

∂b come from Presbitero and Wiriadinata (2020), Table A3,
column 1. The coefficients ∂(G−R)

∂b come from that table (-0.027 for advanced economies,
-0.024 for the full sample), and then these are multiplied by the average government debt to
GDP ratiob0 for the respective samples, which are 0.53 and 0.56 for the advanced economies
and the full sample, respectively.

F.2 Regressions based on Presbitero and Wiriadinata (2020)

The other estimates from Table A.1 come from our own data analysis using a data set
constructed exactly as the one used by Presbitero and Wiriadinata (2020). The associated
regression table is Table A.2.

Table A.2: Results from regressions on Presbitero and Wiriadinata (2020) data

Left hand side: G - R

(1) (2) (3) (4) (5) (6)

Log(Gov Debt/GDP) -0.024∗∗∗ -0.031∗∗∗ -0.015∗∗ -0.025∗∗ -0.028∗∗ -0.020∗∗

(0.006) (0.005) (0.004) (0.007) (0.006) (0.003)

Observations 1184 1184 1184 490 490 490
R2 0.103 0.179 0.553 0.162 0.209 0.698
FE Country Country and Year Country Country and Year
Sample

* p < 0.1, ** p < 0.05, *** p < 0.01.
Standard errors are heteroskedasticity-robust, clustered by country.

Note. This table presents coefficient estimates of G − R on government debt to GDP ratios. The sample for the
first three columns are the 17 advanced economies covered by the JST Macrohistory data base. The sample
for columns 4 through 6 is G7 countries (Canada, France, Germany, Italy, Japan, United Kingdom, United
States). The time period covered is 1950 to 2019. Please see Presbitero and Wiriadinata (2020) for more details.
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Figure A.9: The change in real interest rates around the January 5th, 2021 Georgia run-off election.
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Georgia Senate Election

F.3 Georgia Senate election

The Georgia Senate election of January 5, 2021 offers a unique opportunity to assess
how markets perceive a sudden rise in expected government debt. On the eve of the
election, trading at Electionbettingodds.com implied a 50.8% probability of the Republicans
controlling the Senate, and a 49.1% probability of the Democrats controlling the Senate.
It was widely reported in the press that President-Elect Biden’s administration would
propose a $1.9 trillion “American Rescue Plan” once the President-Elect took office. Our
assumption in the calculation below is that the win by the two Democrats in the Georgia
Senate election of January 5, 2021 increased the expected government debt by $2 trillion,
which at the time was about 7.4% of total debt outstanding.

Figure A.9 shows the effect on the 10 year nominal interest rate, the 10 year TIPS interest
rate, and expected inflation. As it shows the victory by the Democrats in the Georgia
Senate election led to a 15 basis point immediate reaction which then declined to an 8 basis
point reaction after a week. Taken together, these numbers imply that a 3.7% rise in total
government debt outstanding relative to prior expectations led to an 8 basis point decline
in G − R, which gives an estimate of ∂(G−R)

∂ log b of −0.022. The data for these calculations come
from Bloomberg.
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G Details on the quantitative model

In this section, we write down the quantitative model with trend, define equilibrium
for it, and then de-trend it. We do so for the bonds-in-utility household side; the other
household sides are analogous. All trending variables are denoted with uppercase letters.
Any variable that was introduced in Section 7 will not be re-introduced here.

G.1 Model

Spenders. Spenders are hand-to-mouth, consuming their after-tax income, C̃t = µ (1 − χt)Wtñt,
with Wt being the real pre-tax wage.

Savers: Bonds-in-utility (BU). Savers maximize

max
{Ct,nt,At}

∞

∑
t=0

e−ρt
{

log Ct + v
(

Bt + K̃t

Θt

)
− h(nt)

}
(A.66)

subject to the real consolidated budget constraint

Ct + Bt + K̃t ≤
1 + Rt−1

1 + πt
Bt−1 + (1 + r̃t) K̃t−1 + (1 − µ) (1 − χt)Wtnt + Dt.

Here, Bt and K̃t are the savers’ end of period holdings of government bonds and capital. r̃t

denotes the real return on capital. Θt denotes productivity and ensures that the preferences
are compatible with balanced growth. Dt are dividends earned by savers.

Production. Final goods are used for private and public consumption, investment (to-
gether denoted by Yt), as well as for fixed costs (denoted by Yt ≥ 0). Together, they are a
CES aggregate over a continuum of intermediate good varieties Yjt, labeled by j ∈ [0, 1],

Yt + Yt =

(∫ 1

0
Y

ζ−1
ζ

jt dj
) ζ

ζ−1

Each intermediate good is produced using a Cobb-Douglas production function,

Yjt = Θ1−α
t Kα

jt−1n1−α
jt (A.67)

where TFP Θt is common across varieties and grows like

Θt = Θt−1 (1 + γ) .
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The fixed cost of Yt ≥ 0 needs to be paid by each intermediate goods producer. Fixed costs
also grow at rate γ,

Yt+1 = Yt (1 + γ) .

Intermediate goods producers are monopolistically competitive. Capital Kjt−1 is rented in
a competitive spot market for capital, at rental rate rK

t .
The price of variety j is denoted by pjt with the price index given by

Pt ≡
(∫ 1

0
p1−ζ

jt dj
) 1

1−ζ

such that demand for variety j is

Yjt = Yt

(
pjt

Pt

)−ζ

. (A.68)

We denote by

m ≡ ζ

ζ − 1
> 1

the markup firms will charge in this environment. Since all firms are symmetric, they
behave identically in equilibrium. We henceforth drop the subscripts j. Firm behavior is
then characterized by the following optimality conditions:

Yt = Θ1−α
t Kα

t−1n1−α
t − Yt (A.69)

m−1 (1 − α)
Yt + Yt

nt
= Wt (A.70)

m−1α
Yt + Yt

Kt−1
= rK

t (A.71)

Firms’ pure profits are given by

DY
t =

(
1 − m−1

) (
Yt + Yt

)
− Yt. (A.72)

Investors. There is a representative investor that takes household funds K̃t−1 at the end
of period t − 1 to purchase physical capital Kt−1 at price Qt−1, that is, Qt−1Kt−1 = K̃t−1. It
then earns return rk

t Kt−1 in period t, invests It, and pays an adjustment cost. At the end of
period t, the investor sells Kt units of capital at price Qt. Altogether, the investor solves

DI
t = max

Kt−1,Kt

1
1 + r̃t

(
QtKt − It − Φ̃ (Kt/Kt−1)Kt−1 + rk

t Kt−1

)
− Qt−1Kt−1. (A.73)
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Here, Φ̃ represents a standard quadratic adjustment cost function,

Φ̃(Kt+1/Kt)Kt =
1

(1 + γ)2
1

2ϵIδ
(Kt+1/Kt − 1 − γ)2 Kt. (A.74)

ϵI parametrizes the strength of the adjustment cost. The adjustment cost (A.74) does not
matter along a balanced growth path. The γ terms in this expression are there to ensure
balanced growth. The adjustment cost function is necessary to obtain a reasonable response
of investment to fiscal policy surprises. We denote total profits by

Dt = DI
t + DY

t (A.75)

although we note that DI
t will be equal to zero in equilibrium as the investor’s technology

has constant returns to scale. Aggregate investment is

It = Kt − (1 − δ)Kt−1 (A.76)

The investor’s first order conditions for capital Kt−1 and Kt are, respectively, for t ≥ 1

rK
t − Φ̃

(
Kt

Kt−1

)
+ Φ̃′

(
Kt

Kt−1

)
Kt

Kt−1
+ (1 − δ) = Qt−1

and
Qt

1 + r̃t
= Φ̃′

(
Kt

Kt−1

)
− 1.

Nominal rigidity. We follow Erceg, Henderson and Levin (2000) and Auclert, Rognlie
and Straub (2018, 2020) and assume that a mass of labor unions exists in our economy
which allocates a given amount of labor demand nt equally among households, such that
nit = ñt = nt|t0

= nt. Unions negotiate nominal wages, and index to trend inflation πw∗,
giving rise to a Phillips curve for nominal wage inflation πw

t

(πw
t − πw∗) (1 + πw

t − πw∗) = κ̃ ·nt

(
h′(nt)− mw (1 − χt)

wt

ct

)
+ ζe−ρ

(
πw

t+1 − πw∗) (1 + πw
t+1 − πw∗)

(A.77)
where mw is a wage markup. The first term on the right hand side scales with the gap
in the first-order condition for labor of the average worker in the economy. If this gap is
positive, the average worker is less willing to work, and unions negotiate nominal wage
gains. The opposite happens if the gap is negative.

The disutility of labor that we assume is h(nt) = h̃ 1
1+ϕ−1 n1+ϕ−1

t and we write the slope
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parameter κ̃ to make it more interpretable as in (45), that is,

κ̃ = κ · 1 − ζe−ρ

h̃ (1 + ϕ−1)
.

We take the limit mw → 1 to simplify expressions in the main body of the paper. This is
without loss for our results as it is equivalent to a simple rescaling h̃ for the exercises in our
paper.

Goods inflation is given by

Pt

Pt−1
= 1 + πt =

1 + πw
t

Wt/Wt−1
(A.78)

with goods trend inflation defined as

1 + π∗ =
1 + πw∗

1 + γ
.

Government. The government chooses fiscal policy consisting of the paths {Xt, Bt, χt}
subject to the flow budget constraint

Xt +
1 + Rt−1

1 + πt
Bt−1 = Bt + χtWtnt. (A.79)

We assume that government spending is exogenous and grows at rate γ, Xt+1 = (1 + γ) Xt.
The primary deficit is given by

Zt = Xt − χtWtnt.

Monetary policy targets inflation wherever feasible,

Rt


= 0 if πw

t < πw∗

∈ [0, ∞) if πw
t = πw∗

= ∞ if πw
t > πw∗

(A.80)

It is conceptually more natural to have monetary policy target wage inflation in this
economy as that will be a better measure of economic slack than price inflation. Our results
are similar if price inflation is targeted.

Equilibrium. We define equilibrium in this model as follows.

Definition 2. Given initial levels of debt B−1 and capital K̃−1, K−1, a (competitive) equilibrium
consists of a tuple {Ct, C̃t, Bt, K̃t, Yt, Dt, Qt, Kt, Rt, r̃t, πw

t , πt, χt, Zt, Wt, rK
t }, such that: (a)
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{Ct, C̃t, Bt, K̃t} maximizes the respective utility maximization problems of savers (A.66)
and spenders; (b) {Bt, χt} satisfy the government budget constraint (A.79) with bounded
debt-to-GDP Bt/Yt given a path of government spending {Xt}; (c) wage and price inflation
{πt, πw

t } follow (A.77) and (A.78); (d) monetary policy follows (A.80) and implies a finite
nominal rate Rt; (e) output Yt is produced using (A.69), with dividends Dt given by (A.72)
and (A.75); (f) Nt is consistent with (A.70); (g) the return on capital rK

t is given by (A.71);
(h) Kt is optimally chosen by investors according to (A.73) given rK

t , r̃t, Qt; (i) the goods
market clears at all times,

C̃t + Ct + It + Xt = Yt

and the capital market clears,
K̃t−1 = qt−1kt−1.

A balanced growth path (BGP) equilibrium is an equilibrium in which Ct, Kt, Yt, Bt all grow at
the same, constant rate.

G.2 De-trending

We next de-trend this economy. In the following, we go from uppercase to lowercase letters,
as in xt ≡ Xt

Θt
and yt ≡ Yt

Θt
, and, normalize Θ such that Θ0 = 1. The only variable that is

de-trended slightly differently is capital, where we define kt ≡ Kt
Θt+1

and k̃t ≡ K̃t
Θt+1

as capital
invested in period t is not used in production until period t + 1.

De-trending households. The de-trended utility function (A.66) is

log ct + v
(
bt + k̃t

)
− h(nt)

identical to (37). The de-trended budget constraint (37) is

ct + bt + k̃t ≤
1 + Rt−1

(1 + γ) (1 + πt)
bt−1 +

1 + r̃t

1 + γ
k̃t−1 + (1 − µ) (1 − χt)wtnt + dt.

This is identical to (36) upon defining nominal growth as

1 + Gt ≡ (1 + γ) (1 + πt) (A.81)

and the de-trended real interest rate as

1 + rt ≡
1 + r̃t

1 + γ
.
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De-trending production. We naturally have that de-trended production follows

yt = kα
t−1n1−α

t − y

as in (40) where y is constant as Yt was assumed to grow at the same rate as productivity
Θt. The first order conditions (41) and (42) follow naturally as de-trended versions of (A.70)
and (A.71). Dividends dt in (43) are the de-trended combination of (A.72) and (A.75).

De-trending investors. The investor’s problem (A.73) can be written as,

DI
t = max

Kt−1,Kt

1
1 + r̃t

(
QtΘt+1kt − Θtit − ΘtΦ̃ ((1 + γ) kt/kt−1) kt−1 + Θtrk

t kt−1

)
−ΘtQt−1kt−1

which simplifies to

(1 + γ) dI
t = max

Kt−1,Kt

1 + γ

1 + r̃t

(
qtkt − it − Φ (kt/kt−1) kt−1 + rk

t kt−1

)
− qt−1kt−1

where Φ(x) ≡ Φ̃ ((1 + γ) x) = 1
2ϵIδ x2 and we defined qt ≡ Qt (1 + γ). This maximization

problem is identical to (44). De-trended investment (A.76) is

it = (1 + γ) kt − (1 − δ) kt−1

exactly as in (A.76).

De-trending goods inflation. De-trending goods inflation (A.78), we obtain

1 + πt =
1 + πw

t
(1 + γ)wt/wt−1

exactly as in (46).

De-trending the government. The government budget constraint (A.79), de-trended,
becomes

xt +
1 + Rt−1

(1 + πt) (1 + γ)
bt−1 = bt + χtwtnt

which is exactly equal to (47) given the definition of Gt in (A.81). The de-trended primary
deficit is easily seen to be equal to (A.81).

Definition of equilibrium. We define equilibrium in the de-trended economy as follows.
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Definition 3. Given initial levels of debt {bi,−1} and capital {k̃i,−1, k−1}, a (competitive)
equilibrium consists of a tuple {cit, c̃t, bit, k̃it, yt, dt, qt, kt, Rt, rt, πw

t , πt, χt, zt, wt, rK
t }, such that:

(a) {cit, c̃t, bit, k̃it} maximizes the respective utility maximization problems of savers and
spenders; (b) {bt, χt} satisfy the government budget constraint (47) with bounded debt bt

given a path of government spending {xt}; (c) wage and price inflation {πt, πw
t } follow

(45) and (46); (d) monetary policy follows (48); (e) output yt is produced using (40), with
dividends dt given by (43); (f) nt is consistent with (41); (g) the return on capital rK

t is given
by (42); (h) kt is optimally chosen by investors according to (44) given rK

t , rt, qt; (i) the goods
market clears,

c̃t + ct + it + xt = yt

where ct =
∫

citdi, and the capital market clears,

k̃t−1 =
∫

k̃it−1di = qt−1kt−1.

A steady state equilibrium is an equilibrium in which ct, kt, yt, bt are all constant.

For each equilibrium satisfying Definition 2 there is an equilibrium satisfying Defini-
tion 3.

Summing up. These steps show that the model with trend we set up here in Section G.1
exactly turns into the de-trended model introduced in Section 7. An equilibrium in one cor-
responds to an equilibrium in the other. A balanced growth path in Section G.1 corresponds
to a steady state in Section 7.

G.3 Calibration details

The U.S. calibration is summarized in Table A.3. Discount rates in the BU models are higher
than one would expect, but these must be regarded in conjunction with the convenience
utility, as households’ true rate of time preference is a combination of the discount rate and
the marginal convenience utility. Similarly, discount rates in the OLG economy must be
regarded in conjunction with the survival probability. Together, ζe−ρ = 0.95. As explained
in Farhi and Werning (2019), among other papers, the survival probability in this model
should not be interpreted literally; instead, it should be thought of as also capturing other
reasons why households might have a limited planning horizon, such as occasionally
binding borrowing constraints.

The Japanese calibration is summarized in Table A.4.
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Table A.3: Calibration to the pre-Covid U.S. economy

Parameter name Symbol BU-quad BU-log OLG HA

Gov. spending to GDP X/Y — 14% for all —

Gov. debt to GDP B/Y — 100% for all —

Labor tax rate χ — 12% for all —

Nominal rate R — 1.5% for all —

Trend inflation π∗ — 2.0% for all —

Labor inc. share savers 1 − µ — 36% for all —

Phillips curve slope κ — 0.20 for all —

Rate of depreciation δ — 0.08 for all —

TFP growth γ — 1.5% for all —

Capital adjustment cost ϵI — 4 for all —

Capital to GDP K/Y — 2.0 for all —

Capital share α — 0.15 for all —

Markup m — 1.3 for all —

Fixed cost y — 0.3 for all —

Frisch elasticity ϕ — 1.0 for all —

Effective disutility weight h̃ — 1.09 for all —

Discount rate ρ 0.156 0.156 -0.196 0.059

Intertemporal elast. ν−1 1.000 1.000 1.000 0.219

Convenience utility level v′(ass) 0.286 --- --- ---

Convenience utility slope φ̃ 0.286 0.286 --- ---

OLG survival probability ζ --- --- 0.783 ---

Persistence eit ρe --- --- --- 0.900

Cross-sectional std. dev. eit σe --- --- --- 0.920
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Table A.4: Calibration to the pre-Covid Japanese economy

Parameter name Symbol BU-quad BU-log OLG HA

Gov. spending to GDP X/Y — 20% for all —

Gov. debt to GDP B/Y — 238% for all —

Labor tax rate χ — 18.6% for all —

Nominal rate R — 0.0% for all —

Trend inflation π∗ — 2.0% for all —

Labor inc. share savers 1 − µ — 34% for all —

Phillips curve slope κ — 0.432 for all —

Rate of depreciation δ — 0.08 for all —

TFP growth γ — 0.3% for all —

Capital adjustment cost ϵI — 4 for all —

Capital to GDP K/Y — 2.0 for all —

Capital share α — 0.15 for all —

Markup m — 1.3 for all —

Fixed cost y — 0.3 for all —

Frisch elasticity ϕ — 1.0 for all —

Effective disutility weight h̃ — 0.920 for all —

Discount rate ρ 0.042 0.042 -0.054 0.018

Intertemporal elast. ν−1 1.000 1.000 1.000 0.299

Convenience utility level v′(ass) 0.080 --- --- ---

Convenience utility slope φ̃ 0.080 0.080 --- ---

OLG survival probability ζ --- --- 0.923 ---

Persistence eit ρe --- --- --- 0.900

Cross-sectional std. dev. eit σe --- --- --- 0.920
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G.4 Calibration of κ in the Japanese calibration

We base our calibration on the evidence of the effects of government spending shock in
Japan in Miyamoto, Nguyen and Sergeyev (2018) (MNS). MNS use surprises in government
spending relative to forecasted government spending a period ago as instruments for
government spending shocks. Denote their shocks by ϵ̃t. We run simple local projections
(as in equation (2) in MNS) of changes in the price level and changes in GDP on the shock
ϵ̃t,

OUTt+h = αo
h + βo

h · ϵ̃t + ψo
h(L)yt−1 + ϵo

t+h. (A.82)

where OUTt+h is an outcome; ψo
h(L)yt−1 are MNS’s controls, and βo

h is the IRF of the
outcome of interest as a function of the horizon h = 0, . . . , H. The three outcomes that are
most relevant for us are the change in government spending, Gt+h−Gt−1

Yt−1
, which is the shock

itself; the change in GDP, Yt+h−Yt−1
Yt−1

; and the change in the price level, Pt+h−Pt−1
Pt−1

, where Pt is
the GDP deflator in the data (just like in MNS). Just like in MNS, we estimate the shock
over a total horizon H = 15, and the impulse responses over a horizon of H = 10.

We feed the shock βG
h into our model as an exogenous, 16-period-long government

spending shock. We then pick the slope of the Phillips curve κ to minimize the distance
between the model generated IRFs for GDP and the price level and the corresponding
empirical IRFs. Figure A.10 plots the impulse responses for GDP and the price level. The
model reproduces the correct magnitudes, but is clearly too simple to get the precise timing
in the IRFs right. This procedure yields κ = 0.272, slightly higher than the value we use for
the U.S. economy.
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Figure A.10: Output and inflation responses to government spending shock in Japan

(a) Estimated output response (b) Estimated inflation response

Note. Impulse responses estimated as in Miyamoto, Nguyen and Sergeyev (2018) using equation (A.82). The
slope of the Phillips curve κ was chosen in the model to minimize the sum of squared distances to both
impulse responses.

H Rising inequality and convenience yields

Section 3.5 showed that rising inequality raises fiscal space by raising total saving available
to finance government debt, and putting downward pressure on government borrowing
cost. It is very difficult to generate completely exogenous variation in inequality at the
macroeconomic level. Nonetheless time series evidence from the U.S. is consistent with
these predictions.

Krishnamurthy and Vissing-Jorgensen (2012) (KVJ) show that convenience yield on
U.S. debt—proxied by the Aaa-Treasury spread—is strongly negatively correlated with
the amount of debt issued by the government as a share of GDP. This long-run negative
relationship represents the traditional tradeoff between cost of government debt and supply
of government debt, holding all else equal. Column (1) of Table A.5 replicates the key KVJ
result by regressing the Aaa-Treasury spread (or convenience yield) on log of government
debt to GDP over their full sample that goes from 1919-2008. The coefficient on log debt
to GDP is −0.74. Column (2) extends the sample to 2022, the most recent available year.
What is striking is that the magnitude of the coefficient drops to −0.45. Why does the
convenience yield - debt relationship appear to weaken in recent years? As we show next,
a possible reason is the sharp rise in wealth inequality since 1980. Once we control for that,
we recover the original KVJ result even in the most recent sample.

We repeat the KVJ regression in the more recent period of 1962-2022 in column (3).
This is the period with a consistent public tax return data, where Mian, Straub and Sufi
(2020) show that rising inequality contributed to an expansion in the supply of savings,
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Table A.5: Role of rising inequality in the Krishnamurthy and Vissing-Jorgensen (2012) regression

1919-2008 1919-2022 1962-2022 1962-2008 1980-2022 1962-2022
(1) (2) (3) (4) (5) (6)

ln(Debt/GDP) -0.746∗∗∗ -0.459∗∗∗ -0.241 -1.032∗∗∗ -0.0469 -0.710∗∗

(0.0704) (0.0795) (0.123) (0.221) (0.147) (0.248)

Share Top 1% Wealth 5.043∗

(2.340)
N 90 104 61 47 42 60
R-sq 0.449 0.218 0.049 0.283 0.002 0.121

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

and the top 1% use the additional savings to hold significantly more government debt. The
coefficient on log debt to GDP is only −0.24, about one-third of the column (1) estimate.
Columns (4) and (5) show that the decline in KVJ coefficient is entirely driven by post-
1980 sample, when wealth inequality starts to rise appreciably. Importantly, once wealth
inequality (measured as the share of wealth going to the top 1%) is included as a control
variable in the 1962-2022 sample, the original KVJ coefficient is recovered once again.

This simple analysis suggests that the apparent breakdown of convenience yield - debt
relationship is driven by a third variable, namely wealth inequality, rising in the post-1980
period. This is inline with our model which suggests that the rise in inequality should
expand fiscal capacity, enabling the government to raise government debt without putting
as much downward pressure on convenience yield as before.

The outward shift in fiscal space (and hence convenience yield) post-1980 can also be
seen in Figure A.11 that plots the relationship between convenience yield and government
debt to GDP. There is a clear upward shift in convenience yield relative to the earlier
downward relationship between convenience yield and debt to GDP, post-1980 (red dots)
as inequality starts to rise. Overall the post-1980 experience of the U.S. with rising inequality
is consistent with the predictions of our model that fiscal space increases with inequality.
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Figure A.11: Replication of Krishnamurthy and Vissing-Jorgensen (2012) regression
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Note. This figure plots the Aaa-Treasury spread in % on the y axis against the debt-to-GDP ratio on the x axis.
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