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Abstract 

Modeling and Simulation of MESI Cache Coherency Protocol on FPGA 

By 

Kambla Kethana Rao 

Master of Science in Computer Engineering 

 

To make multi-core processors faster and more dependable, the number of cores is steadily 

raised.  Many problems arise with this increase and they need to be resolved. In this project, I 

worked on resolving one of the problems called the cache coherence. The concurrent 

functioning of multiple processors and the potential for separate caches to contain different 

versions of the same memory block lead to a cache coherence problem. To prevent the use of 

out-of-date values, the data which is shared by different cores must have the latest value. To 

address the issue of cache coherency and maintain data consistency across all caches and 

memory, cache coherence protocols are used. In this project I have worked on MESI protocol. 

Questasim is used as the simulator and Verilog and system Verilog languages are used for the 

implementation. To place the data into the cache and to replace them certain policies must be 

followed for efficiency. In this project, set associative is used for both the instructions cache 

and for the data cache and True- LRU is used as the replacement policy. Cache statistics were 

generated for hit rate/miss rate count. Designed and Simulated a split L1 cache backed by 

shared L2 cache Verilog, (Questasim). Implemented MESI protocol for cache coherency in a 

and various testcases were generated were by changing the number of sets, block size and 

number of ways and the cache statistics for hit rate/miss rate count where compared for each 

test case. Graphs were generated by comparing each test case to show the changing of the hit 

ratio with the changes in the size of the cache, number of sets, number of ways and the size of 

blocks. Verified using Individual trace tiles.
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                                                   Chapter 1 Introduction  

1.1 Introduction 

 

Since computers have become such an integral part of modern life, their performance is vital. 

Earlier, the idea was that a faster computer would result from raising processor frequency. . To 

attain great performance, however, designers must pay attention to other factors like expanding 

the number of cores when the market for increasing CPU frequency has reached saturation. 

Cache was added for quicker memory access as more cores were being used. As the caches 

have become essential parts of contemporary processors. By reducing the number of access to 

the main memory , they dramatically improve the performance of the system. Most of 

microprocessors contain numerous layers of cache to mask the growing gap between CPU and 

memory speed. In the era of multi-core systems, we have two architectural choices:  a 

distributed architecture or a shared memory approach . According to the distributed paradigm, 

each core needs to have its own private memory. Different cores communicate with one another 

by using a message passing mechanism. The shared memory model, which assumes that all 

cores access a single, common memory, is the more popular of the two options. Multiple 

cached copies may exist at any given time in a shared memory system. Therefore, for such a 

system to function as intended, coherence and uniformity are crucial. 

1.2 Cache Coherency 

Data consistency across caches in a shared memory system is known as cache coherence. A 

portion of the data existing in the main memory is stored in each processor's cache memory in 

a multi-processor system. 

 

Cache coherence makes sure that every cache has the most recent version of the data when 

different processors try to access the same piece of information. This is required because 

modifications made to a specific data item by one processor must be visible to all other 
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processors, ensuring that each processor sees a consistent view of memory.exchange words 

with one another. The shared memory model, which assumes that all cores access a single, 

common memory, is the more popular of the two options. Multiple cached copies may exist at 

any given time in a shared memory system. Therefore, for such a system to function as 

intended, coherence and uniformity are crucial. The fundamental concept is that each processor 

should broadcast its action to every other processor, and each processor should modify the 

shared block's state as necessary. Distributed caches are coordinated by coherence protocols, 

giving processors a consistent picture of the memory.  

 

1.3 Cache Coherency Protocol 

The basic approaches were to Update or to Invalidate. When a write action is carried out in the 

update protocol, a broadcast message is sent to others, who then update their cache block. When 

a processor performs an invalidation protocol write action, the other processors receive a 

broadcast invalidation message and clear their blocks as necessary. With all of the 

aforementioned methods, there are disadvantages. The broadcasting of "update" messages in 

the Update method is useless if a data block is only stored in one cache. Similar to this, if the 

core performs update and read operations on its own, broadcasting an invalidate message in 

the "Invalidate" method is pointless. The correct update protocol was required. Directory-based 

method created “by Censier and Feautrier in IEEE Toc1978” and Snoopy-based technique 

created by “Goodman12 in 1983”. The two most researched cache coherence algorithms in use 

today are these two. 

1.3.1 Snoop Based Cache Protocol 

 

The protocol for preserving cache coherency in symmetric multiprocessing environments is 

also known as a bus-snooping algorithm. To check if they have a copy of the requested data 

block, all caches on the bus use a snooping system to monitor (or snoop) the bus. For each 
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physical memory block it holds, each cache keeps a copy of the sharing data. Multiple copies 

of a document can frequently be viewed in a multiprocessing environment without any 

problems with coherence, but in order to write, a processor needs to have exclusive access to 

the bus. 

 

Figure 1.1 Snoop Based Cache Protocol 

There are two main types of snooping protocol: 

 

1.3.1.1 Write-invalidate 

The processor that is writing data invalidates copies in the caches of every other processor in 

the system before making modifications to its local duplicate. The local computer tells all other 

caches to look for a copy of the invalidated file by sending an invalidation signal over the bus. 

Once the cache copies have been made invalid,  the local computer's data can be updated until 

another processor requests it. 
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Figure 1.2 Write Invalidate 

 

1.3.1.2 Write-update 

With this protocol, whenever a processor modifies the data in its cache, all other cached 

versions are instantly updated as well. The new data block is sent via the broadcast method to 

every cache that has copies. The new data is sent over the bus by the data writer processor. 

All caches that have copies of the content are then updated. This scheme does not only create 

one local duplicate for writes, in opposition to write-invalidate. 

 

 

Figure 1.3 Write update 
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1.3.2 Directory-based coherence 

Directory-based cache is a type of cache coherence protocol used in multi-processor systems. 

In this protocol, a central directory maintains information about the location and state of data 

blocks stored in different caches throughout the system. Each cache block has a corresponding 

entry in the directory, which indicates which processor(s) hold a copy of the block, and whether 

it is in a modified, shared, or invalid state. When a processor needs to access a block that is not 

present in its own cache, it first checks the directory to determine its location and state. If 

another processor has a copy of the block, the requesting processor can either read the data 

directly from the other processor's cache or request a copy of the block from the other cache. 

When a processor modifies a block in its cache, it updates the directory to reflect the new state 

of the block. The directory can then inform other processors holding a copy of the block to 

invalidate their copy or request a copy of the modified block to be written back to main 

memory. Directory-based cache coherence can improve performance compared to other 

coherence protocols in large-scale multi-processor systems as it reduces the amount of traffic 

on the interconnect network by centralizing the coherence information. However, the directory 

itself can become a bottleneck in highly parallel systems with many processors, and the 

overhead of maintaining directory consistency can impact overall system performance. 

 

 

                                     Figure 1.4 Directory-based coherence scheme  
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The various nodes in the shared memory system that adhere to the directory-based coherence 

protocol are listed below. 

The node in the memory block known as the Requestor Node is the one asking the processor 

to perform a write or a read. The Director Node is the node that stores the state information for 

each cache block in the system, and the Requestor sends its queries there. The owner node is 

the node that currently controls the cache block's most recent state. The directory might not 

always contain the most recent information.Sharer nodes are any number of nodes that are 

sharing a copy of the cache block. 

Other coherence protocols, such as snooping-based coherence, which involve broadcasting of 

cache access requests to all processors and consequently cause a substantial amount of traffic 

on the interconnect and lower system performance, are more scalable than directory-based 

coherence. 

1.4. Snoop vs Directory 

 

Bus-based systems are limited by the fact that all nodes are simultaneously using a common 

bus, which prevents them from performing well. Bus networks can perform well for a modest 

number of nodes. While the number of nodes is increasing, some issues could arise in this 

respect. Particularly given that only one node may use the bus at once, which will adversely 

affect the system's total performance. On the other hand, directory-based systems won't 

experience this slowdown, which would limit the system's ability to scale.  Since the bus 

structure itself can arrange all of the system's traffic and guarantee the smooth passage of all 

signals that is passed through. it serves as a traffic organizer.  
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1.5 Requirements for Proper coherence protocol 

There are a few key requirements that must be met for any coherent strategy to be effective. 

For example, a protocol should be bandwidth-efficient, bus-based communication should be 

avoided, and transmission delay from cache to cache should be as low as possible. The initial 

move from cache to cache is crucial because we prefer to move relevant data from cache to 

cache rather than through main memory. Approaches based on snoopy enable low-latency 

cache-to-cache transfer since they broadcast messages on the bus.  In contrast, directory-based 

protocols add an extra clock cycle by delaying sending requests to the destination cache until 

they have received an acknowledgement. The second step is to steer clear of bus-like designs 

because they limit the system's ability to accommodate more cores. Transmission is point-to-

point in a directory-based system, enabling the integration of many cores. Thirdly, bandwidth 

reduction has a finite amount of effectiveness. Reduced bandwidth is necessary to prevent 

interconnect contention since it has an impact on system performance. 

1.5.1 Evolution of cache coherence protocols 

For sustaining coherence, a number of models and protocols have been developed, including 

the write-once, Dragon protocols, Synapse, Berkeley and Firefly.  

1.5.2 MESI PROTOCOL 

The MESI protocol is a cache coherence protocol used in multi-processor systems. It is an 

acronym for Modified, Exclusive, Shared, and Invalid, which are the four different states that 

a cache line can be in. 

1. Modified (M): When it is in the Modified state, it means that the line has been modified 

by the processor, and the data in the cache line is the most up-to-date version. Any 

changes made to the cache line will be written back to main memory when the cache 

line is evicted. 

2. Exclusive (E): When it is in the Exclusive state, it means that the line is present only in 
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the cache of a single processor, and the data in the cache line is the most up-to-date 

version. No other processor can have a copy of this cache line. 

3. Shared (S): When a cache line is in the Shared state, it means that the line is present in 

multiple processor caches, and all the copies contain the same data. Any processor can 

read the data in the cache line, but if one processor modifies the data, it must transition 

the cache line to the Modified state. 

4. Invalid (I): When a cache line is in the Invalid state, it means that the line is not present 

in the cache of any processor, and accessing this line will cause a cache miss. 

The MESI protocol uses a set of rules to ensure cache coherence, such as: 

• If a processor wants to read or write to a cache line in the Exclusive or Shared state, it 

must first gain ownership of the line by requesting it from other processors. 

• If a processor wants to write to a cache line in the Shared state, it must first transition 

the line to the Modified state and invalidate all other copies of the line in other processor 

caches. 

Overall, the MESI protocol ensures that all processors see a consistent view of memory by 

coordinating cache coherence between the caches of different processors in the system. 

 

Table 1- MESI Protocol  
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Chapter 2 Cache Memory 

2.1 Cache 

Cache memory, usually referred to as cache, is a separate memory system that temporarily 

retains recently used information or instructions so that a  central processing unit (CPU) may 

process them more quickly. The cache of a computer augments and increases the primary 

memory. Both the cache and the main memory are internal random-access memories. (RAMs).  

Only the most frequently utilized data or program code from the main memory is moved to the 

cache. Finding data in the cache and transferring it to the CPU for processing takes less time 

due to its reduced capacity. The locality of reference is the principle used by the cache memory, 

which states that programs tend to access the same data and instructions repeatedly, and 

therefore it is beneficial to keep this data and instructions in a small, fast memory to reduce 

access time. There are several levels of cache memory in modern computer systems, with each 

level having a larger capacity and a longer access time than the previous level. The cache levels 

include L1 (level 1) cache, L2 (level 2) cache, and sometimes L3 (level 3) cache. 

However, a device's cache memory may not always be able to store all of the necessary data 

because it is often limited in relation to its RAM and CPU processing capabilities. Whichever 

event actually takes place will determine whether a "cache hit" or "cache miss" occurs. 

2.2 Operations performed on local caches: 

1. Write hit 

 2. Read miss  

3. Read hit 

4. Miss …………………………………………………//./../……………..////////////……….. 

1. Write hit: When a processor modifies a piece of data that is already present in its local 

cache, it is called a write hit. In this case, the processor can directly update the data in 

its local cache without accessing the main memory. The modified data is kept in the 
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cache until the cache line is evicted or until the processor explicitly writes the data back 

to the main memory. 

2. Read miss: When a processor needs to read a piece of data that is not present in its local 

cache, it is called a read miss. In this case, the processor must retrieve the data from the 

main memory and load it into its local cache. If other processors have a copy of the 

same data in their local caches, the cache coherence protocol is used to ensure that all 

processors see a consistent view of memory. 

3. Read hit: When a processor needs to read a piece of data that is already present in its 

local cache, it is called a read hit. In this case, the processor can directly access the data 

in its local cache without accessing the main memory. This operation is faster than a 

read miss because the data is already present in the cache. 

4. Miss: A cache miss can refer to either a read miss or a write miss, which occurs when 

a processor needs to modify or read data that is not present in its local cache. In this 

case, the processor must retrieve the data from the main memory and load it into its 

local cache. If other processors have a copy of the same data in their local caches, the 

cache coherence protocol is used to ensure that all processors see a consistent view of 

memory. Cache misses are slower than cache hits because they require accessing the 

main memory, which is slower than accessing the cache. 

2.3 Cache writing policies 

Cache writing policy refers to the way in which a cache handles writes to data that is already 

present in the cache. There are two main cache writing policies: write-through and write-back. 

 

Write-through: In a write-through cache, every write operation to the cache is also written to 

the main memory. When a processor writes to a cache line, the data is first written to the cache, 

and then immediately written to the main memory to maintain cache coherency. However, this 
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policy can cause a significant slowdown in write operations because every write to the cache 

requires an additional write to the main memory. 

 

Write-back: In a write-back cache, writes to the cache are only written to the main memory 

when the cache line is evicted or explicitly flushed. When a processor writes to a cache line, 

the modified data is kept in the cache until the cache line is evicted or until the processor 

explicitly writes the data back to the main memory. This policy can improve performance by 

reducing the number of writes to the main memory. However, it can also introduce the risk of 

data inconsistency if a cache line is modified in one cache but not updated in another cache. 

 

In addition to these two main cache writing policies, there are also hybrid policies, such as 

write-combining, where multiple writes to the same cache line are combined into a single write 

to the main memory to improve performance. The choice of cache writing policy depends on 

the specific application and the trade-off between performance and consistency.  

2.4 Types of Cache Memory 

Cache memory is divided into two categories depending on its physical location and proximity 

to the device’s CPU. 

1.Primary Cache Memory: The primary cache memory, also known as the main cache memory, 

is the SRAM located on the same die as the CPU, which is as close as it can be installed. This 

is the type generally used in the storage and retrieval of information between the CPU and the 

RAM. 

2.Secondary Cache Memory: The secondary cache memory is the same hardware as the 

primary cache memory. However, it’s placed further away from the CPU, ensuring the 

existence of a backup SRAM that can be reached by the CPU whenever needed. 
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2.5 Different Level of Cache Memory 

Modern computer systems have more than one piece of cache memory, and these caches vary 

in size and proximity to the processor cores and, therefore, in speed. These are known as cache 

levels. 

The smallest and fastest cache memory is known as Level 1 cache, or L1 cache, and the next 

is the L2 cache, then L3. Most systems now have an L3 cache. Since the introduction of its 

Skylake chips, Intel has added L4 cache memory to some of its processors as well. However, 

it’s not as common. 

2.5.1 Level 1 Cache 

Level 1 (L1) Cache: This cache memory is located on the same chip as the CPU, also known 

as the microprocessor. It is the smallest and fastest cache memory, with a capacity of a few 

kilobytes to a few hundred kilobytes. The L1 cache is divided into separate instruction and data 

caches, each with its own set of control logic. The L1 cache operates at the same clock speed 

as the CPU and provides low-latency access to the most frequently used data and instructions. 

The size of the L1 cache varies depending on the CPU architecture, but it is typically very 

small, with sizes ranging from 8 KB to 512 KB. Because of its small size, the L1 cache is very 

expensive to manufacture and is therefore used sparingly. The main advantage of L1 cache is 

its speed. Because it is located on the CPU itself, it can be accessed very quickly, with access 

times measured in nanoseconds. This makes it ideal for storing frequently accessed data and 

instructions that the CPU needs to access quickly. L1 split cache refers to a cache memory 

hierarchy design where the first level cache (L1 cache) is divided into separate instruction and 

data caches. In this design, the processor has two independent caches that store instructions 

and data respectively, rather than a single cache that stores both. 

https://iq.opengenus.org/l4-cache/
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2.5.2 Level 2 Cache 

A form of memory called Level 2 (L2) cache is incorporated into a computer's processor chip 

to help speed up access to frequently accessed data. It is a short chunk of memory that serves 

as a buffer to hold frequently accessed data and is located between the CPU and the main 

memory (RAM). Because L2 cache is quicker than main memory, the processor can retrieve 

data more quickly, enhancing the computer's performance. L2 cache can be a separate chip on 

the same package as the CPU or it can be integrated into the processor itself, unlike L1 cache, 

which is normally built directly into the processor core. Depending on the processor model and 

maker, the L2 cache size and performance can change.  

2.5.3 Level 3 Cache 
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2.6 Cache Mapping 

2.6.1 Set-Associative Cache Mapping  

In this project, I have used the set- assosicative mapping.  set assosicative cache mapping 

Set-associative cache mapping is a caching technique that combines the benefits of direct-

mapped and fully-associative cache mapping techniques. It is a compromise between the two 

methods and is widely used in modern processors. 

In set-associative cache mapping, the cache is divided into a number of sets, and each set 

contains multiple cache lines. Each cache line in a set is associated with a tag that indicates the 

memory address of the data stored in that cache line. When a CPU needs to access data, the 

memory address is first divided into three fields: the tag field, the set field, and the word field. 
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The tag field is used to identify the memory block being accessed, the set field is used to 

identify the set in which the memory block is located, and the word field identifies the byte 

within the block that is being accessed. The CPU then searches the cache for the requested data 

by comparing the tag value with the tags in the cache lines in the corresponding set. 

If the requested data is found in the cache, it is called a cache hit and the data is returned to the 

CPU. If the requested data is not found in the cache, it is called a cache miss and the CPU 

retrieves the data from the main memory and stores it in the cache. 

The advantage of set-associative cache mapping over direct-mapped cache mapping is that it 

reduces the likelihood of cache conflicts, where two or more memory blocks map to the same 

cache line. Set-associative mapping provides more flexibility and can store more data than 

direct-mapped caches while still being efficient in terms of hardware complexity and cache 

access speed 

2.7 Cache replacement policies 

Our cache's capacity is limited. Particularly in caching setups that make use of pricey and high-

performance storage. In other words, we are forced to evict certain objects while keeping 

others. Algorithms for replacing caches do this. They make the decisions regarding what 

belongs there and what has to go. Different cache replacement policies have different trade-

offs between cache hit rate, complexity, and overhead. The choice of the cache replacement 

policy depends on the specific application and the design goals of the system. Few of the 

policies are FIFO, LFU and random replacement policy. In FIFO, the first cache line that was 

loaded into the cache is the first to be replaced. As the name suggests, this policy randomly 

selects a cache line to be replaced. It does not consider the access history or any other factor, 

making it a simple and easy-to-implement policy. I used the LRU policy. 
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2.7.1 LRU algorithm 

The Least Recently Used (LRU) policy is a cache eviction algorithm used in computer 

operating systems and other computer systems to manage memory. It works on the principle 

that the data items that are least recently used should be evicted first. When the cache becomes 

full and there is a need to store a new item, the LRU policy checks the dirty bits of all the items 

in the cache. It identifies the item that has been accessed the least recently and evicts it from 

the cache to make space for the new item. The LRU policy is based on the assumption that data 

items that were accessed recently are more likely to be accessed again in the near future than 

the items that were accessed a long time ago. Therefore, by evicting the least recently used 

items, the cache can make room for more frequently accessed items, thus improving cache hit 

rate and overall system performance.  To implement the LRU algorithm, a data structure called 

a doubly linked list is typically used. Each node in the linked list represents a cache item, and 

the linked list is ordered from most recently used to least recently used. When an item is 

accessed, it is moved to the front of the linked list. When a new item needs to be added to the 

cache, the least recently used item is removed from the back of the linked list. The LRU 

algorithm is popular because it is simple to implement and often provides good cache 

performance. However, it can be slow if the cache size is very large, and it may not perform 

well in certain access patterns. Other cache eviction algorithms, such as LFU (Least Frequently 

Used) and MRU (Most Recently Used), are also used in practice depending on the specific use 

case. 

2.8 Calculations 

The following formulas have been used. 

Size of single cache line= Size of single frame in RAM= Size of single page in Processor. 

Number of blocks = Size of cache / number of words in block. 

Number of sets = Number of blocks in cache 
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/number of blocks in set 

Tag bits = Number of bits in Main memory address – Sum of other field. 

Number of sets = 2 power index bits 

Block Size = 2 power offset 

Number of frames/set = 2 power tag bits 

Cache capacity = Block size in byte * (blocks per set) * (number of sets) 

Cache size = Block size * set * way 

Cache size= Number of lines in cache * size of line  

Tag bits = (address bits) – (index bits) – (block offset bits) 

Number of frames in RAM = Number of sets * Number of frames/set 
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Chapter 3  

System Architecture 

3.1 Design 

This project functionally simulates a split instruction/data L1 cache for a 32-bit processor in a 

system with multiple processors. The system employs MESI protocol to ensure cache 

coherence. The instruction cache is 2-way set associative, consists of 16K sets, and has 64-byte 

lines. The data cache is 4-way set associative, consists of 16K sets, and has 64-byte lines. Both 

caches employ LRU replacement policy and are backed by an L2 cache (which is modeled as 

a stub in this simulation). Snoop protocol is used. Statistics regarding the number of reads, 

writes, hits, and misses are generated, as well as a hit percentage rate. This simulation has a 

single-cycle interface between a processor and L1, and between L1 and L2.  All processor reads 

and writes are a single byte 

 

 

Figure 3.1 Model of code 

Implemented MESI protocol for cache coherency in a 2-way set associative L1 instruction 

cache and 4-way set associative data cache with write-back using write-allocate, used True-
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LRU as eviction policy. Generated cache statistics for hit rate/miss rate count. 

In the course of designing this L1 cache, I have made a few assumptions regarding the CPU:  

• The cache hierarchy is inclusive.  By making the L2 cache support an inclusive policy, the 

synchronization logic between the L1 and L2 cache is greatly simplified.  

• The data cache is write-through. The L1 and L2 caches together are required to support 

memory writebacks. However, because the cache design also needs to support MESI, I decided 

to implement the L1 data cache as a simple write-through cache. Because the cache hierarchy 

uses an inclusive policy, evictions forced by MESI in the L2 cache will force an eviction in the 

L1 cache.  

 • Cache contents (actual data) are irrelevant for this simulation. Thus, all byte offsets are 

ignored. Because we only stub out the processor, the next level cache, and our cache eviction 

policy is based entirely on memory addresses, there is no need to examine data values.  

The 32-bit addresses from the processor are broken down into the following fields: 

 31:20 = 12-bit tag  

19:6 = 14-bit index  

5:0   = 6-bit offset 

The following method for interface with L2 is defined. A 26-bit address specifies a 64-byte 

cache line, and must be supplied with one of the following 2-bit cmd_out commands: 

 00 No Operation (ignore any input on address lines)  

01 Read from L2  

10 Write to L2  

11 Read with intent to modify. To run, the simulation requires a trace file formatted using the 

protocol specified in the project description. A print command will output human-readable 

cache contents and statistics. 
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3.2 Explanation of the each module of the code. 

3.2.1 Data module 

The size of the sets, ways, tags and index is defined initially. Commands for the data cache, 

mesi parameters,  and parameters for the L2 cache are defined. In the invalidate block, for 

every way in the cache, the LRU bits are set, the MESI is set to invalid and the tag bits are set 

to zero. For all the ways, if the incoming tag matches the current tag, the LRU bits are set. If 

the current tag in is shared or Exclusive state, the current tag is set to invalid.  If the current tag 

is in modified state, then it is written back to L2 and then put in the invalid state. For the read 

block, the total numbers of reads  are incremented first for the statistics. If the current tag state 

is in modified, shared or exclusive then, the hit count is increased. If there was no hit, it is 

checked  if the current tag is in invalid state. If there was no hit, for all the ways in the set. it is 

checked to see if it is in invalid. New LRU bits are calculated based on the invalid way. If there 

was no invalid way, evict the LRU way. In the write module, firstly the write count is increased, 

then the ways within the set is searched, if there is a hit, the LRU is updated and the hit counter 

is increment. Then the current tag is put under exclusive state. If the current tag is in exclusive 

or modified state, then it is put in modified state first and hit count is incremented. If it is in 

shared state, the hit count is incremented and put in exclusive state. If there is no hit, it is 

checked if the given tag is in invalid state and the miss count is incremented. If it is not in 

invalid state, then an LRU is evicted. In the snoop module, if current index is in the modified 

or exclusive, then it is put in the shared state and the LRU bits are updated. 

3.2.2 Instruction module 

The size of the sets, ways, tags and index is defined initially. Parameters for MESI protocol 

and instruction cache are defined. First reset is defined, always at the positive edge, for all the 

sets in the cache, the LRU bits are set to zero. Then, for every way in the cache, the MESI is 
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set to invalid and the tag bits are set to zero. In the next block, the read count is increased first 

for the statistics. For all the ways in the sets,if the tag of the current index matches any tag in 

the  shared or exclusive , then the hit counter is incremented, else the miss counter is 

incremented. If there was no hit,for all the ways in the set. it is checked to see if it is in invalid. 

New LRU bits are calculated based on the invalid way. If there was no invalid way, evict the 

LRU way. Till then the current index is kept under Shared.  

3.2.3 LRU module 

Dirty bits are activated for each set depending on the lrubits given from the cache modules. 

3.2.4 Testbench 

No actual data is given from the trace files. Only a command such as read or write is given 

along with the address. The input file is given in the testbench which opens and reads the files. 

If no clock signal is found, then it is set to reset.  

3.2.5 Statistics module 

A statistics module is written to calculate the data reads, data writes, data hits, data miss and 

the hit ratios and the miss ratio  of the data cache and the instruction cache. A conditional 

operator is used to set the value to zero if the denominator of the hit ratio values to zero, so that 

the value does not become undefined. 

3.2.6 Top level module 

In digital design, the top module is the highest level module in a design hierarchy. It is the 

module that contains all other modules and sub-modules within a design. The top module is 

typically the first module instantiated in a design and represents the entire system or device 

being designed. A top module is defined to accumulate all of  the modules. It connects the L1 

and L2 module with the data and instruction cache. It takes the values given from the testbench 
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and gives it to the statistics module to compute the output. The commands from the trace files 

are defined in this module.  

3.2.7 Trace file 

A trace file is a type of computer file that records the sequence of events or actions that occur 

during the execution of a program or system. It is often used in debugging or performance 

analysis of software applications or computer systems. A trace file typically contains a detailed 

log of the system's activities, including the time and date of each event, the type of event that 

occurred, any associated error messages or warnings, and other relevant information. This data 

can be used to analyze system behavior, identify performance bottlenecks, or track down bugs 

and other issues. Trace files can be generated by various types of software, including operating 

systems, network monitoring tools, and application profiling software. They are often saved in 

a plain text format or a specialized binary format, depending on the software that generated 

them. The data is irrelevant in this project. Hence the input file has only 2 values, the command 

and the address.   
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Chapter 4 Testing and Results 

4.1 Questa Sim 

Questa Sim is used as the simulator. The code was written in Notepad++ files and uploaded 

onto Questa Sim, where they were compiled, simulated and run to receive the output. Questa 

Sim is used in large multi-million gate designs, and is supported on Microsoft Windows and 

Linux, in 32-bit and 64-bit architectures. 

Firstly new project is created and the files are added to it.  

 

Figure 4.1 New project 

Then all the files are compiled and if no errors are found, the simulation is started. 

 

Figure 4.2 Compilation 
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In the simulation, the testbench is selected and all the files are run. Then the statistics output is 

received. 

 

Figure 4.3 Simulation 

 

4.2 Test Vectors 

 

Figure 4.4 Test Vectors 
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As the data is irrelevant, the test vectors are only, the command and the address.Here, 

 Read                  = 4'd0 

 Write                   = 4'd1 

Instruction Fetch = 4'd2 

4.4 Results 

4.4.1 Testcase 1 

A 4-way set associative instruction cache with 16K sets and a 4-way set associative data 

cache with 16K sets and cache size of 4MB was designed and the following outputs were 

obtained. The following are the detailed specifications  

Index bits- 14 

Tag bits- 12 

Sets- 16k 

Way-4 

Cache size -4MB 

Block size- 2*6 

 

                                                          Figure 4.5 Result 1 

4.4.2 Testcase 2 

A 4-way set associative instruction cache with 4K sets and a 4-way set associative data cache 

with 4K sets and cache size of 4MB was designed and the following outputs were obtained. 

The following are the detailed specifications  

Index bits- 12 
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Tag bits- 12 

Sets- 4k 

Way-4 

Cache size -4MB 

 

Figure 4.6 Result 2  

4.4.3 Testcase 3 

A 4-way set associative instruction cache with 1K sets and a 4-way set associative data cache 

with 1K sets and cache size of 4MB was designed and the following outputs were obtained. 

The following are the detailed specifications  

Index bits- 10 

Tag bits- 12 

Sets- 1k 

Way-4 

Cache size -4mb 
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Figure 4.6 Result 3 

 

 

 

4.4.4 Testcase 4 

A 4-way set associative instruction cache with 4K sets and a 4-way set associative data cache 

with 4K sets and cache size of 4MB was designed and the following outputs were obtained. 

The following are the detailed specifications  

A split cache with following specifications was developed 

Cache size- 16mb 

Number of sets-4k 

Tag -10 

Way -4 

Index- 12 

Block size- 2*10 
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Figure 4.7 Result 4 

4.4.5 Testcase 5 

A 2-way set associative instruction cache with 8K sets and a 2-way set associative data cache 

with 8K sets and cache size of 16MB was designed and the following outputs were obtained. 

The following are the detailed specifications  

Cache size- 16mb 

Number of sets-8k 

Tag -9 

Way -2 

Index- 13 

Block size- 2*10 

 

Figure 4.8 Result 5 

4.4.6 Testcase 6 

A 8-way set associative instruction cache with 2K sets and a 8-way set associative data cache 
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with 2K sets and cache size of 16MB was designed and the following outputs were obtained. 

The following are the detailed specifications  

Cache size- 16mb 

Number of sets-2k 

Tag -11 

Way -8 

Index- 11 

Block size- 2 10 

 

 

Figure 4.9 Result 6 

4.4.7 Testcase 7 

A 2-way set associative instruction cache with 8K sets and a 2-way set associative data cache 

with 8K sets and cache size of 64MB was designed and the following outputs were obtained. 

The following are the detailed specifications  

Cache size- 64mb 

Number of sets-8k 

Tag -7 

Way -2 

Index- 13 

Block size- 2*12 
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Figure 4.10 Result 7 

4.4.8 Testcase 8 

A 4-way set associative instruction cache with 4K sets and a 4-way set associative data cache 

with 4K sets and cache size of 64MB was designed and the following outputs were obtained. 

The following are the detailed specifications  

Cache size- 64mb 

Number of sets-4k 

Tag -8 

Way -4 

Index- 12 

Block size- 2*12 

 

Figure 4.11 Result 8 

4.4.9 Testcase 9 

A 8-way set associative instruction cache with 2K sets and a 8-way set associative data cache 
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with 2K sets and cache size of 64MB was designed and the following outputs were obtained. 

The following are the detailed specifications  

Cache size- 64mb 

Number of sets-2k 

Tag -9 

Way -8 

Index- 11 

Block size- 2 12 

 

 

Figure 4.12 Result 9 

 

Cache size- 4mb 

Tag bits- 12 

Index bits – 14 

Number of sets – 16k 

Block size – 2*6 

Data Hit ratio- 99.8 

Instruction hit ratio-99.6 

Way 4 

Cache size- 4mb 

Tag bits- 12 

Index bits – 12 

Number of sets – 4k 

Block size – 2*8 

Data Hit ratio – 99.6 

Instruction hit ratio- 38.4  

Ways - 4 

Cache size- 4mb 

Tag bits- 12 

Index bits – 10 

Number of sets – 1k 

Block size – 2*4 

Data Hit ratio- 45 

Instruction hit ratio- 21 

Ways -4  
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Cache size- 16mb 

Tag bits- 9 

Index bits – 13 

Number of sets – 8k 

Block size – 2*10 

Way-2 

Data Hit ratio- 99.8 

Instruction hit ratio- 90 

Cache size- 16mb 

Tag bits- 10 

Index bits – 12 

Number of sets –4k 

Block size – 2*10 

Way-4 

Data Hit ratio – 99.6 

Instruction hit ratio- 38 

Cache size- 16mb 

Tag bits- 11 

Index bits – 11 

Number of sets – 2k 

Block size – 2*10 

Way-8 

Data Hit ratio- 49 

Instruction hit ratio- 28 

Cache size- 64mb 

Tag bits- 7 

Index bits – 13 

Number of sets – 8k 

Block size – 2*12 

Way-2 

Data Hit ratio- 99.8 

Instruction hit ratio-90.6 

Cache size- 64mb 

Tag bits- 8 

Index bits – 12 

Number of sets – 4k 

Block size – 2*12 

Way-4 

Data Hit ratio- 99.6 

Instruction hit ratio- 38.4 

Cache size- 64mb 

Tag bits- 9 

Index bits – 11 

Number of sets – 2k 

Block size – 2*12 

Way-8 

Data Hit ratio- 49 

Instruction hit ratio- 28 

                                                           Table – 4.1 Results 
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4.5 Graphs Results 

 

Figure 4.13 Graph 1 

Sets vs Hit ratio vs cache 

Cache size – constant (16mb) 

Sets – varying (in the graph, the scale for sets are assumed as 1000s) 

Hit ratio – varying (the scale is assumed as %) 

Firstly, the cache size is kept constant at 16mb and the sets are constantly changed and with 

the decrease in the number of sets, the hit ratio decreases. It can be seen that the hit ratio 

decreases with decrease in the number of sets.  

 

Figure 4.14 Graph 2 

 

Ways vs Hit ratio vs Cache 

Cache is constant at 16mb 

Ways – varying  

Hit ratio – varying (the scale is assumed as %) 
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Ways are constantly changed and with the decrease in the number of ways, the hit ratio 

increases.  

 

Figure 4.15 Graph 3 

Different cache values vs same sets vs hit ratio 

Cache size – constant (16mb) 

Sets – varying (in the graph, the scale for sets are assumed as 1000s) 

Hit ratio – varying (the scale is assumed as %) 

The hit ratios are mainly effected by the changes in the sets, but where unaffected by the 

changes in the size of cache 

 

 

Figure 4.16 Graph 4 
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Block size – (varying from 64 to 256 to 16) 

Cache size -constant (the scale is assumed to be in mb) 

Hit ratio – varying ( the scale is assumed in percentages )  

The size of the block does not effect the hit ratio as we have not given any data here. 

I have tested the hit ratios with the cache size kept constant and the block values changing in 

the first scenario and block values kept constant and the cache size kept constant  

Hence the hit ratios mainly depend upon the size of the sets or the ways. 

 

 

Figure 4.17 Graph 5 

 

Cache size constant vs sets changing vs hit ratio of instruction cache. 

Cache size – constant (16mb) 

Sets – varying (the scale for sets is assumed to be in 1000s and the values range from 2k,4k 

to 8k) 

Hit ratios – varying (the hit ratio for instruction cache is varying from 90% ,40% to 30%) .  

It can be seen that the hit ratio decreases with decrease in the number of sets.  
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4.6 Calculations 

Cache size = block size * number of lines  

Number of lines = number of sets * way 

If the number of sets = 2a, then ‘a’ index bits are required  

If block size = 2b, then ‘b’ offset bits are required 

Index bits + tag bits + offset bits = 32 bits microprocessor(here) 

Number of lines = cache size / block size  

 

For the 16mb cache size, 

16mb = 224 

Cache size = block size * number of lines  

224 = 210  * number of lines (assuming constant block size) 

Number of lines = number of sets * ways 

Number of lines = 214 

214 = number of sets * ways ( starting from the highest way) 

214 = number of sets * 23 

Number of sets = 211 = 2k sets 

Hence the index bits= 11 

As the block size is 210 , the offset bits are 10 

As Index bits + tag bits + offset bits = 32 bits microprocessor 

Tag bits = 11 

Hence, the final specifications are 

Cache size- 16mb 

Tag bits- 11 

Index bits – 11 

Number of sets – 2k 

Block size – 2*10 
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Way-8 

Data Hit ratio- 49 

Instruction hit ratio- 28 

 

For the 64mb cache size, 

64mb = 226 

Cache size = block size * number of lines  

226 = 212  * number of lines (assuming constant block size) 

Number of lines = number of sets * ways 

Number of lines = 214 

214 = number of sets * ways ( starting from the highest way) 

214 = number of sets * 23 

Number of sets = 211 = 2k sets 

Hence the index bits= 11 

As the block size is 212 , the offset bits are 12 

As Index bits + tag bits + offset bits = 32 bits microprocessor 

Tag bits = 9 

Hence the final specifications are 

Cache size- 64mb 

Tag bits- 9 

Index bits – 11 

Number of sets – 2k 

Block size – 2*12 

Way-8 

Data Hit ratio- 49 

Instruction hit ratio- 28 
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For the 4mb cache size, 

4mb = 222 

Cache size = block size * number of lines  

222 = 26  * number of lines (assuming a block size) 

Number of lines = number of sets * ways 

Number of lines = 214 

214 = number of sets * ways ( starting from the highest way) 

214 = number of sets * 22 

Number of sets = 214 = 16k sets 

Hence the index bits= 14 

As the block size is 26 , the offset bits are 6 

As Index bits + tag bits + offset bits = 32 bits microprocessor 

Tag bits = 12 

Hence the final specifications are 

Cache size- 4mb 

Tag bits- 12 

Index bits – 14 

Number of sets – 16k 

Block size – 2*6 

Way-4 

Data Hit ratio- 99 

Instruction hit ratio- 99 
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Chapter 5 Conclusion and Future Scope 

5.1 Conclusion 

Hence, a split instruction/data L1 cache for a 32-bit processor in a system was simulated. MESI 

protocol was implemented to ensure cache coherence. Different test cases were defined with 

decreasing number of sets. There was a decrease in the hit ratio , with the decrease in the 

number of sets. In general, having more sets in a cache can lead to better performance. This is 

because with more sets, the cache can store more blocks and reduce the likelihood of conflicts, 

which occur when multiple memory blocks map to the same cache set. On the other hand, 

having fewer sets can reduce the complexity and power consumption of the cache, as well as 

the cost of the hardware. However, this comes at the expense of cache capacity and potentially 

higher miss rates due to conflicts. Therefore, the choice of the number of sets in a cache 

involves a trade-off between capacity, performance, complexity, power consumption, and cost. 

Hence 16K sets in each of cache is considered to be optimal. I have tested with changing blocks 

and ways, but what impacted the hit ratio mainly was the number of sets. LRU replacement 

policies was employed on both the caches and Snoop protocol is used and statistics regarding 

the number of reads, writes, hits, and misses as well as a hit percentage rate are generated. 
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5.2 Future Scope 

The following are few of the future scopes 

• As I have tested the MESI protocol, MOESI and MOESIF protocols can also be tested 

by adding the additional owned and forward cases. A comparison can be done 

amongst the 3 different protocols. 

• The trace files only consisted of  commands and address values. Changes can be made 

to added actual data values and then check how it effects the hit ratio, when data 

values of different sizes are included. 

• LRU was used in this project, MRU and random replacement policies can be used and 

the hit ratio can be compared. 

• For this project a 32 bit processor was considered, changes can be made to test for a 

64 bit processor and change the cache size and sets accordingly. 
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