
 
 

 

 

 

 

 

ON THE SUCCESS OF THE HADAL SNAILFISHES 

The Influence of Trophic Ecology, Life History, and Pressure Adaptation on Depth Zonation in 

the Planet’s Deepest-Living Fishes 

 

 

A Dissertation Submitted to the Graduate Division of the University of Hawai‘i at Mānoa in 

Partial Fulfillment of the Requirements for the Degree of 

 

DOCTOR OF PHILOSOPHY 

IN 

MARINE BIOLOGY 

MAY, 2017 

 

By 

Mackenzie Gerringer 

 

 

 

Dissertation Committee: 

Jeffrey Drazen, Chairperson 

Brian Popp 

Allen Andrews 

Craig Smith 

Anna Neuheimer 

 

Keywords: hadal zone, Liparidae, otoliths, stable isotopes, enzymes, stomach contents analysis 

 



ii 

 

 

 

 

 

 

© Copyright 2017 – Mackenzie E. Gerringer 

All rights reserved. 

 

  



iii 

 

 

 

 

 

 

This dissertation is dedicated to the teachers who challenged and inspired me.  

  



iv 

 

ACKNOWLEDGEMENTS 

 

I would like to sincerely thank my advisor, Dr. Jeff Drazen, for his enthusiasm, support, and 

understanding throughout this process. Your unadulterated love for fish, your tireless passion for 

education, and your graceful work-life balance are inspiring. I express my gratitude to my 

committee members, Drs. Allen Andrews, Brian Popp, Craig Smith, and Anna Neuheimer, who 

have taught me so much, have provided fruitful insights and discussions on this work and on 

science, and have been highly supportive of my education. I also especially thank Dr. Paul Yancey 

for his mentorship, example, encouragement, and friendship over the years. Thank you for teaching 

me and believing in me, working with you has been a great joy.  

 Science, especially hadal science, is by necessity highly collaborative and I am extremely 

grateful those with whom I have had the opportunity to work on this research. I thank those 

involved in the HADES program for all their hard work, without whom this research would not 

have been possible. I am very grateful for those that have set such a wonderful example of grace, 

kindness, and professionalism in research collaborations, particularly Bruce Mundy, Ashley 

Rowden, Adam Summers, Andrew Stewart, Malcolm Clark, Dmitri Davydov, and Gary Huss. My 

sincere thanks to Alan Jamieson for scientific insights, compelling discussions, and support. I also 

thank Thomas Linley, who has been a wonderful nemesis, collaborator, and friend, and has 

contributed so much to this research. 

 I am extremely grateful for the support of the National Science Foundation Graduate 

Research Fellowship, as well as to the other agencies that made this work possible, including 

Schmidt Ocean Institute and NOAA. I would like to especially thank the captains and crews of the 



v 

 

research vessels that have supported this research – of the R/Vs Kaharoa, Falkor, Thompson, 

Okeanos Explorer, Centennial, and Shinyo-maru.  

 I extend my sincere gratitude to the administrative and support staff in the Oceanography 

Department who have been so kind and helpful facilitating this work, particularly Anne Lawyer, 

Phil Rapoza, Catalpa Kong, Kristin Momohara, and Pamela Petras. Kindest thanks also to Lindsay 

Root and Xuan Tran, Marine Biology Program Coordinators and Tasha Ryan, Fellowships and 

Professional Development Coordinator, for all their hard work and support.  

 My deepest thanks to my family and friends for their love and support throughout my life. 

Thanks to the 2013 Marine Biology Cohort, the 2014 Friday Harbor Fish Class, and the members 

of the Drazen lab for their friendship and support, especially Astrid Leitner, Chris Demarke, and 

Kristen Gloeckler. I also thank my friends outside of science, for their encouragement, support, 

and humor, which have kept me grounded throughout this process. Thank you, Amanda Ziegler 

for being such a wonderful office mate and friend, and for your shared wit, wisdom, support, and 

coffee. My heartfelt thanks to Logan Peoples for your support, understanding, insights, and 

encouragement. Thank you, Madison Gerringer, my sister and friend, for your love and your 

laughter. Finally, I thank my parents, Teresa and Michael Gerringer, for teaching me the value of 

education, dedication, and pursuing your dreams. I am so lucky to be your daughter and so grateful 

for all your support and love.  

  



vi 

 

ABSTRACT 

 

The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone 

from ~6,000–8,200 m, comprising the dominant ichthyofauna in at least five trenches worldwide. 

The hadal fish community is distinct from the surrounding abyss where solitary, scavenging fishes 

such as rattails (Macrouridae), cutthroat eels (Synaphobranchidae), eelpouts (Zoarcidae), and cusk 

eels (Ophidiidae) are most common. Little is known about the biology of these deepest-living 

fishes, or the factors that drive their success at hadal depths. Using recent collections from the 

Mariana Trench, Kermadec Trench, and neighboring abyssal plains, this dissertation investigates 

the role of trophic ecology, pressure adaptation, and life history in structuring fish communities at 

the abyssal-hadal boundary. Stomach content and amino acid isotope analyses suggest that suction-

feeding predatory fishes like hadal liparids may find an advantage to descending into the trench – 

where amphipods are abundant. More generalist feeders and scavengers relying on carrion, such 

as macrourids, might not benefit from this nutritional advantage at hadal depths. Hadal fishes also 

show specialized adaptation to hydrostatic pressure, as seen in metabolic enzyme activities. 

Maximum reaction rate of lactate dehydrogenases from hadal liparids increased under pressures 

of 600 bar, while in shallow-living fishes, this enzyme was pressure-inhibited. These types of 

pressure adaptation are necessary for fishes to thrive at hadal depths. Intraspecific activities of 

tricarboxylic acid cycle enzymes, considered proxies of metabolic rate and nutritional condition, 

increased with depth of capture in hadal snailfishes, further suggesting an advantage to snailfishes 

living deeper in the trench where food availability may be higher. Analysis of otolith growth zones 

support an additional hypothesis – snailfishes may be adapted to a seismically active, high-

disturbance hadal environment by having relatively short life-spans that are on the order of fifteen 
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years when compared to other deep-sea fishes. Additional aspects of hadal snailfish biology, 

including thermal histories, reproduction, swimming kinematics, and buoyancy strategies are 

explored and discussed. The taxonomic description of a newly-discovered hadal liparid from the 

Mariana Trench is also included. This study provides insight into the ecology and physiology of 

deep-dwelling fishes and provides new understanding of adaptations to life in the trenches.   
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CHAPTER I 

Introduction: The hadal liparids 

 

 

The hadal zone—deep-sea trenches with depths ranging from 6,000 to 11,000 m—represents 45% 

of the ocean’s depth range but remain one of Earth’s least explored habitats. These parts of the 

ocean take their name from the mythological Greek underworld and are characterized by harsh 

conditions of high hydrostatic pressures, low temperatures, and perpetual darkness (Bruun, 1957). 

Most of the hadal zone is made up of subducting trenches, largely located around the Pacific Rim 

(Figure 1.1). Many of the environmental factors experienced by hadal organisms are similar to 

those on the surrounding abyss and broader deep sea, however, hadal trenches have notably 

increased hydrostatic pressures, high levels of seismicity, and a distinctly sloping topography 

relative to other deep-sea habitats. With these environmental differences, there are marked faunal 

transitions from the abyss to the hadal zone (e.g., Wolff, 1970; Jamieson et al., 2011). The distinct 

community of hadal fauna includes amphipods, fishes, tanaids, isopods, cumaceans, decapods, 

echinoderms, nematodes, polychaetes, copepods, molluscs, foraminifera, and cnidarians, at 

apparently high levels of endemism (Wolff, 1958; Beliaev, 1989; Jamieson et al., 2009a; 2010).  

The first fish collected from hadal1 depths was the ophidiid, Bassogigas profundismus, 

caught in 1901 at 6,035 m in the Mosely Trench by the Princess Alice Expedition (Nielsen, 1964). 

From the early days of more thorough hadal surveys, however, snailfishes (Liparidae, 

Scorpaeniformes, Figure 1.2) have been among the most commonly caught vertebrates in the 

hadal environment. On the Danish HDMS Galathea expedition, one of two prominent early 

voyages of hadal research, five individuals of the hadal snailfish Notoliparis kermadecensis 

(formerly Careproctus kermadecensis) were caught in the Kermadec Trench in 1952, between 

depths 6,660–6,770 m, (Nielsen, 1964). Another pioneering hadal expedition aboard the Soviet 

vessel RV Vitjaz, caught the snailfish, Pseudoliparis amblystomopsis (then Careproctus 

                                                           
1 Although the official transition from the abyssal to the hadal zone has recently been proposed at 6,500 m (Watling 

et al., 2013), many of the known faunal changes occur at and around 6,000 m, leading some to prefer this boundary 

(e.g., Jamieson, 2015). 
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amblystomopsis), in the Kurile Kamtchatka Trench at 7,230 m in 1955 and in the Japan Trench, at 

depths as great as 7,579 m in 1957 (Nielsen, 1964). Other hadal and deep-abyssal snailfishes have 

been seen in the South Sandwich Trench (Careproctus sandwichensis at 5,435–5,453 m; 

Andriashev, 1998) and in the Peru-Chile Trench (Fujii et al., 2010). Table 1.1 summarizes the 

known records of liparids in the hadal environment and their depth ranges from the literature and 

recent trap and baited camera studies. Historical collections of hadal liparids have been few and 

far between, limiting understanding of the biology and ecology of these fishes, but recent study 

clearly shows that they are very abundant at hadal depths. 

 

 
Figure 1.1. Hadal trenches and troughs with depths exceeding 6,500 m (Jamieson, 2011). Map constructed 

using bathymetry map data from GeoMapApp, Global Multi-Resolution Topography synthesis (Ryan et 

al., 2009).  
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Figure 1.2. Hadal liparids. In situ photographs of hadal snailfish, a) Peru-Chile Trench, b) Mariana Trench 

(Liparidae sp. nov.), c) Japan Trench (Pseudoliparis belyaevi), d) Kermadec Trench (Notoliparis 

kermadecensis). Photos by Alan Jamieson, University of Aberdeen. Collections of hadal snailfish from the 

e) Mariana (Liparidae sp. nov.) and f) Kermadec (Notoliparis kermadecensis) trenches, HADES cruises. 

Photos by Mackenzie Gerringer and Thomas Linley. g) Taxonomic drawing of Notoliparis kermadecensis, 

Kermadec Trench (Nielsen, 1964).  
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Table 1.1. List of the global geographic and bathymetric distribution of known hadal liparids. Includes 

records of abyssal species near trenches. Archimede observation in Puerto Rico Trench is probable, but 

anecdotal. Depths shown in meters. Undescribed species listed with common names, detailed by Linley et 

al., 2016.  

Trench Depth Species Reference 

Japan Trench 7420-7450 Pseudoliparis amblystomopsis Andriashev, 1955 

 6380-7587 Pseudoliparis belyaevi Andriashev et al., 1993 

Kermadec Trench 5879-7669 Notoliparis kermadecensis Linley et al., 2016 

 6456-7560 Notoliparis stewarti Stein, 2016 

Kurile-Kamchatka 6156-7587 Pseudoliparis amblystomopsis Andriashev, 1955 

Macquarie-Hjort Trench 5400-5410 Notoliparis macquariensis Andriashev, 1978 

Mariana Trench 6198-8078 Mariana snailfish Linley et al., 2016 

 8007-8145 Ethereal snailfish Linley et al., 2016 

Peru-Chile Trench 6150 Notoliparis antonbruuni Stein, 2005 

 7049 Peru-Chile snailfish Jamieson, 2012 

Puerto Rico Trench 7300 Archimede snailfish Pérês, 1965 

South Orkney Trench 5465-5474 Notoliparis kurchatovi Andriashev, 1975 

South Sandwich Trench 5435-5453 Careproctus sandwichensis Andriashev and Stein, 1998 

 

Snailfishes are typically small, tadpole-shaped fishes which live in temperate to cold waters 

from the intertidal to the hadal environment and from polar systems (Matallanas and Pequeno, 

2000) to the subtropics (Chernova et al., 2004). They are one of the most bathymetrically 

widespread families, and have found notable success at hadal depths (Nielsen, 1964; Jamieson et 

al., 2009; Linley et al., 2016). There are a number of interesting adaptations known in the liparid 

family, including an antifreeze protein in the skin of Antarctic species (Evans and Fletcher, 2001; 

Hobbs and Fletcher, 2013), dermal ossicles that may offer protection with minimum additional 

weight (Märss et al., 2010), and neutral buoyancy without a swimbladder achieved through 

decreased skeletal ossification and a subdermal extracellular matrix (Eastman et al., 1994). 

Comparatively little is known about the family; there are several rare, or at least remote, species 

of snailfishes, and many species have only recently been described (Johnson, 1969; Andriashev, 

1998; Choi et al., 1998; Chernova and Stein, 2002; Stein et al., 2003, 2006; Orr, 2004; Stein, 2005; 

Chernova, 2006; Knudsen et al., 2007; Chernova and Møller, 2008; Busby and Cartwright, 2009; 

Kai et al., 2011; Balushkin, 2012; Park et al., 2013; Stein and Drazen, 2014; Tokranov and Orlov, 

2014).  

 



5 

 

 
Figure 1.3. Collection of hadal fishes. Baited traps – free vehicles with acoustic releases rated to full-ocean 

depth. Left. Small fish trap and rock grab (University of Aberdeen) being readied for deployment in the 

Mariana Trench. Right. Large fish trap (University of Hawaiʻi) above the Kermadec Trench, photo by 

Leighton Rolley, Schmidt Ocean Institute.  

 

The snailfishes are clearly very successful in hadal trenches, colonizing many of the studied 

trenches and reaching high abundances there (Fujii, et al., 2010; Linley et al., 2016). Their 

importance to hadal systems has only been recently realized, largely facilitated by the use of baited 

traps (Figure 1.3) and cameras. The colonization of the deep sea by fishes, and by snailfishes in 

particular, is understood to be a radiation from shallow waters into the deep (Burke, 1930; Priede 

and Froese, 2013). Detailed surveys have revealed a noticeable shift in the fish community at the 

abyssal-hadal boundary, from members of the diverse and abundant cosmopolitan families 

Macrouridae, Ophidiidae, Synaphobranchidae, and Zoarcidae on the abyssal plains, to the liparids 

in the hadal zone (Figure 1.4). What evolutionary drivers have influenced the success of the 

snailfish in the trench environment relative to other potential colonizers? This dissertation uses an 

unprecedented collection from recent cruises to the Kermadec and Mariana trenches (Table 1.2) 

to investigate the biology and ecology of hadal snailfishes and neighboring abyssal fishes to 

evaluate the reasons for the notable success of liparids in the hadal environment. 
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Table 1.2. Global collections of hadal liparids by year. Collection year is noted, with depth presented in 

meters, and number of specimens collected (n) for each species, as of June, 2016. Ships were operated out 

of the former Soviet Union, Denmark, USA, Japan, and New Zealand. 2011 and 2014 collections include 

both Notoliparis kermadecensis and N. stewarti.  

Trench Species Year Depth  Ship n 

Kurile-Kamchatka Pseudoliparis amblystomopsis 1953 7230 Vitjaz 1 

Japan Pseudoliparis amblystomopsis 1955 6156–7579 Vitjaz 5 

Japan Pseudoliparis belyaevi 1957 7579 Vitjaz 1 

Kermadec Notoliparis kermadecensis 1952 6660–6770 Galathea 5 

Peru-Chile Notoliparis antonbruuni 1966 6150 Anton Bruun 1 

Japan Pseudoliparis amblystomopsis 2009  Hakuho maru  2 

Kermadec Notoliparis spp. 2011 7002–7050 Kaharoa  7 

Kermadec Notoliparis spp. 2014 6456–7554 Thompson 41 

Mariana Liparidae sp. nov. 2014 6898–7966  Falkor 37 

 

Figure 1.4. Depth distributions of hadal and near-hadal fishes by family. From left to right: Bathylagidae, 

Eurypharyngidae, Macrouridae, Ophidiidae, Synaphobranchidae, Zoarcidae, Liparidae, Carapidae. 6,000 

m abyssal-hadal boundary shown as dotted line. Data from (Linley et al., 2016) and (Jamieson et al., 2009).  
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The following chapters explore hypotheses that could have contributed to the success of 

the snailfishes in hadal trenches relative to other families, employing multiple approaches in 

physiology and ecology. Chapter II posits that the trophic ecology of hadal liparids, specifically 

adaptations to feed on small crustaceans, allows them to take advantage of high amphipod biomass 

in trenches. Carrion-feeding and piscivorous fishes do not have the same advantage. A corollary 

to this hypothesis is that for the hadal liparids, individuals living deeper will exhibit better nutritive 

condition than those at shallower depths, both due to increased amphipod abundance and decreased 

competition for food, addressed in Chapter III. The next chapter also explores the idea that 

intrinsic pressure adaptations are more pronounced in hadal liparids than in the abyssal fishes, 

enabling their expansion to greater depths within the trenches. Chapter IV suggests that the 

liparids are shorter-lived than macrourids, which may be adaptive in the high-disturbance hadal 

environment over evolutionary timescales. Further, the idea that the lack of a planktonic larval 

stage in hadal liparids might limit dispersal beyond the hadal environment leading to  high degrees 

of endemism is tested using thermal history reconstructions from oxygen isotopic compositions 

across individual otoliths. Ophidiids and macrourids, which are believed to have a planktonic 

larval stage, should disperse beyond the trench, leaving little evolutionary mechanism for adapting 

specifically to the hadal zone. Additional hypotheses tested are that the completely benthic life 

history of the hadal liparid also allows the trench to serve as a refuge from predation and year-

round reproduction in hadal liparids results in increased fitness in the high-disturbance hadal zone. 

Chapter V explores the hypothesis that gelatinous tissue in hadal liparids provides buoyancy 

under the extreme hydrostatic pressure of the hadal environment, giving them an advantage over 

deep-sea fish families with gas bladders. Chapter VI provides a taxonomic description of a newly 

discovered species of hadal liparid from the Mariana Trench with morphological and molecular 

data. Together, these studies provide substantial insights into the biology and ecology of fishes in 

the hadal zone and the factors driving the success of snailfishes near the ocean’s greatest depths.  
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CHAPTER II 

Comparative feeding ecology of abyssal and hadal fishes through stomach content and 

amino acid isotope analysis 

 

Abstract 

 

The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone 

from ~6,000 to 8,200 m, comprising the dominant ichthyofauna in at least five trenches worldwide. 

Little is known about the biology of these deepest-living fishes, nor the factors that drive their 

success at hadal depths. Using recent collections from the Mariana Trench, Kermadec Trench, and 

neighboring abyssal plains, this study investigates the potential role of trophic ecology in 

structuring fish communities at the abyssal-hadal boundary. Stomach contents were analyzed from 

two species of hadal snailfishes, Notoliparis kermadecensis and a newly-discovered species from 

the Mariana Trench. Amphipods comprised the majority (Kermadec: 95.2%, Mariana: 97.4% 

index of relative importance) of stomach contents in both species. Decapod crustaceans, 

polychaetes (N. kermadecensis only), and remains of carrion (squid and fish) were minor dietary 

components. Diet analyses of abyssal species (families Macrouridae, Ophidiidae, Zoarcidae) 

collected from near the trenches and the literature are compared to those of the hadal liparids. 

Stomachs from abyssal fishes also contained amphipods, however macrourids had a higher trophic 

plasticity with a greater diversity of prey items, including larger proportions of carrion and fish 

remains; supporting previous findings. Suction-feeding predatory fishes like hadal liparids may 

find an advantage to descending into the trench—where amphipods are abundant. More generalist 

feeders and scavengers relying on carrion, such as macrourids, might not benefit from this 

nutritional advantage at hadal depths. Compound specific isotope analysis of amino acids was used 

to estimate trophic level of these species (5.3±0.2 Coryphaenoides armatus, 5.2±0.2 C. yaquinae, 

4.6±0.2 Spectrunculus grandis, 4.2±0.2 N. kermadecensis, 4.4±0.2 Mariana snailfish). Source 

amino acid δ15N values were especially high in hadal liparids (8.0±0.3‰ Kermadec, 6.7±0.2‰ 

Mariana), suggesting a less surface-derived food source than seen in the scavenging abyssal 

macrourids, C. armatus (3.5±0.3‰) and C. yaquinae (2.2±0.3‰). These results are compared to 

bulk muscle tissue isotopic compositions. This study provides the first comprehensive examination 
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of the feeding ecology of the ocean’s deepest-living fishes and informs new understanding of 

trophic interactions and fish community structure in and near the hadal zone. 

 

Introduction 

 

The hadal zone consists of deep-sea trenches with depths ranging from 6,000 to 11,000 m and 

houses a distinctly different community than the surrounding abyss with an apparently high level 

of endemism (Wolff, 1970; Jamieson et al., 2011c). The hadal community includes: amphipods, 

fishes, tanaids, isopods, cumaceans, decapods, echinoderms, nematodes, polychaetes, copepods, 

molluscs, foraminifera, and cnidarians (Wolff, 1958; Beliaev, 1989; Jamieson et al., 2009a; 2010). 

As on the abyssal plains (depths 4,000 – 6,000 m), most of the hadal community is supported by 

falling carrion and particulate organic matter from the upper ocean (Angel, 1982). The processing 

of nutrients into the hadal food web is believed to be facilitated by an active heterotrophic 

psychrophilic and piezophilic microbial community (Zobell, 1952; Yayanos et al., 1981; Kato et 

al., 1997; Fang et al., 2002; Bartlett, 2003; Nunoura et al. 2015). Although there is evidence for 

chemosynthetic communities in deep-sea trenches their prevalence and importance in the hadal 

ecosystem is not yet characterized (Kobayashi et al., 1992; Fujikura et al., 1999; Fujiwara et al., 

2001; Ohara et al., 2012). Current understanding of life in the hadal zone comes largely from trawl 

(Zenkevich and Bogoiavlenskii, 1953; Bruun et al., 1957; Svenska djuphavsexpeditionen, 1957) 

and free vehicle camera and trap work (Jamieson et al., 2009c, 2009d; Søreide and Jamieson, 2013; 

Lacey et al., 2016), as well as a few ROV (Momma et al., 2004; Bowen et al., 2008; 2009) and 

manned submersible operations (Pérês, 1965; Forman, 2009; Gallo, et al., 2015). With the 

difficulty in observing and sampling this environment, the ecology of hadal organisms and their 

trophic relationships remain poorly understood.  

Video observations, collections, and extrapolation from studies of shallower-living 

relatives of hadal taxa provide some information about trophic interactions in the hadal zone. In 

situ video collected by free-vehicle landers has allowed a glimpse of the feeding habits of hadal 

fauna such as: detritus-feeding holothurians (Jamieson et al., 2011b), scavenging isopods 

(Jamieson et al., 2012), predatory decapods (Jamieson et al., 2009a) and pardaliscid amphipods of 

the genus Princaxelia (Jamieson et al., 2011d), and lysianassoid amphipods, the most well-studied 
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hadal animals. These amphipods are known to have morphological and chemosensory adaptations 

to carrion feeding (Dahl, 1979; Kaufmann, 1994; Hargrave et al., 1995; De Broyer et al., 2004) 

and scavenge and disperse bait rapidly at hadal depths (e.g., Hessler et al., 1978). Previous studies 

on the feeding ecology of hadal amphipods have found evidence for opportunistic scavenging, and 

a high degree of trophic flexibility, including adaptations to ingest large amounts of carrion and 

phytodetritus (Perrone et al., 2003; Blankenship and Levin, 2007; Kobayashi et al., 2012).  

Even fewer data exists on the trophic ecology of hadal fishes. Video observations have 

shown the rapid consumption of bait by fishes such as macrourids at the abyssal-hadal boundary 

(Jamieson, et al., 2011c). Liparids and ophidiids from the Japan, Kermadec, and Mariana trenches 

have been observed eating crustaceans (Jamieson et al., 2009b; Fujii et al., 2010; Linley et al., 

2017). The present study focuses largely on liparids, a prominent endemic hadal group in at least 

five trenches (Japan, Kermadec, Kurile-Kamchatka, Mariana, Peru-Chile; Linley et al., 2016). 

Hadal liparids are small (≤ 30 cm) pink snailfishes that have been found as deep as 8,145 m (Linley 

et al., 2016). This depth (~8,200 m) is thought to be the lower limit for teleosts due to physiological 

constraints of pressure adaptation (Yancey et al., 2014). Nielsen (1964) reported stomach contents 

consisting mostly of amphipods in the liparid Notoliparis kermadecensis from the Kermadec 

Trench. However, the sample size in this description was small. Shallower-living snailfishes in the 

Kamchatka region are benthic feeders eating mostly crustaceans (Orlov and Tokranov, 2011). 

Many species of snailfishes from other localities also eat amphipods, which can make up as much 

as 88.8% of diet by numeric importance (Johnson, 1969; Falk-Petersen et al., 1988; Kobayashi 

and Hiyama, 1991; Labai et al., 2002; 2003; Glubokov, 2010; Jin, Zhang, and Zue, 2010; Cui et 

al., 2012).  

Studies of the trophic ecology of abyssal species (depths 4,000–6,000 m) are also limited, 

making comparisons to hadal taxa difficult. Macrourids are thought to have broad generalist diets 

as determined from stomach contents analysis and stable isotopic composition (e.g., Drazen et al., 

2008).  Other abyssal species are less well-studied. However, in a recent expedition, the ophidiid 

Bassozetus sp. was observed feeding on amphipods in the Kermadec Trench (Linley et al., 2017). 

Further details on in situ observations and depth distributions of the fish community at the abyssal-

hadal boundary are provided by Linley et al. (2017). Based on these studies, we hypothesized that 
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hadal liparids would have a more specific predatory feeding strategy, while abyssal species such 

as macrourids might be more generalist opportunistic feeders.  

Much of our current understanding of hadal fishes comes from baited trap and camera 

studies, which create an artificial food-fall. Although this mimics a natural process, it could bias 

our view of the community’s normal feeding ecology. The bait provides a food source for both 

fishes and their prey, and the interactions observed in this setting may not fully reflect what 

happens on a routine basis at depth. Further, video observations and stomach contents provide only 

a brief ‘snapshot’ view of diet. Multiple approaches are therefore needed to advance the 

understanding of trophic ecology in the hadal zone.  

Stable isotope analysis has been a useful tool in investigating the longer-term feeding 

ecology of many organisms (e.g., Peterson and Fry, 1987). Traditionally, this involves comparing 

differences in bulk tissue (generally white muscle) nitrogen isotopic composition, which display 

an ~2-4‰ 15N enrichment in consumer relative to prey for each increasing trophic level (e.g., Post, 

2002). This technique has been used to study four hadal lysianassoid amphipod morphotypes in 

the Kermadec and Tonga trenches. Bulk δ15N values in these amphipods ranged from 7.9 to 13.8‰ 

(Blankenship and Levin, 2007). Interpreting results of nitrogen (and carbon) isotope analysis 

requires information about the isotopic compositions of organisms at the base of the food web. 

The isotopic compositions at the base of the hadal food web have not been well-characterized. 

Therefore, in this study, amino acid compound-specific nitrogen isotope analysis (AA-CSIA, e.g., 

Popp et al., 2007; Choy et al., 2012) was used to investigate the trophic level of abyssal and hadal 

fishes. In this newer technique, the δ15N values of certain “trophic” amino acids, that fractionate 

with each trophic level (up to ~7‰ relative to source amino acids), are compared to those of 

“source” amino acids, that maintain relatively consistent δ15N values throughout the megafaunal 

food web, to estimate a trophic position (McClelland and Montoya, 2002; Popp et al., 2007; 

Chikaraishi et al., 2009; Hannides et al., 2009). Source amino acid values are known to change 

with depth in small, slowly settling particles, with increasing δ15N values at greater depths 

(McCarthy et al., 2007; Hannides et al., 2009). Consequently, source amino acid δ15N values can 

also provide information about the origin of nitrogen in animal’s food. 

The aims of this study were three-fold: 1) characterize the diet of the hadal snailfish through 

stomach contents analysis and compare it to the diets of abyssal species documented in the 
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literature; 2) compare trophic positions of abyssal and hadal fishes using compound specific 

isotope analysis of individual amino acids; and 3) explore the role of trophic interactions in 

structuring fish depth zonation at the abyssal-hadal boundary.  

 

Materials & Methods 

 

Fishes were collected using baited traps on cruises to the Kermadec and Mariana trenches in April-

May and November-December of 2014 respectively (Table 2.1). Traps, described elsewhere 

(Linley et al., 2016), were baited with mackerel (in nylon mesh to prevent feeding) and squid. Each 

captured fish was measured and weighed fresh. Sex was determined visually during dissections at 

sea. Further information on these collections including site maps can be found in Linley et al. 

(2016). 

 

Stomach Contents. Stomachs were dissected shipboard, weighed fresh, and preserved in 10% 

buffered formaldehyde. In the lab, stomachs were weighed whole, then contents were removed 

and weighed. While whole, each stomach was roughly scored on a fullness scale of 0 to 4, 0 

indicating an empty stomach, 1- less than half full, 2- half full, 3- more than half full, and 4- full. 

Fullness scores included the contribution of digestive mucus. Contents were sorted to discernible 

taxon and digestive state, a 1 to 4 index; 1- an undigested prey item, 2- some soft parts digested, 

3- most soft parts digested with skeleton intact, and 4- items that were very digested, with only a 

few hard parts remaining. A separate analysis of stomach contents using only items of the higher 

digestive states was conducted to investigate potential trap effects. If the composition of prey items 

eaten most recently, when the artificial trap environment was introduced, differed greatly from 

more highly digested items, this would demonstrate a bias of sampling technique. Prey items of 

each taxon were grouped by digestive state, counted, weighed, and photographed.  

Compositions of stomach contents are presented using four metrics. Percent frequency of 

occurrence (%F) shows the percentage of stomachs that had a certain prey type present. Percent 

numerical importance (%N) gives the proportion of a prey group compared to the total number of 

prey items examined for each species. Percent weight (%W) shows the gravimetric importance of 

a given prey group in relation to the total weight of all prey. These three indices were also used to 
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generate an index of relative importance (IRI), which sums the %N and %W multiplied by the %F 

(Pinkas, 1971). These values were totaled for all items and a %IRI is presented. Further analyses 

were conducted using the statistical programming platform R (R Core Team, 2013). The 

nonparametric Kruskal-Wallis test was used for statistical comparisons due to small sample sizes. 

Cumulative prey curves were generated using the R package vegan (random, 5000 permutations, 

Oksanen et al., 2016) to investigate sampling thoroughness. A model (Lomolino) was constructed 

to estimate the maximum number of prey items for each species. Composition of stomach contents 

between families were compared using analysis of similarities (ANOSIM) in vegan. Principal 

components analysis (PCA) plots were made in R using the prcomp function to investigate 

differences in prey composition between species (%N). Additional figures were produced using 

Microsoft Excel and the R package ggplot2 (Wickam, 2009).  

 

Isotope Analysis. At sea, white muscle samples were collected from the anterior portion of the 

epaxial muscle and flash frozen in liquid nitrogen. Tissues were stored at -80°C prior to preparation 

and lyophilized and ground for analysis. Roughly mid-size individuals from representative habitat 

depths of each species were selected. Bulk muscle tissue nitrogen and carbon isotope analyses 

were conducted with a mass spectrometer (DeltaXP) coupled with an elemental combustion 

system (Costech ECS 4010, MAT Conflo IV, ThermoFinnigan). Replicate measurements of 

individual samples were consistent within 0.12‰ for carbon (range 0.07–0.14‰) and 0.14‰ for 

nitrogen (range 0–0.21‰). Sample preparation for CSIA-AA followed methods detailed in 

Hannides et al. (2009) and Choy et al. (2012). The method involves: acid hydrolysis with 6 N HCl, 

filtration and cation exchange chromatography, esterification of the carboxyl terminus with 

isopropanol and acetyl chloride, trifluoroacetylation of amine groups with methylene chloride and 

trifluoroacetyl anhydride, solvent extraction, and redissolvation in ethyl acetate. δ15N values of 

individual amino acids were measured using a Delta V Plus mass spectrometer/Trace GC (gas 

chromatograph) with a GCC III combustion interface. Samples were analyzed in triplicate and 

measurements normalized to co-injected reference compounds norleucine and aminoadipic acid of 

known isotopic composition. When coelution of other compounds confounded norleucine and 

aminoadipic acid values, measurements were regressed against a suite of pure amino acids with 

known δ15N values prepared in the same process and analyzed before and after every triplicate 
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series of sample measurements. Instrumental accuracy averaged 0.4±0.3‰ (range 0.02–1.0‰). 

Standard deviations of δ15N values between triplicate runs ranged from 0.02 to 0.9‰ with an 

average of 0.3±0.2‰ for individual amino acids used in trophic position calculations. All δ15N 

values are presented in reference to atmospheric N2. 

Trophic positions were estimated according to the methods described by Chikaraishi et al. 

(2009) using the following equation, based on the update for fishes by Bradley et al. (2015).  

 

Trophic Position =  
δ15NtrophicAAs –  δ15NsourceAAs –  3.86

5.46
+ 1 

 

Weighted means (by error, e.g., Hayes et al. 1990) of source amino acids (lysine, 

phenylalanine) are compared to trophic amino acids (alanine, leucine, glutamic acid) as these were 

the most consistent measurements and according to the recommendations of Bradley et al. (2015). 

Glycine was excluded from the source amino acid calculations, contrary to the methods of Bradley 

et al. (2015), due to the co-elution of an unknown compound that could have confounded values. 

Beta (3.86±0.23) and TDF (trophic discrimination factor, 5.46±0.13) values for this equation were 

calculated using weighted mean differences between data-derived values of Bradley et al. (2015) 

considering the omission of glycine.  

 

Results  

 

Table 2.1. Collection Information (n = number of stomachs analyzed, n* = number of stomachs with prey 

items present). Ranges presented: Depth indicates capture depth. SL: Standard length, measured fresh with 

fish mass. Sex indicates number of individuals F: female, M: male, J: juvenile. Others were not sexed due 

to damage. Zoarcidae Gen et spp. includes individuals of the genera Pachycara and Pyrolycus. 

Trench Species n  n* Depth (m) SL (cm) Mass (g) 
Sex  

(F, M, J) 

Kermadec Notoliparis kermadecensis 38 37 6456–7554 12.9–29 13.6–230 18, 12, 3 

 Coryphaenoides armatus 4 2 3569–5112 50.6–78.6 576–1930 1, 2, 0 

 Spectrunculus grandis 10 6 3569–3865 26.9–43.9 106–532 0, 3, 5 

 Zoarcidae Gen et spp. 3 3 4817–4989 42–46.8 460–660 1, 2, 0 

Mariana Liparidae sp. nov. 29 29 6898–7966 10.5–28.8 8–160 14, 5, 7 

 Coryphaenoides yaquinae 1 1 6081 23 40 0, 0, 1 
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Stomach Contents of Hadal Liparids. Collection information is presented in Table 2.1 with 

individual sample details in Supplementary Table 2.1. The newly-discovered species of hadal 

liparid from the Mariana Trench, currently being described, will hereafter be referred to as the 

Mariana liparid or Mariana snailfish (further details in Linley et al., 2016). Thirty-eight Notoliparis 

kermadecensis stomachs were examined, 37 of which had prey items. Prey was present in all 29 

Mariana liparid stomachs examined. Prey accumulation curves, used to evaluate sampling 

sufficiency, (Figure 2.1) showed that the number of prey categories was likely beginning to 

plateau for both trenches, more so for the Mariana snailfish. A model (Lomolino) estimated 

asymptotes for these curves at 12.3 prey categories for the N. kermadecensis and 8.7 prey 

categories for the Mariana snailfish.  

Large amounts of digestive mucus were present in each stomach. Mucus was not included 

in prey item weight. Prey items and their composition of total stomach contents by %F, %N, %W, 

and %IRI are presented in Table 2.2. Fish remains include bone, eye lenses, scales, and vertebrae. 

Crustacean remains include digested exoskeleton pieces that could not be identified to a more 

specific taxon. Unidentified remains included crustacean or squid eggs found in one Mariana 

snailfish stomach.  

Amphipods were by far the most numerically and gravimetrically important prey item. 

Every liparid with prey in its stomach had eaten at least one amphipod. As many as 378 amphipods 

were found in one Kermadec liparid stomach (minimum 1), with as many as 226 in one Mariana 

liparid stomach (minimum 19). The average number of amphipods found in each stomach was 

96.59±71.07 for N. kermadecensis and 71.07±52.85 for the Mariana snailfish. Predatory 

amphipods of the genus Princaxelia were also found, albeit infrequently. Lysianassoid amphipods 

were not identified to higher taxonomic resolution, as morphological classifications are complex 

and likely in need of revision (Ritchie et al., 2015). Probable morphotypes from these depths in 

the Mariana and Kermadec trenches include Bathycallisoma (Scopelocheirus) schellenbergi, 

Hirondellea dubia, and H. gigas (e.g., France, 1993; Blankenship et al., 2006; Ritchie et al., 2015). 
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Figure 2.1. Prey accumulation curves for hadal liparids. Includes broad prey categories- brooding 

amphipods, amphipods with nematode parasites, and Princaxelia classified as amphipods. Mariana liparid 

in light grey, N. kermadecensis in black.  

 

Decapod remains were found in the majority of liparid stomachs from both trenches 

(62.16% of N. kermadecensis with food and 58.62% of the Mariana liparid). Decapods had not 

previously been found in the stomachs of hadal liparids, and snailfish have not yet been seen 

capturing decapods in situ. Most of the decapods were present as highly digested (state 4) remains, 

though whole individuals up to 8.5 cm total length were found in a few fish.  

Polychaete remains (of at least 20 individuals) were found in stomachs of liparids from the 

Kermadec Trench. Polychaetes are a relatively common, diverse, and characteristic hadal fauna 

(Kirkegaard, 1956; Jamieson, 2015). These remains are believed to be scale worms of the family 

Polynoidae, Pholoidae, or Sigalionidae. Members of the family Polynoidae are the most common 

hadal polychaete (Kirkegaard, 1956; Paterson et al., 2009). Polynoids have recently been imaged 

in the Kermadec Trench (Jamieson, 2015), and were collected on the same cruise as the liparids in 

this study (Shank et al. unpublished data), making this the most likely identification. Sigalionidae 

have also been found in trenches, but Pholoidae are not known to occur at hadal depths (Paterson 

et al., 2009). Notably, no polychaetes were found in the Mariana species, although their remains 

were present in 51.35% of stomachs from Notoliparis kermadecensis.  
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Table 2.2. above) Hadal liparid prey tables for all digestive states. From 37 Kermadec and 29 Mariana 

liparids with prey remains in their stomachs. Sample size (n) indicates the total number of prey items 

examined or the total weight of all prey items. below) Hadal liparid prey tables showing highly digested 

items (digestive states 3 and 4) only. 

 

 Kermadec Trench Mariana Trench 

 %F %N %W %IRI %F %N %W %IRI 

Amphipods (Lysianassidae) 100 95.48 84.63 95.73 100 97.26 87.66 87.74 

Amphipods (Pardaliscidae) 2.70 0.03 0.40 0.01 3.45 0.05 0.38 0.01 

Amphipods with Nematodes 48.65 1.14 0.77 0.49 3.45 0.05 0.00 0.00 

Brooding Amphipods 0.00 0.00 0.00 0.00 6.90 0.15 0.19 0.01 

Copepods 2.70 0.05 0.37 0.01 0.00 0.00 0.00 0.00 

Crustacean Remains 8.11 0.08 0.40 0.02 13.79 0.20 3.19 0.25 

Decapods 62.16 0.57 3.31 1.28 58.62 0.83 3.93 1.47 

Fish Remains  29.73 1.54 1.97 0.55 20.69 0.68 0.18 0.09 

Ostracods 2.70 0.08 0.01 0.00 0.00 0.00 0.00 0.00 

Polychaetes 51.35 0.57 5.08 1.54 0.00 0.00 0.00 0.00 

Squid 18.92 0.16 2.28 0.25 27.59 0.54 2.51 0.44 

Unidentified 21.62 0.30 0.79 0.13 17.24 0.24 1.97 0.20 
         

 n=37 n=3692 117.8 g  n=29 n=2046 110.4 g  

 

 Kermadec Trench Mariana Trench 

 %F %N %W %IRI %F %N %W %IRI 

Amphipods (Lysianassidae) 91.89 91.81 70.98 89.97 89.66 94.44 75.10 91.43 

Amphipods with Nematodes 2.70 0.17 0.01 0.00 3.45 0.14 0.01 0.00 

Crustacean Remains 8.11 0.25 1.01 0.06 13.79 0.56 6.89 0.62 

Decapods 62.16 1.74 8.42 3.80 58.62 2.36 15.16 6.18 

Fish Remains  29.73 3.39 4.17 1.35 20.69 1.94 0.38 0.29 

Polychaetes 51.35 1.65 12.83 4.47 0.00 0.00 0.00 0.00 

Squid 5.41 0.17 0.64 0.03 3.45 0.14 0.06 0.00 

Unidentified 18.92 0.83 1.95 0.32 6.90 0.28 3.43 0.15 
         

 n=37 n=1209 46.3 g  n=29 n=720 51.2 g  
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Fish remains were found relatively frequently (29.73% of Kermadec snailfish, 20.69% of 

Mariana stomachs). Remains included large scales of what appeared to be several species (possibly 

Melamphaeidae or Bathylagidae or very digested scales of large fishes), portions of eye lens, small 

vertebrae, and other bones. Some pieces of tissue from bait squid were found in the hadal liparid 

stomachs (18.42% of N. kermadecensis and 10.34% of Mariana snailfish), but other species of 

squid were also found. Three species were identified from beaks: Onychoteuthis sp., Walvisteuthis 

sp., and Magnapinna sp., the last a deep-sea benthopelagic squid (Vecchione and Young, 2006).  

A small number of other prey items were found, including a few calanoid copepods and 

ostracods in stomachs of N. kermadecensis. Both of these groups have been recorded at hadal 

depths (Vinogradova, 1962; Jamieson, 2015). Rocks were found in about a third of stomachs from 

both hadal liparids. Rocks were typically small; likely debris ingested during suction feeding or 

compacted sediment from digested amphipod guts. Some prey items could not be identified due to 

advanced digestion. Unidentified material made up a very small portion of the hadal liparid 

stomach contents (0.12% IRI for N. kermadecensis, 0.20% IRI for the Mariana liparid). 

Nematode parasites were found in 27.03% (17) of Kermadec liparid stomachs and 13.79% 

(6) of Mariana liparids. Amphipods with nematode parasites were more common in the Kermadec 

snailfish (47.37% of stomachs) than in the Mariana snailfish (3.45%). 42 total amphipods with 

nematodes in N. kermadecensis out of 3573 total amphipods were found, with only 1 of 1991 in 

the Mariana liparid. Details on nematode-parasitized amphipods collected from the Kermadec 

Trench concurrently with liparids in this study are provided by Leduc and Wilson (2016).  

Analysis of prey items in greater digestive states alone (3 and 4) revealed that amphipods 

still comprised the overwhelming majority of both hadal liparid diets (Table 2.2b). Highly 

digested amphipods were most likely consumed before the traps were deployed (maximum of ~20 

hours of bottom time before retrieval). Other prey items such as decapods, fish remains, and 

polychaetes (N. kermadecensis only), appear to be slightly more important dietary components 

when looking at only highly digested items (Table 2.2).  

No significant trend was found between percent stomach fullness (mass of stomach 

content: mass of fish) and depth of capture for either trench. However, there were trends in the 

number of prey items seen with depth. When standardized to the total mass of the fish, individuals 
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caught deeper in the Mariana Trench had more prey items in their stomachs (ANOVA, 26 df, 

F=8.10, p<0.01). In the Kermadec Trench, there was no significant trend (33 df, F=2.74, p=0.108).  

 

Stomach Contents of Abyssal Species. Sample sizes of abyssal fish collections in this study were 

too small to categorize the complete diets of abyssal species from the Mariana and Kermadec 

regions (Table 2.1). Although stomachs were collected from ten Spectrunculus grandis, only six 

of these had any prey remains present. These remains were all amphipods, in very low numbers 

(1–6). A few Zoarcidae Gen et spp. stomachs contained amphipods, fish remains, and rocks, 

however these data are too scant to allow broad conclusions. We found a comparatively diverse 

collection of prey in Coryphaenoides armatus, with contributions from amphipods, fish remains, 

decapods, polychaetes, and squid (Table 2.3). One Coryphaenoides yaquinae contained a large 

number of amphipods, possibly a result of collection location, the individual’s small size (juvenile, 

23 cm standard length), or the artificial food-fall trap environment. Trematode parasites were 

found in one Pachycara sp. and one Coryphaenoides armatus from near the Kermadec Trench. 

 

Table 2.3. Prey tables for abyssal species, including all digestive states. From collection of two C. 

armatus, one C. yaquinae, three zoarcids, and six Spectrunculus grandis with prey in stomachs.  

 Coryphaenoides armatus Coryphaenoides yaquinae 

 %F %N %W %IRI %F %N %W %IRI 

Amphipods 50.00 14.29 0.50 7.39 100.00 96.15 76.45 86.30 

Crustacean Remains 50.00 0.00 11.65 5.83 0.00 0.00 0.00 0.00 

Decapods 50.00 14.29 68.22 41.25 0.00 0.00 0.00 0.00 

Fish Remains 50.00 28.57 0.04 14.30 100.00 2.88 2.00 2.44 

Polychaete 0.00 0.00 0.00 0.00 100.00 0.96 21.55 11.26 

Squid 50.00 14.29 0.11 7.20 0.00 0.00 0.00 0.00 

Unidentified 50.00 28.57 19.49 24.03 0.00 0.00 0.00 0.00 
         

 n=2 n=7 27.6 g  n=1 n=104 2.0 g  

 

 Zoarcidae Gen et spp. Spectrunculus grandis 

 %F %N %W %IRI %F %N %W %IRI 

Amphipods 100.00 98.92 96.10 99.16 100.00 100.00 100.00 100.00 

Fish Remains     33.33 0.90 0.08 0.16 0.00 0.00 0.00 0.00 
         

 n=3 n=558 32.8 g  n=6 n=16 0.37 g  

 



25 

 

For a quantitative comparison of abyssal and hadal fish feeding, we chose the family 

Macrouridae, a common, often abundant, and relatively well-studied abyssal group, which have 

traditionally been considered characteristic abyssal species (e.g., Wilson and Waples, 1983). 

Although we acknowledge that this comparison likely underappreciates the importance of other 

families in the deep abyssal community, especially ophidiids, (Linley et al., 2017), the paucity of 

data limits their inclusion in a statistical assessment. Stomach contents data from Drazen et al. 

(2008) for C. armatus and C. yaquinae were compared to results from the present study. Small C. 

armatus (≤20 cm pre-anal fin length) were treated as a separate group from larger C. armatus, to 

account for ontogenetic changes in diet. The category crustacean remains include euphausids, 

mysids, isopods, barnacles, tanaids, and galatheid crabs. The contents of stomachs from abyssal 

macrourids were significantly different than those of the hadal liparids (ANOSIM, Bray-Curtis 

dissimilarity, 999 permutations, by %N: R=0.7916, p=0.001, by %W: R=0.8749, p=0.001). 

Although the C. armatus and C. yaquinae were collected in a different season at a different 

location, the macrourids that were collected in the present study showed relatively similar results. 

We therefore believe this to be an appropriate comparison. Principal components analysis revealed 

that the high abundance of amphipods (high %N), lack of piscivory (low %N of fish remains), and 

low overall prey diversity in the liparids drove the majority of differences seen in diet between the 

two groups (Figure 2.2). The hadal liparids had low PC1 scores and grouped closely along PC2 

whereas the abyssal macrourids had higher PC1 scores and were overall more scattered along both 

principal axes. 
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Figure 2.2. Principal components analysis comparing diet composition of hadal liparids and abyssal 

macrourids. Macrourid data from Drazen et al., 2008. Loadings for most important drivers of differences 

indicated with labeled black arrows. Comparison based on relative numeric abundance (%N) for each 

individual (n=15 C. armatus large, 16 C. armatus small (≤20 cm pre-anal fin length), 11 C. yaquinae, 37 

N. kermadecensis, 29 Mariana liparid). Excludes parasites. Coryphaenoides armatus (large - open squares, 

small – diamonds), C. yaquinae (closed squares), Notoliparis kermadecensis (open circles), Mariana liparid 

(closed circles) and Spectrunculus grandis (open triangles) shown.   

 

Isotope Analysis. Compound-specific nitrogen isotope analysis of amino acids provided 

additional information about trophic ecology of these deepest-living fishes. δ15N values of sixteen 

individual amino acids were determined for five species (n=3–4). Weighted means of δ15N values 

for source amino acids, trophic amino acids, and resulting trophic position estimates are presented 

in Table 2.4. All δ15N values for measured individual amino acids are available in the 

supplementary information (Supplementary Table 2.2). 
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Table 2.4. AA-CSIA Results. C. armatus, S. grandis, and N. kermadecensis from the Kermadec Trench, 

C. yaquinae and the Mariana liparid. Depth indicates capture depth (in meters), with individual standard 

lengths (SL) from fresh measurements. Sample numbers indicate HADES collection information. Standard 

deviations of weighted means of δ15N values (‰) for source (lysine, phenylalanine) and trophic (alanine, 

leucine, glutamic acid) amino acids and trophic positions are presented from three replicate measurements. 

Species Sample # Depth (m)  SL (cm) δ15NsourceAAs δ15NtrophicAAs 
Trophic 

Position 

C. armatus 100038 3865 50.6 3.96±0.41 30.40±0.19 5.14±0.17 

 100363 3601 78.6 3.95±0.36 30.34±0.12 5.13±0.11 

 100367 3569 69.0 5.71±0.31 32.26±0.22 5.16±0.18 

C. yaquinae 200008 4441 42.6 2.55±0.32 28.69±0.25 5.08±0.20 

 200151 5255 30.6 2.80±0.29 28.82±0.20 5.06±0.17 

 200152 5255 77.3 3.80±0.17 29.98±0.18 5.09±0.12 

S. grandis 100060 4303 40.4 5.47±0.33 27.44±0.23 4.32±0.19 

 100377 3569 33.8 5.60±0.46 30.78±0.15 4.90±0.15 

 100364 3601 29.0 6.32±0.19 30.51±0.13 4.72±0.11 

N. kermadecensis 100175 7515 18.3 8.19±0.50 28.85±0.22 4.08±0.20 

 100310 7251 21.0 8.77±0.30 28.89±0.21 3.99±0.17 

 100171 7515 18.3 7.29±0.43 29.75±0.19 4.41±0.17 

Liparidae sp. nov. 200039 7497 21.0 5.99±0.31 29.81±0.27 4.66±0.20 

 200070 7841 17.2 6.78±0.20 29.11±0.35 4.38±0.17 

 200033 7495 12.6 5.89±0.33 28.76±0.22 4.48±0.18 

 200041 7497 10.5 5.77±0.18 28.15±0.29 4.39±0.15 

 

Weighted means of δ15N values of source amino acids were significantly different between 

species (Kruskal-Wallis rank sum test, 4 df, p=0.01); higher in hadal species (8.09±0.75‰ 

Kermadec liparid, 6.11±0.46‰ Mariana liparid) than for abyssal species (4.54±1.01‰ C. armatus, 

3.05±0.66‰ C. yaquinae, 5.79±0.46‰ S. grandis; Figure 2.3). The ophidiid, Spectrunculus 

grandis, from the Kermadec collection had an intermediate source amino acid value of 

5.79±0.46‰ (marginally higher than macrourids, Kruskal-Wallis rank sum test, 1df, p=0.071, 

lower than liparids, p=0.087). Source amino acid values were higher in the Kermadec liparid than 

the Mariana liparid (p<0.05). Bulk tissue δ15N values ranged from 12.3 to 15.5‰ overall, with an 

average range of 1.1‰ between individuals of the same species (averages: C. armatus 13.6±0.8‰; 

C. yaquinae 12.6±0.8‰; Mariana liparid 13.7±0.5‰; N. kermadecensis 13.4±0.7‰; S. grandis 

15.0±0.8‰; Figure 2.4).  
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Figure 2.3. δ15N values (weighted means) of source amino acids (lysine, phenylalanine) by capture depth. 

Error bars indicate standard deviations between three runs. Capture region and species labeled for each 

sample group. Coryphaenoides armatus (open squares), C. yaquinae (closed squares), Notoliparis 

kermadecensis (open circles), Mariana liparid (closed circles) and Spectrunculus grandis (open triangles) 

shown.   

 

Trophic positions (Table 2.4) were estimated from the weighted means of δ15N values of 

source and trophic amino acids according to Bradley et al. (2015) and were found to be 

significantly different between families (ANOVA, 4 df, F=17.41, p<0.001). For hadal liparids, 

trophic levels were estimated at 4.15±0.22 for N. kermadecensis and 4.48±0.13 for the Mariana 

snailfish. Trophic level estimates were significantly higher for macrourids, 5.14±0.01 for 

Coryphaenoides armatus and 5.08±0.02 for C. yaquinae, than for liparids or S. grandis (Kruskal-

Wallis rank sum test, 1 df, p<0.05). The abyssal ophidiid, Spectrunculus grandis had an 

intermediate trophic level (4.65±0.30). No significant difference was found in trophic positions 

between trenches for liparids (p=0.16), suggesting that the species play similar roles in their 

respective trenches.  
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Most of the weighted means of source and trophic amino acid δ15N values were highly 

consistent between samples of the same species (Figure 2.3). Trophic position estimates also 

varied little within species (Table 2.4). The δ15N values of one C. armatus sample (#100367) did 

not cluster as closely as the other species. While the absolute δ15N values of this sample differed, 

the estimated trophic position was very similar to the other two samples.  

 

 
Figure 2.4. Source amino acid δ15N values (weighted means of lysine and phenylalanine) compared to 

those of bulk tissue from the same individuals. Error bars indicate standard deviation between triplicate 

runs. Coryphaenoides armatus (open squares), C. yaquinae (closed squares), Notoliparis kermadecensis 

(open circles), Mariana liparid (closed circles) and Spectrunculus grandis (open triangles) shown.   
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Discussion 

 

Stomach Contents. We describe the feeding habits of two hadal snailfishes from the Mariana 

Trench and Kermadec Trench. Both snailfishes seem to be predatory. Amphipods were the most 

abundant prey items in stomach contents of both species. This study is the first to document that 

hadal liparids also feed on decapods and polychaetes. The finding of decapods, large predatory 

amphipods (Princaxelia), and a few other large lysianassoid amphipods (up to 7.6 cm in size) in 

the diet of hadal snailfishes suggests that liparids can catch fast-swimming animals and are the top 

predators known in both trenches. The hadal liparids from both trenches have a highly developed 

and strongly muscularized pharyngeal jaw apparatus to facilitate processing of large, live prey 

(Gerringer and Linley, unpublished data). Polychaetes were present in stomachs of Notoliparis 

kermadecensis from the Kermadec Trench although they were not found in the Mariana liparid. It 

is possible that they are not common and/or not present at hadal depths in the Mariana Trench, that 

they are present but not eaten by liparids, or that they are present and eaten but missed in this 

collection. The published literature conflicts on whether or not these polychaetes have been 

collected from the Mariana Trench (Kirkegaard, 1956; Paterson et al., 2009; Gallo et al., 2015; 

Jamieson, 2015).  

Some fish remains and squid beaks were found in stomachs of both hadal liparid species, 

however, we do not believe squid and fish are captured as live prey. Fish and squid remains found 

in this study appeared to be from species not known from the hadal zone, further suggesting that 

these fishes were consumed as carrion. The relative sizes of the squid and the snailfishes also 

indicate that these remains were ingested after dying. The morphology of the hadal liparid jaw, 

with small palatine teeth, also makes it unlikely that hadal snailfishes are catching live fish prey 

(Nielsen, 1964). Many of the squid and fish remains were found surrounded by, even thoroughly 

embedded with, large numbers of amphipods. The hadal snailfishes were likely targeting swarms 

of amphipods that were feeding on squid or fish remains. This behavior has been seen several 

times in video observations by Linley et al. (2017), who also suggest that ingestion of carrion is 

relatively infrequent and probably incidental in hadal liparids. 

Prey accumulation curves suggest that our sampling effort likely captured much of the 

diversity of the diet of the Mariana Trench liparids. However, our limited number of specimens 
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probably prevented us from describing the complete diet of the Kermadec Trench liparids. Trap 

effects have not confounded the overall trends described in this study. Amphipods also made up 

the majority of highly digested prey items. High proportions of amphipods were also found in both 

the N. kermadecensis holotype (10 amphipods) and paratype (16 amphipods) collected by trawl 

(not by trap) on the Galathea expedition (Nielsen, 1964).  

Amphipod abundance increases with depth in the hadal zone (Jamieson, 2015), suggesting 

a potential advantage to predatory fishes descending into the trench. The increase in number of 

prey items with depth of capture in the diet of the Mariana liparid could suggest that in the Mariana 

Trench amphipods were increasingly abundant or available with increasing depth. It is possible 

that the Mariana amphipod distributions or availability contribute to the relatively deeper 

distribution of the Mariana liparid (Linley et al., 2016), but greater sample sizes across the full 

depth range of these species are needed before firm conclusions can be reached. 

Our principal components analysis of stomach content composition supports the hypothesis 

that there are indeed differences in feeding habits between the abyssal macrourids and hadal 

liparids. According to stomach contents analysis, hadal liparids are more selective predators, 

clustering tightly in the principal components analysis. The high degree of scatter in the macrourid 

data show that these abyssal species have varied generalist diets and rely heavily on carrion and 

squid (Drazen et al 2008). The few macrourid individuals available for stomach contents analysis 

in this study support this trend. With limited numbers of species and individuals available, we were 

not able to fully characterize the diets of abyssal species for comparison to the hadal community.   

Fortunately, a few existing studies allow for qualitative comparison of hadal fish feeding 

ecology to that of other abyssal families. Crustacean, gastropod, polychaete, and detritus remains 

were observed in radiographs of three specimens of S. grandis (Uiblein et al., 2008). A more 

detailed stomach contents analysis of S. grandis (n=9, 2000–2500 m collection depth), found a 

mixed diet (actinozoans, polychaetes, amphipods, tanaids, mysids, euphausids, decapods, 

cephalopods, echinoderms, chateognaths, and fish fragments), with the largest contributions from 

epibenthic fauna (Mauchline and Gordon, 1984). Very few studies exist on the feeding ecology of 

zoarcids (e.g., Ferry, 1997), which have representative species at upper hadal depths (Linley et al., 

2016). One deep-sea zoarcid, Lycodes atlanticus, was found to rely on benthic invertebrates, with 

a diet of sponges, polychaetes, gastropods, pycnogonids, ostracods, isopods, amphipods, and 
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ophiuroids (n=34, 723–2251 m collection depth, Sedberry and Musick, 1978). There are other 

abyssal fish taxa that reach near-hadal depths that could have potentially colonized trenches. One 

such group are the Chlorophthalmoids (Order Aulopiformes), including the deep-sea tripodfishes, 

Ipnopidae. Bathypterois longipes, B. grallator, and B. phenax stomach contents were found to 

contain mostly crustaceans (copepods, amphipods, decapods, ostracods, and mysids, collection 

depths 1239–5345 m) suggesting that these are epibenthic crustacean feeders (Crabtree et al., 

1991). Other members of this order are believed to rely on the benthic food web, with polychaetes, 

bivalves, and copepods making up the majority of their stomach contents (Ipnops murrayi, n=43, 

1239–4539 m collection depths, Crabtree et al., 1991). These results suggest a potentially higher 

diversity of diet components than seen in hadal liparids. It is possible that these abyssal species 

with less-specialized feeding have had less selective pressure to descend far into hadal trenches.  

Investigations of synaphobranchid eel diet showed carrion to be of significant importance, 

while amphipods did not contribute (Merrett and Domanski, 1985; Jones and Breen, 2014). This 

tendency towards scavenging is supported by a functional morphology analysis of 

Synaphobranchus brevidorsalis and Ilyophis brunneus (Eagderi, et al., 2016), shallower 

representatives of abyssal genera. Synaphobranchids at abyssal depths are thought to rely on a diet 

of largely dead or dying pelagic species and have been shown to wait for larger scavengers to tear 

carrion, making it more accessible (Jamieson et al., 2011a). While benthic biomass of small 

crustaceans such as amphipods may increase in the hadal zone, the occurrence of large carrion 

falls would not be a function of depth (Linley et al., 2017). Perhaps this fact and the lack of large 

scavengers such as sharks have resulted in little selective pressure for these eels to colonize the 

hadal zone. Future study on abyssal ophidiids and zoarcids, and other deep abyssal taxa 

(Synaphobranchidae, Ipnopidae) will be needed to fully characterize this relationship. 

 

Isotope Analysis. The δ15N values of source amino acids can be used to trace origins of nutrient 

input to the hadal zone. This input can be thought of in two major pathways; first—sinking 

particles that slowly descend to hadal depths and organic material that accumulates through 

downslope transport due to trench topography and seismic activity, and second—organisms that 

rapidly sink after death in overlying waters. Both sources ultimately come from the euphotic zone, 

however processing times and mechanisms are distinct for each. This has important implications 
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for the isotopic compositions of source amino acids from the two pathways. Large carrion falls 

will sink quickly, carrying with them the isotopic compositions of the feeding depth of the carrion. 

We can therefore consider input from carrion as derived from the euphotic zone with source amino 

acid δ15N values that are comparatively low representing the primary producers at the base of the 

food web (Hannides et al., 2009). Lower source amino acid δ15N values in the macrourids are 

consistent with a more upper ocean-derived food source, with larger input of fast-sinking carrion. 

These lower values support the reliance on fast-sinking carrion found previously (Drazen et al., 

2008). Conversely, small particles will be reprocessed as they sink, becoming increasingly 

enriched in 15N with depth through the multiple microbial trophic interactions that occur 

throughout this long descent (Hannides et al., 2013). Those organisms that are more closely tied 

to the benthic food web (that consume detritivores or their primary and secondary predators) will 

have higher source amino acid δ15N values reflecting that relationship. Particles that have followed 

the slow sinking pathway become the primary base of the benthic food web, although this is not 

always the case if there are significant inputs of rapidly sinking larger particles (e.g., after a spring 

bloom) which could have lower source amino acid δ15N values (McCarthy et al., 2007). The 

liparids with higher weighted mean source amino acid δ15N values appear more directly connected 

to the benthic hadal food web, where nutrient input is primarily sinking particles. 

The ophidiid, S. grandis, had higher δ15N values in source amino acids relative to the 

abyssal macrourid, C. armatus, collected from a similar depth in the same region, suggesting a less 

surface-derived food source. It is therefore likely that S. grandis is more closely dependent on the 

benthic food web, supported by the few stomach contents data available in the present study and 

in the literature (Mauchline and Gordon, 1984; Uiblein et al., 2008). The source amino acid values 

may be lower than in the liparids because S. grandis occasionally feeds on carrion, as seen in some 

video observations (Janßen et al., 2000; Henriques et al., 2002;  Kemp et al., 2006; Cousins et al., 

2013b). Source amino acid δ15N values from N. kermadecensis collected from the Kermadec 

Trench were slightly higher than those of the Mariana Trench liparid. The δ15N values of the 

isotopic baseline may therefore be higher in waters overlying the Kermadec Trench. This could be 

a result of differences in sources of nitrate (with different δ15N values) to waters in these 

environments, the extent of nitrate utilization by phytoplankton in these regions (Waser et al., 
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1998; Sigman et al., 2009), or nitrogen fixation dominating the nitrogen source of phytoplankton 

(Montoya et al., 2002; Hannides et al., 2009). 

Our results also suggest that conclusions from bulk tissue N isotope measurements should 

be drawn cautiously for hadal organisms. It is well documented that shifts in source amino acid 

isotope values can strongly influence the interpretation of bulk tissue δ15N values (e.g., Hannides 

et al. 2009; Choy et al., 2015; Nielsen et al., 2015). In our study, fishes with the highest bulk tissue 

δ15N values (N. kermadecensis, Mariana liparid; Figure 2.4) did not have the highest trophic 

positions, highlighting the limitations of drawing conclusions from bulk tissue alone. Amino acid 

specific analyses show that the higher bulk tissue δ15N values in hadal liparids are due to high 

values in the ‘isotopic baseline,’ rather than trophic position alone. These results further 

demonstrate the value of the compound-specific method for isotope measurements of individual 

amino acid, particularly in systems like hadal trenches, where the base of the food web is extremely 

difficult to determine and therefore is poorly characterized. 

This study provides the first trophic position estimates for fishes from the hadal zone. 

Based on trophic position (~4) and stomach contents, liparids are likely the top predators below 

the abyssal-hadal boundary. Our results suggest that hadal amphipods are at approximately trophic 

level three, which follows previous analysis, although there is a large degree of variation in 

amphipod diet (Blankenship and Levin, 2007). The trophic level of liparids is also relatively high, 

partially due to input from predatory crustaceans. High trophic levels in macrourids support 

previous findings that documented macrourid reliance on small fishes and squid, as well as large 

carrion falls (Drazen et al., 2008). The higher source amino acid value in one C. armatus could 

suggest a smaller contribution of upper-ocean carrion for that individual. 

 

Fishes in the Hadal Food Web. Our findings on the feeding ecology of hadal fishes contribute to 

a new understanding of trophic interactions in the deepest seas. Where present (e.g., Kermadec, 

Mariana, Japan, Peru-Chile trenches), hadal snailfishes are the top known predators of the upper 

hadal zone. These fishes suction feed on mainly amphipods, though they also catch predatory 

crustaceans such as decapods and Princaxelia amphipods. Some hadal liparids will also eat 

polychaetes. Hadal amphipods are known to have extremely diverse prey, including carrion, 

urochordates, ascidians, salps, diatoms, detritus, polychaetes, and copepods (Blankenship and 
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Levin, 2007) and are even known to cannibalize one another in an artificial trap environment 

(Ingram and Hessler, 1983). The amphipods obviously make up an important part of the hadal 

food web, (Blankenship and Levin, 2007) and clearly are the most important prey of hadal 

snailfishes.  

We are a long way from a complete understanding of the energetic pathways at work in the 

hadal zone. Deep-sea trenches are still relatively unexplored, and undiscovered species and 

interactions probably outnumber the known. Our understanding of the hadal community is heavily 

biased by gear type, as the difficulties and high costs of sampling at such high hydrostatic pressures 

favor the use of free-vehicle cameras and traps and the study of bait-attending fauna (e.g., Jamieson 

et al., 2011c). Even if we had a thorough understanding of hadal community structure, construction 

of a hadal food web is not straightforward. We found evidence for variation in trophic interactions 

between trenches, such as a higher prey diversity in liparids from the Kermadec Trench as 

compared to those in the Mariana Trench. A common hypothesis for inter-trench variability is that 

productivity of surface waters overlying the trench will affect the community below. The extent 

of this relationship and the effects of downslope funneling and organic matter accumulation due 

to trench topography have yet to be fully characterized (e.g., Itou et al., 2000; Ichino et al., 2015). 

Further, the depth-related changes in community structure, present in most groups, mean that 

trophic interactions at 6,000 m are likely different than those at 9,000 m in the same trench. This 

has been demonstrated in some hadal amphipods (Blankenship and Levin, 2007), but likely spans 

to other taxa as well. For example, the probable lack of fishes below ~8,200 m (Yancey, et al., 

2014) would of course lead to a very different food web in the lower reaches of the trench than 

that seen in the upper hadal zone. More investigation of these trophic relationships and on 

processes in the environments overlying hadal trenches will be needed to understand the hadal 

food web and the role of trenches in global biogeochemical cycling. 

 

Conclusions 

 

This study provides the first in depth investigation of the trophic ecology of fish species in 

the hadal zone, using multiple approaches. Hadal liparids are clearly predatory, relying heavily on 

amphipods as a food source, as seen in stomach contents analysis. This is supported by video 
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observations of hadal liparids in situ, which showed high numbers of predatory feeding events in 

hadal liparids (Fujii et al., 2010; Jamieson et al., 2009b; Linley et al., 2016). High δ15N values of 

source amino acids also suggest that hadal liparids are closely tied to the benthic food web. 

Macrourids from the abyss near the Kermadec and Mariana trenches displayed a high degree of 

trophic plasticity (stomach contents analysis diversity, in agreement with previous findings), a 

close linkage to the pelagic food web (lower δ15N values of source amino acids), and a high trophic 

level of >5, further suggesting the importance of both carrion and live fish and squid to their diet. 

Although more research is needed on other abyssal groups (Ophidiidae, Zoarcidae, 

Synaphobranchidae) our results demonstrate differences in feeding strategy between characteristic 

abyssal species (Family Macrouridae) and dominant endemic hadal species (Family Liparidae).  

Trophic interactions may be important evolutionary drivers of depth zonation patterns in 

abyssal and hadal fishes. At the upper edges of the trench, the hadal fish community resembles 

that found on the abyssal plain, with macrourids, ophidiids, zoarcids, and synaphobranchids. From 

depths around 6,500–8,200 m, in a number of trenches, however, the fish fauna seems to shift to a 

dominance by the family Liparidae (Jamieson et al., 2011c; Linley et al., 2016). While scavenging 

and piscivorous fishes do not extend far into the hadal zone, suction-feeding predatory fishes are 

dominant. This community shift at the upper edges of the trench may, in part, relate to a difference 

in trophic strategy. The increased amphipod biomass in the hadal zone compared to the abyss may 

provide little benefit for macrourids and synaphobranchids to descend to hadal depths, but large 

advantage for suction-feeding fishes such as liparids. This may be one of the reasons why liparids 

are so notably successful in many hadal trenches. 
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CHAPTER III 

Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-

evaluation of depth-related changes 

 

Abstract 

 

Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of 

whole animal metabolic rate, particularly in inaccessible systems such as the deep sea. Previous 

studies have been conducted at atmospheric pressure, regardless of organism habitat depth. 

However, maximum reaction rates of some of these enzymes are pressure dependent, complicating 

the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-

related rate (Vmax) changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase 

(PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH Vmax decreased with pressure for the 

two shallow species, but, in contrast to previous findings, it increased for the four deep species, 

suggesting evolutionary changes in LDH reaction volumes. MDH Vmax increased with pressure in 

all species (up to 51±10 % at 600 bar), including the tide pool snailfish, Liparis florae (activity 

increase at 600 bar 44±9 %), suggesting an inherent negative volume change of the reaction. PK 

was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 600 

bar), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO 

counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, 

Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities 

according to these pressure-related rate changes and new data from seven abyssal and hadal species 

from the Kermadec and Mariana trenches. Results show that pressure-related rate changes are 

another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in 

addition to factors such as temperature and body mass, with abyssal and hadal species. With the 

pressure effects taken into consideration, metabolic enzyme activities can still be useful proxies 

for species living at greater habitat depths. Intraspecific increases in activities of tricarboxylic acid 

cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest 

improved nutritional condition for individuals deeper in the hadal zone, likely related to food 

availability. These new data demonstrate previously unknown pressure effects on enzyme reaction 
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rates and inform the discussion of factors controlling metabolic rate in the deep sea, including the 

visual interactions hypothesis and extend published trends to the planet’s deepest-living fishes.  

 

Introduction 

 

Certain citric acid cycle and glycolysis enzymes have been commonly used as proxies for whole-

animal metabolic rate and activity (Childress and Somero, 1979; Sullivan and Smith, 1982; 

Dickson et al., 1993; Vetter and Lynn, 1997; Hickey and Clements, 2003; Dahlhoff, 2004; 

Friedman et al., 2012; Torres et al., 2012; Ombres et al., 2011; Condon et al., 2012; Drazen et al., 

2015; Saavedra et al., 2015). This technique has been particularly valuable in deep-sea systems, 

due to the logistical constraints of traditional measurements of metabolic rate, such as the 

monitoring of oxygen consumption, although a few of these data exist at great depths (e.g., Smith 

et al., 1978; Hughes et al., 2011; Drazen and Yeh, 2012). Four major metabolic enzyme activities 

(maximum reaction rate, Vmax) are typically used to estimate metabolic rate—lactate 

dehydrogenase (LDH), pyruvate kinase (PK), citrate synthase (CS), and malate dehydrogenase 

(MDH). LDH, which catalyzes the conversion of lactate to pyruvic acid in glycolysis, and PK, 

which catalyzes an ATP-yielding step in glycolysis, are used as proxies to indicate burst 

locomotory capability and anaerobic capacity (Childress and Somero, 1979; Dahlhoff, 2004). The 

activities of the tricarboxylic acid (TCA) cycle enzymes, CS and MDH, are applied as indicators 

of routine metabolic rate and aerobic activity (Somero and Childress, 1980; Childress and Thuesen, 

1992; Thuesen and Childress, 1993).  

The most common use of enzyme activities in deep-sea animals has been to evaluate 

changes in metabolism with depth (e.g., Childress and Somero, 1979; Sullivan and Somero, 1980; 

Siebenaller et al., 1982). Many taxa such as pelagic cephalopods, shrimps, and fishes, as well as 

benthic fishes, show declines in both measured respiration rates and metabolic enzyme activities 

in white and red muscle (e.g., Childress and Thuesen, 1992; Thuesen and Childress, 1993; Drazen 

et al., 2015). These declines are hypothesized to reflect a decrease in metabolic rate, which has 

been attributed to a reduction in food supply with depth (Smith et al., 1978; Siebenaller and 

Yancey, 1984) and/or reduced predator-prey interaction distances with declining light levels, 

known as the visual interactions hypothesis (Childress, 1995; Seibel and Drazen, 2007). The latter 
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hypothesis suggests that in dark environments, where interaction distances are short, there is 

limited selective pressure for high locomotory capacities, explaining the declines in metabolic 

activities with depth that are not otherwise accounted for by temperature and body mass. This 

hypothesis was recently supported by an analysis of 61 species of benthic and benthopelagic fishes 

ranging from 50 to 3180 m depth, using a standardized methodology of measuring metabolic 

enzyme activities (Drazen et al., 2015). 

Conclusions of these studies rely on the assumptions not only that metabolic enzyme 

activities are indeed indicators of metabolic rate, but also that rates of these metabolic enzymes at 

atmospheric hydrostatic pressure reflect those at in situ pressures. However, the effects of pressure 

on enzyme catalysis can be non-linear and complex (reviewed by Mozhaev et al., 1996), calling 

into question the assumption that maximum reaction rates would not change with pressure. Half-

saturation constants (Km) for NADH of A4-lactate dehydrogenase (originally termed M4), which 

catalyzes the conversion of pyruvate to lactate to convert NADH to NAD+ in glycolysis, have been 

shown in a number of deep-sea fish species to be either insensitive or less sensitive to pressure 

than orthologs from shallow species (Siebenaller and Somero, 1979; Somero and Siebenaller, 

1979; Siebenaller, 1984; Dahlhoff et al., 1990). A similar insensitivity was discovered in other 

important metabolic enzymes of deep-sea fishes—MDH (Dahlhoff and Somero, 1991) and 

phosphofructokinase (PFK; Moon et al., 1971a). These types of studies have suggested that 

pressure insensitivity in deep-sea species comes at the cost of a reduced catalytic efficiency 

(Somero and Siebenaller, 1979; Hennessey and Siebenaller, 1985). Enzyme concentration can be 

increased to offset the effects of lower catalytic efficiencies (capacity adaptations), so tissue-

specific maximum reaction rate (Vmax) has not been hypothesized to change with pressure in fishes. 

However, at least 25 enzymes are known to exhibit increased maximum activity under pressure. 

Most of these have been isolated from piezophilic microbes (Eisenmenger and Reyes-De-

Corcuera, 2009; Luong and Winter, 2015), but at least one animal enzyme has this property: a 

cellulase from the hadal amphipod Hirondellea gigas reportedly increased activity at 100 MPa 

(their habitat pressure in the Mariana Trench) relative to atmospheric pressure (Kobayashi et al., 

2012).  

In other contrasting studies, other enzymes appear to lack intrinsic pressure adaptations or 

are only partially adapted, and so may require protection from pressure by factors extrinsic to the 
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protein, i.e., other cellular molecules. For example, Km of ADP (but not Vmax) for PK in both 

shallow and deep-sea fish and anemones was found to be equally, and greatly, inhibited by 

pressure, such that higher ADP concentrations than in routine assay buffers are needed to achieve 

Vmax (Yancey et al., 2001, 2004). However, in the presence of the osmolyte trimethylamine oxide 

(TMAO)—which is high in the deep-sea animals from which PK was tested (Kelly and Yancey 

1999)—Km of ADP was largely restored under pressure. TMAO was designated a 'piezolyte' 

('pressure solute') for this property (Martin et al. 2002), which arises from TMAO's enhancing 

effects on water structure (reviewed by Yancey and Siebenaller 2015). Unlike PK, LDHs appear 

to rely on both intrinsic and extrinsic adaptations. As noted earlier, Km of NADH for LDH from 

many deep-sea fishes is more resistant to pressure than for shallow orthologs, but is still somewhat 

sensitive. However, full counteraction of this residual pressure inhibition was found with TMAO 

at in situ concentrations (Gillett et al. 1997; Yancey et al. 2004). Despite these and findings for 

other taxa, the effects of pressure on enzyme maximum reaction rates (as opposed to Km) have 

been considered negligible in studies of metabolic rate. Moreover, enzyme kinetic responses to 

pressure in fishes at in situ habitat pressures greater than 40 MPa have not been explored. 

To inform the discussion of metabolic rate declines with depth, we use recent collections 

from the Mariana and Kermadec trenches to extend the published depth range of metabolic enzyme 

activities for fishes from ~3,000 to almost 8,000 m (in situ pressure ~80 MPa), approaching the 

likely depth limit for bony fishes (Yancey et al., 2014; Linley et al., 2016). The inclusion of hadal 

species in this analysis also allows the exploration of two additional factors that may affect 

metabolic rates besides light levels, namely (as noted earlier) food availability as well as 

hydrostatic pressure. In terms of food supply, although the deep sea is generally considered a food-

limited environment, the topographies of hadal trenches are hypothesized to facilitate the 

accumulation of organic matter (George and Higgins, 1979; Danovaro et al., 2003; Jamieson et 

al., 2011; Ichino et al., 2015). This is comparable to submarine canyons, which channel organic 

material, resulting in high faunal abundance, biomass and diversity (e.g., De Leo et al., 2010). In 

subducting trenches, downslope transport is enhanced by seismic activity and internal tides, 

resulting in the deposition of material into the trench (Itou et al., 2000; Oguri et al., 2013; 

Turnewitsch et al., 2014). The depositional characteristic of the hadal zone likely allows trenches 

to support higher biomass than the surrounding abyss (Wolff, 1970; Beliaev, 1989; Jamieson et 
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al., 2010), as seen in increased amphipod (Jamieson, 2015) and meiofaunal (Danovaro et al., 2002; 

Itoh et al., 2011) abundances with depth and high rates of sediment-community oxygen 

consumption (Glud et al., 2013; Wenzhöfer et al., 2016). This increased food availability may be 

a strong evolutionary driver to inhabit greater depths for a number of animals, particularly for the 

amphipod-feeding hadal snailfishes (Linley et al. 2017; Gerringer et al., 2017; Chapter II). 

According to previous analyses, neither food availability nor pressure is expected to affect 

metabolic rate in the deep sea interspecifically (reviewed by Seibel and Drazen, 2007). The hadal 

zone offers an ideal site to explore the effects of both of these factors using a standardized protocol.  

Here, we investigate pressure-related rate changes in three metabolic enzymes from deep- 

and shallow-adapted fishes. We then apply the pressure-related rate changes in metabolic enzyme 

activities to published and new results measured at atmospheric pressure, allowing a re-evaluation 

of the depth trends for metabolic proxies. This study extends a large existing dataset of metabolic 

enzyme activities to much greater depths with new data on abyssal and hadal species and elucidates 

depth-related trends in metabolic rate in fishes in light of pressure-related changes in maximum 

enzyme reaction rates.  

 

Materials & Methods 

 

Sample Collection. Abyssal and hadal fishes were collected by free-vehicle trap baited with 

mackerel near and from the Kermadec (Apr–May, 2014) and Mariana trenches (Nov–Dec, 2014). 

Further details on collection sites and traps are provided by Linley et al. (2016). Liparis florae, the 

tidepool snailfish, was collected from Puget Sound near Friday Harbor, WA by trawl and hand net 

(July, 2014). A shallower-living (550 m) cold adapted species was also included, Paraliparis 

devriesi Andriashev 1980 collected by trawl from Antarctica (Andvord Bay, FjordEco Cruise), 

where it lives at a habitat temperature of ~ -1°C, comparable to the hadal environment. Whole fish 

were kept on ice or in a cold room and processed as quickly as possible. White muscle samples 

were dissected from the anterior portion of the epaxial muscle. Red muscle and gelatinous tissues 

were carefully avoided. Tissues were frozen immediately in liquid nitrogen and stored at -80°C 

prior to analysis in the lab.  
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Enzyme Activities at Atmospheric Pressure. For comparison to published studies, maximum 

activities of four metabolic enzymes—citrate synthase (CS), lactate dehydrogenase (LDH), malate 

dehydrogenase (MDH) and pyruvate kinase (PK)—were measured using a standard unpressurized 

spectrophotometric method described by Condon et al. (2012) and Drazen et al. (2015), updated 

from Srere (1969) and Yancey and Somero (1978). Assays were conducted on white muscle 

homogenates ground in 10 mM tris(hydrozymethyl)aminomethane hydrochloride (Tris-HCl) 

buffer (pH 7.55 at 10°C) at a ratio of 1:10. Two tissue samples from each fish were assayed in 

duplicate. Although habitat temperature for these species is colder (down to -1.0°C), assays were 

conducted at 10°C to allow for comparison to published values (e.g., Drazen et al., 2015). 

Chemicals for all assays were sourced from Sigma-Aldrich. Collection information for the samples 

analyzed at atmospheric pressure are presented in Table 3.1.  

 

Table 3.1. Collection information. Standard lengths and mass are taken from fresh fish. N indicates the 

number of individuals with measured CS, LDH, MDH, and PK activities. Sex indicates the number of male, 

female, and immature individuals. Others not sexed due to damage. Sex was determined visually.  

Species Location Depth (m) n SL (cm) Mass (g) Sex 

Liparidae       

   Liparis florae  Puget Sound ~1–30 5 8.2–14.6 6.7–35.3 0, 0, 0 

   Liparidae sp. nov.   Mariana  6961–7929 16 13.7–26 8–160 4, 8, 2 

   Notoliparis kermadecensis  Kermadec  6500–7500 20 13.9–31.5 26–230 5, 11, 1 

   Paraliparis devriesi Andvord Bay 550 3 ~12–18 - - 

Macrouridae       

   Coryphaenoides armatus  Kermadec  3500–4000 4 51.9–84.6 576–3130 2, 0, 0 

   Coryphaenoides yaquinae  Kermadec  5000 1 70.5 1344 0, 0, 0 

   Coryphaenoides yaquinae Mariana  4441–6081 4 23.8–78.4 40–2200 0, 2, 2 

Ophidiidae       

   Spectrunculus grandis  Kermadec  3500–4000 5 29–73.8 106–2128 0, 1, 4 

Synaphobranchidae       

   Diastobranchus capensis  Kermadec  1500 1 91 608 0, 1, 0 

Zoarcidae       

   Pachycara sp.  Kermadec  5000 2 44.2–47.4 460–660 1, 0, 0 

 

 

Enzyme Activities as a Function of Hydrostatic Pressure. In addition to standard unpressurized 

assays, enzymes from 6 species (all Liparidae and Macrouridae in Table 3.1) were tested under 
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pressure. White muscle samples (~0.1 g) were homogenized in a 1 ml buffer of 50 mM Tris-HCl, 

1 mM ethylenediaminetetraacetic acid (EDTA), and 1 mM dithiothreitol (DTT) (pH=7.5 at 5°C). 

Homogenates were centrifuged for 10 minutes at 2,000 x g at 4°C. All chemicals were sourced 

from Sigma-Aldrich (St. Louis, MO, USA). To minimize variation due to pipetting error and 

slightly differing amounts of enzyme in different parts of the tissue, pressures were varied 

incrementally on one proceeding reaction. Before each pressure test, an atmospheric pressure 

check determined that the reaction maintained a linear rate over the time of the assay. All pressure 

assays were conducted at 5°C. Individual samples used for experiments were randomly selected. 

A stainless-steel cuvette chamber (Mustafa et al., 1971) was used for pressure assays with 

a Jasco V550 UV/Vis spectrophotometer (Easton, MD, USA). Cell volume was 5 ml, though all 

reactions were added to 5.1 ml to prevent any air in the chamber. To minimize condensation on 

the cell windows, trays of desiccant (silica gel) and a steady stream of nitrogen gas were added to 

the closed chamber. Each assay lasted 300 seconds. To minimize error from mixing effects, only 

data from the last 250 seconds were used. After 100 seconds at atmospheric pressure, pressure was 

increased to 200 bar by hand pump for 50 seconds, then 400 and 600 bar. The pressure was then 

released back to 1 bar to measure enzyme recovery for the final 50 seconds. Reaction rates were 

determined from the last 40 seconds of slope at each pressure and converted to units of activity 

(µmoles of substrate converted to product per minute) per g wet weight of tissue. The cell was 

rinsed and aspirated once with isopropyl alcohol and twice with distilled water between assays.  

Lactate dehydrogenase (LDH) activities were measured as follows. The reaction buffer, 80 

mM Tris-HCl (pH=7.55 at 5⁰C), was added to the cell in the spectrophotometer first. 150 µM 

nicotinamide adenine dinucleotide (NADH) was then added to determine initial absorbance. 

Enough homogenate (between 3 and 10 µl) was added to achieve a linear reaction rate for 300 

seconds. Finally, 512 µl of 40 mM sodium pyruvate was added to start the reaction. The chamber 

was closed and sealed quickly and the extinction of NADH measured. Final concentrations of 

NADH and pyruvate were 0.15 mM and 4 mM. To measure pyruvate kinase activity, a buffer of 

80 mM Tris-HCl, 100 mM potassium chloride (KCl), 10 mM magnesium sulfate (MgSO4), and 

0.1 mM fructose-1,6-biphosphate was added to the chamber. 512 µl of 150 µM NADH was added, 

followed by 5 µl rabbit LDH (Type II, ammonium sulfate suspension, 800–1200 units/mg protein), 

the homogenate (5–15 µl for linear rate) and 100 mM phosphoenolpyruvic acid (PEP). The 
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reaction was initiated by the addition of 512 µl 20 mM adenosine diphosphate (ADP). Final 

concentrations of NADH, PEP, and ADP were 0.15 mM, 1.0 mM, and 2.0 mM respectively. 

Malate dehydrogenase assays were run in an 80 mM Tris buffer with 150 µM NADH. Homogenate 

was added (4–5 microliters to achieve linear reaction rate across 300 seconds). Reaction was 

initiated with mixing of 0.5 mM oxaloacetic acid. Final concentrations of NADH and oxaloacetate 

were 0.15 mM and 0.05 mM.  

The increase in pressure results in a slight expansion of the cuvette as the windows of the 

cell seat in their rubber O-rings, increasing the path length across which the extinction of NADH 

is measured. A blank with buffer and NADH solution was measured at each pressure and the slight 

increase in absorbance was recorded and subtracted as a correction factor: 1.18, 2.26, and 3.35% 

for 200, 400, and 600 bar, respectively.  

To investigate pressure-related changes in reaction rate in the presence of the osmolyte 

TMAO, the pyruvate kinase assay was selected for the hadal snailfish, Notoliparis kermadecensis. 

Protocol followed that listed above, with the addition of 400 mM TMAO, levels found in these 

fish (Yancey et al., 2014). Assays were conducted with 0.5 mM and 2.0 mM ADP levels, and 

activities measured at 1 bar and high pressure (655 bar). 

 

Re-evaluation of Depth Trends. Atmospheric pressure results were compared to activities at in 

situ pressures found using the same collection. For families that were tested under pressure 

(Macrouridae, Liparidae), atmospheric pressure enzyme activities were adjusted to reflect the 

percent reaction rate changes seen at in situ pressure. Results were compared to depth trends shown 

in the literature using the same method of enzyme analysis (Drazen et al., 2015).  

 

Statistics. Trends with body mass and depth were investigated using generalized linear models 

(GLM) constructed based on the log-link function, assuming normal distributions in the statistical 

programming platform, R (R Core Development Team, 2015). Normal quantile-quantile plots and 

plots of residuals were examined to check these assumptions. Best-fit GLM models were chosen 

according to lowest Akaike Information Criteria. Figures were constructed using the R package 

ggplot2 (Wickam, 2009).  
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Results 

 

Enzyme Activities at Atmospheric Pressure. Results of four metabolic enzyme activities for 

nine species are presented in Table 3.2. LDH and PK were significantly correlated (linear model, 

R2=0.63, F(1, 65)=105.6, p<0.001), as were MDH and CS (R2=0.82, F(1, 65)=5.81, p=0.019), 

validating activity results. Family was a significant predictor of activity for all enzymes (ANOVA, 

LDH: F(4, 62)=11.99, p<0.001; PK: F(4, 62)=25.54, p<0.001; MDH: F(4, 62)=5.34, p<0.001; CS: 

F(4, 62)=6.60, p<0.001). Post hoc testing (Tukey HSD multiple comparisons of means, 95% 

confidence interval) revealed LDH activity was lowest in liparids, compared to macrourids 

(p<0.01), ophidiids (p<0.001), synaphobranchids (p<0.01), and zoarcids (p<0.05). PK activities 

were also lowest in liparids, relative to macrourids (p<0.01), ophidiids (p<0.01), synaphobranchids 

(p<0.001), and zoarcids (p<0.001). Citrate synthase activity was significantly higher in liparids 

than in macrourids (p<0.01) and ophidiids (p<0.01). Activity of MDH in liparids was lower than 

in macrourids (p<0.05), but higher than in ophidiids (p<0.05).  

 

Table 3.2. Atmospheric pressure activities of four metabolic enzymes. Errors are presented as standard 

deviations. Activities are presented in Units per gram tissue wet weight. Capture location indicated: K, 

Kermadec and M, Mariana trench regions.  

 CS LDH MDH PK 

Liparidae     

   Liparis florae 1.46±0.50 34.40±7.79 32.44±5.71 20.40±2.98 

   Liparidae sp. nov. (M)  1.05±0.44 40.18±16.71 22.00±6.16 21.82±6.68 

   Notoliparis kermadecensis 1.16±0.78 21.97±8.08 17.82±6.99 16.15±2.82 
     

Macrouridae     
   Coryphaenoides armatus 0.39±0.27 62.93±11.24 38.69±8.19 31.13±5.83 

   Coryphaenoides yaquinae (K) 0.37 83.65 19.7 26.3 

   Coryphaenoides yaquinae (M) 0.55±0.18 31.60±4.51 22.03±3.48 22.02±11.25 
 

    

Ophidiidae     

   Spectrunculus grandis  0.29±0.09 66.51±24.16 9.25±2.20 30.16±4.51 
     

Synaphobranchidae     

   Diastobranchus capensis 0.34 96.03 21.01 54.3 
     

Zoarcidae     

   Pachycara sp.  0.49±0.37 73.55±5.24 18.92±5.42 50.31±14.56 
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No significant trends were found between mass and enzyme activity across all families, 

however, there were some intraspecific trends with body mass. Larger individuals had significantly 

lower citrate synthase activities in hadal liparids (log-transformed linear model, N. kermadecensis 

R2=0.23, F(1, 17)=4.97, p<0.05; Mariana liparid R2=0.55, F(1, 14)=17.28, p<0.001) and abyssal 

macrourids (C. yaquinae R2=0.86, F(1, 3)=18.17, p<0.05; C. armatus R2=0.34, F(1, 2)=1.05, 

p<0.05). LDH activity was higher in larger C. yaquinae individuals (R2=0.81, F(1, 3)=13.03, 

p<0.05). In larger individuals of the hadal liparid, N. kermadecensis, MDH activities were 

significantly higher (R2=0.41, F(1, 17)=11.91, p<0.01). PK did not vary significantly with body 

mass for any species tested. Sample sizes for Diastobranchus capensis and Pachycara sp. were 

not large enough to test mass effects. 

At atmospheric pressure, enzyme activities for hadal liparids were largely similar to 

shallower-living counterparts from this study and published results from Drazen et al. (2015), with 

a few differences. Lactate dehydrogenase activities were significantly different only between N. 

kermadecensis and the Mariana liparid, the latter being higher (post-hoc Tukey HSD, 95% 

confidence interval, p<0.001). L. florae had significantly higher MDH than C. melanurus (from 

Drazen et al., 2015; p<0.01), N. kermadecensis (p<0.001), and the Mariana liparid (p<0.05). PK 

activity was higher in L. florae than in C. melanurus (Drazen et al., 2015; p<0.01), the Mariana 

liparid (p<0.05), and N. kermadecensis (p<0.001). Citrate synthase activity did not vary 

significantly across all liparid species (ANOVA, F(5, 44)=0.47, p=0.794).  
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Depth (m) 

 

Figure 3.1. Hadal liparid enzyme activities at atmospheric pressure (log-transformed, U/g wet mass) 

by depth of capture (m). Linear regressions are shown for significant depth relationships from GLMs that 

included mass effects, Mariana liparid (M) in black circles Notoliparis kermadecensis (K) in grey triangles 

(R2 values CS: M=0.015, CS: K=0.339, MDH: K=0.204, LDH: M=0.235). 

 

In the Mariana liparid, CS activities increased intraspecifically with depth of capture 

independent of body mass, and LDH decreased, while other intraspecific relationships between 

enzyme activity and depth were not significant (Figure 3.1; GLM, depth, mass, interaction, 15 df, 

LDH: t=-2.50, -1.86, 1.85, p<0.05, =0.088, 0.088; MDH: t=-1.06, -0.73, 0.67, p=0.308, 0.481, 

0.516; CS: t=-2.61, -2.77, 2.54, p<0.05, 0.05, 0.05; PK: depth, mass t=-1.45, -0.01, p=0.170, 

0.992). For N. kermadecensis, LDH and PK showed no significant depth effects, while CS and 

MDH increased with depth of capture (GLM, depth, mass, 18 df, LDH: t=1.78, -0.31, p=0.095, 

0.758; MDH: t=2.68, -3.57, p<0.05, 0.01; CS: t=2.69, -2.16; p<0.05, 0.05; PK: t=-0.17, -1.69, 

p=0.870, 0.111). 
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Enzyme Activities as a Function of Pressure. Changes in maximum reaction rate, Vmax, with 

pressure were seen in all three enzymes. In the case of lactate dehydrogenase (LDH), abyssal and 

hadal species showed enhanced activity under pressure, while shallow-adapted species were 

inhibited by pressure (ANOVA, C. armatus F(5, 37)=7.52, p<0.001; C. yaquinae F(5, 24)=3.28, 

p<0.05; N. kermadecensis F(5, 31)=4.74, p<0.01; Mariana liparid not statistically significant F(5, 

10)=1.63, p=0.24; L. florae F(4, 15)=10.47, p<0.001; P. devriesi F(4, 22)=9.76, p<0.001). 

Maximum activities seemed to occur near habitat pressures for all species (Figure 3.2).  

 

 
Figure 3.2. Lactate Dehydrogenase change in Vmax at varying pressures. Shown in percent of activity 

at atmospheric pressure for each assay. Results from repeat assays (n values included at the base of each 

bar) of one individual per species. Error bars show standard deviations between assays. Recovery (Rec) 

shows rate after return to atmospheric pressure after pressure trials. 
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Malate dehydrogenase (MDH) showed increased activity with pressure for all species 

(Figure 3.3). This pressure activation from atmospheric pressure rates were statistically significant 

for all species tested, except C. armatus (ANOVA, L. florae F(3, 29)=13.57, p<0.001; C. armatus 

F(3, 34)=0.53, p=0.66; N. kermadecensis F(3, 15)=24.57; p<0.001; P. devriesi F(3, 20)=3.50, 

p<0.05; C. yaquinae F(3, 31)=3.54, p<0.05; Mariana liparid F(3, 35)=9.79, p<0.001). Some 

species, particularly C. armatus, showed more scatter in repeat assays than others.  

Figure 3.3. Malate Dehydrogenase change in Vmax at varying pressures. Shown in percent of activity at 

atmospheric pressure for each assay. Results from repeat assays (n values included at the base of each bar) 

of one individual per species (n=2 for Mariana Trench liparid). Recovery (Rec) shows rate after return to 

atmospheric pressure after pressure trials. 
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Pyruvate kinase was inhibited by pressure in all species, from shallow to hadal (Figure 

3.4), statistically significantly for C. armatus (ANOVA, F(4, 17)=18.34, p<0.001), C. yaquinae 

(F(4, 20)=12.98, p<0.001), N. kermadecensis (F(4, 28)=4.38, p<0.01) and the Mariana liparid 

(F(4, 20)=14.22, p<0.001), and near significantly for L. florae (F(4, 18)=2.72, p=0.062). Recovery 

after decompression was highly variable for all enzymes and were omitted from statistical tests. 

All recovery rates were likely confounded by uneven changes in system optics with the release of 

pressure. 

 

 
Figure 3.4. Pyruvate Kinase change in Vmax at varying pressures. Shown in percent of activity at 

atmospheric pressure for each assay. Results from repeat assays (n values included at the base of each bar) 

of one individual per species. Recovery (Rec) shows rate after return to atmospheric pressure after trials. 
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The addition of TMAO counteracted this pressure-inhibition of pyruvate kinase, 

dramatically restoring the activity of pyruvate kinase at both a low and high ADP concentration 

(Figure 3.5). TMAO had no effect on activity (Vmax) at atmospheric pressure at high substrate 

concentrations but did increase activity at subsaturating levels (0.5 mM ADP).  

 
Figure 3.5. Pyruvate Kinase response to pressure with TMAO. At two concentrations of ADP. Assay 

with addition of 400 mM TMAO in dark grey, control pressure response in light grey. Data for N. 

kermadecensis (n=4 for 0.5mM ADP, n=3 for 2.0mM ADP). TMAO effect on activity was significant for 

each treatment (Mann-Whitney-Wilcoxon test; p<0.05), except at 1 bar and 2 mM ADP (p=0.35). 

 

Depth and Pressure Trends. Figure 3.6 shows how the enzyme activities of species studied here 

compare to the trends shown by Drazen et al. (2015) by depth and how incorporation of the rate 

changes due to in situ pressure (results from above) would alter the Drazen et al. (2015) results. 

Both citrate synthase and malate dehydrogenase activities were higher than expected according to 

the Drazen et al. (2015) regression. LDH and PK were somewhat higher than the regression from 

shallower-living species predicted. Increased activities of LDH at in situ pressures increased this 
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difference slightly. PK activities at in situ pressures were similar to the regression prediction, 

although these did not take into account the TMAO effect, which counteracts pressure inhibition 

of the enzyme, but only at subsaturating ADP concentrations.  

 

 
Depth (m) 

 

Figure 3.6. Average enzyme activity (U/g wet mass) by average depth of capture (m) for 67 species of 

demersal fishes. Present study 1 atm results (dark grey circles), Drazen et al., 2015 1 atm (light grey 

squares), and expected activities at in situ pressures for study species (triangles) shown. Error bars show 

standard deviation between individuals (n=1–20). Models of depth-related declines in activities for 

benthopelagic species from Drazen et al., 2015 shown in black curves. Pressure effects on CS not tested. 

 

Discussion 

 

Deep-sea species are known to display enzymic pressure adaptation. This has been 

understood as a maintenance of functional stability under increasing pressure, through the 

pressure-insensitivity of Km (Siebenaller and Somero, 1979; Somero and Siebenaller, 1979; 
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Siebenaller, 1984; Dahlhoff et al., 1990). This insensitivity has been hypothesized to come at the 

cost of reduced catalytic efficiencies, based on experiments of LDH, MDH, and PK. Previous work 

focused mainly on half-saturation constant, Km, responses, while maximum reaction rate, Vmax, 

was not hypothesized to change with pressure at the level of the tissue because of species’ ability 

to increase enzyme concentration. Further, previous work focused on shallower-living (<1000 m) 

deep-sea species and as a result, pressure typically was not modified during Vmax experiments.  

Contrary to previous assumptions, we found pressure-related changes in Vmax per gram of 

tissue for three enzymes, with LDH maximized at habitat pressure, MDH showing pressure 

activation in all tested species, and PK consistently pressure-inhibited. For Vmax to change in these 

assays as a function of pressure, one of two things must be changing—either the Km value or the 

catalytic efficiency. Although pressure related changes in Km value are well known (e.g., 

Siebenaller, 1984), the present assays were conducted at high substrate concentrations that would 

not have been rate limiting. Therefore, catalytic efficiencies likely change with pressure—in both 

directions—depending upon volume changes in the reaction. These results show that 

macromolecular evolution (stabilization of Km) has not completely resulted in stability of Vmax. 

According to Le Chatelier’s principle, reactions with net positive volume change are inhibited by 

pressure, whereas reactions which have reduced volume in the products are favored with pressure 

(e.g., Somero, 1992; Macdonald, 1997). Our results suggest negative volume changes for lactate 

dehydrogenase in the abyssal and hadal species tested, as well as for malate dehydrogenase in all 

species. This dramatic increase in activity with pressure has not, to our knowledge, been previously 

shown in MDH. There are studies of MDHs capable of adaptation to extreme temperature 

conditions, such as one that remains active (90%) even after it is boiled for six hours (Gharib et 

al., 2016). The pressure-enhancement effects may be more pronounced than those seen in LDH 

due to the dimeric, rather than tetrameric, nature of the enzyme.  

Pressure-related changes in Vmax may not have been addressed in earlier work for a number 

of reasons. Changes in Km with pressure are perhaps a more intuitive indicator of macromolecular 

sensitivity to pressure than maximum reaction rates. It was believed that LDHs of deep-sea species 

were inefficient in catalysis compared to cold-adapted shallow species (Somero and Siebenaller, 

1979). However, that conclusion came from catalytic efficiencies measured at atmospheric 

pressure. Understanding enzymic adaptation in deep-sea fishes as a tradeoff between catalytic 
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efficiency and pressure sensitivity is incomplete when the reduced catalytic efficiency of LDH is 

only the case at low pressures. Given these new data, this paradigm should be reconsidered. 

Another study that concluded low catalytic efficiencies of LDH in deep-sea fishes was based on 

pressure incubations of LDH for an hour in pressure vessels. After decompression, activity was 

measured at atmospheric pressure (Hennessey and Siebenaller, 1985). When measuring the 

progress of one reaction, we found that recovery of LDH after pressurization was extremely 

variable, and often the enzyme did not recover. By measuring Vmax at atmospheric pressure after 

an incubation, Hennessey and Siebenaller (1985) explored decompression survivability, missing 

the pressure-activation and change in catalytic efficiency of LDH in these deep-sea fishes. Another 

previous experiment found that maximum catalytic rate of LDH in Coryphaenoides is pressure 

insensitive until about 800 bar, when it becomes inhibited (Moon et al., 1971b). We measured 

reaction rates on one reaction, with a step-wise increase in pressure and with more replicates and 

greater precision than the spectrophotometer technology allowed at the time of that experiment, 

where variability or rapid pressurization may have masked the pressure activation. Also, in 

shallower-living (bathyal) deep-sea species, this pressure-activation effect may be small. The hadal 

fishes add a more dramatic example to this trend, displaying a nearly 50% increase in maximum 

catalytic rate at habitat pressure.  

Since the three enzymes showed very different responses in maximum reaction rate to 

changing pressures, this suggests that these results are not due to system artifacts such as changes 

in optics with pressure. We note that even when using a sensitive spectrophotometer and measuring 

changes over one reaction, results were variable. Some of this variability may have stemmed from 

tissue degradation. For example, the Mariana liparid showed high variability compared to N. 

kermadecensis, perhaps because it was retrieved through warm surface waters (>25⁰C) before trap 

recovery, although every effort was made to minimize recovery time and samples were dissected 

on ice and frozen immediately in liquid nitrogen. Further, the early studies on pressure activities 

of enzymes from deep-sea fish found that phosphofructokinase from abyssal Coryphaenoides 

reaches peak maximum reaction rate near 300 bar (Moon et al., 1971c). The authors noted that this 

is a low-activity, unstable enzyme that is very susceptible to degradation and decompression, and 

this finding seems to have remained unexplored. 
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In previous studies, metabolic enzyme activities have been useful and widely-applied 

indicators of metabolic rate and condition (reviewed by Dahlhoff, 2004). Studies have shown 

depth-related declines in enzyme activity (LDH, PK, MDH, CS) from surface waters to depths 

over 3000 m in benthic and benthopelagic species (e.g., Drazen, et al., 2015). As noted earlier, 

results were interpreted as a decline in metabolic rate due to decreasing predator-prey interaction 

distances with decreasing light availability (visual interactions hypothesis), while older studies 

attributed such declines to reduced food supply (reviewed by Childress, 1995). Again, assays have 

traditionally been conducted only at atmospheric pressure however, our studies show that for 

abyssal and hadal species, maximum reaction rates (Vmax) of three of these enzymes (LDH, PK, 

and MDH) are pressure-dependent, suggesting that pressure-related changes in maximum reaction 

rate may alter interpretations of these depth-related trends in metabolic rate. This is a complicated 

issue, as the degree to which results at atmospheric pressure differ from in situ pressure rates may 

depend on the enzyme, TMAO effects, and the habitat depth of the fish. To begin to address this, 

we compared our atmospheric pressure activity results to those presented by Drazen et al. (2015, 

same experimental method) and applied estimates of how these activities would change at in situ 

pressure for the four abyssal and hadal species tested in this study (Figure 3.6). 

Results of enzyme activities for nine species measured at atmospheric pressure are 

comparable to those measured in previous studies. C. armatus activities were similar to those 

measured off California (Drazen et al., 2015), although MDH values were significantly higher in 

the present study, perhaps anomalously high according to the depth trends presented in Figure 3.6. 

In another macrourid, C. yaquinae, LDH and PK activities were lower than in C. armatus, perhaps 

reflecting differences in trophic strategy (Drazen et al., 2008). Spectrunculus grandis activities 

were near identical to those from near California (Drazen et al., 2015), measured using the same 

experimental method. D. capensis activities were largely similar to activities for Synaphobranchus 

kaupii, another deep-sea eel from the North Atlantic (235–3,200 m), with the exception of PK, 

which was significantly higher in our study (Bailey et al., 2005). With a sample size of one, 

however, it would be imprudent to infer too much from this difference. As seen in other studies, 

glycolytic enzymes were lower in liparids than in macrourids, ophidiids, synaphobranchids, and 

zoarcids, suggesting lower burst locomotory capability. Large differences in body mass between 

these families might also explain some of these differences (e.g., Childress and Somero, 1990).  
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Despite pressure-related changes in activity reported here, atmospheric pressure activity 

results are still useful as proxies for intraspecific variations in metabolic rate, as we found in hadal 

liparids. Citrate synthase values increased with depth of capture in hadal liparids from the 

Kermadec and Mariana trenches, independently of body mass. This trend may have been weaker 

for the Mariana liparid due to lack of shallower hadal collections (nearer to 6,000 m). Resource 

availability is hypothesized to be higher in hadal systems, due to a funneling of organic matter into 

the steep topography of the trench (e.g., George and Higgins, 1979; Danovaro et al., 2003; Itoh et 

al., 2011; Ichino et al., 2015). Laboratory controlled studies showed intraspecific increases in 

metabolic enzyme activity in fishes that were better fed (Yang and Somero, 1993; Dutil et al., 

1998; Martínez et al., 2003; Ombres et al., 2011). The results of this study indicate higher 

metabolic rate and/or better nutritional condition with depth. An increase in number of prey items 

per gram of fish with depth of capture in the Mariana liparids (Gerringer et al., 2017; Chapter II) 

and a higher abundance of liparids within the trench than at the upper edges (Linley et al., 2016) 

may support what the citrate synthase results suggest—an increase in nutritive condition with 

depth. Few interspecific differences were seen between the two groups, though LDH activity was 

significantly higher in the liparid from the Mariana than in Notoliparis kermadecensis from the 

Kermadec, maybe reflecting greater competition for food under the oligotrophic Mariana surface 

waters (Longhurst et al., 1995; Watling et al., 2013).  

The decline in enzyme activity with depth appears to hold true overall, despite being 

somewhat tempered by pressure effects. With these new data included, the glycolytic enzymes, 

PK and LDH show the most significant declines, suggesting a lower burst locomotory potential in 

deep-sea species. Although PK showed significant pressure-inhibition of maximum reaction rate 

for all species tested (Figure 3.4), the addition of the counteracting osmolyte TMAO in a hadal 

liparid restored reaction rates to those seen at atmospheric pressure (Figure 3.5). It is probable, 

then, that the rate reductions presented in Figure 3.6, which do not take into account this 

restoration of activity with added TMAO, do not reflect in situ activity for pyruvate kinase. CS 

and MDH activities are higher than the Drazen et al. (2015) models predicted, particularly at hadal 

depths, perhaps due to increased food availability, as discussed above. These additional data 

extend the depth range of previous studies by over 4000 m. Earlier conclusions that there are depth-

related declines in enzyme activity still hold.  Most of these changes occur over the first thousand 
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meters, where pressure effects as observed here would be minimal, and the decline with depth is 

of a much greater magnitude than the pressure inhibition or activation observed. The initial decline 

is likely based on light levels as stated by the visual interactions hypothesis (Childress, 1995), 

while at abyssal and hadal depths, food availability may play a greater role.  

Enzyme activities are already known to be approximate, imperfect, proxies for metabolic 

rate. Overall, pressure-related rate changes are merely another variable to be considered in the use 

of enzyme activities as proxies for metabolic rate, adding to an already long list of factors including 

temperature, body mass (Childress and Somero, 1990; Burness et al., 1999; Martínez et al., 2000; 

Sullivan and Somero, 1983, present results), locomotory and feeding strategies, phylogeny, 

nutritional condition, mitochondrial density and specific activity (Moyes et al., 1992), age (Singh 

and Kanugo, 1969), tissue storage (Nilsson and Ekstrand, 1993), and citrate concentration (for 

MDH; Gelpi et al., 1992), that can confound results and make interpretations difficult (e.g., Gibb 

and Dickson, 2002). Pressure effects should be considered when comparing species across large 

habitat pressure ranges. For example, in our atmospheric results, the significantly higher MDH 

values in L. florae are likely an example of pressure confounding effects. At in situ pressures, both 

hadal liparid activities were significantly higher, up to 150% of the activity at atmospheric 

pressure. Swimming speeds in L. florae and the hadal liparids are comparable when standardized 

for temperature (Gerringer and Linley, unpublished data). When using LDH activity as a proxy, 

previous studies may have underestimated burst capacity for deep-adapted species living at or 

below ~4000 m by up to 50%. This could provide some explanation for studies that have found 

higher than expected swimming performance in deep-sea fish species (e.g., Bailey et al., 2003; 

Bailey et al., 2005). 

Our results further highlight the interplay of extrinsic and intrinsic adaptation. Pyruvate 

kinase was most susceptible to pressure, with reduced activity seen in all species. For enzymes 

like pyruvate kinase, the stabilizing effects of extrinsic adaptations may be particularly important. 

The piezolyte TMAO is known to stabilize proteins under high pressure due to the interaction with 

the water molecules in solution (e.g., Sarma and Paul, 2013), and TMAO is known to increase 

with depth in fishes and other taxa as an extrinsic pressure adaptation (Kelly and Yancey, 1999; 

Linley et al., 2016; Yancey et al., 2014). Yancey et al. (2001; 2004) found significant decreases in 

Km of PK from Antimora microlepis (bathyal morid cod), as well as from an abyssal sea anemone 
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and from rabbit muscle, with the addition of 250-300 mM TMAO offsetting some or all of the 

inhibitory increases by pressure. The saturation of the pyruvate kinase mechanism could require 

something like TMAO to repel water from the active site of the reaction. In the present study, we 

found that TMAO considerably counteracted the inhibition of pyruvate kinase activity under 

pressure, suggesting that, while some enzymes such as LDH may be intrinsically adapted to 

function under high pressure, others may need extrinsic adaptation, such as stabilizing cosolutes. 

Pressure-related changes in metabolic enzyme activities at abyssal and hadal depths re-

open an old question: Does hydrostatic pressure affect whole animal metabolic rates? Although 

previous studies have suggested that it does not (Seibel and Drazen, 2007), this may need to be 

reconsidered for abyssal and hadal organisms. On a biomolecular level, the effects of temperature 

and pressure are similar, with low temperatures and high pressures having comparable effects 

(reviewed by Somero, 1992). For example, in lipid membrane fluidity, a pressure increase of 1000 

atm is thought to be similar to a temperature decrease of 13–21⁰C (Somero, 1992). This 

comparison is oversimplified; however, volume changes, whether from changes in temperature or 

changes in pressure, will affect reaction rates. New models are seeking to quantify and predict 

these effects (Chen and Makhatadze, 2017). The effects of temperature on metabolic rate are 

accepted. For most of life on Earth, the effects of pressure on metabolic rate may be negligible; 

however, at extremely high pressures, such as on the abyssal plain and in hadal trenches or the 

deep subsurface biosphere, pressure effects may be significant. This may have implications for 

models such as the metabolic theory of ecology, which seeks to explain biological processes and 

patterns through temperature and body size (Brown et al., 2004), or the growing degree day, which 

standardizes time to temperature (e.g., Neuheimer and Taggart, 2007). Perhaps future work 

considering organisms that live at high pressures will require an additional component in metabolic 

models, something of a degree-day-bar, to consider the biological effects of high hydrostatic 

pressures.  

 

  



71 

 

Acknowledgments 

 

The authors thank the captains and crews of the R/V Thompson and R/V Falkor. We are 

also grateful for the help of Thomas Linley (University of Aberdeen), Alan Jamieson (University 

of Aberdeen), Matteo Ichino (University of Southampton), Chloe Weinstock (Whitman College), 

and the participants of National Science Foundation’s (NSF) HADES Program cruises, who 

assisted with collection and processing of fish samples at sea. Thanks to Matt Tietbohl and Stacy 

Farina for their help with L. florae collection and dissection, Craig Smith and Amanda Ziegler 

(University of Hawai‘i) for P. devriesi collection, Erik Thuesen (The Evergreen State College), 

Suzanne Maroney (The Evergreen State College), and Tim Machonkin (Whitman College) for 

laboratory assistance, and Anna Downing (Whitman College) and Telissa Wilson (The Evergreen 

State College) for help running pressure assays. Funding for this research was provided by the 

National Science Foundation (NSF-OCE 1130494, 1130712, and 0727135, NSF-PLR 1443680) 

and Schmidt Ocean Institute. M. Gerringer is grateful for the support of the National Science 

Foundation’s Graduate Research Fellowships Program.  

 

Contributors 

 

Gerringer, M.E.1, Drazen, J.C.1, Yancey, P.H.2 

 

1Department of Oceanography, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA. 

2Biology Department, Whitman College, WA 99362, USA. 

 

MEG, JCD, and PHY collected samples. MEG ran atmospheric pressure assays. MEG and PHY 

conducted assays using the pressure system. All authors contributed to the writing and editing of 

the manuscript.  

 

 

 



72 

 

References 

 

Bailey, D., Bagley, P., Jamieson, A., Collins, M., Priede, I., 2003. In situ investigation of burst 

swimming and muscle performance in the deep-sea fish Antimora rostrata (Günther, 1878). 

Journal of Experimental Marine Biology and Ecology 286, 295–311.  

 (doi:10.1016/S0022-0981(02)00534-8) 

Bailey, D., Genard, B., Collins, M., Rees, J., Unsworth, S., Battle, E., Bagley, P., Jamieson, A., 

Priede, I., 2005. High swimming and metabolic activity in the deep-sea eel Synaphobranchus 

kaupii revealed by integrated in situ and in vitro measurements. Physiology and Biochemical 

Zoology 78, 335–46. (doi:10.1086/430042) 

Beliaev, G., 1989. Deep-Sea Ocean Trenches and their Fauna. 

Brindley, A. a., Pickersgill, R.W., Partridge, J.C., Dunstan, D.J., Hunt, D.M., Warren, M.J., 2008. 

Enzyme sequence and its relationship to hyperbaric stability of artificial and natural fish 

lactate dehydrogenases. PLoS One 3. (doi:10.1371/journal.pone.0002042) 

Brown, J., Gillooly, J., Allen, A., Savage, V., West, B., 2004. Toward a metabolic theory of 

ecology. Ecology 85, 1771–1789. (doi:10.1890/03-9000) 

Burness, G., Leary, S., Hochachka, P., Moyes, C., 1999. Allometric scaling of RNA, DNA, and 

enzyme levels: an intraspecific study. American Journal of Physiology 277, R1164. 

Chen, C.R., Makhatadze, G.I., 2017. Molecular determinant of the effects of hydrostatic pressure 

on protein folding stability. Nature Communications 8, 1–9. (doi:10.1038/ncomms14561) 

Childress, J., 1995. Are there physiological and biochemical adaptations of metabolism in deep-

sea animals? Trends in Ecology and Evolution 10, 30–6.  

 (doi:10.1016/S0169-5347(00)88957-0) 

Childress, J., Somero, G., 1990. Metabolic Scaling: A new perspective based on scaling of 

glycolytic enzyme activities. American Zoologist 30, 161–173. (doi:10.1093/icb/30.1.161) 

Childress, J., Somero, G., 1979. Depth-related enzymic activities in muscle, brain and heart of 

deep-living pelagic marine teleosts. International Journal on Life in Oceans and Coastal 

Waters 52, 273–283. (doi:10.1007/BF00398141) 

 

 



73 

 

Childress, J.J., Thuesen, E. V, 1992. Metabolic potential of deep-sea animals: Regional and global 

scales. Deep-Sea Food Chains and the Global Carbon Cycle 217–236.  

 (doi:10.1007/978-94-011-2452-2_13) 

Condon, N., Friedman, J., Drazen, J., 2012. Metabolic enzyme activities in shallow- and deep-

water chondrichthyans: implications for metabolic and locomotor capacity. Marine Biology 

159, 1713–1731. (doi:10.1007/s00227-012-1960-3) 

Dahlhoff, E., 2004. Biochemical indicators of stress and metabolism: applications for marine 

ecological studies. Annual Review of Physiology 66, 183–207.  

 (doi:10.1146/annurev.physiol.66.032102.114509) 

Dahlhoff, E., Schneidemann, S., Somero, G., 1990. Pressure-temperature interactions on M4-

lactate dehydrogenases from hydrothermal vent fishes: Evidence for adaptation to elevated 

temperatures by the Zoarcid Thermarces andersoni, but not by the Bythitid, Bythites hollisi. 

Biological Bulletin 179, 134–139. (doi:10.2307/1541747) 

Dahlhoff, E., Somero, G., 1991. Pressure and temperature adaptation of cytosolic malate-

dehydrogenases of shallow-living and deep-living marine-invertebrates—evidence for high 

body temperatures in hydrothermal vent animals. Journal of Experimental Biology 159, 473–

487. 

Danovaro, R., Della Croce, N., Dell’Anno, A., Pusceddu, A., 2003. A depocenter of organic matter 

at 7800 m depth in the SE Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research 

Papers 50, 1411–1420. (doi:10.1016/j.dsr.2003.07.001) 

Danovaro, R., Gambi, C., Della Croce, N., 2002. Meiofauna hotspot in the Atacama Trench, 

eastern South Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers 49, 

843–857. (doi:10.1016/S0967-0637(01)00084-X) 

De Leo, F., Smith, C., Rowden, A., Bowden, D., Clark, M., 2010. Submarine canyons: hotspots of 

benthic biomass and productivity in the deep sea. Proceedings of the Royal Society B: 

Biological Sciences 277, 2783–92.  

 (doi:10.1098/rspb.2010.0462) 

 

 

 



74 

 

Dickson, K., Gregorio, M., Gruber, S., Loefler, K., Tran, M., Terrell, C., 1993. Biochemical 

indices of aerobic and anaerobic capacity in muscle tissues of California elasmobranch fishes 

differing in typical activity level. International Journal on Life in Oceans and Coastal Waters 

117, 185–193. (doi:10.1007/BF00345662) 

Drazen, J., Yeh, J., 2012. Respiration of four species of deep-sea demersal fishes measured in situ 

in the eastern North Pacific. Deep-Sea Research Part I: Oceanographic Research Papers 60, 

1–6. (doi:10.1016/j.dsr.2011.09.007) 

Drazen, J.C., Friedman, J.R., Condon, N.E., Aus, E.J., Gerringer, M.E., Keller, A. A., Elizabeth 

Clarke, M., 2015. Enzyme activities of demersal fishes from the shelf to the abyssal plain. 

Deep-Sea Research Part I: Oceanographic Research Papers 100, 117–126. 

 (doi:10.1016/j.dsr.2015.02.013) 

Dutil, J., Lambert, Y., Guderley, H., Blier, P.U., Pelletier, D., Desroches, M., 1998. Nucleic acids 

and enzymes in Atlantic cod (Gadus morhua) differing in condition and growth rate 

trajectories. Canadian Journal of Fisheries and Aquatic Sciences 55, 788–795.  

 (doi:10.1139/f97-294) 

Eisenmenger, M.J., Reyes-De-Corcuera, J.I., 2009. High pressure enhancement of enzymes: A 

review. Enzyme and Microbial Technology 45, 331–347.  

 (doi:10.1016/j.enzmictec.2009.08.001) 

Friedman, J., Condon, N., Drazen, J., 2012. Gill surface area and metabolic enzyme activities of 

demersal fishes associated with the oxygen minimum zone off California. Limnology and 

Oceanography 57, 1701–1710. (doi:10.4319/lo.2012.57.6.1701) 

Gelpi, J., Dordal, A., Mazo, A., Cortes, A., 1992. Kinetic studies of the regulation of mitochondrial 

malate dehydrogenase by citrate. Biochemical Journal 283, 289–297. 

 (doi:10.1042/bj2830289) 

George, R., Higgins, R., 1979. Eutrophic hadal benthic community in the Puerto Rico Trench. 

Ambio Special Reports 51–58. 

Gerringer, M.E., Popp, B.N., Linley, T.D., Jamieson, A.J., Drazen, J.C., 2017. Comparative 

feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope 

analysis. Deep-Sea Research Part I: Oceanographic Research Papers 121, 110–120.  

 (doi:10.1016/j.dsr.2017.01.003) 



75 

 

Gharib, G., Rashid, N., Bashir, Q., Afza, A., 2016. Pcal _ 1699, an extremely thermostable malate 

dehydrogenase from hyperthermophilic archaeon Pyrobaculum calidifontis. Extremophiles 

20, 57–67. (doi:10.1007/s00792-015-0797-3) 

Gibb, A., Dickson, K., 2002. Functional morphology and biochemical indices of performance: Is 

there a correlation between metabolic enzyme activity and swimming performance? 

Integrative and Comparative Biology 42, 199–207. (doi:10.1093/icb/42.2.199) 

Glud, R., Wenzhöfer, F., Middelboe, M., Oguri, K., Turnewitsch, R., Canfield, D., Kitazato, H., 

2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on 

Earth. Nature Geoscience 6, 284–288. (doi:10.1038/NGEO1773) 

Hennessey, J., Siebenaller, J., 1985. Pressure inactivation of tetrameric lactate dehydrogenase 

homologues of confamilial deep-living fishes. Biochemical, Systems, and Environmental 

Physiology 155, 647–652. (doi:10.1007/BF00694577) 

Hickey, A., Clements, K., 2003. Key metabolic enzymes and muscle structure in triplefin fishes 

(Tripterygiidae): a phylogenetic comparison. Journal of Comparative Physiology B 173, 113–

23. (doi:10.1007/s00360-002-0313-9) 

Hughes, S., Ruhl, H., Hawkins, L., Hauton, C., Boorman, B., Billett, D., 2011. Deep-sea 

echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in 

Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea. Journal of Experimental 

Biology 214, 2512–21. (doi:10.1242/jeb.055954) 

Ichino, M.C., Clark, M.R., Drazen, J.C., Jamieson, A., Jones, D.O.B., Martin, A.P., Rowden, A.A., 

Shank, T.M., Yancey, P.H., Ruhl, H.A., 2015. The distribution of benthic biomass in hadal 

trenches: A modelling approach to investigate the effect of vertical and lateral organic matter 

transport to the sea floor. Deep-Sea Research Part I: Oceanographic Research Papers 100, 

21–33. (doi:10.1016/j.dsr.2015.01.010) 

Itoh, M., Kawamura, K., Kitahashi, T., Kojima, S., Katagiri, H., Shimanaga, M., 2011. 

Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and 

Ryukyu trenches, western North Pacific Ocean. Deep-Sea Research Part I: Oceanographic 

Research Papers 58, 86–97. (doi:10.1016/j.dsr.2010.12.004) 

 

 



76 

 

Itou, M., Matsumura, I., Noriki, S., 2000. A large flux of particulate matter in the deep Japan 

Trench observed just after the 1994 Sanriku-Oki earthquake. Deep-Sea Research Part I: 

Oceanographic Research Papers 47, 1987–1998. (doi:10.1016/S0967-0637(00)00012-1) 

Jamieson, A.J., 2015. The hadal zone: life in the deepest oceans. Cambridge, United Kingdom. 

Jamieson, A., Fujii, T., Mayor, D., Solan, M., Priede, I., 2010. Hadal trenches: the ecology of the 

deepest places on Earth. Trends in Ecology and Evolution 25, 190–7. 

 (doi:10.1016/j.tree.2009.09.009) 

Jamieson, A., Kilgallen, N., Rowden, A., Fujii, T., Horton, T., Lörz, A.-N., Kitazawa, K., Priede, 

I., 2011. Bait-attending fauna of the Kermadec Trench, SW Pacific Ocean: Evidence for an 

ecotone across the abyssal–hadal transition zone. Deep-Sea Research Part I: Oceanographic 

Research Papers 58, 49–62. (doi:10.1016/j.dsr.2010.11.003) 

Kobayashi, H., Hatada, Y., Tsubouchi, T., Nagahama, T., Takami, H., 2012. The hadal amphipod 

Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the 

deepest seafloor. PLoS One 7, e42727. (doi:10.1371/journal.pone.0042727) 

Linley, T.D., Gerringer, M.E., Yancey, P.H., Drazen, J.C., Weinstock, C.L., Jamieson, A.J., 2016. 

Fishes of the hadal zone including new species, in situ observations and depth records of 

Liparidae. Deep-Sea Research Part I: Oceanographic Research Papers 114, 99–110.  

 (doi:http://dx.doi.org/10.1016/j.dsr.2016.05.003) 

Linley, T.D., Steward, A.L., McMillan, P.J., Clark, M.R., Gerringer, M.E., Drazen, J.C., Fujii, T., 

Jamieson, A.J., 2017. Bait-attending fishes of the abyssal zone and hadal boundary: 

Community structure, functional groups and species distribution in the Kermadec, New 

Hebrides, and Mariana trenches. Deep-Sea Research Part I: Oceanographic Research Papers 

121, 38–53. (doi:10.1016/j.dsr.2016.12.009) 

Longhurst, A., Sathyendranath, S., Platt, T., Caverhill, C., 1995. An estimate of global primary 

production in the ocean from satellite radiometer data. Journal of Plankton Research 17, 

1245–1271. (doi:10.1093/plankt/17.6.1245) 

Luong, T.Q., Winter, R., 2015. Combined pressure and cosolvent effects on enzyme activity—a 

high-pressure stopped-flow kinetic study on α-chymotrypsin. Physical Chemistry Chemical 

Physics 17(35), 23273–8. (doi:10.1039/C5CP03529E) 

 



77 

 

Macdonald, A., 1997. Hydrostatic pressure as an environmental factor in life processes. 

Comparative Biochemistry and Physiology 116, 291–297.  

 (doi:10.1016/S0300-9629(96)00354-4) 

Martínez, M., Dutil, J.D., Guderley, H., 2000. Longitudinal and allometric variation in indicators 

of muscle metabolic capacities in atlantic cod (Gadus morrhua). Journal of Experimental 

Zoology 287, 38–45.  

 (doi:10.1002/1097-010X(20000615)287:1<38::AID-JEZ5>3.0.CO;2-V) 

Martínez, M., Guderley, H., Dutil, J.-D., Winger, P.D., He, P., Walsh, S.J., 2003. Condition, 

prolonged swimming performance and muscle metabolic capacities of cod Gadus morhua. 

Journal of Experimental Biology 206, 503–511. (doi:10.1242/jeb.00098) 

Moon, T.W., Mustafa, T., Hochachka, P.W., 1971a. The adaptation of enzymes to pressure part 

II: A comparison of muscle pyruvate kinases from surface and mid water fishes with the 

homologous enzyme from an off shore benthic species. American Zoologist 11, 491–502. 

 (doi:10.1093/icb/11.3.491) 

Moon, T.W., Mustafa, T., Hochachka, P.W., 1971b. Effects of hydrostatic pressure on catalysis 

by different lactate dehydrogenase isozymes from tissues of an abyssal fish. American 

Zoologist 11, 473–478. (doi:10.1093/icb/11.3.473) 

Moon, T.W., Mustafa, T., Hochachka, P.W., 1971c. Effects of hydrostatic pressure on catalysis by 

epaxial muscle phosphofructokinase from an abyssal fish. American Zoologist 11, 467–471. 

 (doi:10.1093/icb/11.3.467) 

Moyes, C., Mathieu-Costello, O., Brill, R., Hochachka, P., 1992. Mitochondrial metabolism of 

cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) 

fish. Canadian Journal of Zoology 70, 1246–1253. (doi:10.1139/z92-172) 

Mozhaev, V. V, Heremans, K., Frank, J., Masson, P., Balny, C., 1996. High pressure effects on 

protein structure and function. Proteins 24, 81–91.  

 (doi:10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R) 

Mustafa, T., Moon, T.W., Hochachka, P.W., 1971. Effects of pressure and temperature on the 

catalytic and regulatory properties of muscle pyruvate kinase from an off-shore benthic fish. 

American Zoologist 11, 451–466. (doi:10.1093/icb/11.3.451) 

 



78 

 

Neuheimer, A., Taggart, C., 2007. The growing degree-day and fish size-at-age: the overlooked 

metric. Canadian Journal of Fisheries and Aquatic Science 64, 375–385.  

 (doi:10.1139/f07-003) 

Nilsson, K., Ekstrand, B., 1993. The effect of storage on ice and various freezing treatments on 

enzyme leakage in muscle tissue of rainbow trout (Oncorhynchus mykiss). Zeitschrift für 

Lebensmittel-Untersuchung und -Forschung. 197, 3–7. (doi:10.1007/BF01202691) 

Oguri, K., Kawamura, K., Sakaguchi, A., Toyofuku, T., Kasaya, T., Murayama, M., Fujikura, K., 

Glud, R., Kitazato, H., 2013. Hadal disturbance in the Japan Trench induced by the 2011 

Tohoku-Oki earthquake. Scientific Reports 3, 1915. (doi:10.1038/srep01915) 

Ombres, E., Donnelly, J., Clarke, M., Harms, J., Torres, J., 2011. Aerobic and anaerobic enzyme 

assays in Southern California Rockfish: Proxies for physiological and ecological data. Journal 

of Experimental Marine Biology and Ecology 399, 201–207. 

 (doi:10.1016/j.jembe.2010.11.007) 

Pequeux, A., 1980. Effects of high pressure on ion transport and osmoregulation, in: Ali, M.A. 
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CHAPTER IV 

Life history of abyssal and hadal fishes from otolith growth zones and oxygen isotope 

 

Abstract 

 

Hadal trenches are isolated habitats that cover the greatest ocean depths (6,500–11,000 m) and are 

believed to host high levels of endemism across multiple taxa. A group of apparent hadal endemics 

is within the snailfishes (Liparidae), found in at least five geographically separated trenches. Little 

is known about their biology, let alone the reasons for their success at hadal depths around the 

world. This study investigated the life history of hadal liparids using sagittal otoliths of two species 

from the Kermadec (Notoliparis kermadecensis) and Mariana trenches (Liparidae sp. nov.) in 

comparison to successful abyssal macrourids found at the abyssal-hadal transition zone. Otoliths 

for each species revealed alternating opaque and translucent growth zones that could be quantified 

in medial sections. Assuming these annuli represent annual growth, ages were estimated for the 

two hadal liparid species to be from 5 to 16 years old. These estimates were compared to the 

shallower-living snailfish Careproctus melanurus, which were older than described in previous 

studies, expanding the potential maximum age for the liparid family to near 25 years. Age 

estimates for abyssal macrourids ranged from 8 to 29 years for Coryphaenoides armatus and 6 to 

16 years old for C. yaquinae. In addition, 18O/16O ratios (18O) were measured across the otolith 

using an ion microprobe to investigate the thermal history of the three liparids, and two macrourids. 

Changes in 18O values were observed across the otoliths of C. melanurus, C. armatus, and both 

hadal liparids, the latter of which may represent a change of >5°C in habitat temperature through 

ontogeny. The results indicated there is a pelagic larval stage for the hadal liparids that rises to a 

depth above 1000 m, followed by a return to the hadal environment as these liparids grow. This 

result was unexpected for the hadal liparids given their isolated environment and large eggs. This 

study presents a first look at the life history of some of the deepest-living fishes though otolith 

analyses.  
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Introduction 

 

Hadal trenches cover the greatest ocean depths (6,500–11,000 m) and have a distinct fauna from 

the surrounding deep-sea environment with high apparent levels of endemism (Wolff, 1959; 

Beliaev, 1989; Jamieson, 2015). A characteristic and charismatic endemic group known as the 

snailfishes (Family Liparidae) are prominent members of the hadal community in at least five 

widely-distributed trenches (Japan, Kermadec, Kurile-Kamchatka, Mariana, and Peru-Chile; 

Nielsen, 1964; Jamieson et al., 2009; Fujii et al., 2010; Linley et al., 2016). These hadal fishes are 

notably different from common abyssal species that border the hadal zone in both form and 

functional role. Hadal liparids have small, translucent bodies and appear to be specialized predators 

(Linley et al., 2017; Gerringer et al., 2017; Chapter II). In contrast, characteristic abyssal species 

such as macrourids have dark coloring and opaque tissues and are generalized benthopelagic 

predators and scavengers (e.g., Drazen et al. 2008). Observations of large aggregations of these 

snailfishes that are similar in form, at similar depths, and yet widely dispersed geographically in 

the seemingly isolated hadal systems, frames the question—why are liparids so successful in the 

hadal zone?  

A recent and unprecedented collection of otoliths (small aragonitic ear bones; Degens et 

al., 1969) from hadal snailfishes provided an opportunity to investigate the life history of the 

deepest dwelling fishes. Otoliths have long been used in fish ecology for age estimation because 

they usually form annual growth rings (Jackson 2007). Age, growth, and longevity are traditionally 

estimated using whole or sectioned otoliths where putative annual growth zones are counted (e.g., 

Williams and Bedford, 1974). This technique has been applied to fishes from habitats as deep as 

~3,900 meters (Wilson, 1988). Some otolith age estimates indicate that deep dwelling fishes may 

live longer than shallow living congeners and have raised the question of whether the trend can be 

applied to similar circumstances and species in the deep sea (Cailliet et al., 2001). Although the 

simple older-deeper dichotomy has been called into question, the idea remains (Drazen and 

Haedrich, 2012). The factors driving depth-related longevity are complicated and may be related 

to phylogeny, temperature, pressure, oxidative stress, and food availability, among other factors 

(Cailliet et al., 2001; Drazen and Haedrich, 2012).  
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In this study, two main life history hypotheses that may factor into the success of liparids 

near the greatest ocean depths are investigated. First, hadal liparids may be suited to the high-

disturbance environment of hadal trenches, which are located primarily at subduction zones, due 

to shorter lifespans than groups living on the abyssal plain. Due to the small size of the hadal 

liparid otoliths (<1 mm) and the general paucity of data on snailfish age and growth (Falk-Petersen 

et al., 1988; Orlov and Tokranov, 2011), otoliths of a shallower, common deep-sea liparid 

Careproctus melanurus were investigated. These larger snailfish otoliths allowed the development 

of a sectioning and age estimation protocol for the family before conducting age estimation on the 

rare hadal otolith collection. To provide additional context and test whether the deeper-older trend 

applies in other fish orders, we examined growth patterns in Coryphaenoides armatus and C. 

yaquinae, which are common deep-abyssal and upper-hadal species (e.g., Linley et al., 2017).   

The second hypothesis is that hadal snailfishes do not have a long-range dispersal 

mechanism that transports larvae out of the trench. Macrourids and many other deep-sea fishes 

have numerous small eggs and pelagic larvae, some of which occur in the epipelagic (Stein, 1980; 

Merrett and Haedrich, 1997; Busby, 2005). In contrast, members of the Liparidae are known to 

brood, and to have very large eggs (Stein, 1980) and in some cases, have complex developmental 

strategies; most notably carcinophyly, whereby they deposit eggs in the gills of lithodid crabs (Yau 

et al., 2000; Poltev and Steksova, 2010), and even spawn in crab traps (Poltev and Steksova, 2010). 

In addition, based on the relatively low number of large eggs found in Notoliparis kermadecensis 

(Nielsen, 1964), we expected that larvae and juveniles of snailfishes would remain localized in the 

trench environment to increase survivorship. These factors of low fecundity, high parental 

investment, and an apparent lack of pelagic life history stages may have allowed for the radiation 

of the group into the hadal zone.  

Otolith microchemistry provides an opportunity to test both hypotheses regarding early life 

history. In addition to their value in age estimation, otoliths can incorporate chemical signatures 

from the environment that provide clues to their life history (Campana and Neilson, 1985; 

Campana and Thorrold, 2001; Trueman et al., 2012). By comparing how chemical signatures 

change through the growth of the otolith, it is possible to determine if the fish experienced 

environmental temperature changes over its lifespan, even with low sample sizes (Trueman et al., 

2013). In the case of hadal and abyssal fishes, this is a valuable source of information, because 
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direct observations of these fishes are brief, opportunistic, and historically rare. As otoliths grow 

in a sequence of deposited rings, their chemical composition reflects the nature of the environment 

at time of deposition (Kalish, 1991; 1989). Oxygen isotope ratios in the otoliths change as a 

function of temperature, allowing thermal history reconstruction (e.g., Kozdon et al., 2011; 2013; 

Olson et al., 2012; Befus, 2016). Thus, the ratios of 18O/16O can be used to calculate habitat 

temperatures across a fish’s life (Thorrold et al., 1997), to within 1°C precision at a 95% 

probability level (Høie et al., 2004). Generally, lower δ18O values indicate higher temperatures at 

the time of deposition, due to thermodynamic effects on isotope fractionation. Changes across an 

otolith are often indicative of an ontogenetic vertical migration or shallow-living planktonic larval 

stage, and this technique has been used to determine the thermal histories of a number of deep-sea 

species including slickheads (Shiao et al., 2016), rattails (Lin et al., 2012), cusk eels (Chang et al., 

2015), and cutthroat eels (Shiao et al., 2014).  

This study aimed to 1) estimate age in hadal snailfishes and abyssal macrourids by counting 

otolith growth zones; 2) construct ontogenetic temperature profiles to investigate life history 

through oxygen isotope analysis along the growth axis of otoliths for each species; and 3) discuss 

the role of life history and growth in driving community structure and endemism in fishes of the 

hadal zone. We provide a first look at the life history of some of the planet’s deepest-living fishes 

to inform discussions of hadal endemism and depth-related trends in growth and longevity. 

 

Materials & Methods    

 

Otoliths from three liparid and two macrourid species were investigated for age and growth. 

Sagittal otoliths were extracted from 38 Notoliparis kermadecensis specimens collected in April-

May of 2014 and from 28 specimens of a new liparid species from the Mariana Trench, collected 

in November-December of 2014. The new species is currently being described and is hereafter 

referred to as the Mariana liparid. Sampling and collection details for both trench locations are 

provided elsewhere (Linley et al., 2016). Extracted otoliths were initially placed in 75% ethanol 

and later cleaned and air-dried for storage in 2 mL cryovials. An age estimation protocol for hadal 

liparids was developed using a confamilial reference species that has more massive otoliths, 

Careproctus melanurus. The 29 Careproctus melanurus specimens were collected in the Southern 
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California Bight by trawl in 2013–2015 (Supplementary Table 4.1). Fish were frozen whole at 

sea and otoliths were extracted after thawing in the laboratory. Careproctus melanurus otoliths 

were washed in 50% bleach solution to remove remaining tissue, rinsed in deionized water, and 

then dried. Age estimates for two  abyssal macrourids, Coryphaenoides armatus and C. yaquinae, 

were made from archived otoliths collected from Station M in 1995–1998 (collection details in 

Drazen, 2002). Total fish mass and standard length were measured at sea on freshly collected 

specimens for the hadal collections. For the abyssal macrourids, total fish mass was measured in 

the lab for frozen specimens, and total, head, and pre-anal fin lengths were measured at sea. Sex 

was determined macroscopically. Hadal otoliths were weighed in the lab using a microbalance 

(±0.0001 mg precision). Otolith dimensions were measured using fine scale calipers (0.01 mm). 

Length and width were digitally measured for the hadal liparid otoliths using ImageJ (Schneider 

et al., 2012). 

 

Age Estimation. The C. melanurus otoliths were first polished in the medial plane sulcus-side 

down by hand. The polished side was mounted on glass slides with resin (Cytoseal 60, Richard-

Allan Scientific). The resin cured overnight and the other side of the otolith was polished using an 

Isomet lapping wheel (SBT, Model 900) with 600-grit wet-dry carbide paper (Buehler). The end 

result revealed growth ring structure across a medial section. Fine polishing was done by hand as 

needed with diamond lapping film. Success with this approach led to use of the method for the 

hadal specimens.  For the much smaller hadal liparid otoliths, polishing was done in a similar 

manner to reveal a medial section, but polishing was performed entirely by hand on a smooth glass 

panel using 6 and 9 µm diamond lapping film (Buehler). Otoliths from Coryphaenoides armatus 

and C. yaquinae were cut in the transverse plane to 0.6 mm sections using an Isomet low-speed 

saw (Buehler), then mounted and polished using the lapping wheel method described above. 

Otolith sections were aged by two readers (Gerringer, Andrews) and initial estimates were based 

on various interpretations of the concentric growth zone structure. Refined criteria were 

determined based on well-defined sections for each species and an examination of length-at-age 

relationships (irregular patterns pointed to alternative counting criteria). The counting protocol for 

both abyssal macrourids here followed that detailed by Andrews et al. (1999a) for Coryphaenoides 

acrolepis. Although the importance of age estimate validation is recognized (e.g., Campana, 2001), 
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none of the currently available methods for validation were practical for these species and the 

counts presented here were assumed to be annual (Morales-Nin and Panfili, 2005).  

 

Thermal History Reconstruction. Otoliths were cleaned in methanol and cast in epoxy 

(Epoxicure, Buehler, Lake Bluff, IL, USA) in stainless steel bullets (liparids) and aluminum rings 

(macrourids). These were heated to 80°C to remove excess moisture and desiccated in a vacuum 

chamber for ~30 seconds before curing at 50°C overnight. Samples were polished to reveal the 

core using a series of grinding papers and diamond lapping films (Buehler 240, 400, 600 grit; 15, 

9, 6, 3, 1, and 0.5 μm). Polished sections were sonicated in methanol, dried, and carbon coated 

(~250 Å, Cressington Carbon Coater, 208carbon, Watford, UK), then inspected visually with 

optical microscopy and scanning electron microscopy (SEM; JEOL JSM-5900LV, USA). Oxygen-

isotope compositions across the otolith were measured using an ion microprobe (Cameca ims-

1280, University of Hawaiʻi at Mānoa, W.M. Keck Research Laboratory). For each measurement, 

the carbon coat was removed with the application of a 2.5 nA Cs+ primary ion beam, rastered over 

a 25 x 25 μm2 area for 120 seconds presputtering. For data collection, the raster size was reduced 

to 15 x 15 μm2. Each measurement consisted of 30 cycles with 10 seconds’ integration time per 

cycle. The automatic beam centering routine was applied. A normal incidence electron flood gun 

was used for charge compensation in an analyzed area. The two oxygen ions, 16O- and 18O-, were 

measured in multicollection mode using two Faraday cups with 1010 and 1011 ohm registers, 

respectively.  The magnetic field was regulated using a nuclear magnetic resonance controller. 

Mass resolving power was ~2,000, enough to discriminate interference ions. Carbonate reference 

materials (University of Wisconsin Calcite, UWC 1 and UWC 3) were used to determine 

instrumental isotope fractionation corrections. Although the otoliths are probably aragonite, a 

different polymorph, the difference in oxygen isotope measurements between calcite and aragonite 

is likely small (Matta et al., 2013) and no correction was applied in the present study. Data are 

reported as δ values in parts per thousand (permil; ‰) relative to Vienna Standard Mean Ocean 

Water (VSMOW): 

 

18O = ((18O/16O)sample/(
18O/16O)VSMOW)-1)*1000 
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Reproducibilities (2σ) in calcite reference material measurements were 0.15‰) for UWC 1 and 

0.15 to 0.17‰ for UWC 3. Measurement errors are given as 2σ and reflect both the measurement 

precision (2 standard error) for each analysis and the reproducibility (2 standard deviation) of 

standard measurements on the analysis day. Measurement spots were then inspected via SEM to 

ensure quality of the reading. Measurements taken on rough surfaces or those with large visible 

cracks were discarded and those with potential small scratches were noted. Values were measured 

relative to VSMOW (Vienna standard mean ocean water), and then converted to VPDB (Vienna 

Pee Dee Belemnite) based on true ratios. These converted values are compared to those yielded by 

the Coplen et al. (1983) equation (below) that has usually been employed with this technique (e.g., 

Høie et al., 2004).  

 

        δ18OVSMOW = 1.03091 · δ18OVPDB + 30.91‰    (Coplen et al., 1983) 

 

 

𝛼 =  
δ18O𝑜𝑡𝑜𝑙𝑖𝑡ℎ + 1000

δ18O𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟 + 1000
 

 

           1000 ln 𝛼 = 16.75 (
1000

𝑇
) − 27.09      (Høie et al., 2004) 

 

Habitat temperatures were calculated from δ18O values (‰ vs. VPDB) according to the equations 

presented by Høie et al. (2004) and reproduced above. Temperature (T) was calculated in Kelvin 

and was converted to °C. Local data on habitat temperatures at collection depth were recorded by 

free-vehicle lander for the abyssal and hadal species (described Linley et al., 2016) and by CTD at 

the collection site for C. melanurus. Temperature profiles for C. melanurus were extracted from 

the World Ocean Database (WOD; Boyer et al., 2013; Locarnini et al., 2013) for locations within 

0.1 degree of capture site in May and October from two CTD casts (WOD unique ID numbers 

8531355 and 8531681). Due to the lack of environmental data at deep abyssal and hadal depths, 

δ18O values of seawater were calculated according to the outermost measurements taken from each 

otolith, which were presumed to reflect the known capture temperature. This manner of calibrating 

temperature estimates is generally considered accurate to within ±1°C (Thorrold et al., 1997; Høie 

et al., 2004). Based on instrumental reproducibility of UWC 1 and UWC 3 measurements and 
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within-sample measurement variation, temperature error (2σ) in the dataset was between ±0.8 and 

±2.5°C (mean ±1.6°C). 

Data analyses for both age estimation and thermal history reconstruction were conducted 

using the statistical programming platform R (R Core Development Team, 2015) and figures were 

generated using the package ggplot2 (Wickam, 2009). Tentative von Bertalanffy growth functions 

were fitted to length-at-age data using the package fishmethods (Nelson, 2016), considering the 

recommendations of Pardo et al. (2013) anchored at zero due to there being few juveniles and 

limited sample sizes in the collections.  

 

Results 

 

Age Estimation: Careproctus melanurus. Twenty-nine C. melanurus specimens spanned 11.8 to 

21.8 cm standard length and body masses from 8.1 to 139.5 grams (Supplementary Table 4.1). 

There were eighteen female, six male, and five unsexed individuals collected from depths of 340–

841 m. Otolith mass was between 1.352 and 6.240 mg and dimensions were 1.65–2.72 mm in 

length, 1.98–3.14 mm in width, and 0.6–1.1 mm in height (otoliths shown in Figure 4.1). 
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Figure 4.1. Two views of C. melanurus otoliths that provide details on the growth structure for this species. 

a) Whole C. melanurus sagittal otolith viewed in reflected light (sample 379#5). b) Otolith thin section 

(medial plane), viewed with transmitted light (sample 340#1) with an estimated age of ~24 years for 

subjective enumeration of annuli. Scale bars 1 mm. 

 

There were no significant differences between left and right otoliths within individuals for mass 

(Welch two-sample t-test, t55=-0.190, p=0.850), length (t52=0.663, p=0.510), width (t52=0.615, 

p=0.541), or height (t50=-0.468, p=0.642). All metrics (mass, length, width, height) correlated 

significantly with standard length (ANOVA, F1,27=25.7, p<0.001; F1,27=15.3, p<0.001; F1,27=8.6, 

p<0.01; F1,27=20.4, p<0.001) and body mass (F1,27=27.1, p<0.001; F1,27=20.4, p<0.001; F1,27=14.6, 

p<0.001; F1,27=19.5, p<0.001), with otolith mass having the strongest slope (Figure 4.2). Age 

estimates for C. melanurus were between 9 and 24 years assuming opaque zones represent annual 

growth rings (Figure 4.3). 
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Figure 4.2. Careproctus melanurus otolith mass and dimensions as a function of fish body mass (g). 

Females (circles), males (diamonds), and juveniles (squares). Mass plots show results from the left otolith, 

other figures are based on one randomly selected otolith from each individual (n=29).   
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Figure 4.3. a) Length-at-age relationships for C. melanurus (n=29). Results from females shown with 

circles, males with diamonds, and immature individuals with squares. Estimated age (years) based on otolith 

growth zones. b) Length as a function of otolith mass for C. melanurus (n=29) for comparison.  

 

Age Estimation: Hadal liparids. Standard lengths of the 28 Mariana liparid individuals used for 

age estimation ranged from 10.5–28.8 cm. Individual body mass ranged from 8 to 160 g, from 

capture depths 6,914–7,966 m. Thirteen of these were females, five males, seven juveniles, and 

three unsexed. Otoliths (Figure 4.4) of this species weighed from 0.3050 to 1.4460 mg, were 

between 0.827 and 1.547 mm in length, 0.688 to 1.265 mm in width, and 0.35 to 0.59 mm in 

height.  
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Figure 4.4. Hadal liparid otoliths. a) N. kermadecensis, sample 100326, whole. b) Mariana liparid, sample 

200021, whole. c) N. kermadecensis, sample 100219, thin section, estimated age: 10 years. d) Mariana 

liparid, sample 200134, thin section, estimated age: 9 years. Counted zones are marked. Scale bars 1 mm. 

 

In the 38 Notoliparis kermadecensis collected from the Kermadec Trench, depths 6,456–7,554 m, 

standard lengths were between 12.9 and 29.0 cm, and body mass ranged from 20 to 230 g. There 

were 19 females, 12 males, three juveniles, and four unsexed individuals. Notoliparis 

kermadecensis otolith mass was 0.3766–2.0050 mg, length was 0.879–1.539 mm, width was 

0.671–1.311 mm, and height was 0.40–0.80 mm. Further collection details and individual results 

for all liparids can be found in Supplementary Table 4.1.  
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Figure 4.5. Otolith mass, width, length, and height by standard length (a), and total body mass (b). Females 

(circles), males (diamonds), juveniles (squares), and unknown sex (triangles). Width and length measured 

from photographs using ImageJ, height measured with calipers by hand, all from one randomly selected 

otolith from 28 individuals of the Mariana liparid and 38 N. kermadecensis. 
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All metrics (otolith mass, length, width, and height) increased significantly with both standard 

length and body mass for both hadal liparid species (ANOVA – standard length: Mariana liparid 

F1,25=19.9, p<0.001; F1,25=22.3, p<0.001; F1,25=12.9, p<0.01; F1,25=16.6, p<0.001; N. 

kermadecensis F1,36=21.5, p<0.001; F1,36=11.2, p<0.01; F1,36=18.8, p<0.001; F1,36=18.3, p<0.001; 

body mass: Mariana liparid F1,25=44.0, p<0.001; F1,25=62.9, p<0.001; F1,25=32.2, p<0.001; F1, 

25=20.8, p<0.001; N. kermadecensis F1,33=26.0, p<0.001; F1,33=19.0, p<0.001; F1,33=19.5, 

p<0.001; F1,33=17.7, p<0.001; Figure 4.5). Measurements between otoliths of individual fishes 

were not significantly different in mass, length, width, or height for either the Mariana liparid 

(Welch two-sample t-test, t49=-0.107, p=0.854; t52=-0.107, p=0.915; t51=-0.241, p=0.811; t51=-

0.127, p=0.899) or N. kermadecensis (t69=0.124, p=0.901; t70=-0.864, p=0.390; t70=0.315, 

p=0.754; t70=-0.093, p=0.926). Assuming opaque zones represent annual growth, ages for these 

specimens were estimated to be 5 to 12 years old for the Mariana liparid and 6 to 15 years old for 

N. kermadecensis (Figure 4.6). 
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Figure 4.6. a) Length-at-age relationships for two hadal snailfishes, the Mariana liparid (n=23) and N. 

kermadecensis (n=34). Females (circles), males (diamonds), juveniles (squares), and unknown sex 

(triangles). Estimated age (in years) assuming opaque rings represent annual growth zones. b) Standard 

length as a function of otolith mass (mg) for comparison.  
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Age Estimation: Abyssal Macrourids. Otoliths from 114 Coryphaenoides armatus were 

sectioned for age estimation. Individuals ranged in total length from 44.0 to 93.5 cm and had body 

masses between 300 and 3760 g. Macrourid tails are often lost or broken, making growth 

relationships difficult to analyze, therefore head lengths (range 7.25 to 15.38 cm) were used for 

length-at-age comparisons here. There were 31 females, 74 males, and nine of unknown sex. 

Otoliths weighed between 0.0362 and 0.1503 g, were 1.00–2.30 mm in height, 3.60–6.30 mm in 

width, and 3.50–7.35 mm in length. Forty-four Coryphaenoides yaquinae individuals were 

analyzed, with total lengths ranging from 34.7 to 65.0 cm, weighing 179 to 1107 g. Head lengths 

were between 7.4 and 12.0 cm. Of these, 40 were identified as female, two as male, and two of 

unknown sex. Otoliths of C. yaquinae ranged in mass from 0.0246 to 0.0858 g, in height from 1.20 

to 1.90 mm, in width from 3.60 to 5.70 mm, and in length from 3.30 to 5.70 mm. Collection details, 

specimen measurements, and individual age estimates for both macrourids are available in 

Supplementary Table 4.2. 
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Figure 4.7. a) Length-at-age relationships for two abyssal macrourids, Coryphaenoides armatus (n=107) 

and C. yaquinae (n=42). Females (circles), males (diamonds), and unknown sex (triangles). Estimated age 

(in years) assuming opaque rings represent annual growth zones. b) Head length as a function of otolith 

mass (g) for comparison. 
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Left and right otoliths did not vary significantly in mass (Welch two-sample t-test: C. armatus 

t224=-0.964, p=0.336; C. yaquinae t85=-0.383, p=0.703), length (C. armatus t224=-0.413, p=0.680; 

C. yaquinae t84=-0.324, p=0.747), width (C. armatus t223=-1.434, p=0.153; C. yaquinae t84=-0.045, 

p=0.965), or height (C. armatus t220=-0.667, p=0.506; C. yaquinae t85=-0.706, p=0.482). Otolith 

mass, length, width, and height all increased significantly with head length (ANOVA: C. armatus 

F1,110=134.3, p<0.001; F1,110=44.9, p<0.001; F1,109=64.9, p<0.001; F1,110=64.5, p<0.001; C. 

yaquinae F1,42=63.3, p<0.001; F1,42=25.8, p<0.001; F1,42=60.1, p<0.001; F1,42=33.8, p<0.001) and 

body mass (C. armatus F1,109=129.4, p<0.001; F1,109=47.0, p<0.001; F1,108=61.1, p<0.001; 

F1,109=75.6, p<0.001; C. yaquinae F1,41=66.7, p<0.001; F1,41=18.1, p<0.001; F1,41=43.9, p<0.001; 

F1,41=42.2, p<0.001) in both C. armatus and C. yaquinae. Age estimates for Coryphaenoides 

armatus in this collection ranged from 8 to 29 years old. Otoliths from Coryphaenoides yaquinae 

had fewer annuli, with ages estimated from 6 to 16 years old (Figure 4.7). Growth parameters for 

all study species are presented in Table 4.1.  

Table 4.1. Tentative growth parameters and age estimates for liparids and macrourids. Lengths (cm) are 

standard length for liparids and head length for macrourids. Number of otoliths used in age estimation (n) 

shown. Growth coefficient (k), maximum length (Linf), number of iterations to convergence (i), and residual 

sums of squares (RS) for von Bertalanffy growth function models are presented. Growth function fitted 

based on head length for macrourids, standard length for liparids. 

Species n Length (cm) 

Body 

Mass (g) 

Age 

Estimates 

Linf 

(cm) k RS i 

Coryphaenoides armatus 107 7.3–15.4 300–3760 8–29 18.3 0.062 81.3 7 

Coryphaenoides yaquinae 42 7.4–12.0 179–1107 6–16 11.1 0.181 23.5 3 

Careproctus melanurus 29 11.8–21.8 8–140 9–24 22.9 0.079 22.8 6 

Notoliparis kermadecensis 38 12.9–29.0 20–230 6–15 34.7 0.086 91.4 5 

Mariana liparid 28 10.5–28.8 8–160 5–12 75.9 0.029 84.8 15 

 

Thermal History Reconstruction. For all samples tested (Table 4.2), δ18O values ranged from 

28.8 to 33.8‰ relative to VSMOW. Errors (2σ) of individual point measurements ranged from 

±0.18 to ±0.54‰ (mean 0.35‰) vs. VSMOW. The highest values were found in the deeper-living 

species (Figure 4.8). Significant increases in δ18O values (corresponding to decreases in habitat 

temperature) with increasing distance from the core were found for C. armatus (ANOVA, 
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(F1,8=23.2, p<0.05), N. kermadecensis (F1,4=18.2, p<0.05), and nearly significant increases were 

found for the Mariana liparid (F1,4=5.9, p=0.073).  C. melanurus δ18O values also varied across 

the otolith, being lower in the first or second annuli than at the core, and then increasing toward 

the outer rings. No significant change across the otolith was found for C. yaquinae (F1,8=0.1, 

p=0.705). δ18O values at points on different sides of the otolith and at similar distances from the 

core were consistent (Figure 4.8). Images of the otolith surface using scanning electron 

microscopy revealed some measurement points on roughly polished surfaces (triangles in Figure 

4.8). Based on previous laboratory observations, these values may be expected to be significantly 

higher (up to 4‰) than the true sample values (Kita et al., 2009). Conversions to VPDB are shown 

using the true ratios. We found no significant differences between this method and conversion via 

the Coplen et al. equation (1983; Welch two-sample t-test, t142=0.041, p=0.968). 

 

Table 4.2. Samples used for thermal history reconstruction. Depth in meters and SL is standard length in 

centimeters. Number of points measured along otolith were taken in two opposing transects. Mean 

temperature over the capture depths is listed with ranges in the text. δ18O values (‰ vs. VSMOW) for 

seawater estimated based on outermost measurement and capture temperature. 

Species Location Depth °C δ18Osw SL Sex Sample ID Points 

Careproctus melanurus California 834 5.1 -3.80 18.0 female 841#1 8 

Coryphaenoides armatus Kermadec Trench 3865 1.2 -1.74 50.3 male 100038 10 

Coryphaenoides yaquinae Mariana Trench 5255 1.5 -1.52 77.3 female 200152 10 

Mariana liparid Mariana Trench 7841 1.8 -0.86 11.9 juvenile 200072 6 

Notoliparis kermadecensis Kermadec Trench 7515 1.3 -1.34 18.3 male 100171 6 
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Figure 4.8. Measurements of δ18O values (‰ vs. VSMOW) across individual otoliths by species. Triangles 

indicate measurements that may have scratches based on SEM inspection. Error bars indicate 2σ. Distance 

measured from center of the otolith core.  

 

For calibration of the Mariana liparid δ18O measurements, we used habitat temperature measured 

in situ and the δ18O value at the outer otolith edge to solve for the δ18O of seawater. Habitat 

temperature for adults ranged from 1.7 to 1.9°C (mean 1.8°C) based on temperature-depth data 

and specimen collection depth (6,914–7,966 m, Jamieson and Linley, unpublished data; 13,787 

temperature measurements over 14 deployments greater than 6,914 m). The mean temperature of 

1.8°C, and the outer edge δ18O values (Figure 4.8), gave a δ18O value of -0.86‰ for seawater. 

Using this value for the thermal reconstruction, the corresponding habitat temperature at the 

innermost (otolith core) measurement was estimated to be ~6°C (Figure 4.9). This finding suggests 

a larval phase depth shallower than 1,000 m (~430–920 m) in overlying waters. The Kermadec 
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liparid, Notoliparis kermadecensis, was collected from depths between 6,456 and 7,554 m, with a 

temperature range of 1.2–1.3°C (mean 1.3°C; 3,929 measurements over 5 deployments, July 

2007). Based on the outermost δ18O value in the otoliths, this would correspond to a δ18O value of 

seawater of approximately -1.34‰. Habitat temperature estimates from the core measurements 

were calculated to be as warm as 8°C (Figure 4.9). This indicates the larval phase was at depths 

between ~450 and 930 m in overlying waters (Figure 4.10).  

 

 
Figure 4.9. Estimated temperature changes across the otoliths of the abyssal and hadal fishes of this study. 

Calculated δ18O for seawater at collection locations was used to calibrate the measured δ18O values through 

the otolith transects to determine water temperature through ontogeny (Høie et al., 2004). Triangles indicate 

measurements with potential scratches seen in SEM. Linear fits with 95% confidence intervals shown in 

gray.  
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The abyssal grenadier specimens provided contrasting results (Figure 4.8). The C. yaquinae 

specimen was collected from 5,255 m at a location near the Mariana Trench. Mean habitat 

temperature from this individual was estimated to be 1.5°C (1.4–1.5°C) for a depth range of 5,000–

5,500 m (4,380 CTD measurements over 22 deployments). Hence, the calibrated δ18O value of 

seawater was estimated to be -1.52‰. Habitat temperature varied little across the otolith and 

represented depths below 2,000 m. The C. armatus specimen was from the abyssal plains near the 

Kermadec Trench from a depth of 3,865 m with temperature range of 1.0 to 1.6°C (mean 1.2°C, 

depths 3,500–4,500 m, 2,119 temperature measurements over nine deployments, in 2007 and 

2014). The calibrated δ18O value of seawater was -1.74‰, which led to habitat temperatures 

ranging from 1 to 4°C across the otolith. This suggests a change in habitat and a larval phase at 

depths deeper than 1,000 m, but above the bottom.  

 

 
Figure 4.10. Temperature-depth profiles for locations near the collections sites within the 

Kermadec Trench (left) and Mariana Trench (right) trenches (Unpublished data, A. Jamieson and 

T. Linley, deployment details provided by Linley et al., 2017). Profiles are based on 35,535 

measurements over 13 deployments for the Kermadec Trench and 60,627 measurements over 24 

deployments for the Mariana Trench (2007–2014).  
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The collection depth for the C. melanurus specimen was 834 m with a corresponding habitat 

temperature of 5.09°C. The calibrated δ18O value of seawater was -3.80‰. Measurements across 

the otolith provided evidence that habitat temperature increased to approximately ~9°C, and then 

returned to ~5°C. This suggests a pelagic larval phase to depths of 125 to 300 m, prior to the 

juveniles and adults subsequently settling at greater depths (Figure 4.11).  

 
Figure 4.11. a)  Estimated temperature changes across the otolith of an adult Careproctus melanurus 

(sample 841#1). Calculated δ18O for seawater at collection locations was used to calibrate the measured 

δ18O values through the otolith transects to determine water temperature through ontogeny (Høie et al., 

2004). b) Temperature profile for Careproctus melanurus collection site. Data extracted from WOD. Profile 

constructed from 88 measurements in May and October.   

 

Discussion 

 

Information on the age, growth, and longevity of snailfishes is lacking as few studies have been 

pursued for members of this family. One study that used whole otoliths to estimate the age of 

Liparis gibbus and Careproctus reinhardti from off Spitsbergen in the Arctic Ocean led to 

maximum ages of 6 and 7 years, respectively (Falk-Petersen et al., 1988). The study mentions that 

the annuli were easy to read. However, it must be considered that sectioned otoliths regularly 

reveal more growth zone structure not visible in whole otoliths. These finer rings are often annual, 
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reflecting seasonal changes in nutrient inputs, and lead to much greater estimates of age (e.g., 

Beamish 1979; Andrews et al., 2002). In our collection, the difference between what was visible 

in the whole versus sectioned C. melanurus otoliths was dramatic (Figure 4.1). Otolith sectioning 

was necessary for age estimation of the smaller liparids used in this study. Maximum age estimates 

of 10 to 13 years for the family in general, including previous estimates for C. melanurus from the 

northwestern Pacific Ocean, were based on counting growth zones using the break-and-burn 

method (Orlov and Tokranov, 2011). Our results suggest that snailfishes in general may be longer-

lived, with estimates on the order of twenty years. This discrepancy warrants further investigation, 

including the use of validation techniques.  

The small sample size and narrow specimen length range prevented a reasonable fit of the 

von Bertalanffy growth function for our study species, especially given the lack of very 

small/young fish (Horn et al., 2010), except as an exploratory tool. In addition, length at maturity 

for C. melanurus remains unknown (Stein, 1980) and precludes an estimate of age at maturity. 

However, if the length of each species tends to plateau with increasing otolith mass, we can 

conclude that fish approaching maximum size were sampled and that estimates of age may 

represent maximum age for the species. For C. melanurus, growth zones were well defined in the 

medial sections. Our tentatively fitted von Bertalanffy function suggested a maximum standard 

length of near 23 cm, near the maximum size from this collection. Subjectivity in age estimation 

was greatest in the earliest growth because of what appear to be checks (non-annual marks) with 

spacing that was inconsistent with asymptotic growth. Edge effects were also a problem for the 

more recent growth. Assuming some degree of accuracy in the estimates here, C. melanurus may 

approach maximum size in ~15–20 years, with a longevity on the order of 25 years (Figure 4.3). 

In addition, the low slope for the increase in size with age for the youngest fish studied implies 

either early overcounting or a low growth coefficient (k). An anchored von Bertalanffy growth 

function yielded a k value of 0.079 for C. melanurus, similar to that found in other upper slope-

dwelling fishes (Drazen and Haedrich, 2012).  

This study provides the first age estimates for the planet’s deepest-living fishes based on 

otolith growth zones. Age estimates for the Mariana liparid were as high as 12 years, and up to 15 

years old for Notoliparis kermadecensis from the Kermadec Trench. Although sample sizes for 

liparids in this study were low for a comprehensive quantification of age and growth, similarities 
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between the otolith mass to standard length, and estimated ages to standard length relationships 

(Figure 4.6), provide evidence for consistency in the age estimation protocol. These estimates are 

much less than may have been predicted according to the older-deeper trend seen in other studies 

(Cailliet et al., 2001), although as more age estimation work has been done on a variety of deep-

sea commercial and bycatch species, a high variability in ages at depth has emerged (e.g., Andrews 

et al., 1999a, 2009, 2012; Horn et al, 2012; Tracey et al., 2016). The relatively low ages and 

moderate growth are concordant with the growing recognition that food supply in trenches may be 

higher than the surrounding abyss due to accumulation of organic matter through topographic 

funneling (George and Higgins, 1979; Danovaro et al., 2002; Itoh et al., 2011; Ichino et al., 2015). 

The low ages are also consistent with the hypothesis that liparids are adapted to a higher-

disturbance environment than the abyssal plain. The growth coefficient (k) for Notoliparis 

kermadecensis was slightly higher than that found for C. melanurus, at 0.086 and 0.079 

respectively, although the sample size for the Mariana liparid was too small for reasonable growth 

parameters for comparison. Additionally, increased longevity and slower rates to maturity may not 

be advantageous in the hadal environment. Hadal subduction zones are highly susceptible to 

disturbance (Itou et al., 2000; Oguri et al., 2013) compared to the surrounding abyss, which is 

generally considered a comparatively stable environment. Seismic activity can cause turbidity 

flows, which can greatly impact species distributions (Fisher and Raitt, 1962; Richardson et al., 

1995; Danovaro et al., 2002). Snailfish may be adapted to the hadal environment by having faster 

growth, with less time to reproductive maturity.  

Many more age estimates exist for the macrourid fishes (reviewed by Swan and Gordon, 

2001), allowing a framework for discussion of the deeper-older trends. Another rattail in the same 

genus, Coryphaenoides acrolepis was validated to reach ages of least 56 years based on 210Pb/226Ra 

dating, with growth zone age estimates as high as 73 years (Andrews et al., 1999a). Using a similar 

counting protocol developed by that study, the present maximum age estimates were 29 and 16 

years for C. armatus and C. yaquinae, respectively. Neither length-at-age curve for these species 

reached a plateau, therefore it is possible that maximum ages for both macrourids can be greater 

than found in this collection given sampling adequacy. While longevity for C. armatus and C. 

yaquinae does not appear to be on the order of 100 years, as may have been expected from the 

deeper-older hypothesis, sampling adequacy and age reading need further investigation.  
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Gadiformes such as the macrourids have been shown to be longer-lived with depth of occurrence 

in the first thousand meters (Drazen and Haedrich, 2012). However, this trend does not seem to 

continue linearly to abyssal and shallow-hadal depths. Therefore, that it is unlikely that longevity 

in deep-sea fishes is governed exclusively by temperature or hydrostatic pressure.  

Given the available data, age at maturity may be less than ten years for both hadal snailfish 

species. Standard length at maturity was approximately 13–15 cm for the Mariana liparid and near 

13–17 cm for N. kermadecensis. While we found clear relationships between size, age, and otolith 

mass, it could be inaccurate to estimate age from only the otolith mass, as has been found for other 

species (e.g., Pilling et al., 2003). Two-stage otolith-mass growth relationships are not uncommon 

in deep-sea species, whereby the otolith-mass growth rate slows with age, often related to the onset 

of spawning (and close banding representing a ‘transition zone’) such as for orange roughy 

Hoplostethus atlanticus (e.g., Smith et al., 1995; Francis and Horn, 1997; Tracey and Horn, 1999) 

and splitnose rockfish Sebastes diploproa (Bennett et al., 1982). Alternatively, for a number of 

oreo species, the transition zone appears to be related to a change from pelagic to demersal habitat 

(James et al., 1988; Stewart et al., 1995). These fish have much greater longevity than estimated 

for hadal liparids, hence the shift in growth pattern may not be as obvious in the hadal snailfishes. 

However, there did seem to be a shift to finer ring structure indicating a slowing of growth at three 

to four years for the hadal liparids (Figure 4.4). For Coryphaenoides armatus, this shift usually 

occurred near five years, and close to three years for Coryphaenoides yaquinae. Based on this 

visible change in the otolith growth pattern, age at maturity may occur relatively early for both 

hadal liparids and abyssal macrourids.  

There are certain limitations to the age estimation method employed here that must be 

acknowledged. It is well known that annual growth rings require validation (e.g., Campana, 2001; 

Cailliet and Andrews 2008). It is possible that some growth zones represent sub-annual increment 

structure from unknown environmental signals, such as smaller-scale seasonal changes or 

stochastic food fall events (e.g., Brothers et al., 1976; Hüssy et al., 2010; Pannella, 1980). The list 

of potential age validation techniques (e.g., Campana, 2001) becomes much shorter in deep-sea 

systems (discussed Mace et al., 1990; Andrews et al., 1999a). Ship time, sampling equipment, and 

depth issues make a mark/recapture study impractical for hadal fishes. Most other methods are 

also challenging for various reasons. One of the more feasible methods is an analysis of growth in 
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the outer most ring collected in different seasons (Gordon and Swan, 1996), but this would require 

extended temporal sampling opportunities that are not currently available in hadal environments. 

Validation by radiometric dating has been applied to some deep-sea fishes (Andrews et al., 1999a, 

2009), but the amount of material required and the necessity of pooling individuals of similar age 

precludes this kind of analysis (Andrews et al., 1999b). Only about one hundred hadal liparids 

have been collected in the fifty years since their discovery (Andriashev, 1955; Nielsen, 1964; 

Andriyashev et al., 1993; Stein, 2005; Linley et al., 2016), hence this amount of material is not 

available. Despite these limitations, the development of a protocol based on a shallower-living 

liparid species provided some credence to the estimates. Furthermore, the known seasonality in 

the deep sea (e.g., Lampitt, 1985; Lutz et al., 2007; Rowe, 2013; Morales-Nin and Panfili, 2005), 

presumably even at hadal depths, provides at least a conceptual framework for the formation of 

annual growth zones. With the present lack of a feasible validation method for hadal snailfishes, 

we must consider these age estimates as preliminary and note their uncertainty.  

 Oxygen isotopic compositions across the otolith were used to investigate changes in habitat 

temperature. For Careproctus melanurus we found clear changes (1.5‰) that corresponded to a 

5°C increase within the first few years of growth (~3–4 years), followed by a return to cooler 

temperatures later in life. This likely reflects an early life history stage that moves upward in the 

water column, settles to the bottom on the upper slope, which is followed by an ontogenetic 

downslope migration with increasing size and age. This may not be an unusual circumstance for 

benthic or benthopelagic species of the continental slope—Pacific grenadier have been collected 

just below the thermocline and the smallest individuals are collected only on the upper slope (A.H. 

Andrews, personal communication; Matsui et al., 1991). Changes in isotopic composition across 

the abyssal macrourid otoliths were far less pronounced or absent. There may have been a slight 

decrease in habitat temperature throughout growth for Coryphaenoides armatus, but no change 

was observed for C. yaquinae. These findings may indicate that the vertical migration of larvae 

before settling back to the bottom is well below the thermocline. A shallow juvenile phase 

discovered using oxygen isotope analysis of Coryphaenoides rupestris otoliths (Longmore et al., 

2011), but this does not seem to be the case for these deepest-dwelling congeners and abyssal 

macrourid larvae have not been located.  
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Given the temperature-depth profiles collected for C. armatus in the Kermadec Trench, an 

individual collected near 4,000 m with a habitat temperature of 1–2°C, likely had a larval stage 

close to 1,000 m depth, perhaps accounting for their elusiveness, and also matching a deep 

downslope migration of juveniles from middle slope to greater abyssal depths (Collins et al., 2005). 

Results from the hadal liparid isotopic analyses were surprising, with significant increases in δ18O 

values across the otolith for both species. These changes could reflect an up to eight-degree change 

in habitat temperature, which would place larvae at a surprising depth of shallower than 1,000 m, 

thousands of meters above the adult populations, which appear endemic to their respective trench 

systems. According to the size of the opaque growth zones, the largest temperature changes for 

both species seem to be in the first two years of life. Depth differences in various life history stages 

of deep-sea fishes revealed by isotope analysis are not uncommon, such as reported for bluenose 

(Hyperoglyphe antarctica) off New Zealand by Horn et al. (2010), orange roughy off Ireland 

(Shephard et al., 2007), and the jellynose fish (Ateleopus japonicus and Ijimaia dofleini) near 

Taiwan (Shiao et al., 2017), but the depth differences between pelagic and demersal stages of the 

hadal liparids suggested here far exceed those of other species.  

The estimation of δ18O values for seawater, given limited environmental data on the deep-

sea systems, is approximate and not directly measured as in other studies that have applied this 

method (e.g., Thorrold et al., 1997). The similarities of estimated δ18O values of seawater between 

the sites and in different species provides some support for the validity of the method. Further, 

slight changes in water mass salinity are not expected to change isotopic fractionation patterns 

substantially (Fowler et al., 1995; Elsdon and Gillanders, 2002). Thus, it is likely that changes in 

δ18O values across the otolith indeed reflect changes in habitat temperature. The measurement of 

organic material, rather than the aragonitic portion of the otolith, can cause significant differences 

in measured isotopic values (e.g., Grønkjær et al., 2013); however, these differences are usually 

~5‰ (vs. VPDB) below expected values and relatively easy to identify as outliers (Shiao et al., 

2014). The fact that changes in the present study followed a consistent trend and were highly 

reproducible within the spot measurements of the same annulus on a corresponding side of the 

otolith provides support for measurement precision. Although the absolute temperatures reported 

are approximate, the change in isotopic composition across the otolith should reflect relative 

ontogenetic change in habitat temperature. 
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The ion microprobe results contradict what may be expected from the extremely large eggs 

(up to 9.4 mm in the newly discovered Mariana liparid) and low fecundities found in the hadal 

liparids (Chapter VI; Nielsen, 1964), which both suggest the possibility of parental care and a 

benthic larval stage. Gravid females of Notoliparis kermadecensis were caught in the Kermadec 

Trench in both April and November, suggesting continuous or at least a sub-annual periodicity to 

reproduction (present study collection, HADEEP). An alternative explanation for the temperature 

increase across the otolith would be that the fish originated in a location deeper in the trench, at 

warmer temperatures due to the effects of adiabatic heating (Bryden, 1973). If the snailfishes 

spawned deeper in the trench and moved to the upper trench slopes as they grew, they would 

undergo a temperature decrease of almost 1°C as they matured (Figure 4.10). Such a change is 

much less than our results suggest based on temperature predictions (Høie et al., 2004), although 

it is possible that the equation is overly sensitive to changes in delta values. Pressure effects on 

oxygen isotope fractionation would, however, not be significant until pressures tenfold higher than 

those seen at hadal depths (Clayton et al., 1975; Polyakov and Kharlashina, 1994) and so pressure 

effects can be eliminated from further consideration. 

 

Conclusions 

 

This study provides the first age estimates for fishes from hadal depths. Age estimates from 

counting opaque growth zones in sagittal otoliths suggested that hadal liparids do not fit the deeper-

older trend seen for shallower-living fishes (e.g., Cailliet et al., 2001). The reason for their 

moderate growth rates and relatively young ages could be adaptations to the greater food levels in 

this seismically active, high disturbance environment of the hadal zone. Results from 18O 

measurements across the otolith suggest that hadal snailfishes have a shallower pelagic larval 

stage. This contradicts expectations that a benthic life history could allow them to benefit from the 

absence of predators at hadal depths and could account for high levels of hadal endemism. Limited 

dispersal may not have confined liparids to the hadal environment. The success of the snailfishes 

in the hadal zone may be related to other factors, such as trophic ecology and pressure adaptation.  
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CHAPTER V 

Distribution, composition, and functions of gelatinous tissues in deep-sea fishes 

 

Abstract 

 

Many deep-sea fishes have a gelatinous layer, or subdermal extracellular matrix, below the skin or 

around the spine. We document the distribution of gelatinous tissues across fish families (~200 

species in ten orders), then review and investigate their composition and function. Gelatinous 

tissues from nine species were analysed for water content (96.53±1.78%), ionic composition, 

osmolality, protein (0.39±0.23%), lipid (0.69±0.56%), and carbohydrate (0.61±0.28%). Results 

suggest that gelatinous tissues are mostly extracellular fluid, which may allow animals to grow 

inexpensively. Further, almost all gelatinous tissues floated in cold seawater, thus may contribute 

to buoyancy through low density in some species. We also propose a new hypothesis: gelatinous 

tissues, which are inexpensive to grow, may sometimes provide a method to increase swimming 

efficiency by fairing the transition from trunk to tail. Such a layer is particularly prominent in hadal 

snailfishes (Liparidae); therefore, a robotic snailfish model was designed and constructed to 

analyse the influence of gelatinous tissues on locomotory performance. The model swam faster 

with a water layer, functionally representing gelatinous tissue, around the tail than without. Results 

suggest that the tissues may, in addition to providing buoyancy and low-cost growth, aid deep-sea 

fish locomotion. 

 

Introduction 

 

In some species of fishes, a distinct watery tissue layer is present, usually between the skin and 

muscle or between muscle bundles (Figure 5.1). It has long been known that fishes in the 

superorder Elopomorpha (Anguilliformes, Albuliformes, Elopiformes, and Saccopharyngiformes) 

have larvae called leptocephali in which most of the body consists of an acellular gelatinous matrix 

providing structural support in the absence of a vertebral column and transparency for camouflage 

(e.g., Pfeiler, 1999; Miller, 2009). The first known scientific record of these tissues in a fully adult 
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fish comes from the Challenger Report description of the gelatinous blind cusk eel Aphyonus 

gelatinosus, in which the ‘anterior half of the skin forms a large loose bag which, during life, is 

probably filled and distended with mucus’ (Günther, 1887). Gelatinous tissue is even a defining 

character in the genus Careproctus of the family Liparidae (snailfish), which ‘best illustrates the 

production of pseudotissue which envelops the body and fins just beneath the skin’ (Burke, 1930). 

The literature sometimes refers to these tissues as the subdermal extracellular matrix, or SECM 

(e.g., Eastman et al., 1994; Ozaka et al., 2009). More recently, such tissues have been found in 

species of hadal snailfish in the Kermadec and Mariana trenches. In a freshly collected fish, the 

layer of clear gelatinous tissue is prominent (Figure 5.1a), though as the skin is lacerated, this 

tissue leaks out and melts away. It is largely concentrated just behind the abdominal cavity, with 

a thin layer around the tail.  

Although these gelatinous tissues have been noted in several species and can compose up 

to a third of the mass of a fish (Eastman et al., 1994), they have not been compared across families 

and their functions remain unresolved. In addition to structural support and transparency, one 

possible role proposed for gelatinous larval fishes (e.g., Marliave and Peden, 1989) and some deep-

sea invertebrates (e.g., Mitra and Zaman, 2016) is to allow growth to large size at low metabolic 

cost. This hypothesis may apply to adult fishes as well. One study investigated the potential 

antifreeze function of the gelatinous tissues in an Antarctic fish, but found no evidence to suggest 

a role in cold-tolerance (Jung et al., 1995). Eastman et al. (1994) found free nerve endings present 

within the gelatinous tissues of Paraliparis devriesi. It was hypothesized that these may serve as 

mechanoreceptors in three Antarctic liparids, allowing the fish to detect displacement of the 

gelatinous layer during movement (Eastman and Lannoo, 1998; Lannoo et al., 2009). The potential 

sensory role of gelatinous tissues, however, is proposed to be secondary to another function—

buoyancy. 
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Figure 5.1. Gelatinous Tissues. Arrows point to gelatinous tissue layers. a) Notoliparis kermadecensis, 

family Liparidae, hadal snailfish. Gelatinous tissues prominent directly below skin, concentrated around 

posterior of cavity and along tail. Photo by J. Reed. Image courtesy of the HADES Program, NSF, NOAA 

OER, (© WHOI).  b - d) Cross-sections of fishes showing gelatinous tissues bundles. b) Twoline eelpout, 

Bothracara brunneum, family Zoarcidae. c) Deep-sea sole, Embassichthys bathybius, family 

Pleuronectidae. Photos by J. Friedman. d) Giant cusk eel, Spectrunculus grandis, family Ophidiidae. Photo 

by P. Yancey. e) Gelatinous tissues between muscle bands in Coryphaenoides yaquinae, family 

Macrouridae. Photo by M. Gerringer. f) E. bathybius gelatinous tissues. Photo by P. Yancey. g/h) Preserved 

Barathronus sp., family Aphyonidae (SIO 92-109). In life, body is surrounded with gelatinous tissues. With 

tissues gone, body is thin and flat. Dorsal (g) and lateral (h) views. Photos by M. Gerringer.  
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Gelatinous layers have been described in a number of mid-water fishes, leading to the 

hypothesis that they are an adaptation for buoyancy, first introduced by Denton and Marshall 

(1958) and expanded by Davenport and Kjorsvik (1986) and Yancey et al. (1989). In all but the 

deepest-living teleost fishes, internal ion concentrations and osmolalities are lower than seawater. 

For example, extracellular fluids of typical shallow teleosts have about 170 mM NaCl and lesser 

amounts of other ions, yielding an osmolality of 350–400 mosmoles/kg (e.g., Prosser et al., 1970). 

In comparison, average seawater has roughly 500 mM NaCl plus other ions yielding about 1000–

1100 mosmoles/kg. Thus, extracellular fluid, including that in gelatinous tissues, with very little 

non-lipid organic material will be less dense than seawater (unlike many tissues such as muscle, 

bone, and cartilage). In addition, some gelatinous tissues in midwater fishes have even lower ion 

concentrations than other body fluids, further increasing buoyancy (Yancey et al., 1989). The 

buoyancy hypothesis was further supported by Eastman et al. (1994) in a study of gelatinous tissues 

in the Antarctic snailfish, Paraliparis devriesi, which are believed to achieve neutral buoyancy 

through decreased bone ossification and the presence of this layer. These low-density tissues and 

fluids would be adaptive under the high hydrostatic pressures of the deep sea, where the inflation 

of a swimbladder becomes increasingly difficult (Scholander, 1954).  

References to the presence and function of gelatinous tissues have often been speculative 

and passing. Here, we analyse compositions of these tissues in selected species, evaluate the 

proposed buoyancy function, synthesize and review references to gelatinous tissues, investigate 

depth-related trends in the presence of these tissues, and introduce a new hypothesis: gelatinous 

tissues may be an adaptive method of changing body shape at low growth cost, acting as a fairing 

material to increase locomotor performance.  

 

Materials & Methods 

 

Proximate Chemistry and Buoyancy Tests. Samples. Fishes were collected by trawl from 

Monterey Bay in April and October 2009 and by baited trap in the Kermadec Trench in 2011 and 

2014. Collection information for gelatinous tissues analysed in this study is presented in 

Supplementary Table 5.1. Buoyancy. Fresh pieces of gelatinous and white muscle tissues were 

placed about halfway down in a graduated cylinder or glass jar filled with seawater at 2–5°C 



127 

 

shortly after capture, and sink or rise times (to travel 6 cm) were measured. Water Content. 

Gelatinous tissues were dried at 60°C for three days and remaining dry mass was compared to 

original wet tissues mass. Osmotic Pressure. A vapour pressure osmometer, Wescor 5500, was 

used in the laboratory for most species, and at sea for N. kermadecensis, to determine sample 

osmolality. Samples were homogenized with a small pestle in a microfuge tube, then centrifuged 

at 2,000 x g for 30 minutes at 4°C. 10 µL of the resulting supernatant was measured with an 

osmometer. The 290 mmol/kg and 1000 mmol/kg standards were checked periodically to confirm 

accurate calibration.  Sample Preparation. A section of frozen gelatinous tissues, clear of white 

muscle, was cut and weighed to obtain about 0.1 g, with a precision of 0.0001 g. The section was 

ground in 7% perchloric acid (PCA) or 70% ethanol, added at 9 times the tissues mass, to 

precipitate proteins. The sample was refrigerated overnight, then centrifuged for 20 minutes at 

15,500 x g at 4ºC. The supernatant, transferred to a new tube, was used for inorganic ion and 

organic osmolyte analyses, while the pellet was used for protein analysis. When ethanol was used 

to homogenize tissues, the supernatant was evaporated and the remaining powder dissolved in 

distilled water. The supernatants in PCA were titrated with 2 M KOH to pH 6.5–7.5. The resulting 

precipitate was centrifuged and the supernatant removed to a new tube. The PCA method was not 

used for ion analysis because of the required addition of potassium. Protein. Protein content was 

determined with the Bicinchoninic Acid (BCA) Protein Assay (Smith et al., 1985). Bovine serum 

albumin was used as a standard. Lipids. Lipid contents were analysed using the Bligh and Dyer 

(1959) extraction and colorimetric determination of content with the sulfuric acid charring method 

of Marsh and Weinstein (1966) with triolein as a standard. Carbohydrates. Carbohydrate analysis 

was conducted using phenol and sulfuric acid (Dubois et al., 1956), with D-glucose as a standard, 

measured in a spectrophotometer (Beckman Coulter DU 730) at 480 nm. Ions. Sodium and 

potassium contents were analysed by atomic absorption (PerkinElmer AAnalyst 400) in 10 µL 

aliquots of the PCA homogenates dissolved in 10 mL of purified water. All results are presented 

as average ± standard deviation.  

 

Taxonomic Distribution. Records of gelatinous tissues in fishes were collected in an extensive 

literature search. Recent unpublished findings from coastal to hadal surveys are also presented. 

Anecdotally, these tissues were thought to be more common in deeper-living fishes. To test this, 
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common depth ranges of fishes with gelatinous tissues were taken from FishBase (Froese and 

Pauly, 2015). The effects of phylogenetic relationships can confound interpretation of this type of 

analysis, as closely related species become a kind of pseudoreplicate (Felsenstein, 1985). To 

account for this potential error, and to clarify the distribution of gelatinous tissues across families, 

a phylogenetic tree was constructed using mitochondrial cytochrome oxidase subunit I (COI) gene 

sequences extracted from GenBank (Benson et al., 2009). Available sequences were selected from 

families with gelatinous tissues across representative depth ranges. A set of commonly sequenced 

fishes with available habitat depths was included for comparison. Sequences were aligned with the 

tool Multiple Sequence Comparison by Log-Expectation (MUSCLE, Edgar, 2004; McWilliam et 

al., 2013), a tree generated through Randomized Axelerated Maximum Likelihood (RAxML) 

using a bootstrap method with 1000 iterations (Stamatakis, 2014), both through the CIPRES 

(Cyberinfrastructure for Phylogenetic Research) Science Gateway (Miller et al., 2010). The tree 

was visualized through the Interactive Tree of Life (iTOL v3, Letunic and Bork, 2006). Statistical 

analyses were conducted in the programming platform R (R Core Development Team, 2015). 

Generalised linear models (GLM) using minimum and maximum depths, and the median of each 

depth range were fitted using the Gaussian family. Models were selected through optimization of 

Akaike Information Criteria (AIC).  

 

Alteration of Body Shape. Few studies have investigated locomotion in deep-sea fishes (e.g., 

Bailey et al., 2003; Collins et al., 1999; Kenaley et al., 2014; Luck and Pietsch, 2008), largely due 

to the difficulty of direct experimentation. To test the effect of body shape change with gelatinous 

tissues, a robotic model was designed after the Kermadec Trench snailfish, Notoliparis 

kermadecensis. This technique has become a valuable tool to investigate swimming biomechanics 

in a number of shallow-living fishes (e.g., Lauder et al., 2012; Leftwich et al., 2012; Tangorra et 

al., 2011) and is well-suited to deep-sea species that cannot easily be brought into a laboratory 

setting. The plastic (PLA) body and fins were 3D printed (ORION HB #58744) based on a model 

constructed from a photogrammetry recreation of freshly captured specimens collected on the 

HADES (HADal Ecosystems Studies) Cruise in April and May of 2014 (Model: MeshMixer, 

Slicing: Cura, 3D Printing: Repetier Host). The swim test was programmed onto an Arduino Nano 

microcontroller. Tail beat frequency (0.5 beats per second) was chosen to match that found through 
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video analysis of the hadal snailfish, Pseudoliparis belyaevi, filmed in situ in the Japan Trench 

(described in Fujii et al., 2010). The robot was powered by a 9V battery with constant cycle-

averaged power and swam using a Servo motor connected to two piano wires that oscillated the 

tail region back and forth (Figure 5.2). To simulate white muscle, a silicone rubber mould was 

cast for the tail. Two ~ten-second swim trials for the submerged, neutrally buoyant robot were 

conducted with both empty and full tail ‘skin.’ Water represented the gelatinous tissues, to isolate 

the shape effect from changes due to tail stiffness. In some species, such as the cusk eel 

Spectrunculus grandis, it is unlikely that the gelatinous tissue flows freely as water in our model 

would. However, in the liparids, morphological analyses suggest that gelatinous layers are 

displaced during movement (Eastman and Lannoo, 1998; Lannoo et al. 2009). This is also 

suggested by in situ video of hadal snailfishes swimming, which show the gelatinous tissues 

rippling under the skin, making water below the skin, rather than gelatine, an appropriate analogue. 

Swim trials were filmed and body lengths per second and tail beat amplitude were compared 

between trials (with the same tail beat frequency and power) using ImageJ (Schneider et al., 2012). 
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Figure 5.2. above) Schematic of robotic hadal snailfish model. Microcontroller (Arduino Nano), Motor 

(Tower Pro TM, Micro Servo 9g, SG90), Battery (Duracell, 9V). Tail muscle is a cast silicone rubber 

(Ecoflex R 00-10) with a volume-adjustable skin (latex condom, Trojan Magnum). Additional materials 

used include hot glue, a spring, piano wire, a bottle cap, marine epoxy, electrical tape, and miscellaneous 

hardware as ballast. Dotted line indicates outer skin, kept empty in trials with no gelatinous tissue analogue. 

below) Hadal liparid body shape with gelatinous tissues in dark grey. Dorsal and anal fin rays connect to 

epaxial and hypaxial muscle tissue while gelatinous tissues surround. Drawing by T. Linley. 
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Results 

 

Buoyancy and Proximate Chemistry. In shipboard buoyancy experiments, gelatinous tissues 

from most species floated in seawater, the only exception being tissues from N. kermadecensis, 

which appeared to be neutrally buoyant (did not rise or sink in the cylinder). When placed in cold 

(2°C) seawater, a whole hadal snailfish sank very slowly, tail first. Float rates were collected for 

gelatinous tissues from five species. Tissues travelled 6 cm upwards in 2.96±0.26 seconds (B. 

brunneum, n=4), 2.53±0.86 seconds (E. bathybius, n=9), 3.55±0.60 seconds (M. pacificus, n=3), 

1.16±0.31 seconds (P. karenae, n=3), and 3.71±0.80 seconds (S. grandis 2000 m, n=4). 

Analyses of nine species (common depths 750–7500 m) revealed that tissues were 

primarily water (96.5±1.8%) with minor amounts of other constituents (Table 5.1). Protein, 

carbohydrate, and lipid contents were low (0.39±0.23, 0.61±0.28, and 0.69±0.57, respectively). 

Sodium contents were much higher than potassium contents (Na: K ratio from 18 to 38; Welch 

two-sample t-test, p≤0.0001), as is typical of extra- but not intracellular fluids. Sodium contents 

also trended higher with depth (157 mmol/kg at 1000 m to 362 at 7000 m) both inter- and 

intraspecifically (e.g., S. grandis, 205 mmol/kg at 2000 vs 318 mmol/kg at 4149 m). Most tissues 

had similar potassium contents (6.5–12.8 mmol/kg), though higher in the deepest fish, N. 

kermadecensis (14.4±0.7 mmol/kg). Osmolalities, in mosmoles/kg, were measured in gelatinous 

tissues of six species. Values ranged from 311–385 in four species from 1000–2000 m, and were 

higher in the two deeper species analysed, most notably N. kermadecensis at 945 mosmoles/kg. 
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Table 5.1. Proximate chemistry of gelatinous tissues in representative species. Numbers in parentheses indicate sample size for each analysis. 

Capture depth in meters. Sodium, potassium given in mmol/kg wet mass, and osmolality in mosmol/kg. B. brunneum osmolality value from sample 

collected at 2000 m.  

Species Capture Depth Potassium  Sodium Na/K % Water % Protein % Carb % Lipid Osmolality  

Careproctus melanurus 750–1000 8.47±0.82 

(3) 

157±30.4 

(3) 
18.5 98.4±0.26 

(3) 

0.21±0.22 

(3) 
0.99 (1) 0.2 (1)  

Careproctus cypselurus 1000 8.51 (1) 158 (1) 18.6 97.9 (1) 0.23 (1) 0.51 (1) 0.15 (1)  

Embassichthys bathybius 1000 
7.24±2.5 

(4) 

187±23.8 

(4) 
25.9 

97.0±1.32 

(4) 

0.25±0.09 

(4) 

0.51±0.19 

(4) 

1.58±1.77 

(3) 

377±16.2 

(3) 

Microstomus pacificus 1000 
8.33±3.24 

(3) 

188±5.27 

(3) 
22.5 

96.4±1.24 

(3) 

1.1±1.15 

(3) 

0.54±0.2 

(3) 

0.97±0.73 

(3) 
312 (1) 

Bothrocara brunneum 1000–2000 
9.23±1.24 

(2) 

196±7.42 

(2) 
21.2 

97.6±0.84 

(3) 

0.37±0.03 

(3) 
0.58 (1) 

0.28±0.19 

(2) 
385 (1) 

Spectrunculus grandis 2000 12.8 (1) 205 (1) 16.0 96.5 (1) 0.63 (1) 1.25 (1)  355 (1) 

Pachycara karenae 3000 
6.54±0.47 

(3) 

195±14.5 

(3) 
29.9 

95.8±1.13 

(3) 

0.65±0.28 

(3) 
0.38 (1) 

1.31±0.12 

(2) 
467 (1) 

Spectrunculus grandis. 4149 8.31 (1) 318 (1) 38.3      

Pyrolycus sp. 4817 8.20 (1) 284 (1) 34.6      

Notoliparis kermadecensis 7000–7500 
14.4±0.72 

(3) 

362±38.4 

(3) 
28.4 

93.1±0.55 

(3) 

0.65±0.09 

(3) 
  

945±78.7 

(5) 
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Taxonomic Distribution. Fish species with gelatinous tissues were found in ten orders, thirteen 

families, and approximately 200 species, presented in Table 5.2. References to ‘gelatinous tissues’ 

or ‘subdermal extracellular matrix’ were included in these results. Fishes in the family Aphyonidae 

(recently absorbed into the Bythitidae; Møller et al., 2016) are described, for example: ‘skin loose, 

transparent and gelatinous’ (Nielsen et al., 1999). Images of freshly caught fish confirm that this 

refers to the gelatinous tissues. Other occurrences of gelatinous tissues have been seen and verified 

by the authors in recent captures. We note that the gelatinous tissues are present in many, but not 

all, species of the snailfish genus Paraliparis. Additional species of the genus Lycodapus may 

contain gelatinous tissues as well, though this has not been confirmed (Marliave and Peden, 1989). 

Depth ranges for species with gelatinous tissues are presented in Table 5.2. Median depths of 

occurrence ranged from approximately 300 to 7400 m (mean approximately 1800 m). Most species 

with records of gelatinous tissues typically live around or below 1000 m depth and include both 

benthic and pelagic species. 

              For phylogenetic comparisons and more robust testing of this depth trend, a selection of 

common depths of occurrence were collected from FishBase for 117 species, 17 of which are 

known to have gelatinous tissues (Supplementary Table 5.2). Generalized linear models showed 

fishes with gelatinous tissues to have significantly deeper min, mid, and maximum depths (t=2.40, 

p<0.05; t=3.01, p<0.01; t=2.95, p<0.01; 117 df) across all species, a finding confirmed by a non-

parametric Kruskal-Wallis rank sum test (mid and max depths, p≤0.01, p=0.001) across all species. 

This was also a significant trend within families (e.g., Gadiformes, min: t=6.70, p<0.005, mid: 

t=4.75, p<0.005, max: t=3.20, p<0.01, 27 df; Pleuronectiformes, mid: t=3.0, p<0.01, max: t=3.1, 

p<0.01, 16 df). Phylogenetic relationships between these species are presented in Figure 5.3, 

generated through alignment of mitochondrial COI sequences of 111 species, 17 with gelatinous 

tissues, available from GenBank. Sequence accession numbers are included in the supplemental 

information. Species with gelatinous tissues were present across multiple clades, and represent the 

deeper-living species within clades (further illustrated in Supplementary Figure 5.1). 
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Table 5.2. Fishes with gelatinous tissues, from literature and current capture data. Reference indicates the 

publication that describes the gelatinous tissues. Larval fishes with gelatinous tissues not included. 
1Anderson and Hubbs, 1981; 2Anderson, 1994; 3Anderson, 2012; 4Andriashev and Pitruk, 1993; 
5Andriashev and Stein 1998; 6Andriashev, 1998; 7Bianchi et al., 1999; 8Busby and Cartwright, 2009; 9Chen, 

2002; 10Chernova, 2001; 11Chernova and Møller, 2008; 12Davenport and Kjorsvik, 1986; 13Denton and 

Marshall, 1958; 14Eastman et al., 1994; 15Endo and Okamura, 1992; 16Federov et al., 2003; 17Friedman et 

al., 2012; 18Fujii et al., 2010; 19Hart, 1973; 20Jamieson, et al. 2009; 21Kai et al., 2011; 22Knudsen and Møller, 

2008; 23Lannoo et al., 2009; 24Linley et al., 2016; 25Masuda et al. 1984; 26Nielsen, 1986; 27Nielsen, 1990; 
28Nielsen, 1998; 29Nielsen et al., 1999; 30Ozaka et al., 2009; 31Parin et al., 2002; 32Peden, 1979; 33Pietsch, 

1986; 34Present Study; 35Russian Academy of Sciences, 2000; 36Shinohara et al., 1994; 37Stein et al., 2001; 
38Stein, 2005; 39Vetter et al., 1994; 40Yancey et al., 1989. *Those species formerly classified as family 

Aphyonidae (Møller et al., 2016). **Pelagic fish, maximum depth greatly overestimated (Fujii et al., 2010). 

Note that some, but not all species of the genus Paraliparis have gelatinous tissues. Depth ranges presented 

in metres.  

Order Family Genus or Species Depth Range  Reference 

Ateleopodiformes Ateleopodidae Ateleopus japonicus 140–6009 30 

Gadiformes Macrouridae Coryphaenoides yaquinae 3400–694515, 20 34 

Lophiiformes Melanocetidae Melanocetus johnsonii 100–150033 34 

Ophidiiformes Bythitidae 23 species* 2000–600028 29 
 Ophidiidae Apagesoma delosommatus 2487–415029 29 
  Apagesoma edentatum 5082–808229 29 
  Barathrites iris ? –528526 34 

    Spectrunculus grandis 800–43007 34 

Osmeriformes Bathylagidae Bathylagus pacificus 772–7700**35 40 
  Pseudobathylagus milleri 772–6600**36 40 

Perciformes Zoarcidae Bothrocara brunneum 129–257016 34 
  Derepodichthys alepidotus 1000–29042 1 
  Lycodapus mandibularis 100–137019 32 
  Pachycara karenae 2780–31003 34 

Pleuronectiformes Pleuronectidae Embassichthys bathybius 41–180035 39 
  Microstomus pacificus 10–137035 17 

Saccopharyngiformes Eurypharyngidae Eurypharynx pelecanoides 1200–140025 13 

Scorpaeniformes Cyclopteridae Cyclopterus lumpus 0–86831 12 
 Liparidae Careproctus, 119 species 6–>50006 5, 21, 22 
  Lipariscus nanus 0–91035 38 
  Nectoliparis pelagicus 557–338316 38 
  Notoliparis,4 species 5879–766924 34 
  Paraliparis, 26 species 233–21508, 11 8, 11, 14, 23, 37 
  Psednos balushkini 914–91737 37 
  Psednos gelatinosus 0–65010 10 
  Psednos nataliae 1100–112037 37 
  Pseudoliparis, 2 species 6945–770318 4 

Stomiiformes Stomiidae Chauliodus macouni 25–439027 40 
  Chauliodus sloani 494–10036 13 

    Tactostoma macropus 30–200036 40 
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Figure 5.3. Phylogenetic relationships of a selection of species with gelatinous tissues. Based on 

mitochondrial COI gene sequences. Sequence accession numbers and depths included in supplemental 

information. Species with gelatinous tissues are labelled. Bootstrap confidence levels above 30% for the 

phylogeny are displayed. Stomiidae artificially grouped according to the phylogeny by Kenaley et al. (2013) 

based on alternative loci. Pleuronectidae and Paralichthyidae grouped (orange). Families are coloured, from 

root to tip: Myxinidae (outgroup, in gray), Bathylagidae (orange), Balistidae (yellow), Myctophidae (blue), 

Trichiuridae (green), Eurypharyngidae (light blue), Ateleopodidae (purple), Ophidiidae (orange), 

Hexagrammidae (light green), Stichaeidae (green), Zoarcidae (purple), Cyclopteridae (light purple), 

Liparidae (pink), Gobiidae (light green), Engraulidae (green), Callionymidae (yellow), Lophiidae (red), 

Stomiidae (blue), Paralichthyidae (orange), Pleuronectidae (orange), Serranidae (green), Moridae (purple), 

Gadidae (light purple), Macrouridae (red).   
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Alteration of Body Shape. Gelatinous tissues change the body shape of the hadal liparid, as 

illustrated in Figure 5.2. Intuitively, this changes the drag profile around the animal. In all swim 

trials, the robotic model performed significantly better with the gelatinous tissue analogue 

(0.074±0.007 body lengths per second) than without (0.022±0.007) with constant cycle-averaged 

power provided at a constant tail beat frequency of 0.5 beats per second (Welch two-sample t-test, 

p=0.019). Tail beat amplitude was 16.1±0.3% of body length and did not vary significantly 

between treatments (p>0.05).  

 

Discussion 

 

Distribution and Composition. Proximate chemical analysis of gelatinous tissues in nine benthic 

and benthopelagic species showed high water content and low protein, lipid, and carbohydrate 

content in comparison to white muscle (86.3±2.7% for 7 species with gelatinous tissues; Drazen 

et al., 2015). Our average for water content (96.5%) is consistent with previous studies of 

gelatinous tissues, which found 93.3% water in Cyclopterus lumpus (Davenport and Kjorsvik 

1986), 96% in Bathylagus pacificus (Yancey et al., 1989), and 97% in Paraliparis devriesi 

(Eastman et al. 1994). Osmolality increases with depth, in part due to higher extracellular sodium 

and in part because of organic osmolytes (especially trimethylamine oxide, TMAO) that increase 

with depth to combat the negative effects of high hydrostatic pressure (Yancey et al., 2014; Linley 

et al., 2016). In concert with the ionic concentrations and osmolalities of these tissues, these data 

suggest that the layers are of similar compositions and are mainly extracellular fluid. The high 

seawater content of gelatinous tissues makes them inexpensive to produce in bulk.  

We found support for the hypothesis that gelatinous tissues in fishes are a characteristically 

deep-sea phenomenon. Phylogenetic relationships were a potential concern; especially as there are 

certain genera where gelatinous tissues are more common—e.g., Aphyonus, Careproctus, 

Paraliparis. The method of Felsenstein (1985) for investigating trends without confounding 

influence of phylogeny is designed for use with continuous variables, but has been met with 

criticism for categorical variables (e.g., Maddison and FitzJohn, 2014). Considering these 

concerns, we investigated depth trends within clades. The results hold true within multiple orders: 

gelatinous tissues appear more often in deeper-living species. Although our phylogeny is based on 
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one locus and a limited number of sequences, it clearly illustrates the broad taxonomic distribution 

of gelatinous tissues. The fact that the gelatinous tissues are present across ten orders supports 

multiple evolutions of the tissues in deep-water species. In our limited phylogeny, we found 

evidence for at least eight potential evolutions of the tissues. In other phylogenies, supported by 

multiple loci and large numbers of sequences, gelatinous tissues are still present in species across 

many clades, from basal to highly derived (Near et al., 2013; Betancur-R. et al., 2013). 

Although we were thorough in our literature searches and covered a broad depth range in 

our surveys, it is likely that the list presented in Table 5.2 is not exhaustive. Often, the tissue has 

leaked away shortly after capture or during preservation, and it is not always recorded in taxonomic 

descriptions or it is regarded as unimportant. This study reveals how common and multi-functional 

gelatinous tissues may be, and we suggest that future studies should note its presence.  

  

Gelatinous Tissues as a Buoyancy Mechanism. In our investigation, most gelatinous tissues did 

float in shipboard tests, suggesting that buoyancy is indeed a main function of these tissues, in 

agreement with most previous findings (Davenport and Kjorsvik 1986, Yancey et al., 1989). The 

one exception was the deepest fish tested, N. kermadecensis (hadal snailfish), which also had a 

significantly higher potassium content and lower percent water than other species (Table 5.2), 

indicating more intracellular components than in other species. These buoyancy and composition 

results suggest that the gelatinous tissue is not positively buoyant in that species. It is possible that 

testing at atmospheric pressure may have biased these results since these fish were collected from 

considerably greater depths than the other species. Observations of the swimming behaviour of 

these fish in situ suggests that the entire fish is slightly negatively buoyant, settling to the seabed 

when active swimming ceases. This swimming behaviour has been observed in multiple hadal 

trench liparids (Notoliparis kermadecensis, Pseudoliparis amblystomopsis, Liparidae sp. nov. 

Mariana Trench). These fishes do not have swim bladders, and the gelatinous tissues, even if not 

positively buoyant, would have lower density than most other tissues (e.g., bone, muscle), so may 

help reduce overall body density and thus rate of sinking, as previously suggested for Chauliodus 

sloani, a pelagic viperfish species that also has gelatinous tissue that is not positively buoyant 

(Denton and Marshall, 1958). Additionally, the gelatinous subdermal extracellular matrix is often 

found in fishes with aglomerular kidneys and lacking gas bladders, such as Ateleopus japonicus, 
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which may serve to reduce whole-animal density (Ozaka et al., 2009). However, the correlation 

between the aglomerular kidney and gelatinous tissues remains to be fully explored. 

As noted earlier, previous work on mesopelagic fishes revealed lower ion concentrations 

in gelatinous tissue compared to blood (Yancey et al., 1989). Our osmolality values hint at a similar 

pattern for gelatinous tissue because they are well below osmolalities of blood and muscle of other 

fish species from comparable depths. Muscle osmolalities at 1000 m have been reported at 

~400 (cf. gelatinous tissues at 312–377), at 2000 m ~490–500 (cf. gelatinous tissues at 355–385), 

at 3000 m ~590–600 (cf. gelatinous tissues at 467), and at 7000 m ~990–1000 (cf. gelatinous 

tissues at 945, Yancey et al., 2014; Linley et al., 2016). It should be noted that there would be an 

energetic cost associated with actively maintaining the ionic gradient needed to produce greater 

buoyancy (e.g., ion-regulating chloride cells in gelatinous tissues of leptocephali, Tsukamoto et 

al., 2009). 

While most of the gelatinous tissues tested could aid fish buoyancy, our results suggest that 

this might not be the only function. Importantly, gelatinous tissues are found in some species with 

gas-filled swim bladders (e.g., Family Ophidiidae), indicating that buoyancy may not always be 

their primary adaptive role. Furthermore, gelatinous tissues are found in benthic flatfishes (Order 

Pleuronectiformes; e.g., Embassichthys bathybius and Microstomus pacificus), which would have 

less evolutionary pressure to develop positively buoyant tissues, as they spend more time resting 

on the seafloor than swimming. In several species, gelatinous tissues are concentrated ventrally, 

an unlikely position to provide positive buoyancy. Some bathypelagic fishes are within 0.5 and 

1.2% (Gonostoma elongatum and Xenodermichthys copei) of neutral buoyancy without swim 

bladders or gelatinous layers, through reduced ossification and watery muscle tissue (Denton and 

Marshall, 1958) and some benthopelagic fishes lacking gas bladders also have watery muscle to 

aid in achieving neutral buoyancy (Drazen, 2007). In the hadal liparids, near neutral buoyancy 

seems also maintained by other means, including a large fatty liver and reduced bone ossification.  

 

Alteration of Body Size & Shape. Watery gelatinous tissues may be used to increase body size 

at lower production cost than muscle tissue, a strategy noted earlier that has been proposed for 

some deep-sea invertebrates (e.g., Mitra and Zaman, 2016) and some larval fishes (e.g., Marliave 

and Peden, 1989). Adult deep-sea species may have evolved to retain this low growth cost 
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paedomorphic character in a food-poor environment. Some deep-sea fishes, including two flatfish 

in this study, also have very watery muscle tissue, which further reduce growth costs, though, in 

this case, by sacrificing locomotory capacity (Drazen, 2007). The gelatinous tissues are the 

extreme end of this continuum. They serve as low-growth-cost bulk tissues, allowing the animal 

to grow large, reducing the likelihood of predation, without alteration to locomotory muscle.  

Gelatinous tissues could also act as fairing along the fish’s tail, creating a better hydrofoil 

and improved swimming efficiency, especially in liparids and aphyonids. Davenport and Kjorsvik 

(1986) touched on this idea briefly, suggesting that there may be an exoskeletal function to 

gelatinous tissue in Cyclopterus lumpus. They note that the gelatinous tissue was more prominent 

in females than males, up to 18% of body mass, and show that the males used more high amplitude 

tail beats to swim than females. Our results suggest that this may be a much more broadly used 

strategy. Support for this concept is inferred from studies of tadpole swimming, where a ‘fish-

shaped’ body required significantly less power to swim than a ‘tadpole-shaped’ body, due to a 

decrease in drag (Liu et al., 1996). The same authors also found that the tadpole morphology 

creates a ‘dead water’ zone where the tail meets the body, which decreases swimming efficiency 

(Liu et al., 1997). The tadpole shape is selected against in pond experiments where fish predators 

are present, further illustrating the advantage to losing those high drag zones (Johnson et al., 2015). 

The location of the gelatinous tissue, concentrated around the anterior of the body cavity and under 

the skin along the tail, suggests that it could act to counteract this effect (Figure 5.2). An 

optimization model of body shape in fishes showed the wide head and tapered tail to be an efficient 

shape for undulatory swimming (Eloy, 2013). We propose that the gelatinous tissues could allow 

the fish to reach this streamlined shape without producing more muscle, reducing the need for the 

high-amplitude, energetically expensive tail beats required of tadpole-shaped forms (Liu et al., 

1997).  

Material properties of the actual gelatinous tissues should also be analysed under deep-sea, 

especially hadal, temperatures and pressures, as even small changes in body shape and stiffness 

can make a large difference in swimming performance (e.g., Long et al., 2010, Lauder et al., 2012). 

Gelatinous tissues (which melt at room temperature) are likely stiffer at hadal conditions of cold 

temperatures and high pressures, and could provide an even better paddle for forward propulsion. 

Gelatinous tissues may change stiffness and shape with movement, as seen in other models of 
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undulatory swimming (e.g., McHenry et al., 1995). While further exploration of this hypothesis is 

needed, the improved performance of the robotic model with a gelatinous tissue analogue suggests 

that the presence of this layer could enhance swimming performance. The chemical composition 

of the gelatinous tissues show that they are inexpensive to form, but the benefit to structure and 

locomotory capacity could be significant, accounting for some of its prevalence across many deep-

sea genera. 

 

Conclusions. Our results suggest that gelatinous tissues are widely used by fishes, principally in 

deep-sea species, serving different roles both for individual fish and across families. Gelatinous 

tissues, which are primarily extracellular fluid, are present in fishes of very different life histories 

and behaviours, from the flatfish, Microstomus pacificus, to the hadal snailfish, Notoliparis 

kermadecensis. The varied location of gelatinous tissues, which are present in the trunk of some 

eelpouts (Zoarcidae), the snout of Ateleopus japonicas (Ateleopodidae), and directly below the 

skin in many snailfishes (Liparidae), also calls attention to potential functional complexity. 

Overall, gelatinous tissues seem to be a low-density, low-production cost method to increase body 

size and alter body shape and size, with adaptive advantages for both swimming efficiency and 

buoyancy with varied functions among species. 
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CHAPTER VI 

Pseudoliparis swirei: A newly-discovered hadal liparid (Scorpaeniformes: Liparidae) from 

the Mariana Trench 

 

Abstract 

 

Pseudoliparis swirei sp. nov. is described from 37 individuals collected in the Mariana Trench at 

depths 6,898–7,966 m. The collection of this new species is the deepest benthic capture of a 

vertebrate with corroborated depth data. Here, we describe P. swirei and discuss aspects of its 

biology, distribution, and phylogenetic relationships to other hadal liparids based on analysis of 

three mitochondrial genes. Pseudoliparis swirei is almost certainly endemic to the Mariana 

Trench, as other hadal liparids appear isolated to a single trench or trench system in the Kermadec, 

Macquarie, South Sandwich, South Orkney, Peru-Chile, Kurile-Kamchatka and Japan trenches. 

The discovery of another hadal liparid species, apparently abundant at depths where other fish 

species are few and only found in low numbers, provides further evidence for the dominance of 

this family within the hadal fish fauna. 

 

Introduction 

 

The Liparidae (snailfishes, Scorpaeniformes), are probably the most geographically and 

bathymetrically widespread family of marine fishes, including more than four hundred species in 

about 30 genera with representatives in all oceans where water temperature is temperate to cold. 

The snailfishes have the widest depth range of any marine fish family (Chernova et al., 2004), with 

habitats ranging from the intertidal to depths exceeding 8,000 m (Linley et al., 2016). To date, 

different, likely endemic, liparid species have been found in seven trenches and troughs, including 

the Kermadec, Macquarie, South Orkney, South Sandwich, Peru-Chile, Japan, and Kurile-

Kamchatka trenches with another species likely in the Puerto Rico Trench (Fujii et al., 2010; Pérês 

1965). Recent advances in hadal sampling technology have allowed the observation and recovery 

of these animals and show them to be abundant in those trenches that have been systematically 



151 

 

studied (Jamieson et al., 2009; Fujii et al., 2010; Linley et al., 2016). The liparids are a notably 

successful hadal fish family, extending deeper and/or reaching higher densities than other hadal 

fishes. 

 During cruises of the R/V Falkor from 9 November to 10 December 2014 and the R/V 

Shinyo-maru from 20 January to 3 February 2017, baited traps collected 37 individuals of a new 

species of snailfish at depths from 6,898 to 7,966 m in the Mariana Trench. These specimens are 

probably the deepest collected fish from the ocean bottom with corroborating depth data (see notes 

on spurious records in Fujii et al., 2010), although another remarkable liparid species was filmed 

(but not recovered) on the same cruise at an even greater depth of 8,143 m (Linley et al., 2016). In 

this paper, we describe and name the new species that was collected and present aspects of its 

biology. 

 

Materials & Methods 

 

 

Figure 6.1. Map of collection locations within the Mariana Trench. Bathymetry courtesy of JAMSTEC. 

Isobaths are added between 5,000 and 9,000 m at 1,000 m intervals.  
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 Specimens were collected using two free-falling traps (Linley et al., 2016) with steel ballast 

ejected for retrieval by acoustic release (IXSEA, France; Teledyne Benthos, USA). The holotype 

and most paratypes were collected in 2014, with one additional paratype collected on 29 Jan 2017 

using the same methodology. Traps consisted of an aluminum or fiber glass frame lined with stiff 

plastic mesh covered with fine mesh netting to minimize specimen damage, attached to a mooring 

line with glass floatation spheres in 43 cm protective housings (Nautilus Marine Services, 

Germany) to provide buoyancy. Each trap was baited with mackerel in a nylon mesh bag, and 

included PVC funnel traps for amphipod collection. Collection sites are shown in Figure 6.1 and 

site details are provided in Table 6.1.  

 

Table 6.1. Collection information. Specimens collected on cruise FK141109 of the RV Falkor and SY1615 

of the RV Shinyo-maru. Number of individual fish collected in each trap deployment (n) shown.  

Deployment Date Latitude Longitude Depth (m) n 

TR05 15 Nov 2014 12.59786⁰N 144.77854⁰E 7062 1 

TR06 16 Nov 2014 12.63390⁰N 144.75080⁰E 6914 1 

TR07 18 Nov 2014 12.42347⁰N 144.87058⁰E 7497 8 

TR08 19 Nov 2014 12.42556⁰N 144.91171⁰E 7509 4 

TR09 21 Nov 2014 12.30274⁰N 144.67388⁰E 7929 1 

TR10 23 Nov 2014 11.91280⁰N 144.94450⁰E 7841 3 

TR12 25 Nov 2014 11.81070⁰N 144.99450⁰E 6898 1 

TR13 26 Nov 2014 11.82600⁰N 145.00880⁰E 6974 3 

TR19 6 Dec 2014 12.27660⁰N 144.62020⁰E 7626 2 

TR20 7 Dec 2014 12.34950⁰N 144.68130⁰E 7652 4 

WT03 16 Nov 2014 12.61026⁰N 144.76839⁰E 6961 3 

WT04 18 Nov 2014 12.41505⁰N 144.91187⁰E 7495 1 

WT06 21 Nov 2014 12.30370⁰N 144.68038⁰E 7949 1 

WT07 23 Nov 2014 11.92730⁰N 144.96200⁰E 7907 1 

WT08 24 Nov 2014 11.92970⁰N 144.92880⁰E 7966 1 

WT09 25 Nov 2014 11.81470⁰N 144.98580⁰E 6949 2 

FT02 29 Jan 2017 11.54290°N 142.18485°E 7581 1 

 

 Fin clips and tissue samples for genetic study were preserved in 95% EtOH. Additional 

tissue samples were frozen at -80°C for physiological studies. Individuals were fixed in 10% 

buffered formalin at sea and transferred after five months in stages to 75% EtOH. The specimens 
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are deposited at the Smithsonian National Museum of Natural History and the Scripps Institution 

of Oceanography Marine Vertebrate Collection.  

 Definitions of counts, measurements, and characters follow Stein et al. (2001), Andriashev 

(2003), and Stein (2012). Museum abbreviations follow Sabaj Perez (2014). Counts of vertebrae, 

dorsal, and anal fin rays and pre-dorsal fin lengths were obtained from radiographs of specimens. 

Pectoral and caudal fin ray counts were made by direct examination. Pectoral girdles were removed 

from four specimens and stained using alizarin red S (Taylor, 1967a; b). Whole specimens were 

temporarily stained with cyanine blue when necessary (Saruwatari et al., 1997).  

 Selected measurements (total length, standard length, pre-anal fin length, head length, eye 

width, snout width, and weight) were made immediately upon retrieval. Fresh and preserved 

measurements of the same characters in each fish were compared to estimate shrinkage caused by 

preservative osmolarity changes (e.g., Hay, 1982; Kristoffersen and Salvanes, 1998).  

 Counts are given as the mode, followed by the range in parentheses. Ratios for proportions 

are given as percent standard length (SL) and percent head length (HL) for the mean first, followed 

in parentheses by the range for all specimens. For characters that were damaged during 

preservation, fresh ratios are presented. Ratios taken from fresh measurements are indicated with 

an asterisk. Ratios taken from photographs of freshly caught specimens are indicated with two 

asterisks. All ratios are based on comparisons of like measurements, e.g., fresh head length to fresh 

standard length or preserved vs preserved. Data analysis was conducted using the program R (R 

Core Development Team, 2015) and figures were constructed using the package ggplot2 (Wickam, 

2009). Ontogenetic trends were investigated through fitted linear models and ANOVA (type-I sum 

of squares). Imprecision of very small orbit width measurements, leading to heteroscedasticity, 

was corrected through cubed weighted least squares relative to SL. Results were considered 

significant at an α of 0.05. 

 Sex was determined macroscopically. Eggs were removed from mature and maturing 

females. For the four females with sufficiently ripe eggs, all eggs were counted and those above 

1.5 mm diameter were measured. For the remaining females with distinguishable eggs, maximum 

egg size was recorded.  

 DNA was extracted from epaxial muscle tissue from five individuals of Pseudoliparis 

swirei and five hadal liparids from the Kermadec Trench (collection described by Linley et al., 
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2016) with the DNeasy Blood and Tissue Kit (Qiagen), following the manufacturer’s protocols. 

Three mitochondrial gene fragments, 16S rRNA (16S, 1472 bp), cytochrome b (Cyt-b, 1007 bp) 

and cytochrome c oxidase subunit I (COI, 1399 bp) were amplified in polymerase chain reaction 

(PCR). PCR cycling included 35 cycles of denaturation at 95ºC for 30 seconds, annealing at 48ºC 

(16S) or 52ºC (Cyt-b, COI) for 30 seconds, and extension at 72ºC for 1 minute. Primers used 

included 16S_liparids_F (5’-CTA TTA ATA CCC CCA AAT ACC CC-3’), 16S_liparids_R (5’-

CGA TGT TTT TGG TAA ACA GGC G-3’), and 16S_liparids_R2 (5’-GAT TTC ATC AGG 

TAG GGG GAG GGC-3’) for 16S rRNA. For Cyt-b, primers were Cytb_liparids_F (5’-ATG GCA 

AGC CTA CGA AAA ACC CAC C-3’), Cytb_liparids_R (5’-TAT TCT CTA TGA AGC CGG 

TAA GGG-3’), and Cytb_liparids_R2 (5’-GGG TTA GTT GAG CCT GTT TCG TG-3’). COI 

primers were COI_liparids_F (5’GCC ATC CTA CCT GTG GCC ATC ACA CG-3’), 

COI_liparids_R (5’-AGT GGG ATA AAA CAA ATG CGG G-3’), as well as modified versions 

of the COI primers reported by Ward et al., (2005), Liparid_WardsF1 (5’-TCG ACT AAT CAC 

AAA GAC ATT GGC AC-3’), and Liparid_WardsR1 (5’-TAA ACT TCG GGA TGG CCA AAG 

AAT CA-3’). PCR products were purified using ExoSAP-IT Express (affymetrix, Thermo Fisher 

Scientific) and Sanger sequencing was performed on an ABI 3730XL with BigDye chemistry. 

Two sequencing primers were used in addition to PCR primers: 16S_liparids_I (5’-CCA AAA 

ACA TCG CCT CTT GTA CCC-3’) for 16S and COI_liparids_I (5’-CTG ATT CTT TGG CCA 

TCC CGA AG-3’) for COI.  

 Base calls were confirmed by aligning both strands in Geneious v7.1.8 (Kearse et al., 

2012), with final alignments for each gene fragment generated by Multiple Sequence Comparison 

by Log-Expectation (MUSCLE; Edgar 2004; McWilliam et al., 2013). The best fit nucleotide 

substitution model for each alignment was evaluated by Bayesian Information Criterion (BIC), as 

implemented in jModelTest (Darriba et al., 2012; Guindon & Gascuel, 2003). The best models 

were found to be HKY+G for COI and Cyt-b and TPM2uf+G for 16S. Average pairwise genetic 

distances among species were calculated in MEGA6 (Tamura et al., 2013), using the closest 

available model, the Tamura-Nei model with gamma-distributed rate variation ( = 0.1813 [16S], 

0.1889 [COI], 0.2314 [Cyt-b], model-averaged estimates). Because we included NCBI sequences 

of liparids Careproctus rastrinus, C. colleti, and C. cypselurus (GenBank Accession JF952697.1, 

FJ164433.1, AB565514.1, AB565517.1, AB565629.1; Zhang & Hanner, 2011; Steinke et al., 
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2009; Kai et al., 2011), we trimmed our alignment to include only regions present for all species 

for genetic distance calculations (COI: 644 bp, Cyt-b: 744 bp, 16S: 699 bp). 

 Phylogenetic trees were inferred under maximum likelihood (ML) using Randomized 

Axelerated Maximum Likelihood (RAxML, GTRGAMMA model), with node support assessed 

by 1,000 bootstrap iterations (Stamatakis 2014). Bayesian phylogenetic inference was conducted 

in MrBayes 3.2 (Ronquist et al., 2012), using the GTR+gamma nucleotide substitution model. 

Markov Chain Monte Carlo (MCMC) sampling of the posterior distribution was conducted for 1 

million generations, with sampling every 500 generations. Sequences from Pseudoliparis belyaevi 

from the Japan Trench (T.P. Satoh, unpublished data) were included in our alignments to assess 

placement of this new Mariana species into genus, with the smooth lumpfish, Aptocyclus 

ventricosus (GenBank Accession NC_008129.1; Miya et al., 2003), chosen as an outgroup. The 

Interactive Tree of Life (iTOL v3; Letunic & Bork 2007) was used for visualization of trees. 

 

Results 

 

Pseudoliparis swirei Gerringer & Linley 2017, sp. nov.  

Mariana snailfish: Linley et al., 2016 

Mariana snailfish: Linley et al., 2017  

Mariana snailfish/Mariana liparid: Gerringer et al., 2017 

Diagnosis. Pseudoliparis swirei differs from the two other known Pseudoliparis species in the 

following characters. Pseudoliparis swirei differs from P. belyaevi in the presence of a distinct 

lower pectoral fin lobe, similar to that seen in P. amblystomopsis. Pseudoliparis swirei has more 

dorsal fin rays 55 (51–58) than P. amblystomopsis 49 (49–52), more anal fin rays 48 (43–49) 

compared to 43 (42–45), and more vertebrae 61 (56–62), compared to 55–57, although these 

ranges somewhat overlap. Head length is shorter in P. swirei (17.0–21.7 %SL) than P. 

amblystomopsis (21.6–24.0 %SL). Comparisons were made according to ranges presented by 

Andriashev and Pitruk (1993). Pseudoliparis belyaevi is known only from the Japan Trench, P. 

amblystomopsis from the Japan and Kurile-Kamchatka trenches, P. swirei only from the Mariana 

Trench.   
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Figure 6.2. A) In situ photograph of Pseudoliparis swirei at 6198 m. B) a group at 7,485 m. C) Deck 

photograph of HADES #200049. D) Radiograph of HADES #200141. Image by Sandra Raredon. Scale 

indicator 5 cm. 
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Table 6.2. Measurements and counts of Pseudoliparis swirei. Measurements taken from preserved 

specimens, given in mm. Body depth measured from fresh photographs. Dorsal fin origin between vertebrae 

#, #. Maximum and minimum values (mean and standard deviation) shown for measurements. Counts show 

range (median). Number of specimens examined for individual characters (n). 

 Holotype Holotype and Paratypes n  

Measurements     
Standard Length 104.0 87.0–226.0 (151.3±38.8) 24 

Total Length 112.0 95.0–237.0 (160.5±41.6) 21 

Head Length 18.9 17.8–42.9 (31.2±8.0) 20 

Head Depth at Occiput ~14 20.5–32.7 (27.3±6.2) 3 

Head Width 13.1 2.6–41.4 (27.0±9.7) 11 

Snout Length 6.7 5.6–15.2 (9.8±2.8) 26 

Lower Lobe Distance  2.3–6.6 (4.7±1.4) 16 

Body Depth 18.0 18.0–62.0 (41.0±11.0) 18 

Orbit Width 3.5 2.8–6.1 (4.8±1.0) 23 

Disk Length  2.9–9.0 (6.2±2.1) 14 

Gill Opening  5.4–9.6 (8.1±2.4) 3 

Upper Jaw Length ~8.7 8.1–20.6 (13.8±3.3) 31 

Lower Jaw Length 8.2 6.6–19.3 (12.7±3.1) 31 

Distance: Mandible to Disk 8.8 8.8–22.3 (15.2±3.7) 25 

Distance: Snout to Anus 23.2 23.2–56.7 (41.1±13.5) 6 

Distance: Mandible to Anus 21.0 21.0–47.5 (35.3±12.0) 5 

Distance: Disk to Anus 9.5 9.5–33.5 (18.7±8.9) 5 

Distance: Anus to Anal Fin 10.9 10.9–25.9 (18.4±6.3) 7 

Length Upper Pectoral Fin Lobe >15.6 14.2–33.4 (22.8±4.5) 28 

Length Lower Pectoral Fin Lobe 8.9 7.3–22.9 (12.3±3.3) 22     
Counts    

Total Vertebrae 58 56–62 (59) 19 

Abdominal Vertebrae 12 11–14 (12) 18 

Caudal Vertebrae 46 44–49 (46) 17 

Dorsal Fin Origin  3–6 (4,5) 12 

Dorsal Fin Rays ~52 51–58 (54) 11 

Anal Fin Rays ≥44 43–49 (47) 15 

Total Pectoral Rays 30 28–32 (30) 24 

Pectoral Fin Rays (Upper Lobe) 20 18–23 (21) 26 

Pectoral Rays (Notch) 5 3–6 (5) 27 

Pectoral Fin Rays (Lower Lobe) 5 4–6 (5) 26 

Total Caudal Fin Rays 13 11–14 (13) 20 

Caudal Fin Rays (Upper) 5 4–6 (5) 21 

Caudal Fin Rays (Lower) 6 4–7 (6) 21 

Caudal Fin Rays (Auxiliary) 2 0–2 (1) 20 

Pyloric Caeca  5–9 (7) 17 
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Table 6.3.  Ratios of Pseudoliparis swirei. Preserved and fresh measurements presented. Body depth taken from photographs. Predorsal fin length 

measured from radiograph. 

  %SL   %HL  

 Holotype Holotype and Paratypes n Holotype Holotype and Paratypes n 

Preserved       

Head Length 18.2 17.0–21.7 (19.8±1.1) 19    
Head Width 12.6 12.6–19.6 (15.8±2.5) 8 69.3 68.2–101.0 (81.0±11.5) 8 

Snout Length 6.4 5.2–8.3 (6.5±0.7) 21 35.4 28.5–38.0 (32.9±2.6) 18 

Orbit Width 3.4 2.3–4.4 (3.2±0.6) 17 18.5 12.1–20.1 (16.0±2.3) 16 

Upper Jaw Length ~8.4 7.4–10.5 (9.1±0.8) 20 ~46.0 38.3–52.2 (45.9±3.3) 17 

Lower Jaw Length 7.9 6.5–10.6 (8.3±1.0) 20 43.4 33.7–53.2 (42.2±4.7) 17 

Upper Pectoral Fin Length  12.6–19.8 (15.2±2.2) 21  60.2–95.4 (75.4±11.3) 16 

Lower Pectoral Fin Length 8.6 6.3–12.1 (7.8±1.4) 16 47.1 30.0–61.6 (39.0±7.7) 14 

Gill Opening  4.4–5.3 (5.0±0.5) 3  22.3–26.5 (24.9±2.3) 3 

Disk Length  2.4–5.6 (3.9±0.9) 13  12.1–25.9 (20.0±4.0) 12 

Distance: Disk to Anus 9.1 8.6–15.6 (10.8±3.2) 4 50.3 43.1–83.8 (59.0±21.7) 3 

Distance: Mandible to Disk 8.5 7.7–13.7 (10.0±1.4) 20 46.6 39.8–59.8 (49.7±5.4) 17 

Lower Lobe Distance  1.8–4.7 (3.1±0.9) 12  8.3–23.0 (15.2±4.7) 10 

Predorsal Fin Length 32.0 22.7–32.6 (27.8±3.1) 13 176.4 118.1–176.4 (142.2±18.2) 13 

Distance: Snout to Anus 22.3 22.3–29.3 (26.0±3.0) 6 122.8 114.6–143.3 (130.0±11.3) 5 

Distance: Mandible to Anus 20.2 20.2–27.6 (24.3±3.4) 4 111.1 111.1–134.8 (120.1±12.8) 3 

Distance: Anus to Anal Fin 10.5 8.7–15.9 (12.5±2.9) 5 57.7 46.5–66.6 (59.1±9.3) 4 

Fresh       
Head Length 20.6 14.5–21.9 (18.7±1.8) 33    
Snout Length 7.2 4.3–9.3 (6.4±1.0) 33 35.0 26.3–45.5 (33.8±5.3) 37 

Eye Width 2.1 0.9–2.9 (1.8±0.5) 33 10.0 5.3–15.4 (9.9±2.4) 37 

Body Depth 18.6 18.6–31.2 (24.5±3.1) 18 90.0 90.0–156.8 (128.7±17.9) 18 

Preanal Fin Length 37.1 36.5–49.5 (42.0±3.5) 33 180.0 180.0–295.8 (228.0±26.1) 37 
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Figure 6.3. Lateral view of Pseudoliparis swirei. Combined representation of holotype, paratypes, and 

freshly captured images of paratype HADES #200133, juvenile, 151 mm. Drawings by Thomas D. Linley. 

 

Description. Vertebrae 61 (56–62), dorsal-fin rays 55 (51–58), anal-fin rays 48 (43–49), caudal-

fin rays 13 (11–14), pectoral-fin rays 30 (28–32), pectoral radials 4, pyloric caeca 7 (5–9). Ranges 

of measurements and counts are presented in Table 6.2. Ratios are presented in Table 6.3. All 

individual measurements and counts are available in Supplementary Table 6.1.  

Head small, low, and wide, lateral profile anteriorly rounded and rising slowly to occiput, 

where the angle increases. Head depth about equal to body depth or lower, depending on 

abdominal fullness. Snout blunt, nostrils single, nares on horizontal with center of eye. Mouth 

broad, horizontal, subterminal, moderately large; upper jaw reaching to below middle of orbit, oral 

cleft reaching to below anterior edge of orbit. Teeth simple, sharp canines, innermost largest, 

arranged in approximately 9 (6–11 maxilla, 7–13 mandible) oblique, irregular rows of up to 20 (6–

17 maxilla, 8–20 mandible) teeth each, forming a moderately wide band (2–4 teeth wide) in each 

jaw (Figure 6.4). Larger individuals had more teeth per row and more rows of teeth. Maxilla with 

prominent symphyseal gap, slight gap present in mandible. Pharyngeal teeth well developed, long, 

sharp, strongly fixed on globular tooth plates. Eye very small, about 10% head length. Orbit large, 

its dorsal margin well below that of head. Gill opening small, located completely above pectoral 

fin, width 5% SL. Opercular flap fleshy, broadly triangular, opercle terminates in two small spines 

below the flesh. Cephalic pores small, easily damaged; few remaining. Chin pores widely 

separated, lacking raised rims.     
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Figure 6.4. A) Ventral view drawing. B) Tooth pattern on maxillary jaw. Counted rows denoted on right 

side of image. C) Tooth structure of HADES Specimen #200024. D) Disk details of HADES #200025 

stained with Alizarin Red S. E) Disk of HADES #200085 stained with Cyanine Blue. 
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Pectoral fin divided into lobes by a moderately deep notch, rudimentary rays absent. Notch 

rays 5 (3–6), clearly more widely spaced than those of upper and lower lobes, more so in larger 

individuals. Upper and lower lobe rays closely spaced. Dorsal-most pectoral fin ray on horizontal 

between level of upper jaw and lower margin of orbit. Symphysis of pectoral fins and anterior-

most ray below rear of orbit. Upper lobe about 15.2% SL (12.6–19.8), lower about 7.8% SL (6.3–

12.1). Upper lobe almost extending to anal fin origin, lower lobe distinct, reaching well behind 

disk to below middle of upper lobe base. Pectoral radials four, fenestra absent; of four specimens 

examined (#24, 27, 33, 96); one (#24) had (1+1+1+1), and three (#27, 33, 96) had (3+1) radials, 

generally round, notches and foramina absent (Figure 6.5). Radials gradually and irregularly 

decreasing in size from R1 (largest) to R4 (smallest). Scapula double-headed, posterior head larger 

and broader than anterior head, coracoid with broad head and long slender helve. 

 

 

Figure 6.5. Pectoral girdle HADES #200027, female, 220 mm. Ventral HADES #200085, female, 225 mm. 

Scapula, radials 1–4, coracoid shown. Drawing by Thomas D. Linley. 
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Disk present, oval, longer than wide, below cheek and gill cavity between pectoral fin 

notches; well behind pectoral symphysis. Bones fully developed but weakly calcified; all elements 

present. Disk and pectoral girdle supported by a pair of clearly visible and strongly developed 

muscles extending anteriorly to pectoral symphysis, probably infracarinalis anterior (D.L. Stein, 

personal communication). Disk structure supporting a thin layer of tissue, often damaged or 

missing entirely; disk margin only slightly thicker than more central tissue. In cross section, disk 

rays clearly flattened as if to support disk margin. 

Body depth dependent on reproductive state and fullness of stomach, usually much deeper 

than head depth, but shallow above vertebral column. Abdominal cavity long; peritoneum and 

body cavity extending to about 40% standard length. Total vertebrae 61 (56–62); anterior 13 (11–

14), caudal 46 (44–49). In the 19 individuals in good enough condition to be radiographed, a 

double ray is present at or near anal fin first ray, usually between the second and third haemal 

spines of the caudal vertebrae. Pre-dorsal length about 27% SL (18.6–32.6), dorsal fin origin 

between fourth and fifth vertebrae (origin after vertebrae 3–5). Pre-anal fin length about 42% SL 

(36.3–49.5)*. Anus far posterior to disk, roughly 2/3 of distance from disk to anal fin origin. 

Pyloric caeca usually 7 (5–9), located left ventrally in body cavity; thick, digitate, usually separated 

into two distinct size classes, most commonly 4 short and 3 long, longest about 8.7% SL (5.9–

11.7), shortest 3.7% SL (2.4–5.3). Longer caeca generally grouped together. Hypural with obvious 

suture; caudal fin most commonly of 13 (11–14) rays, ventral one or two often rudimentary. Skin 

thin, transparent; subdermal extracellular matrix (SECM; Eastman et al., 1994) thick below skin 

and between muscle bands. Total and standard lengths were approximately 10% shorter after 

preservation. The subdermal extracellular matrix is also lost after capture and preservation, 

resulting in changes to shape and proportion (Chapter V). With increased visual in situ techniques, 

reporting of both fresh and preserved specimen features will become increasingly useful.  

The 37 individuals used for description varied in size from 89–235 mm SL, apparently 

covering a wide developmental range for the species. Some characters correlated significantly with 

ontogeny, explaining much of the variation in ratios. Both the upper and lower pectoral fin lobe 

lengths as a percentage of SL decreased significantly with increasing SL (upper: F1,25=11.88, 
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p<0.01, R2=0.322; lower F1,23=5.05, p<0.05, R2=0.180). Proportional orbit width decreased with 

increasing standard length (F1,18=26.25, p<0.01, R2=0.593). 

In life, body pinkish-white, skin and peritoneum transparent; internal organs (liver, 

stomach, pyloric caeca) and muscles of trunk clearly visible through skin and thin abdominal wall. 

Anterior bundles of epaxial muscle thick, becoming less densely packed posteriorly. Some larger 

specimens with dusky skin on head. Pyloric caeca orange; most individuals entirely lacked both 

internal and external pigmentation. In alcohol, except for those with dusky heads, specimens 

uniformly pale. 

Phylogenetic inference supports placement within the genus Pseudoliparis, with P. swirei 

more closely related to P. belyaevi of the Japan Trench than to the Kermadec Trench liparids 

(Notoliparis kermadecensis, N. stewarti). Phylogenetic relationships of P. swirei and closely-

related species based on 16S, COI, and Cyt-b are presented in Figure 6.6, with estimates of 

evolutionary divergence among species reported in Table 6.4. Both the 16S and Cyt-b trees 

support placement of P. swirei as most closely related to P. belyaevi (>74% ML bootstrap support, 

>0.96 Bayesian posterior probability), with highly concordant topology. Genetic distances 

between the two Pseudoliparis species are 0.006% at Cyt-b and 0.007% at 16S (Table 6.4), with 

distances of 0.014% (Cyt-b) and 0.01% (16S) to the Notoliparis species.  COI lacked sufficient 

polymorphism to resolve the relevant nodes, with low bootstrap support observed for the 

placement of P. swirei relative to P. belyaevi and N. kermadecensis (Figure 6.6).  Genetic distances 

among species also were the lowest at COI, at < 1% or three nucleotide substitutions observed 

between the Pseudoliparis sequences. Sequences from Pseudoliparis swirei, Notoliparis 

kermadecensis, Notoliparis stewarti (this study) are available under GenBank accession numbers 

KY659176–KY659204 (Supplementary Table 6.2). 
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Figure 6.6. Phylogenetic relationships of Pseudoliparis swirei to closely related hadal liparids, P. belyaevi 

from the Japan Trench and Notoliparis kermadecensis and Notoliparis stewarti from the Kermadec Trench. 

Maximum likelihood (ML) trees based on A) cytochrome c oxidase subunit I (1399 bp), B) cytochrome b 

(1007 bp), and C) 16S rRNA (1472 bp). ML bootstrap support (>70%) and Bayesian posterior probability 

(>0.70) values are shown as ML/BI. Bold values indicate the node that supports placement of P. swirei sp. 

nov. within the genus Pseudoliparis. Aptocyclus ventricosus (GenBank accession NC008129.1) was used 

to root each tree. 
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Table 6.4. Evolutionary divergence between Pseudoliparis swirei and close relatives. Average genetic distance among species calculated for (A) 

cytochrome c oxidase subunit I (644 bp), (B) cytochrome b (744 bp), and (C) 16S rRNA (699 bp), based on the Tamura-Nei substitution model with 

gamma-distributed rate variation across sites. Sequences from P. swirei, N. kermadecensis, N. stewarti derive from this study, P. belyaevi is 

unpublished data from T. Satoh (National Museum of Nature and Science, Japan), sequences from C. rastrinus, C. cypselurus, A. ventricosus were 

from NCBI (GenBank Accession Numbers: AB565515.1, AB565517.1, AB565629.1, FJ164433.1, JF952697.1, NC_008129.1).  

COI A. ventricosus C. cypselurus C. rastrinus N. kermadecensis N. stewarti P. belyaevi P. swirei 

A. ventricosus *** 0.648 0.505 0.359 0.353 0.391 0.373 

C. cypselurus 0.648 *** 0.173 0.121 0.121 0.12 0.13 

C. rastrinus 0.505 0.173 *** 0.139 0.138 0.136 0.133 

N. kermadecensis 0.359 0.121 0.139 *** 0.01 0.009 0.004 

N. stewarti 0.353 0.121 0.138 0.01 *** 0.015 0.01 

P. belyaevi 0.391 0.12 0.136 0.009 0.015 *** 0.005 

P. swirei 0.373 0.13 0.133 0.004 0.01 0.005 *** 
        

Cyt-b A. ventricosus C. colletti C. rastrinus N. kermadecensis N. stewarti P. belyaevi P. swirei 

A. ventricosus *** 1.026 0.881 0.742 0.813 0.769 0.779 

C. colletti 1.026 *** 0.196 0.245 0.216 0.241 0.237 

C. rastrinus 0.881 0.196 *** 0.193 0.189 0.179 0.189 

N. kermadecensis 0.742 0.245 0.193 *** 0.015 0.01 0.014 

N. stewarti 0.813 0.216 0.189 0.015 *** 0.01 0.014 

P. belyaevi 0.769 0.241 0.179 0.01 0.01 *** 0.006 

P. swirei 0.779 0.237 0.189 0.014 0.014 0.006 *** 
        

16S A. ventricosus C. rastrinus N. kermadecensis N. stewarti P. belyaevi P. swirei  
A. ventricosus *** 0.3 0.271 0.281 0.281 0.303  
C. rastrinus 0.3 *** 0.075 0.075 0.072 0.08  
N. kermadecensis 0.271 0.075 *** 0.003 0.008 0.01  
N. stewarti 0.281 0.075 0.003 *** 0.008 0.01  
P. belyaevi 0.281 0.072 0.008 0.008 *** 0.007  
P. swirei 0.303 0.08 0.01 0.01 0.007 ***  
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Reproduction. Holotype is immature. Ripe females had eggs up to 9.4 mm diameter, among the 

largest teleost eggs recorded (Tyler and Sumpter, 1996), 0.4 mm smaller than the largest record 

(Matallanas et al., 1990). The eggs were unsorted within gonad with the largest eggs free and 

interspersed within a matrix of smaller eggs. No developmental structures were visible within even 

the largest eggs. Two distinct size classes of eggs present with up to 23 large eggs (>5 mm) and 

up to 851 small eggs of less than half the diameter of the larger size class. There were rarely 

intermediate stages (Figure 6.7). Individuals with only small eggs had maximum egg sizes ranging 

from 0.7 to 1.4 mm. Genital papilla visible in freshly collected males, oriented anteriorly. 

 

 

Figure 6.7. Egg sizes and frequencies from four individuals. Binned into 0.5 mm increments. Small peaks 

show 22, 23, 7, 14 large eggs for specimens HADES # 200027, 200039, 200082, 200085. 

 

Distribution. Known only from the Mariana Trench at capture depths from 6898–7966 m, 

individuals likely this species were recognized in video at depths 6198–8098 m (Linley et al., 

2016; Jamieson and Linley, unpublished data). 
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Etymology. The Mariana Trench famously houses the ocean’s deepest point, at Challenger Deep, 

named for the HMS Challenger expedition which discovered the trench in 1875. Their deepest 

sounding of 8,184 m, then the greatest known ocean depth, was christened Swire Deep after 

Herbert Swire, the ship’s First Navigating Sublieutenant (Corfield, 2003). We name this fish in his 

honor, in acknowledgment and gratitude of the crew members that have supported oceanographic 

research throughout history.  

 

Discussion 

 

Currently, the hadal liparid genera Notoliparis Andriashev 1975 and Pseudoliparis Andriashev 

1955 are distinguished from one another only by the presence in the former (and absence in the 

latter) of a series of “extra” postcoronal and temporal cephalic pores (Andriashev & Pitruk, 1993). 

These pores are easily damaged or lost during sampling and recovery of specimens, in which case 

it is impossible to determine to which genus a specimen should be assigned. Andriashev himself 

noted that in at least one Notoliparis species, N. macquariensis Andriashev, the tiny posterior pores 

were only briefly visible in freshly caught specimens (Andriashev 1978). Due to the fragile skin 

and time spent in warm (up to 30°C) surface waters during recovery, very few of these pores 

remained in our material. In one individual (SY1615028), two postcoronal pores were visible 

(Figure 6.8). However, the skin had been damaged in such a way that temporal cephalic pores 

were lost. Other characters distinguishing the two genera overlap and cannot be used to assign a 

species to genus.  
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Figure 6.8. Postcoronal pores in freshly-caught specimen. Paratype SY1615028, male, head length 45 mm.  

  

Given the uncertainty of the pore observations and without strong morphological 

justification for placement in either genus, we assign this new species to the genus Pseudoliparis 

on genetic grounds. Phylogenetic analysis supported a closer relationship between P. swirei sp. 

nov. and Pseudoliparis belyaevi in the Japan Trench than to hadal liparid populations in the 

Kermadec Trench (N. kermadecensis, N. stewarti; Table 6.4, Figure 6.6). Our molecular results 

also supported the distinction of two hadal liparid species in the Kermadec Trench as described by 

Stein (2016) - Notoliparis kermadecensis Nielsen and Notoliparis stewarti Stein, which appear to 

have overlapping distributions.  

Our results also call into question the genus-level distinction between hadal liparids of 

Pseudoliparis and Notoliparis. The close genetic similarities between Pseudoliparis and 
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Notoliparis species, the fleeting and dubious nature of the distinguishing character of cephalic 

pores, and the behavioral and morphological consistencies between the two genera make it difficult 

to justify a division between these two groups. Aside from cephalic pore counts, the two genera 

overlap in meristic characters and counts (Stein, 2016; Andriashev & Pitruk, 1993). Further, in 

ecological studies, hadal liparids seem to fill very similar niches in their respective trenches 

(Jamieson et al., 2009; Fujii et al., 2010; Linley et al., 2016; Linley et al., 2017; Gerringer et al., 

2017; Chapter II). Synonymizing these two hadal genera should be considered when genetic 

information on a greater number of Notoliparis and Pseudoliparis species are available.  

Pseudoliparis swirei was abundant at depths of approximately 7000–8000 m in the 

Mariana Trench. Video records showed large aggregations of different-sized individuals were 

attracted to the bait (Linley et al., 2016) and fed on swarms of amphipods that also arrived (Linley 

et al., 2017; Gerringer et al., 2017; Chapter II). Smaller individuals were caught at greater depths 

(Linley et al., 2016). No individuals were seen at depths below 8,200 m, which is hypothesized to 

be the physiological depth limit for teleosts (Yancey et al., 2014). The discovery of yet another 

trench liparid species provides further evidence for the importance of this family within the hadal 

environment. This collection will allow further exploration of hadal endemism and the factors 

leading to the recurrent colonization of trenches by liparids. 

 

Material Examined 

 

Holotype. HADES #200060, immature, 97 mm SL, Stn. WT06, 12.3037°N, 144.6804°E, 7,949 m, 

21 Nov 2014. 

 

Paratypes. HADES #200021, male, 193 mm SL, Stn. TR05, 12.5979°N, 144.7785°E, 7,062 m, 15 

Nov 2014. HADES #200024, sex unknown, 232 mm SL, #200025, female, 235 mm SL, Stn. 

WT03, 12.6103°N, 144.7684°E, 6,961 m, 16 Nov 2014. HADES #200027, female, 220 mm SL, 

Stn. TR06, 12.6339°N, 144.7508°E, 6,914 m, 16 Nov 2014. HADES #200033, sex unknown, 126 

mm SL, Stn. WT04, 12.4151°N, 144.9119°E, 7,495 m, 18 Nov 2014. HADES #200036, sex 
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unexamined, 186 mm SL, #200037, sex unexamined, 89 mm SL, #200038, sex unexamined, 165 

mm SL, #200039, female, 210 mm SL, #200040, female, 184 mm SL, #200041, sex unknown, 

105 mm SL, #200042, sex unknown, 147 mm SL, #200043, female, 182 mm, Stn. TR07, 

12.4235°N, 144.8706°E, 7,497 m, 18 Nov 2014. HADES #200047, male, 178 mm SL, #200048, 

male, 135+ mm SL, #200049, 128 mm SL, #200050, sex unexamined, ~100 mm SL, Stn. TR08, 

12.4256°N, 144.9117°E, 7,509 m, 19 Nov 2014. HADES #200062, sex unknown, 16 mm head 

length Stn. TR09, 12.3027°N, 144.6739°E, 7,929 m, 21 Nov 2014. HADES #200070, female, 172 

mm SL, #200071, sex unknown, 110 mm SL, #200072, juvenile, 119 mm SL, Stn. TR10, 

11.9128°N, 144.9445°E, 7,841 m, 23 Nov 2014. HADES #200074, male, 145 mm SL, Stn. WT07, 

11.9273°N, 144.9620°E, 7,907 m, 23 Nov 2014. HADES #200081, juvenile, 107 mm SL, Stn. 

WT08, 11.9297°N, 144.9288°E, 7,966, 24 Nov 2014. HADES #200084, female, 176 mm SL, 

#200085, female, 225 mm SL, Stn. WT09, 11.8147°N, 144.9858°E, 6,949 m, 25 Nov 2014. 

HADES #200087, female, 203 mm SL, Stn. TR12, 11.8107°N, 144.9945°E, 6,898 m, 25 Nov 

2014. HADES #200094, female, 187 mm SL, #200095, female, 124 mm SL, #200096, female, 

183 mm SL, Stn. TR13, 11.8260°N, 145.0088°E, 6,974, 26 Nov 2014. HADES #200133, juvenile, 

151 mm SL, #200134, female, 161 mm SL, Stn. TR19, 12.2766°N, 144.6202°E, 7,626 m, 6 Dec 

2014. HADES #200141, sex unexamined, 139 mm SL, #200142, male, 142 mm SL, #200143, 

female, 129 mm SL, #200144, juvenile, 119 mm SL, Stn. TR20, 12.3495°N, 144.6813°E, 7,652 

m, 7 Dec 2014. #SY1615028, male, 210 mm SL, Stn. FT02, 11.5429°N, 142.1849°E, 7,581 m, 29 

Jan 2017. SL measured fresh for all.  
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CHAPTER VII 

Conclusions: On the success of the hadal snailfishes 

 

Ocean zones are divided based on the distinguishing physical features of the environment which 

govern ecological interactions of the communities therein (Hedgpeth, 1957). Differing light levels, 

bathymetry, nutrient inputs, temperatures, hydrostatic pressures, and other factors have resulted in 

the evolution of a vast diversity of organisms that are specially adapted to their given habitats. Of 

course, we cannot travel back to witness the evolutionary processes, to track the development of 

adaptations across geologic time. While some fossils provide clues into the history of life on earth, 

for many habitats, we can only infer the evolutionary success of organisms to their particular 

environment by what remains today. Through observation and experimentation, we slowly piece 

together the story, by narrowing and isolating selective factors as systematically as possible. 

Through multiple approaches and careful consideration, a picture may begin to emerge. By 

comparing specific taxa found in one zone to those in another, we can explore the factors that 

explain the community shifts we observe today.  

The bathymetric shift from the abyssal plains to hadal trench slopes is accompanied by 

distinct changes in the local fauna (e.g., Wolff, 1959; Beliaev, 1989; Jamieson et al., 2011). For 

fishes, this divide is prominent (e.g., Linley et al., 2017). Abyssal communities are characterized 

by cosmopolitan, elongate fishes such as macrourids, ophidiids, synaphobranchids, ipnopids, and 

zoarcids (e.g., Wilson and Waples, 1983; Nielsen and Merrett, 2000; Milligan et al., 2016), while 

in many hadal trenches, a different family dominates—the liparids. Although liparids are found 

over a wide bathymetric range—from the intertidal through the abyss (Chernova et al., 2004)—

their consistent abundance at hadal depths is striking. On the abyssal plain, snailfishes are not 

generally found in large groups, nor are they a prominent fish family by any means. Yet, in trench 

after trench, from the Kurile-Kamchatka in the north to the Kermadec in the south, to the Peru-

Chile across the Pacific, large communities of apparently endemic snailfishes have been 

discovered (Nielsen, 1964; Jamieson et al., 2009; Fujii et al., 2010; Linley et al., 2016). Further, 



 

178 

 

in these hadal habitats, snailfishes seem to have replaced other families of larger fishes such as 

macrourids that are more abundant than liparids in abyssal and bathyal habitats. Clearly, these 

snailfishes are well-suited to the hadal zone. This dissertation explores potential factors driving 

this success of the snailfishes in hadal trenches.  

Together, the present studies suggest that the drivers resulting in the notable success of the 

liparids in the hadal zone are complex and likely involve the interaction of several factors. 

Snailfishes may have a nutritional advantage in hadal trenches due to increased abundances of 

small crustacean prey such as amphipods. Fish taxa that rely on piscivory or scavenging, such as 

macrourids or synaphobranchids, might not see this advantage and may therefore not have the 

same evolutionary pressures to invade hadal depths. Stomach contents and stable isotope analyses 

in Chapter II supported this hypothesis. Although there may be increased food availability for 

some taxa, hadal depths are also characterized by extremely high hydrostatic pressures. Only 

organisms that have been able to adapt to these pressures would be able to live in the hadal zone—

perhaps the most obvious factor limiting radiation to the greatest ocean depths (Günther, 1887). 

Adaptations to high pressure can take many forms, from maintenance of membrane fluidity to the 

accumulation of molecules that extrinsically support protein function (reviewed by Somero, 1992). 

Chapter III detailed an additional pressure adaptation – intrinsic changes in lactate dehydrogenase 

of hadal liparids and abyssal macrourids that allow the enzymes to function better at in situ 

pressures than at atmospheric pressure, a change not seen in shallower-living confamilials. This 

type of pressure adaptation allows these fishes to thrive at hadal depths. Chapter IV tested the 

hypothesis that life history plays a role in the success of the hadal liparids. This may be partially 

true. Hadal liparids were estimated to be relatively short-lived based on otolith growth zones, on 

the order of 15 years, which may be advantageous in the seismically active, high-disturbance 

environment of subducting trenches. However, the hypothesis that hadal liparids have benthic 

larvae—limiting dispersal and facilitating endemism—was not supported by thermal history 

reconstructions based on oxygen isotopic composition of otoliths. Unexpectedly, large changes in 

oxygen isotopic compositions suggest temperature changes of greater than 5°C across ontogeny 

for hadal liparids from both the Mariana and Kermadec trenches. Chapter V illustrated an 
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additional adaptation of liparids—gelatinous tissues that help the fishes maintain buoyancy and 

body shape at low energetic cost. As may be expected, these studies suggest that there are a 

multitude of factors that have led to the notable success of snailfishes in the hadal zone. 

Although this doctoral research marks significant advancements in the understanding of 

the biology of hadal snailfishes, each of the factors explored here warrant further investigation.  

Few data exist on feeding ecology at hadal depths (e.g., Blankenship and Levin, 2007; Chapter 

II). Chapter II provided stomach contents data for two hadal snailfishes, showing that amphipods 

are the most important prey item in both species. For a less temporally-limited view of trophic 

ecology, δ15N values of specific amino acids were also determined. From these, trophic levels were 

estimated to be near four for both hadal liparids. This study revealed previously unknown predator-

prey relationships in the hadal zone—particularly that hadal liparids eat both swimming 

polychaetes (Notoliparis kermadecensis only) and decapods. Stomach content compositions and 

trophic positions were distinctly different for the abyssal and hadal species examined. This 

comparison was made using published data on abyssal species. However, data on the feeding 

habits of abyssal fishes are currently limited (reviewed by Drazen and Sutton, 2017). The 

comparison of the trophic ecology of abyssal and hadal species would benefit from a broader 

analysis of abyssal fish stomach contents and stable isotopic compositions. Additional detailed 

analysis should focus on the deepest living species of the families Ophidiidae, Zoarcidae, and 

Synaphobranchidae. A detailed functional morphology of abyssal and hadal fish feeding, similar 

to what has been conducted for Antarctic fishes (Bansode et al., 2014), may also further illuminate 

the role of trophic ecology in niche partitioning and depth zonation in these zones. In addition to 

a shift in feeding strategy—from certain abyssal fishes that bite and tear their food to suction-

feeding in hadal fishes—functional morphology and modeling of suction feeding parameters may 

reveal differences in optimum prey sizes for abyssal and hadal species. A difference in optimum 

prey size in relation to prey availability may partially account for the abundance of liparids in the 

hadal zone in comparison to the ophidiids, which also suction feed but have only a shallow-hadal 

and abyssal range (Linley et al., 2017). Further, the strong pharyngeal jaw apparatus found in 

snailfishes from the Kermadec and Mariana trenches (Gerringer et al., 2017; Chapter II) likely 
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contributes to their ability to take advantage of large amphipod biomass at hadal depths. Detailed 

analysis of  functional morphology of this pharyngeal jaw structure across the family Liparidae 

using extensive museum collections already in existence would further clarify the role of trophic 

ecology in the radiation of this family into the deep sea. Insight into the sensory strategies of 

abyssal and hadal fishes would also be useful toward this end. For example, an analysis of the 

relative brain lobe sizes of hadal liparids could reveal sensory adaptations in these species 

(Eastman and Lannoo, 1998; Wagner, 2002; Lisney and Collin, 2006). No records of 

bioluminescence yet exist at hadal depths, but the hadal liparids that have been collected do have 

developed eyes (Nielsen, 1964; Chapter VI). 

 

 
Figure 7.1. Preliminary generalized hadal food web derived from information presented here. Bathymetry 

based on Japan Trench (Fisher, 1954). Arrows indicate known trophic linkages. Organisms shown include 

squid, macrourids, ophidiids, liparids, decapods, polychaetes, and amphipods. Macrourids and ophidiids 

are part of the abyssal/upper edges of the hadal food web. POC: Particulate organic carbon. Drawings based 

on photos from MBARI, NOAA OER, Stuart Piertney, Alan Jamieson. Not to scale.  
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The data presented in Chapter II inform new understanding of trophic linkages in the 

hadal zone, with the eventual goal of assembling a hadal food web (i.e., Figure 7.1). Further 

research is necessary to construct a complete food web, however. Additional stomach contents and 

stable isotope analysis on other taxa—particularly amphipods, decapods, and holothurians—

would be needed. Understanding the hadal food web is important not only as a matter of ecological 

interest, but for tracking global patterns of carbon turnover. The hypothesis that trenches act as 

sinks of organic matter has been largely accepted (George and Higgins, 1979; Danovaro et al., 

2002; Itoh et al., 2011; Ichino et al., 2015). Many authors note that accumulation of organic 

material would be significant for global carbon cycling, but the details of this process demand 

further research (Glud et al., 2013; Oguri et al., 2013; Wenzhöfer et al., 2016).  

Hadal liparids certainly employ a number of adaptations to high hydrostatic pressures, 

some of which are outlined in Chapter III. Lactate dehydrogenases from hadal snailfishes 

functioned better under in situ pressures than at atmospheric pressure, while the same enzyme from 

an intertidal snailfish was inhibited by pressure. Future study could investigate specific amino acid 

changes involved in maintaining this stability under pressure (e.g., Brindley et al., 2008). A 

crystallography approach could also be used to determine water dynamics and mechanisms 

involved in these reactions, which would provide additional insight into this pressure adaptation 

(Gross and Jaenicke, 1994; Shrestha et al., 2015; Foglia et al., 2016).  

Metabolic enzyme activities have been used as proxies of metabolic rate in deep-sea fishes 

(e.g., Drazen et al., 2015), a technique that is complicated by the findings of Chapter III. Pressure 

effects on enzyme maximum activities, which we show vary by species, enzyme, and habitat, will 

need to be considered in future applications of these proxies. Hydrostatic pressure has been 

considered not to affect metabolic rate (e.g., Seibel and Drazen, 2007). However, these results 

show that pressure, like temperature, can control reaction rates of certain enzymes. Hadal depth 

pressures may affect metabolic rate. Future work should seek to clarify these effects. Pressure and 

temperature also have interacting effects on biomolecules (e.g., Dahlhoff and Somero, 1991; 

Somero, 1992). The interaction of these two factors is an interesting field of study that requires 

additional research. Eventually, it may be possible to develop a model that quantifies pressure and 
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temperature effects on a molecular level, allowing something like a growing degree-day-bar to be 

applied in discussions of metabolic rate (Chapter III).  

Chapter IV provided the first data on the life history of hadal fishes using otolith growth 

zones and oxygen isotope analysis. Age estimates for hadal liparids ranged between five and 

sixteen years old. These estimates are younger than those estimated for the shallower-living liparid 

Careproctus melanurus, which revealed up to twenty-five annuli. Abyssal macrourids 

Coryphaenoides armatus and C. yaquinae were estimated to be up to twenty-nine and sixteen years 

old, respectively. In this study, growth rings were assumed to be annual, but validation methods 

were not feasible. Future research should seek to validate these estimates and the age reading 

protocol. Although many methods for validation exist (reviewed by Campana, 2001), most are not 

practical at abyssal or hadal depths. Lead-radium dating may be used to validate the ages of 

Coryphaenoides armatus and C. yaquinae, as was applied to other macrourids (Andrews et al., 

1999), but this method requires nearly a gram of early otolith growth (core extraction of first few 

years) material for instrumental analysis. Hence, multiple individuals from discrete size or age 

classes would be needed to pool enough material. This type of analysis would likely require the 

combination of multiple collections to cover a thorough size range, but would be a valuable way 

to verify growth patterns in a common and important abyssal group. Validated life history data on 

these abyssal macrourids would also greatly inform discussions of the factors governing growth 

rate of deep-sea fishes (Cailliet et al., 2001; Drazen and Haedrich, 2012), potentially clarifying the 

role of variables such as temperature, pressure, and food supply. 

The hadal snailfish otoliths and otolith collections themselves are smaller than current 

instrumental analysis limits would allow for lead-radium dating, even with sample pooling. Other 

validation methods such as mark/recapture or outer ring analysis across multiple seasons are also 

impractical at this time. However, there may be a way to validate age estimates for one group of 

hadal liparids due to recent, extremely unfortunate circumstances. Four months after the Tohoku-

Oki earthquake and Fukushima Dai-ichi nuclear disaster, large amounts of 134Cs were deposited 

into the Japan Trench and found at 7,500 m (Oguri et al., 2013). Cesium is one of the detectable 

trace elements present in fish otoliths (reviewed by Sturrock et al., 2012). If the radioactive cesium 
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signature were taken up by the hadal snailfishes in the Japan Trench near the known time of 

deposition in 2011, it may be possible to use this time-specific marker as a tracer in a similar 

manner to bomb radiocarbon of fishes (e.g., Andrews et al., 2012). Given the relatively short ages 

predicted for hadal snailfishes and half-life of  134Cs (2.06 years), there would be a limited temporal 

opportunity for this kind of study. In addition to validating ages for fishes in the hadal zone, future 

work could explore patterns of age and growth in other taxa. For example, hadal amphipods could 

be aged based on the accumulation of lipofuscin pigment in the brain (Bluhm et al., 2001). These 

data would be valuable as they represent the end of the depth and pressure range for marine 

organisms, allowing for the thorough examination of these effects.  

The thermal history reconstruction results presented in Chapter IV that were determined 

from oxygen isotopic fractionation within the otoliths were highly unexpected. Changes in the 

oxygen isotopic composition across the otoliths of two hadal liparids suggest large changes in 

habitat temperature across the life of the fishes, potentially reflecting a 5,000 m depth differential 

between larvae and adult populations, according to the established conversions (e.g., Thorrold et 

al., 1997; Høie et al., 2004; Chang et al., 2015). According to the published literature and our 

validation efforts, this change could not be explained by metabolically-mediated fractionation, 

pressure effects, excess protein accumulation, or instrumental drift. Although the suggestion that 

a hadal fish could have such a large vertical range throughout ontogeny is surprising, it cannot 

currently be refuted with the available data. If these snailfishes are indeed feeding in shallow 

waters before returning to the hadal zone, this is an incredible feat. Other fishes are known for 

similarly impressive migrations, salmon being the most famous example, but also the European 

eel Anguilla anguilla that travels across the Atlantic in a 5,000 km spawning migration (Aarestrup 

et al., 2009). Large vertical migrations also exist in other species, for example the jellynose fish 

Ateleopus japonicus (Shiao et al., 2017) or rattails (Lin et al., 2012).  However, this would be one 

of the largest changes in hydrostatic pressure experienced by any metazoan and this finding 

certainly warrants further verification. The vertical migration suggested in Careproctus melanurus 

shows that other members of the family Liparidae likely display similar life history traits. Pressure 

effects, such as those explored in Chapter III, would need to be investigated with this added 
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complication. If hadal liparid larvae are indeed present at depths shallower than 1000 m, it should 

be possible to collect them by trawl. Although liparid larvae have few distinguishing characters 

(e.g., Kim et al., 1986; Marliave and Peden, 1989) and confirming identifications morphologically 

would be difficult, genetic analysis could be used. This technique has been successfully applied in 

a number of systems for larval identification (e.g., Hubert et al., 2010; Riemann et al., 2010). Data 

from the genetic markers (mitochondrial genes 16S, COI, and Cyt-b) analyzed in Chapter VI for 

Notoliparis kermadecensis and the newly-discovered species of hadal liparid from the Mariana 

Trench would allow for positive identification of hadal liparid larvae collected from shallower 

depths over the trench.  

There are now a few hadal trenches known to have more than one species of apparently 

endemic hadal snailfish. The Japan Trench has both Pseudoliparis belyaevi and Pseudoliparis 

amblystomopsis (Andriyashev et al., 1993). Collections from the present studies have revealed two 

populations in the Kermadec Trench—Notoliparis kermadecensis and Notoliparis stewarti (Stein, 

2016; Chapter VI). There are also two snailfish populations in the Mariana Trench—the newly-

collected species described here and the ethereal snailfish, which remains uncollected (Chapter 

VI, Linley et al., 2016). Perhaps a pelagic larval stage provides a dispersal mechanism for these 

populations. Future phylogenetic analyses of multiple hadal liparids, building on the tree presented 

in Chapter VI would be valuable in understanding connectivity between hadal fish populations 

and evolutionary patterns of dispersal. Similar work has begun for hadal amphipods, which shows 

complex connectivity patterns and species overlap, particularly in the genus Hirondellea (Ritchie 

et al., 2015). While it may be tempting to think of hadal trenches as remote, isolated habitats, 

evidence increasingly shows that trenches are closely tied to the surrounding ocean systems, even 

accumulating man-made pollutants at high concentrations (Jamieson et al., 2017). It will be 

interesting to continue to explore how connected or distinct individual hadal trenches are from one 

another and the waters above, and whether these patterns vary across taxa.  

Chapter V explored the distribution, composition, and functions of gelatinous tissues in 

deep-sea fishes, including the hadal snailfish. Robotic modeling results supported the hypothesis 

that gelatinous tissues may help certain deep-sea fishes maintain low-drag body shapes without 
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having to build up energetically costly muscle. Future research could test this hypothesis further—

applying computational fluid dynamic modeling to test the effects of a gelatinous-tissue-

streamlined body shape on drag profiles around both a stationary, and then undulatory swimming 

fish, similar to work that has been done for tadpoles (Liu et al., 1996, 1997). Some authors have 

noted that body shape in fishes becomes more elongate at greater depths (Ward and Mehta, 2010; 

Neat and Campbell, 2013). Future modeling could also test how the positioning of gelatinous 

tissues within the body relates to this elongation. The location of the gelatinous tissues also varies 

between species. It is more likely that the drag reducing effect of gelatinous tissues would occur 

when the tissues are present directly under the skin—as in the hadal snailfishes—rather than 

embedded within muscle bundles, as in the cusk eel Spectrunculus grandis. The hypothesis that 

there is a swimming kinematics advantage to gelatinous tissue would also benefit from a study of 

the material properties of gelatinous tissues under in situ pressures and temperatures. This study 

may have implications for the design of biomimetic soft-bodied robot forms, which could employ 

a similar strategy for drag reduction to that used by these deep-sea fishes.  

Much of the comparative work in this dissertation was conducted on Coryphaneoides 

armatus and C. yaquinae, prominent abyssal macrourids. This comparison is justifiable. The 

macrourids are certainly an important abyssal group, with representatives in most ocean basins at 

a broad range of depths (e.g., Wilson and Waples, 1983; Jamieson et al., 2009). Because there is a 

diversity of fishes living at abyssal depths, however, this is an oversimplification of the interactions 

at play in structuring the fish communities at abyssal and hadal depths. In particular, this 

simplification likely undervalues the role of the cusk eels (Ophidiidae). Ophidiids are a largely 

understudied group, though they are wide-ranging and likely important members of the abyssal 

fish community (e.g., Nielsen and Merrett, 2000; Uiblein et al., 2008; Nielsen and Møller, 2011; 

Linley et al., 2017). Future research could focus on the biogeography and ecology of the deep-

dwelling cusk eels- to address their role in the abyssal ecosystem. Other abyssal fish families could 

also be compared in more detail in future work, including the eelpouts (Zoarcidae), cutthroat eels 

(Synaphobranchidae), and tripodfishes (Ipnopidae), the latter of which are very poorly studies as 

they are not attracted to baited cameras or traps. 
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Overall, this research shows hadal liparids to be highly-specialized, endemic fishes that 

thrive in deep-sea trenches through a number of adaptations. Hadal liparids have been captured 

and described from the Kurile-Kamchatka Trench (Andriashev, 1955), Japan Trench (Andriashev, 

1955; Andriashev and Pitruk, 1993), Kermadec Trench (Nielsen, 1964), and Peru-Chile Trench 

(Stein, 2005). In addition to these known species, there are likely undiscovered species of hadal 

liparids in unexplored trenches. In 1964, for example, those diving the Puerto Rico Trench in the 

bathyscaphe Archimede reported that “at 7,300 m the community was characterized by the 

abundance of a liparidid fish (Careproctus?: about 200 individuals)” (Pérês, 1965). While no 

photographs were taken, subsequent observations of other trenches give credence to the claim. 

Due to its geographic isolation from other hadal ecosystems, this finding would be of particular 

importance to the understanding of the adaptation and evolution of the planet’s deepest-living 

vertebrates. 

Exploration of the Puerto Rico Trench could also shed light on one of the most contentious 

reports in hadal research. In 1970, the fish Abyssobrotula galathea was collected in an otter trawl 

deployed to 8,370 m in the Puerto Rico Trench. This has since held the record for deepest living 

fish (Nielsen, 1977). However, this fish was caught in an open trawl and the validity of this report 

has been called into question (e.g., Jamieson et al., 2009), although it is impossible to disprove. It 

has been suggested that fish may be physiologically incapable of descending much further than 

8,200 m, due to the constraints of pressure adaptation (Yancey et al., 2014). A survey of the fish 

fauna of the Puerto Rico Trench would help to settle this debate and provide further insight into 

the depth limit for fishes. 

 Recent hadal research, including the contributions of this dissertation, has been largely 

exploratory. The next phase of hadal research should strive for greater temporal and spatial 

understanding of deep-sea trenches. From the videos, images, and samples of the hadal zone so 

far, it is already clear that there is great topographic and faunal heterogeneity within individual 

trenches and between trenches. The factors driving these changes warrant further exploration. 

Further, much of the work done at hadal depths has been on bait-attending fauna, due to technical 

constraints. Although useful, this equipment provides a certain biased view of the community. 



 

187 

 

Alternative sampling and exploration methods, including remotely operated vehicles, will need to 

be employed to gain a more holistic view of hadal fauna and their physiology and ecology. Hadal 

science is by necessity highly collaborative and interdisciplinary work. It will take continued 

cooperation between a host of scientists and engineers across borders to further our understanding 

of these communities in the ocean’s greatest depths and their role in the global ocean ecosystem.  

Delving into hadal research provides the opportunity to reveal one of our planet’s most 

extraordinary and least understood habitats. There is an innate human curiosity and attraction to 

understanding the extremes of life and pushing the extremes of technology. This perpetual drive 

for progress and exploration is something very fundamental to the human spirit. In many ways, 

trench exploration embodies these drives. Toward this aim, there is still much more to discover, 

and much further to go in understanding the incredible organisms with whom we share our planet.  
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APPENDIX 

 

Supplementary Table 2.1. Collection information. Sex: female (f), male (m), juvenile (j) indicated. 

Trench Depth (m) Sample Number Species Standard Length (cm) Weight (g) Sex 

Kermadec 3601 100363 Coryphaenoides armatus 78.6 1930 f 

Kermadec 3569 100368 Coryphaenoides armatus 69 1686 m 

Mariana 6081 200015 Coryphaenoides yaquinae 23 40 j 

Mariana 7062 200021 Mariana liparid 19.3 70 m 

Mariana 6961 200024 Mariana liparid 23.2 160  
Mariana 6961 200025 Mariana liparid 23.5 150 f 

Mariana 6914 200027 Mariana liparid 22  f 

Mariana 7495 200033 Mariana liparid 12.6 45  
Mariana 7497 200039 Mariana liparid 21 150 f 

Mariana 7497 200040 Mariana liparid 18.4 90 f 

Mariana 7497 200041 Mariana liparid 10.5 15 j 

Mariana 7497 200042 Mariana liparid 14.7 30 j 

Mariana 7497 200043 Mariana liparid 28.8 90 f 

Mariana 7509 200047 Mariana liparid 17.8 75 m 

Mariana 7509 200048 Mariana liparid 13.5 25 m 

Mariana 7929 200062 Mariana liparid  8  
Mariana 7841 200070 Mariana liparid 17.2 65 f 

Mariana 7841 200071 Mariana liparid 11 15 j 

Mariana 7841 200072 Mariana liparid 11.9 15 j 

Mariana 7907 200074 Mariana liparid 14.5 30 m 

Mariana 7966 200081 Mariana liparid 10.7 10 j 

Mariana 6949 200084 Mariana liparid 17.6 65 f 

Mariana 6949 200085 Mariana liparid 22.5 130 f 

Mariana 6898 200087 Mariana liparid 20.3 90 f 

Mariana 6974 200094 Mariana liparid 18.7 75 f 

Mariana 6974 200095 Mariana liparid 12.4 15 f 

Mariana 6974 200096 Mariana liparid 18.3 85 f 

Mariana 7626 200133 Mariana liparid 15.1 35 j 

Mariana 7626 200134 Mariana liparid 16.1 45 f 

Mariana 7652 200142 Mariana liparid 14.2 40 m 

Mariana 7652 200143 Mariana liparid 12.9 20 f 

Mariana 7652 200144 Mariana liparid 11.9 20 j 

Kermadec 7392 100162 Notoliparis kermadecensis 20.7 88 f 

Kermadec 7392 100164 Notoliparis kermadecensis 16.7 76 m 

Kermadec 7392 100165 Notoliparis kermadecensis 20.9 92 f 

Kermadec 7515 100171 Notoliparis kermadecensis 18.3 80 m 

Kermadec 7515 100172 Notoliparis kermadecensis 20.9 104 f 

Kermadec 7515 100173 Notoliparis kermadecensis 12.9 26 j 

Kermadec 7515 100175 Notoliparis kermadecensis 18.3 46 f 

Kermadec 7515 100176 Notoliparis kermadecensis 15.9 50 f 

Kermadec 7515 100177 Notoliparis kermadecensis 24.2 156 f 

Kermadec 7200 100216 Notoliparis kermadecensis 23.6 182 f 

Kermadec 7200 100217 Notoliparis kermadecensis 25.9 230 f 

Kermadec 7200 100218 Notoliparis kermadecensis 20.2 110  
Kermadec 7200 100219 Notoliparis kermadecensis 18.2 68 j 

Kermadec 7200 100220 Notoliparis kermadecensis 17.3 54 j 

Kermadec 7251 100309 Notoliparis kermadecensis 20.8 108 m 
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Trench Depth (m) Sample Number Species Standard Length (cm) Weight (g) Sex 

Kermadec 7251 100310 Notoliparis kermadecensis 21 94 m 

Kermadec 7251 100311 Notoliparis kermadecensis 17.7 46 m 

Kermadec 7251 100312 Notoliparis kermadecensis 16.8 54 m 

Kermadec 7251 100313 Notoliparis kermadecensis 17.8 42 f 

Kermadec 7251 100314 Notoliparis kermadecensis 20 74 f 

Kermadec 7251 100315 Notoliparis kermadecensis 18.3 66 m 

Kermadec 7251 100316 Notoliparis kermadecensis 19.4 66 f 

Kermadec 7251 100317 Notoliparis kermadecensis 13.6 20 f 

Kermadec 7187 100318 Notoliparis kermadecensis 18.4 66 f 

Kermadec 7187 100319 Notoliparis kermadecensis 17.4 48 f 

Kermadec 7187 100320 Notoliparis kermadecensis 22.2 124 f 

Kermadec 6456 100326 Notoliparis kermadecensis 24.2 154 m 

Kermadec 6456 100327 Notoliparis kermadecensis 23.5 168 m 

Kermadec 6456 100328 Notoliparis kermadecensis 22 158 m 

Kermadec 6456 100329 Notoliparis kermadecensis 29 200 f 

Kermadec 7554 100338 Notoliparis kermadecensis 15.2   
Kermadec 7554 100339 Notoliparis kermadecensis 14.4   
Kermadec 7554 100340 Notoliparis kermadecensis 18   
Kermadec 7554 100341 Notoliparis kermadecensis 17.6 80  
Kermadec 7554 100342 Notoliparis kermadecensis 23.3 110 f 

Kermadec 7554 100343 Notoliparis kermadecensis 22.2 132 f 

Kermadec 7554 100344 Notoliparis kermadecensis 23.7 164 m 

Kermadec 7227 100350 Notoliparis kermadecensis 22.2 120 m 

Kermadec 4989 100083 Pachycara sp. 43.6 460  
Kermadec 4989 100084 Pachycara sp. 46.8 660 m 

Kermadec 4817 100073 Pyrolycus sp. 42 508 f 

Kermadec 3865 100036 Spectrunculus grandis 43.9 532 f 

Kermadec 3601 100364 Spectrunculus grandis 29 170  
Kermadec 3601 100365 Spectrunculus grandis 26.9 106 j 

Kermadec 3569 100371 Spectrunculus grandis 31.5 136 m 

Kermadec 3569 100372 Spectrunculus grandis 28.2 142 m 

Kermadec 3569 100376 Spectrunculus grandis 33 196  
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Supplementary Table 2.2. Compound Specific Isotope Analysis of Individual Amino Acids and Bulk White Muscle Tissue Isotope Analysis 

Results. HADES Sample numbers listed. B1/B2 indicates batch number. δ15N values presented in ‰ vs. AIR, δ13C in ‰ vs. V-PDB. Standard 

deviations from triplicate measurements of one sample. 

 Coryphaenoides armatus Coryphaenoides yaquinae 

 100038 (B2) 100363 (B2) 100367 (B2) 200008 (B1) 200151 (B1) 200152 (B2) 

 average stdev average stdev average stdev average stdev average stdev average stdev 

Alanine 31.82 0.18 33.04 0.37 33.38 0.14 29.19 0.35 29.30 0.19 31.72 0.38 

Glycine 0.46 0.14 -0.32 0.49 3.53 0.94 -0.79 0.69 -1.54 0.50 -4.26 0.12 

Threonine -33.56 0.32 -32.39 0.50 -35.68 0.65 -35.52 0.40 -33.88 0.75 -31.74 0.98 

Serine 4.52 0.34 3.10 0.38 5.20 0.50 3.61 0.75 5.64 0.26 -1.21 0.11 

Valine 25.13 0.20 26.04 0.45 26.70 0.77 23.77 0.46 24.48 0.34 23.49 0.57 

Leucine 28.28 0.14 29.48 0.02 29.93 0.18 25.59 0.29 26.06 0.14 28.01 0.08 

Isoleucine 29.66 0.38 30.67 0.30 30.61 0.20 26.85 0.32 27.41 0.07 29.13 0.06 

Norleucine 19.06 0.00 20.61 0.05 19.89 0.09 19.06 0.00 19.06 0.00 19.81 0.04 

Proline 31.03 0.11 29.34 0.16 29.72 0.16 25.76 0.26 26.40 0.15 26.31 0.17 

Aspartic acid 23.34 0.31 24.37 0.28 25.45 0.07 24.44 0.20 23.36 0.13 23.92 0.13 

Methionine 9.53 0.33 8.71 0.77 12.96 0.22 8.17 0.37 7.86 0.09 9.60 0.36 

Glutamic acid 30.85 0.06 32.76 0.06 32.86 0.12 29.64 0.10 30.33 0.09 31.06 0.06 

Phenylalanine 2.43 0.58 2.65 0.29 3.97 0.42 1.16 0.34 0.43 0.56 2.28 0.51 

Aminoadipic Acid -6.20 0.00 -5.97 0.37 -5.03 0.13 -6.20 0.00 -6.20 0.00 -5.22 0.20 

Tyrosine 6.90 0.67 3.26 0.34 9.28 0.04 6.64 0.24 5.53 0.32 7.65 0.58 

Lysine 4.61 0.24 4.99 0.23 6.23 0.13 3.14 0.14 3.21 0.10 3.89 0.03 

Source AA (Lys, Phe) 3.96 0.41 3.95 0.36 5.71 0.31 2.55 0.32 2.80 0.29 3.80 0.17 

Trophic AA (Ala, Leu, Glu) 30.40 0.19 30.34 0.12 32.26 0.22 28.69 0.25 28.82 0.20 29.98 0.18 

Trophic Position 5.14 0.17 5.13 0.11 5.16 0.18 5.08 0.20 5.06 0.17 5.09 0.12 

Bulk Tissue δ15N  14.2  13.0     12.8  12.3     

Bulk Tissue δ13C -18.9   -21.3       -18.0   -18.7       
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 Spectrunculus grandis 

 100060 (B1) 100377 (B1) 100364 (B2) 

 average stdev average stdev average stdev 

Alanine 30.85 0.23 31.83 0.04 34.93 0.43 

Glycine 3.56 0.87 6.20 0.30 7.23 0.52 

Threonine -31.01 0.62 -29.06 0.63 -30.12 0.54 

Serine 8.13 0.38 11.41 0.16 12.29 0.46 

Valine 23.63 1.03 25.82 0.70 27.56 0.37 

Leucine 26.20 0.08 27.72 0.10 29.17 0.03 

Isoleucine 28.07 0.41 28.77 0.31 30.63 0.34 

Norleucine 19.47 0.04 19.37 0.10 20.76 0.18 

Proline 28.54 0.46 32.39 0.25 31.40 0.11 

Aspartic acid 22.74 0.61 24.46 0.06 25.08 0.12 

Methionine 9.97 0.66 12.46 0.52 12.81 0.27 

Glutamic acid 28.67 0.92 30.99 0.19 31.87 0.04 

Phenylalanine 3.40 0.57 4.80 0.79 6.71 0.35 

Aminoadipic Acid -5.46 0.98 -5.40 0.06 -5.49 0.13 

Tyrosine 13.15 0.33 12.58 0.26 14.06 0.66 

Lysine 5.97 0.14 5.90 0.29 6.27 0.04 

Source AA (Lys, Phe) 5.47 0.33 5.60 0.46 6.32 0.19 

Trophic AA (Ala, Leu, Glu) 27.44 0.23 30.78 0.15 30.51 0.13 

Trophic Position 4.32 0.19 4.90 0.15 4.72 0.11 

Bulk Tissue δ15N  14.4  15.5     

Bulk Tissue δ13C -19.1   -18.9       
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 Notoliparis kermadecensis Mariana liparid 

 100175 (B1) 100310 (B1) 100171 (B2) 200039 (B1) 200070 (B1) 200033 (B2) 200041 (B2) 

 average stdev average stdev average stdev average stdev average stdev average stdev average stdev 

Alanine 30.43 0.07 30.34 0.17 30.19 0.45 30.73 0.24 29.70 0.36 29.41 0.40 28.91 0.34 

Glycine 7.75 0.24 6.36 0.26 8.86 0.22 7.68 0.34 7.78 0.19 9.96 0.18 10.58 0.31 

Threonine -22.02 0.96 -32.48 0.71 -30.18 0.79 -40.62 0.30 -38.93 0.86 -37.73 0.42 -37.97 0.76 

Serine 10.40 0.91 11.83 0.05 12.42 0.49 -0.72 0.21 1.05 1.15 3.30 0.20 14.48 0.23 

Valine    22.95 0.42 25.07 0.87 23.12 0.17 22.13 0.33 24.51 0.18 21.55 0.88 

Leucine 26.97 0.36 27.85 0.08 29.71 0.08 28.29 0.21 27.20 0.48 27.32 0.20 26.97 0.33 

Isoleucine    23.45 1.12 26.32 0.81 24.63 1.24 24.75 0.92 25.23 1.04 24.12 0.91 

Norleucine 18.86 0.26 18.84 0.18 19.69 0.23 18.71 0.06 19.02 0.20 19.06 0.00 19.06 0.00 

Proline 30.91 0.07 31.75 0.15 32.46 0.17 32.76 0.38 31.61 0.11 30.72 0.08 28.96 0.21 

Aspartic acid 20.80 0.21 23.16 0.08 23.68 0.26 24.97 0.26 24.55 0.18 23.17 0.05 22.36 0.12 

Methionine 16.42 0.91 15.18 0.10 15.92 0.11 14.74 0.22 16.45 0.17 15.34 0.54 13.80 0.20 

Glutamic acid 25.84 0.19 30.05 0.23 29.71 0.08 30.46 0.19 29.84 0.31 29.16 0.07 28.38 0.17 

Phenylalanine 7.29 0.62 3.51 0.54 4.15 0.46 3.71 0.27 3.09 0.36 4.70 0.29 2.48 0.19 

Aminoadipic Acid -4.88 0.08 -5.72 0.12 -5.57 0.53 -6.22 0.04 -5.73 0.15 -6.20 0.00 -6.20 0.00 

Tyrosine    11.41 0.44 8.12 0.19 4.77 0.56 6.32 0.58 8.11 0.71 11.18 0.52 

Lysine 8.81 0.42 9.80 0.10 9.36 0.30 7.23 0.15 7.24 0.05 6.63 0.18 6.46 0.04 

Source AA (Lys, Phe) 8.19 0.50 8.77 0.30 7.29 0.43 5.99 0.31 6.78 0.20 5.89 0.33 5.77 0.18 

Trophic AA (Ala, Leu, Glu) 28.85 0.22 28.89 0.21 29.75 0.19 29.81 0.27 29.11 0.35 28.76 0.22 28.15 0.29 

Trophic Position 4.08 0.20 3.98 0.17 4.41 0.17 4.66 0.20 4.38 0.17 4.48 0.18 4.39 0.15 

Bulk Tissue δ15N  14.2  12.8  13.3   13.4  13.6  14.4  13.2   

Bulk Tissue δ13C -20.9   -21.4   -21.7   -19.8   -18.9   -19.5   -20.0   
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Supplementary Table 4.1. Otolith collection information and age estimates of the snailfishes Careproctus melanurus, Notoliparis kermadecensis, 

and the Mariana liparid (Liparidae sp. nov.). Sex listed as female (f), male (m), juvenile (j), and unknown (u).  
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Kermadec 7392 100162 Notoliparis kermadecensis 22.2 20.7 88 f 1.1772 0.66 0.997 1.279 9 
Kermadec 7392 100163 Notoliparis kermadecensis 23 21 106 f 1.566 0.76 1.118 1.325  
Kermadec 7392 100164 Notoliparis kermadecensis 18.5 16.7 76 m 0.8206 0.52 0.944 1.11 7 

Kermadec 7392 100165 Notoliparis kermadecensis 23 20.9 92 f 0.8691 0.54 0.905 1.172 9 
Kermadec 7515 100171 Notoliparis kermadecensis 20.2 18.3 80 m 0.9514 0.6 0.918 1.127 11 

Kermadec 7515 100172 Notoliparis kermadecensis 22.9 20.9 104 f 0.3766 0.4 0.671 0.879 9 

Kermadec 7515 100173 Notoliparis kermadecensis 13.9 12.9 26 j 0.6211 0.46 0.864 1.042 7 
Kermadec 7515 100175 Notoliparis kermadecensis 20 18.3 46 f 0.6112 0.5 0.799 1.022 9 

Kermadec 7515 100176 Notoliparis kermadecensis 17.6 15.9 50 f 0.9866 0.6 1.001 1.194 8 
Kermadec 7515 100177 Notoliparis kermadecensis 26.4 24.2 156 f 0.9731 0.6 0.999 1.146  
Kermadec 7200 100216 Notoliparis kermadecensis 25.6 23.6 182 f 1.4915 0.66 1.142 1.314 14 
Kermadec 7200 100217 Notoliparis kermadecensis 28 25.9 230 f 2.0052 0.8 1.311 1.539 13 

Kermadec 7200 100218 Notoliparis kermadecensis 22.2 20.2 110 m 1.2195 0.64 1.13 1.434 10 

Kermadec 7200 100219 Notoliparis kermadecensis 20.1 18.2 68 j 0.9694 0.54 1.123 1.162 10 
Kermadec 7200 100220 Notoliparis kermadecensis 18.9 17.3 54 j 0.7725 0.42 1.103 1.184  
Kermadec 7251 100309 Notoliparis kermadecensis 23 20.8 108 m 0.7775 0.6 0.855 1.034  
Kermadec 7251 100310 Notoliparis kermadecensis 23.2 21 94 m 1.1667 0.62 1.041 1.264 11 

Kermadec 7251 100311 Notoliparis kermadecensis 19.6 17.7 46 m 0.4803 0.46 0.765 0.948 7 

Kermadec 7251 100312 Notoliparis kermadecensis 18.5 16.8 54 m 0.6882 0.54 0.861 1.11 10 
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Kermadec 7251 100313 Notoliparis kermadecensis 19.8 17.8 42 f 0.3773 0.42 0.729 0.895 8 
Kermadec 7251 100314 Notoliparis kermadecensis 21.8 20 74 f 1.0887 0.69 0.936 1.278 9 

Kermadec 7251 100315 Notoliparis kermadecensis 20.3 18.3 66 m 0.6553 0.51 0.841 1.032 8 

Kermadec 7251 100316 Notoliparis kermadecensis 21.2 19.4 66 f 1.2014 0.63 1.18 1.304 10 

Kermadec 7251 100317 Notoliparis kermadecensis 15.1 13.6 20 f 0.4997 0.47 0.746 1.051 6 
Kermadec 7187 100318 Notoliparis kermadecensis 20.1 18.4 66 f 0.8214 0.62 0.817 1.175 10 

Kermadec 7187 100319 Notoliparis kermadecensis 19 17.4 48 f 0.8679 0.55 0.975 1.217 8 

Kermadec 7187 100320 Notoliparis kermadecensis 23.4 22.2 124 f 0.6307 0.55 0.89 1.05 12 

Kermadec 6456 100326 Notoliparis kermadecensis 26.3 24.2 154 m 1.1579 0.62 1.095 1.3 14 
Kermadec 6456 100328 Notoliparis kermadecensis 24.3 22 158 m 0.8312 0.53 0.981 1.265 10 

Kermadec 6456 100329 Notoliparis kermadecensis 31.5 29 200 f 1.4822 0.71 1.19 1.397 15 

Kermadec 7554 100338 Notoliparis kermadecensis 16.7 15.2 26* u 0.7295 0.56 0.875 1.095 6 
Kermadec 7554 100339 Notoliparis kermadecensis 16 14.4 28* u 0.5707 0.48 0.811 1.19 7 

Kermadec 7554 100340 Notoliparis kermadecensis 19.8 18 52* u 0.9877 0.57 1.062 1.338 9 

Kermadec 7554 100341 Notoliparis kermadecensis 19.5 17.6 80 u 0.8682 0.62 0.894 1.216 8 

Kermadec 7554 100342 Notoliparis kermadecensis 25.6 23.3 110 f 0.9389 0.59 1.184 1.199 13 
Kermadec 7554 100343 Notoliparis kermadecensis 25 22.2 132 f 0.8929 0.5 1.101 1.267 13 

Kermadec 7554 100344 Notoliparis kermadecensis 26.4 23.7 164 m 0.9664 0.62 1.046 1.285 15 

Kermadec 7227 100350 Notoliparis kermadecensis 24.3 22.2 120 m 0.8399 0.65 0.998 1.08 13 

Mariana 7062 200021 Mariana liparid 21.5 19.3 70 m 0.7098 0.55 0.969 1.282  
Mariana 6961 200024 Mariana liparid 24.4 23.2 160 u 1.3421 0.68 1.265 1.547 10 
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Mariana 6961 200025 Mariana liparid 26 23.5 150 f 0.8675 0.49 0.964 1.237 10 
Mariana 6914 200027 Mariana liparid  22  f 1.2999 0.64 1.088 1.33 12 
Mariana 7495 200033 Mariana liparid 19 12.6 45 u 0.8599 0.51 0.931 1.047  
Mariana 7497 200039 Mariana liparid 23 21 150 f 1.4463 0.64 1.092 1.514  
Mariana 7497 200040 Mariana liparid 20.7 18.4 90 f 1.2243 0.73 1.027 1.142 11 

Mariana 7497 200041 Mariana liparid 12.4 10.5 15 j 0.5207 0.39 0.923 0.955 5 
Mariana 7497 200042 Mariana liparid 16.4 14.7 30 j 0.4779 0.47 0.757 0.844 7 
Mariana 7497 200043 Mariana liparid 21.1  90 f 0.8499 0.58 0.891 1.078  
Mariana 7509 200047 Mariana liparid 19.4 17.8 75 m 0.806 0.57 0.875 0.986 9 

Mariana 7509 200048 Mariana liparid 15 13.5 25 m 0.646 0.42 0.877 1.108 7 
Mariana 7929 200062 Mariana liparid   8 u 0.305 0.45 0.688 0.838  
Mariana 7841 200070 Mariana liparid 19 17.2 65 f 0.9766 0.74 0.801 0.941 8 

Mariana 7841 200071 Mariana liparid 12.3 11 15 j 0.3202 0.4 0.809 0.931 7 

Mariana 7841 200072 Mariana liparid 13.4 11.9 15 j 0.4378 0.44 0.781 0.929 7 
Mariana 7907 200074 Mariana liparid 16.3 14.5 30 m 0.5104 0.35 0.796 0.827 8 

Mariana 7966 200081 Mariana liparid 12 10.7 10 j 0.4256 0.4 0.807 0.908 5 

Mariana 6949 200084 Mariana liparid 19.5 17.6 65 f 1.2682 0.67 0.992 1.137 8 
Mariana 6949 200085 Mariana liparid 24.7 22.5 130 f 0.7704 0.56 0.946 1.317 12 

Mariana 6974 200094 Mariana liparid 20.5 18.7 75 f 0.8429 0.46 1.106 1.346 12 

Mariana 6974 200095 Mariana liparid 13.7 12.4 15 f 0.4635 0.39 0.714 0.842 6 

Mariana 6974 200096 Mariana liparid 20.1 18.3 85 f 0.7922 0.62 0.98 1.14 10 
Mariana 7626 200133 Mariana liparid 16.7 15.1 35 j 0.4467 0.45 0.727 0.867 8 
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Mariana 7626 200134 Mariana liparid 17.2 16.1 45 f 0.8158 0.52 1.013 1.187 9 
Mariana 7652 200142 Mariana liparid 15.9 14.2 40 m 0.6976 0.51 0.909 1.071 8 

Mariana 7652 200143 Mariana liparid 13.7 12.9 20 f 0.3452 0.36 0.723 0.878 7 

Mariana 7652 200144 Mariana liparid 13 11.9 20 j 0.5822 0.47 0.869 0.948 7 

California 340 Cmel340.1 Careproctus melanurus  19.3 93 m 6.15 1.1 2.96 2.56 24 

California 379 Cmel379.1 Careproctus melanurus  14.8 52 f 3.38 0.72 2.56 2.06 13 

California 379 Cmel379.2 Careproctus melanurus  14.7 38 m 4.587 0.79 2.8 2.23 13 

California 379 Cmel379.3 Careproctus melanurus  17.1 53 m 4.124 0.74 2.5 2.34 17 

California 379 Cmel379.4 Careproctus melanurus  14.7 41 f 3.63 0.84 2.5 2.32 12 

California 379 Cmel379.5 Careproctus melanurus  17.2 87 f 4.73 0.86 2.87 2.37 20 

California 379 Cmel379.6 Careproctus melanurus  15.6 62 f 3.564 0.65 2.5 2.31 15 

California 379 Cmel379.7 Careproctus melanurus  12.7 20 j 3.144 0.67 2.48 2.24 9 

California 379 Cmel379.8 Careproctus melanurus  16.1 34 f 1.873 0.64 2.1 1.65 17 

California 435 Cmel435.1 Careproctus melanurus  15.2 67 f 5.4 0.74 3.14 2.61 14 

California 439 Cmel439.1 Careproctus melanurus  14.9 36 f 3.9 0.64 2.69 2.46 14 

California 457 Cmel457.1 Careproctus melanurus  13.4 25 f 4.653 0.63 2.83 2.45 11 

California 457 Cmel457.2 Careproctus melanurus  16 57 f 4.292 0.69 2.66 2.2 15 

California 457 Cmel457.3 Careproctus melanurus  15.6 54 f 3.801 0.7 2.76 2.26 15 

California 457 Cmel457.4 Careproctus melanurus  16.2 70 f 4.616 0.76 2.95 2.54 19 

California 457 Cmel457.5 Careproctus melanurus  16 59 m 1.352 0.66 1.98 1.8 13 

California 457 Cmel457.6 Careproctus melanurus  15.4 48 m 3.876 0.85 2.72 2.51 14 

California 457 Cmel457.7 Careproctus melanurus  17.2 87 f 5.193 0.77 2.74 2.69 19 
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California 479 Cmel479.1 Careproctus melanurus  18.2 53 f 5.7 0.78 2.98 2.59 21 

California 479 Cmel479.2 Careproctus melanurus  16.1 29 f 4 0.68 2.71 2.37 18 

California 479 Cmel479.3 Careproctus melanurus  11.8 12 f 2.8 0.64 2.21 1.87 9 

California 530 Cmel530.1 Careproctus melanurus  13.9 25 j 3 0.66 2.49 1.92 14 

California 530 Cmel530.2 Careproctus melanurus  12.5 16 j 2.7 0.65 2.61 1.9 11 

California 530 Cmel530.3 Careproctus melanurus  13.8 30 j 3.4 0.6 2.51 2.22 11 

California 531 Cmel531.1 Careproctus melanurus  13.5 39 m 3.586 0.63 2.71 2.02 11 

California 531 Cmel531.2 Careproctus melanurus  19.4 139 f 6.002 0.82 3.09 2.72 19 

California 561 Cmel561.1 Careproctus melanurus  21.8 103 f 6.34 0.82 3.11 2.59 23 

California 841 Cmel841.1 Careproctus melanurus  18 52 f 4.262 0.76 2.32 2.24  
California 841 Cmel841.2 Careproctus melanurus  11.8 8.1 j 2.196 0.62 2.17 1.72 10 
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Supplementary Table 4.2. Otolith collection information and age estimates from Coryphaenoides armatus and Coryphaenoides yaquinae (Family 

Macrouridae).  
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24 2/17/1995 1 CA001 Coryphaenoides armatus 46 9.2 541 m 0.048 1.66 4.03 4.47 13 

24 2/17/1995 5 CA002 Coryphaenoides armatus 53 9.8 669 m 0.057 1.67 3.94 5.68 10 

24 2/17/1995 36 CA003 Coryphaenoides armatus 45 9.2 355 f 0.045 1.57 4.12 4.62 13 

24 2/17/1995 3 CA004 Coryphaenoides armatus 52.5 10.2 571 f 0.063 1.77 4.76 5.08 17 

24 2/17/1995 27 CA005 Coryphaenoides armatus 56 9.9 822 m 0.069 1.75 4.68 5.68 18 

25 4/29/1995 7 CA006 Coryphaenoides armatus 56 8.8 722 m 0.071 1.92 4.59 5.75 14 

35 9/1/1998 1.1 CA007 Coryphaenoides armatus 60.2 11.6 1010 f 0.061 1.79 4.23 5.44 12 

36 12/20/1998 13.1 CA008 Coryphaenoides armatus 60.4 10.5 832 m 0.066 1.96 3.99 5.64 14 

36 12/20/1998 14.1 CA009 Coryphaenoides armatus 70.5 15.0 3049 f 0.130 2.29 5.07 7.35 22 

36 12/20/1998 4.1 CA010 Coryphaenoides armatus 73.1 12.2 1608 f 0.084 1.93 5 6 20 

35 9/1/1998 22.1 CA011 Coryphaenoides armatus 80.5 14.1 2333 f 0.094 2.01 4.84 6.26 19 

35 9/1/1998 14.1 CA012 Coryphaenoides armatus 80.7 14.6 3021 f 0.074 1.97 4.47 5.62 22 

24 2/17/1995 7 CA013 Coryphaenoides armatus 50.5 9.3 484 m 0.045 1.6 3.6 4.6 10 

24 2/17/1995 9 CA014 Coryphaenoides armatus 78.5 13.5 2810 f 0.114 2 5.3 6.6 22 

24 2/17/1995 10 CA015 Coryphaenoides armatus 67.5 11.7 1341 f 0.078 1.9 4.4 5.5 15 

24 2/17/1995 11 CA016 Coryphaenoides armatus 64 11.8 1780 f 0.096 2.2 4.7 5.7 16 

24 2/17/1995 12 CA017 Coryphaenoides armatus 62 11.0 1021 m 0.077 1.7 4.9 5.4 15 

24 2/17/1995 14 CA018 Coryphaenoides armatus 58 9.6 768 m 0.067 1.7 4.3 5.1 12 

24 2/17/1995 17 CA019 Coryphaenoides armatus 58 10.0 652 m 0.071 1.6 4.6 6 11 
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24 2/17/1995 21 CA020 Coryphaenoides armatus 51 9.2 563 m 0.072 1.3 5.3 5.6 13 

24 2/17/1995 30 CA021 Coryphaenoides armatus 52 9.4 650 m 0.063 1.5 4.2 5.4 12 

24 2/17/1995 32 CA022 Coryphaenoides armatus 54 9.4 568 m 0.051 1.5 4.1 5.2 10 

24 2/17/1995 29 CA023 Coryphaenoides armatus 55 9.5 694 m 0.042 1 4.2 5.9 10 

24 2/17/1995 25 CA024 Coryphaenoides armatus 49.5 9.0 416 m 0.051 1.6 4.6 4.3 11 

24 2/17/1995 18 CA025 Coryphaenoides armatus 55.5 9.8 804 m 0.039 1.4 2.7* 5.7 11 

24 2/17/1995 23 CA026 Coryphaenoides armatus 44 7.7 299 f 0.036 1.5 3.9 3.7 9 

24 2/17/1995 26 CA027 Coryphaenoides armatus 48 8.5 495 m 0.058 1.8 3.7 5.6 9 

24 2/17/1995 16 CA028 Coryphaenoides armatus 57.5 10.0 720 m 0.070 1.7 4.8 5.1 13 

24 2/17/1995 28 CA029 Coryphaenoides armatus 55.5 9.6 720 m 0.057 1.6 4.4 4.7 13 

24 2/17/1995 33 CA030 Coryphaenoides armatus 44.5 8.1 315 m 0.047 1.5 3.9 4.5 14 

24 2/17/1995 35 CA031 Coryphaenoides armatus 48.5 9.6 375 f 0.038 1.5 4.4 3.5 13 

24 2/17/1995 24 CA032 Coryphaenoides armatus 50 8.9 595 m 0.056 1.5 4.1 5.1 13 

24 2/17/1995 15 CA033 Coryphaenoides armatus 59.5 10.0 960 m 0.076 1.7 4.7 5.6 15 

24 2/17/1995 22 CA034 Coryphaenoides armatus 47 7.3 520 m 0.068 1.6 4.4 5.6 11 

25 4/29/1995 2 CA035 Coryphaenoides armatus 47 10.2 683 m 0.079 1.7 4.7 5.5 16 

25 4/29/1995 3 CA036 Coryphaenoides armatus 50 8.9 443 m 0.049 1.5 4 4.5 11 

25 4/29/1995 4 CA037 Coryphaenoides armatus 55.5 9.7 635 m 0.056 1.5 4.2 5 11 

25 4/29/1995 6 CA038 Coryphaenoides armatus 62 10.7 896 m 0.060 1.7 4.4 5.3 16 

25 4/29/1995 9 CA039 Coryphaenoides armatus 59 10.2 789 m 0.071 1.6 4.1 6.2 12 

25 4/29/1995 10 CA040 Coryphaenoides armatus 93.5 15.4 3220 f 0.126 2 5.1 6.9 29 

27 11/16/1995 1 CA041 Coryphaenoides armatus 58.5 10.2 760 m 0.070 1.7 4.5 5.4 15 

27 11/16/1995 3 CA042 Coryphaenoides armatus 57.5 9.8 687 m 0.072 1.6 4.5 5.5 13 



 

208 

 

Pulse Cruise # Date Collected Specimen # Otolith ID Species T
o

ta
l 

L
en

g
th

 (
cm

) 

H
ea

d
 L

en
g

th
 (

cm
) 

B
o

d
y

 M
a

ss
 (

g
) 

S
ex

 

O
to

li
th

 M
a

ss
 (

g
) 

O
to

li
th

 H
ei

g
h

t 
(m

m
) 

O
to

li
th

 W
id

th
 (

m
m

) 

O
to

li
th

 L
en

g
th

 (
m

m
) 

A
g

e 
E

st
im

a
te

 (
y

ea
rs

) 

27 11/16/1995 5 CA043 Coryphaenoides armatus 60 9.9 823 m 0.070 1.6 4.7 5.6 13 

27 11/16/1995 10 CA044 Coryphaenoides armatus 51 9.1 481 m 0.055 1.6 4 4.9 10 

27 11/16/1995 13 CA045 Coryphaenoides armatus 59.5 10.3 862 m 0.064 1.6 4.3 5.1 12 

27 11/16/1995 17 CA046 Coryphaenoides armatus 56.5 10.2 673 m 0.074 1.4 5 5.8 13 

27 11/16/1995 19 CA047 Coryphaenoides armatus 53.5 9.2 542 m 0.051 1.6 3.8 4.4 11 

27 11/16/1995 22 CA048 Coryphaenoides armatus 69.5 14.2 2980 f 0.101 1.9 4.7 6.9 21 

27 11/16/1995 23 CA049 Coryphaenoides armatus 84 14.7 3280 f 0.084 1.8 5.1 5.4 27 

29 1/31/1996 5 CA050 Coryphaenoides armatus 54.5 9.6 592 m 0.049 1.4 4.2 4.6 11 

29 1/31/1996 7 CA051 Coryphaenoides armatus 58.2 10.7 863 m 0.074 1.7 4.3 5.8 15 

29 1/31/1996 12 CA052 Coryphaenoides armatus 49.6 9.2 432 u 0.058 1.4 4.2 5.3 9 

29 1/31/1996 13 CA053 Coryphaenoides armatus 44.9 8.6 460 u 0.056 1.6 4.2 5.1 8 

29 1/31/1996 15 CA054 Coryphaenoides armatus 85.6 13.9 3125 f 0.054 1.3 4.5 4.8 22 

30  1.1 CA055 Coryphaenoides armatus 79.4  2120 u 0.094 1.9 5.1 5.9 23 

31 10/11/1996 1 CA056 Coryphaenoides armatus 55.5 10.0 651 m 0.075 1.7 4.2 6.2 13 

31 10/11/1996 3 CA057 Coryphaenoides armatus 48.3 8.8 394 m 0.060 1.4 4.3 6 11 

31 10/11/1996 5 CA058 Coryphaenoides armatus 53.8 9.0 444 m 0.054 1.5 3.9 4.7 13 

31 10/11/1996 6 CA059 Coryphaenoides armatus 54 9.6 593 m 0.053 1.5 4.2 4.6 12 

31 10/11/1996 7 CA060 Coryphaenoides armatus 57.3 10.0 683 m 0.071 1.7 4.5 5.2 13 

31 10/11/1996 10 CA061 Coryphaenoides armatus 56.9 10.0 700 m 0.071 1.5 4.4 5.7 15 

31 10/11/1996 11 CA062 Coryphaenoides armatus 54.7 9.4 541 m 0.059 1.4 4.3 5.2 12 

31 10/11/1996 12 CA063 Coryphaenoides armatus 77.4 13.6 2210 f 0.109 2 5.2 6.2 19 

31 10/11/1996 13 CA064 Coryphaenoides armatus 56.9 9.6 573 m 0.059 1.6 3.9 5.3 12 

31 10/11/1996 14 CA065 Coryphaenoides armatus 55 9.7 614 f 0.068 1.5 4.9 5.2 14 



 

209 

 

Pulse Cruise # Date Collected Specimen # Otolith ID Species T
o

ta
l 

L
en

g
th

 (
cm

) 

H
ea

d
 L

en
g

th
 (

cm
) 

B
o

d
y

 M
a

ss
 (

g
) 

S
ex

 

O
to

li
th

 M
a

ss
 (

g
) 

O
to

li
th

 H
ei

g
h

t 
(m

m
) 

O
to

li
th

 W
id

th
 (

m
m

) 

O
to

li
th

 L
en

g
th

 (
m

m
) 

A
g

e 
E

st
im

a
te

 (
y

ea
rs

) 

31 10/11/1996 15 CA066 Coryphaenoides armatus 52 9.7 501 m 0.058 1.5 4 5 13 

31 10/11/1996 16 CA067 Coryphaenoides armatus 59.2 10.3 730 m 0.060 1.6 4.5 4.6 14 

31 10/11/1996 18 CA068 Coryphaenoides armatus 53 9.2 571 m 0.061 1.7 4.3 5.3 11 

31 10/11/1996 19 CA069 Coryphaenoides armatus 54.8 9.5 722 m 0.065 1.5 4 5.8 12 

34 4/23/1998 1.1 CA070 Coryphaenoides armatus 57.2 10.3 693 m 0.059 1.4 4.2 5.3 13 

34 4/23/1998 2.1 CA071 Coryphaenoides armatus 79 13.0 2439 f 0.092 1.8 4.9 5.9 19 

34 4/23/1998 3.1 CA072 Coryphaenoides armatus 73.4 12.6 1915 f 0.121 2.1 5.5 6.1 20 

34 4/23/1998 4.1 CA073 Coryphaenoides armatus 65.3 12.1 1662 f 0.080 1.5 4.9 5.6 17 

34 4/23/1998 5.1 CA074 Coryphaenoides armatus 52.5 9.2 434 m 0.064 1.5 4.4 5.5 12 

34 4/23/1998 6.1 CA075 Coryphaenoides armatus 77.4 14.2 2249 f 0.128 2 5.6 7.1 22 

34 4/23/1998 7.1 CA076 Coryphaenoides armatus 58.2 10.9 1002 m 0.056 1.6 4 4.8 15 

34 4/23/1998 8.1 CA077 Coryphaenoides armatus 59.3 10.5 914 m 0.063 1.7 4 5  
34 4/23/1998 9.1 CA078 Coryphaenoides armatus 86.1 14.2 2802 f 0.070 2 4.5 4.7 26 

35 9/1/1998 2.1 CA079 Coryphaenoides armatus 73.6 13.6 1969 f 0.094 1.9 4.9 5.4 18 

35 9/1/1998 3.1 CA080 Coryphaenoides armatus 53.4 9.8 593 m 0.064 1.6 4.4 5.2 12 

35 9/1/1998 4.1 CA081 Coryphaenoides armatus 60.1 10.8 745 m 0.048 1.4 4.2 4.6 13 

35 9/1/1998 5.1 CA082 Coryphaenoides armatus 56.8 10.1 580 m 0.067 1.6 4.5 5.4 15 

35 9/1/1998 6.1 CA083 Coryphaenoides armatus 59.3 10.0 795 m 0.048 1.8 3.9 5 14 

35 9/1/1998 7.1 CA084 Coryphaenoides armatus 50.5  431 m 0.059 1.6 4.4 5 11 

35 9/1/1998 8.1 CA085 Coryphaenoides armatus 56.7 10.0 739 m 0.084 1.6 5.1 6.1 16 

35 9/1/1998 9.1 CA086 Coryphaenoides armatus 68.4 12.3 1224 f 0.083 1.8 4.8 5.4 17 

35 9/1/1998 10.1 CA087 Coryphaenoides armatus 53.6 10.7 822 m 0.080 1.7 5.2 5.2 12 

35 9/1/1998 12.1 CA088 Coryphaenoides armatus 49.1 9.5 579 m 0.074 1.9 4.6 5.2 14 
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35 9/1/1998 13.1 CA089 Coryphaenoides armatus 76 14.3 1598 u 0.096 1.9 4.7 6 19 

35 9/1/1998 15.1 CA090 Coryphaenoides armatus 77.9 13.5 2398 f 0.106 2.1 5 6.9 18 

35 9/1/1998 17.1 CA091 Coryphaenoides armatus 56.4 10.0 619 m 0.053 1.5 4.2 4.9 11 

35 9/1/1998 18.1 CA092 Coryphaenoides armatus 72 12.9 1754 f 0.060 1.6 4.4 5 17 

35 9/1/1998 19.1 CA093 Coryphaenoides armatus 56.3 9.9 631 m 0.065 1.7 4.2 5.3 11 

35 9/1/1998 21.1 CA094 Coryphaenoides armatus 57.6 10.0 674 m 0.072 1.5 4.5 5.6 12 

35 9/1/1998 23.1 CA095 Coryphaenoides armatus 52.8 9.5 518 m 0.070 1.6 4.6 5.7 11 

35 9/1/1998 24.1 CA096 Coryphaenoides armatus 59.6 10.7 587 u 0.080 1.7 4.9 5.6 13 

35 9/1/1998 25.1 CA097 Coryphaenoides armatus 55.9 9.9 615 u 0.102 2 5.4 5.9  
36 12/20/1998 1.1 CA098 Coryphaenoides armatus 57.6 10.2 778 m 0.058 1.7 4.2 4.9  
36 12/20/1998 2.1 CA099 Coryphaenoides armatus 64.3 10.6 922 m 0.072 1.6 4.5 5.7  
36 12/20/1998 3.1 CA100 Coryphaenoides armatus 69.3 12.2 1388 f 0.087 1.8 5 5.7 14 

36 12/20/1998 5.1 CA101 Coryphaenoides armatus 52.8 9.3 497 m 0.044 1.6 3.9 3.9 11 

36 12/20/1998 6.1 CA102 Coryphaenoides armatus 58.1 9.9 600 m 0.065 1.6 4.8 5.1  
36 12/20/1998 7.1 CA103 Coryphaenoides armatus 57.2 10.6 753 m 0.069 1.6 4.4 5.5 14 

36 12/20/1998 10.1 CA104 Coryphaenoides armatus  10.0  u 0.052 2.3 4.9 6.1  
36 12/20/1998 11 CA105 Coryphaenoides armatus  9.9  u 0.082 1.7 4.9 5.8 11 

36 12/20/1998 12 CA106 Coryphaenoides armatus  9.7  u 0.071 1.6 4.6 5.7 13 

36 12/20/1998 15.1 CA107 Coryphaenoides armatus 55.7 10.1 694 m 0.079 1.4 4.8 6.4  
36 12/20/1998 16.1 CA108 Coryphaenoides armatus 60.5 10.1 668 m 0.058 1.4 4.1 5.1 15 

36 12/20/1998 17.1 CA109 Coryphaenoides armatus 54 9.7 570 m 0.076 1.6 4.6 5.8 12 

36 12/20/1998 18.1 CA110 Coryphaenoides armatus 85.5 14.9 3760 f 0.150 2.2 6.2 6.7 23 

36 12/20/1998 19.1 CA111 Coryphaenoides armatus 55 9.5 595 m 0.052 1.5 4 4.8 11 
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36 12/20/1998 20.1 CA112 Coryphaenoides armatus 54.9 10.0 635 f 0.065 1.6 4.1 5.4 13 

36 12/20/1998 21.1 CA113 Coryphaenoides armatus 82.3 14.6 2301 f 0.100 1.8 6 6.1 24 

36 12/20/1998 22.1 CA114 Coryphaenoides armatus 51.8 9.9 671 m 0.052 1.5 3.6 4.9 12 

24 2/17/1995 2 CY001 Coryphaenoides yaquinae 47 9.3 380 f 0.046 1.53 4.44 4.67 9 

24 2/17/1995 4 CY002 Coryphaenoides yaquinae 46.5 9.0 367 f 0.056 1.76 4.54 4.54 12 

29 1/31/1996 9 CY003 Coryphaenoides yaquinae 38 7.4 202 f 0.025 1.34 3.6 3.84 7 

29 1/31/1996 11 CY004 Coryphaenoides yaquinae 38.2 7.5 179 f 0.028 1.3 3.98 3.58 6 

24 2/17/1995 34 CY005 Coryphaenoides yaquinae 51.5 9.9 554 f 0.062 1.66 4.71 5.01 10 

29 1/31/1996 1 CY006 Coryphaenoides yaquinae 51.8 9.5 401 f 0.055 1.62 4.74 4.55  
27 11/16/1995 12 CY007 Coryphaenoides yaquinae 56 10.8 657 f 0.054 1.82 4.91 4.23 9 

27 11/16/1995 14 CY008 Coryphaenoides yaquinae 56 10.7 558 f 0.043 1.62 4.41 4.37 10 

24 2/17/1995 6 CY009 Coryphaenoides yaquinae 52 9.5 445 f 0.053 1.6 4.1 4.7 11 

24 2/17/1995 19 CY010 Coryphaenoides yaquinae 53 10.9 592 f 0.049 1.5 4.4 4.9 12 

24 2/17/1995 20 CY011 Coryphaenoides yaquinae 53 9.8 482 f 0.046 1.6 4.5 4.1 10 

24 2/17/1995 37 CY012 Coryphaenoides yaquinae 43 7.9 232 f 0.034 1.3 3.8 3.7 8 

24 2/17/1995 38 CY013 Coryphaenoides yaquinae 45 8.7 311 f 0.046 1.5 4.5 3.9 7 

24 2/17/1995 31 CY014 Coryphaenoides yaquinae 50.5 9.7 424 f 0.044 1.4 4.6 4.1 11 

25 4/29/1995 1 CY015 Coryphaenoides yaquinae 39.5 7.5 219 f 0.031 1.3 4.4 3.3 7 

25 4/29/1995 5 CY016 Coryphaenoides yaquinae 52.5 10.1 505 f 0.051 1.6 4.7 4.3 13 

25 4/29/1995 8 CY017 Coryphaenoides yaquinae 54 9.8 641 m 0.061 1.6 4.1 5.2 9 

27 11/16/1995 2 CY018 Coryphaenoides yaquinae 49.5 9.8 492 f 0.035 1.4 4.6 3.6 8 

27 11/16/1995 4 CY019 Coryphaenoides yaquinae 47 9.5 395 f 0.047 1.5 4.5 4.7 9 
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27 11/16/1995 6 CY020 Coryphaenoides yaquinae 49.5 9.3 309 f 0.044 1.6 4 4.2 9 

27 11/16/1995 7 CY021 Coryphaenoides yaquinae 54 10.9 589 f 0.077 1.7 4.7 5.2 13 

27 11/16/1995 8 CY022 Coryphaenoides yaquinae 53.5 9.8 447 f 0.054 1.5 5 4.5 12 

27 11/16/1995 9 CY023 Coryphaenoides yaquinae 47 8.8 332 f 0.044 1.4 4.4 3.8 11 

27 11/16/1995 11 CY024 Coryphaenoides yaquinae 47 9.3 412 f 0.064 1.8 4.9 4.6 11 

27 11/16/1995 15 CY025 Coryphaenoides yaquinae 48.5 8.9 382 f 0.039 1.5 4.2 3.5 12 

27 11/16/1995 16 CY026 Coryphaenoides yaquinae 51 10.0 463 f 0.058 1.6 5 4.5 12 

27 11/16/1995 18 CY027 Coryphaenoides yaquinae 43.5 8.2 314 f 0.040 1.5 3.9 4.1 9 

27 11/16/1995 20 CY028 Coryphaenoides yaquinae 50 9.5 433 f 0.044 1.5 4.7 3.9 14 

27 11/16/1995 21 CY029 Coryphaenoides yaquinae 65 11.9 1107 f 0.085 1.9 5.5 5 16 

29 1/31/1996 3 CY030 Coryphaenoides yaquinae 42.4 8.2 291 f 0.029 1.2 4 3.5 9 

29 1/31/1996 4 CY031 Coryphaenoides yaquinae 42.3 8.2 241 f 0.028 1.2 3.8 3.6 9 

29 1/31/1996 6 CY032 Coryphaenoides yaquinae 45.1 9.1 376 f 0.034 1.3 4 4 10 

29 1/31/1996 8 CY033 Coryphaenoides yaquinae 40.6 7.7 242 u 0.049 1.4 4.1 5.2 8 

29 1/31/1996 10 CY034 Coryphaenoides yaquinae 38.5 7.4 209 f 0.029 1.3 3.7 3.7 7 

29 1/31/1996 2 CY035 Coryphaenoides yaquinae 34.7 8.2 247 f 0.039 1.5 4.1 4.1 9 

29 1/31/1996 14 CY036 Coryphaenoides yaquinae 47.2 9.1 410 f 0.043 1.5 4.7 4 12 

31 10/11/1996 2 CY037 Coryphaenoides yaquinae 49.1 9.1 411 f 0.040 1.4 4.5 3.5 13 

31 10/11/1996 4 CY038 Coryphaenoides yaquinae 52.1 9.6 447 f 0.046 1.7 4.4 3.8 11 

31 10/11/1996 8 CY039 Coryphaenoides yaquinae 47.5 9.2 400 f 0.050 1.4 4.4 4.7 12 

31 10/11/1996 9 CY040 Coryphaenoides yaquinae 40.5 7.8 231 m 0.033 1.4 4.1 3.7 8 

31 10/11/1996 17 CY041 Coryphaenoides yaquinae 48.4 9.1 357 f 0.052 1.6 4.5 4.6 12 

35 9/1/1998 20.1 CY042 Coryphaenoides yaquinae 54.4 10.1 481 f 0.056 1.7 4.7 4.5 14 
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36 12/20/1998 8.1 CY043 Coryphaenoides yaquinae 40.2 9.1 260 f 0.040 1.4 4.3 4 9 

36 12/20/1998 23.1 CY044 Coryphaenoides yaquinae 64.3 12.0  u 0.065 1.5 5 5.3  
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Supplementary Table 5.1. Specimen information for gelatinous tissue samples tested. N. kermadecensis 

specimens were collected by free-vehicle trap (described Jamieson et al., 2013). Other specimens were 

collected by trawl (Drazen et al., 2015). Capture depth in metres. Collection dates noted. Standard length 

(SL) and Total length (TL) presented in centimeters, mass in grams.  

Family  Species Depth Date  SL TL  Mass Sex 

Liparidae Careproctus cypselurus 1000 4.8.09   17.8 47.8 M 
 Careproctus melanurus 750 10.2.09 15.5   24.47 F 
  750 10.2.09 13.7 15.2 36.46 F 
  1000 4.8.09   25.6 193.2 F 
 Notoliparis kermadecensis 7000 11.29.11 24.5       
  7000 11.29.11 22.9     F 
  7200 5.4.14 25.9 28 230 F 
  7392 5.2.14 16.7 18.5 76 M 
  7515 5.3.14 20.9 22.9 104 F 

Ophidiidae Spectrunculus grandis 2000 10.9.09 141 146 17463.3   
  4149 4.20.14 70 73.8 2128 F 

Pleuronectidae Embassichthys bathybius 1000 10.1.09 32.4 37.4 627.4 M 
  1000 10.10.09 31.7 35 735.1 F 
  1000 10.11.09 37.5 41.4 880.3 F 
  1000 10.11.09 30.2 33.7 537.4   
 Microstomus pacificus 1000 10.1.09 46.6 50.4 1342.3 F 
  1000 10.1.09 40.3 46.2 1127.1 F 
  1000 10.1.09 43.7 48.5 1224.8 F 

Zoarcidae Bothrocara brunneum 1000 10.11.09 51 52.9 707 M 
  2000 4.13.09 57.7 59.3 890.1 F 
  2000 4.13.09   59.5 779.7 F 
 Pachycara karenae 3000 10.8.09 35.6 37.4 503.6 F 
  3000 10.8.09 34.7 36.6 450.8 M 
  3000 10.8.09 37.7 38.5 501.6 F 

  Pyrolycus sp. 4817 4.16.14 42 43.4 508 F 
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Supplementary Table 5.2. Species and gene sequences used in construction of phylogenetic tree showing distribution of gelatinous tissues (Figure 

5.2). GenBank accession numbers and descriptions given. Depth ranges taken from FishBase (Froese and Pauly, 2015).  
 

Species 

Gelatinous 

Tissues 

Minimum 

Depth (m) 

Maximum 

Depth (m) 

Mid Depth 

(m) Family Order 

Accession 

Number 

Acantholumpenus mackayi no 0 200 100 Stichaeidae Perciformes  
Amblyeleotris fasciata no 4 20 12 Gobiidae Perciformes HQ536686.1 

Anisarchus medius no 30 100 65 Stichaeidae Perciformes HQ704778.3 

Antimora microlepis no 175 3048 1611.5 Moridae Gadiformes FJ164299.1 

Antimora rostrata no 1300 2500 1900 Moridae Gadiformes EU148073.1 

Aptocyclus ventricosus no 612 1700 1156 Cyclopteridae Scorpaeniformes AB795689.1 

Arctogadus glacialis no 0 1000 500 Gadidae Gadiformes LC146697.1 

Astronesthes simulus no    Stomiidae Stomiiformes GU071747.1 

Ateleopus japonicus yes 140 600 370 Ateleopodidae Ateleopodiformes KP267617.1 

Atheresthes stomias no 18 950 484 Pleuronectidae Pleuronectformes FJ164331.1 

Balistes capriscus no    Balistidae Tetradontiformes HQ167724.1 

Bassozetus zenkevitchi no 0 6930 3465 Ophidiidae Ophidiiformes FJ164347.1 

Bathylagoides wesethi no 25 1130 577.5 Bathylagidae Argentiniformes KJ190024.1 

Bothrocara brunneum yes 129 2570 1349.5 Zoarcidae Perciformes JQ354020.1 

Brotula barbata no 50 300 175 Ophidiidae Ophidiiformes  
Callionymus filamentosus no 5 100 52.5 Callionymidae Perciformes JQ797036.1 

Careproctus canus yes 244 434 339 Liparidae Scorpaeniformes FJ164432.1 

Careproctus furcellus yes 98 1270 684 Liparidae Scorpaeniformes FJ164446.1 

Careproctus georgianus yes 85 285 185 Liparidae Scorpaeniformes EU326329.1 

Careproctus longipectoralis yes  2037 1018.5 Liparidae Scorpaeniformes HQ712900.1 

Careproctus melanurus yes 89 2286 1187.5 Liparidae Scorpaeniformes FJ164451.1 

Chauliodus macouni yes 25 4390 2207.5 Stomiidae Stomiiformes JQ354039.1 

Chauliodus sloani no 494 1000 747 Stomiidae Stomiiformes KR086811.1 

Coelorinchus fasciatus no 400 800 600 Macrouridae Gadiformes EU074373.1 

Citharichthys spilopterus no 0 75 37.5 Paralichthyidae Pleuronectformes  
Coryphaenoides acrolepis no 900 1300 1100 Macrouridae Gadiformes FJ164488.1 
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Gelatinous 

Tissues 

Minimum 

Depth (m) 

Maximum 

Depth (m) 

Mid Depth 

(m) Family Order 

Accession 

Number 

Coryphaenoides armatus no 282 5180 2731 Macrouridae Gadiformes EU148116.1 

Coryphaenoides carapinus no 384 5610 2997 Macrouridae Gadiformes EU148121.1 

Coryphaenoides ferrieri no 2525 3931 3228 Macrouridae Gadiformes JN640855.1 

Coryphaenoides filifer no 1285 2904 2094.5 Macrouridae Gadiformes  
Coryphaenoides guentheri no 831 2830 1830.5 Macrouridae Gadiformes  
Coryphaenoides leptolepis no 1900 3700 2800 Macrouridae Gadiformes EU148127.1 

Coryphaenoides mediterraneus no 1000 4262 2631 Macrouridae Gadiformes EU148128.1 

Coryphaenoides yaquinae yes 3400 5800 4600 Macrouridae Gadiformes GU440292.1 

Coryphaneoides rupestris no 400 1200 800 Macrouridae Gadiformes  
Cyclopsetta panamensis no 0 50 25 Paralichthyidae Pleuronectformes JX887475.1 

Cyclopteropsis lindbergi no 20 200 110 Cyclopteridae Scorpaeniformes AB917599.1 

Cyclopterus lumpus yes 50 868 459 Cyclopteridae Scorpaeniformes JN311802.1 

Embassichthys bathybius yes 41 1800 920.5 Pleuronectidae Pleuronectformes JQ354077.1 

Epinephelus areolatus no    Serranidae Perciformes JN208569.1 

Epinephelus erythrurus no    Serranidae Perciformes JN208607.1 

Epinephelus fuscoguttatus no    Serranidae Perciformes JN208616.1 

Eptatretus cirrhatus no 40 700 370 Myxinidae Myxiniformes KF144309.1 

Eptatretus deani no 103 2743 1423 Myxinidae Myxiniformes FJ164594.1 

Ernogrammus hexagrammus no 0 142 71 Stichaeidae Perciformes HQ704726.3 

Eumicrotremus andriashevi no 20 83 51.5 Cyclopteridae Scorpaeniformes AB917662.1 

Eumicrotremus asperrimus no 20 900 460 Cyclopteridae Scorpaeniformes AB795674.1 

Eumicrotremus derjugini no 50 930 490 Cyclopteridae Scorpaeniformes AM498309.1 

Eumicrotremus orbis no 0 575 287.5 Cyclopteridae Scorpaeniformes HQ712372.1 

Eumicrotremus taranetzi no 0 7 3.5 Cyclopteridae Scorpaeniformes AB917649.1 

Eurypharynx pelecanoides yes 1200 1400 1300 Eurypharyngidae Saccopharyngiformes KF681863.1 

Gadella imberbis no 200 800 500 Moridae Gadiformes KC015367.1 

Gadomus longifilis no 630 2165 1397.5 Macrouridae Gadiformes  
Gadus chalcogrammus no 183 1280 731.5 Gadidae Gadiformes HM421792.1 

Genypterus brasiliensis no 60 200 130 Ophidiidae Ophidiiformes  
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Depth (m) 

Maximum 

Depth (m) 

Mid Depth 

(m) Family Order 

Accession 

Number 

Glyptocephalus stelleri no 15 800 407.5 Pleuronectidae Pleuronectformes KF386401.1 

Gnatholepis scapulostigma no 2 20 11 Gobiidae Perciformes HQ536707.1 

Guttigadus latifrons no 770 1875 1322.5 Moridae Gadiformes EU148219.1 

Hexagrammos octogrammus no 0 200 100 Hexagrammidae Scorpaeniformes AB755189.1 

Hippoglossina stomata no 30 137 83.5 Paralichthyidae Pleuronectformes JQ354124.1 

Hippoglossoides dubius no 10 600 305 Pleuronectidae Pleuronectformes JF952755.1 

Hippoglossoides platessoides no 90 250 170 Pleuronectidae Pleuronectformes EU513650.1 

Hippoglossoides robustus no 0 150 75 Pleuronectidae Pleuronectformes GU804873.1 

Hippoglossus hippoglossus no 50 2000 1025 Pleuronectidae Pleuronectformes EU513652.1 

Hygophum proximum no 0 1000 500 Myctophidae Myctophiformes KJ555400.1 

Isopsetta isolepis no 20 425 222.5 Pleuronectidae Pleuronectformes HQ712510.1 

Istigobius rigillus no 0 30 15 Gobiidae Perciformes HQ536672.1 

Lampadena urophaos no 50 1000 525 Myctophidae Myctophiformes KJ555408.1 

Lamprogrammus niger no 741 1500 1120.5 Ophidiidae Ophidiiformes JQ354156.1 

Lepidion capensis no 457 1152 804.5 Moridae Gadiformes HQ945968.1 

Leptoclinus maculatus no 2 607 304.5 Stichaeidae Perciformes HQ704751.3 

Lethotremus awae no 0 20 10 Cyclopteridae Scorpaeniformes AB795679.1 

Lethotremus muticus no 58 330 194 Cyclopteridae Scorpaeniformes AB917647.1 

Leuroglossus schmidti no 394 1800 1097 Bathylagidae Argentiniformes JQ354170.1 

Liparis dennyi no 73 223 148 Liparidae Scorpaeniformes JQ354179.1 

Liparis fabricii no 12 1800 906 Liparidae Scorpaeniformes AM498311.1 

Liparis fucensis no 225 388 306.5 Liparidae Scorpaeniformes KF918880.1 

Liparis gibbus no 100 200 150 Liparidae Scorpaeniformes KC015566.1 

Liparis liparis no 1 300 150.5 Liparidae Scorpaeniformes KJ204976.1 

Liparis pulchellus no 9 183 96 Liparidae Scorpaeniformes JQ354184.1 

Liparis rutteri no 0 73 36.5 Liparidae Scorpaeniformes JQ354186.1 

Liparis tanakae no 50 121 85.5 Liparidae Scorpaeniformes JF952785.1 

Lipariscus nanus no 0 910 455 Liparidae Scorpaeniformes FJ164719.1 

Lophius americanus no 0 668 334 Lophiidae Lophiiformes EU660712.1 
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Depth (m) 

Maximum 

Depth (m) 

Mid Depth 

(m) Family Order 

Accession 

Number 

Lophius piscatorius no 20 1000 510 Lophiidae Lophiiformes EU660698.1 

Lumpenus sagitta no 0 425 212.5 Stichaeidae Perciformes HQ704784.3 

Lycenchelys crotalinus no 200 2816 1508 Zoarcidae Perciformes HQ704761.3 

Lycodes raridens no 10 400 205 Zoarcidae Perciformes HQ704788.3 

Macrourus holotrachys no 300 1400 850 Macrouridae Gadiformes JF265089.1 

Macrourus whitsoni no 600 1500 1050 Macrouridae Gadiformes JF265117.1 

Malacocephalus laevis no 300 750 525 Macrouridae Gadiformes JQ774539.1 

Melanocetus johnsonii yes 100 1500 800 Melanocetidae Lophiiformes  
Melanogrammus aeglefinus no 10 200 105 Gadidae Gadiformes LC146710.1 

Microstomus pacificus yes 10 1370 690 Pleuronectidae Pleuronectformes KP835305.1 

Myctophum selenops no 40 500 270 Myctophidae Myctophiformes KJ555435.1 

Myxine glutinosa no 30 1200 615 Myxinidae Myxiniformes Y15182.1 

Nectoliparis pelagicus yes 0 238 119 Liparidae Scorpaeniformes FJ164907.1 

Neobythites sivicola no 25 249 137 Ophidiidae Ophidiiformes KC442074.1 

Nezumia sclerorhynchus no 450 730 590 Macrouridae Gadiformes JQ774541.1 

Ophidion holbrookii no 0 75 37.5 Ophidiidae Ophidiiformes  
Ophidion scrippsae no 0 110 55 Ophidiidae Ophidiiformes  
Opisthocentrus ocellatus no 0 335 167.5 Stichaeidae Perciformes HQ704737.3 

Paralichthys lethostigma no 0 43 21.5 Paralichthyidae Pleuronectformes KM407611.1 

Paralichthys squamilentus no 1 230 115.5 Paralichthyidae Pleuronectformes KF930230.1 

Paraliparis dactylosus no 541 1000 770.5 Liparidae Scorpaeniformes KF918890.1 

Paraliparis rosaceus no 1050 3358 2204 Liparidae Scorpaeniformes FJ164980.1 

Parophrys vetulus no 0 550 275 Pleuronectidae Pleuronectformes EU752162.1 

Pholidapus dybowskii no 0 146 73 Stichaeidae Perciformes HQ704747.3 

Photonectes brueri no    Stomiidae Stomiiformes KF930258.1 

Physiculus natalensis no 433 500 466.5 Moridae Gadiformes JF494153.1 

Physiculus rastrelliger no 183 366 274.5 Moridae Gadiformes GU440460.1 

Pleuronectes quadrituburculatus no 0 600 300 Pleuronectidae Pleuronectformes HQ712726.1 

Pleuronichthys decurrens no 8 533 270.5 Pleuronectidae Pleuronectformes FJ165025.1 
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Species 

Gelatinous 

Tissues 

Minimum 

Depth (m) 

Maximum 

Depth (m) 

Mid Depth 

(m) Family Order 

Accession 

Number 

Pseudorhombus elevatus no 7 200 103.5 Paralichthyidae Pleuronectformes JF494304.1 

Raneya brasiliensis no 40 150 95 Ophidiidae Ophidiiformes  
Scopelopsis multipunctatus no 3 2000 1001.5 Myctophidae Myctophiformes  
Selachophidium guentheri no 200 400 300 Ophidiidae Ophidiiformes GU804921.1 

Spectrunculus grandis yes 800 4300 2550 Ophidiidae Ophidiiformes KF930451.1 

Stichaeus ochriamkini no 14 99 56.5 Stichaeidae Perciformes HQ704745.3 

Symbolophorus californiensis no 557 1497 1027 Myctophidae Myctophiformes KJ555466.1 

Tactostoma macropus yes 30 2000 1015 Stomiidae Stomiiformes KJ190048.1 

Thryssa kammalensis no 1 20 10.5 Engraulidae Clupeiformes KF951618.1 

Trachyrincus scabrus no 395 1700 1047.5 Macrouridae Gadiformes KC015971.1 

Trichiurus lepturus no    Trichiuridae Perciformes EF607600.1 
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Supplementary Table 6.1. All counts and measurements used for the description of Pseudoliparis swirei. In order of ascending 

standard length. Holotype HADES #200060 in bold. *Fresh measurements. **Measurements taken from radiograph. 
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200037 18/11/2014 TR07 12.42347°N 144.87058°E 7497 99 89 35 22 13 2 5 15 

200060 21/11/2014 WT06 12.30370°N 144.68038°E 7949 109 97 36 33 20 2 7 7 

200041 18/11/2014 TR07 12.42347°N 144.87058°E 7497 124 105 43 
 

23 3 7 15 

200081 24/11/2014 WT08 11.92970°N 144.92880°E 7966 120 107 39 
 

19 1 6 10 

200071 23/11/2014 TR10 11.91280°N 144.94450°E 7841 123 110 42 
 

20 2 7 15 

200072 23/11/2014 TR10 11.91280°N 144.94450°E 7841 134 119 48 
 

24 2 7 15 

200144 7/12/2014 TR20 12.34950°N 144.68130°E 7652 130 119 48 
 

21 2 7 20 

200095 26/11/2014 TR13 11.82600°N 145.00880°E 6974 137 124 45 
 

22 2 9 15 

200049 19/11/2014 TR08 12.42556°N 144.91171°E 7509 143 128 50 38 25 3 7 20 

200143 7/12/2014 TR20 12.34950°N 144.68130°E 7652 137 129 49 34 23 3 9 20 

200048 19/11/2014 TR08 12.42556°N 144.91171°E 7509 150 135 58 
 

22 3 10 25 

200141 7/12/2014 TR20 12.34950°N 144.68130°E 7652 152 139 62 
 

25 2 9 30 

200142 7/12/2014 TR20 12.34950°N 144.68130°E 7652 159 142 70 
 

30.5 3 10 40 

200074 23/11/2014 WT07 11.92730°N 144.96200°E 7907 163 145 61 
 

25 3 9 30 

200042 18/11/2014 TR07 12.42347°N 144.87058°E 7497 164 147 62 
 

28 2 9 30 

200133 6/12/2014 TR19 12.27660°N 144.62020°E 7626 167 151 68 
 

27 4 9 35 

200134 6/12/2014 TR19 12.27660°N 144.62020°E 7626 172 161 67 
 

33 4 15 45 

200038 18/11/2014 TR07 12.42347°N 144.87058°E 7497 186 165 71 45 24 2 10 50 
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200070 23/11/2014 TR10 11.91280°N 144.94450°E 7841 190 172 73 44 30 3 8 65 

200084 25/11/2014 WT09 11.81470°N 144.98580°E 6949 195 176 71 
 

35 3 11 65 

200047 19/11/2014 TR08 12.42556°N 144.91171°E 7509 194 178 81 55 37 3 13 75 

200096 26/11/2014 TR13 11.82600°N 145.00880°E 6974 201 183 70 
 

34 2 11 85 

200040 18/11/2014 TR07 12.42347°N 144.87058°E 7497 207 184 87 46 36 3 10 90 

200036 18/11/2014 TR07 12.42347°N 144.87058°E 7497 205 186 92 
 

37 4 10.5 110 

200094 26/11/2014 TR13 11.82600°N 145.00880°E 6974 205 187 76 48 36 3 10 75 

200021 15/11/2014 TR05 12.59786°N 144.77854°E 7062 215 193 77 46 32 4 13 70 

200087 25/11/2014 TR12 11.81070°N 144.99450°E 6898 223 203 82 56 38 2 11 90 

200039 18/11/2014 TR07 12.42347°N 144.87058°E 7497 230 210 95 65 40 4 17 150 

SY1615028 29/01/2017 FT02 11.54290°N 142.18485°E 7581 235 213 94 
 

45 4 17 
 

200027 16/11/2014 TR06 12.63390°N 144.75080°E 6914 
 

220 97 
 

44 4 14 
 

200085 25/11/2014 WT09 11.81470°N 144.98580°E 6949 247 225 88 49 43 3.5 15 130 

200024 16/11/2014 WT03 12.61026°N 144.76839°E 6961 244 232 105 
 

37 4 10 160 

200025 16/11/2014 WT03 12.61026°N 144.76839°E 6961 260 235 108 61 44 4 14 150 

200033 18/11/2014 WT04 12.41505°N 144.91187°E 7495 190 
 

79 
 

33 3 12 45 

200043 18/11/2014 TR07 12.42347°N 144.87058°E 7497 211 
 

86 43 35 3.5 10 90 

200050 19/11/2014 TR08 12.42556°N 144.91171°E 7509 116 
 

42 
 

19 2 5 10 

200062 21/11/2014 TR09 12.30274°N 144.67388°E 7929 
  

39 
 

16 2 5 8 
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200037 95.0 87.0 17.8  4.1  2.9 5.7    
200060 112.0 104.0 18.9 ~14  18.0 3.5 6.7 13.1   
200041 115.0 107.0   3.8 25.0  5.6    
200081 >110 >103 ~16.2 ~11   2.8 7.3 12.6   
200071 119.0 111.0 ~20.6  3.2   6.5  3.4  
200072  ~115 ~22    4.1 7.9    
200144 124.0 112.0 21.8  2.3  3.7 7.7  4.5  
200095 138.0 123.0 20.9    ~4.5 ~8  2.9  
200049 132.0 123.0 24.2   29.0 4.0 8.0   5.4 

200143 132.0 119.0 23.9    3.9 7.5 16.3 4.7  
200048 >129     30.0 4.1 10.1    
200141 143.0 132.0 27.2    5.4 8.6  3.3  
200142 151.0 138.0 ~30  5.6 40.0 6.1 11.4  6.3  
200074 154.0 139.0 27.8    4.4 8.3  5.8  
200042 149.0 142.0      ~9    
200133 153.0 143.0 28.9  6.2 37.0 5.8 7.0  6.9  
200134  155.0 33.6  2.8 39.0 5.0 12.4  8.7  
200038 181.0 163.0    36.0 4.4 10.0    
200070 ~182 163.0 34.4   42.0 5.8 9.8 28.3   
200084 >178  ~34.1   41.0 5.6 ~12 23.9   
200047 185.0 169.0 35.0   46.0  10.9    
200096 >188 >173 ~36    ~5 ~11    
200040 198.0 181.0 36.2  5.1 49.0  10.7 27.7  9.6 

200036   ~36  6.2 58.0 5.7 ~10 29.5   
200094 196.0 178.0 36.3  6.0 50.0 5.0 11.9 ~20.9 6.9 9.4 

200021 ~204 ~184   5.5 44.0  ~8.1    
200087 ~212 ~192 35.3  6.6 45.0 6.0 11.2 ~27 8.8  
200039 220.0 211.0 41.0  6.0 62.0  14.4 41.4   

SY1615028 233 208 41.5 32.7  47 5.6 14 39.2 8.2  
200027   ~40         
200085 237.0 215.0 40.0 20.5   5.4 15.2 31.8 7.4  
200024   ~48    ~8 ~10    
200025  226.0 42.9 28.7 4.9  5.2 13.5 32.9 9.0  
200033 ~188 ~170          
200043 203.0 182.0 36.7  5.0  5.2 12.3    
200050  ~100 ~21  2.5  ~3 ~7    
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200037 ~10.3 25.5 24.0 ~11.3 11.7 8.1 7.6 ~7 12 4 >6 >10 3 

200060 8.8 23.2 21.0 9.5 10.9 ~8.7 8.2 7 8 4 8 11 4 

200041 9.9     9.1 ~9 ~6 ~7 2 ~8 ~12 3 

200081 ~9.2     10.7 9.8       
200071 10.7     9.2 9.7 >5   9 ~7 3 

200072 10.5       6 6 3 9  3 

200144 10.3     10.1 9.6    8 12 ~3 

200095 12.5     10.9 9.7 7 10 3 9 12 4 

200049 13.3     10.7 ~10 ~9 >6 3 9 12 4 

200143 12.0     11.0 10.0 >6 >5 >2 ~8 10 3 

200048 13.9     11.7 10.4 8 8 4 10 9 4 

200141 14.9 ~41 ~37.6 ~18.4 ~19.4 13.8 12.1 9 8 4 10 14 4 

200142 14.3     13.2 12.4 8 >9 4 10 - 11 15 4 - 5 

200074 ~16     13.4 14.8 9 >8 4 10 17 4 

200042       10.4 8 ~10 4 ~13 12 4 

200133 14.7 ~49 ~47 ~26 ~9 ~10.2 ~9.1 8 - 9 10 4 10 16 4 

200134 15.9 ~43 ~40 ~17 ~20 15.5 13.9 10 >11 4 >8 ~14 4 

200038 22.3 46.0 43.2 16.2 25.9 16.3 13.7 ~8 14 4 ~14 >12 ~4 

200070 20.0     15.8 13.3 8 ~10 4 11 15 4 

200084 ~18  ~42 ~18 ~22 16.8 15.5 8 12 4 - 5 8 11 4 

200047     23.3 16.5 16.7 9 8 4 13 12 4 

200096      16.5 13.3 10 10 4 9 7 - 9 4 

200040 16.5 48.0    17.2 12.9 9 15 4 - 5 12 19 4 

200036 16.7 ~44 40.6 16.2 24.3 15.7 15.3 9 12 4 8 8 4 

200094 18.5 ~48 ~45.9 ~22.3 ~14.5 15.9 14.2 9 14 4 ~11 15 4 
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200021 15.0     16.3 14.6 10 11 4 11 16 4 - 5 

200087 17.6     16.0 15.9 9 - 10 12 4 13 15 4 

200039 16.3 47.0    15.7 13.8 9 11 4 11 20 4 

SY1615028 21.7 56.7 47.5 17.9          
200027      18.8 19.3 10 10 4 8 12 4 

200085 20.0 ~62 ~58 33.5 18.6 16.9 15.4 9 10 4 - 5 >10 ~14 4 

200024      ~15.9 ~17.8 10 20 4 - 5 7 - 8 15 4 - 5 

200025 17.3     20.6 17.9       
200033      12.7 12.0 9 9 3 - 4 8 12 4 

200043 17.2 ~44.2 ~41 ~18.4 ~24.6 15.5 14.4 9 11 4 12 - 13 14 4 

200050  ~35 ~32  14.1 9.0 10.4    10 8 4 

200062      9.0 6.6 7  3 7   
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200037 61     ~51 Yes         Undissected 

200060 58 12 46  ~52 ≥44 Yes         Undissected 

200041 >56   4, 5 51 43  ~5 ~3 4.5 ~2 8.1 Juvenile   Poor 

200081        9 6 2.8 3 7.3 Juvenile   Poor 

200071 60 12 48  >51 48 Yes >6 6 5.5 0 6.6 Juvenile   Poor 

200072                Poor 

200144 59 12 47 4, 5 53 48 Yes 7 4 5.9 3 9.7 Juvenile   Good 

200095             Female   Poor 

200049 57 12 45  52 44 Yes         Poor 

200143 61 ~11 ~50  >41 ~48  ~6 4 3.9 2 9.1 Female   Fair 

200048 >51 11 >40 4, 5 >49 >42 Yes ~5 ~2 4.6 ~3 10.3 Male?   Poor 

200141 57 13 44   ~46 Yes         Undissected 

200142        7 4 7.2 3 14.1 Male   Fair 

200074 61 13 48 4, 5 >54 47 Yes 7 4 4.4 3 9.3 Male   Poor 

200042             Juvenile   Poor 

200133        8 5 3.5 3 12.6 Juvenile   Poor 

200134        8 1 5.7 7 13.4 Female   Poor 

200038 60 13 47 5, 6 54 48 Yes         Undissected 

200070 59 13 46  >54 46 Yes 8 5 5.6 3 15.2 Female   Good 

200084        6  8.0  13.6 Female 0.7  Poor 

200047 58 14 44 4, 5 53 43 Yes 7 4 8.9 3 19.8 Male   Fair 

200096        ~7 4 5.6 >2 12.0 Female   Poor 

200040 60 13 47  >54 48 Yes 7 5 8.7 2 17.6 Female   Fair 
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200036                Undissected 

200094 59 13 46 3, 4 55 46 Yes 7 4 9.5 3 18.0 Female 0.9  Good 

200021 62 13 49 5, 6 58 49 Yes 7 4 7.4 3 17.7 Male   Poor 

200087 59 13 46 4, 5 54 ~46 Yes ~6 4 5.5 2 15.3 Female 1.4  Good 

200039 60 11 49 4, 5 55 47 Yes 7 5 6.7 2 17.9 Female 6.4 23, 705 Fair 

SY1615028             Male   Undissected 

200027        7 5 5.3 2 18.0 Female 9.4 7, 344 Poor 

200085 61 12 49  56 48 Yes 7 4 5.6 3 15.4 Female 9.2 14, 486 Good 

200024                Poor 

200025 57 12 45 ~5, 6 >52 47 Yes ~7 5 7.1 2 15.6 Female 8.5 22, 851 Good 

200033        >3    ~13.4    Poor 

200043 56 12 44 4, 5 55 43 Yes 7 4 6.1 3 18.3 Female 1.2  Fair 

200050        5 3  2     Fair 

200062                Poor 
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200037 14.2 7.3 28 18 5 5 28 18 5 5 11 4 6 1 

200060 >15.6 8.9 >27 20   30 20 5 5 13 5 6 2 

200041 19.7 ~9 29 19 5 5 >25    >10    
200081               
200071 18.2 8.6 30 20 5 5 28 20 4 4 13 6 6 1 

200072 19.8 ~7.7 30 20 4 6  ~15 5  14 6 7 1 

200144 14.5 >9.8 30 20 5 5 29 19 5 5 13 6 6 1 

200095 19.2 ~12 >23    ~27 ~17 5 5     
200049 22.3 14.9 31 20 5 6 31 21 5 5     
200143 ~16 9.3 30 20 5 5 >25 20 5  11 5 5 1 

200048 20.2 ~9 >20    >21 >15 6 5     
200141 20.7 >6.6 32 21 5 6 31 21 5 5 13 6 6 1 

200142 23.6 11.2 31 21 5 5 29 18 5 6 11 5 6 0 

200074 21.5 10.2 30 20 5 5 30 20 5 5 13 5 6 2 

200042 21.0 9.8 32 21 6 5 29 19 5 5     
200133 25.1 11.5 30 20 5 5 30 20 5 5 13 5 6 2 

200134 20.9 13.6 30 21 5 4 ~30        
200038 20.5 10.2 ~30 20 5 ~5 32 21 5 6 14 6 6 2 

200070 20.7 11.8 >20    >22    ~10 4 4 2 

200084 23.6 16.3 29 19 5 5 >25 >15 ~6 4     
200047 33.4 ~12 ~33 ~22 6 5 >26    12 5 6 1 

200096 ~19.4 ~15.8 29 23 3 4 ~26 ~18 4 4 11 5 6 0 

200040 ~21 12.5 31 21 5 5 30 21 4 5 12 5 6 1 

200036 27.3 22.9 31 22 4 5 31 22 4 5 12 5 7 0 
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200094 24.3 13.8 31 21 5 5 31 21 5 5 12 5 5 2 

200021 25.0 12.7 31 21 5 5 30 21 4 5 13 5 6 2 

200087 ~24 10.6 29 19 5 5 29 19 5 5     
200039 26.8 14.2 30 21 5 4 32 21 5 6 14 6 6 2 

SY1615028 29.1 15.1             
200027 >31.4  ~26      3 5     
200085 28.0 ~21 ~31 ~20 6 5 29 20 4 5 >6    
200024 ~28.1              
200025 28.5 ~17 32 21 5 6 32 21 5 6     
200033 25.1  >11        13 6 7 ~1 

200043 28.9 12.1 31 21 5 5 >27    13 5 6 2 

200050 17.5 13.9 30 21 4 5 30 21 4 5 >10 >5 >5  
200062       30 20 5 5     
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200037 20.5  6.6 2.2 3.3 9.3 8.7 16.3 8.4  
200060 18.2 12.6 6.4 2.1 3.4 ~8.4 7.9  8.6  
200041 21.9*  5.2 2.9  8.5 ~8.4 18.4 ~8.4  
200081 17.8*  5.6* 0.9       
200071 ~18.6  5.9 1.8  8.3 8.7 16.4 7.7  
200072 ~19.1  ~6.9 1.7 ~3.6   ~17.2 ~6.7  
200144 19.5  6.9 1.7 3.3 9.0 8.6 12.9   
200095 17.0  ~6.5 1.6 ~3.7 8.9 7.9 15.6 ~9.8  
200049 19.7  6.5 2.3 3.3 8.7 ~8.1 18.1 12.1 4.4 

200143 20.1 13.7 6.3 2.3 3.3 9.2 8.4 ~13.4 7.8  
200048 16.3*  7.4* 2.2       
200141 20.6  6.5 1.4 4.1 10.5 9.2 15.7   
200142 ~21.7  8.3 2.1 4.4 9.6 9.0 17.1 ~8.1  
200074 20.0  6.0 2.1 3.2 9.6 10.6 15.5 7.3  
200042 19.0*  ~6.3 1.4   7.3 14.8 6.9  
200133 20.2  ~4.9 2.6 4.1 ~7.1 ~6.4 17.6 8.0  
200134 21.7  8.0 2.5 3.2 10.0 9.0 13.5 8.8  
200038 14.5*  6.1 1.2 2.7 10.0 8.4 12.6 6.3  
200070 21.1 17.4 6.0 1.7 3.6 9.7 8.2 12.7 7.2  
200084 19.9*  6.3* 1.7       
200047 20.7  6.4 1.7  9.8 9.9 19.8 ~7.1  
200096 18.6*  6.0* 1.1       
200040 20.0 15.3 5.9 1.6  9.5 7.1 ~11.6 6.9 5.3 

200036 19.9*  5.6* 2.2       
200094 20.4 ~11.7 6.1 1.6 2.8 8.9 8.0 13.7 7.8 5.3 

200021 16.6*  6.7* 2.1  ~8.9 ~7.9 ~13.6 ~6.9  
200087 ~18.4 ~14.1 ~5.8 1.0 ~3.1 ~8.3 ~8.3 ~12.5 ~5.5  
200039 19.4 19.6 6.8 1.9  7.4 6.5 12.7 6.7  

SY1615028 20 18.8 6.9 2.0 2.7 11.0 9.9 14.0 7.3  
200027 20.0*  6.4* 1.8       
200085 18.6 14.8 7.1 1.6 2.5 7.9 7.2 13.0 ~9.8  
200024    1.7       
200025 19.0 14.6 6.0 1.7 2.3 9.1 7.9 12.6 ~7.5  
200033      ~7.5 ~7.1 ~14.8   
200043 20.2  6.8  2.9 8.5 7.9 15.9 6.6  
200050 ~21.0  ~7.0  ~3.0 ~9.0 ~10.4 ~17.5 ~13.9  
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200037  ~13.0 ~11.8 4.7  25.8 39.3 29.3 27.6 13.4 

200060  9.1 8.5  18.6 32.0 37.1 22.3 20.2 10.5 

200041   9.3 3.6 23.8  41.0    
200081       36.4    
200071 3.1  9.6 2.9   38.2    
200072   ~9.1    40.3    
200144 4.0  9.2 2.1   40.3    
200095 2.4  10.2    36.3    
200049   10.8  22.7 31.0 39.1    
200143 3.9  10.1   28.8 38.0    
200048     22.2  43.0    
200141 2.5 ~13.9 11.3   18.6 44.6 ~31.2 ~28.5 ~14.7 

200142 4.6  10.4 4.1 28.2  49.3    
200074 4.1  ~11.5    42.1    
200042       42.2    
200133 4.8 ~18.2 10.3 4.3 24.5  45.0 ~34.3 ~32.9 ~6.3 

200134 5.6 ~11.0 10.3 1.8 24.2  41.6 ~27.7 ~25.8 ~12.9 

200038  9.9 13.7  21.8 27.5 43.0 28.2 26.5 15.9 

200070   12.3  24.4 26.8 42.4    
200084     23.3  40.3    
200047     25.8 32.6 45.5   13.8 

200096       38.3    
200040   9.1 2.8 26.6 25.6 47.3 26.5   
200036     31.2  49.5    
200094 3.9 ~12.5 10.4 3.4 26.7 27.1 40.6 ~27.0 ~25.8 ~8.1 

200021   ~8.2 ~3.0 22.8 ~24.9 39.9    
200087 ~4.6  ~9.2 ~3.4 22.2 ~29.2 40.4    
200039   7.7 2.8 29.5 31.0 45.2 22.3   

SY1615028 4.0 8.6 10.4  23.0   27.3 22.8  
200027       44.1    
200085 3.4 15.6 9.3   22.7 39.1 ~28.8 ~27.0 8.7 

200024       45.3    
200025 4.0  7.7 2.2  26.8 46.0    
200033           
200043  ~10.1 9.5 2.7  23.8  ~24.3 ~22.5 ~13.5 

200050    ~2.5    ~35.0 ~32.0 ~14.1 
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200037  32.0 15.4 16.3 45.5 42.7 79.8 41.0   
200060 69.3 35.4 10.0 18.5 ~46.0 43.4  47.1   
200041  30.4* 13.0        
200081 ~77.8 ~45.1 5.3 ~17.3 ~66.0 ~60.5     
200071  ~31.5 10.0  ~44.7 ~47.1 ~88.3 ~41.7  ~16.5 

200072  ~35.9 8.3 ~18.6   ~90.0 ~35.1   
200144  35.3 9.5 17.0 46.3 44.0 66.5   20.6 

200095  ~38.3 9.1 ~21.5 52.2 46.4 91.9 ~57.4  13.9 

200049  33.1 12.0 16.5 44.2 ~41.3 92.1 61.6 22.3  
200143 68.2 31.4 13.0 16.3 46.0 41.8 ~66.9 38.9  19.7 

200048  45.5* 13.6        
200141  31.6 8.0 19.9 50.7 44.5 76.1   12.1 

200142  ~38.0 9.8 ~20.3 ~44.0 ~41.3 ~78.7 ~37.3  ~21.0 

200074  29.9 12.0 15.8 48.2 53.2 77.3 36.7  20.7 

200042  32.1* 7.1        
200133  ~24.2 14.8 20.1 ~35.3 ~31.5 86.9 39.8  23.9 

200134  36.9 12.1 14.9 46.1 41.4 62.2 40.5  25.9 

200038  41.7* 8.3        
200070 82.3 28.5 10.0 16.9 45.9 38.7 60.2 34.3   
200084 ~70.1 ~35.2 8.6 ~16.4 ~49.2 ~45.5 ~69.2 ~47.7   
200047  31.1 8.1  47.1 47.7 95.4 ~34.3   
200096  ~30.6 5.9 ~13.9 ~45.9 ~36.9 ~53.9 ~43.8   
200040 76.5 29.6 8.3  47.5 35.6 ~58.0 34.5 26.5  
200036 ~81.9 ~27.8 10.8 ~15.8 ~43.7 ~42.5 ~75.8 ~63.6   
200094 ~57.6 32.8 8.3 13.8 43.8 39.1 66.9 38.0 25.9 19.0 

200021  40.6* 12.5        
200087 ~76.5 31.7 5.3 17.0 45.3 45.0 ~68.0 30.0  24.9 

200039 101.0 35.1 10.0  38.3 33.7 65.4 34.6   
SY1615028 94.5 34.7 8.9 13.5   70.1 36.4  19.8 

200027   9.1  ~46.9 ~48.3     
200085 79.5 38.0 8.1 13.5 42.3 38.5 70.0 ~52.5  18.5 

200024   10.8        
200025 76.7 31.5 9.1 12.1 48.0 41.7 66.4 ~39.6  21.0 

200033  36.4* 9.1        
200043  33.5 10.0 14.2 42.2 39.2 78.7 33.0   
200050  ~33.3 10.5 ~14.3 ~42.9 ~49.5 ~83.3 ~66.2   
200062  31.3* 12.5        
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200037 ~63.5 ~57.9 23.0  126.3 269.2 143.3 134.8 65.7 

200060 50.3 46.6  90.0 176.4 180.0 122.8 111.1 57.7 

200041    108.7  187.0    
200081  ~56.8    205.3    
200071  ~51.9 ~15.5   210.0    
200072  ~47.7    200.0    
200144  47.2 10.6   228.6    
200095  59.8    204.5    
200049  55.0  116.0 157.6 200.0    
200143  50.2   143.4 213.0    
200048    136.4  263.6    
200141 ~67.6 54.8   90.5 248.0 ~151.5 ~138.2 ~71.3 

200142  ~47.7 ~18.7 131.1  229.5    
200074  ~57.6    244.0    
200042      221.4    
200133 ~90.0 50.9 21.5 137.0  251.9 ~169.6 ~162.6 ~31.1 

200134 ~50.6 47.3 8.3 118.2  203.0 ~128.0 ~119.0 ~59.5 

200038    150.0  295.8    
200070  58.1  140.0 127.1 243.3    
200084 ~52.8 ~52.8  117.1  202.9  ~123.2 ~64.5 

200047    124.3 157.6 218.9   66.6 

200096      205.9    
200040  45.6 14.1 136.1 127.8 241.7 132.6   
200036 ~45.0 ~46.4 ~17.2 156.8  248.6 ~122.2 ~112.8 ~67.5 

200094 ~61.4 51.0 16.5 138.9 133.1 211.1 ~132.2 ~126.4 ~39.9 

200021    137.5  240.6    
200087  49.9 18.7 118.4 158.9 215.8    
200039  39.8 14.6 155.0 159.4 237.5 114.6   

SY1615028 43.1 52.3  114.0   136.6 114.5  
200027      220.5    
200085 83.8 50.0   122.0 204.7 ~155.0 ~145.0 46.5 

200024      283.8    
200025  40.3 11.4  141.4 245.5    
200033      239.4    
200043 ~50.1 46.9 13.6  118.1 245.7 ~120.4 ~111.7 ~67.0 

200050   ~11.9   221.1 ~166.7 ~152.4 ~67.1 

200062      243.8    
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Supplementary Table 6.2. GenBank NCBI accession information for data collected in this study. 

Species Gene Specimen ID Accession Number 

Notoliparis kermadecensis 16S 100220 KY659190 

Notoliparis kermadecensis 16S 100326 KY659189 

Notoliparis kermadecensis 16S 100350 KY659186 

Notoliparis kermadecensis COI 100220 KY659180 

Notoliparis kermadecensis COI 100326 KY659179 

Notoliparis kermadecensis COI 100350 KY659176 

Notoliparis kermadecensis Cyt-b 100220 KY659198 

Notoliparis kermadecensis Cyt-b 100326 KY659197 

Notoliparis kermadecensis Cyt-b 100350 KY659195 

Notoliparis stewarti 16S 100343 KY659188 

Notoliparis stewarti 16S 100344 KY659187 

Notoliparis stewarti COI 100343 KY659178 

Notoliparis stewarti COI 100344 KY659177 

Notoliparis stewarti Cyt-b 100343 KY659204 

Notoliparis stewarti Cyt-b 100344 KY659196 

Pseudoliparis swirei 16S 200084 KY659194 

Pseudoliparis swirei 16S 200094 KY659193 

Pseudoliparis swirei 16S 200096 KY659192 

Pseudoliparis swirei 16S 200143 KY659191 

Pseudoliparis swirei COI 200084 KY659185 

Pseudoliparis swirei COI 200094 KY659184 

Pseudoliparis swirei COI 200096 KY659183 

Pseudoliparis swirei COI 200134 KY659182 

Pseudoliparis swirei COI 200143 KY659181 

Pseudoliparis swirei Cyt-b 200094 KY659202 

Pseudoliparis swirei Cyt-b 200096 KY659201 

Pseudoliparis swirei Cyt-b 200134 KY659200 

Pseudoliparis swirei Cyt-b 200143 KY659199 

Pseudoliparis swirei Cyt-b 200084 KY659203 
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Supplementary Figure 5.1. Depth ranges of species with and without gelatinous tissues compared in the 

present study. Species with gelatinous tissues shown in blue triangles, those without gelatinous tissues grey 

circles. Grouped by family. Average depths of species with (blue) and without (grey) gelatinous tissues 

shown as dotted line.  


